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A BLADE ELEMENT ANALYSIS FOR LIFTING ROTORS THAT IS
APPLICABLE FOR LARGE INFLOW AND BLADE ANGLES AND

ANY REASONABLE BLADE GEOMETRY

By Walter Castles, Jr. and Noah C. New

Daniel Guggenheim School of Aeronautics
Georgia Institute of Technology

SUMMARY

Simple approximate solutions are derived for the relationships be=~
twoeen the rotor thrust and flight-path velocity components and the rotor
torque and in-plane forces, These approximate solutions, based upon the
assumption of a triangular distribution of blade circulation and a linear
variation of blade=-element profile drag with 1ift, are sufficiently ac-
curate for performance estimation and the determination of the equilibrium
angle of attack and lateral tilt of the tip-path plane.

A set of more exact blade-slement equations are then derived giving
the relations between the thrust and flight-path velocity components and
the equilibrium blade angles, torque, and in-plane forces and moments,
Neither the blade element nor the approximate solutions are dependent up-
on the usual approximations that the inflow angle, ¢ » and blade angle,
é s, of the blade elements are small angles, Thus the present equations
should be useful for convertaplane as well as helicopter calculations.,

It appears that nonlinear blade twist may be desirable for a con-~
vertaplane rotor in order to obtain useful propeller efficiencies. There-
fore, the blade~-element equations have been arranged so that any reasonable

distribution of blade twist may be used., Also, the equations were set up



in terms of an arbitrary blade-chord distribution since it was found that
the use of the actual blade-chord distribution and the elimination of the
usual assumption that the blade airfoil extended inboard to the axis of
rotation largely eliminated the necessity for the usual reverse~flow cor-
rections, Tables of the necessary factors are included for blades having
a linear taper, linear twist, and an airfoil contour from r = 0,16 R to

r = R, and for blades having a linear taper, helical twist, and airfoil
contours extending from r = 0,20 R to r‘= R.

The present analysis is based upon the following approximations:

1. The blade-~element lift coefficient may be assumed to be propor=-
tional to the sine of the blade~element angle of attack, and the blade-
element profile drag coefficient may be represented by the first three
terms of a Fourier series in the blade-element angle of attack.

2, The blade axes may be assumed to be;, and to remain, straight lines.

3, The lateral and longitudinal variations of the normal component
of the induced velocity at the tip-path plane may be assumed to be linear.

4, The effects of compressibility on the tip sections of the advanc-
ing blade may be neglected.

5, The radial and tangential components of the induced velocity may
be neglected,

6, Blade tip effects may be neglected.

A comparison of the results given by the present equations with the
full-scale helicopter test data of reference 1 shows that the equations
are of useful accuracy for the helicopter flight range covered in that
reference, At the present time there are nd experimental data available

to check the accuracy of the equations in the convertaplane flight range.



INTRODUCTION

This project, sponsored by the National Advisory Committee for Aero-
nautics and the Georgia Tech Engineering Experiment Station, was undertaken
in order to develop a blade=element analysis for lifting rotors that would
be useful for convertaplane as well as helicopter calculations. This ne-
cessitated the elimination of the usual approximations that the blade-
element'inflow angle, ¢ , and the blade angle, & , are small angles
and required a reasonably exact treatment of the blade geometry.

It was found that the small angle approximations could be eliminated

for the lift forces by writing the lift coefficient of the blade element as

C, = asmocy,=als & cos G+ CoS G SIN P )
and, consequently, the thrust component of force, CZZ.C05‘¢&,, on & blade

element as

dlcospy, =5Lallcos ¢,,,)[9/m§,’,, (Ucosda) + cos G, (Usin ¢4,_)7€ ar

since (/cos ¢/u~ and {/S/m ¢,y~ » the in-plane and normal components of
velocity at the blade element perpendicular to the blade axis and measured
with respect to the tip-path plane, can be simply expressed in reasonably
exact form., Similarly, the tangential component of the 1lift on a blade

element may be expressed as

P
dlsing,=5rPalUsing, )[r/n G, (Vcosg,)+cos§, (Usin ¢,,,)] cdr
It was also found that the small angle approximations could be largely
eliminated and a considerable simplification effected for the helicopter

.flight conditions by expressing the blade-element profile drag coefficient,



Cd, = Eo+ E,5/10C,. + £ 05T,

It follows that

e v N\

+ &, (Vcos ¢4,)[5//7 4, (Vcos ¢,,,) +cos@, (Vs ¢,V/f/’

+ & (Ucos ¢5,,,)[ cos@, (Ucos,) =5 G (Usm ¢4*J}

US17) Gar\2
where the radical, “/ as ?c_bfg,,)

s> may be approximated by the
first two terms of its binomial expansion.

