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SUMMARY 
 

Consequences of pathological vascular remodeling include complete arterial 

occlusions resulting in an ischemic environment, or the development of vulnerable 

plaques which may rupture and lead to thrombosis.  In this study, we investigated the 

role of Ang II in vascular remodeling.  We sought to determine whether the humoral or 

the mechanical effects of Ang II are the dominant factor driving the remodeling process. 

The following experimental groups were used in this study:  control group 

(untreated mice), mice treated with an angiotensin receptor blocker (Candesartan, 0.5 

mg/kg/day,SQ), an ACE inhibitor (Captopril, 6 mg/kg/day), and a calcium-channel 

blocker (Amlodipine, 7.5 mg/kg/day).  All mice (n=6 per experimental group) were from 

the C57Bl/6 background.  We implemented the carotid ligation model of vascular injury 

to study the differences in vascular remodeling.  We used multiple time points (7-, 14-, 

and 21-days post-surgery) to track the progression of the remodeling process as 

assessed by comparative histomorphometry.  At the 7-day time point, we observed that 

all three treatment groups yielded similar remodeling patterns as evidenced by a 

significant reduction in neointimal area, medial thickening and hypertrophy compared 

with the control group.  Histomorphometric analysis of carotid sections collected 1mm 

below the ligation demonstrated that the Amlodipine group had 26% reduction in total 

vessel area, Candesartan a 36% reduction, and Captopril a 28% reduction (p<0.05 in all 

groups compared with Control), as well as a parallel 38-40% drop in medial thickness. 

 In Day-14 analysis, we did not observe significant differences between the Controls and 

the treatment groups, although differences were emerging between the treatment 

groups.  Candesartan was found to reduce the extent of negative remodeling observed 

between the 7- and 14-day Control data, whereas the Captopril group did not exhibit this 

trend.  All three treatment groups exhibited less neointimal formation than Controls, 

similar to Day-7.  By the 21-day time point, the Captopril group underwent positive 



 xii

remodeling, resembling the Candesartan and Amlodipine groups. Although total vessel 

area was analogous among all groups, neointimal areas were significantly decreased in 

the treatment groups. 

We report that blood pressure plays a pivotal role in the modulation of vascular 

remodeling in response to mechanical injury. Although intermediate timepoint analysis 

suggests that humoral aspects of ACE inhibition or angiotensin-receptor blockade 

yielded unique effects on the overall vessel caliber, upon reaching the late, 21-day time 

point, the mechanical factors became predominant.  These data support the importance 

of blood pressure control in the attenuation of pathological vascular remodeling. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1 The Importance of Vascular Injury Research 

Vascular injury is a ubiquitous term used to generalize the biological response to 

a broad range of abnormalities afflicting the vessel wall.   The type of response is 

dependent on the short- and long-term nature of the injury, which is apparent based 

upon the resulting lesion morphology.  Examples of the response to injury include 

neointimal formation, changes to vessel size and caliber, proliferation or apoptosis of 

cells comprising the vessel wall, and recruitment of inflammatory cells to the site of the 

lesion. Vascular injury plays a key role in the manifestation of an array of cardiovascular 

diseases, including hypertension, atherosclerosis, stroke, restenosis, and diabetic 

vascular complications.  Of these, coronary heart disease is the most prevalent cause of 

death in the developed world, afflicting 35% of the United States and Western European 

population [1].   

There is extensive evidence demonstrating the involvement of the renin-

angiotensin system (RAS) in the progression of cardiovascular pathologies.  ACE and 

angiotensin receptors expression are known to become upregulated in areas of vascular 

injury.   Three clinical trials have been published evaluating the benefits of ACE inhibitor 

treatment in coronary artery disease (CAD), namely: Heart Outcomes Prevention 

Evaluation (HOPE), European Trial on Reduction of Cardiac Events with Perindopril in 

Stable Coronary Artery Disease (EUROPA), and Prevention of Events with Angiotensin 

Converting Enzyme Inhibition (PEACE) [2-4].  Each trial recruited patients that had 

preserved left ventricular function and risk for coronary or other vascular disease [5].  

They used different, yet well studied ACE inhibitors: HOPE administered ramipril, 
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EUROPA administered perindopril, and PEACE administered trandolapril.  The HOPE 

and EUROPA trials demonstrate a benefit of administration of ACE inhibitors on 

reducing atherosclerotic complications, whereas the PEACE trial outcomes showed ACE 

inhibitor therapy ineffective.  The main difference in patient populations between these 

trials was that HOPE and EUROPA trials recruited patients that were at higher risk for 

adverse cardiovascular events than the stable, low-risk patients comprising the PEACE 

trial [6]. 

 Atherosclerosis is a very complex, multifactorial disease affecting the arterial 

wall.  Over the years, its origin has been the focus of intense scrutiny, and as a result, 

several hypotheses have been formulated and published.  The results from these clinical 

trials were inconsistent, supporting the need for further investigation examining the role 

of Ang II in vascular injury.  To date there are no animal models that fully represent the 

pathogenesis and morphology of human lesions.  Because this type of lesion is so 

complex, several animal models have been developed to differentiate its various 

underlying biological processes.  In this study, we will be utilizing an injury model that 

was developed to isolate the response of vascular remodeling, particularly neointimal 

formation. 

1.2 Specific Aims 

Although the majority of literature regarding vascular injury to date focuses on 

neointimal hyperplasia and smooth muscle cell proliferation, the emerging notion 

implicates arterial wall remodeling as being the primary contributor to the underlying 

mechanisms regulating restenosis [7, 8].  Several models have been developed to study 

the various aspects of vascular injury, such as medial hypertrophy and thickening, 

inflammatory cell recruitment, neointimal proliferation, and adventitial fibrosis [7].  In this 

project, we will employ the flow-cessation vascular injury model to define the role of Ang 

II in vascular remodeling.  We hope to achieve this by evaluating the spatial and 
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temporal effects of ACE inhibition and angiotensin-receptor blockade via comparative 

histomorphometry.  Our two specific aims are: (1) to characterize the flow-cessation 

vascular injury model (2) to evaluate the predominance of the humoral versus 

mechanical effects of Ang II in pathological vascular remodeling. 
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CHAPTER 2 

 

DEFINING THE ROLE OF ANG II IN VASCULAR REMODELING 

 

2.1 Background and Significance 

2.1.1 Vascular Remodeling 

Vascular remodeling is a complex, adaptive/maladaptive process by which 

vessels undergo structural alterations in response to biochemical and/or biomechanical 

stimuli.  It is initially observed in embryonic development during the process of 

vasculogenesis, when the earliest signs of a developing heart and blood vessels occur, 

and continues throughout growth and maturation depending on long-term changes in 

their mechanical and hemodynamic environment [9, 10].  The process of vascular 

remodeling involves differences in the following cellular processes: cell growth, cell 

death, cell migration, and production or degradation of extracellular matrix [11].   

