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SUMMARY

Innovation and new product development (NPD) are critical to firm success and are

often cited as means to a sustained competitive advantage. Unfortunately, the question of

which innovation programs to pursue and how they should be funded is not trivial. This

thesis examines the resource allocation and NPD portfolio problem. Special emphasis is

placed on the organizational and behavioral factors that influence this problem. In doing

so, we adopt a hierarchical perspective and posit that the resource allocation and NPD

portfolio problem acquires a unique structure depending on the level at which the problem

is considered. Beginning at the firm level, each study attempts to break open a black box

to understand the drivers of effective resource allocation and NPD portfolio decisions at

successively more detailed levels of analysis. We begin with an analysis of the firm’s to-

tal R&D investment and we show how R&D intensity (the percentage of revenue that is

reinvested in R&D) depends on a combination of NPD portfolio metrics and operational

variables. We then extend the analysis to reveal how an evolutionary process explains the

often cited consistency in R&D intensity at the industry level. Next, we analyze how the

R&D investment is partitioned into “strategic buckets” consisting of NPD programs that

are characterized by type of innovative activity (incremental or radical). We show how time

commitment, technological/market complexity, and potential disruptions to the technol-

ogy/market environment influence the balance between incremental and radical programs

in the NPD portfolio. Finally, we analyze how individual NPD programs are funded and

how they evolve over time in an organization setting that is defined by more or less au-

tonomy. We find that how best to allocate resources depends on two types of autonomy

bestowed upon managers: autonomy with respect to NPD funding and autonomy regarding

how the NPD budget is monitored and controlled. We conclude with a discussion of the

theoretical and managerial implications of our work.

vii



CHAPTER I

INTRODUCTION

“For the past 25 years, we have optimized our organizations for efficiency and

quality. Over the next quarter century, we must optimize our entire society for

innovation.” U.S. Council on Competitiveness.

To innovate is to make changes to something established, especially by introducing new

ideas, methods, products, or services (Oxford American Dictionary). Innovation may take

a number of forms such as new packaging for existing products, new processes for manufac-

turing or delivering existing products, product line extensions through minor modifications

to existing products, or radical changes that involve development of new methods, products,

or services that differ markedly from the existing in terms of technology and market at-

tributes. In practice, firms rely on new product development programs to drive innovation.

A new product development (NPD) program is typically composed of multiple projects with

a common overarching purpose (Loch and Kavadias 2002). Each NPD program addresses

a clear goal such as cost reduction initiatives, minor product improvements, product line

extensions, or the development of entirely new products or services (Cooper et al. 1998).

Innovation and NPD generate organic growth, which is particularly valuable to firms.

Consider the following statements: “Over the next 10 or 20 years the economy will be

driven by innovation, and a premium will be placed on companies that can generate their

own growth.” (Jeffrey Immelt, CEO, General Electric Corporation). “The most precious

kind of growth is organic growth - top line expansion of your core business without reliance

on acquisition.” (A.G. Lafley, CEO, Procter & Gamble). These sentiments are echoed by

a large number of senior executives. In fact, managers often set ambitious goals for future

revenue generated from new products. Statements such as “innovate or die” overflow the

popular business press and confirm the importance of effective new product development.
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The question of which innovation programs to pursue is critical to firm success and is of-

ten cited as a key competitive dimension (Rousell et al. 1991, Wheelwright and Clark 1992,

Cooper et al. 1998). The answer depends to a great extent on the firm’s corporate strat-

egy. Firms that choose to compete based on novel designs and trend-setting technologies

typically invest in radical product development efforts as opposed to process improvement

initiatives (Von Hippel et al. 1999). In contrast, the latter investment benefits firms that

compete based on conformance quality and cost (Li and Rajagopalan 1998, Schilling 2005).

The first step in transforming corporate strategy from a hopeful statement about the future

to an operational reality is to allocate resources (human or capital) to innovation programs.

Of course, developing the “right” new products and determining the “right” level of funding

for innovation programs is not trivial. This is particularly so when resources must be allo-

cated between innovation programs and each program may represent conflicting directions

in terms of corporate strategy. Success then requires a fundamental trade-off: short-term

benefits accrued through incremental innovation efforts versus long-term benefits achieved

through radical, new-to-the-market, or new-to-the-world products and services (Tushman

and O’Reilly 1996). This trade-off implores managers to think about NPD programs col-

lectively as a portfolio.

Every firm faces the critical problem of allocating resources between innovation initia-

tives in a portfolio. For this reason, NPD portfolio management is a competency that cannot

be ignored. NPD portfolio management can be defined as, “. . . a dynamic decision process,

whereby a business’s set of new product development projects is systematically evaluated and

resources are allocated between projects.” (Copper et al. 1997). Figure 1 depicts a common

view of the NPD portfolio and how the programs in the portfolio evolve from idea to reality.

Effective resource allocation and NPD portfolio management directly impact firm com-

petitive advantage. Examples abound in practice: DuPont experienced trouble because

the company diverted the majority of its estimated $2 billion yearly R&D budget to im-

proving established business lines (Business Week 2003). Kodak is investing resources in

revolutionary new technologies to catch up in the digital photography market, despite the

2



I d e a g e n e r a t i o n S y s t e m a t i c p r o j e c t e v a l u a t i o na n d r e s o u r c e a l l o c a t i o n N e w p r o d u c t d e v e l o p m e n tp r o c e s s ( e . g . S t a g e G a t e P r o c e s s )
M a r k e t

( s o u r c e : C o o p e r e t a l . 1 9 9 7 , W h e e l w r i g h t a n d C l a r k 1 9 9 2 )= n e w p r o d u c t d e v e l o p m e n t p r o j e c t s
Figure 1: Resource allocation and NPD portfolio management.

fact that the company was synonymous with photography for the better part of the twen-

tieth century (Forbes 2003). Toyota Motor Corporation has strengthened its competitive

position relative to General Motors due in great part to more effective resource allocation

and NPD portfolio strategy (Financial Times 2005). Drug maker Novartis established an

advantage over close rival Roche by shifting resources towards new product introductions;

that advantage eroded due to a lack of early stage development projects and a subsequent

drying up of the pipeline at Novartis (Financial Times 2000). These cases underscore the

reality that effective resource allocation and NPD portfolio management profoundly impact

firm success.

From the dawn of Operations Research in the early 1950s, to the emergence of managerial

frameworks (such as the BCG matrix) in the 1970s through today, the problem of develop-

ing the right new products has motivated academics and practitioners to propose a number

of solutions. Several tools and theories have been developed by different constituencies,

resulting in an interesting dichotomy: a collection of rigorous analytic efforts with mini-

mal adoption and minimal practical impact (Loch et al. 2001, Shane and Ulrich 2004), and

a variety of managerial frameworks grounded in individual case studies with widespread

impact but little theoretical foundation (Cooper et al. 2004). In either case, managerial

guidelines are limited to a generic notion of “balance” among different value determinants

3



A s h i f t i n f o c u s t o w a r d sm o r e i n c r e m e n t a li n n o v a t i o n …
… w h i c h i s n o ta s s o c i a t e d w i t h t h eb e s t p e r f o r m i n g f i r m s051 01 52 02 53 03 54 04 5

I m p r o v e m e n t sa n dm o d i f i c a t i o n s t oe x i s t i n g p r o d u c t s A d d i t i o n s t oe x i s t i n g p r o d u c tl i n e s N e w p r o d u c t l i n ef o r t h e c o m p a n y N e w q t o q t h e qw o r l d a n d n e w qt o q t h e q m a r k e tp r o d u c t s
W O R S TB ES T

051 01 52 02 53 03 54 04 5
I m p r o v e m e n t sa n dm o d i f i c a t i o n s t oe x i s t i n g p r o d u c t s A d d i t i o n s t oe x i s t i n g p r o d u c tl i n e s N e w p r o d u c t l i n ef o r t h e c o m p a n y N e w � t o � t h e �w o r l d a n d n e w �t o � t h e � m a r k e tp r o d u c t s

1994 2004

Figure 2: Product Development Management Association (PDMA) report on NPD port-
folio focus and performance.

due to the confusion regarding fundamental problem drivers. Hence, senior managers, R&D

managers, and project managers are forced to make resource allocation decisions based pri-

marily on intuition or heuristic rules.

Recent data verify that the overall impact of NPD portfolio methods and research re-

mains largely in doubt. A study conducted by the Product Development Management

Association (PDMA) reveals an interesting result: between 1994 and 2004 development

cycle times improved significantly. A portion of this effect is due to overall improvement in

the management of the product development process. However, the percentage of resources

allocated to minor product changes and small improvements also increased significantly

during the same period of time. Thus, there is evidence that firms are increasingly focused

on incremental NPD efforts. The bad news is that high performing firms emphasize diverse

portfolios that include cutting edge, new-to-the-market, and new-to-the-world initiatives in

addition to incremental efforts (Adams and Boike 2004). Figure 2 illustrates these results.

Collectively these facts indicate that a deeper understanding of resource allocation and

NPD portfolio management is necessary. This thesis provides a theoretical framework to

study resource allocation and NPD portfolio management. The remainder of this chapter
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lays the groundwork for the in-depth studies that comprise the bulk of this thesis. In §1.1

we discuss a number of factors that make NPD portfolio difficult. In §1.2 we introduce

a theoretical framework wherein we posit that the resource allocation and NPD portfolio

decision acquires a unique structure depending on the level at which the problem is consid-

ered. Finally, in §1.3, we provide a set of concepts that will be of value as one reads through

the thesis.

1.1 What Makes NPD Portfolio Management So Difficult?

The NPD portfolio determines the minor improvements, new product introductions, or

radical breakthrough developments associated with the product mix of a company. In

doing so, portfolio decisions influence the balance over market segments and the time to

market profile of the firm. The essential feature that defines the NPD portfolio problem

is that projects should be viewed collectively rather than in isolation. The portfolio view

necessarily gives rise to several considerations:

• Organizational and behavioral issues. Resource allocation and NPD portfolio decisions

take place in a setting defined by organizational (hierarchy) and behavioral issues.

While this fact is obviously not unique to the NPD portfolio problem, it has been

largely ignored by almost 50 years of academic work on resource allocation and NPD

portfolio management.

• Strategic alignment. The NPD portfolio allows a firm to operationalize and implement

strategy over time. This point implies that the NPD portfolio problem entails a large

component of ambiguity and complexity, since the determinants of firm success and

their interactions are rarely known. Moreover, successful NPD portfolio management

rests upon the ability to effectively communicate firm strategy and cascade it down

to an implementable NPD program or project level (Loch and Tapper 2002).

• Strategic tension. NPD portfolio decisions are defined by the tension that exists

between multiple projects that often conflict in terms of corporate strategy. For any

set of potential projects in the NPD portfolio, a number of projects will be geared

5



towards relatively minor, safe, low cost endeavors, while other projects will be geared

towards relatively major, risky, high cost initiatives.

• Project interactions. Companies often develop multiple products and services in

closely related technological areas. Hence, development efforts may exhibit syner-

gies or incompatibilities in their technical aspects. Similarly, on the market side,

products may substitute or complement one another. Interactions play a critical role

in the resource allocation decision because they are a proxy for decision complexity.

• Outcome uncertainty. NPD projects are characterized by imprecise knowledge re-

garding outcomes. Managers face uncertainty in terms of potential market value and

technical output for any given project. NPD managers face risks related to the overall

functionality of the product (technical risk) and to the adoption of the product by

end customers (market risk).

• Dynamic nature of the problem. Decision makers must allocate resources over time

and NPD programs evolve over time. Therefore, managers must take into account

future values and risks when allocating resources to a promising idea. However, it is

often difficult to quantify the potential of promising ideas or precisely measure the

risks involved. Furthermore, the various innovation initiatives in a portfolio typically

evolve at different speeds.

• Resource scarcity. Scarce resources often critically constrain the NPD portfolio prob-

lem. Indeed, if a firm were to have infinite resources, there would not be a NPD

portfolio problem. It is common practice to pursue many projects in parallel in or-

der to achieve broader product lines (mass customization) and higher market share

(Reinertsen 1997, Ulrich and Eppinger 2003, Cusumano and Nobeoka 1998). In multi-

project environments, scarce resources render the resource allocation decision a critical

factor for success (Adler et al. 1995). Scarcity may involve the total R&D budget,

testing equipment availability, or specialists with unique areas of expertise (analo-

gous to bottleneck machines in production scheduling). In several contexts, project

managers must “queue” for access to these specialized resources.

6



The issues outlined above highlight the difficulties associated with NPD portfolio man-

agement. Moreover, they illustrate that resource allocation and NPD portfolio decisions,

like several other NPD decisions, are not necessarily centralized decisions; rather, they span

different levels of management. As the locus of decision-making moves from strategic to

tactical to operational, resource allocation decisions are driven by more tangible and specific

project metrics. However, at the operational level decisions are constrained by significantly

less flexibility (Anderson and Joglekar 2005). In this thesis we present a general framework

for resource allocation and NPD portfolio management, and we will link these decisions to

different organizational levels.

1.2 Strata, Structure, and Strategy

The fundamental contribution of this thesis is the explicit treatment of organizational and

behavioral elements that impact the resource allocation and NPD portfolio problem. We

adopt a hierarchical perspective and posit that the resource allocation and NPD portfolio

problem acquires a unique structure depending on the level at which the problem is consid-

ered (Figure 3). The hierarchical perspective allows us to provide a rigorous link between

strategy (vision) and execution (money).

Beginning at the firm level, each question we address attempts to break open a black

box and understand the drivers of effective resource allocation and NPD portfolio decisions

at successively more detailed levels of analysis. We begin with an analysis of the firm’s

total R&D investment and we show how R&D intensity (the percentage of revenue that is

reinvested in R&D) depends on a combination of NPD portfolio metrics and operational

variables. We then extend the analysis to reveal how a simple evolutionary process explains

the often cited consistency in R&D intensity at the industry level (Chapter 3). Next, we

analyze how the R&D investment is partitioned into “strategic buckets” consisting of NPD

programs that are characterized by type and degree of innovative activity (incremental or

radical). We show how time commitment, technological/market complexity, and potential

disruptions to the technology/market environment influence the balance between incre-

mental and radical programs in the NPD portfolio (Chapter 4). Finally, we analyze how
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R e s u l t s o f r e s o u r c ea l l o c a t i o n & N P D e f f o r t s
Figure 3: Strata, Structure, and Strategy for Resource Allocation and NPD Portfolio
Management

individual NPD programs are funded and how they evolve over time in an organization set-

ting that is defined by more or less autonomy. We find that how best to allocate resources

depends on two types of autonomy bestowed upon managers: autonomy with respect to

NPD funding and autonomy regarding how the NPD budget is monitored and controlled

(Chapter 5).

1.3 Definitions and Preliminary Considerations

In this section, we introduce a number of concepts that are relevant for the studies considered

in Chapters 3, 4, and 5 of this thesis. These concepts provide a general structure for

mechanisms that are employed in subsequent chapters. We first define a product and then

proceed to describe how the innovative effort embodied in NPD programs leads to a new

product. In doing so, we highlight the fundamental issues of value, risk, and cost associated

with NPD programs.

Borrowing from the marketing and engineering design literatures, we define a product as

a bundle of technology and market attributes, ω = (x1, x2, ..., xN ). The attributes represent

key product parameters such as the core product architecture, component technologies,

8



design features, and manufacturing process specifications among others. We define a NPD

program as an initiative that strives to alter product attributes in order to enhance existing

product performance or create an altogether new product. With this definition in mind we

note that a NPD program begins with a product, ω, and creates a different product, ω′. In

doing so, the NPD program can be characterized by a change metric, d = |ω′ − ω|. The

metric d defines the type of innovative effort pursued by the NPD program (Kavadias and

Chao 2006). Lower d implies incremental innovation and higher d implies radical innovation

from the viewpoint of “degree of change”. For any product ω and type of innovative effort d

we define the set of potential new product ideas as Nd(ω) = {ω′ : |ω′−ω| ≤ d}. Innovation is

equivalent to stating that a NPD program changes product attributes over time and drives

performance improvement.

Product performance (net revenue generated by a product) is a function of the technol-

ogy and market attributes and is given by F (ω). For any NPD program, F (ω′) − F (ω) is

the performance change as a result of the innovative effort. We define a performance im-

provement function V (·) such that F (ω′)−F (ω) = V (d). Let V̂ (d) be the maximum poten-

tial performance improvement possible within Nd(ω) and note that V̂ (d) is non-decreasing

in d. This follows immediately from our definition of Nd(ω) because for any d1 < d2,

Nd1
(ω) ⊂ Nd2

(ω).

In addition to the value created by NPD programs, innovative activity also involves risk.

We characterize risk based on the probability that a NPD program achieves the maximum

potential performance within Nd(ω). This probability is given by p(d), which is decreasing

in d. Finally, the cost associated with innovative effort that transforms ω to ω′ is also a

function of the degree of change sought by the NPD program. The cost of innovation is

given by c(d), which is increasing in d.

Based on the above, for any d1 < d2 we say that d1 represents incremental innovation and

d2 represents radical innovation. Furthermore, based on the preceding arguments we note

the following properties: (i) |Nd1
(ω)| < |Nd2

(ω)|. The number of solutions possible through

radical innovation is greater than the number of solutions possible through incremental

innovation. (ii) V̂ (d1) ≤ V̂ (d2). The maximum potential performance for radical innovation

9



is at least as big as the maximum potential performance for incremental innovation. (iii)

p(d1) > p(d2). Radical innovation is more risky (has lower probability of success) compared

to incremental innovation. (iv) c(d1) < c(d2). The cost of incremental innovation is less

than the cost of radical innovation.

10



CHAPTER II

LITERATURE REVIEW

This chapter offers a comprehensive review of the existing knowledge regarding resource

allocation and NPD portfolio management. We categorize extant research along two broad

dimensions: the unit of analysis (NPD portfolio, NPD program, individual project) and the

time element considered in each work (static versus dynamic). Chapters 3, 4, and 5 provide

a more detailed analysis of the related literature for each study.

Figure 4 provides an outline of the existing work and immediately highlights an interest-

ing insight: there appears to be an inverse relationship between the amount of theoretical

work performed and the level of analysis. At the strategic (firm) level of decision making

the amount of work is significantly less than the work at the operational level of project

selection. In fact, the work at the operational level of decision making is so voluminous that

it must be further classified into sub areas. Despite the volume of work at the operational

level of decision making, the research has not delivered substantial impact to upper levels

of the managerial community. This reflects the misalignment between the complex reality

of the NPD portfolio problem and the simplifications necessary for modeling abstraction.

This observation was first recorded by Souder (1973), and Schmidt and Freeland (1992);

and iterated by Loch et al. (2001), Kavadias and Loch (2003b) and most recently by Shane

and Ulrich (2004) in a review paper for the 50th anniversary of technology management and

product development research in Management Science.1 Below, we discuss the key findings

and limitations of existing work in each of the groups identified in Figure 4.

1“A substantial body of research has focused on which innovation projects to pursue... surveys have shown

that these models have found very little use in practice... If 50 years of research on an area has generated

very little managerial impact, perhaps it is time for new approaches.” (Shane and Ulrich 2004 p.136)
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Figure 4: Overview of the resource allocation and NPD portfolio literature.

2.1 NPD Portfolio Management at the Strategic Level

The NPD portfolio problem consistently attracts strategy and management research in-

terest, reflecting its importance for senior management. Because of the complexity of the

decision at this level of decision making the literature has mainly grown to a set of “best

practices” recorded through case studies. Recently, several theoretical studies have tried to

open the “black box” of the V (ω) product performance functions. We begin by presenting

the former group, which has shaped managerial decision making in a significant way. We

then proceed to discuss the more recent studies.

Roussel et al. (1991) popularized the importance of portfolio selection for top manage-

ment in organizations. Cooper et al. (1997) and Liberatore and Titus (1983) carried out a

large survey of top management decision making concerning their NPD portfolios. Wheel-

wright and Clark (1992) also recognized the importance of portfolio selection for strategic

decision making. Most of these studies confirm a general trend: senior managers tend to
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Figure 5: NPD portfolio management tools (source: Roussel et al. 1991, Wheelwright and
Clark 1992, Cooper et al. 1997).

complement financial project evaluations with ad hoc tools. These tools often advocate

resource allocation balance between the different types of innovation, or they suggest a

comparison across market competition and technology newness and/or technological risk

(Wheelwright and Clark 1992a, Cooper et al. 1998). We depict some representative man-

agerial tools for NPD portfolio management in Figure 5.

In scoring and ranking models (lower left of Figure 5), projects are ranked based on a

weighted average of their performance across multiple criteria as defined by management.

The n best projects, according to their overall score, comprise the portfolio. The risk-

return bubble diagram (lower right of Figure 5) categorizes each R&D program along its

technology risk and potential return (discounted net present value). The size of the bubble

indicates funding level. The objective for senior management is to achieve balance between

the overall risk and the return of the portfolio. An efficient frontier could characterize the

maximum return obtained at given risk levels. This tool is perhaps the most widely used

in practice (Cooper et al. 1998). Finally, the strategic buckets tool (top right of Figure

5) aims to protect resources for NPD programs that differ with respect to their degree

of innovation. This protection is necessary because long term programs with very risky

outcomes will always be undermined when compared financially with short term quick

cash initiatives. Various case studies have made arguments regarding what constitutes a

strategic bucket (Cooper et al. 1998). The only framework that has managed to achieve an
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abstract approach to this issue is that of Wheelwright and Clark (1992a). They identify

the (manufacturing or sales) process change versus the extent of product change as the

classification factors. Their idea is that a large change in either of these two dimensions

increases risk, which must be balanced in order to achieve better “planning, staffing, and

guiding of individual projects” (Wheelwright and Clark 1992a).

The fundamental insight of these studies is the notion of balance across different dimen-

sions that determine product performance and subsequently overall portfolio performance.

However, these tools can only generate ad hoc rules of thumb. They help managers think

through the factors that influence the resource allocation decision, but they lack additional

theoretical or empirical basis for further recommendations. Still, we must recognize the

fact that these methods are heavily used in practice because they facilitate useful discus-

sions in portfolio review meetings. Loch (1996) describes the challenges that often arise in

portfolio review meeting. These tools represent an effort to understand the implications

of multi-period effects, market variables, technology factors, and additional performance

determinants, as well as their interactions. Due to the lack of a theoretical focus, these

methods are necessarily at an aggregate level, and they cannot assess the “optimal” bal-

ance that management should strive for contingent on contextual factors. However, this

stream of work is essential because it illustrates that further work should be performed to

analyze the trade-offs between the various performance determinants (the x1, x2, . . . , xN

identified earlier).

As a response to the difficulty of assessing all potential NPD portfolio factors a relatively

new approach has promoted the idea that generic criteria (such as risk, return, or any score)

are not sufficient. Rather, NPD activities should be explicitly linked to business strategy

(Kaplan and Norton 1996, Wheelwright and Clark 1992b, Comstock and Sjolseth 1999). In

this sense, R&D strategy must cascade down to individual activities instead of allocating a

given budget according to generic or customized scores (Loch and Tapper 2002).

A few normative studies have tried to uncover potential trade-offs at the strategic level.

Ali et al. (1993) model an R&D race between two firms that choose between two different
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types of innovation. They show the effect of competition on project choice given heteroge-

nous firm innovation capabilities (i.e. time and resource effectiveness). Although their

approach is static, they highlight the importance of environmental factors and identify the

fact that strategy is contingent on environmental conditions.

Two studies from the strategy area emphasize the effects of capacity choice on portfolio

success (Adler et al. 1995, Gino and Pisano 2005). Both of these works view the R&D

department of a firm as a manufacturing shop floor where different servers (individuals or

teams) process each project before it is completed. Congestion effects lead to internal delays,

revealing the latent technical interactions across innovation efforts that should be considered

when defining the portfolio. Gino and Pisano (2005) also argue for the behavioral component

in the decision of which projects should be admitted in each stage. In a pioneering empirical

effort, Girotra et al. (2007) try to draw a systematic link between the portfolio choices

and the overall value of the firm. They conduct an event study in the pharmaceutical

industry, and they show that project failure without the appropriate build-up of back-up

alternative compounds (capacity) may result in high company value loss. We believe that

such studies are of crucial importance in order to truly uncover the performance drivers and

apply optimization techniques to product portfolio management. Along similar premises

Balasubramanian et al. (2004) analyze the changes in the product portfolio breadth over

time within several high-tech industries, as a response to environmental factors like market

opportunities and uncertainty. Although their work focuses on R&D program choices we

classify it here due to the firm level data and the effort to once more quantify the trade-offs

between performance determinants.

Chao and Kavadias (2007) introduce a theoretical framework that relies upon similar

premises as the general model presented in Chapter 4 of this thesis. They explore factors

that shift the proposed balance in the NPD portfolio, and they attempt to offer a theo-

retical basis for the strategic buckets tool presented above. Their findings show that the

interactions among the performance drivers has a significant impact on the portfolio bal-

ance. Highly coupled marketing and technology performance determinants prompt for the
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existence of strategic buckets (the protection of resources) aimed at radical innovation ef-

forts. They also show that environmental turbulence (likelihood that the V (·) may change)

shifts the balance towards more incremental resource allocation.