For the more severe convertaplane flight conditions, counsiderable
error is introduced by éropping third and higher terms of the binomial
expansion, since <&, is of the order of 0,50 for the three term ap-
proximation. Thus, for those flight conditions where //|,1,./> 0,10
it becomes more accurate to use the two-term approximation for the pro-
file drag coefficient, cq = &, sinoC, + ¢ cosoC, for which the
geometry is "exact". This is permissible since the relative effects of
the profile drag become less important as the propeller condition is ap-
proached.

The exact blade geometry has been retained throughout by expressing

the blade~-chord and blade-twist distribution in the form of the following

constants:



//
/ n=/
CZ-;};//CX X
X,

/
0,’,C=7;§?-/C cosé x” ™ dx
%
/
and Oy = i [Cstn 8, x 7 dlx
Xy

where é% = blade twist in the angle of zero lift between the reference
statson and nondimensional radius, x .

Values of these constants are given in tables 4, 5, and 6 for blades hav=~
ing linear taper, linear twist and x, = 0,156 and for blades having linear
taper, helical twist and x, = 0,20,

The present system of equations has been set up with respect to tip-
path-plane coordinates or cocrdinates based on the virtual axis of rotation
rather than the usual coordinate system based on the plane of zero feather-
ing in order to obtain shorter expressions for the in-plane rotor forces
and moments. The use of coordinates aligned with the virtual axis of ro-
tation also facilitates the treatment of some accelerated flight problems,

Certain refinements in the induced velocity theory, as given in
roference 2, have been incorporated with some minor changes in the present
equations along with the necessary terms for an arbitrary angular velocity
of roll and pitch of the tip-path plane,

Standard N.A.C,A. nomenclature has been used where possible, with the

subscript, n~ , for virtual axis of rotation appended to the usual symbols



which, in this paper, have a similar meaning but different numerical

values.,
NOTATION
(Note: All angles are in radian measure)
a slope of lift curve for blade element at 0.75 R (per radian)
&g rotor coning angle
E; coning angle for zero blade~root bending moment
8 the coefficient of the sine component of the blade=cyclic-~
pitch angle measured with respesct to the tip-path plane
where
G, =Aot b —a,siny + b cosy
also the coefficient of the cosine term of the Fourier
series for the blade-flapping angle, ﬁ? , measured with
respect to the plane of zero feathering where
B = Ao~ acosy-bSiny -aycoscy-bySin 2y~
ap coefficient of the second harmonic cosine term in a Fourier
series for the blade-flapping angle
Ay mean blade-pitch angle at reference station, positive above
tip~path plane.
b number of blades in rotor
b coefficient of the cosine component of the blade-cyclic-pitch

engle measured with respesct to the tip-path plane,



Co
cd

Ce

also coefficient of the sine term of the Fourier series for
the blade=flapping angle measured with respect to the plane
of zero feathering

coefficient of the second harmonic sine term in the Fourier
series for the blade~flapping angle

blade chord at radius, r

extended blade-root chord at r = 0 (for linear taper)

section profile~drag coefficient

section=~1ift coefficient

rotor relling-moment coefficient measured about X axis

(Crx = Eﬁﬁwzgﬁf )

rotor pitching-moment coefficient measured about Y axis

(C)’?s« B Eipff};%ﬁr )

u _ &
rotor torque coefficient (C(P = PrlRE
rotor thrust coefficient (CT = 70;,__;2_2/74)

rotor X-force coefficient (CA’ = 7
/"77;(23/?'*

F
roter-blade tangential force coefflclent (CXy —— A

2rr R

p031t1ve in direction of rotation
tor Y-f tricient (Cy = . F‘ﬁ!"’é”"“"‘“ )
rotor Y=-force coefficien i E"/aﬂ"_Q A)‘f
rotor=blade thrust force coefficient Cy = )
(¢z /077122/?"
mean blade-drag angle positive in the direction of rotation
and measured between the blade axis and line through rotor
axis of rotation and drag hinge.

(i.e. blade-drag angle, ¥ , is £ = f.:o'i"f cos /'7—5/09"7“"



el

g

tip chord

coefficient of cosine term in expression for blade-drag angle

coefficient of sine term in expression for blade-drag angle

component of rotor resultant force acting along X axis

tangential component of the resultant air force on a blade,
positive in direction of rotation.

component of rotor resultant force acting along Y axis.

Z component of the resultant air force on a blade

acceleration of gravity

distance between longitudinal fuselage axis taken through c.g.
and rotor hub, measured along the normal to the fuselags
axis.

mass moment of inertia of a blade about the flapping hinge.