Multiple factors influence the remodeling process, such as vasoactive 

substances, growth factors, and hemodynamic changes [12-15].  The endothelium plays 

a particularly prominent role in remodeling due to its direct exposure to humoral factors, 

inflammatory mediators, and physical forces [11].  Numerous studies have proven that 

blood pressure has a pivotal influence on the remodeling of arteries [12, 16, 17].  As 

supportive evidence for the influence of hemodynamic factors on vessel remodeling, 

local conditions following balloon angioplasty are characterized by low shear stress and 

increased wall stress, due to acute lumen area restoration.  Constrictive remodeling has 

been observed as an adaptive mechanism to return to normalized shear stress values; 

in the case where vascular remodeling is lacking, neointimal growth is replaced [12]. 
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2.1.2 Renin-Angiotensin System 

The renin-angiotensin system (RAS) is a central regulator of blood pressure, 

which is also involved in water and salt balance, tissue growth and perfusion.  The RAS 

is modulated by baroreceptors, whose main function is to detect changes in blood 

pressure.  When the effective circulating volume decreases, followed by a decrease in 

blood pressure, baroreceptors are activated and send signals via the renal sympathetic 

nerve, resulting in the granular cells of the juxtaglomerular apparatus releasing renin, a 

protease that has specificity for angiotensinogen and catalyzes its conversion to 

angiotensin I (Ang I), a decapeptide.  Ang I then transforms due to cleavage of two 

amino acids into Ang II, an octapeptide, via angiotensin-converting enzyme (ACE).  Ang 

II is a potent vasoconstrictor that mediates its effects upon binding to its receptors, AT1 

and AT2, although Ang II has greater affinity for the AT1 receptor [18, 19].   

Traditionally, the RAS was believed to have only a systemic influence due to its 

effects on blood pressure.  Once renin is secreted from the kidneys, it is released into 

the bloodstream where it comes into contact with angiotensinogen produced in the liver, 

thus producing Ang I.  Ang I is then cleaved to form Ang II by ACE predominantly 

expressed in the lungs.  However, recent evidence points to a parallel, tissue-based 

RAS located in the vascular wall, particularly in areas of atherosclerotic lesions.  This 

was validated by detection of the mRNA of the various components of RAS in 

macrophages and cell types composing the arterial wall [20].  ACE expression in the 

arterial wall is predominantly localized in the endothelium, although ACE expression is 

known to be upregulated in VSMCs upon conversion from contractile to synthetic 

phenotype [21, 22].  Specifically, Fukuda et al was one of the first groups to demonstrate 

that VSMCs incorporates all the components necessary to generate Ang II, based on 

homogeneous cultures of VSMCs derived from SHR [23]. 
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However, the sole component not detected in the vessel wall, and thus not locally 

synthesized was renin [24], suggesting that the underlying mechanism behind local Ang 

II production involves the endothelium-mediated cellular uptake of renin from the 

systemic circulation [20].  Hence, the verification of RAS components in the vessel wall 

with the additional preconception of the pro-inflammatory effects of Ang II supports the 

constitutive influence of RAS in vascular remodeling. 

2.1.3 Angiotensin-Converting Enzyme 

ACE is a zinc carboxypeptidase that is anchored to the plasma membrane [25].  

The primary function of ACE in the cardiovascular system is to cleave Ang I to form Ang 

II and to degrade bradykinin into inactive fragments.  ACE is predominantly found in a 

tissue-bound state and expressed by a variety of other somatic tissues, including renal 

tubular epithelium, activated macrophages, ciliated gut epithelium, and areas within the 

central nervous system [26, 27].  Roughly ten percent resides in circulation since it is an 

ectoenzyme and can slough into the bloodstream, where it is considered plasma ACE 

[28].  In the vessel wall, ACE is principally expressed in the endothelium, where it 

produces Ang II adjacent to vascular smooth muscle cells comprising the media [28].  

Monocytes and macrophages are also known to express ACE, and more notably, in 

areas of plaque formation, ACE expression is upregulated in these cell types [29]. 

In understanding the causal nature of blood pressure control and presence of 

RAS components, it is known that while renin levels vary in response to changes in 

blood pressure, ACE levels are far less variable [27].  The use of targeted homologous 

recombination in mouse embryonic stem (ES) cells has led to the development of a 

series of transgenic mice with tissue-selective expression of the ACE gene [26, 28, 30].  

This was achieved by incorporating a neomycin resistance cassette to disrupt the 

somatic ACE promoter, followed by the insertion of a tissue-specific promoter to yield the 

desirable ACE specificity [28].  Therefore, by altering the expression levels of ACE, 
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insight has and will be gained into the true function and contribution of systemic RAS vs. 

tissue RAS in various conditions. 

2.1.4 Ang II and downstream effects 

Ang II, the effector molecule of RAS, is a vasoactive octapeptide (Asp1-Arg2-Val3-

Tyr4-Ile5-His6-Pro7-Phe8-COO-) which plays a role in the etiology of hypertension as well 

as the pathophysiology of cardiovascular and renal diseases [31, 32].  In these 

conditions, Ang II generates elevated blood pressure, vasoconstriction, and increased 

cardiac contractility [31].  Inhibition of ACE and blockade of the AT1 receptor is a 

common therapy for treatment of hypertension and atherosclerosis, as current data 

suggests beneficial effects on endothelial function, vascular smooth muscle cells, and 

inflammatory vascular processes [33].   

In addition to the mechanical effects of Ang II, there are also humoral effects on 

the cardiovascular system.  Ang II contributes to oxidative stress in the vascular wall by 

activating the NAD(P)H oxidases [34].  The NAD(P)H oxidases are the predominant 

source of ROS in various cardiovascular pathologies [34-36], including hypertension, 

atherosclerosis, and post-angioplasty restenosis.  Activation of the NAD(P)H oxidases 

leads to the production of superoxide anion (O2
-), a short-lived free radical known to 

react with nitric oxide (NO) to form peroxynitrite (ONOO-), a strong oxidant.  