2.2 Resource Allocation and NPD Programs

The decision regarding how to allocate resources among NPD programs necessarily oper-

ates under a set of constraints: (i) the type of innovation balance as defined at the strategic

level, and (ii) scarce resources that can be flexibly assigned. Studies at the NPD program

level entail the flexibility of varying investment because different individual projects may be

started or stopped within the program. Due to the focus on a single product line the com-

plexity is reduced. Furthermore, due to the organizational proximity (hierarchy) between

the R&D program manager and his/her project managers, there is a finer understanding of

the underlying performance structure. Thus, the value of an NPD program can be better

estimated given a specific product configuration ω = (x1, x2, . . . , xN ) and the issue turns to

one of investment in different programs that can gradually (over time) capture the potential

value.

Liberatore and Titus (1983) advocate the use of an Analytic Hierarchy Process (AHP).2

AHP allows managers to break down the difficulty associated with the combinatoric nature

of the problem at the single-project level. At the same time, it encompasses a similar

notion as the strategic buckets - resources are divided based on a hierarchy of criteria. First

a division based upon the upper level criteria is completed and then each subset of resources

is allocated across individual projects.

A number of empirical studies suggest the formation of “within product line” develop-

ment strategies (Nobeoka and Cusumano 1997, Jones 1999). They highlight the importance

of product line management for firm performance and they focus on the value of product

2AHP is a methodology for structured (hierarchical) analysis and is not to be confused with the organi-
zation hierarchy that is discussed throughout this thesis.
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platforms.3 These studies offer empirical evidence from the automotive and the telecom-

munications industries. Along similar lines Setter and Tishler (2005) try to estimate the

technology investment curves in the defense industry context, and Blanford and Weyant

(2005) analyze technology investments in climate change prevention initiatives.

At the NPD program level, the number of studies that consider a dynamic context are

limited. This is due to the fact that uncertainty leads to changes in the optimal allocation

over time. Chikte (1977) models parallel development activities and corresponding resource

allocation strategies. He assumes that investment in an innovation effort impacts its like-

lihood of success and he analyzes general structural properties without any attempt to

outline managerial decision rules. In the same category, there is extensive literature on the

dynamic financial portfolio investments (Merton 1969, Constantinides and Malliaris 1995,

Samuelson 1969). These financial models generally assume linear returns (equity position

multiplied by stochastically changing prices). However, the returns from NPD invest-

ments are typically non-linear in the amount of resources dedicated to the NPD program

(Arthur 1994, Brooks 1975).

Loch and Kavadias (2002) develop a dynamic allocation model that addresses the chal-

lenges of non-linear returns. They focus on NPD program investments and account for the

carry over feature of the investment (i.e. the fact that investments within the product line

may build up gradually over time). They assume knowledge of the potential value and

of the interactions across product lines rendering the applicability of the model limited in

cases of radical innovation efforts where both the value and the potential interactions are

unknown. They show that the investment should follow a marginal benefit logic in which

management should try to invest the next available dollar in the program with the highest

overall marginal benefit (that is the benefit in the current and the subsequent periods).

Along similar lines, Ding and Eliashberg (2002) analyze the number of parallel efforts in

each stage within an R&D pipeline (they assume that all efforts aim at obtaining the same

goal). Their main insight prompts for over-investment in each stage due to the potential

3The notion of a platform and its derivative products aligns very well with the definition of an NPD
program. The key concept here is the fact that all platform efforts revolve around a specific configuration ω
or its close neighbors.
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failure of individual projects. Fridgeirsdottir and Akella (2005) explore capacity optimiza-

tion decisions given the congestion effects that may arise within an NPD program. They

assume that all projects are of the same type (same processing rate) with different payoffs.

Their insight links idea arrival rates to an ex-ante capacity division, a notion that is related

to the hierarchical suggestions by Liberatore and Titus (1983). Recently, Blanford (2004)

analyzes dynamic resource allocation between two innovation endeavors, an incremental

one and a radical one. Chao et al. (2006) build along the same notion. They consider the

problem of dynamic investment in NPD programs under the assumptions that the overall

budget depends on how cash is generated over time, and that resource availability may

be constrained at different points in time as the programs evolve. They analyze how the

investment in incremental or radical NPD programs depends on the level of autonomy given

to decision makers.

2.3 Project Selection at the Operational Level

At the operational level of decision making, a fixed budget must be allocated among multiple

ongoing projects, both statically (one-time) and dynamically (repeatedly, once per review

period, or whenever a new project idea emerges). The fact that the single project may

focus on a smaller subset of performance drivers (i.e. a small number of the xj as opposed

to x1, x2, . . . , xN ) as dictated by the NPD program decisions, implies that the associated

complexity is significantly reduced. This results in more accurate value estimates and

resource requirements. However, at the same time the rigidity of the resource requirements

and the fixed outcome (value) lend a combinatoric nature to the problem and do not allow

standardized solution processes. Thus, the majority of the proposed solutions reside on

algorithms and heuristic methods.

From a practice-oriented standpoint, such approaches encompass findings from the finan-

cial literature such as net present value (NPV) analysis (Hess 1993, Sharpe and Kellin 1998)

and break-even time (House and Price 1991) applied at the operational level of a single

project. Each project is assigned an index (its financial value), and these indices are

ranked to determine the n best candidates. Decision theorists have also proposed project
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ranking via a composite average score of qualitatively assessed dimensions (Brenner 1994,

Loch 2000). Similarly, the analytical hierarchy process (Liberatore 1987, Saaty 1994, Ham-

monds et al. 1998, Henriksen and Traynor 1999) is a structured process of multi-criteria

decision making. However, the multi-dimensional decision making methods lack a significant

determinant of project choice, namely interactions among projects, both on the technical

and on the market side.

The majority of the normative literature has treated the problem at hand through two

different lenses: (i) the “knapsack problem”4 and (ii) the dynamic allocation of a critical re-

source across projects (dynamic scheduling literature). Along the first category, there have

been many attempts to model the selection problem with different mathematical program-

ming formulations. Hence, formulations such as knapsack have been examined in depth in

Operations Research (OR) and they have utilized many variants of mixed-integer program-

ming heuristics for their solutions. Several of these efforts were applied in specific compa-

nies (Beged-Dov 1965, Souder 1973, Fox et al. 1984, Czajkowski and Jones 1986, Schmidt

and Freeland 1992, Benson et al. 1993, Dickinson et al. 2001, Belhe and Kusiak 1997,

Loch et al. 2001). Although mathematical programming is a sound methodology for op-

timization problems, and it has been successfully applied in several specific cases, it has

not found widespread acceptance by practitioners (Cabral-Cardoso and Payne 1996, Gupta

and Mandakovic 1992, Loch et al. 2001). This gap stems partly from the complexity and

sophistication of the methods, which are difficult to understand and to adopt for people who

are not trained in OR, and partly from the lack of transparency and from the sensitivity of

the results to changes in the problem parameters (a mixed-integer programming applica-

tion example can be found in Loch et al. 2001). In order to retain some level of analytical

tractability, mathematical programming formulations rarely account for dynamic decision

making, such as the option to abandon some of the projects during development, or the fact

that different projects start and end at different points in time. Recently, Beaujon et al.

(2001) made the observation that project funding is not a “zero or one” decision, but that it

4The knapsack problem, proposed by Operations Research theorists, considers a set of projects with
specific resource requirements and value propositions and a fixed total budget (i.e. the knapsack). The
objective is to maximize the value in the knapsack
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can be continuously adjusted. Kavadias et al. (2005) rely upon the observation of Beaujon

et al. (2001) but consider upper and lower limits of funding. They propose a heuristic

method that relies upon a marginal benefit ranking. Still, the fundamental message from

this literature is how difficult it is to obtain high diffusion due to the lack of managerial

buy-in.

With respect to the dynamic scheduling literature, several authors have explored the

dynamic portfolio selection decision emphasizing optimal policies rather than algorithmic

solutions. This work mostly considers stochastic settings due to the uncertainty in projects.

This literature comprises four groups. The largest group is the multi-armed bandit (MAB)

problem literature, which has strongly influenced the scheduling literature in Operations

Research (OR). It was first solved by Gittins and Jones (1972), and since then, many vari-

ants have been proposed and solved by other researchers. The general formulation concerns

K projects proceeding in parallel, and a critical resource that should be devoted to only one

project at a time. Gittins and Jones formulated the well-known Gittins index, a number

that can be assigned to each project at each time t, and that characterizes the optimal

policy. At any time t, it is optimal to work on the project with the highest Gittins in-

dex, which depends only on each individual project’s state (Bertsimas and Niño-Mora 1996,

Whittle 1980, Ross 1982) and corresponds to the reward that would make the decision maker

indifferent as to whether to continue the project or exchange it for that reward.

The MAB policy rests upon a number of assumptions which make extensions to more

realistic settings extremely difficult and which revert us back to algorithmic approximations.

Gittins (1989) shows that for differing general discount functions there is no general index

(Gittins 1989, pp. 27-29). Banks and Sundaram (1994) prove that the existence of switching

costs across projects leads to the absence of a general index solution. The characteristics

of NPD projects (payoffs are earned only after the product is launched into the market)

challenge as well the basic premises of MAB. Moreover, projects tend to be interdependent

due to prioritization. The latter causes penalties due to delayed market launch.5 Kavadias

5Which violates the basic MAB assumption that a project’s value function remains unchanged while it
is not worked on.
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and Loch (2003a) expand existing results to incorporate these characteristics of NPD, and

provide a useful discussion on the limitations for policy extensions.

The second group of dynamic scheduling models approaches the project prioritization

problem as a multiclass queueing system, where different classes of jobs (i.e. types of

projects) share a common server. Each job class requires a stochastic time on the server

and incurs a linear delay cost. The main result is the “cµ rule” (Smith 1956, Harrison 1975):

give priority to the job with the highest delay cost divided by the expected processing time

(marginal cost c, over time τ = 1
µ
). The rule is optimal for linear delay cost structures

in various applications (Wein 1992, Ha 1997, Van Mieghem 2000).6 For non-linear delay

costs, the “generalized cµ rule” (G-cµ) has been shown to be asymptotically optimal in

heavy traffic (Van Mieghem 1995).

The third group of dynamic scheduling model outline optimal admission rules when a

budget has to be allocated over time to several project ideas7. Kavadias and Loch (2003b)

present such an NPD setting (for an overview of the general problem, see Stidham 1985,

Miller 1969). The NPD reality differs from manufacturing settings in two aspects: (i)

The project attractiveness measure is continuous (there are uncountably many customer

classes). (ii) The NPD system has a waiting buffer of size 1, from which the waiting project

disappears when a new project idea arrives. In other words, the new idea is not turned away,

but the old idea is superseded. This assumption represents project obsolescence, which is

more important in NPD than in manufacturing. These model features lead to results

that are consistent with recent literature (more available capacity lowers the threshold for

acceptance, see, e.g., Stidham 1985, Lewis et al. 1999).

Finally, the stochastic and dynamic version of the knapsack model. Kleywegt and Pa-

pastavrou (1998) show that if all items are of the same size, a threshold policy is optimal, the

value function is concave in the remaining amount of resource, and the threshold increases

6The cµ rule is a “continuous time” approximation of the Gittins index. Van Oyen et al. 1992 among
others have pointed out the similarity between bandit policies and the cµ rule.

7The third and second groups of work share methodological foundations, but differ in the main research
question: prioritization versus admission.
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as the resource is depleted. Kleywegt and Papastavrou (2001) show that the results gener-

alize to the case of stochastic resource requirements of the items, but only if the resource

requirement distribution fulfills certain conditions (concavity), and the terminal value func-

tion is concave non-decreasing. Still, the NPD context imposes additional constraints on

the problem, including the fact that investment in a given project may not be a one shot

decision but may progress through milestones (i.e. StageGates) where additional action

may be taken.
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CHAPTER III

R&D INTENSITY

3.1 Introduction

A key metric for the assessment of innovative activity at the firm level is R&D intensity.

R&D intensity is the ratio of a firm’s R&D investment to its revenue (the percentage of

revenue that is reinvested in R&D). In subsequent chapters we discuss more detailed issues

related to resource allocation and NPD portfolio management. However, it makes sense to

discuss where the firm’s R&D investment comes from before analyzing how it should be

allocated between projects.

The consistency in R&D spending within an industry is remarkable. As an example,

consider the R&D intensity for Pfizer, Inc. (Figure 6). Over a 10 year span between 1995-

2005, Pfizer’s quarterly revenue grew from approximately $2 Billion to over $15 Billion.

Over the same period of time, Pfizer’s R&D intensity was approximately 13-15%. Despite

an eight fold increase in revenue, the percentage of revenue invested in R&D remained rel-

atively constant. Consistency in R&D intensity is not unique to Pfizer. Figure 7 provides

the distribution of R&D intensities for firms in the automotive and pharmaceutical indus-

tries. The data show that consistency in R&D intensity is a common trait across these

industries. In the automotive industry, R&D intensity typically falls between 3-5%. In the

pharmaceutical industry, R&D intensity is approximately 14-16%.

On the managerial front, interactions with senior executives suggest that the R&D

intensity phenomenon is robust (Freyre 2006, Kloeber 2007). However, the same executives

recognize that firms adopt significantly different resource allocation and NPD portfolio

strategies despite the drive to maintain a more-or-less constant R&D intensity. It is common

to hear a manager say that R&D intensity is simply the result of the “cost of doing business”

in a particular industry. Nevertheless, it would be beneficial to provide a more detailed and

rigorous explanation for this phenomena. On the academic front a number of researchers,
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Figure 6: Pfizer Inc. R&D intensity and revenue over time (source: U.S. Securities and
Exchange Commission and COMPUSTAT North America Industrial Database).

primarily in the area of economics, have studied related questions. Almost without exception

this research is focused at an extremely high level and does not provide insights with respect

to operational variables such as cost of sales or NPD portfolio composition. An interesting

observation from practice and theory is that firms are differentiated with respect to NPD

portfolio strategy. This implies that firms operate according to different potential reward,

timing, and risk considerations for R&D investments. The different NPD portfolio strategies

and the reward, timing and risk that accompany each strategy certainly require different

resource allocation and NPD portfolio decisions.

In light of these observations, what are the factors that explain the consistency in R&D

intensity for firms within a given industry? That is to say, why is the within-industry

variance in R&D intensity typically less than the between-industry variance? This study

builds upon prior research in economics and attempts to shed light on the factors that give

rise to the often-cited consistency in R&D intensity for firms within a given industry. We

begin our analysis at the individual firm level taking into account the firm’s R&D investment

decision (including the overall makeup of the NPD portfolio) and its effect on sales growth.

We then extend our analysis to the industry level where multiple firms conduct R&D in the

face of competition. A key component of our analysis lies in understanding how the R&D
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Figure 7: Distribution of R&D intensities in the automotive and pharmaceutical industries.

investment, the NPD portfolio composition, and the associated sales and profit evolve over

time.

We find that R&D intensity for the single firm depends on a combination of portfolio

metrics (i.e. expected portfolio productivity and uncertainty) and operational variables such

as cost of sales and per-period decline in sales. Lower R&D productivity, uncertainty, and

cost of sales drive higher R&D intensity. Conversely, lower per-period decline in sales drives

lower R&D intensity. At the industry level, we show that a simple evolutionary process

drives the consistency in R&D intensity. The evolutionary model suggests that multiple

firms within an industry tend to converge to an equilibrium R&D intensity. Our study

has important implications for theory and practice. From the theoretical side, we “break

open the black box” and explain the consistency in R&D intensity for firms that compete

in a particular industry. Thus, we bridge the gap between high-level economic research and

detailed operations research. From the practical side, our study takes an important step
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toward identifying potential metrics to evaluate R&D investment strategy. These metrics

can help managers understand whether firms are under or over investing in R&D given their

particular industry and NPD portfolio characteristics.

The remainder of this chapter is structured as follows: in Section 3.2 we discuss the

related literature, primarily from the vantage point of economics and finance. In Section

3.3 we present an analytic model of R&D investment for the single firm and in Section 3.4

we extend this model to a competitive setting. We conclude in Section 3.5 with a discussion

of the implications of this research for theory and practice.

3.2 Related Literature

In this section we review the literature related to R&D intensity. The overwhelming ma-

jority of this research stems from economics and industrial organization. There is an exten-

sive literature in industrial organization that is focused on understanding two hypotheses

advanced by Joseph Schumpeter (1950) and refined by John Galbraith (1957). These hy-

potheses are ofen referred to as the “Schumpeterian Hypotheses” and they are concerned

with R&D spending and innovative performance of firms (Schumpeter 1950). The first

hypothesis deals with the effects of competition (market concentration) on R&D spending.

The second hypothesis relates firm size (sales or revenue) to R&D spending. A number

of economic scholars have re-examined these hypotheses using varied methods and data

(Kamien and Schwartz 1982, Levin et al 1985, Cohen et al. 1987, Cohen and Levin 1989).

The second Schumpeterian Hypothesis is the one most closely associated with our work.

This hypothesis states that economies of scale drive R&D investment - larger firms will invest

more in R&D because they have the necessary assets to take advantage of the investment

and earn disproportionate rents. Although this premise is rather intuitive, its validity has

sparked intense debate among industrial organization and innovation scholars. In any case,

the argument does not explain why firms within a given industry, regardless of size, share a

common R&D intensity. Furthermore, because of its focus on economic level attributes, this

literature does not provide insights with respect to the management of the R&D investment

and how it emerges from a consistent R&D intensity.

26



A number of economic researchers have studied problems that are closely related to

the issue of R&D intensity (Kamien and Schwartz 1978, Nelson 1988, Cohen and Klepper

1996). Similar to our work, the majority of these efforts are based on analytic models

of R&D spending. However, with rare exception, these efforts decouple revenue from the

R&D investment. This decoupling transforms the problem from one of R&D investment

and innovation to one of consumption and wealth accumulation. The focus on consumption

and wealth accumulation is justified because the goal of the economic research is to provide

guidelines for long-term economic growth.

The interest in long-term economic growth and the need to better understand what

drives this growth has given rise to endogenous economic growth theory. Endogenous eco-

nomic growth theory has an important relationship with our study. Whereas neoclassical

economic growth models assume that the long-run rate of growth is exogenously determined

(i.e. it is determined by an exogenous rate of technological progress or an exogenous rate

of labor force growth), endogenous growth theory presumes that firm activity impacts the

rate of technological progress. One important factor that drives this is investment in R&D

and innovation. Beginning with the work of Solow (1956) and advanced through the work

of Romer (1990), Aghion and Howitt (1992), Aghion and Tirole (1994), and Barro and Sals-

i-Martin (1998), the endogenous growth literature attempts to explain long-term economic

growth rates. Still, the high-level macro-economic view does not describe the operational

details of R&D investment and the NPD portfolio decisions made by managers.

There is an abundance of research in finance that is tangentially related to the R&D

intensity question primarily from the viewpoint of investment (Bradley et al. 1984, Myers

1984). The focus of the finance literature is capital structure (debt to equity ratio and

dividend payments). In that light, R&D is conceptually related to finance in the sense that

an investment decision is made taking into account potential returns (Hall 1992, Shyam-

Sunder and Myers 1999, Hall 2002). However, R&D investment is defined by a number

of properties that go beyond standard financial modeling. The most important of these

properties are non-linear returns and the fact that R&D investment can alter potential

value and probability of success (Loch and Kavadias 2002).
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Relative to the existing research in economics and finance, this study will explain why

R&D intensity exhibits such consistency within an industry. In particular, we hope to pro-

vide a greater level of operational detail with respect to the drivers of the R&D investment

decision. Thus, our analysis is similar in terms of the level of detail to previous work in

R&D portfolio management (Loch and Kavadias 2002, Setter and Tishler 2005, Blanford

and Weyant 2007). This detail allows us to make the necessary link between economic

factors, firm strategy, and the NPD portfolio.

3.3 A Model of R&D Investment for the Single Firm

Our study consists of two distinct but related levels of analysis. In this section we develop

a model of R&D investment for a single firm. In section 3.4 we use the single firm results

in an evolutionary analysis at the industry level. Thus, our study can be thought of as a

nested analysis in which the single firm results exist within the evolutionary structure of the

industry. Evolutionary perspectives have recently been advocated in managerial settings

characterized by technological innovation and change (Hannan and Freeman 1977, Tushman

and Anderson 1986, Stuart and Podolny 1996, Teece et al. 1997, Loch and Kavadias 2007)

3.3.1 R&D Investment and Sales Growth

Our analysis is focused on the firm’s total R&D investment and how this investment impacts

sales growth and profitability. We begin by considering the infinite horizon problem of

investing in R&D to drive sales growth. The infinite horizon structure is appropriate since

senior managers are expected to make investment decisions and face the same problem for

the foreseeable future. Let r(t) be the firm’s R&D investment at time t ∈ (t0,∞). The

R&D investment has a positive impact on sales through an R&D productivity function f(r),

which is increasing and concave on (0,∞) with f ′(0) = ∞ and f ′(∞) = 0. Of course, R&D

investments require time to materialize and often fail before delivering results. To capture

the time lag in effectiveness of R&D investments we define ω(t−τ) ∈ (0, 1) as the portion of

the R&D investment made at time τ that has an impact on sales at time t ≥ τ . With this

definition in hand, we can write the total portion of the R&D investment made at τ that

has an impact on sales at any time in the future as
∫

∞

τ
ω(t − τ)dt = µ ∈ (0, 1). Note that
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0 < µ < 1 implies that some R&D dollars are not effective and are lost without ever having

an impact on sales. In this sense, µ is a proxy for the uncertainty in R&D investment.

Lower µ results from more uncertain (higher risk) R&D investments while higher µ results

from less uncertain (lower risk) R&D investments.

The triplet π = {f(·), ω(·), µ} is a broad characterization of the firm’s R&D portfolio.

Given the level of analysis in this study we treat each element of the NPD portfolio as an

aggregate measure (chapters 4 and 5 of this thesis will look into more detailed structural

elements of the NPD portfolio problem). Each of the elements of π represents an combina-

tion of product development functions that together characterize the overall NPD portfolio.

For example, if the firm has a preponderance of incremental NPD programs in its portfolio,

then f(·) will be relatively small, ω(·) will be such that the time lapse from R&D investment

to payoff is relatively short, and µ will be relatively large. This structure for π is aligned

with a low risk, low reward strategy. Conversely, a firm that has a substantial number of

radical NPD programs in the portfolio will have f(·) that is relatively large, ω(·) such that

the time lapse from R&D investment to payoff is relatively long, and µ that is relatively

small. This characterization of π embodies a high risk, high reward NPD portfolio strategy.

Given the firm’s R&D investment and portfolio structure, we can define the impact

of R&D on sales. Let Ṡ(t) =
∫ t

−∞
f [r(τ)]ω(t − τ)dτ − δS(t) be the change in sales at t.

The change in sales is the difference between growth due to previous R&D investments and

decline due to lost sales in the absence of R&D activity (in this formulation, δ ∈ [0, 1] is

the per-period percentage loss in sales that would be suffered if the firm did not invest in

R&D). Note that growth in sales at time t depends on R&D investments made prior to

t. The time at which the R&D investments actually deliver results (if they deliver results

at all) depends on the form of ω(·) and the value of µ. Having defined the firm’s R&D

investment and its impact on sales, we can write the firm’s profit as

V (S0) = max
r(t)

∫

∞

t0

{

[1 − c(t)]S(t) − r(t)
}

e−ρtdt (1)

where c(t) is the cost of sales (as a percentage of sales) and ρ ∈ (0, 1) is the discount factor.

We allow process improvement and learning to take place so that ċ < 0, c̈ > 0, and c(∞) = c̄.

Thus, the cost of sales is decreasing over time, but cannot be reduced beyond a limiting
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value c̄. The maximization in Equation 1 is subject to Ṡ(t) =
∫ t

−∞
f [r(τ)]ω(t−τ)dτ −δS(t),

S(t0) = S0 > 0, and
∫

∞

τ
ω(t − τ)dt = µ ∈ (0, 1).

3.3.2 Equilibrium R&D Intensity

In this section we discuss the analytic solution to the problem presented above. To ease

exposition, all technical details are presented in Appendix A.1 and functional notation is

suppressed when the intended meaning is clear. In describing the analytic solution, we first

characterize the firm’s optimal R&D investment and then proceed to analyze the equilibrium

values for R&D investment, sales, and R&D intensity. The problem stated in Equation 1

results in an intuitive solution for the firm’s optimal R&D investment over time. We state

this formally in Proposition 1.

Proposition 1. Optimal R&D Investment. The optimal R&D investment, r∗(t), is defined

implicitly by ∂f/∂r∗
∫

∞

t
λ(τ)ω(τ − t)dτ = 1.

The optimal R&D investment equates the expected marginal benefit from R&D (i.e.

the expected impact that R&D investment has on sales including all future benefits) to the

marginal cost of R&D at time t. This insight is aligned with previous work in economics

(Cohen and Klepper 1992, 1996). Based on this result, we seek long-run equilibrium val-

ues for the firm’s R&D investment and sales rate. An equilibrium is achieved when two

conditions are satisfied. First, the marginal benefit from all future sales (discounted to t)

is balanced against the marginal benefit at t. Second, the expected increase in sales at t

(due to all previous R&D investments) is balanced against the decline in sales (due to δ).