0o sin A+ O cos A,

nc ns

Ops sin Ay = U, cos Ag

mass moment of inertia of rotor about virtual axis of rotation

mass moment of inertia of a blade about the drag hinge.

blade-root spring constant (blade-root bending moment in foot
pounds divided by angular deflection in radians of 3/4 R
point from ';5 )

rotor torque, negative in direction of rotation

radius of blade element, ¢ dr

radius of blade c.g.

radius of flapping hinge

radius of blade tip

/ (for linearly tapered blades)
To



Xy

Oy

rotor thrust, component of rotor resultant force along Z axis

component of the resultant velocity at a blade element that is
normal to the blade axis

mean normel component of the induced velocity at the tip-path
plene (positive down and to the rear)

velocity along flight path

Z component of the induced velocity at r, y ,
(positive in the + Z direction)

nondimensional slope of the longitudinel induced velocity
variation

gross weight plus down component of any acceleration force
acting on aircraft

nondimensional blade radius, _%_

nondimensional radius of inboard blade airfoil element

nondimensional slope of the lateral induced velocity variation

angle of attack of fuselage measured between flight-path
velocity vector and longitudinal fuselage axis

blade-element angle of attack measured from line of zero lift '

angle of attack of the tip-path plane measured in the X-Z
plane between the flight-path velocity vector and the tip-
peth plane, positive below tip-path plane

blade-flapping angle at azimuth angle,
(for tip-path plane G~ Qo~ApC0S 2y ~ bpS1h 2y -+

(for plane of zero feathering

B=a,-a,co5p-b,sny ~a,cos2y-b,5m2 ¢ -

)

)



N

circulation of a blade element at radius, 77 , and azimuth

angle, (V

}/7 constants in expression for /°  where / = (7Z>+/75%09V))f

& o3

value of cd, at ‘Qh =0

O

constant in linear approximation for Cd,
(6. Cup = dp €T )

é;)észﬁ constents for first three terms of Fourier series expressing
the relation betwsen 4, and o<
(ie80 CTy,= o7 &, St 0, +E5 COS OCp
or Ty, = E,SIN0C, + &y COSOC,

F blade-drag angle at azimuth angle, &/ , positive in direction
of rotation

é% twist in zero-lift chord line between axis of rotation and blade
tip for blades with linear twist, positive for increased angle
at tip ( i.e. Gu= 8 x)

5%. twist in rotor-blade angle of zero lift between reference sta-

tion and radius, 7~ , positive for larger angle outboard

é%r design helix angle at tip of blade for blades with helical
twist
6%, pitch angle of blade element at radius, 7~ , and azimuth

angle, {4/ , measured between zero-lift chord line and tip-
path plane, positive above tip-path plane
(Gp=Ao+ 8B~y Sinyw + b, cos @)

é%y angular displacement of tip-path plane about X axis from

horizontal

- 10 -



nc

O'ns

angular displacement of tip-path plane about Y axis from
horizontal

inflow-velocity ratio at center of tip-path plane

in-plane velocity ratio at tip-path planse

— Vcos oC
(i = Ve05 0
‘/
/ h-/
i;7?:/<;77( a x » (constants which express the

4

blade-chord distribution)

{
(iee. G = 7 [ C dx

X,
/
_ /
b= 7R/ TX dx c?ﬁ'c.)
X,
/,/
/ -~/
| T cos G X" dx
X,
(constants which express the
/ blade-chord and twist
1 n-J e
TR ’C~9//V(9i¢ X7 d x distribution)
X,

angle between flight path and horizontal, positive below

horizontal

- 11 -



inflow angle at blade element measured in a plane perpen-
dicular to blade axis and between tip-path plane and
relative wind, positive below tip-path plane.

azimuth angle of blade axis measured about Z axis from X axis
(Note: This angle is very nearly but not identically equal
to the equivalent angle in the plane of zero feathering.)

angular velocity of roll of tip-path plane about X axis

angular velocity of pitch of tip-path plane about Y axis

mean angular velocity of rotor-blade axis about Z axis

- 12 -



ANATYSIS AND DISCUSSION

Value of the Normal Component of the Induced Velocity at Radius, r ,

and Azimuth Angle, (L .

o’

It is shown in reference 2 that for a lightly loaded single rotor
composed of a large number of blades, b , sach hawving a circulation

given by the expression
=0+ ] smmy (1)

the mean value of the normal component of the induced velocity is
/
Z MR Cr
R v s
- 2
(/ E#”)VAm*ﬂm

o= (2)

Equation 2 was derived on the assumption that the wake extended to-
infinity and had the form of a straight elliptic c¢ylinder. Thus, for
those flight conditions where a "vortex ring" type flow exists, equation
2 is not applicable and the value of 2~ must, at present, be obtained
from experiment. The term (7 = j;;xléi ) in the denominator of
equation 2 arises from the lateral dissymmetry in the blade circulation
that is required for rolling moment equilibrium, and this term is the
only correction which the elementary theory makes in Glauert's original
hypothesis that ~2* = 7/£/°/4 V/

If the distribution of the normal component of the induced velocity,

Vz s, over the tip~path plane be denoted by a power series in the non-

dimensional radius, X , and a Fourier series in the azimuth angle, w ,

such that for the first order terms

- 13 -



.._.Z(_‘-_:-— s

QR NR T Xcosy t+tyXSsiny (3)

it can be shown from the results of reference 2 that

A —-jt[(/—/.a,uf,)ym/—/gff — V/,i—fj =@

and

M, AR (5)