Alternatively, O2
- can become dismutated by superoxide dismutase (SOD) to form 

hydrogen peroxide (H2O2).  H2O2 is an uncharged molecule that has greater stability than 

superoxide or peroxynitrite, allowing it to diffuse to neighboring cells where it is involved 

in the cell signaling of numerous pathophysiological responses depending on the 

vascular cell type.   

The downstream effects of Ang II include the induction of pro-inflammatory genes 

(ex. ICAM-1, VCAM-1, MCP-1) and activation of matrix-metalloproteases (MMPs).  It 

also plays a role in inducing the phenotypic change of smooth muscle cells from a 



 8

contractile to a synthetic, proliferative phenotype [31, 37-41].  Another effect of Ang II is 

to increase mRNA expression and activity of plasminogen activator inhibitor (PAI-1), 

implicating its participation in thrombosis, based on in vitro studies using rat aortic 

smooth muscle cells [42]. 

2.1.5 Ang II and cell-cycle regulation of VSMCs 

A survey of literature regarding the role of Ang II in cell cycle regulation 

implicates a complex and dual-nature function.  Under physiological conditions, Ang II 

has been found to modulate cell cycle regulatory elements of VSMCs, particularly at the 

G1 to S phase, thus confirming its role in cell growth and hypertrophy [43].  This role is 

dependent on the AT1 receptor, based on in vitro studies of cultured VSMCs derived 

from spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats 

using AT1 and AT2 selective inhibitors.  Signal transduction cascades that are activated 

upon binding of Ang II to AT1 receptor include activation of PLC, subsequent generation 

of IP3 and DAG, leading to activation of PKC, MAP kinases, and increased intracellular 

calcium [Ca2+] [44].  This activation of PKC and MAP kinases leads to induction of c-fos 

and c-myc protooncogenes [45, 46].  Upon comparison of SHR and WKY vascular 

smooth muscle cells, the SHR cells were characterized by increased DNA synthesis, 

shorter cell cycle, and accelerated transition from G1 to S phase compared to WKY cells, 

presumably due to increased endogenous Ang II production [43, 47-49].  The Ang II 

participation was validated after treatment with an AT1R blocker yielded results 

equivalent to its normotensive counterpart.  In addition, the selectivity of the AT1R was 

supported as treatment with a selective AT2R demonstrated no change [50].  An 

additional finding that supports the role of Ang II in proliferation is Ang II induces 

intracellular alkalinization correlated with stimulation of DNA synthesis and cellular 

growth, in addition to increased actin-myosin sensitivity to Ca2+ [51]. 
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Although considerable evidence supports the role of Ang II in VSMC hypertrophy, 

similar studies fail to support its role in VSMC proliferation [52, 53].  Ang II was not found 

to exert any effects on the G2 to M phase under physiologic conditions, thereby 

discounting its mitogenic influence [43].  However, reports have shown that at sites of 

arterial injury, Ang II does play a mitogenic role on VSMCs [38, 50, 54].  This influence is 

indirect, as it is thought to be dependent upon the secretion of autocrine growth factors, 

such as PDGF, bFGF, and TGF-β1 [47, 54].  The mechanisms underlying Ang II-induced 

VSMC proliferation has not yet been completely defined due to limited data focused on 

cell cycle regulation. 

2.1.6 Angiotensin II receptors 

There are four subtypes of Ang II receptors, namely AT1R (type 1A and 1B), 

AT2R (type 2), AT3R, and AT4R.  The AT1 receptor is ubiquitously expressed and all the 

classically-known, proatherogenic effects of Ang II are attributed to this receptor [55, 56].  

These downstream effects (anti-apoptotic for SMCs, neointimal hyperplasia, etc.) occur 

upon the binding of Ang II to its AT1 receptor.  The AT1 receptor was first cloned by two 

separate groups in 1991, which has led to further research in the molecular structure 

and function of this receptor, as well as the development of angiotensin-receptor 

blockers [57, 58].  Under physiologic conditions, Ang II has much higher specificity for 

the AT1 receptor [19].  Both AT1 and AT2 receptors are members of the seven 

transmembrane-spanning, G-protein coupled receptor family [31, 55, 59]. 

The AT2 receptor is not well understood for multiple reasons.  Firstly, the AT2 

receptor distribution is not homogeneous amongst somatic tissues of the adult animal.  

Expression is dependent on age, species, vessel type, and pathophysiological state [55, 

56, 60, 61].  For example, at sites of vascular injury and wound healing, AT2 receptor 

expression occurs most likely as a compensatory mechanism and interestingly sustains 

levels similar to the total expression level of AT1 receptor [56, 62].  In this setting, the 
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main cell types expressing the AT2 receptor are macrophages and SMCs.  The AT2 

receptor response has been observed to be antagonistic to the AT1 receptor (e.g. anti-

proliferative, pro-apoptotic for SMCs, anti-fibrotic, vasodilation, etc.) [56, 62].  Stimulation 

of the AT2 receptor has been shown to activate the bradykinin B2 receptor, resulting in 

NO synthesis and cGMP upregulation in rabbits and spontaneously hypertensive rats 

(SHR) [63, 64].  Studies using transgenic mice overexpressing the AT2 receptor have 

high cGMP content, but the effects are normalized with NO-synthesis or bradykinin B2 

receptor blockade [55, 65].  Additionally, some studies using the AT2R-/- mice have 

shown that AT2 receptor activation results in decreased ACE [55, 66].   

2.1.7 Animal Models 

The main animal models used in the study of vascular injury are nonhuman 

primate, porcine, rabbit, and rodent.  Of these, the nonhuman primate and porcine are 

the most relevant because their lesion distribution, pathogenesis, and morphology mimic 

that of humans most accurately [7].  However, due to large size, high-cost and difficulty 

in procurement and handling, their usage is quite limited.  The rabbit model is another 

commonly investigated species in cardiovascular research.  The rabbit develops 

spontaneous and diet-induced atherosclerosis.  However, comparative lesion analysis 

demonstrates a morphology characterized by medial degeneration instead of robust 

intima-centered lesion development [67, 68].  The development of new strains along with 

dietary manipulations has circumvented these limitations, although their usage is 

dependent on the practicality of procurement and cost factors [7, 68]. 