Together these conditions define a stationary equilibrium. Proposition 2 characterizes the

equilibrium conditions.

Proposition 2. Equilibrium R&D investment : r̄ = g−1 [(ρ + δ)/(1 − c̄)µ] where g−1(·)

is a decreasing and convex function defined by g(r) = ∂f/∂r. Equilibrium Sales Rate:

S̄ = f(r̄)µ/δ where f(·) is an increasing and concave function. Equilibrium R&D Intensity :

There exists an equilibrium R&D intensity given by: β̄ = r̄/S̄.
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The equilibrium R&D investment balances the marginal expected benefit from R&D

expenditure (in terms of R&D productivity and higher sales) with the cost of the investment.

Because c(t) is decreasing over time, it can be shown that the R&D investment increases

over time until reaching the equilibrium value. This R&D investment drives sales growth

over time. The equilibrium sales rate is defined at the point at which the expected sales

growth due to R&D expenditure offsets the sales decline. Because the R&D expenditure

increases towards the equilibrium, it follows that the sales rate increases until reaching the

equilibrium value S̄. Given the equilibrium R&D expenditure and sales rate, we define the

equilibrium R&D intensity as the ratio of R&D expenditure to sales.

The existence of an equilibrium R&D intensity is guaranteed if the firm optimally invests

in R&D at the point at which the benefits from the R&D expenditure balance against the

cost of the investment. An important element of our analysis lies in understanding the

factors that drive lower or higher R&D intensity. We state this formally in Proposition 3.

Proposition 3. Comparative Statics Analysis for R&D Intensity : β̄ is higher if: (i) δ is

higher, (ii) µ is lower, (iii) f(·) is lower, (iv) c̄ is lower, (v) ρ is lower.

The comparative statics results in Proposition 3 outline the factors that drive R&D

intensity lower or higher for firms within an industry. Equilibrium R&D intensity is higher,

ceteris paribus, if the firm is subject to conditions that result in lower sales (i.e. higher δ,

lower f(·), and lower µ). In such cases, the firm must invest more in R&D to maintain a

comparable level of sales and the result is a higher equilibrium R&D intensity. Lower cost

of sales (c̄) drives higher R&D intensity because the firm can invest more dollars in R&D

without sacrificing profit.

The results discussed above apply to a single firm. Because firms have different NPD

portfolio strategies (π) and operational variables (c̄ and δ), we would expect R&D intensity

to differ across firms. However, theory and practice point to a consistency in R&D intensity

for firms within a particular industry. In the analysis that follows we build upon our analytic

model to explain the factors that drive this consistency in R&D intensity. Consistency in
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this context refers to the premise that the within-industry variance of R&D intensities is

less than the between-industry variance in R&D intensities.

3.4 An Evolutionary Model of R&D Investment

The equilibrium value of R&D intensity implies that there exists an optimal rate at which

firms should invest in R&D (as a percentage of sales). Firms that invest beyond β̄ will have

lower profits because R&D productivity is subject to diminishing returns. Firms that invest

below β̄ will have lower profits because potential sales remain untapped. Of course, R&D

investment is a risky business since investment decisions must be made today but sales

growth is realized in the future. The decisions are exacerbated by competition intensity

that may render the firm extinct before its R&D investment pays dividends.

In this section we extend the analytic model presented above to account for the fact

that multiple firms coexist in a competitive environment. Based on this observation we

take an evolutionary perspective on the R&D investment problem (Nelson and Winter

1982). That is to say, firm performance evolves over time based on variation, selection,

and retention mechanisms. Evolutionary perspectives have recently been advocated in

settings characterized by technological innovation and change (Tushman and Anderson

1986, Stuart and Podolny 1996, Teece et al. 1997, Loch and Kavadias 2007). Furthermore,

an evolutionary perspective is appropriate given the fact that firms must often make R&D

investment decisions without knowing the strategies or decisions made by competitors.

Indeed, corporate R&D investments and NPD portfolio decisions are highly guarded secrets

and are only common knowledge ex post.

3.4.1 The Competitive Environment

Suppose that a population of N firms exists at t = t0. Each firm i = 1, 2, . . . , N is differen-

tiated with respect to πi, Si(t0), c̄i, and δi. The discount factor ρ is assumed to be the same

for all firms. Given the initial conditions faced by each firm in the population, it should be

obvious that the initial R&D intensity for each firm, βi, will be different.

Our interest lies in understanding whether or not the distribution of R&D intensities

converges to a value, and if so, what value does it converge to? Similar to the analytic model
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of Section 3.3, we look for equilibrium (steady-state) values for the βi. An evolutionary

perspective dictates that variation, selection, and retention mechanisms will lead to an

equilibrium distribution for the βi that is characterized by lower variance (relative to the

initial distribution). Furthermore, the mean of the distribution should follow the insights

described in Proposition 3.

To implement the evolutionary model, we must define variation, selection, and retention

mechanism for the population of firms. The following activities take place in period t =

0, 1, 2, . . . for each firm i = 1, 2, . . . , N : Firm i determines its R&D investment as ri = βiSi

where βi is calculated as βi = r̄/S̄. Variation occurs as firm i’s R&D investment has an

impact on sales: Si(t+1) = (1−δi)Si(t)+
∑t

τ=t0
fi[ri(τ)]ωi(t−τ). Note that ωi(·) determines

the “weights” that past R&D investments have on current sales. In that light, ωi(·) behaves

in a similar fashion to a probability mass function. Selection occurs in each period based

on firm profit. Profit for firm i is calculated as Πi(t) = (1 − c̄i)Si(t) − ri(t) and the lowest

x% of firms (in terms of profit) are eliminated from the population. New firms enter the

population with random Si(t), c̄i, and δi. Retention occurs as portfolio strategies for the

new firms (πi) are benchmarked from the highest x% (in terms of profit). We repeat these

steps until the system reaches an equilibrium (steady state). Complete details regarding

the implementation of the evolutionary model, including functional forms and parameter

distributions, can be found in Appendix A.2.

3.4.2 Equilibrium R&D Intensity

In analyzing the results of the evolutionary model we first confirm that R&D intensity indeed

reaches as equilibrium. We then concern ourselves with the value of the equilibrium R&D

intensity. Figure 8 depicts the distribution of R&D intensities at t = 0 and t = 100 (steady-

state) for the base case analysis.1 Figure 8 confirms that an equilibrium R&D intensity

exists when a population of firms is subject to competition and evolutionary mechanisms.

Note that the initial (t = 0) distribution of R&D intensities ranges from approximately

1Extensive experimentation confirms that the convergence result depicted in Figure 8 is robust. In
particular, the steady state (t = 100) variance in R&D intensity was substantially lower than the variance
at t = 0 for all experiments.
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Figure 8: Distribution of Firm R&D Intensities at t = 0 and t = 100 (steady-state).

0.10 to 0.25. This reflects the fact that firms are initially differentiated with respect to cost

and portfolio parameters. At t = 100 (steady-state) the distribution of R&D intensities is

characterized by substantially lower variance. This result shows a strong convergence of

R&D intensities.

The steady-state distribution of R&D intensities provides convincing support for the

existence of an equilibrium R&D intensity. We now turn our attention to the value of

the equilibrium R&D intensity. Figure 9 shows the mean of the distributions at t = 100

(steady-state) for profit, sales, R&D investment, and R&D intensity. Each experiment (E1-

E5) highlights a changed parameter relative to the base case experiment. We also report

the standard errors for each output measure to highlight the fact that convergence is robust

and the steady-state (t = 100) variance of each output measure is relatively small.

The results in Figure 9 mirror the comparative statics analysis of Proposition 3. As

with the analytic result, we note that the equilibrium R&D intensity is lower if cost of sales

is higher, per-period sales decline is lower, R&D productivity is higher, and uncertainty is

lower. Based on the results in Figure 9, we can explain the factors that drive a change

in equilibrium R&D intensity for a population of firms. In experiment E1, both the equi-

librium sales and equilibrium R&D investment are lower relative to the base case. The
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Figure 9: Equilibrium profit, sales, R&D investment, and R&D intensity at t = 100
(steady-state).

equilibrium R&D intensity is lower because the R&D investment effect dominates the sales

effect (the same reasoning is true for experiment E5). Conversely, experiments E2, E3, and

E4 result in higher equilibrium R&D investment and higher equilibrium sales. For these

experiments R&D intensity is lower because the sales effect dominates the R&D investment

effect. Interestingly, experiments E2, E3, and E4 consist of factors that have a direct impact

on sales growth or decline.

For the majority of experiments we note that the distribution of firm portfolio variables

(fi(·), ωi(·), and µi) converges to a low f(·), an ω(·) that delivers results earlier in time, and

a higher µ relative to the base case. Note that all of these changes in the portfolio suggest

that firms tend to converge to incremental portfolio strategies in the face of competition

(in order to conserve space we do not report these results in Figure 9. Details are available

from the author).
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3.5 Conclusions and Implications

The goal of this chapter was to understand an often-observed phenomenon regarding the

consistency in R&D intensity. To accomplish this goal we developed an analytic model of

R&D investment for a single firm. We then extended the analytic model to a competitive

setting in which a population of firms evolves over time until reaching an equilibrium state.

Our results show that R&D intensity for the single firm depends on a combination of

portfolio metrics (i.e. expected portfolio productivity and uncertainty) and operational

variables such as cost of sales and per-period decline in sales. Lower R&D productivity and

cost of sales drive higher R&D intensity. Conversely, lower uncertainty and per-period sales

decline drive lower R&D intensity. At the industry level, we show that a simple evolutionary

process drives the consistency in R&D intensity. The evolutionary model suggests that

multiple firms within an industry tend to converge to an equilibrium R&D intensity. In an

evolutionary setting, per-period sales decline, R&D productivity, and uncertainty drive the

equilibrium R&D intensity through their effect on sales. The cost of sales and the discount

factor drive R&D intensity through their effect on the R&D investment.

Our results contribute to both the theory and practice of R&D investment. From

the theoretical side, we “open the black box” to discuss how the NPD portfolio impacts

the consistency of R&D investment within an industry. We believe that this study is an

important first step to bridge the gap between high-level economic research and detailed

operations research. This is an important theoretical contribution as it sheds additional light

on a long standing question in the economics of R&D investment. From the practical side,

this study opens the door for managers to understand the long-run impact of NPD portfolio

strategy. Specifically, firm level data such as cost of sales, per-period sales decline, and

overall NPD portfolio composition can be used to estimate an equilibrium R&D intensity,

which in turn can be used to estimate whether firms are over or under investing in research

and development.

We view our work as an important step that can help academics and practitioners de-

velop a better understanding of an often-observed phenomenon in R&D investment. Based

on our analysis we outline a number of fruitful avenues for future research:
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• Empirical Validation. The results of our analytic and evolutionary models can be

tested using publicly available data on firm R&D investment and sales. Because of

the relatively high level of analysis adopted in this study, the possibilities for empirical

validation are plentiful.

• Competition. The evolutionary model presented in Section 3.4 consists of a simple

mechanism that serves as a proxy for competition: firms become extinct if their profit

is among the lowest in the population. What this mechanism gains in simplicity and

effectiveness, it loses in terms of detail and explanatory power. It would be beneficial

to treat the effects of competition through a more detailed mechanism. Extensions

along these lines should include specific market mechanisms that determine sales (i.e.

Cournot competition or market share attraction models). Nevertheless, one must take

caution in defining a precise form for the effects of one company’s R&D investment

on another company’s sales.

• Uncertainty. The portfolio variables considered in this study account for uncertainty

in terms of the expected impact on sales. That is to say, ω(·) and µ together act as a

probability density function to determine the expected effect of R&D investment on

future sales. Still, it would be beneficial to define the outcome from R&D investment

as a true random variable. Previous work in economics (primarily in the area of R&D

races) offers a good starting point for a true stochastic analysis.

The above issue merit rigorous study and are sure to enhance our understanding of inno-

vation and economic growth. Indeed, knowing where the R&D investment comes from and

what drives this investment at an aggregate level is the first step towards effective resource

allocation and NPD portfolio management.
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CHAPTER IV

STRATEGIC BUCKETS

4.1 Introduction

Managers have adopted several methods that aim to increase effectiveness when allocating

resources across NPD initiatives of varying degrees of novelty. A number of case driven

frameworks address the trade-offs between product and process innovation, risk and reward,

and market and technology risk (Roussel et al. 1991, Wheelwright and Clark 1992, Cooper

et al. 1998). These tools summarize best practices for dividing resources and achieving

“balance” across a portfolio of NPD endeavors. Though the tools have different names,

they all encourage the division of the overall resource budget into smaller, more focused

budgets. The result is a set of strategic buckets for managing the NPD portfolio (Cooper

and Edgett 2003, Cooper et al. 2004). A strategic bucket is a collection of NPD programs

that are aligned with a particular innovation strategy (Roussel et al. 1991, Wheelwright

and Clark 1992, Cooper et al. 1998). The NPD programs in a strategic bucket may

involve process improvements and cost reductions, minor product modifications, radical

next generation technological research, or groundbreaking R&D initiatives, among others.

Figure 10 depicts a NPD portfolio strategy with four strategic buckets.

Strategic buckets create non-permeable partitions between dissimilar NPD programs

to ensure access to resources for projects that are seemingly unattractive to commonly

used project valuation methods. Net present value (NPV) or real options analyses tend to

disfavor advanced technology projects due to the high likelihood of failure and long-term

payoffs. In addition, project valuation tools are difficult to use when it comes to radical

projects because data may be unreliable or highly biased (Kavadias et al. 2005). In light

of these challenges, the goal of a strategic bucket is to earmark resources for radical NPD

programs. In the absence of mechanisms that protect resources, managers often sway the

result of a NPV analysis in favor of a more radical project by increasing its estimated payoff
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Figure 10: NPD portfolio strategy and strategic buckets.

(the infamous $10 billion market opportunity). Of course, any NPV analysis can sway in the

opposite direction by lowering the probability of success for radical NPD initiatives. Such

ad-hoc decision-making results in intraorganizational suspicion and lack of transparency

(Wu et al. 2006). Ultimately, the suggested portfolio balance remains a vague guideline,

which is resolved on a case-by-case basis. To the best of our knowledge, decisions regarding

strategic buckets and the protection of resources have little or no theoretical foundation.1

The goal of this manuscript is to provide a theory that explains strategic buckets. We

begin by characterizing the behavior of the individual NPD programs that comprise a strate-

gic bucket. Our analysis highlights the subtle role of two strategic factors and how they

impact the value of a NPD program: (i) the degree of change sought by the innovative

activity (how novel should the target solution be?) and (ii) the time during which product

improvements and extensions take place (for how long does management commit resources

to the program?). Radical innovation efforts require a window of time in order to realize

positive outcomes. We then establish how interactions between performance drivers im-

pact this window of time. In complex business environments with numerous interactions

radical innovation efforts pay off earlier. Conversely, environments with little or no interac-

tions favor incremental innovation efforts. The ability to commit to an innovation initiative

1Special thanks to J. Kloeber, J. Scott and P. Freyre for detailed discussions and insights regarding NPD
portfolio strategy and the use of strategic buckets.
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depends on environmental instability (likelihood of major technological or market disrup-

tions). Higher degree of environmental instability favors incremental efforts. In conclusion,

we show how individual NPD programs drive overall portfolio decisions and we shed light on

the appropriate “balance” between incremental and radical innovation in the NPD portfolio.

Although environmental complexity and instability both confound managers, we find that

they have completely opposite effects on the NPD portfolio balance. Environmental com-

plexity shifts the balance towards radical innovation. Conversely, environmental instability

shifts the balance towards incremental innovation.

The remainder of this paper is organized as follows: in §4.2 we review the relevant

literature and in §4.3 we introduce the theoretical foundations for our problem. In §4.4 we

use the theoretical foundation to build an analytic model of NPD program performance, and

we show how this performance leads to a tradeoff between different types of innovative effort.

In §4.5 we show that insights from the analytic model are robust through a representation

of NPD as an evolutionary process of performance improvement in complex technology-

market environments. This is important because two very different views of the problem

(analytic and evolutionary) lead to similar insights. In §4.6, we extend our analysis from

the single NPD program to the NPD portfolio and we show how different problem contexts

drive different strategic bucket policies. Finally, we draw conclusions for theory and practice

in §4.7.

4.2 Related Literature

In this section we briefly review the relevant literature. Our focus is on resource allocation

models that address the NPD portfolio problem. There is an abundance of literature that

analyzes the portfolio selection problem at the operational level (Beged-Dov 1965, Souder

1973 and 1978, Fox and Baker 1984, Czajikowski and Jones 1986, Schmidt and Freeland

1992, Benson et al. 1993, Dickinson et al. 2001). Analysis at the operational level often

consists of mixed integer programming techniques due to the “in” or “out” nature of projects

at this level of decision-making. These models are highly sensitive to parameter changes and

practitioners often doubt their results due to the lack of robustness and transparency (Loch
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et al. 2001, Shane and Ulrich 2004, Kavadias et al. 2005). These limitations were recently

discussed in a review paper for the technological innovation and product development area of

Management Science. According to the department editors, “A substantial body of research

has been focused on the question of which innovation projects to pursue... Surveys have

shown that these models have found very little use in practice. If 50 years of research in an

area has generated very little managerial impact, perhaps it is time for new approaches.”

(Shane and Ulrich 2004, p. 136).

In light of these limitations, practitioners often prefer multi-dimensional decision making

tools (Liberatore 1987, Saaty 1994, Hammonds et al. 1998) or ranking methods (Brenner

1994, Loch 2000). The popularity of these methods stems from the explicit consideration of

metrics that are difficult to quantify (e.g., strategic alignment). Unfortunately, these tools

rely on an ad-hoc list of dimensions, and decision-makers often manipulate the methods to

generate desired outcomes instead of using them as true decision support tools. There also

exists significant research that specifically addresses the practice of strategic buckets as a

NPD portfolio management tool (Roussel et al. 1991, Wheelwright and Clark 1992, Cooper

et al. 1997, Cooper et al. 2004). This research provides descriptive evidence of the use and

benefits of strategic buckets and clearly outlines the popularity of strategic buckets. We

build upon these observations to provide a rigorous theoretical foundation for the existence

and use of strategic buckets.

A number of normative models address the issue of return on investment from NPD

programs. Ali et al. (1993) consider a competitive setting where firms decide to invest in

a single incremental or radical product idea. They focus on a single project and consider

project completion to be an exogenous random variable. Kauffman et al. (2000) analyze

the return from search efforts that vary with respect to the distance of search within a

performance landscape. They do not account for the portfolio decision that includes multiple

innovation efforts, and they consider the time horizon to be fixed. Loch and Kavadias (2002)

focus on the optimal resource allocation across NPD programs. They do not consider how

the nature of the NPD investment (incremental or radical) or the investment horizon impact

the allocation decision. In a follow up to the previous study, Bhattacharya and Kavadias
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(2007) account for the dynamic allocation of a fixed budget over research opportunities that

become available at different points in time. Once more they do not characterize the nature

of innovation and they assume a particular structure for the return on investment curves.

From a methodological standpoint, a large body of literature has examined the math-

ematical properties of resource allocation models beginning with Smith (1959), and fol-

lowed by Gittins and Jones (1974) and Gittins (1989). This work is based on the dynamic

scheduling of critical resources across a set of potential tasks (for an excellent review see

Van Mieghem 1995). These models consider a fixed time horizon, which is an appropriate

assumption for dynamic scheduling because task returns do not change over time (at most

they get discounted). Given the fixed time horizon length, these studies determine an allo-

cation or scheduling policy. We borrow a simple mathematical structure from the dynamic

scheduling literature - the well-known “treasure hunt” problem (for a recent analysis see

Denardo et al. 2004). We use this structure as a basis to examine the effects of the horizon

length on the best choice for the type of innovative effort. We do not make a methodological

contribution to the dynamic scheduling literature (i.e. our goal is not to develop new index

policies). Still, we analyze a key trade-off regarding the investment horizon and the choice

of program innovativeness, which is beyond the scope of the dynamic scheduling literature.

An important aspect of our study is that the structure of the return on investment

curves emerges endogenously. This occurs because of our characterization of commitment

time and innovation strategy. We also build upon previous normative work and explicitly

account for the allocation decision across NPD programs. In the latter part of our analysis

we employ performance landscapes to extend our basic model setup and obtain managerially

relevant insights.

4.3 Theoretical Foundations

In this section we formally define the concepts of innovative effort and NPD programs. To

begin, we provide a definition of a product and the performance it delivers to the firm.

We then characterize innovation and NPD as an attempt to alter product attributes and

improve product performance. Two concepts are central to our analysis: (i) NPD programs
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are more or less innovative depending on the degree of change created by the program. Each

type of innovative effort is characterized by its potential value, risk, and cost depending on

the degree of change (Kauffman et al. 2000). (ii) Managers commit to NPD programs for a

given amount of time. The time commitment reflects their belief that the firm will be able

to continue to operate according to the status quo. In the analysis that follows, our goal is

to identify the minimum set of assumptions that demonstrate why strategic buckets exist

and how they should be managed.

4.3.1 Products, NPD Programs, and Innovative Effort

Borrowing from the marketing and engineering design literatures, we define a product as a

bundle of technology and market attributes, ω = (x1, x2, ..., xN ). The attributes represent

key product parameters such as the core product architecture, component technologies,

design features, and manufacturing process specifications among others. We define a NPD

program as an initiative that strives to alter product attributes in order to enhance existing

product performance or create an altogether new product. With this definition in mind we

note that a NPD program begins with a product, ω, and creates a different product, ω′. In

doing so, the NPD program can be characterized by a change metric, d = |ω′ − ω|, which

defines the type of innovative effort pursued by the program (Kauffman et al. 2000, Kavadias

and Chao 2006). For any existing product ω and type of innovative effort d we define the

set of potential new product ideas as Nd(ω) = {ω′ : |ω′ − ω| ≤ d}. In our framework,

innovation is equivalent to stating that a NPD program changes product attributes over

time and drives performance improvement.

Product performance (net revenue generated by a product) is a function of the technol-

ogy and market attributes and is given by F (ω). For any NPD program, F (ω′) − F (ω) is

the performance change as a result of the innovative effort. We define a performance im-

provement function V (·) such that F (ω′)−F (ω) = V (d). Let V̂ (d) be the maximum poten-

tial performance improvement possible within Nd(ω) and note that V̂ (d) is non-decreasing

in d. This follows immediately from our definition of Nd(ω) because for any d1 < d2,

Nd1
(ω) ⊂ Nd2

(ω).
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In addition to the value created by NPD programs, innovative activity also involves risk.

We characterize risk based on the probability that a NPD program achieves the maximum

potential performance within Nd(ω). This probability is given by p(d), which is decreasing

in d. Finally, the cost associated with innovative effort that transforms ω to ω′ is also a

function of the degree of change sought by the NPD program. The cost of innovation is

given by c(d), which is increasing in d.

4.3.2 Incremental and Radical Innovation

Based on the above, for any d1 < d2 we say that d1 represents incremental innovation and

d2 represents radical innovation. Furthermore, based on the preceding arguments we note

the following: (i) |Nd1
(ω)| < |Nd2

(ω)|. The number of solutions possible through radical

innovation is greater than the number of solutions possible through incremental innovation.

(ii) V̂ (d1) ≤ V̂ (d2). The maximum potential performance for radical innovation is at least as

big as the maximum potential performance for incremental innovation. (iii) p(d1) > p(d2).

Radical innovation is more risky (has lower probability of success) compared to incremental

innovation. (iv) c(d1) < c(d2). The cost of incremental innovation is less than the cost of

radical innovation.

According to our definition, a NPD program may be more or less incremental or radical

depending on the number of attributes that are actually altered. Furthermore, our defini-

tion of innovative effort extends beyond the standard notion of technological change. Since

a product is defined as a collection of technology and market attributes, and a NPD pro-

gram alters d attributes, innovation takes on a spatial quality similar to the Schumpeterian

definition of innovation (“To produce means to combine forces and materials within our

reach... to produce other things... means to combine these materials and forces differently.”

Schumpeter 1934, page 65). Figure 11 is a schematic representation of incremental and

radical innovation.

4.4 An Analytic Model of NPD Program Performance

In this section we build an analytic model of NPD program performance and we show how

this performance leads to a tradeoff between incremental and radical innovation. To capture
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Figure 11: Incremental and radical innovation (adapted from Wheelwright and Clark
1992).

the dynamic nature of innovation we consider that the firm attempts to improve product

performance over a given period of time, t = 0, 1, 2, . . . ,m. As described in Section 3, a NPD

program exists with the express purpose of improving product performance and we assume

that performance is normalized such that F (ω) = 0 at t = 0. A number of questions

arise immediately, such as, how much performance improvement can the NPD program

realize within a given time frame, m? Should the firm attempt an incremental improvement

strategy (relatively minor benefits achieved with higher probability of success and lower cost)

or should the firm pursue efforts that attempt to radically improve performance (potentially

large benefits with lower probability of success and higher cost)?