For level flight and AL . > 0.15 the expression for 1}4 may be sim-

plified to

Yy = C (6)

It may be noted that for a pair of equally loaded, coaxial, counter-

rotating rotors, the wvalues of 44>~ and /gf are

o A — %D//+;"(-A”f)2 — ]/(//%ffr)z E/%" (7)

and /y =0 (8)

Approximate Values of the Rotor Torque, X Force, and Y Force Coefficients

It is convenient for performance estimation and checking, and neces-

sary, in the general case, for the determination of the angle of attack

- 14 -



and lateral tilt of the tip-path plane, to have expressions of useful
accuracy for the rotor torque, X force, and Y force that are independent
of the rotor-blade angles. One such set of equations which take into ac-
count all the principal variables may be obtained from a consideration of
the distribution of the blade circulation. It may be noted before procsed-
ing that the major part of the rotor torque and X force, which arises from
the component of velocity normel to the tip~-path plane acting on that
large portion of the blade circulation which does not vary with azimuth
angle, is independent of the radial distribution of the blade circulation
for constant thrust and only a function of the magnitude and distribution
of the inflow velocity. Consequently, since the magnitude and distribu-~
tion of the inflow velocity are fixed by the flight-path velocity, angle
of attack of the tip-path plane, and the assumptions as to the magnitude
and distribution of the induced velocity, any reasonable approximation for
the radial and agzimuth distributions of the blade circulatidn, /7 , at
radius, ¥ , and azimuth angle, ¢/ , should give useful results. A
triangular distribution of [ along the radius and a sinusoidal variation

with azimuth angle would appear to be a reasonable approximation. Then
S1= R+ sim)x (9)

and the rotor thrust, T , is

2T R

/= E—ir—bﬁ—//{/co‘y¢m(/;+/7\f//79/)}"d9’dr (10)
o o

- 15 -



But (/cos P, = (LR (x My 5177 i) (11)

or Cr—m 2 i (12)

Similarly the rotor rolling moment, M, , which must be approxi-
mately equal to zero for unaccelerated flizht, is

Bﬂ“,g

My = Bfr/? ///cos¢M(P +1$/n gz)r‘ Sin gdydr (13)

or for My =0

S== 5 (1)
/7 3 o A
and from equations 12 and 9

2 ya
/T = 31{7)7“(—/9_/’15)7" (/- 3,—/1,1,\5//79/))( (15)

The value of the blade element profile drag coefficient, ¢4, » may
be represented with sufficient sccuracy by two terms of & power series

in the blade-element 1ift coefficient, 122 s Such that
Tyy = do 7€ (18)

where 6; and &  are determined from the values of ¢4, at say
'Cz =0 and 'C£ = 0.7,

Then the rotor torque, Q , is

- 16 -



g R

= —%///Ufmgﬁ,yf’rdgy ar

e o

27 R

b
‘I'Z,f/ Ucos @, "rdydr

o o

27 R

0’%05;75”,1:/” dy dr - (17)

£b &
t T
s &

sut Lsin @, =_(Z/?[/\f,, + Curx = @yl )COS Y +y )’J‘mgf] (18)

Thus
L — J e B 2 )
- S Gy At FETTE M
) - E
i -
+ 5680+ E (4 +ul)a a9y

/

) -
where O)'? = ﬁ“ (O :Yh /d)'

X
For linearly tapered blades the values of U;; may be obtained by in-

terpolation from table 1. Similarly the rotor X and Y forces are

- 17 =~



2m R

fé//U&m B sty dyy dr

fx == 57
o 0
27 R
+ —g%—f— U cos ¢, sy dydr
o
er A
’%dﬁ"//u ca;gé”c\rmy/o’g/dr (20)
and
am _R

/ Usivn g, Ncosy dy dr

£b cos $u. ['cosy dydr

o o0
,%‘f"//(/ cos;éﬂ,,'c coswdy dr (21)

and the values of the coefficients are

(22)

Fx _CTEA/U“/D"— +C(/V‘
X ( ///_34*6/‘&;35‘#”05

CX - AP QBRY

2
B a"/‘ﬂ.’z (23)

and
_ £ _ (A~
C, A '775_(2&/;4 - /"/A,i



where

7P R C (g +F 045 03)
O b_Z'/ 0\}

Equations 19, 22, and 23 for the torque, X~force, and Y-force coefficients
should yield useful results provided there are no large areas of the rotor
outside the reverse~flow region where the blade elements are stalled. It
will be noted that the lateral induced-velocity variation has a relative-
ly large eoffect on the magnitude of the X force, Table Z shows a com-
parison of the calculated rotor torque coefficients and tip-path plane
angles of attack, calculated from the X-force coefficients given by the
above approximate equation, with the experimental values of reference 1
having C:T 2 ,00545. Table 2 also shows a comparison of the values of
Cx and Cy calculated from the above equations with the more exact val-
ues from the blade-element equations derived in later sections.