The major disadvantage of the rodent model is that vessel targeting for 

reproducible injury is challenging due to size limitations.  In addition, there are divergent 

cellular mechanisms and pathogenesis underlying rat versus human lesions [69].  

Although the rodent model does not yield lesions that are most analogous to humans, 

various injury models to mimic differential aspects of vascular injury have been 
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implemented to gain further insight into the pathogenesis, morphology, and optimal 

pharmacologic treatment for lesion development.  The most popular and well-

characterized rodent model is the balloon injury model, developed by Carmeliet’s 

research group [70].  This model has been extensively used in pre-clinical trials for 

evaluating the efficacy of ACE-Is and ARBs in vascular injury.  In recent years, the 

mouse model has become particularly favorable because, in addition to their being cost-

effective and easily available, advances in gene-manipulating techniques allow for the 

use of transgenic or knock-out mice to examine the effects of a single gene with the goal 

of elucidating its function in vascular biology.  

2.1.8 Vascular Injury Models 

The four major modes of vascular injury in the murine setting are: wire-injury 

endovascular injury, flow-cessation vascular injury, cuff-mediated perivascular injury, 

and electric perivascular injury.  The size of the mouse vasculature is the main drawback 

to employing the balloon angioplasty compared to larger animal models.  The wire-injury 

endovascular injury was developed by Lindner’s group, involving the insertion of an inert 

wire into either the carotid or femoral artery resulting in complete endothelial denudation 

and SMC apoptosis, thereby emulating the effects of PTCA [71].  The major setbacks to 

this model are surgical variability in yielding a reproducible injury, as well as the lack of a 

site marker to localize the site of injury for comparative analysis. 

The cuff-mediated perivascular injury is unique in that a polyethylene tube is 

positioned around the femoral artery, thereby mimicking stenosis.  This model is 

particularly useful for studying neointimal proliferation, particularly monocyte and 

macrophage infiltration [72].  However, it is not ideal for studying vascular remodeling 

because the polyethylene tube exerts constraints on the overall vessel size, resulting in 

the inability to evaluate positive or negative remodeling. 
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The electric perivascular injury model of studying arterial injury involves a single 

delivery of electric current on the surface of a surgically exposed femoral artery.  The 

induction of this injury model is less biologically relevant, but the wound-healing 

response is documented to resemble the process of restenosis observed in human 

arteries.  The focal area of injury experienced complete endothelial denudation, ablation 

of encompassing smooth muscle cells, and transiently induced platelet-rich mural 

thrombosis followed by infiltration by inflammatory cells [73].   

The flow-cessation vascular injury model, our chosen model in this study, 

involves the ligation of the left common carotid artery distal to the aortic arch, thus 

inducing permanent changes in shear stress conditions [74].  Ligation provides a marker 

for analysis, thereby minimizing variability as a result from analysis.  This model is 

favorable for studying vessel remodeling because it does not incorporate any constraints 

to the overall vessel size.  After thorough characterization of the carotid ligation model, 

the vascular response was found to include smooth muscle cell proliferation, inward 

remodeling, and neointimal formation, all features of pathological remodeling [74].  Also, 

the advantage of using the carotid artery in this model is that it eliminates the possibility 

of remodeling as a result of hypoxia, as it has been shown that blood flow through the 

brain is conserved via the circle of Willis and flow-mediated vasodilation of the 

contralateral artery [75].  There are fewer cases of thrombosis in this model compared to 

the wire endovascular injury or electric perivascular injury because the endothelium is 

largely intact, thereby functioning as an anti-thrombotic layer protecting the vessel wall.  

This setting is suitable for studies focused on substances secreted from or targeted to 

the endothelium [76].  The major disadvantage to this model, is that it results in a 

complete cessation of blood flow proximal to the ligature and near-stasis conditions 

distally, which is not necessarily biologically relevant.   
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2.1.9 ACE Inhibitors and ARBs in Vascular Injury 

The seminal paper addressing the prevention of neointimal formation via ACE 

inhibition employed the rat balloon-injury model [77].  Numerous studies have since 

been published citing the benefits and vasoprotective effects of ACE inhibition and 

angiotensin receptor blockade.  In support of ACE inhibitors, data demonstrates that 

reduced neointimal proliferation is caused by decreased bradykinin breakdown, which 

upon binding to BK B2 receptors [78, 79] exerts potent vasodilative effects, as well as 

enhance NO bioavailability through endothelial NO synthase (eNOS) [80, 81].  ACE 

inhibition causes decreased Ang II generation, leading to an attenuation of cell 

proliferation [82], expression of pro-inflammatory molecules (ex. MCP-1), and oxidative 

stress [83, 84]. 

AT1 receptor blockade, on the other hand, has no effect on ACE activity.  In 

addition to preventing the vasoconstricting, pro-inflammatory, hypertrophic, and 

hyperplastic effects of Ang II via the AT1R, its benefits are derived by stimulation of the 

AT2 receptor, which has been cited to exert antagonistic effects [56, 85, 86], thus 

promoting a vasoprotective environment.  AT2R signaling pathways have been found to 

influence cGMP/NO [64] and BK [64, 65]. 

 

2.2 Materials and Methods 

2.2.1 Animals 

Male mice were used from the C57Bl/6J background (Jackson laboratories, Bar 

Harbor, Minn).  An n=6 was used per experimental group.  All mice were 10-12 weeks of 

age and 25-30g.  They were administered standard chow diet (Research Diets) and 

water ad libitum, and were housed in climate-controlled, pathogen-free conditions with 

12/12 hours of light/dark cycle.  Mice were used in accordance with the guidelines of the 

National Institute of Health for the care and use of laboratory animals.  All experimental 
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procedures were approved by the Institutional Animal Care and Use Committee (IACUC) 

of Emory University.   

2.2.2 Blood Pressures 

Systolic blood pressures were measured using tail-cuff plethysmography 

(Visitech Systems, USA).  All animals were allowed one week to acclimatize to the 

process by taking daily non-recorded measurements in the effort to avoid anxiety-

induced aberrations in blood pressure.  After the initial week, blood pressures were 

recorded from each mouse before the induction of vascular injury.  Blood pressures 

were then recorded post-operatively every 7 days upon approaching the appropriate 

timepoint. 