4.4.1 Expected Performance for a Single NPD Program

The commitment to a particular type of innovative effort captures precisely the intuition

behind strategic buckets. For a given d ∈ {1, 2, . . . , N} the firm invests c(d) dollars per

period and improves product performance to V̂ (d) with probability p(d) in each period.2

2Our model of probabilistic search assumes that firm is searching for a target value of V̂ (d). In Appendix
B.2 we provide an alternative formulation based on a search for the highest performance possible within a
finite time interval.
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Of course, if the attempted NPD effort is not successful, product performance remains

unaltered. We can express the expected performance after n periods for an NPD program

of type d through the following recursive equation:

Jd
n = max

{

0,−c(d) + rp(d)V̂ (d) + r[1 − p(d)]Jd
n+1

}

(2)

Where r is the one-period discount factor. Because the firm commits to the NPD program

for m periods we have the boundary condition Jk
m = 0.3 The boundary condition reflects

the reality that managers terminate the NPD program and it no longer drives performance

improvement once the NPD program achieves V̂ (d). Working backwards, if we assume that

−c(d) < rp(d)V̂ (d), the expected performance in period m−1 is Jd
m−1 = −c(d)+rp(d)V̂ (d).

Similarly, the expected performance in period m−2 is Jd
m−2 =

[

−c(d)+rp(d)V̂ (d)
][

1+r
(

1−

p(d)
)]

. Continuing in this fashion the expected performance for an m period commitment

(considered at t = 0) to an NPD initiative of type d is

Jd
0 =

[

−c(d) + rp(d)V̂ (d)
] 1 − rm[1 − p(d)]m

1 − r[1 − p(d)]
(3)

For a given type of innovative effort, Equation 3 defines the expected return curve for

the NPD program as a function of the time commitment, m. The following proposition

describes the behavior of the NPD program return curves (technical details and proofs for

all propositions can be found in the Appendix).

Proposition 1. Behavior of NPD Program Return Curves. Jd
0 is increasing and concave in

m. Furthermore, for d1 < d2, Jd1

0 > Jd2

0 for m = 1 provided that p(d1)V̂ (d1) > p(d2)V̂ (d2)

and c(d1) < c(d2). Additionally, there exist threshold values p̄ and p such that p(d1) > p̄ >

p > p(d2) ⇒ Jd1

0 < Jd2

0 as m → ∞.

Figure 12 depicts a schematic representation of Proposition 1. The structure of the

return curves Jd1

0 and Jd2

0 leads to a unique crossing time, m̄, which allows managers to

3The assumption regarding an m period commitment reflects our effort to model the managerial deci-
sions we observed in practice. In the event that we allow for period-by-period switching between types of
innovation, the simple dynamic program presented here results in a two-armed bandit which we solve in
Appendix A.3. For a complete discussion on the multi-armed bandit, the reader is referred to Kavadias and
Loch 2003 or the classic two-armed bandit proof in Gittins 1989.
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Figure 12: Schematic representation of proposition 1.

evaluate different types of innovative effort. If the firm commits to the NPD program for

m < m̄ periods, then incremental innovation is the best choice. Conversely, if the firm is

willing to commit to the NPD program for m > m̄ periods then radical innovation is the

best choice. An alternative interpretation highlights a different side of the commitment

decision: if management holds the belief that the firm will only continue to operate for an

amount of time less than the crossing time, radical innovation does not make sense because

radical innovation requires at least m̄ periods to deliver higher payoff relative to incremental

innovation. In contrast, if management holds the belief that the firm can continue to operate

longer than the crossing time, radical innovation becomes more attractive. Given these

results, we see that the importance of protecting resources for an interval of time depends

not only on the parameters of the alternative types of innovation, but also on the belief that

management holds with respect to viability of the firm (identified through the commitment

time).

Having described the structure of the NPD program return curves, we now turn our

attention to a comparative statics analysis of m̄ in order to understand the factors that

make incremental or radical innovation more favorable.

Proposition 2. Comparative Statics Analysis for m̄. The crossing time, m̄, is higher when:

(i) V̂ (d1) is higher, (ii) p(d1) is higher (iii) c(d1) is lower, (iv) V̂ (d2) is lower, (v) p(d2) is

lower, (vi) c(d2) is higher.
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Higher m̄ is synonymous with more favorable circumstances for incremental innovation

since the time interval during which incremental innovation dominates radical innovation

is longer (from the viewpoint of expected performance). Thus, incremental innovation

becomes more favorable when V̂ (·) or p(·) is higher and c(·) is lower. The former make

innovative activity attractive by increasing the expected value of a NPD program while the

latter makes innovative activity attractive by lowering the cost of a NPD program. The

effect due to cost is straightforward. However, the effect due to expected value
(

p(·)V̂ (·)
)

is

more nuanced because it includes a tradeoff: higher d implies lower p(d) and higher V̂ (d).

4.4.2 Can the Firm Commit to the NPD Program?

The preceding analysis is based on the fact that the firm makes an m period commitment

to the NPD program. In reality there are firm level factors that influence whether or not

the firm is able to commit to the NPD program for a given interval of time. The abil-

ity to commit to a NPD program is based on the belief that management holds regarding

the ability of the firm to continue to generate adequate performance. From a practical

standpoint, this observation echoes managerial concerns such as, “How long will it take

for innovation efforts to pay off?” Theoretically the question translates to, “Do managers

believe that the firm will continue to operate under the status-quo beyond the interval

[0, m̄]?” Unfortunately, the ability to generate adequate performance may be beyond the

control of managers. The technology and market environment that defines product perfor-

mance may be subject to disruptions (e.g. dramatic technological leaps or shifts in customer

preferences). Disruptions alter the underlying relationship between product attributes and

product performance and therefore alter the expected performance of any NPD program

meant to improve a product. In this section we extend the previous analysis to account for

the fact that the firm may experience disruptions in NPD program performance.

Let f(m) = Jd1

0 −Jd2

0 represent the difference between incremental and radical NPD pro-

gram performance for a given time commitment, m. Note that when f(m) > 0
(

f(m) < 0
)

incremental (radical) innovation is the preferred type of innovation for the NPD program.
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When the technology and market environment is subject to potential disruptions, the un-

derlying relationship between product attributes is altered and product performance is

negatively affected. We assume that a technology or market disruption is defined by a

renewal process so that when a disruption occurs the firm’s performance is relegated to the

performance at t = 0 and the firm faces the same decision problem once more.4 Let ∆J

represent the difference between incremental and radical NPD program performance for the

renewal process defined by technological and market disruptions. Suppose that a disruption

occurs after t periods with probability q. Letting r be the one-period discount factor, we

can write ∆J = q[f(t) + rt∆J ] + (1 − q)f(m), which simplifies to

∆J =
q

1 − qrt
f(t) +

1 − q

1 − qrt
f(m) (4)

When ∆J > 0 (∆J < 0), incremental (radical) innovation is the preferred type of innovation

for the NPD program. The choice depends on the probability of technological and market

disruptions.

Proposition 3. Technological and Market Disruptions. For t < m̄ < m, ∆J is a increasing

function of q. Furthermore, there exists a q̄ such that q < q̄ ⇒ ∆J < 0 and q > q̄ ⇒ ∆J > 0.

Proposition 3 states that as the probability of an imminent technology or market disrup-

tion increases, incremental innovation becomes more attractive because it allows the firm to

reap quick rewards before another disruption occurs. Conversely, as the probability of tech-

nology or market disruption decreases radical innovation becomes more attractive because

the effort should pay off if given enough time. An alternative interpretation is that an envi-

ronment defined by a turbulent phase (i.e. an environment in which customer preferences

are not well defined) drives firms to seek incremental changes. Note, that an incremental

strategy does not imply homogeneity with respect to the actual changes in technology or

4We recognize that the firm’s decision problem may not be identical after a disruption. For example,
competition intensity that renders the firm extinct is an extreme form of technological disruption. Never-
theless, our objective is to describe the effects of disruption frequency, which is an appropriate proxy for
environmental instability.
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market attributes. Instead, different firms may use different technologies or conquer differ-

ent market segments so long as their innovative efforts remain closely associated with their

current product offerings. It is important to note that m̄ depends on the attributes that

define an individual product, while q is a firm level parameter common across all products

in the portfolio. The importance of this observation will become obvious once we extend

our analysis to the portfolio level.

4.5 An Evolutionary Model of NPD Program Performance

The previous framework is limited by a number of realistic considerations that merit dis-

cussion. First, for even a small number of possible outcomes and periods, it is difficult, if

not impossible, for managers to possess the computational capability to determine the best

choice of strategic buckets. Previous work on the optimal balance between incremental and

radical innovation highlights this fact and proposes solution algorithms for m > 1 (Macready

and Wolpert 1995). Unfortunately, it is well documented that algorithmic approaches are

not used in practice (Loch et al. 2001, Shane and Ulrich 2004). Second, the analysis in

the previous section is informed by a very specific structure for the performance V̂ (d) and

the probability p(d). In reality, there is reason to believe that performance functions are

extremely complex as multiple technology and market attributes interact in significant and

unknown ways resulting in non-uniform values for V̂ (d) and p(d). This is particularly so

at a strategic level of decision making, where a multitude of factors must be taken into

account.

In this section we extend the analytic model presented above to account for the fact

that managers do not have the ability to optimize an m period commitment decision at

t = 0 and the performance functions they face are complex. Based on these observation we

take an evolutionary perspective on this problem (Nelson and Winter 1982). That is to say,

NPD program performance evolves over time based on variation, selection, and retention

mechanisms. Evolutionary perspectives have recently been advocated in managerial settings

characterized by technological innovation and change (Tushman and Anderson 1986, Stuart

and Podolny 1996, Teece et al. 1997, Loch and Kavadias 2007).
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4.5.1 A Complex Performance Landscape

Recall that we define a product as ω = (x1, x2, ..., xN ) and product performance as a function

of the technology and market attributes given by F (ω). In order to specify our model and

allow for further analysis assuming that F (·) is a complex function, we employ the NK model

of tunable fitness landscapes (Kauffman and Levin 1987, Kauffman 1993). A number of

researchers have employed complex performance landscapes to model managerial problems

such as organizational design and evolution (Levinthal 1997, Rivkin and Siggelkow 2003,

Siggelkow and Levinthal 2003, Ethiraj and Levinthal 2004, Siggelkow and Rivkin 2005),

problem solving (Gavetti and Levinthal 2000, Rivkin 2000, Sommer and Loch 2004, Mihm

et al. 2003), and technological innovation (Kauffman et al. 2000, Fleming and Sorenson

2001, Sorenson 2002, Fleming and Sorenson 2004). The majority of these studies employ

the NK formulation to model a complex performance landscape and we follow along these

lines.

Let xj ∈ {1, 2, . . . , S} and assume that each attribute j contributes individually to the

overall product performance. The performance contribution of attribute xj is not necessarily

independent from the other performance determinants; rather, it may depend on K ∈

{0, 1, . . . , N − 1} other attributes through a function fj(xj , xj1 , xj2, . . . , xjK
).5 The number

of interactions, K, is a modeling convention that proxies the underlying complexity of the

technology-market setting in which the firm operates. Interaction complexity is a result of,

“a large number of parts that interact in non-simple ways [such that] given the properties of

the parts and the laws of their interactions, it is not a trivial matter to infer the properties

of the whole.” (Simon 1969, p. 195).

We assume that each fj is a random draw from a U(0, 1) distribution to account for

the fact that managers do not know the payoff structure for the performance landscape.

Product performance is the average of the performance contributions from each attribute:

F (ω) = 1/N
∑N

j=1 fj. Two structural properties merit discussion here. First, the fact that

5Without loss of generality, we assume that the performance contribution of each attribute depends on the
K successive attributes. For example, if K = 3 then x1 contributes f1(x1, x2, x3, x4) to product performance.
If j + K > N the interaction vector is treated as circular (Levinthal 1997).
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each fj is a random draw from a U(0, 1) is not restrictive. Research on complex performance

landscapes has shown that the performance landscapes retain their form under a wide

variety of distributions for the fj (Kauffman 1993, Ethiraj and Levinthal 2004, Sommer

and Loch 2004). Second, we model product performance as the average of the performance

contributions from each attribute. We adopt this convention so that the system size (N)

does not drive our results.

Aligned with the theoretic foundation established in Section 3, we now adopt an evolu-

tionary view of innovation and we simulate the behavior of NPD programs over time. To

initialize our simulation (t = 0) we randomly define a product, ω = (x1, x2, . . . , xN ). In

each period (t = 1, 2, 3, . . .), a NPD program of type d drives a change in product attributes.

We implement this change by allowing the NPD program to randomly search for one new

product configuration, ω′, within Nd(ω). If F (ω′) > F (ω) the new product configuration

is adopted. This process of variation, selection, and retention is repeated in each period.

We compare different types of innovative effort by simulating the performance of an NPD

program of type d (averaging over 500 runs in each landscape and 100 landscapes). For

each experiment we let N = 15 and S = 2 and we vary K and d. To conserve space, we do

not show results for every value of K or d (please see Appendix B.4 for details regarding

the full experimental design).

We characterize innovative effort as a random search within Nd(ω) to highlight the

fact that managers cannot optimize the NPV of an m period commitment in a complex

performance landscape. Alternatively, we could allow the incremental NPD programs to

explore more than one ω′ within Nd(ω) reflecting the lower per solution cost of incremental

innovation. Any such mechanism would improve the performance of incremental NPD

programs relative to radical NPD programs without altering the qualitative insights of

our study. Furthermore, we focus our analysis on expected performance of a NPD program

without including costs in our simulation. Our results regarding NPD program performance

are robust despite the exclusion of costs in the simulation (for a discussion on the effects of

cost, please see Appendix B.4).
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Figure 13: Average performance over time for incremental and radical NPD programs.

4.5.2 NPD Program Performance

Figures 13(a) and 13(b) illustrate how complexity impacts NPD program performance (for

K = 2 and K = 6 respectively). For a given level of K, incremental NPD programs achieve

short-term performance while radical NPD programs achieve long-term performance. Once

again, this gives rise to a crossing time and defines a window of time during which radical

innovation under performs on average. More importantly, the crossing time occurs earlier

as K increases.

The existence of a crossing time is a direct outcome of the “rugged” nature of the perfor-

mance functions in environments with significant interaction complexity (Kauffman 1993).

In complex technology-market environments, incremental NPD programs offer an initial

advantage because they improve performance with higher probability relative to radical

NPD programs. Unfortunately, the advantage is short-lived because incremental efforts are

not able to benefit from a holistic approach (Ulrich and Ellison 1998) and they get trapped

in local performance optima (lower V̂ ). Radical NPD efforts take more time to improve

performance. The time inefficiency of radical NPD programs is due to the fact that they

seek riskier solutions based on drastic product alterations. However, the holistic approach

53



C o m p l e x i t y ( K )
C rossi ngTi me( m) d = 1d = 2d = 3

N o t e : A v e r a g e i s o v e r 5 0 0 r u n s p e r l a n d s c a p e a n d 1 0 0 l a n d s c a p e s . F o r a l l e x p e r i m e n t s ,N = 1 5 a n d S = 2 . C r o s s i n g t i m e s f o r d = 1 , d = 2 , a n d d = 3 a r e r e l a t i v e t o d = 1 5 .
Figure 14: Crossing time (m̄) as a function of complexity (K) for different values of d.

and perspective of radical NPD programs (expressed through the number of potential so-

lutions in Nd(ω)) allows them to escape local optima. Figure 13 shows that interaction

complexity increases the attractiveness of radical NPD programs. In the absence of com-

plexity, there is no need for radical innovation. Thus, our simulation identifies performance

function complexity as another feature that drives the value of radical innovation. In a

complex environment, the value of radical innovation is realized faster and the crossing

time is reduced.

The preceding analysis was based on the extreme cases of d = 1 and d = 15. Figure

14 depicts the crossing time (m̄) as a function of complexity (K) for different values of d.

For a given d the crossing time is a decreasing function of complexity. Thus, our results are

robust with respect to d. Of course, for a given level of complexity, the crossing time is an

increasing function of d because higher d implies more radical innovative effort. Note that

the extreme case in which all NPD programs are defined by d = 15 would result in m̄ → ∞.

Although average performance is an important metric, it is also insightful to consider

the issue of risk (proxied through variance of NPD program performance). Figure 15(a)

and 15(b) show the variance of NPD program performance as a function of time for envi-

ronments with no complexity and high complexity (K = 0 and K = 6 respectively). In the
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Figure 15: Variance over time for incremental and radical NPD programs.

absence of complexity, incremental NPD programs reduce risk immediately as the prod-

uct configuration converges to the globally optimal configuration (note that the variance

for incremental NPD programs is zero after approximately 100 periods). However, in a

complex environment, incremental NPD programs converge to multiple local optima and

thus do not reduce variance as quickly as radical NPD programs. The radical programs

continue to reduce variance over time, as they are able to escape locally optimal product

configurations and further improve performance. Thus, when risk is taken into account,

radical innovation delivers a secondary benefit in the presence of complexity - it reduces

NPD program risk. The observation is of significant managerial value because it illustrates

an environmental aspect of risk in addition to the typical considerations. Previous research

stresses that managers should be aware of individual program risk (due to the probability

of success in any given period). We extend the consideration of risk and recognize the effect

of time and interaction complexity on NPD program risk. Of course, a radical innovation

strategy reduces risk in the long-term if and only if the program continues to operate under

the same environmental conditions in the future. We examine this caveat in the section

that follows.
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4.5.3 Can the Firm Commit to the NPD Program?

Our base-case results reveal the critical role of time when evaluating the effectiveness of a

NPD program. The option to pursue different degrees of incremental or radical innovation

creates tension with respect to the amount of time that it takes to fully realize the benefits

of a particular NPD program. The fact that radical NPD programs take longer to deliver

results poses an additional challenge to managers who must ensure that the firm remains

viable during this critical time window. As with the analytic model of Section 4, we now turn

our attention towards potential disruptions to the technological and market environment.

Environmental instability represents the likelihood of structural changes in the under-

lying program performance functions. Low (high) stability implies that the probability

that the firm faces the same performance function in subsequent periods is low (high). In

practice, several exogenous factors may reshape the performance functions. The technology

management literature highlights the effects of competence destroying changes that rede-

fine an industry (Tushman and Anderson 1986). Another possibility is the periodic shift

in market preferences, a phenomenon that Christensen observed in the hard-disk industry

(Christensen et al. 1998). The landscape may also change as a dominant design emerges

in an industry and the competitive dimensions are altered (Henderson and Clark 1990,

Abernathy 1994), or because governmental regulation resets the rules of competition. An

example of the latter is the Bayh- Dole Act passed in 1980, which allowed the commer-

cialization of federally funded university research. This legislation increased the creation of

R&D consortia and immediately redefined the rules of competition (Thursby and Thursby

2002).

Let the likelihood s determine the performance function F (·) in period t+1 conditioned

on the performance function in period t as follows:

F (ω|~f) =











1/N
∑N

j=1 fj w.p. s

1/N
∑N

j=1 f ′

j w.p. 1 − s
(5)

where ~f is the vector of attribute contribution functions in period t. Thus, we model envi-

ronmental disruptions by changing the performance functions that firms face. A disruption
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Figure 16: Average performance over time in the presence of technological or market
disruption.

in our setting does not alter the firm’s product configuration; rather the performance con-

tribution of each attribute, fj, is randomly redefined by a new U(0, 1) random number.

However, we maintain the same level of complexity in order to isolate the effects of en-

vironmental instability. The simulation proceeds according to the same mechanics as the

base-case with the exception that a disruption occurs in every period with probability (1−s).

Thus, we allow the time of disruption to be a random variable. Figure 16(a) depicts the

average performance for K = 4 and s = 0.9990 (high complexity and high stability).6 In

this case, radical innovation dominates after the crossing time, although the steady-state

performance is dampened due to the lack of environmental stability. Figure 16(b) shows

the average NPD program performance over time when K = 4 and s = 0.9750 (high com-

plexity and low stability). Despite the presence of complexity, low stability undermines the

effectiveness of a radical innovation strategy because radical NPD programs do not have

time to improve performance between disruptions.

The result bears managerial significance since it alludes to the notion of “turbulence”

6It is worth pointing out that “high” or “low” stability is a relative measure. Stability can be interpreted
as the number of disruptions that take place within an interval of time. For example, s = 0.80 (1−s = 0.20)
implies that a disruption will occur in 20% of the periods. Over an interval that contains 100 time periods,
this implies that a disruption will occur on average every 5 periods.
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in an environment (Ansoff 1979, Mintzberg 1979 and 1993, Eisenhardt 1989, Brown and

Eisenhardt 1998, Rivkin and Siggelkow 2005). Utterback (1994) characterizes different

phases of industrial evolution (fluid, transitional, and specific) and he emphasizes that the

rate of technological change is high during the pre dominant design phase (the “fluid” phase).

Christensen et al. (2002) also address the fact that different strategies are successful early

versus later in the industry lifecycle - the former being defined by high complexity while

the latter is defined by low complexity. Our analysis of stability adds to these insights and

highlights the fact that managers must assess the level of environmental instability when

determining innovation strategy. The critical issue is whether the firm has enough time to

allow radical NPD programs to achieve superior performance relative to incremental NPD

programs. Once again, the crossing time is of critical importance when determining an

innovation strategy.

Analysis of risk (variance in performance) under environmental instability offers a dif-

ferent insight compared to previous results. Figure 17(a) and 17(b) show the variance of

NPD program performance as a function of time in a complex environment (K = 4) with

high stability (s = 0.9990) and low stability (s = 0.9750) respectively. In the presence of

complexity, a higher probability of technological and market disruption creates additional

risk for both incremental and radical NPD programs. Despite the environmental instabil-

ity, variance is still lower for radical NPD programs because of their ability to escape local

optima.

Conventional wisdom states that incremental innovation efforts deliver low value and

low risk while radical innovation efforts deliver high value and high risk. The insights from

Figure 16(b) and Figure 17(b) challenge this wisdom. In an environment that is character-

ized by high instability, incremental innovation (d = 1) delivers higher average performance

and higher variance relative to radical innovation (d = 15). Thus, environmental complexity

coupled with environmental instability reverses the commonly accepted value/risk profiles

of incremental and radical innovation.
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Figure 17: Variance over time in the presence of technological or market disruption.

4.6 Extension to a Portfolio of NPD Programs

To this point we have considered the value generated by a single NPD program both from

an analytic and evolutionary lens. We now build upon the analyses of Sections 4 and 5 to

discuss the performance of a portfolio that consists of M > 1 NPD programs, each geared

towards improving a particular product. At the NPD portfolio level, each NPD program

will be defined by a particular type of innovative effort. A strategic bucket is a collection of

NPD programs that are similar with respect to the type of innovative effort. We will show

that the simple structure defined in this manuscript leads to a NPD portfolio that is more

or less incremental or radical depending on the environment in which the firm operates.

Furthermore, this observation is true whether one considers the rational analytic model

described in Section 4 or the evolutionary simulation described in Section 5.

There is no reason to believe that every NPD program in the portfolio will have the same

expected return curve. In fact, since the NPD programs each target a different product, and

each product is defined by a different set of technology and market attributes, there is strong

evidence that the NPD program return functions will be distinct. Based on this observation,

the NPD portfolio problem is defined by a set of crossing times {m̄1, m̄2, ..., m̄M} and a

choice of the type of innovation (incremental or radical) for each of the M programs. Once
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again, potential disruptions to the technology and market environment dictate the amount

of time available to the firm. Based on our previous discussion, our intuition is that if the

amount of time available is short, the NPD portfolio balance will shift towards incremental

innovation whereas if the amount of time available is long, the balance will shift towards

radical innovation.

4.6.1 The Analytic Reason to “Balance” Strategic Buckets

Building upon our analytic model, let fi(m) be the difference between incremental and

radical NPD program performance for the ith NPD program in the portfolio. A simple

example highlights the shifting balance in strategic buckets for a portfolio with M = 3

NPD Programs (Figure 18). Suppose a disruption occurs at time mL with probability q

(with probability 1− q there is no disruption). When q = 1 we have f1(m) > 0, f2(m) < 0,

and f3(m) > 0. In this case, program 1 should pursue incremental innovation, program 2

radical innovation, and program 3 incremental innovation. The resulting strategic buckets

policy is 33% radical (66% incremental). Conversely, suppose that a disruption occurs

at time mH with probability q (again, with probability 1 − q there is no disruption). In

this case, when q = 1 we have f1(m) < 0, f2(m) < 0, and f3(m) > 0. Program 1

should pursue radical innovation, program 2 radical innovation, and program 3 incremental

innovation. The resulting strategic buckets policy is 66% radical (33% incremental). This

simple example highlights the fact that different degrees of environmental instability lead

to different “balance” in the NPD portfolio. In fact, for any q ∈ (0, 1), as q becomes lower

(higher), the NPD portfolio should include more radical (incremental) innovation efforts.

Of course, if q = 0 there is no disruption and the best choice is 100% radical programs in

the NPD portfolio. As the probability of a technological or market disruption increases,

the “balance” shifts towards incremental innovation in the NPD portfolio because radical

innovation does not have time to deliver results.

4.6.2 The Evolutionary Reason to “Balance” Strategic Buckets

Based on the results from our evolutionary model, we now present a simple example that

explains the balance between incremental and radical innovation in the NPD portfolio. Each
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Figure 18: A example of the shifting balance in the NPD portfolio.