Determination of the Angle of Attack and Lateral Tilt of the Tip-Path

Plsne,

Given the flight path velocity, V , climb angle, (o , gross
woight and vertical component of the inertia force, W , fuselage‘
and wing drag, 1lift, moment characteristics, and position of center of
gravity: the fuselage angle of attack and thus the fuselage and wing
lift, Lg , and drag, Dp , can be obtained for the trim condition by
setting the summation of moments, acting on the fuselage and wing and
taken about the rotor hub, equal to zero. Since the lateral tilt of the
tip-path plane has a negligible effect, it follows from the geometry of

the above forces, as shown in figure 2, that

o 19 =



fan & =~ D COs Pe =L £ S1n e t/:;(COS_z%_.,:_

¥ " WoL,.C05 §o-be S+ 51 &y (24)

is & good approximation for unaccelerated flight. In general, the terms
involving Fy will have only & small effect on the value of é9y, and
a sufficiently exact solution can be obteained on the second iteration.,

Thus, as a first approximation,

_ Decospe -Lringe

Lan Gy = W-Lzc08@.-DrSin &, (22)
OC;,_ - ¢c 7“5?, (26)
C — W "LF CoS ’%&“DF‘S‘//) ¢C (27)
T rrQER%cos 5’7
- Vcoscoc
AL, = R V1 Vg (28)
— VSs/nocC, VOa
A T ToR T QaRr (=)

o
The values of 0OR - may be obtained from equation 2 or by double
interpolation from table 3 which includes the experimental values for

vertical descent from reference 3 and estimates of the values for the

- 20 -



inclined flight "vortex ring" states. The values of w , y , and
F, can then be determined from equations‘4, 5, and 22, and from these
the second approximations to the values of 57 » X -, and U, cen

be made from equations 24, 26, and 28. If necessary, a new value of Cp

may then be obtained from the equation

_ W-oLlrcoS @ —DeSin pe +Fysn8, 3
Cr PrSERY CoS Bay 4 )

and thus the more exact value of /t¢p from equation 29,

For helicopter calculations the first approximation for CT is
sufficiently accurate, and if/lewp is small (i°e°/0%» < 0,15) the effect
of Fy onoC,,. may be neglected for level flight.

The tail-rotor thrust, TT » required for a helicopter with a single

main rotor is

77-.- = -—g——' (31)

where .12 = perpendicular distance betwsen axis of main and tail
rotors and the value of CQ may be obtained from equation 19. The later=-
al tilt, ézk s of the tip-path plane for & single~rotor aircraft in

unaccelerated flight is thus

A
Ox ~ ?‘LC?,’*‘J Co 2 (32)
T

where Cy 1is given by equation 23.
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The Application of Two-Dimensional Airfoil Theory and Data to Rotor-

Blade-Element=Calculations.

Two-dimensional thin-airfoil theory demonstrates that

T, = aAS/HcC (33)

ya

For a two~dimensional cascade of airfoils, equation 33 is modified
by a multiplying function of the solidity, chord spacing, and blade'angles
that is very nearly unity for average lifting=-rotor configurations as
shown in reference 4. Thus, within the approximation thet the radisl
components of flow may be neglected; equation 33 should be applicable
for blade-element rotor theory over the unstalled range of blede-element
angles of attack. Beyond the stall, equation 33 is somewhat less in error
then the ususl relation, {:2 = CC , as can be seen from figure 3
which is a plot of the above expressions and the experimental values of

121 versus o for a NACA 0015 airfoil. The use of equation 33,
rather than the usual approximstion that T, = @oC , allows the thrust
snd tangential components of lift on a blade element to be exactly ex-
pressed, within the approximations involved in neglecting radial com-
ponents of the flow, in terms of the easily integrated in-plane and
normal components of the velocity at the blade element, lcos ¢;r s
and LAS//??@V_ . Thus the usual approximation that the inflow angle,
4&4~ » 15 a small angle may be eliminated. This may be demonstrated as
follows:

Omitting the negligible component of the profile drag, the thrust,

dT , on a blade element, ¢ dr , is

d7‘=EL/°UBc'C£ cos @, dr (34)
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or since
T, = A S/inoc,= a (s, cosd, +cos8, s/ ¢4,) (35)

dT:éﬂac(Ucos¢V)[J‘/nQ,,[Uco: ¢”)+c05@,(ﬂy/n¢”ﬂdr (36)

The tangentiel component of the 1lift on a blade element may be similarly

expressed as

dLsing, <Elfat(Ysmn ¢”)[rm @,{Uao& ¢,,)+ cosB, (Usim ¢,,,_)] dr  (37)

The value of‘the slope of the lift curve, & , of the blade-element
airfoil in the above relations may be taken as the value corresponding
to the Reynolds number, Mach number and surface roughness existing at
the 3/4-radius point of the rotor blades under consideration. For the
usual tip speeds, in the 500-feet-per-second range, the Prandtl-Glauert