2.2.3 Flow-cessation vascular injury model 

Surgery was performed aseptically as previously described [74, 87].  Mice were 

anesthetized using ketamine HCl (80 mg/kg, Abbott Laboratories) and xylazine (5 mg/kg, 

Bayer Corporation) by intraperitoneal injection.  Hair was removed from the neck area, 

followed by a small midline incision of the neck.  The left carotid artery was exposed and 

ligated approximately 1mm below the bifurcation using a 6-0 silk suture (Ethicon).  The 

wound was closed using 4-0 silk sutures.  The Captopril and Candesartan treated mice 

were then implanted with osmotic minipumps (Alzet, Alza Co., Palo Alto, CA, USA) to 

deliver 6 mg/kg/day of Captopril, and 0.5 mg/kg/day of Candesartan, respectively.  Mice 

were then allowed time for recovery on a warming blanket at 37ºC; then returned to their 

cages.  The mice treated with Amlodipine were administered 7.5 mg/kg/day through diet.  

The efficacy of the treatments was monitored by measuring systolic blood pressures.  

Sham mice used in this study did not undergo ligation of the left common carotid artery.   

2.2.4 Morphometry 

Mice were euthanized at the 7-, 14-, and 21-day timepoints using carbon dioxide 

asphyxiation, and were pressure perfused at approximately 100 mmHg through the left 
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ventricle using 0.9% saline for 10 minutes and fixed in 4% paraformaldehyde for an 

additional 10 minutes.  The common carotid arteries were then excised, immersed in 4% 

paraformaldehyde for 24 hours, tissue processed, and embedded in paraffin wax for 

morphological evaluation.  Ten segments were collected along the length of the carotid 

with 150-micron spacing between segments, starting proximal to the ligature and 

proceeding down to the aortic arch.  Each segment constitutes ten serial sections of 8 

micron thickness, yielding a composite analysis of approximately 2mm in length, as seen 

in Figure 2-1.  Cross sections were stained using hematoxylin and eosin to observe the 

general morphology of the arteries.  Verhoeff’s van Gieson staining was used to observe 

elastin composition of the arteries.  Picro-sirius red staining was used to identify collagen 

composition and orientation in carotid sections, as previously described [88].  

 

Figure 2-1:  Method of Histomorphometric Analysis.  Following perfusion, left common 
carotid arteries were excised at 0-, 7-, 14-, and 21-days post-surgery between the aortic 
arch and the carotid bifurcation.  Arterial cross-sections are collected along 2mm length 
of the carotid artery, with the ligature as the initial marker for analysis. 
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Images were obtained using a Zeiss Axioscope equipped with a standard CCD 

camera (Nikon).  Luminal, IEL, and EEL areas were measured by tracing along the 

surface using ImageJ software.  Neointimal areas were calculated by taking the 

difference between the lumen and IEL areas.  Medial areas were calculated by taking 

the difference between the EEL and IEL areas.  Total vessel area is represented by the 

EEL area. 

2.2.5 Analysis 

All results are reported as mean ± SEM unless stated otherwise.  Statistical 

analyses were performed using Microsoft Excel (Redmond, WA) and Graphpad Prism 

(Graphpad Software, Inc., San Diego, CA).  Differences between groups were analyzed 

by two-way ANOVA, followed by Bonferroni’s post hoc test.  A probability (P) value less 

than 0.05 was considered significant. 

 
2.3 Results 

2.3.1 Blood Pressure 

After one week of training the mice, pre-surgery systolic blood pressures were 

measured, and as expected, all basal blood pressures were similar.  After blood 

pressures were recorded, mice underwent ligation of their left common carotid artery, as 

described in the Materials and Methods section.  At the time of the surgery, Candesartan 

and Captopril osmotic pumps were implanted in select mice in accordance with their 

treatment category.  Mice in the Amlodipine category were administered treatment 

through diet.  The doses of Amlodipine (7.5 mg/kg/day), Candesartan (0.5 mg/kg/day), 

and Captopril (6 mg/kg/day) were selected to yield equivalent differences in blood 

pressure compared with the Control group, as seen in Table 1.  Results are displayed as 

mean ± SD. 
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Table 2-1: Blood Pressures 

 Pre-surgery 7-days post-
surgery 

14-days post-
surgery 

21-days post-
surgery 

Control 104.2 ± 3.1 
(n=25) 

103.3 ± 3.5 
(n=25) 

104.6 ± 3.85 
(n=16) 

104.0 ± 4.6 
(n=6) 

Amlodipine 102.7 ± 3.5 
(n=24) 

85.3 ± 2.7* 
(n=24) 

84.2 ± 3.4* 
(n=12) 

84.1 ± 1.8* 
(n=6) 

Candesartan 102.1 ± 3.2 
(n=20) 

85.1 ± 2.5* 
(n=19) 

84.8 ± 2.4* 
(n=13) 

84.8 ± 3.4* 
(n=5) 

Captopril 102.5 ± 3.2 
(n=18) 

84.3 ± 2.7* 
(n=18) 

85.2 ± 1.6* 
(n=12) 

85.4 ± 2.7* 
(n=6) 

* P < 0.0001 vs. Control Pre-surgery 

The Control group maintained their systolic blood pressures after surgery.  Also, 

all three treatment groups had an equivalent drop in blood pressures, seen in all mice 7 

days after surgery, at the later timepoints, similar reduction in blood pressure were 

observed.  The approximate 15 mmHg drop in blood pressure was found to be 

statistically significant in all treatment groups compared with the Control group. 

 

2.3.2 Characterization of Flow-Cessation model 

Disruption of carotid artery blood flow resulted in early-on outward remodeling 

(1160.3 ± 24.9 µm2 compared to 1107.5 ± 11.2 µm2 in sham mice), followed by 

significant negative remodeling (949.8 ± 11.3 µm2) presumably due to permanent 

changes in shear stress, followed by compensatory vessel enlargement (1092 ± 20.3 

µm2), as seen in Figure 2-2.    
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Figure 2-2: Comparison of EEL perimeters of left carotid artery at 0-, 7-, 14-, and 21-
days post-surgery.  Panel A: Morphometric analysis of the circumference of blood 
vessels harvested at 0-, 7-, 14-, and 21-days post-surgery.  Cross sectional perimeters 
of external elastic laminae were measured.  Panel B: Temporal analysis of external 
elastic lamina perimeter of control mice upon ligation of left common carotid artery.  
Values are obtained from cross-sections collected 1mm (Segment 6) below the ligation. 
*P < 0.05 versus sham values; all values are depicted as mean ± SEM. 