NPD program is geared towards improving a product and the performance of each product

may be defined by a different level of complexity. With this in mind, each NPD program in

the portfolio will have a different crossing time. Figure 19 depicts a sample NPD portfolio

with M = 3 NPD programs. The left column depicts an environment with relatively high

stability (s = 0.9990) while the right column depicts an environment with relatively low

stability (s = 0.9750).

When the firm is operating in an environment with high stability (s = 0.9990), the

best strategy depends on the commitment time. Given a long commitment time, the best

strategy is that program 1 pursue incremental innovation while programs 2 and 3 pursue

radical innovation. This results in a NPD portfolio that is 66% radical (33% incremental).

Conversely, when the firm is operating in an environment defined by low stability (s =
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Figure 19: A example of the shifting balance in the NPD portfolio.

0.9750), the best strategy regardless of the commitment time is incremental innovation

for all of the NPD programs. This results in a NPD portfolio that is 0% radical (100%

incremental).

Once again, different degrees of environmental instability lead to different “balance”

in the NPD portfolio. Based on these arguments, we can safely conjecture that as the

probability of technology or market disruptions becomes lower (higher), the NPD portfolio

should include more radical (incremental) innovation efforts. As with our analytic model,

if s = 1.000 the environment is fully stable and the best choice is a NPD portfolio that

is 100% radical. As the probability of a technological or market disruption increases, the

“balance” shifts towards incremental innovation in the NPD portfolio.
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4.7 Conclusions and Implications

To date, NPD portfolio considerations at the strategic level are for the most part qualitative.

The need for a solid theoretical framework is imperative because NPD portfolio decisions

serve to execute innovation strategy. We offer a rigorous treatment of the long proposed

method of dividing the NPD portfolio into innovation-focused strategic buckets. The prac-

titioner literature describes multiple cases of successful implementation and highlights the

importance of protecting resources. Unfortunately, specifics are not offered aside from a

consistently repeated suggestion to “balance” the NPD portfolio. Our analysis reveals a

robust structure for the strategic buckets problem - the existence of a crossing time that

defines the relative value of incremental and radical innovation.

4.7.1 When and How to Use Strategic Buckets

Effective use of strategic buckets requires a deeper understanding regarding two factors

that confound decision-making: environmental complexity and environmental instability.

Complexity between performance attributes and instability in the performance landscape

both make the performance function more difficult to understand in the eyes of the deci-

sion maker. However, the former increases the value of radical innovation, while the latter

increases the value of incremental innovation. The rational behind these effects is of signif-

icant managerial value. Higher complexity implies a performance landscape with multiple

local performance peaks where incremental innovation strategies may get trapped. On the

other hand, high instability reduces the critical time necessary to achieve high value from

radical innovation efforts. When complexity and instability are present together, we find

that common notions of risk and reward are reversed: incremental innovation delivers higher

performance and higher risk relative to radical innovation.

4.7.2 Unraveling Complexity and Coping with Bounded Rationality

Managers can benefit form clearly identifying a set of key design, technology, and market

variables that affect the overall NPD program performance function even if their exact per-

formance contribution is not known. Identifying key product attributes can help managers
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decipher the nature of the technological and market environment and assess whether the

program performance functions are governed by low or high interaction complexity.

One of the primary challenges to understanding complexity and its effects on NPD

program performance is that critical technology and market attributes are often qualitative

and difficult to operationalize. In order to grasp the complexity of the technological and

market environment, decision-makers must unravel dependencies between the attributes

that determine product performance. The Design Structure Matrix (DSM) proposed by

Eppinger and extended by other researchers (Eppinger et al. 1994, Smith and Eppinger

1997, Sosa et al. 2004 among many others) is a tool that has predominantly been used

by designers to map dependencies between design attributes. We posit that the same

thinking can be generalized to performance dependencies between technological and market

attributes of a product. It has already been shown that the DSM can be used in various

managerial decision contexts. Sosa et al. (2004) offer a good example of the DSM applied

to organizational dependencies and Siggelkow (2002) uses a longitudinal study to map

attributes of organizational design and understand organizational complexity.

Although the DSM can help managers decipher the complexity of the environment, ques-

tions still remain with respect to the performance functions for each of the technology and

market attributes, and the extent to which these performance functions change over time.

Various market research techniques such as conjoint analysis or choice modeling can be used

to uncover the evolution of performance functions (Ben-Akiva and Lerman 1985, McFadden

1986, Green and Srinivasan 1990, Ofek and Srinivasan 2002). Conjoint analysis and choice

modeling are experimental methodologies that allow managers to predict the performance

of new products by asking potential customers to make choices regarding specific config-

urations of technology and market variables that define the product. In conjunction with

traditional market research methods, the use of these tools on a periodic basis can help

managers understand how the performance functions change over time. This exercise goes

a long way towards helping managers understand the notion of environmental instability.

Our study of strategic buckets coupled with methods that shed light on environmental

complexity and stability can form the basis for more effective NPD portfolio strategy. We
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view our work as an important step that can help academics and practitioners develop a

better understanding of portfolio decisions at a strategic level. Since our perspective is rel-

atively high-level we make assumptions that capture the essence of NPD program behavior

without delving into details that lead to burdensome derivations without additional insights.

Still, future research can explore different structures of interaction between technology and

market variables (Rivkin and Siggelkow 2006), as well as richer search strategies that can

incorporate more complex optimization techniques for incremental innovation programs.

65



CHAPTER V

BUDGET CREATION AND CONTROL

5.1 Introduction

As discussed throughout this thesis, strategy formulation, resource allocation, and program

implementation occur in a top-down hierarchical manner within the firm (Loch and Tapper

2002). Decisions and rules outlined by senior executives define the operating environment

for subordinate levels of decision-making (Anderson and Joglekar 2005, Kavadias and Chao

2006). Consider the following example typical of any large corporation: senior executives

of the firm set broad goals regarding corporate strategy (e.g., five years from today, 30%

of revenue will be derived from new products; over the next year, costs will be reduced by

5%). Business unit managers are charged with the responsibility to transform that strat-

egy to a reality.1 To do so, they make funding decisions with respect to broad programs

within the portfolio (e.g., cut funding from next generation technological development and

increase funding for product line extensions; or increase funding for manufacturing process

improvements and decrease funding for radical NPD initiatives).

The hierarchical nature of the resource allocation and NPD portfolio problem implies

that decisions span various organizational levels and highlights the importance of organi-

zation design mechanisms for effective management. Organization design mechanisms are

rules, controls, or parameters that define the means by which organizational work gets done

(Galbraith 1977, Mintzberg 1979, Ouchi 1979, Eisenhardt 1985). In the context of NPD,

organization design mechanisms take on a particularly important role, as innovation and

NPD are often critical to a firms competitive advantage (Wheelwright and Clark 1992).

Recent work in NPD planning theory highlights this fact and stresses the need for a deeper

understanding of the impact that organizational structure has on NPD decisions (Anderson

1We use the term “business unit” to refer to any operating unit, division, or group within a firm that has
profit and loss responsibility but reports to a senior executive of the firm.
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and Joglekar 2005).

In practice, firms seem to follow various policies with respect to funding and control

routines for NPD budgets (Christensen 1996). The hierarchical structure of the resource

allocation and NPD portfolio problem, the concomitant existence of organization design

mechanisms, and the fact that practice varies so widely with respect to those design mech-

anisms prompt us to ask the following questions: what types of organization design mecha-

nisms drive effective resource allocation and NPD portfolio strategy? How does the choice

of organization design mechanism influence the effort invested in improving an existing

product versus effort aimed at developing an altogether new product? To shed light on

these questions we examine organization design mechanisms that impose varying degrees

and types of control on the manager responsible for resource allocation decisions. In par-

ticular, we study the source of a business units NPD resources as well as the monitoring

(control) mechanisms that achieve effective resource allocation.

Consistent with extant theory, the objective of our model is net value maximization.

Our results can be interpreted from the viewpoint of the business unit manager and the

senior manager that is responsible for choosing the design mechanism. We find that higher

autonomy in terms of how the NPD budget is funded drives higher resource expenditure

towards improving an existing product. In contrast, the primary force that drives resource

expenditure towards developing the new product is the type of budget control used. We find

that effort aimed at developing the new product is strictly higher when the manager is forced

to account for budget overruns throughout the development cycle as opposed to only at the

end of the development cycle. In addition, we are able to show that the balance of resources

across programs exhibits a gradual shift over time from incremental efforts to radical efforts.

The shift is characterized by a switching point, which is delayed when the business unit has

more autonomy. Thus, from a portfolio perspective we conclude that autonomy may lead

to a NPD portfolio that is biased towards incremental projects. This insight challenges

existing claims regarding autonomy, creativity, and innovation. Finally, we characterize

situations in which a higher marginal cost of capital drives higher resource expenditure for

existing product improvement. This occurs when a manager is given autonomy in terms of
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budget creation and there is sufficient time remaining in the development cycle to reap the

benefits from the increase in effort.

The remainder of this chapter is structured as follows: in Section 2 we review the related

literature, particularly in the domains of organization design and new product development.

In Section 3 we introduce our model. In Sections 4 and 5 we discuss the results and Section

6 we draw conclusions and discuss the theoretical and managerial implications of our work.

5.2 Related Literature

There is an extensive literature on organization design theory that focuses on the link

between organization structure and performance (Galbraith 1977, Mintzberg 1979, Ouchi

1979, Eisenhardt 1985, Tushman and OReilly 1996). Much of this work is aimed at under-

standing design mechanisms that dictate the physical structure of work teams or business

units (e.g., matrix, functional, or decentralized structure). Although structure is an impor-

tant determinant of success, organization theorists note that control is also an important

organization design mechanism (Ouchi 1979, Eisenhardt 1985). Control refers to monitoring

and evaluation of behavior or processes. Eisenhardt (1985) succinctly states that, Control

is an important, if sometimes neglected, facet of organization design. (Eisenhardt 1985, p.

134). Two decades of scholarly work in organization design takes note of this observation

(Mintzberg 1980, Lewin and Minton 1986, Barley and Kunda 1992, Ghoshal et al. 1994,

Kumar and Seth 1998, Levinthal and Warglien 1999, Bate et al. 2000). An important

theme common to this body of research is the degree and nature of autonomy employed by

the various organization design mechanisms.

Autonomy is defined as, the quality or state of being independent, free, and self-directing;

independence in the capacity of a part for growth, reactivity, or responsiveness (Merriam-

Webster). In the context of an organization, higher degree of autonomy is associated with

increased flexibility, creativity, and empowerment (Kirkman and Rosen 1999). Unfortu-

nately the benefits do not come without costs. When operating units are given autonomy,

senior managers lose control over the decisions made within a business unit and they are

subject to the outcomes resulting from these decisions. Autonomous business units may
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also become entrenched and may not see themselves as part of a greater whole (Wheelwright

and Clark 1992). The extent of control imposed or autonomy delegated to a business unit

is an important issue in organization design, as autonomy is often used as an incentive to

encourage creativity and innovation (Zajac 1991, Boudreau 2004, Shane and Ulrich 2004).

A number of researchers have studied the impact of autonomy and control on the new

product development process. Cohen, Eliashberg, and Ho (2000) study the impact of prede-

termined NPD metrics such as time to market, quality, and cost. Tatikonda and Rosenthal

(2000) study project management methods that focus on formality, autonomy, and flexi-

bility. Olsen et al. (1995) study the effects of organization design mechanisms on NPD

project effectiveness. Gerwin and Moffat (1997) study the role of autonomy in concurrent

engineering. Bonner et al. (2002) study the impact of upper management control in new

product development projects. Souder (1974) studies the effect of autonomy in an applied

R&D laboratory. Hoskisson and Hitt (1988) and Hoskisson et al. (1993) study managerial

control systems and incentives for NPD in large multiproduct firms. Collectively, this body

of work finds that a higher degree of autonomy results in higher NPD effectiveness (mea-

sured as technical performance and quality, lower product development costs, and shorter

NPD cycle times). The underlying reason for this finding is that higher autonomy gives

the project team the flexibility needed to create solutions when obstacles are encountered.

However, an important caveat is that extant research on autonomy and NPD project man-

agement uses the individual project as a unit of analysis. A focus on the individual project

ignores the reality that multiple projects must be managed simultaneously in a portfolio of

NPD programs. The portfolio imposes interplay between NPD programs as they compete

for scarce resources. We build upon previous work by extending the theory to a higher

level of responsibility within the organization. Namely, we study how organization design

mechanisms and autonomy impact resource allocation and NPD portfolio strategy.

There is extensive literature in strategy and new product development that highlights

the importance of resource allocation for effective NPD (Bower 1986, Rousell et al. 1991,

Wheelwright and Clark 1992, Cooper et al. 1998, Kavadias and Loch 2003 and references

therein). With few exceptions, the existing research on NPD resource allocation overlooks
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the organizational elements that play an important role in defining success versus failure. It

primarily focuses on net value maximization assuming that the decision-maker operates with

a tight budget constraint (Kavadias and Loch 2003, Kavadias and Chao 2006). Practice

defies these modeling assumptions since managers may or may not have the flexibility

to request additional resources, particularly at the business unit level of decision-making

(Pollack and Zeckhauser 1996). Along similar lines, the performance of the business unit

may be monitored based on frequent milestone meetings or at the end of a development

project (Loch and Terwiesch 1998).

Our efforts enrich the NPD portfolio literature along three dimensions. First, we explic-

itly consider the fact that organization hierarchy forces business unit managers to operate

in a constrained environment with respect to how things are done. Second, we explicitly

account for the realistic notion that NPD budgets are not always exogenously determined;

rather they may be endogenously determined by the ability to generate revenue. Finally, we

consider the fact that managers may tap resources that are external to the firm (e.g. finan-

cial markets) to remedy short-term cash constraints. We also contribute to the organization

design literature by developing a normative study in which we model and analyze different

control and autonomy mechanisms within the context of innovation. Since we include or-

ganization design mechanisms and resource allocation decisions in one model we are able

to uncover the interaction between two important processes that impact firm competitive

advantage.

5.3 A Model of Organization Design and Resource Allocation

In this section we introduce a dynamic model of resource allocation and NPD portfolio strat-

egy. Our model examines how autonomy (or lack thereof) affects the managers decision to

balance resource allocation between incremental product improvement effort and radical

new product development effort. Incremental effort delivers an immediate but limited im-

pact on revenue while radical effort has no immediate benefit but delivers a substantial

impact on future value. To model the tradeoff between these two types of effort in the NPD

portfolio, we consider a business unit that attempts to develop a new product over a finite
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development cycle, t ∈ [0, T ]. The end of the development cycle (T ) may be either fixed

or a decision variable. The former is a situation in which external market forces dictate

product launches (e.g. holiday seasons in December and January drive new product intro-

ductions for firms in the consumer electronics industry). The latter is a setting in which

the manager determines an optimal new product launch time. In addition to developing

the new product, the business unit produces and sells a single existing product throughout

the development cycle.2

5.3.1 Improving the Existing Product and Developing the New Product

During the development cycle, the business unit can make incremental improvements to the

existing product in order to sustain or enhance its revenue generating potential. Incremental

improvements include minor technological upgrades (e.g., larger storage capacity in a laptop

computer), small modifications of market attributes (e.g., changes to product packaging), or

process improvements leading to lower manufacturing and distribution costs. Let p1(t) ≥ 0

be the rate of effort expended on making incremental improvements to the existing product

at time t. In practice, managers often use metrics such as the rate of effort to describe

investment in NPD (e.g., engineering-hours per week). The cumulative level of effort ex-

pended on improving the existing product at time t is defined as P1(t) = P1(0)+
∫ t

0 p1(s)ds.

Since the business unit is producing and selling the existing product at t = 0, the initial

cumulative level of effort is known and satisfies P1(0) > 0.

In addition to making incremental changes to the existing product, the business unit also

expends effort to develop a new product that is fundamentally different from the existing

product in terms of underlying technology and market attributes (Chao and Kavadias 2006).

Let p2(t) ≥ 0 be the rate of effort expended on developing the new product at time t.

The effort undertaken to develop the new product includes concept generation, design,

and testing activities to ensure manufacturing and market viability (Ulrich and Eppinger

2004). Early in the development cycle there is considerable technical and market uncertainty

2We assume that the business unit has a single existing product in order to facilitate exposition. Our
analysis is easily extended to multiple existing products whose sales are lumped together into a single revenue
stream.
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regarding the viability of the new product and the uncertainty is resolved as the development

cycle progresses. For example, in the pharmaceutical industry, the likelihood of successful

development increases (uncertainty decreases) as a new drug progresses through the various

stages of the FDA approval process (Girotra et al. 2006). Let α(t) ∈ [0, 1] represent the level

of uncertainty that the manager faces at time t during the development cycle with α̇(t) < 0

and α̈(t) > 0. Our definition of α(t) is similar to the uncertainty evolution in concurrent

engineering models (Krishnan 1996, Krishnan et al. 1997). Uncertainty moderates the

effectiveness of effort expended on developing the new product. Effort is less effective

early in the development cycle when uncertainty is higher and more effective later in the

development cycle when uncertainty is lower. Thus, we define the cumulative effective level

of effort expended on developing the new product at time t as P2(t) =
∫ t

0 [1 − α(s)]p2(s)ds.

5.3.2 The Cost of New Product Development

The manager responsible for resource allocation determines a dynamic strategy that max-

imizes the net value resulting from existing product improvement efforts and new product

development efforts. Driving the investment strategy are the relative costs and benefits

associated with the existing product and the new product over the development cycle.

Let C1[p1(t)] ≥ 0 be the cost incurred for p1(t) units of effort aimed at improving the

existing product. We assume that C1[0] = 0 and C1[p1(t)] is increasing and convex with

respect to p1(t), reflecting diseconomies of scale with respect to effort at any instant of

time (e.g., coordination costs or capacity constraints with respect to specialized resources).

Similarly, let C2[p2(t)] ≥ 0 be the cost incurred for p2(t) units of effort geared towards

developing the new product. Assume that C2[0] = 0 and C2[p2(t)] is increasing and convex

with respect to p2(t). Although C1[p1(t)] and C2[p2(t)] are both increasing and convex,

the value and rate at which they increase may be unequal, reflecting the difference in the

nature of the work undertaken by engineers or product development managers for each type

of effort. The new product is defined by fundamentally different technology and market

variables that are typically unknown and more difficult to manipulate. Therefore, it is

reasonable to assume that C1[pi(t)] ≤ C2[pi(t)] for a given rate of effort pi(t).
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5.3.3 Existing Product Revenue and New Product Payoff

The revenue (net of manufacturing and distribution costs) generated at time t from the

existing product is given by R[P1(t), t]. The revenue function for the existing product is

comprised of two elements that are common in NPD. First, higher cumulative effort to-

wards improving the existing product results in increased revenue with diminishing returns.

Therefore, it is reasonable to assume that R[P1(t), t] is a positive increasing function of

P1(t) with ∂2R/∂P 2
1 ≤ 0. Second, forces external to the business unit (such as increased

competition intensity and shifting customer preferences) may make the existing product

obsolete. Increasing competition intensity implies that the ability to earn revenue from the

existing product decreases over time due to an increased likelihood of imitation or substitute

products (Moorthy 1988, Ali et al. 1993, Dhebar 1996). In addition, consumer preferences

may shift over time and thereby reduce the ability to earn revenue from the existing prod-

uct (Christensen and Raynor 2003). Therefore, we assume that ∂R/∂t ≤ 0. Finally, we

recognize that the existing product may have value beyond the end of the development cy-

cle. Let V1[P1(T ), T ] be the future revenue generated by the existing product beyond time

T . V1[P1(T ), T ] is a positive increasing function of P1(T ) with ∂V1/∂T ≤ 0. It is natural

to assume that the value of the existing product beyond time T also exhibits diminishing

returns (∂2V1/∂V 2
1 ≤ 0).

The value of effort expended on developing the new product is captured at the end of

the development cycle when the business unit receives a payoff of V2[P2(T ), T ]. The new

product payoff at T represents the value of revenue generated by the new product over

its lifetime. Our characterization of the new product payoff reflects the estimates made by

senior managers when assessing the “future market potential” of a new product. We assume

that V2[P2(T ), T ] is a positive increasing function of P2(T ) with ∂V2/∂T ≤ 0. Therefore,

a higher cumulative effort P2(T ) increases the new product payoff. However, a delay in

the new product launch may result in lower value for various reasons such as competition

intensity or first-mover advantage for competing firms (see Hendricks and Singhal 1997 for a

discussion on the market value of delayed product launch). Similar to the existing product

payoff, the new product payoff exhibits diminishing returns (∂2V2/∂V 2
2 ≤ 0).
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5.3.4 Organization Design Mechanisms for Budget Creation and Control

A novel aspect of our model is the explicit consideration of the organization design mech-

anisms that drive resource allocation and NPD portfolio strategy. We assume that an or-

ganization design mechanism is jointly defined by two functions, π = {B(·), C3(·)} , which

determine the degree and nature of autonomy given to the manager of the business unit.

The organization design mechanism determines how the budget is made available and how

the budget is accounted for during the development cycle.

The function B(·) represents budget creation and defines how resources are made avail-

able for improving the existing product and developing the new product. The literature on

resource allocation and NPD portfolio management typically assumes that budgets are set

exogenously, by a higher level corporate authority. In such cases, B(·) = B and the manager

does not have control over the manner in which the budget is created. We enrich the liter-

ature by considering organizational settings in which the manager is given autonomy with

respect to budget creation. For such cases, we assume that the revenue earned from existing

product sales endogenously funds product improvement and development efforts. We define

the endogenous budget as B(·) = βR[P1(t), t] where β is the percentage of existing product

revenue that is made available for improving the existing product and developing the new

product.3 Hence, for an endogenous budget, NPD funding changes dynamically depending

on the revenue generated by the existing product.

The NPD budget and the allocated efforts p1(t) and p2(t) together determine the cumu-

lative net budget at any time, Z(t) =
∫ t

0{B(·) − C1[p1(s)] − C2[p2(s)]}ds. Without loss of

generality, we assume that the cumulative net budget at the beginning of the development

cycle is normalized to zero. Note that Z(t) may be positive or negative at any moment in

time. We allow for instances when exceeds what is needed for existing product improve-

ment and new product development and the result is a net budget surplus. Alternatively,

B(·) may under fund the required improvement and development efforts, in which case the

3β represents the business units R&D intensity. Empirical research has shown that a firms R&D intensity
is relatively constant, and it emerges as a result of underlying industry characteristics (Cohen and Klepper
1992). For that reason, we assume that β is constant in our model.
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business unit resorts to external sources of funding.

A second aspect of autonomy deals with how resources are controlled. The function C3(·)

represents the budget control dimension of the organization design mechanism. Budget

control defines whether the manager is forced to account for the net budget at each instant

of time throughout the development cycle (lower autonomy) or only at the end of the

development cycle (higher autonomy). Accountability can be measured in practice through

proxies such as frequency of meetings with NPD teams or extent of documentation required

for NPD processes (Loch and Terwiesch 1998). If the manager is held accountable for budget

overruns throughout the development cycle, C3(·) =
∫ T

0 C3[Z(t)]dt. The term C3[Z(t)]

denotes the cost (benefit) when the cumulative net budget is negative (positive) at time t.

We assume that C3(0) = 0, ∂C3/∂Z ≥ 0, and ∂2C3/∂Z2 ≤ 0. Thus, when the available

budget is not sufficient to fund the required NPD effort, Z(t) is negative and the business

unit pays a cost of C3[Z(t)]. In this situation, C3[Z(t)] is a proxy for the cost of capital for

product improvement and development. If Z(t) is positive, the business unit benefits from

slack resources. This benefit may represent surplus budget invested at the risk-free rate or

intangible benefits extolled on the manager for generating a budget surplus. Alternatively,

the manager may be held accountable for budget overruns only at the end of the development

cycle. In such cases, C3(·) = C3[Z(t)] and the cost (benefit) when the cumulative net

budget is negative (positive) is incurred only at the end of the development cycle. This

mechanism offers the manager more autonomy since it simply requires a balanced budget

at the end of the development cycle as opposed to requiring a balanced budget throughout

the development cycle.

Figure 20 illustrates the functional forms that define budget creation and budget control.

The notation πi refers to organization design mechanism i ∈ {LOW,M1,M2,HIGH}. For

the design mechanism that results in low autonomy (πLOW ) the budget is not determined by

the business unit manager; rather, senior managers external to the business unit determine

the budget. In addition, for the low autonomy case, the manager must account for the use

of the budget at each moment in time throughout the development cycle. Conversely, for

the design mechanism that results in high autonomy (πHIGH) the budget is endogenously
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Figure 20: Organization design mechanisms that define business unit autonomy.

determined as a percentage of the revenue generated by the existing product. Furthermore,

the manager operating under high autonomy is not required to account for the use of the

budget until the time at which the new product is launched. Of course, the organization

design mechanisms πLOW and πHIGH are extreme cases. Moderate levels of autonomy can

be granted to the manager via budget creation (πM1) or budget control (πM2).