Nach number correction

A = e (38)
Vi—~nr2
/
where <L = low Mach number lift-curve slope from two-dimensional
wind tunnel tests
M = freestream Mach number at 3/4-b1ade radius

may be used to correct the lift-curve slope from low Mach number data.
The values of 1240 obtained from two-dimensional wind tunnel tests

at appropriate Reynolds numbers and model surface roughness should be

directly applicable to rotor-blade-element calculations in the unstalled

range of angles of attack below the Mach numbers and angles of attack
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for drag divergence, since the effect of subsonic Mach number on profile
drag is negligible as shown in reference 5. However, the two-dimensional
values of 1%10 in the high angle-of-attack range around o€ = 90°
should probably be reduced from values of the order of 1.8 to values of
the order of 1.2 due to the narrow span of the high angle-of-attack
regions of the rotor blade and the equalizing effects of spanwise flow

on the normal pressures. This effect may be seen in the variation of the
drag coefficient of flat plates normal to the flow from a wvalue of 2.0
for the two-dimensional plate down to about 1.4 for the square plate.

In view of the errors in the magnitude and distribution of the blade
circulation that arise from the necessary neglect of blade deflections, etc.,
it is probably not justifiable to take into account secondary effects of
the profile drag. Thus, expressing the relation between the profile-drag
coefficient and the blade-element angle of attack by the first three terms

of a Fourier series gives

Cao = Eg + &, $1n0c,. + & cos o<, (39)

The constants in the above equation may be evaluated from the two-
dimensional wind tunnel data for the blade airfoil at say ©C = 0°, 59,

and 10°. The advantages of equation 39 over the usual expression,

are: the latter two terms of equation 39 can be exactly expressed in the
known velocity components Ucos ¢,,,. and /S/n ¢,,, ; the resulting

expressions for the forces and moments on the blade are considerably
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gimplified by the absence of the squared term in cx:; ; and it is an
equally accurate approximation to the experimental values of °d, as
may be seen from figure 4 (page ). However, in using equation 39
it may be noted that the calculated value pf cdo is the small differ-
ence between large éuantities and thus the values of,<fo s ,éf, s> and
é&i s should be détermined to four places in order'to obtain the
value of cq, to the customary accuracyo For the more severe conver=-
taplane flight conditions where the inflow velocity is large ( /An,} >
0,10) a certain errdr arises in the treatment of the ‘Eo termé, and it
is necessary to fall back on the two-term approximation for Cdp »
cq, = &, 3//700,.7"536050(1,. » where &, and 62 are evaluated from
the experimental data at say ol = 2° and o€ = 7°. This additional
approximation is permissible for thesé flight conditions, since the rela-
tive effects of the profile drag become less important as the inflow ve-
locities and rotor blade angles incxieaseo For example, in propeller cal-
culations the single point approximation, Cdg = 6?122 s 1is uéglly used.,
It follows from the geometry and equations 35 and 39 that the tan-

gential component of the profile drag on a blade element may be ex=-

pressed as

d Docos ¢, = 7 Pc (Vcos 4,) {éaU
1-6,[( Ycos ¢,‘,)J‘m 4. +(Usin B, cos 5,,,]

*52[( Ucosg,)cosE, —(Vsin ¢,V).svn 49@7}41“ (40)

- 25 =



Thrust of a Blade at Azimuth Angle,

The thrust, F'E s, of a blade at azimuth angle, > 1s

R
/2= EL/OQ/C(UCOJVJ”[(UCOJ¢,,,)$M€,.v‘-(l/.sm;é,,)caségdr (41)

R

In the general case it follows from the geometry that

Ucos ¢, = LR (x+/u,,,d‘m ) | (42)

and Usin @, =J2H[/\,,,+[,w~x + e, X - a, ) cos g

t oy ~x)Xsimy+ 2 X Cos8y

“La,xS/n 2y (43)
where C{JX = angular velocity of tip=-path plane about x axis
C()g— = angular velocity of tip-path plane about y axis.

Neglecting the higher harmonics of the cyclic pitch that may arise
from control system linkages, the pitch angle, 6,,, > of a blade

element ar radius, r , and azimuth angle, s measured with re-

spect to the tip=-path plane, is

8, =As+6, —a,sn g+ b cosy (44)
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where ,40 =

6y -

a, =

In the general

mean blade-pitch angle at reference station.

twist in rotor-blade angle of zero 1lift between
reference station and radius, r

minus the coefficient of the sine component of the
blade cyclic-~pitch angle measured with respect to
the tip-path plane.

coefficient of the cosine component of the cyclic-
pitch angle measured with respect to the tip-path
plane.

case (i.e. for the convertaplane) A, and &

may not be small angles, However, it appears that the magnitude of the

cyclic-pitch angle will always be limited by tip stall on the retreating

blade to the range where it is a good approximation that

S/h (’d, SIny +bcosw)=-a,smyt b cosy (45)

and COS (-a,smy+é, cosy)

|

il
~.