 

Figure 2-3 shows a spatial analysis of the typical remodeling response to 

cessation of blood flow over a time-course span of 7-, 14-, and 21-days post-surgery.  

The data shown are from 2mm below the left common carotid artery, starting at the 

ligature (Segment 1) and traversing towards the aortic arch (Segment 10).  Outward 

remodeling is evident in the 7-day analysis due to significant concomitant increase in 

lumen and total vessel areas.  Medial thickening was maximal at the early, 7-day 

timepoint (as previously observed in [87]), and was observed to a smaller degree in later 

timepoints following ligation of the carotid artery. 
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Figure 2-3: Spatial analysis of ligated carotid arteries at 7-, 14-, and 21-days post-
surgery.  Composite analysis spans 2mm in length down the carotid towards the aortic 
arch, beginning at the ligation.  Cross sectional areas of lumen, neointima, media, and 
total vessel areas were measured.   
 

Neointimal formation was greatest proximal to the ligature at the 21-day 

timepoint, where collagen deposition by smooth muscle cells comprising the 

subendothelial layer is evident, as visualized in Figure 2-4.   
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Figure 2-4: Collagen content is greatest proximal to the ligature in the 21-day timepoint.  
Representative Picro-Sirius stained left common carotid artery sections (8µm thickness) 
collected from Segments 1, 6, and 10 of sham, 7-day, 14-day, and 21-day experimental 
groups.  Images were viewed under cross-polarized light to view birefringent collagen.  
In this setting, larger collagen fibers appear bright orange or red, whereas thin-filament 
collagen fibers appear bright green.  Picrosirius staining primarily stains Types 1, 2, and 
3 collagen. 
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2.3.3 Day 7 Analysis 

The Captopril, Candesartan, and Amlodipine groups were associated with a 

significant reduction in medial thickening and neointimal formation upon ligation of their 

left common carotid arteries compared with the Control group, as seen in Figure 2-5A 

and 2-5B.  In all groups, neointimal formation was greatest proximal to the ligature, and 

was unvarying from segments 6-10 (1-2mm below the ligation).  The difference in 

neointimal areas among the treated groups and the Control group was found to be 

statistically significant in cross-sections collected within 100µm to the ligature (P < 

0.001).  Also, medial areas were consistently smaller proximal to the ligature and fairly 

consistent among the distally collected sections.  Medial areas for the Control, 30±2×103 

µm2 at 1mm below the ligation, were roughly 35% greater compared with all three 

treatment groups, 19±1×103 µm2 (P < 0.001).  In addition to the media, total vessel area 

was also significantly greater in the Control than among the treatment groups.  Based on 

the observation that the Amlodipine, Captopril, and Candesartan data were fairly 

analogous, we believe that the humoral aspects of ACE inhibition or angiotensin 

receptor blockade do not play a significant role in these aspects of vascular remodeling 

at the early 7-day timepoint.  Instead, the pressor effect among all treatment groups 

appears to be the more dominant factor at this stage of remodeling. 
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Figure 2-5: 7-Day Morphometric Analysis.  Panel A: Representative cross sections of the 
ligated left common carotid arteries in the Control, Amlodipine, Candesartan, and 
Captopril groups at varying distances from area of ligation.  Ligated arteries were 
excised after pressure perfusion fixation at 100mm Hg, immersed in 4% 
paraformaldehyde for an additional 24 hours, then dehydrated and embedded in 
paraffin.  Sections of 8µm were stained with hematoxylin and eosin.  Magnification ×20; 
Scale bar = 100µm.  Panel B: Morphometric analysis of ligated carotid arteries.  Cross 
sectional areas of lumen, neointima, media, and EEL were measured.   
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2.3.4 Day 14 Analysis 

Whereas the earlier, 7-day timepoint was the response to acute flow-cessation where 

blood pressure treatment led to an attenuation of neointimal proliferation and medial 

thickening, the 14-day timepoint data did not exhibit significant differences between the 

Control and treatment groups.  Candesartan treatment appeared to attenuate the degree 

of negative remodeling observed in the Control group between the 7- and 14-day 

timepoints, as seen in the lumen and total vessel areas in Figure 2-6.  However, this 

difference was found to be insignificant (P > 0.05).  In contrast, the Captopril also did not 

result in any significant differences in remodeling, although the attenuation was not 

observed in this timepoint.  The only groups exhibiting difference were the lumen and 

total vessel areas among the Candesartan and Captopril groups (Segments 3-10, P < 

0.05).  The 14-day medial areas among all groups were found to be unvarying.  The 

Control and Amlodipine groups were equivalent in terms of lumen (25646 ± 1482 µm vs. 

28760 ± 2143 µm) and EEL areas (48615 ± 1871 µm vs. 46102 ± 2156 µm).   
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Figure 2-6: 14-Day Morphometric Analysis.  Panel A: Representative cross sections of 
the ligated left common carotid arteries in the Control, Amlodipine, Candesartan, and 
Captopril groups at varying distances from area of ligation. Magnification ×20; Scale bar 
= 100µm.  Panel B: Morphometric analysis of ligated carotid arteries.  Cross sectional 
areas of lumen, neointima, media, and EEL were measured.   
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2.3.5 Day 21 Analysis 

In this late-stage timepoint, we observed that the neointimal growth was most 

profound in the Control group.  The Control group exhibited consistent values for medial 

and total vessel areas, yet had smaller lumen areas than the treatment groups, due to 

the increase in neointimal proliferation.  This dramatic change in neointima from the 7- 

and 14-day to the steady-state timepoint has been previously published by Ivan and 

colleagues [89].  Also, an interesting new finding was made, which was the pronounced 

difference in total vessel areas between the 14-day and 21-day Captopril data (36213 ± 

1833µm vs. 65770 ± 3406µm).  By the 21-day timepoint, the Captopril underwent 

significant outward remodeling, thereby mimicking vessel characteristics of the 

Candesartan (59756 ± 3084µm) and Amlodipine (57077 ± 4361µm) groups, as seen in 

Figure 2-7. 
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Figure 2-7: 21-Day Morphometric Analysis.  Panel A: Representative cross sections of 
the ligated left common carotid arteries in the Control, Amlodipine, Candesartan, and 
Captopril groups at varying distances from area of ligation. Magnification ×20; Scale bar 
= 100µm.  Panel B: Morphometric analysis of ligated carotid arteries.  Cross sectional 
areas of lumen, neointima, media, and EEL were measured.   
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2.3.6 Time Point Analysis 

Upon consolidating the 7-, 14-, and 21-day morphometric analyses, we see the 

characteristic remodeling patterns of each experimental group.   As stated earlier during 

the characterization of the injury model, flow cessation induces an increase in medial 

thickening, progressive increase in neointimal formation, and reduction in vessel size in 

the Control group.  Treatment with Candesartan, Captopril, and Amlodipine yielded 

similar remodeling patterns, including significant reduction in neointimal formation and 

attenuation of medial thickening and constrictive remodeling upon reaching the late, 21-

day timepoint.  Here, we observe the predominant effect of blood pressure regulation on 

vascular remodeling, particularly among the 7- and 21-day timepoints. 