5.3.5 The Objective

Given the organization design mechanism πi that determines the functional forms of B(·)

and C3(·), the business units profit maximizing objective is defined as:

max
p1(t),p2(t),T

∫ T

0
{R[P1(t), t] − C1[p1(t)] − C2[p2(t)]}dt + C3(·) + V [·] + Z(T ) (6)

subject to the dynamic equations that define P1(t), P2(t), Z(t), and their initial condi-

tions. The term within the integrand is the net benefit from resource allocation over the

development cycle (total revenue earned from the existing product minus the total cost of

effort for improving the existing product and developing the new product). C3(·) determines

the cost (benefit) of capital in addition to the principal amount, and it can be thought of
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as interest paid (earned) on the cumulative net budget. The function V [·] represents col-

lectively the value of the existing product and the new product beyond time T . We include

Z(T ) in the objective to ensure that the manager is held accountable for (or receives benefit

for) the principal amount of the cumulative net budget at T , although our insights are not

altered if Z(T ) is removed from the objective function.

5.4 Analytic Results and Analysis

The model presented above is meant to identify potential organizational factors that drive

resource allocation strategy towards existing product improvement or new product develop-

ment. In this section we discuss insights obtained from the analytic solution of the problem

presented above. To facilitate exposition, all technical details are presented in Appendix

C.1 and functional notation is suppressed when the meaning is unambiguous.

5.4.1 Improving the Existing Product and Developing the New Product

The choice of organization design mechanism directly impacts resource allocation strategy

within the business unit. Proposition 1 introduces three factors that drive the optimal allo-

cation: the marginal value of cumulative effort towards improving the existing product, the

marginal value of cumulative effort towards developing the new product, and the marginal

value of cumulative net budget.

Proposition 1. Marginal value functions. (i) For all organization design mechanisms, the

marginal value of cumulative effort towards improving the existing product, λ1, is positive

and convex-decreasing in time. (ii) For all organization design mechanisms, the marginal

value of cumulative effort towards developing the new product, λ2, is positive and constant

in time. (iii) For organization design mechanisms πLOW and πM1, the marginal value of

cumulative net budget, λ3, is positive and decreasing in time while for organization design

mechanisms πHIGH and πM2, the marginal value of cumulative net budget is positive and

constant in time.

The behavior of λ1 reflects the revenue generating potential of the existing product. A

unit of cumulative effort aimed at improving the existing product is more valuable early in
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the development cycle because the revenue generated by this unit of effort will positively

impact the objective function for a longer period of time compared to the same unit applied

later in the development cycle. Similarly, λ2 reflects the revenue generating potential of

the new product. Since the payoff from the new product is not realized until T , a unit

of cumulative effort aimed at developing the new product has the same value regardless of

when it is invested during the development cycle. While the above insights regarding λ1 and

λ2 hold for all organization design mechanisms, the behavior of λ3 depends on the form of

budget control. For organization design mechanisms πLOW and πM1 budget control occurs

throughout the development cycle. In these cases, the marginal value of cumulative net

budget decreases in time because a unit of Z(t) that is available early in the development

cycle positively impacts the objective function for a longer period of time compared to the

same unit later in the development cycle. Alternatively, a unit of debt that is created earlier

in the horizon negatively impacts the objective function compared to the same unit of debt

later in the development cycle. Conversely, for organization design mechanisms πHIGH and

πM2 budget control occurs only at the end of the development cycle. In these cases the

marginal value of cumulative net budget is constant in time because the cost (benefit) of

negative (positive) Z(T ) is not realized until the end of the development cycle.

The optimal rates of effort for improving the existing product or developing the new

product are determined by the ratio of the marginal value of each respective effort to the

marginal value of cumulative net budget. Therefore, based on Proposition 1, it is obvious

that the optimal rates of effort depend on the choice of design mechanism. In Proposition

2 we provide a result that highlights the balance between effort aimed at improving the

existing product and effort aimed at developing the new product.

Proposition 2. Dynamic behavior of the decision variables. (i) For organization design

mechanisms πHIGH and πM2, the optimal rate of effort expended on improving the existing

product, p∗1, is convex-decreasing in time. (ii) For organization design mechanisms πLOW

and πM1, the optimal rate of effort expended on improving the existing product, p∗1, is

convex-decreasing in time if Eλ1
> 1 and convex-increasing in time if Eλ1

< 1 where
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Eλ1
= λ̇1λ3/(λ̇3λ1). (iii) For all organization design mechanisms, the optimal rate of effort

expended on developing the new product, p∗2, increases in time.

Under organization design mechanisms πHIGH and πM2 the manager does not have

to account for the NPD budget until the end of the development cycle and p∗1 decreases

throughout the development cycle, directly mirroring the behavior of λ1. For organization

design mechanisms πLOW and πM1, p∗1 decreases (increases) in time whenever the percentage

change in λ1 is greater than (less than) the percentage change in λ3 over a given interval of

time. The design mechanisms πLOW and πM1 require the manager to account for the NPD

budget throughout the development cycle. In such cases, Eλ1
captures the instantaneous

tradeoff between the benefit from a unit of effort aimed at improving the existing product

versus the cost of that unit of effort in terms of Z(t). When Eλ1
> 1, λ1 decreases at a faster

rate compared to λ3 and the manager optimally decreases p∗1 over time. In the spirit of

realism and relevance to our research, we assume that Eλ1
> 1 throughout the development

cycle, which implies that a unit of effort geared towards improving the existing product

always has higher value compared to simply holding the unit as cash in the cumulative net

budget. Note that with Eλ1
> 1, p∗1 decreases throughout the development cycle.

The effort allocated to improving the existing product decreases over time reflecting

the decreasing revenue generating potential of the existing product over the development

cycle. Because the existing product generates revenue at each instant of time throughout

the development cycle, the value of this effort is higher early in the development cycle

when it can impact the objective function for a longer period of time compared to the

same unit of effort applied later in the development cycle. The primary force that drives

the dynamic behavior of p∗2 is uncertainty resolution. Effort aimed at developing the new

product increases over time because this effort is more effective later in the development

cycle when a significant portion of the uncertainty is resolved.

In addition to the first order effects cited above, the interaction between p∗1 and p∗2 in

determining the cumulative net budget also drives their dynamic behavior. The marginal

value of λ3 is non-increasing over the development cycle reflecting the fact that any cost or
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benefit associated with Z(t) has greater impact when there is more time remaining in the

development cycle. Because p∗1 and p∗2 serve to lower the net cumulative budget, a higher

marginal value of Z(t) drives lower p∗1 and p∗2 (stated differently, a higher marginal value

of Z(t) drives the manager to reduce the costs associated with p∗1 and p∗2). Moreover, for

organization design mechanisms πHIGH and πM1, effort aimed at improving the existing

product results in higher revenue, which in turn results in higher cumulative net budget.

These results bear managerial significance for two reasons. First, they point out the dif-

ferent focus of resource allocation throughout the development cycle. There is a smooth

transition of effort from improving the existing product towards developing the new prod-

uct. Second, the results identify an intuitive index as a key driver of the optimal allocation:

the marginal value of the investment (value created for each dollar of invested effort). The

result complements previous findings in the NPD portfolio literature (Loch and Kavadias

2002) and verifies their intuition.

5.4.2 Comparative Statics

The previous analyses focused on the dynamic behavior of p∗1 and p∗2. In this section we

turn our attention to how the optimal rates of effort vary with key problem parameters.

Results of a comparative statics analysis are presented in Propositions 3 and 4 below.

Proposition 3. Comparative Statics Analysis for p∗1. At time t during the development

cycle, the optimal rate of effort expended on improving the existing product is higher if: (i)

∂C1/∂p1 is lower, (ii) ∂R/∂P1 is higher, (iii) ∂R/∂t is lower, (iv) ∂V1/∂P1 is higher, (v)

∂V1/∂T is lower, (vi) β is higher, or (vii) c̄3,LOW or c̄3,M2 is lower, where c̄3,i is defined as

∂C3/∂Z for organization design mechanism πi. For organization design mechanisms πHIGH

and πM1 there exist threshold times tcHIGH and tcM1 before (after) which, higher c̄3,HIGH or

c̄3,M1 causes p∗1 to be higher (lower). Furthermore, tcHIGH ≥ tcM1.

For organization design mechanisms that employ an exogenous budget, higher marginal

cost of capital (∂C3/∂Z) always results in lower effort expended on incremental product

improvement. Conversely, for organization design mechanisms that employ an endogenous
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budget there exists an interval of time early in the development cycle when a higher marginal

cost of capital calls for higher effort expended on incremental product improvement. This

result is due to the fact that the endogenous budget allows the manager to generate addi-

tional resources through incremental improvements to the existing product. The additional

resources have value because they can be deployed in response to an increased cost of being

over budget. Of course, increased effort towards improving the existing product makes sense

only if there is enough time remaining in the development cycle to reap the rewards, thus

the existence of threshold times for design mechanisms πHIGH and πM1.

Proposition 4. Comparative Statics Analysis for p∗2. At time t during the development

cycle, the optimal rate of effort expended on developing the new product is higher if: (i)

∂C2/∂p2 is lower, (ii) α(t) is lower, (iii) ∂V2/∂P2 is higher, (iv) ∂V2/∂T is lower, (v)

c̄3,LOW , c̄3,M1, c̄3,M2, or c̄3,HIGH is lower, where c̄3,i is defined as ∂C3/∂Z for organization

design mechanism πi.

In the case of p∗2, a higher marginal cost of capital results in lower effort expended on

developing the new product regardless of the organization design mechanism. This insight

coupled with results for the marginal cost of capital in Proposition 3 lead to the conclusion

that a higher marginal cost of capital drives the business unit to a more incremental re-

source allocation strategy, particularly if the marginal cost of capital is higher early in the

development cycle. To understand this result, note that the manager has two levers that

can offset the higher cost of capital: increase resource expenditure for the existing product

in order to generate more revenue and increase the cumulative net budget; or lower resource

expenditure for existing product improvement, new product development, or both in order

to increase the cumulative net budget. If there is sufficient time remaining in the develop-

ment cycle the former strategy is advocated so long as the manager is operating with an

endogenous budget. The result is a shift towards incremental projects in the NPD portfolio

since p∗1 is higher and p∗2 is lower. Later in the development cycle the latter strategy is

advocated regardless of the organization design mechanism employed, which is the intuitive
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result consistent with observations from practice when a portfolio of NPD programs is con-

sidered. Chao and Kavadias (2006) discuss a situation in which managers of a business unit

within a beverage company (operating under a mechanism similar to πm1) cite the high

cost of capital as the reason for their focus on incremental product improvement effort as

opposed to radical new product development effort.

Propositions 3 and 4 highlight the direct impact of model parameters on p∗1 and p∗2. In

addition, p∗1 and p∗2 interact due to their combined effect on the cumulative net budget.

They may act as substitutes or compliments depending on the choice of organization design

mechanism. The interaction takes the form of a tradeoff between p∗1 and p∗2 based on the

marginal value of cumulative net budget. When the manager operates under an exogenous

budget, any effect that drives lower p∗1 will subsequently lead to lower C1[p
∗

1] and higher

Z(t). Since ∂2C3/∂Z2 ≤ 0, a higher value of Z(t) will lead to lower ∂C3/∂Z and the result

is lower λ3. Since p∗2 is optimally determined by the ratio of λ2 to λ3, lower λ3 implies

higher p∗2. Thus, under an exogenous budget any model parameter that directly impacts p∗1

has the opposite effect on p∗2 because of their interaction through Z(t). On the other hand,

p∗1 and p∗2 act as compliments when the manager operates under an endogenous budget.

In these cases higher p∗1 may lead to higher Z(t) because the endogenous budget increases

βR[P1(t), t]. Higher Z(t) implies lower ∂C3/∂Z and lower λ3. Again, since p∗2 is optimally

determined by the ratio of λ2 to λ3, lower λ3 implies higher p∗2.

5.4.3 Crossing Times and the Balance Between p∗1 and p∗2

In this section we consider how organization design mechanisms impact the balance between

p∗1 and p∗2 at the portfolio level. Before we embark on this analysis, we note that several

results stated below require that C3(·) be a linear function of its argument (we relax this as-

sumption in Section 5.5). Linear C3(·) is necessary for the sake of mathematical tractability

and in order to make meaningful comparisons across organization design mechanisms. Note

that for πHIGH and πM2, linear C3(·) corresponds to a constant marginal cost (benefit) paid

only at the end of the development cycle based on the value of Z(T ). For πLOW and πM1,

linear C3(·) corresponds to a constant marginal cost (benefit) based on the average amount
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by which Z(t) is negative (positive) during the development cycle.4

The fact that p∗1 decreases over the development cycle while p∗2 increases leads to the

possible existence of a crossing time. We define a crossing time, t∗, as the time during the

development cycle when p∗1 = p∗2. Before the crossing time, p∗1 > p∗2 and the focus of the

NPD portfolio is geared towards incremental improvements for the existing product. After

the crossing time, p∗1 < p∗2 and the focus of the NPD portfolio shifts towards developing the

new product. In the following proposition we show that the choice of organization design

mechanism affects the NPD portfolio by means of the crossing time. Formally, we can state

the result as follows.

Proposition 5. Autonomy impacts the crossing times as follows: t∗LOW = t∗M2 ≤

{t∗M1, t
∗

HIGH} where t∗i denotes the crossing time under organization design mechanism πi.

In addition, for the case of linear C3(·), t∗M1 ≤ t∗HIGH .

Recall that under organization design mechanisms πHIGH and πM1 budget creation

is endogenous. Proposition 5 states that an endogenous budget causes the crossing time

to occur later in the development cycle. In such cases the manager optimally remains

focused on improving the existing product for a longer period of time relative to cases in

which the budget is exogenously determined. A later crossing time can be interpreted as

an incremental strategy compared to an earlier crossing time since improvements to the

existing product are relatively incremental compared to developing the new product. The

endogenous budget drives an incremental strategy because existing product revenue is used

to directly fund both types of effort, regardless of when the manager must account for the

budget. The NPD literature contends that autonomy (freedom from control) is preferred

when managing radical development projects while control (lack of autonomy) is preferred

when managing incremental projects (Tatikonda and Rosenthal 2000). Our results add to

these guidelines in cases that extend beyond the single project. In particular, we show how

4For organization design mechanisms πHIGH and πM2, the linear cost (benefit) function is C3[Z(T )] =
c̄3Z(T ). For organization design mechanisms πLOW and πM1, the linear cost (benefit) function is C3[Z(t)] =

(c̄3/T )Z(T ), which implies that C3(·) = c̄3(1/T )
R

T

0
Z(t)dt = c̄3Z̄(t) where Z̄(t) is the average level of Z(t)

during the development cycle.
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autonomy can be used to dictate the nature of innovation when resources must be allocated

between multiple NPD programs in a portfolio.

5.4.4 The magnitude of p∗1 and p∗2 for Different Organization Design Mecha-

nisms

Analysis of the crossing time hints at the relative priority given to multiple efforts in the

NPD portfolio. However, the magnitude of p∗1 and p∗2 throughout the development cycle

provides a more detailed view of how the choice of organization design mechanism impacts

incremental and radical innovation.

Proposition 6. For the case of linear C3(·), when the development cycle begins (t = 0),

p∗1,LOW = p∗1,M2 < p∗1,M1 < p∗1,HIGH . When the development cycle ends (t = T ), p∗1,LOW =

p∗1,M1 > p∗1,M2 = p∗1,HIGH . Furthermore, p∗1,M2 < p∗1,LOW < p∗1,M1 for t ∈ (0, T ), where p∗1,i

denotes the optimal rate of effort towards improving the existing product under organization

design mechanism πi.

The result established in Proposition 6 together with the fact that p∗1 is convex-decreasing

throughout the development cycle allows us to draw additional conclusions regarding the

dynamic behavior of p∗1 for different organization design mechanisms (Figure 21). The de-

sign mechanism πM2 results in the lowest p∗1 throughout the development cycle. In contrast,

πM1 results in p∗1 that is strictly higher compared to πM2. The design mechanism πLOW re-

sults in p∗1 that falls between πM1 and πM2. Finally, relative to the other design mechanisms,

πHIGH results in a rate of effort that is higher early in the development cycle and lower later

in the development cycle. Together these results demonstrate that an endogenous budget

drives a form of front-loading for existing product improvement. Front-loading describes

increased resource expenditure early in a development cycle and it is advocated in the lit-

erature as an effective strategy to identify potential design errors at the minimum redesign

cost (Cooper and Kleinschmidt 1994, Thomke and Fujimoto 2000). Our analysis reveals

that organization design choices may drive a front-loading strategy (even in a deterministic

setting) in the context of the NPD portfolio. The driving force behind this phenomenon

is that a manager operating under an endogenous budget optimally expends more effort
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Figure 21: Dynamic behavior of p∗1.

on improving the existing product in order to increase revenue generated by the existing

product, which in turn increases the cumulative net budget under design mechanisms πM1

and πHIGH . Our findings echo those of Loch and Kavadias (2002). They highlight cases

under which a carryover benefit may lead to front-loading for an existing product.

The choice of organization design mechanism also impacts the effort expended on de-

veloping the new product. The following proposition establishes the result:

Proposition 7. For the case of linear C3(·), when the development cycle begins (t = 0),

p∗2,LOW = p∗2,M1 < p∗2,M2 < p∗2,HIGH . Throughout the remainder of the development cycle

(t ∈ (0, T ]), p∗2,LOW = p∗2,M1 > p∗2,M2 = p∗2,HIGH , where p∗2,i denotes the optimal rate of

effort towards developing the new product under organization design mechanism πi.

The result established in Proposition 7 together with the fact that p∗2 is increasing

over the development cycle allows us to examine the dynamic behavior of p∗2 for different

organization design mechanisms (Figure 22). First, the optimal rate of effort expended

on developing the new product is equal for each organization design mechanism at the

beginning of the development cycle (t = 0). After t = 0 and for the remainder of the

development cycle, p∗2,LOW = p∗2,M1 and p∗2,HIGH = p∗2,M2. Furthermore, effort expended

on developing the new product is higher when the manager is forced to account for budget
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Figure 22: Dynamic behavior of p∗2.

overruns throughout the development cycle compared to only at the end of the development

cycle. Thus, for the new product, increased budget control drives a form of front-loading.

The driving force behind this result is that under organization design mechanisms πLOW

and πM1, the marginal value of cumulative net budget decreases during the development

cycle driving higher p∗2,LOW and p∗2,M1 later in the development cycle. Alternatively, the

result can be interpreted as less benefit to lower values of p∗2,LOW and p∗2,M1 in terms of

cumulative net budget later in the development cycle. These insights taken together lead us

to the conclusion that strict budget control ensures a higher rate of effort towards developing

the new product.

5.5 Choosing an Appropriate Design Mechanism

In this section we turn our attention towards factors that drive the choice of design mecha-

nism. The problem is analogous to the extensively studied principal-agent problem (Gross-

man and Hart 1983, Gibbons 2005) in which a senior manager outside the business unit

(the principal) decides on πi, and the manager within the business unit (the agent) decides

on p∗1, p∗2, and T in order to maximize profit for the business unit. Note that we do not

explicitly model the principal’s decisions; rather, we focus on the properties of the resource

allocation strategy and the managerial actions that accompany each organization design

mechanism. Nonetheless, the principal’s decision is subsumed in the organization design
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mechanism and it is important to understand what drives this choice.

Two features that are implicit in our model are of interest to our analysis. First, the

principal and the manager share the same information with respect to uncertainty (risk).

Second, the manager’s effort is observable, which is embodied in the budget control mech-

anism (control throughout the development cycle or control only at the end of the devel-

opment cycle). Given these two model features agency theory advocates that the principal

should compensate the agent through a fixed wage. However, our analysis shows that not

all organization design mechanisms result in the same profit. In addition, there may exist

strategic choices beyond the business unit that encourage the principal to seek accelerated

or delayed new product launch from the business units under his command (Gibbons 2005).

5.5.1 Numerical Analysis

Although we can obtain expressions for the total profit and the new product launch time,

their mathematical complexity precludes managerial interpretation (please see the Appendix

C for details). Instead, we develop insights with regard to these metrics through a numerical

analysis of the model (Gaimon 1989 and 1997, Gaimon and Carillo 2000). Furthermore,

through numerical analysis we are able to illustrate analytic results of Propositions 6 and

7 under more general functional forms.

To conduct the numerical analysis, we choose specific functional forms and parameter

values based on realistic considerations from practice. Our choice of functions and pa-

rameters reflects extensive discussions with senior managers responsible for NPD within a

business unit of a beverage company (Chao and Kavadias 2006). The business unit that was

the subject of this case study operated under an endogenous budget with the cumulative

net budget controlled throughout the development cycle (i.e. an organization design mech-

anism similar to πM1). Optimal solutions are generated using a standard shooting method

based on a discrete approximation of the continuous time model (for details see Sethi and

Thompson 2000). Appendix C.2 contains a detailed account of all functional forms, base

case parameter values, and experiments for the numerical analysis.
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5.5.2 p∗1 and p∗2 Under Non-Linear C3(·)

Figure 23 depicts the dynamic behavior of the decision variables for each organization design

mechanism in the base case experiment. Proposition 6 is shown to be robust for non-linear

functional forms of C3(·). A manager operating under an endogenous budget optimally

front-loads the effort aimed at existing product improvement. The same generalization

holds for Proposition 7. When budget control is employed throughout the development

cycle, the manager optimally front-loads effort towards developing the new product.

Figure 23: Dynamic behavior of p∗1 and p∗2 based on numerical analysis.

5.5.3 Profit and New Product Launch Time

Managers responsible for resource allocation decisions must consider the competition inten-

sity faced by the business unit and the market potential of the new product. The former

embodies an external market threat (e.g. revenue loss due to competitors actions) while the

latter embodies a response to that threat (e.g., radical expansion, invasion of new markets,

incorporation of new technologies).

Figure 24 depicts the new product launch time and total profit earned by the business

unit as a function of the expected market potential for the new product (∂V2/∂P2).
5 As

5Innovative products often have high market potential and high development uncertainty. Note that we
use ∂V2/∂P2 as a proxy for market potential without considering the effects of increased uncertainty. Still,
our analysis is valid if we interpret ∂V2/∂P2 as the expected market potential, which suffices given our focus
on organization design choices as opposed to the effects of stochastic return on investment.
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Figure 24: New product launch time and profit as a function of the expected market
potential for the new product.

expected, new product launch time is a decreasing function of expected market potential and

profit is an increasing function of the expected market potential. The manager optimally

accelerates new product launch to capture the expected market potential and reap the

rewards in terms of higher profits. More interesting is the fact that, for the entire range of

expected market potential, πHIGH and πM2 result in a substantially delayed new product

launch compared to πLOW and πM1. Recall from Proposition 7 that organization design

mechanisms πLOW and πM1 drive higher effort towards developing the new product. Based

on the numerical results for T ∗, we can extend this result and conclude that budget control

throughout the development cycle drives a higher rate of effort for a shorter period of

time compared to budget control only at the end of a development cycle. Thus, tight

budget control drives more intense effort towards developing the new product. The results

depicted in the right panel of Figure 24 show that the value created by the more intense

effort is dominated by the cost of generating that effort. For high values of expected market

potential, πHIGH and πM2 result in substantially higher profit compared to πLOW and

πM1. This is due to the fact that payoffs exhibit diminishing returns to effort while costs

are increasing and convex in effort.

For low values of expected market potential, the best organization design choice is clearly

one that imposes tight budget control. This strategy ensures a faster new product launch

without sacrificing profit. Conversely, for high values of expected market potential the
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choice of organization design mechanism is not as simple. High values of expected market

potential force senior managers to choose between an accelerated new product launch with

lower profit or a delayed launch with higher profit. To maximize profits, high autonomy

in terms of budget control is advocated. From this perspective our results support prior

studies on organization design and innovation (Christensen 1997, Tatikonda and Rosenthal

2000, Christensen and Raynor 2003). These studies cite high autonomy as the preferred

mechanism for business units whose aim is to develop new products that have high market

potential. We add to this theory and note that more autonomy is advocated because

of rational resource allocation and budget control decisions in addition to the behavioral

benefits of creativity and organizational culture. However, managers should be cautioned

that the higher profit comes at the expense of a delayed new product launch when business

units are granted autonomy in terms of budget control.

Figure 25 presents profit and new product launch time as a function of competition

intensity. Competition intensity collectively captures the effects of products introduced

by competing firms as well as shifting consumer preferences. Together these forces result

in lost value from the existing product and new product. For low values of competition

intensity, the profit generated under design mechanisms πHIGH and πM2 is approximately

10% greater than the profit under πLOW and πM1. Once again, autonomy in terms of budget

control drives the best choice of organization mechanism in terms of profit. The increased

profit is accompanied by a delayed new product launch time. The new product launch

time under design mechanisms πHIGH and πM2 is approximately 25% longer than the new

product launch time under design mechanisms πLOW and πM1. As expected, profit and

new product launch time decrease in competition intensity. In fact, under extremely high

levels of competition intensity the choice of organization design mechanism has a negligible

effect on profit and new product launch time. The result stems from the dynamic behavior

of the payoff loss: as time passes the loss is decreasing at a decreasing rate. Thus, the

manager optimally launches the new product as early as possible to avoid deterioration in

the payoff values. Of course, an earlier launch time effectively makes all the organization

design mechanisms equivalent. Note that in the limit (T = 0), all mechanisms share the
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Figure 25: New product launch time and profit as a function of competition intensity.

same values for P1(0) and P2(0).