(46)

It follows from equation 44; upon expanding the functions sin 6&, and

cos (9,v_ » that

S/77 6’4,:-[5//7/!0+ cosA,(a,siny+ b COJ‘L}Q} cos &,

+Hceos A, -J‘M/Io(—a,smywé, ca;z/»)]\f/n A (47)
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cos B, =|cos Ay = Sin Ay (-a,smy +b co.rgvﬂco.f Gy

.

-—E‘/”/}o + ca:/}oéa,.swy yrb co:c/]&m G (48)

Substituting the values of (/cos ¢/r’ Usin ¢,V s SN 6,1,. and

cos ng— from equations 42, 43, 47, and 48, in equation 41, defining
!
X
/
Go=—[cx"smb, a (50)
rs R ¢ aXx
A
Lne = Qo S0 Ay + G cos A, (51)
Ly = TposinA, = 0. cosh, (s2)
and multiplying out the terms and reducing the functions of to
F3
harmonic form gives for the thrust coefficient C
& * T2 FrrfR Y
of one blade at an azimuth angle, l}/ s the expression of equation 53:

- 28 -



—68-—

Cz/aq = | Lauation S3
L Ise dec I VED __Ies Lis |
; /+7a, (7 - £ (a,tay)b, s, ,_?/ (. Q) hor a1, H(a, 0018 émebJ _‘g_’-(/’; /-ch./)\;: |
X o
- éb,(ur fcu7) - EL(L, 5‘3 y75 «}-é(a,be-a‘..b,)(g-wx) ‘Bi(a,aé f-b,be)do/a”
Gpltytarr a),#) @;d” A Tf-L‘Za 5, /‘/i a, -(7 "wA’) (2,6,-a,4)4, ( ‘% a//“ar‘/\m)/‘m
Siny ' +F aly oy Dt
i e C Y "'wx) - éb,(wfw? AL, LY
) AL Fnaslh - lerey) o | bt
-62[6/ +,w~+a)}) *a/-b_,(g; o, +(z, aef—é,éz)/{,,,
— T, T
s 211';:_2/—4’ (Mfw?) ~Geraap, | "2 by s +i‘2& (g = 22,) @0l prr | & %o A
ey 1582 ' X
-Eb,(%—w,,) reay A, ~23b Car v ) -é(w+w?)/aM
L/ -£2b
Faly-en) Gagrablu.Eahoms,| E ‘;7._60 | |Terabblu,
COSBY ) — %Y X
-3 é,{/r‘/“f'a)y} _36‘3/44, +6,62(wa7) f-é'(?—&&)/lﬂ,,
! 2 2
N "‘7‘—”7(’7'6‘),:)/‘# ¥ 4, b =3 Ay My
Sm&#'i - —,;f-b, (mfwl) Ao
) ’ — e
§ “:Ta,éw-vtaly)/zﬂ, 1}/’40 a/ﬂj ?/ b, My
CO53y;

Gy -oxdu,




Equation 53 is written in tabular form where the coefficients in the

boxes must be multiplied by row and column heads. Values of U,. and
a, may be obtained by interpolation from tables 4 and 5 for linear-
hs Y

ly tapered and twisted blades, where

T = C(1+tx) from x = 0,156 to x = 1 (54)

G =6x | (55)

a; = 7;-%—’ (56)
and Tp = eoxtended blade-root chord at r = 0

r = tip chord "y

CO

H

9, twist in angle of blade zero 1lift between axis of
rotation and‘tip
In order to use the tabulated values of U,. and Uy for blades with
linear twist and taper, it is necessary to take the reference blade-pitch
angle, Ay , at the extended blade-root chord, /Co sat r = x = 0.
The use of the lower limit, X, = 0,15, in the computations for the
blades having linear taper and twist corresponds to present practice and
largely eliminates the necessity of making any reverse-flow correction to
the blade thrust, The reverse~flow effects are discussed in the following
section,
Additional tables, 6 and 7, give the values of U,. and g5 for

blades having linear taper from x = 0,20 to x = 1 and heliecal

twist where

- 30 -



&

n

tanﬁj<21221£2F) (57)
x

design helix angle at x = 1

In this case, the reference station for A  1is taken at the blade tip.