 

Figure 2-8: Time Point Analysis of Morphometry between Control, Amlodipine, 
Candesartan, and Captopril groups at 7-, 14-, and 21-day timepoints.  Cross sectional 
areas of neointima, media, and EEL are depicted as a function of time. 
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2.4 Discussion 

Pathological remodeling is one of the primary events that occur in the 

progression of hypertension and atherosclerosis.  Several small animal models have 

been utilized in order to gain insight into the multitude of factors influencing vascular 

remodeling [74, 90, 91].  In this study, we sought to determine the predominant role of 

Ang II in carotid artery remodeling in an acute injury setting, be it humoral or mechanical, 

and whether this effect is consistently observed over the time course of early- to late-

stage remodeling.   

Our data strongly supports the preeminent influence of mechanical factors 

induced by Ang II in long-term vessel remodeling based in a vascular injury setting.  

Hemodynamic factors, such as blood pressure and wall shear stress have long been 

known to play a role in adaptive remodeling [82, 92, 93].  The early (7-day) and late-

stage (21-day) timepoints both reinforce this belief upon observation of significantly 

decreased neointimal formation, medial thickening, and preservation of lumen area 

among all mice that underwent treatment involving lowered blood pressure, despite 

differences in mode of action (ACE inhibition, angiotensin receptor blockade, or calcium-

channel blockade).  Previous researchers have demonstrated that transmural pressure 

stimulates vascular RAS, particularly via endogenous production of Ang II [92, 94].  

Therefore, by modulating transmural pressure using ACE inhibitors or calcium-channel 

blockers, or blocking the effects by AT1 receptor antagonism, similar outcomes ensue.  

Because the method of blood pressure regulation appears trivial, it is probable that Ang 

II does not under these experimental conditions play a significant role in the remodeling 

process. 

In contrast to the 7- and 21-day timepoints, the 14-day timepoint demonstrates 

insignificant differences compared to the treatment groups.  Additionally, characteristic 

differences emerged between the effects of ACE inhibition and angiotensin receptor 
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blockade on the structural adaptation of injured vessels among these two experimental 

groups.   Upon comparison of the 7- and 14-day Control results, we observe a transition 

in the adaptive vessel response to near-stasis conditions, including negative remodeling 

and neointimal formation.  This emphasizes the existence of a hierarchy of factors 

influencing the response to injury.  Because the proliferative index of smooth muscle 

cells is maximal between the 7- and 14-day timepoints [87], focus is shifted to the 

influence of Captopril versus Candesartan.  In this timepoint, we observe what may be 

interpreted as the humoral effects of Candesartan and Captopril treatments.  Captopril 

treated mice have been known to manifest low circulating Ang II levels, as well as an 

increase in circulating BK half-life, due to inhibition of ACE.  On the other hand, the 

Candesartan mice exhibit extraordinarily high levels of circulating Ang II levels due to 

AT1R blockade, as well as normal ACE activity.  Additionally, AT2R expression has been 

upregulated due to the inflammatory setting induced by the ligation of the left common 

carotid arteries [56, 95, 96].  Studies involving the AT2R-/- knockout mice have expanded 

our knowledge on the antagonistic effects this receptor exhibits alongside the AT1R.  

AT2R-/- mice show hypersensitivity to Ang II [97] and have two-fold increase in neointimal 

formation than AT2R+/+ mice [98], thus emphasizing its vasoprotective, anti-proliferative 

influence on the vascular wall.  Furthermore, Ang II binding to AT2R is attributed to 

vasodilation due to increased production of NO [64, 99].   

We assumed that Amlodipine was used as a low blood pressure control because 

its effects are largely pressor-related.  Recent lines of evidence point to a vasoprotective 

role of Amlodipine through its antioxidant effects [100].  The mechanisms of action are 

different, however, in the attenuation of oxidative stress.  Amlodipine, belonging to the 

dihydropyridine class of Ca2+ channel blockers, are found to preserve SOD activity, 

whereas ACE-Is and ARBs are known to limit Ang II-induced NAD(P)H oxidase 

stimulation [101, 102]. Therefore, although the calcium-channel blocker treatment was 
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used as a low blood pressure control, additional antioxidant effects may influence the 

remodeling process as a result of Amlodipine treatment. 

The rapid outward remodeling response observed in Captopril mice between the 

14- and 21-day timepoints delineates a particularly interesting observation.  Previous 

studies investigating the effects of ACE inhibition have demonstrated increases in BK 

leading to activation of the BK B2 receptor [79, 99, 103], thereby promoting vasodilation.  

Binding of BK to its B2 receptor in the endothelium results in an increase in intracellular 

calcium, leading to eNOS upregulation and subsequent enhanced NO production [78, 

80, 103-105].   

Based on these findings, we postulate that these phenotypic differences involving 

differences in AT2R expression and bradykinin production promote the differences in 

structural adaptation.  The simplest explanation for this unique set of data is that the14-

day timepoint is rather an intermediate phase where a “homeostasis” has yet to occur 

between the various processes of cellular growth, death, migration, and production and 

degradation of the extracellular matrix.  It may be a timepoint where the kinetics 

underlying the different cellular processes are transitional, thereby allowing the humoral 

influences of Ang II to become more evident. 

The beneficial effects of ACE inhibition and angiotensin receptor blockade on 

neointimal formation have been reported in several studies involving the balloon 

angioplasty model of vascular injury in rats [37, 44, 77, 106-110], presumably by 

inhibiting the mitogenic, hypertrophic, and proinflammatory effects of Ang II.  The results 

of these studies strongly support the humoral aspects of ACE inhibition and angiotensin 

receptor blockade.  Blood pressure control in this setting was demonstrated to only play 

a minimal role in the attenuation of neointimal proliferation [109].  Because these results 

are contradictory to the results of our current study, it is important to note the differences 

in injury settings between these two models.  Firstly, with balloon angioplasty, the 
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resulting arterial injury involves complete endothelial denudation, as well as compression 

injury to the media [111].  Consequentially, elastic recoil is observed, followed by smooth 

muscle cell migration and proliferation.  There are greater platelet interactions and 

inflammatory response within the vessel wall observed as a consequence to angioplasty.  