The implication for senior managers is that the choice of organization design mechanism

drives two distinct strategies. Autonomy in terms of budget control results in higher profit

from less intense development effort and a delayed new product launch. Based on this

observation, senior managers should not be surprised when autonomous teams suffer from

delayed new product release. On the other hand, budget control throughout the develop-

ment cycle results in lower profit from more intense development effort and an accelerated

new product launch. Christensen (1996) clearly describes these phenomena in a case study

of a division of Hewlett Packard. That business unit was given autonomy with respect to

budget creation and control. Senior managers pushed for intense development efforts and

a short break even time (early product launch) for a radical and unproven innovation (i.e.

a 1.3 inch disk drive). The project was abandoned as a failure for not meeting high expec-

tations in terms of profitability. Our results predict that high autonomy optimally drives

less intense effort towards developing a new product and a delayed product launch. Thus,

it appears that HP suffered from misalignment between their NPD strategy and the choice

of organization design mechanism.
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5.6 Conclusions and Implications

The goal of this manuscript is to understand how organization design mechanisms impact

resource allocation and NPD portfolio strategy. To address these goals we developed an

analytic model of dynamic resource allocation subject to different organization design mech-

anisms that determine how the NPD budget is created and controlled within a business unit.

Our analysis focused on the balance between improving an existing product and developing

a fundamentally new product.

5.6.1 Implications for Theory

Although the Operations Research literature provides a rich history of work on resource

allocation and NPD portfolio management, most of this research ignores the organizational

and behavioral aspects that impact this problem. As a result, managers rarely use the

proposed tools to make decisions; rather decisions come about through processes that are

not transparent and managers manipulate the tools to provide quantitative support for

their decisions (Loch et al. 2001). Recent work in resource allocation and NPD portfolio

strategy highlights the need to study organizational and behavioral aspects that impact

resource allocation decisions (Chao and Kavadias 2006, Gino and Pisano 2006). We attempt

to gain insights into this problem by explicitly modeled an organization design choice and

the subsequent effect on resource allocation. Our analysis leads to a number of testable

hypotheses that merit empirical validation.

H1: Front-loading for existing product improvement is positively associated with the use of

an endogenous budget.

H2: Front-loading for new product development is positively associated with frequent con-

trol of the NPD budget.

H3a: Profit is positively associated with expected market potential of a new product.

H3b: Frequency of control of the NPD budget negatively moderates the positive relationship

between profit and expected market potential of a new product.

H4a: Profit is negatively associated with competition intensity.
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H4b: Frequency of control of the NPD budget negatively moderates the negative relation-

ship between profit and competition intensity.

H5: New product launch time is negatively associated with expected market potential of a

new product.

H6a: New product launch time is negatively associated with competition intensity.

H6b: Frequency of control of the NPD budget negatively moderates the negative relation-

ship between new product launch time and competition intensity.

Together these hypotheses allow us to take a necessary step towards understanding

important organizational processes that drive innovation and economic growth. Empirical

validation of these claims is an open area for future research.

5.6.2 Implications for Practice

Perhaps the most important implications of our research for practicing managers are the

specific organization design mechanisms that can be used to drive innovation and profit.

This is most clearly evident from the viewpoint of senior managers responsible for making

the decision of which organization design mechanism to use.

Our first conclusion is with regard to the NPD portfolio and the balance between im-

proving an existing product and developing a new product. We show that autonomy in

terms of how the NPD budget is created drives the manager to remain focused on existing

product improvement for a longer period of time relative to cases in which the manager is

simply given a fixed NPD budget. Since existing product improvement embodies incremen-

tal effort relative to new product development, we conclude that higher autonomy in terms

of budget creation leads to a portfolio strategy that is biased towards incremental projects.

A second conclusion focuses on how the NPD budget is controlled and directly impacts

profit and new product launch time. For these metrics, we show that budget control drives

two distinct strategies. When the manager is held accountable for budget overruns through-

out the development cycle the result is lower profit from more intense development effort
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and an accelerated new product launch. On the other hand, when the manager is held ac-

countable for budget overruns only at the end of the development cycle the result is higher

profit from less intense development efforts and a delayed product launch. Senior managers

should be aware that their choice of organization design mechanism will contribute to the

innovation and NPD efforts delivered by business unit managers.

Finally, business unit managers must be aware of changes in the marginal cost of capital

for NPD. This cost may represent the cost of monitoring NPD activities or the cost for

using external sources of funding. If a manager does not have autonomy in terms of budget

creation, then the best strategy in response to a higher marginal cost of capital is to reduce

efforts towards existing product improvement and new product development. However,

when given autonomy in terms of budget creation, the best decision depends on the amount

of time remaining the development cycle. Early in a development cycle, the best response

to a higher marginal cost of capital is to increase resource expenditure for existing product

improvement.

Whether considered from the vantage point of senior managers or business unit man-

agers, alignment between innovation strategy and the choice of organization design mecha-

nism can ensure that resources are effectively allocated to maximize value and competitive-

ness.
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CHAPTER VI

CONCLUSIONS AND OPEN RESEARCH QUESTIONS

Academics and practitioners have proposed a plethora of methods to attack the resource

allocation and NPD portfolio problem. A broad literature review suggests that quantitative

research efforts are constrained to the tactical or operational level of analysis and have not

been widely adopted in practice. Conversely, case-based frameworks and qualitative models

are widely used in practice, but lack rigorous theoretical foundations.

The fundamental contribution of this thesis is the explicit treatment of organizational

and behavioral elements that impact the resource allocation and NPD portfolio problem.

We adopt a hierarchical perspective and posit that the resource allocation and NPD port-

folio problem acquires a unique structure depending on the level at which the problem

is considered. The hierarchical perspective allows us to provide a rigorous link between

strategy (vision) and execution (money). In this final chapter, we draw conclusions from

the three studies that comprise this thesis. We then identify a number of open research

questions with respect to resource allocation and NPD portfolio management.

6.1 Overarching Insights

Beginning at the firm level, each study in this thesis considers the drivers of effective resource

allocation and NPD portfolio decisions at successively more detailed levels of analysis. We

begin with an analysis of the firms total R&D investment. Next, we analyze how the R&D

investment is partitioned into innovation focused “strategic buckets”. Finally, we analyze

how individual NPD programs are funded and how they evolve over time in an organization

setting that is defined by more or less autonomy. Below we highlight our primary conclusions

and contributions:

• At the highest level of analysis, we discuss how the NPD portfolio impacts the con-

sistency of R&D investment within an industry. This is an important theoretical
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contribution as it sheds additional light on a long standing question in the economics

of R&D investment. From the practical side, this study opens the door for managers

to understand the long-run impact of NPD portfolio strategy. Specifically, firm level

data such as cost of sales and overall NPD portfolio composition can be used to esti-

mate an equilibrium R&D intensity, which in turn can be used to estimate whether

firms are over or under investing in research and development.

• Having described where the firm’s R&D investment comes from, we analyze how it

should be partitioned between incremental and radical initiatives in the portfolio. We

establish how interaction complexity and environmental instability impact the value

of the innovation initiatives in a strategic bucket. Although environmental complexity

and instability both confound managers, we find that they have completely opposite

effects on the NPD portfolio balance. Environmental complexity shifts the balance

towards radical innovation. Conversely, environmental instability shifts the balance

towards incremental innovation.

• Finally, we explicitly account for the hierarchical nature of the resource allocation

and NPD portfolio problem through our study of organization design mechanisms

and their impact on resource allocation policies. We find that autonomy may lead to

a NPD portfolio that is biased towards incremental projects. This insight challenges

existing claims regarding autonomy, creativity, and innovation.

6.2 Open Research Questions

The studies in this thesis point to a set of open ended research questions associated with

resource allocation and NPD portfolio management. In general, the research community

should attempt to acquire a holistic view of the NPD portfolio problem. A holistic view

dictates that we recognize that different problem parameters are defined at different levels

of the organization hierarchy. In particular:

1. We need to develop methods that can shed light onto the structure of the underlying

performance landscape and measure the interactions among profit determinants at a
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strategic level. A number of efforts have tried to isolate specific influence factors, but

we feel that research here is at an embryonic stage.

2. The research methodologies must identify the notion of organizational hierarchy and

its impact on decisions. The infamous quote that, “resources are allocated to the man-

ager that screams the loudest” signifies that managers associate their career paths with

specific resource allocation and NPD portfolio decisions and that they may attempt

to “game” the system. Thus, we need to build additional intuition regarding the

incentive and motivation structures associated with NPD portfolio decisions.

3. The theoretical structures that look at isolated decisions in the NPD pipeline should

be extended to allow for a holistic process view. As a corollary to this thought, we note

that overall NPD portfolio value emerges from individual project outputs. Therefore,

we ought to look for new methods that aggregate individual project information into

an overall portfolio value. The classic DuPont framework for financial modeling is a

good starting point along these lines.

4. Finally, considerable effort should be invested to empirically assess the impact of

resource allocation and NPD portfolio strategy. Unfortunately NPD portfolio data

are extremely sensitive and often confidential because NPD portfolio decisions are

of vital importance to firm competitiveness. Nevertheless, secondary data (R&D

investment, key product characteristics, market variables) offer a reasonable starting

point for assessing the impact of NPD portfolio decisions.

We believe that the resource allocation and NPD portfolio problem remains largely an

open question especially at senior levels of decision making. We echo previous observations

from the research community that call for new approaches and methods that shed light on

the problem. it is essential that we understand the various steps required to operationalize

such a complex decision since the NPD portfolio directly impacts firm competitiveness.
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APPENDIX A

In A.1 we provide proofs for Propositions 1, 2, and 3 and in A.2 we provide details of the

experimental design for the evolutionary model. We restate equations from the manuscript

when necessary to ease exposition. As a convention, we denote the partial derivative of

any variable x with respect to its argument as x′ when the argument is unambiguous. We

denote the time derivative for any variable x as ẋ.

A.1 Proofs

The problem stated in Chapter 3 is solved using optimal control theory (Kamien and

Schwartz 1991, Sethi and Thompson 2000). Below we state the current value Hamilto-

nian (H):

H = [1 − c(t)]S(t) − r(t) + f [r(t)]

∫

∞

t

λ(τ)ω(τ − t)dτ − λ(t)δS(t) (7)

The necessary conditions for optimality are:

∂H

∂r
= 0 (8)

λ̇ − ρλ = −
∂H

∂S
(9)

Equation 8 is the necessary first-order conditions for the optimal R&D investment (r∗).

Equation 9 is the necessary condition for the co-state variable λ(t) (marginal value function

for sales). To conserve space, we do not reiterate the equations for Ṡ(t) and ω(·), which are

also necessary conditions. We can now state the proof for Proposition 1:

Proposition 1. Optimal R&D Investment. The optimal R&D investment, r∗, is defined

implicitly by ∂f/∂r∗
∫

∞

t
λ(τ)ω(τ − t)dτ = 1.

Proof of Proposition 1. The proof follows directly from the necessary condition in

Equation 8. Differentiating H with respect to r and setting this term equal to zero gives:

∂f/∂r∗
∫

∞

t
λ(τ)ω(τ − t)dτ = 1. The left hand side of this expression is the marginal
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expected benefit from a dollar invested in R&D . The right hand side of the expression is

the marginal cost of investing the dollar in R&D . Note that the marginal expected benefit

takes into account all future marginal benefits from the R&D investment (captured in the

term
∫

∞

t
λ(τ)ω(τ − t)dτ). QED.

Based on the result in Proposition 1, we seek long-run equilibrium values for the firm’s

R&D investment and sales rate. The necessary conditions for a long-run equilibrium are:

λ̇ = 0 (10)

Ṡ = 0 (11)

Proposition 2. Equilibrium R&D investment : r̄ = g−1 [(ρ + δ)/(1 − c)µ] where g−1(·)

is a decreasing and convex function defined by g(r) = ∂f/∂r. Equilibrium Sales Rate:

S̄ = f(r̄)µ/δ where f(·) is an increasing and concave function. Equilibrium R&D Intensity :

There exists an equilibrium R&D intensity given by: β̄ = r̄/S̄.

Proof of Proposition 2. To prove the first part of Proposition 2 we make use of Equations

9 and 10. These conditions define a long-run equilibrium for the co-state variable (marginal

value function): λ̄ = (1 − c̄)/(ρ + δ). Note that we have assumed that sufficient time has

passed so that ċ = 0 and the cost of sales has reached its limiting value. We now make use

of Proposition 1 and the expression for the optimal R&D investment. We can remove λ(τ)

from the integral because it is no longer a function of time. Also, recall that we define ω(·)

such that
∫

∞

t
ω(τ −t)dτ = µ. Finally, let ∂f/∂r = g(r) and note that g(r) is decreasing and

convex in r because f(r) is increasing and concave in r. We can now write the complete

expression for the equilibrium R&D investment as r̄ = g−1[(ρ + δ)/(1 − c̄)µ].

To prove the second part of Proposition 2 we make use of equation 11 along with the state

equation that defines the change in sales. This gives us
∫ t

−∞
f [r(τ)]ω(t−τ)dτ = δS̄. To find

the equilibrium sales rate we make use of the equilibrium R&D investment established above

and we note that
∫ t

−∞
ω(t−τ)dτ → µ as t → ∞. This leaves us with S̄ = f

[

g−1(1/λ̄µ)
]

µ/δ.

To prove that there exists an equilibrium R&D intensity given by β̄ = r̄/S̄ we consider

the locus of points in (S, λ) space for which the equilibrium conditions in Equations 10 and

11 are satisfied. The curve defined by the points for which Ṡ = 0 is an increasing and
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concave function of λ. Using similar logic, the curve defined by the points for which λ̇ = 0

is not a function of S. The point at which these two curves intersect in (S, λ) space defines

the long-run equilibrium R&D intensity. QED.

Proposition 3 is a comparative statics analysis for β̄. The comparative statics allows us

to understand the factors that drive lower or higher equilibrium R&D intensity.

Proposition 3. Comparative Statics Analysis for R&D Intensity : β̄ is higher if: (i) δ is

higher, (ii) µ is lower, (iii) f(·) is lower, (iv) c̄ is lower, (v) ρ is lower.

Proof of Proposition 3. To ease exposition we provide a complete expression for the

equilibrium R&D intensity:

β̄ =
r̄

S̄
=

g−1[ ρ+δ
(1−c̄)µ ]δ

f
[

g−1[ ρ+δ
(1−c̄)µ ]

]

µ
(12)

We prove each part of Proposition 3 in succession. (i) ∂β̄/∂δ > 0. (ii) ∂β̄/∂µ < 0. (iii)

∂β̄/∂f(·) < 0. (iv) ∂β̄/∂c̄ < 0. (v) ∂β̄/∂ρ < 0. QED.

A.2 Experimental Design for the Evolutionary Model

In this section we detail the functional forms, parameter values, and experimental design for

the evolutionary model described in Section 3.4. The functional form of f(r) ensures that

R&D productivity is subject to diminishing returns. The functional form of the time lag

of R&D effectiveness is a Gamma function with parameters (n1, n2). Note that µ ∈ (0, 1)

limits the total effectiveness of R&D investment.

f(r) = A
[

1 − e−r
]

(13)

ω(t) = µ
nn2

1 t(n2−1)e−n1t

(n2 − 1)!
(14)

Figure 26 depicts the experimental design for the base case experiment as well as each

experiment E1-E5. For each experiment, we report the parameter value that changes rel-

ative to the base case (all other parameters are the same as the base case experiment).

Throughout the simulation there are a number of parameters that remain static. In each
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experiment we limit the number of firms to N = 500 and we employ 100 replications to

account for any initialization bias. We also fix the shape parameter for ω(t) at n1 = 2.

Finally, we hold static the percentage of firms that are killed and the percentage of new

firms that enter the population at x = 0.05. The convention that population size remains

constant is aligned with other work in evolutionary systems and population dynamics.

Simulation of the evolutionary model takes place through a discrete time approximation

to the analytic model. The following steps take place in period t = 0, 1, 2, . . . for each firm

i = 1, 2, . . . , N :

1. Each firm determines its R&D investment: ri = βiSi

2. The R&D investment has a stochastic outcome on sales, which depends on the time

lag in R&D effectiveness: Si(t + 1) = (1 − δ)Si(t) +
∑t

τ=0 fi[ri(τ)]ωi(t − τ).

3. Firm profit is calculated: Πi =
[

1− c̄i

]

Si(t)− ri(t). The lowest x% of firms (in terms

of profit) are eliminated from the population.

4. New firms enter the population with random sales (Si), cost of sales (c̄i), and per-

period sales decline (δi). Portfolio strategy πi = {fi(·), ωi(·), µi} is copied randomly

from one of the top performing firms (top x% in terms of profit).

The above process of variation, selection, and retention takes place until the system reaches

steady state, which we define as the period after which parameter values do not change by

more than 0.50% for 100 consecutive periods. Steady state is achieved at or around t = 100

for the majority of experiments.
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Figure 26: Initial parameter values for the evolutionary model.
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APPENDIX B

In B.1 we provide proofs for Propositions 1, 2, and 3. In B.2 and B.3 we provide extensions

of the analytic model based on a search for the best possible performance and a classic

two-armed bandit. Finally, in B.4 we provide details of the experimental design for the

simulation. We restate equations from the manuscript when necessary to ease exposition.

B.1 Proofs

Recall that the expected performance for an m period commitment (considered at t = 0)

to an NPD initiative of type d was derived as:

Jd
0 =

[

−c(d) + rp(d)V̂ (d)
] 1 − rm[1 − p(d)]m

1 − r[1 − p(d)]
(15)

Proposition 1. Behavior of NPD Program Return Curves. Jd
0 is increasing and concave in

m. Furthermore, for d1 < d2, Jd1

0 > Jd2

0 for m = 1 provided that p(d1)V̂ (d1) > p(d2)V̂ (d2)

and c(d1) < c(d2). Additionally, there exist threshold values p̄ and p such that p(d1) > p̄ >

p > p(d2) ⇒ Jd1

0 < Jd2

0 as m → ∞.

Proof of Proposition 1. We assume that Jd
0 is continuous in m and r = 1 to ease

exposition. To see that Jd
0 is increasing and concave in m note that the only term in

Equation 15 that is a function of m is a(m) = 1 − [1 − p(d)]m, so it suffices to analyze this

term. Differentiating with respect to m gives da/dm = −[1−p(d)]mln[1−p(k)] > 0 because

p(d) ∈ (0, 1). Similarly, d2a/dm2 = −
(

ln[1 − p(d)]
)2

[1 − p(d)]m < 0. Since da/dm > 0 and

d2a/dm2 < 0, a(m) is increasing and concave in m and so is Jd
0 .

Jd1

0 > Jd2

0 for m = 1 follows directly by letting m = 1 in Equation 15. To see that

Jd1

0 < Jd2

0 as m → ∞ first note that m → ∞ implies that [1 − p(d)]m → 0. From Equation

15 we are left to show that
[

− c(d1)+ p(d1)V̂ (d1)
]

1
p(d1) <

[

− c(d2)+ p(d2)V̂ (d2)
]

1
p(d2) . The

threshold values p̄ and p imply that for sufficiently high p(d1) and sufficiently low p(d2)

this inequality holds. The conditions on p(d1) and p(d2) make sense because d1 represents
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incremental innovation and d2 represents radical innovation. QED.

Having described the structure of the NPD program return curves, we now turn our at-

tention towards a comparative statics analysis for the crossing time. We define the function

f(m) as the difference between Jd1

0 and Jd2

0 :

f(m) =
[

−c(d1) + rp(d1)V̂ (d1)
] 1 − rm[1 − p(d1)]

m

1 − r[1 − p(d1)]
(16)

−
[

−c(d2) + rp(d2)V̂ (d2)
] 1 − rm[1 − p(d2)]

m

1 − r[1 − p(d2)]

We note the following properties without providing a formal proof: provided a crossing

time exists, at m̄ we have Jd1

0 = Jd2

0 . For m < m̄ we have Jd1

0 > Jd2

0 ⇒ f(m) > 0 and for

m > m̄ we have Jd1

0 < Jd2

0 ⇒ f(m) < 0. Proposition 2 is a comparative statics analysis

of m̄ in order to understand the factors that make incremental or radical innovation more

favorable.

Proposition 2. Comparative Statics Analysis for m̄. The threshold time, m̄, is higher

when: (i) V̂ (d1) is higher, (ii) p(d1) is higher (iii) c(d1) is lower, (iv) V̂ (d2) is lower, (v)

p(d2) is lower, (vi) c(d2) is higher.

Proof of Proposition 2. First, note that if an m̄ exists it is unique since the individ-

ual NPD program return curves are increasing and concave in m, Jd1

0 > Jd2

0 for m = 1,

and Jd1

0 < Jd2

0 as m → ∞. The differential of m̄ with respect to any parameter x is

dm̄/dx = −(∂f/∂x)/(∂f/∂m). Furthermore, we know that ∂f/∂m < 0 at m̄. For nota-

tional convenience let V̂i = V̂ (di), pi = p(di), and ci = c(di) for i = 1, 2 and assume that

r = 1.

We provide a proof for each part of Proposition 2 in succession. (i) ∂f/∂V̂1 = 1 −

[1 − p(d1)]
m > 0 ⇒ dm̄/dV̂1 > 0. (ii) ∂f/∂p1 = (−c1 + p1V̂1)∂/∂p1{[1 − (1 − p1)

m]/p1} +

[1 − (1 − p1)
m]V̂1/p1 > 0 ⇒ dm̄/dp1 > 0. (iii) ∂f/∂c1 =

(

− 1 + [1 − p(d1)]
m

)

/p(d1) <

0 ⇒ dm̄/dc1 < 0. (iv) ∂f/∂V̂2 = −1 + [1 − p(d2)]
m < 0 ⇒ dm̄/dV̂2 < 0. (v) ∂f/∂p2 =

−(−c2 + p2V̂2)∂/∂p2{[1 − (1 − p2)
m]/p2} − [1 − (1 − p2)

m]V̂2/p2 < 0 ⇒ dm̄/dp2 < 0. (vi)

∂f/∂c2 =
(

1 − [1 − p(d2)]
m

)

/p(d2) > 0 ⇒ dm̄/dc2 > 0. QED.

Recall that the difference between incremental and radical NPD program performance
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for the renewal process defined by technological and market disruptions is given by

∆J =
q

1 − qrt
f(t) +

1 − q

1 − qrt
f(m) (17)

Proposition 3. Technological and Market Disruptions. For t < m̄ < m, ∆J is a increasing

function of q. Furthermore, there exists a q̄ ∈ (0, 1) such that q < q̄ ⇒ ∆J < 0 and

q > q̄ ⇒ ∆J > 0.

Proof of Proposition 3. We focus on the case of t < m̄ < m because any case in

which m < t is trivial. Also, the cases in which m̄ < t < m and t < m < m̄ result

in a straightforward choice between incremental and radical innovation regardless of the

disruption probability.

For t < m̄ < m, f(t) > 0 and f(m) < 0. From Equation 17 we can write limq→0 ∆J =

f(m) < 0 and limq→1 ∆J = 1
1−rt f(t) > 0. To prove that there exists a unique threshold

probability q̄, we are left to show that ∂∆J/∂q > 0. After some algebraic manipulation we

get ∂∆J/∂q = f(t)+f(m)[rt
−1]

(1−qrt)2 > 0. The final inequality follows because f(t) > 0, f(m) < 0,

and rt < 1. QED.

B.2 Maximum Value Extension

In this section we provide an alternative probabilistic structure that shows the robustness

of our result. Consider that the two alternative types of innovation can be viewed as draws

from an extreme value distribution (Gumbel distribution). The reason for the specific

distributional assumption stems from the need to obtain a closed form expression for the

distribution of the maximum value (for a more thorough discussion of extreme value theory

and the Gumbel distribution see Dahan and Mendelson 2001). Let the expected performance

for an m period commitment (considered at t = 0) to an NPD program of type d be denoted

by Jd
0 . If the F (·) are distributed according to a Gumbel distribution, we can state the

following:

Jd
0 = E

[

max{F (ω1), . . . , F (ωm)}
]

= µd + βdγ + βdln(m) (18)

where µd represents the location parameter of the Gumbel distribution, βd the scale param-

eter, and γ is the Euler-Mascheroni constant.
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The NPD program achieves a higher value (on expectation) with each period that passes.

It is a straightforward exercise to show that Jd
0 is increasing and concave in m. Now,

contemplate the equivalence between our theoretical framework and the current structure.

For m = 1 the result is Jd
0 = µd + βdγ. As before, we assume that incremental innovation

delivers higher immediate benefit (similar to our assumption that −c(d1) + p(d1)V (d1) >

−c(d2) + p(d2)V (d2). This implies that for d1 < d2 and m = 1 we have Jd1

0 > Jd2

0 .

Mathematically, this condition translates to µd1
+βd1

γ > µd2
+βd2

γ for m = 1. We assume

that variance is higher for the radical innovation efforts because of the widespread search.

For the Gumbel distribution this implies that βd2
> βd1

. Under these circumstances we

can state the following: there exists a crossing time, m̄, such that prior to m̄ incremental

innovation achieves higher expected performance and after m̄ radical innovation achieves

higher expected performance.

When NPD program performance is the maximum possible value achieved over a finite

horizon (rather than a search for a target value) the intuition is similar to Proposition

1. Note that an underlying assumption here is the independence of the draws, which is

consistent with our belief that managers do not have explicit knowledge regarding how the

different performance attributes map to the performance function. Still, managers must

engage in innovation efforts to improve product performance.

B.3 Multi-Armed Bandit Extension

In this section we provide an alternative formulation of the model. This extension considers

a period-by-period decision regarding the type of innovation effort (incremental or radical)

to pursue in each period of a finite horizon problem. We will show that the length of

the horizon impacts the tradeoff between incremental and radical innovation. Specifically,

we will show that for short horizon problems, it does not make sense to pursue radical

innovation. Conversely, as the length of the horizon increases, there exists a threshold

policy under which radical innovation makes sense. This intuition is similar to the result

established in the manuscript.

We build this model using the same definitions established in §4.3 of the thesis. Let
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V̂i = V̂ (di), pi = p(di), and ci = c(di) for i = 1, 2. For any d1 < d2, recall the following

assumptions: V̂1 < V̂2, p1 > p2, c1 < c2, and p1V̂1 > p2V̂2. These assumptions are equivalent

to saying that incremental innovation has lower potential value, higher probability of suc-

cess, and lower cost relative to radical innovation. Also, the expected value of incremental

innovation is greater than the expected value of radical innovation (p1V̂1 > p2V̂2). Finally,

let υ1 = −c1 +p1V̂1 and υ2 = −c2 +p2V̂2 be the single period payoff (net of the cost of inno-

vation) for each type of innovative effort. Based on our assumptions, υ1 > υ2. Thus, from

a standpoint of short term financial metrics, incremental innovation dominates. Consider a

firm that attempts to improve product performance over a finite horizon t = 0, 1, 2, . . . , T .

We can write the firm’s decision problem in any period t as:

Jt = max{υ1 + (1 − p1)Jt+1, υ2 + (1 − p2)Jt+1} (19)

with boundary condition JT = 0. We define a policy as a choice of the type of innovative

effort in each period: π = {k∗

0 , k
∗

1 , k
∗

2 , . . . , k
∗

T−1} where k∗

t ∈ {I,R} is the optimal choice

between incremental (I) and radical (R) innovation at each decision epoch t.

In the final decision epoch we have JT−1 = max{υ1, υ2} and the optimal choice is

k∗

T−1 = I. Working backwards, when two periods remain in the decision horizon we have

JT−2 = max{υ1 + (1 − p1)υ1, υ2 + (1 − p2)υ2} and the optimal choice is

k∗

T−2 =











I if υ1−υ2

υ1
> p1 − p2

R otherwise
(20)

When three periods remain in the decision horizon we have JT−3 = max{υ1 + (1 −

p1)J
∗

T−2, υ2 + (1 − p2)J
∗

T−2}. Using the information for k∗

T−2 and k∗

T−1 the optimal choice

at t = T − 3 is

k∗

T−3 =











I if υ1−υ2

J∗

T−2

> p1 − p2

R otherwise
(21)

Of the potential sub-policies for the final three decision epochs, we will show that

{I,R, I} is not a feasible policy. The intuition behind our analysis is that there exists

one and only one switch between radical and incremental innovation (once incremental in-

novation is chosen, it is chosen for the remainder of the horizon). The following condition
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is necessary for {I,R, I} to be a feasible policy:

υ1 − υ2

υ2 + (1 − p2)υ1
> p1 − p2 >

υ1 − υ2

υ1
(22)

The left inequality establishes the optimal choice of incremental innovation in period T − 3

and the right inequality establishes the optimality condition for {k∗

T−2, k
∗

T−1} = {R, I}.

Based on this we can write:

υ1 − υ2 > (p1 − p2)[υ2 + (1 − p2)υ1]

> (p1 − p2)[υ1 + (1 − p1)υ1]

= υ1(p1 − p2)[1 + (1 − p1)]

> (υ1 − υ2)[1 + (1 − p1)] (23)

The final inequality in Equation 23 is a contradiction because [1 + (1− p1)] > 1. Thus, the

sub-policy {k∗

T−3, k
∗

T−2, k
∗

T−1} = {I,R, I} is not feasible. Therefore, the only sub-policies

that are feasible for the final three decision epochs are {I, I, I}, {R, I, I}, and {R,R, I}.

This logic can be repeated for each preceding decision epoch. We state the conditions for a

threshold policy in the following Claim.

Claim. There exists a period m after which incremental innovation is always chosen. If

1 + (1− p1) + . . . + (1− p1)
m−2 > (υ1 − υ2)/(p1 − p2), radical innovation is chosen in every

period until period m.

Proof of Claim The proof is by induction on m. Assume that k∗

T−m = I if (υ1 − υ2) >

[1+(1−p1)+ . . .+(1−p1)
m−2](p1−p2) and k∗

T−m+1 = I. We will show that k∗

T−m−1 = I if

(υ1 − υ2) > [1 + (1− p1)+ . . . + (1− p1)
m−1](p1 − p2). The value function for t = T −m− 1

is JT−m−1 = max{υ1 + (1 − p1)J
∗

T−m, υ2 + (1 − p − 2)J∗

T−m}. This results in

k∗

T−m−1 =











I if υ1−υ2

J∗

T−m

> p1 − p2

R otherwise
(24)

The proof that k∗

T−m−1 = I if k∗

T−m = I and 1+(1−p1)+. . .+(1−p1)
m−1 < (υ1−υ2)/(p1−p2)

is straightforward. If instead k∗

T−m = R then we have υ1+(1−p1)J
∗

T−m > υ2+(1−p2)J
∗

T−m.

However, an alternate policy would imply J∗

T−m > υ1[1 + (1 − p1) + . . . + (1 − p1)
m−2] and

we obtain a contradiction as in Equation 23. QED.
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B.4 Simulation Experimental Design

Figure 27 shows the parameters and value used for the simulation experiments in §4.5. The

choice of N = 15 and S = 2 define the size of the technology/market landscape. Because

our interest lies in understanding complexity in terms of performance interactions rather

than size, we have limited these variables to static values. This assumption is in line with

other work in complex performance landscapes and it does not alter the qualitative results

of our study. The contribution of each attribute to overall product performance is U(0, 1)

to account for the fact that managers cannot infer the performance function. Research

on complex performance landscapes has shown that the landscape structure is robust with

respect to the choice of distribution for the fj. In particular, the landscape structure is

similar if fj ∼ N(µ, σ2) or fj ∼ exp(λ). Our full experimental design varies K, d, and s as

shown in Figure 27. This results in 15 x 15 x 27 = 6075 experiments. In order to conserve

space in the manuscript we cannot show the results for every combination of K, d, and s.

Instead, we show results that highlight robust phenomena. A complete data set is available

from the author by request.

E n v i r o n m e n t a l s t a b i l i t y ( w i t h p r o b a b i l i t y 1 � sa d i s r u p t i o n w i l l o c c u r i n e a c h p e r i o d )S e a r c h d i s t a n c e f o r N P D p r o g r a m sN u m b e r o f i n t e r a c t i o n s b e t w e e n p r o d u c ta t t r i b u t e sC o n t r i b u t i o n o f e a c h a t t r i b u t e t o o v e r a l lp r o d u c t p e r f o r m a n c eN u m b e r o f s t a t e s p e r a t t r i b u t eN u m b e r o f a t t r i b u t e s p e r p r o d u c tD e s c r i p t i o nP a r a m e t e r a n d V a l u eN = 1 5S = 2f j , U ( 0 , 1 )K 4 0 , 1 , 2 , . . . , N ; 1{ }d ? 1 , 2 , . . . , N{ }s H 1 . 0 0 0 , 0 . 9 9 9 0 , 0 . 9 9 8 0 , . . . , 0 . 9 7 5 0{ }
Figure 27: Parameters and values used for the simulation experiments.
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Because our analysis is focused on dynamic phenomena, the standard error for NPD

program performance is a function of time. Thus, we provide bounds for the standard error.

In our case, σ̂2 ∈ (0, 0.004) and n = 500. This gives a standard error of SE ∈ (0, 0.00283).

In the worst case situation, this results in a 99.0% confidence interval for NPD program

performance. In many cases, the confidence interval approaches 99.9% and theoretically,

the confidence inteval approaches 100% for a number of experiments.

Note that our simulation analysis results in NPD program performance curves that are

increasing and concave in time and we do not optimize with respect to commitment time.

Assuming that the per-period cost of innovation is constant, such an optimization would

result in an optimum commitment time for each type of innovative effort (increasing and

concave performance and linear cumulative cost). If the crossing time between incremental

and radical NPD program performance occurs before the minimum optimal commitment

time, our insights are valid. If the crossing time occurs after the optimal commitment

times the problem becomes very complex as a function of the costs. Figure 28 depicts NPD

program performance net of per period costs in an environment where K = 4 (the dashed

line begins at the optimal commitment time). Despite the fact that K = 4 in both graphs,

the difference in costs results in a different crossing time. Still, we feel that our insights

regarding performance (revenue) are robust and contribute to the understanding of how

value is created by NPD programs.

d = 1 a n d c = 0 . 0 0 0 1 0d = 1 5 a n d c = 0 . 0 0 0 1 5
( a ) K = 4 w i t h l o w c o s t ( b ) K = 4 w i t h h i g h c o s t

d = 1 a n d c = 0 . 0 0 0 2 0d = 1 5 a n d c = 0 . 0 0 0 3 0
Figure 28: NPD Program performance net of per period costs.
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APPENDIX C

In C.1 we provide proofs for Propositions 1-7 and in C.2 we provide details of the exper-

imental design for the numerical analysis. We restate equations from the chapter when

necessary to ease exposition.

C.1 Proofs

Each organization design mechanism πi defines a different structure for the problem stated

in equation xxxx on page xxxx of the text. The problem is solved using optimal control

theory (Kamien and Schwartz 1991, Sethi and Thompson 2000). Below we state the the

Hamiltonian (H) and salvage value function (Φ) for each organization design mechanism.

πLOW : H = R − C1 − C2 + C3 + λ1p1 + λ2(1 − α)p2 + λ3(B − C1 − C2) (25)

Φ = V1 + V2 + Z(T )

πM1 : H = R − C1 − C2 + C3 + λ1p1 + λ2(1 − α)p2 + λ3(βR − C1 − C2) (26)

Φ = V1 + V2 + Z(T )

πM2 : H = R − C1 − C2 + λ1p1 + λ2(1 − α)p2 + λ3(B − C1 − C2) (27)

Φ = V1 + V2 + Z(T ) + C3[Z(T )]

πHIGH : H = R − C1 − C2 + λ1p1 + λ2(1 − α)p2 + λ3(βR − C1 − C2) (28)

Φ = V1 + V2 + Z(T ) + C3[Z(T )]
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The necessary conditions for optimality are:

∂H

∂p1
= 0 (29)

∂H

∂p2
= 0 (30)

λ̇1 = −
∂H

∂P1
and λ1(T ) =

∂Φ

∂P1
(31)

λ̇2 = −
∂H

∂P2
and λ2(T ) =

∂Φ

∂P2
(32)

λ̇3 = −
∂H

∂Z
and λ3(T ) =

∂Φ

∂Z
(33)

H(T ) +
∂Φ

∂T
= 0 (34)

Equations 29 and 30 are the necessary first-order conditions for the decision variables p∗1

and p∗2 respectively. Equations 31, 32, and 33 are the necessary conditions for the co-state

vaiables (marginal value functions for P1 , P2 , and Z respectivly). Finally, equation 34 is

the necessary transversality condition for T ∗ (the optimal new product launch date), which

is stated in general form here. For the sake of brevity, we do not restate the state equations,

which also form part of the necessary conditions.

Proof of Proposition 1. We begin with a proof of part (iii) of Proposition 1. For

πLOW and πM1, Equation 33 gives λ3(T ) = 1 and λ̇3 = −∂C3/∂Z < 0 ⇒ λ3 = 1 +

∫ T

t
(∂C3/∂Z)dx > 0. For πHIGH and πM2, Equation 33 gives λ3(T ) = 1 + ∂C3/∂Z and

λ̇3 = 0 ⇒ λ3 = 1 + ∂C3/∂Z > 0. For part (i) of Prosposition 1, we provide a proof for πM1

(proofs for the other organization design mechanisms follow the same reasoning). For πM1,

equation 31 gives λ1(T ) = ∂V1/∂P1 > 0 and λ̇1 = − ∂R
∂P1

[1 + βλ3] < 0 ⇒ λ1(t) = ∂V1/∂P1 +

∫ T

t
∂R
∂P1

[1+ βλ3]dx > 0. For part (ii) of Proposition 1, note that for any organization design

mechanism, πi, Equation 32 gives λ̇2 = 0 and λ2(T ) = ∂V2

∂P2
> 0 ⇒ λ2(t) = ∂V2

∂P2
> 0. QED.

Proof of Proposition 2. From Equation 29, the necessary condition for p∗1 is ∂C1/∂p1 =

λ1/(1 + λ3). Let f1(p1) = ∂C1/∂p1. Then, by the implicit function theorem: dp1/dt =

[∂f1/∂p1]
−1[−λ1λ̇3/(1 + λ3)

2 + λ̇1/(1 + λ3)] where ∂f1/∂p1 = ∂2C1/∂p2
1 > 0. To prove

part (i) of Proposition 2, note that for πHIGH and πM2, λ̇3 = 0, λ3 > 0, and λ̇1 <

0 ⇒ dp1/dt < 0. To see that p∗1 is convex for πHIGH and πM2, note that d2p1/dt2 =
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[∂f1/∂p1]
−1[λ̈1/(1+λ3)] > 0 where the final inequality follows from the fact that λ̈1 = −(1+

βλ3)[(∂g/∂P1)(dP1/dt)+∂g/∂t] > 0 for πHIGH and λ̈1 = −[(∂g/∂P1)(dP1/dt)+∂g/∂t] > 0

for πM2 where g[P1(t), t] = ∂R/∂P1. Part (ii) of Proposition 2 follows the same reasoning

and the conclusion is that p∗1 is convex-decreasing if Eλ1
= λ̇1λ3/λ̇3λ1 > 1 and p∗1 is convex-

increasing if Eλ1
= λ̇1λ3/λ̇3λ1 < 1. Part (iii) of Proposition 2 follows from Equation 30.

The necessary condition for p∗2 is ∂C2/∂p2 = λ2(1 − α)/(1 + λ3). Let f2(p2) = ∂C2/∂p2.

Note that ∂f2/∂p2 = ∂2C2/∂p2
2 > 0 because C2 is convex-increasing. Again, by the implicit

function theorem: dp2/dt = [∂f2/∂p2]
−1[−λ2(1−α)λ̇3/(1+λ3)

2−λ2α̇/(1+λ3)] > 0. Careful

examination of dp2/dt shows that for any organization design mechanism, dp2/dt > 0. QED.

Proof of Proposition 3. At any time t during the development cycle, Equation 29 gives

p∗1 = f−1
1 [λ1/(1 + λ3)] where f(p1) = ∂C1/∂p1. Note that f−1

1 (·) is an increasing function

of its argument given our assumption that C1[p1(t)] is convex-increasing in p1(t). We prove

each part of Proposition 3 in succession: (i) ∂p∗1/∂c̄1 < 0 where c̄1 = ∂2C1/∂p2
1. This

follows directly from the definition of f1(·). (ii) ∂p∗1/∂r̄ = (∂λ1/∂r̄)(1 + λ3)
−1 > 0 where

r̄ = ∂R/∂P1. (iii) ∂p∗1/∂δR = (∂λ1/∂δR)(1 + λ3)
−1 < 0 where δR = ∂R/∂t. (iv) ∂p∗1/∂v̄1 =

(∂λ1/∂v̄1)(1 + λ3)
−1 > 0 where v̄1 = ∂V1/∂P1. (v) ∂p∗1/∂δV 1 = (∂λ1/∂δV 1)(1 + λ3)

−1 < 0

where δV 1 = ∂V1/∂T . (vi) ∂p∗1/∂β = (∂λ1/∂β)(1+λ3)
−1 > 0. (vii) For organization design

mechanisms πLOW and πM2, ∂p∗1/∂C3 = −λ1(1 + λ3)
−2(∂λ3/∂c̄3) < 0 where c̄3 = ∂C3/∂Z.

For organization design mechanisms πHIGH and πM1:

∂p∗1/∂c̄3 =
−λ1∂λ3/∂c̄3 + (1 + λ3)∂λ1/∂c̄3

(1 + λ3)2
(35)

The fact that the numerator of 35 may be positive or negative leads to the existence of

threshold times tcHIGH and tcM1. A relationship between the threshold times can be estab-

lished by noting the effects of a unit increase in c̄3. For πHIGH a unit increase in c̄3 implies

that the numerator of Equation 35 is −λ1 + (1 + λ3)β
∫ T

t
r̄dx. A little algebra leads to the

following condition: ∂p∗1/∂c̄3 > 0 if β
∫ T

t
r̄dx

/

(∂C1/∂p∗1) > 1. For πM1 the same reasoning

leads to the following condition: ∂p∗1/∂c̄3 > 0 if β
∫ T

t
r̄(T − x)(T − t)−1dx

/

(∂C1/∂p∗1) > 1.

Both of these expressions represent a trade off for Z(T ) in terms of instantaneous cost of

effort p∗1 versus the ability of that effort to create NPD budget over the remainder of the
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development cycle. To see that tcHIGH ≥ tcM1 note that (T − x)(T − t)−1 ≤ 1. Therefore,

for a given p∗1, the inequality for πM1 would become equality at a smaller value of t, which

leads us to tcHIGH ≥ tcM1. QED.

Proof of Proposition 4. The proof for Proposition 4 follows exactly the same reasoning

as that of Proposition 3. To conserve space, we omit the proof for Proposition 4.

Proof of Proposition 5. Recall that we define a crossing time, t∗, as the time during

the development cycle when p∗1 = p∗2. In what follows we have assumed a quadratic cost

functional for C1[p1(t)] and C2[p2(t)]. The proof for general convex-increasing cost functions

follows the same reasoning but is more tedious. From Equations 29 and 30, p∗1 = λ1/c̄1(1 +

λ3) and p∗2 = λ2(1 − α)/c̄1(1 + λ3) where c̄1 = ∂2C1/∂p2
1 and c̄2 = ∂2C2/∂p2

2. We can then

write p∗1 = p∗2 for each organization design mechanism and t∗i is defined implicitly as follows:

πLOW :

∫ T

t∗
LOW

r̄dx = c̄1v̄2(1 − α)/c̄2 − v̄1 (36)

πM1 :

∫ T

t∗
M1

r̄

[

1 + β

∫ T

x

∂C3

∂Z
dτ

]

dx = c̄1v̄2(1 − α)/c̄2 − v̄1 (37)

πM2 :

∫ T

t∗
M2

r̄dx = c̄1v̄2(1 − α)/c̄2 − v̄1 (38)

πHIGH :

∫ T

t∗
HIGH

r̄

[

1 + β
∂C3

∂Z

]

dx = c̄1v̄2(1 − α)/c̄2 − v̄1 (39)

Where r̄ = ∂R/∂P1, v̄1 = ∂V1/∂P1, and v̄2 = ∂V2/∂P2. Note that the right hand sides

of Equations 36 - 39 are equal. Therefore, it suffices to compare the integrand for each

expression to determine the relative order of the crossing times. For πLOW and πM2 the

integrands are equal and t∗LOW = t∗M2 to ensure that the right hand sides remain equal.

For πHIGH and πM1, there is an additional non-negative term inside the integrand, which

implies that t∗LOW = t∗M2 ≤ t∗HIGH and t∗LOW = t∗M2 ≤ t∗M1 to ensure that the right hand

sides remain equal.

In order to compare t∗HIGH and t∗M1 we make the additional assumption that C3[Z(T )] =

c̄3Z(T ) for πHIGH and C3[Z(T )] = (c̄3/T )Z(t) for πM1. Under these assumptions of linear

C3(·), the left hand side of Equation 37 reduces to
∫ T

t∗
M1

r̄
[

1 + βc̄3(T − x)T−1 T−x
T

]

dx and
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the left hand side of Equation 39 reduces to
∫ T

t∗
HIGH

r̄
[

1 + βc̄3

]

dx. Since (T − x)/T ≤ 1 we

can conclude that t∗M1 ≤ t∗HIGH to ensure that the right hand sides remain equal. QED.

Proof of Proposition 6. The proof for Proposition 6 relies on the assumption of a lin-

ear functional form for C3(·). In particular, we let C3[Z(T )] = c̄3Z(T ) and C3[Z(t)] =

(c̄3/T )Z(t). Note that we scale the cost parameter c̄3 to account for the length of the devel-

opment cycle. This ensures that any difference in p∗1 across organization design mechanisms

is due to the method of control rather than the absolute cost of control. Given the form of

C3(·), we can write p∗1 for each organization design mechanism as follows:

πLOW : p∗1 =
v̄1 +

∫ T

t
r̄dx

c̄1

[

2 + c̄3(T − t)/T
] (40)

πM1 : p∗1 =
v̄1 +

∫ T

t
r̄
[

1 + β
(

1 + c̄3(T − t)/T
)]

dx

c̄1

[

2 + c̄3(T − t)/T
] (41)

πM2 : p∗1 =
v̄1 +

∫ T

t
r̄dx

c̄1

[

2 + c̄3

] (42)

πHIGH : p∗1 =
v̄1 +

∫ T

t
r̄
[

1 + β
(

1 + c̄3

)]

dx

c̄1

[

2 + c̄3

] (43)

Where r̄ = ∂R/∂P1, v̄1 = ∂V1/∂P1, c̄1 = ∂2C1/∂p2
1, and c̄3 = ∂C3/∂Z. Let p∗1,i denote

the optimal rate of effort towards improving the existing product under design mechanism

πi. Comparing these expressions at t = 0 it is apparent that p∗1,LOW = p∗1,M2 < p∗1,M1 <

p∗1,HIGH . Likewise comparing the expressions at t = T it is apparent that p∗1,LOW = p∗1,M1

and p∗1,HIGH = p∗1,M2. For t ∈ (0, T ), we have p∗1,M2 = p∗1,LOW because the numerators for

these expressions are equal and c̄1[2 + c̄3] > c̄1[2 + c̄3(T − t)/T ]. Similarly, for t ∈ (0, T )

p∗1,LOW < p∗1,M1 because the denominators for these expressions are equal and β[1 + c̄3(T −

t)/T ] > 0. QED.

Proof of Proposition 7. The proof for Proposition 7 relies on the assumption of a linear

functional form for C3(·). As before, we let C3[Z(T )] = c̄3Z(T ) and C3[Z(t)] = (c̄3/T )Z(t).

Note that we scale the cost parameter c̄3 to account for the length of the development cycle.

This ensures that any difference in p∗2 across organization design mechanisms is due to the

method of control rather than the absolute cost of control. Given the form of C3(·), we can
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write p∗2 for each organization design mechanism as follows:

πLOW : p∗2 =
v̄2(1 − α)

c̄2

[

2 + c̄3(T − t)/T
] (44)

πM1 : p∗2 =
v̄2(1 − α)

c̄2

[

2 + c̄3(T − t)/T
] (45)

πM2 : p∗2 =
v̄2(1 − α)

c̄2

[

2 + c̄3

] (46)

πHIGH : p∗2 =
v̄2(1 − α)

c̄2

[

2 + c̄3

] (47)

Where v̄2 = ∂V2/∂P2, c̄2 = ∂2C2/∂p2
2, and c̄3 = ∂C3/∂Z. Let p∗2,i denote the optimal rate

of effort towards developing the new product under design mechanism πi. Comparing these

expressions at t = 0 it is apparent that p∗2,LOW = p∗2,M1 = p∗2,M2 = p∗2,HIGH . Furthermore,

for t ∈ (0, T ] we have p∗2,LOW = p∗2,M1 > p∗2,M2 = p∗2,HIGH because (T − t)/T < 1 for all

t ∈ (0, T ]. QED.

C.2 Numerical Analysis and Experimental Design

A complete experimental design is provided below. The functional forms employed in the

numerical analysis are as follows:

R[P1(t), t] =
r̄P1(t)

1 + δ̄Rt
α(t) =

1

1 + ᾱt
C1[p1(t)] =

1

2
c̄1p

2
1(t) C2[p2(t)] =

1

2
c̄2p

2
2(t)

C3(·) = c̄3

[

1 − exp
(

− c̄3Z(t)
)]

for πLOW and πM1

C3(·) = c̄3T
[

1 − exp
(

− c̄3Z(T )
)]

for πM2 and πHIGH

V1[P1(T ), T ] =
v̄1P1(T )

1 + δ̄V 1T
V2[P2(T ), T ] =

v̄2P2(T )

1 + δ̄V 2T

The parameter values for the base case experiment are as follows:

r̄ = 0.025 δ̄R = 0.03 ᾱ = 0.10 c̄1 = 1.25 c̄2 = 1.50 c̄3 = 0.05

BLOW = 0.025 βM1 = 0.10 BM2 = 0.025 βHIGH = 0.10 v̄1 = 1.0

v̄2 = 4.0 δ̄V 1 = 0.03 δ̄V 2 = 0.03 P1(0) = 10 P2(0) = 0 Z(0) = 0
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