As a result, the balloon angioplasty injury appears better suited as a model for studying 

neointimal formation rather than vascular remodeling.   

In contrast, the flow-cessation model of vascular injury does not cause 

endothelial denudation except for the immediate area of ligation.  Because the 

endothelium is largely intact in our model, it allows us to more accurately observe the 

function of vasoactive molecules secreted from or pharmacologic treatments targeted to 

the endothelium.  It is important to note that although this current study has yielded 

conclusive results, it was carried out in a very controlled setting.  Ligation of the carotid 

artery does not lead to an ischemic environment due to compensatory flow via the 

contralateral artery, thereby preventing tonic increases in hypoxia-induced factors.  Also, 

because this study was carried out in a murine setting, alternative Ang II generating 

pathways are relatively minimal, compared to larger animal models or humans [112].   

A survey of literature demonstrates clear differences in lesion development 

between animal models, presumably due to divergent cellular mechanisms underlying 

the remodeling process.  Even within the murine model, strain differences are known to 

cause considerable differences in response to vascular injury.  Studies comparing 

several strains of mice have shown significant differences in neointimal formation, 

degree of inflammatory response, medial area, and vessel diameter characteristics [113-

115].  To circumvent these potential sources of variability, we only used mice that were 

from the same genetic background, C57Bl/6J, instead of using mice from a mixed 

background.   
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In summary, modulation of RAS through ACE inhibition or angiotensin receptor 

blockade did not yield vasoprotective benefits beyond those observed using a calcium-

channel blocker.  The results of this study convey the influence of hemodynamic factors 

governing the vessel wall as the predominant regulator of pathological remodeling. 

 

2.5 Conclusion 

A hierarchy exists among the factors influencing remodeling of the arterial wall. 

Upon completion of this project, we believe that the pressor effects of Ang II are the 

most paramount stimuli for long term vessel remodeling in a pure vascular injury setting.  

Under normal circumstances, flow cessation yields inward remodeling in addition to 

neointimal formation.  Treatment with ACE inhibitor (Captopril), angiotensin receptor 

blocker (Candesartan), and calcium-channel blocker (Amlodipine) exhibited similar long-

term remodeling characteristics in these experimental settings.   
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CHAPTER 3 

 

FUTURE DIRECTIONS 

 

3.1 Introduction 

Bradykinin, the key effector molecule of the kallikrein-kinin system, has been 

shown to exert vasodilative effects on the cardiovascular system.  The biological 

functions of BK are dependent upon binding to its constitutive BK B2 receptor, which is 

documented to have antiproliferative, antithrombotic, and antioxidant effects [116].  

Additionally, at the sites of vascular injury and inflammation, BK B1 receptor expression 

is known to become upregulated.  The effects of this receptor are not clearly understood 

although recent evidence in the rat model implicates its role in inflammation and 

vasoconstriction [117].  Expression of these receptors in the vascular endothelium as 

well as smooth muscle has previously been published.   

Upon completion of our current study, we believe that the differences in 

remodeling patterns observed among the 14-day treatment groups were partly 

influenced by increased BK receptor activation due to increased circulating BK levels.  

Inhibition of ACE has been shown to significantly increase the circulating half-life of BK.  

Although several lines of evidence suggest that the vasoprotective effects of ACE 

inhibition are due to the decreased production of Ang II rather than increased bradykinin 

levels, recent reports have shown that BK upon binding to the BK B2 receptor leads to an 

increase in NO bioavailability, due to an upregulation of eNOS [103].  The involvement of 

BK in the attenuation of oxidative stress has not been fully elucidated.   

Recent reports have indicated that angiotensin receptor blockade results in an 

indirect activation of BK B2 receptors, due to stimulation of AT2 receptors, causing an 

increase in NO bioavailability [118].  Although the activation of the BKB2 receptor is 
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evident in both settings of ACE inhibition and angiotensin receptor blockade, the 

mechanisms underlying the receptor activation are different.  Therefore, a potential 

future direction could involve the investigation of the kinetics of bradykinin receptor 

activation or possible differential expression of the BK B1 and BK B2 receptors causing 

the constitutive remodeling response.  Quantifying the activation of the BK B1 and BK B2 

receptors under these conditions will allow insight into the function of bradykinin and its 

receptors in physiologic and pathophysiologic vascular remodeling.   

 

3.2 Potential future studies 

3.2.1 Confirming BK receptor presence in remodeling carotid artery 

Preliminary evaluation may include immunohistochemistry staining for the BK B1 

and B2 receptors using the 14-day collected carotid sections from the current study.  If 

the results are found to be similar between the treatment groups, then BK may not be 

responsible for the observed morphometric variability.  However, if BK is responsible for 

the differences, then we expect to see either differences in the intensity of the stain or 

possibly differential staining of the BK receptors between treatment groups, thus 

indicating possible differences in downstream effects of BK. 

3.2.2 Evaluation of BK involvement in the differential effects of ACE inhibition 

and angiotensin receptor blockade 

If the results from the preliminary study implicate a difference in levels of BK 

activity, the next step may involve the use of BK receptor antagonists to observe 

possible attenuation of the divergent morphological phenotypes between the treatment 

groups.  The experimental design will be similar to that of the current study, and the 

same flow-cessation vascular injury model will be utilized.  The main difference would be 

the additional treatment of BK receptor antagonists in addition to the ACE-I, ARB, or 

calcium-channel blocker.  Also, the 14-day timepoint appears optimal to conduct this 
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study since most variability among the treatment groups was observed in this phase of 

remodeling.   

3.2.3 Defining the role of BK receptors in vascular remodeling  

 In this study, we wish to elucidate the unique roles of the BK receptors in 

vascular remodeling.  To achieve this, we will treat mice with an ACE inhibitor to cause 

an increase in circulating BK levels.  Further treatment with selective BK B1 or B2 

antagonists should allow us to evaluate the roles of these receptors in remodeling 

following ligation of their left common carotid arteries. 
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