o
The tables for helical twist are included for convertaplane usage since
helical twist would appear to be desirable for a reasonable propeller ef-
ficiency. An inner limit of X, = 0,20 was used for the computation of
the values of O, and Jpg for this case of helical twist in order to
minimize the severe root stall likely to occur under some convertaplane
flight conditions, It might be pointed out that helical twist would also
appear to afford an increase in helicopter-rotor performance over that ob-

tainable with linear twist,

Reverse-Flow Considerations

For normal helicopfer and convertaplane flight conditions where there
is & downflow through the rotor and g%} is negative over the reverse-flow
region, the maximum value of /Lgv, is limited to relatively low values of
the order of 0,30 by tip stall on the retreating blades. Under these con=-
ditions the portion of the retreating blade extending inboard from the
outer edge of the reverse-flow region at x = - &, S/ where the in-
plane companent of velocity is zero, to x = x, , where the blade-airfoil
section ends, has a negligible thrust loading because the in-plane compo-
nents of velocity are very small., The present equations take into account

the fact that the blade airfoil does not exist inboard of x = x, , for

¢
which region the in-plane components of velocity are larger, within the

reverse-flow circle, and previous equations srred in assuming the blade

airfoil to exist.
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For those flight conditions where there is an upflow through the
rotor and the tip-stall limitations on /L,V are relaxed, the present e=-
quations give the proper direction to the blade-element thrust for those
blade elements within the reverse-~flow region and ingide the radius where

b, X268, .
Thus, for all practical purposes, it is not necessary to use reverse-

flow corrections when applying the present equations to conventional rotors.

Mean Rotor Thrust

Omitting the coefficients of the second harmonic flapping angle which
have a negligible effect on the mean rotor thrust, the value of the mean

rotor thrust coefficient obtained from row 1 of equation 53 is

2Cr .
ab *[lféd/(/y‘wx)',‘ng,6¢¢,~+¢.}7_)]ch +Fa, b ptne Lo

+:él—( a/’\/u +/“4r)/“/zr-z/c __[;{/z/-_a//‘ﬂr"/' ?(7 - wA’)/u /”'J IBS (58)

Mean Rotor Air-Rolling Moment

The value of the mean rotor air-rolling moment coefficient,,sz s
about the X axis

Mx
Fro QPR

where C/,,x =

is found, upon integration, to be obtained by multiplying the second row
of equation 53 by ,'gL b and writing the subscripts of Inc and I,,S to

one higher order.
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Thus,

EC””’ ['2/4,,,7#4/\”/4—%&(/ W 7'5//‘"*’0) >/“457ch

L P
4 a, b//u/u- IBC + (d, —7 +C‘JA’)I’7‘S

+ (7% Ay fy, ™ An/')/u’rw'z-ﬂé‘ (59)

Mean Rotor Air-Pitching Moment

Similarly, the mean rotor air-pitching moment coefficient

— Moy
Cry. = ZPrsSERS

obtained from the third row of eguation 53 is

8 Cln [.b /l” %al(’a’*f&) )/unr+’f 6 (’1{ Q)X)/“V’]I.?C

/ =

- A 2
Ao flop L35 T b//u’ArIE.S (60)

Mean Blade-Root Air Moment

The coefficient, C’Mo , of the blade-root air moment, /Va s 1is

merely the first row of equation 53 with the I factors to one higher sub-
Mo
g pd
FPrQ°R

script. Thus; for Chm =
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——Q’ﬂ?—— [/+ a@ %)'_ (e + e ]I:,ec*ada/%/‘mlsc

T2 (d A ‘f;a/u')/unr‘z;’c [;\ 2y "-B (’# ,y)/a/v]-z:;s (61)

Equilibrium Values of the Mean Rotor Pitching Moment and Rolling Moment

Wi th three or more b/ades
If an external moment, /7, » be applied to a single rotorAabout a

diameter, axis 1, the differential equations of motion about axis 1 st
W = 4 ,andaxis 2at ¢ = ¢ + 90° can be shown by the use

of Euler's equations to be

dw, by, _ M
ar TSl Z, - I (62)

Cd+"“f;"=0 (63)

where (J, and 4, are the angular velocities of the tip-path
Plane about axes 1 and 2, respectively.
/4, &, and }20)3 are the damping moments
I/zr— is the mass moment of inertia of the rotor about the
virtual axis of rotation.
The general solution of equations 62 and 63 is s pair of equations of the

form

K+
&0z Bs/n}fﬂ Ly ke Ap"') ¢ +BcosfR®- (%' 2 ) lj@ e

(64)
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In the actual case, damping of the nutation appears to be very rapid
for an articulated rotor., Also, for pilot-controlled motion, A&a = 0,
For example, for a constant control moment, M, , J@E = 0 and .J@ ==E!21;,

the value for critical damping

w = E4E e *F (65)
-
cwp = F (/- e %) (6)

It can be seen from equations 65 and 66 that the transients decay very
rapidly and their effects can be neglected in most problems. Therefore,

to a good approximation for a single rotor

My =1, 0 w,}+//xf (67)
/1y = -Imfzwxwf—/‘/?f (e8)

where /fo and J/ny are any moments trangmitted about the X and
Y axes from the fuselage to the rotor.

For steady straight and level flight

For steady banked turns the value of Cp can be taken proportional to

sec ‘9,\' . Also

w,‘( ~ ag Sn % tan @X (70)
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and
. S On tan 8.
~ Y9I CyTan Uy
4 7 v

where é%x is the equilibrium lateral-tilt angle of the tip-path

o (71)

plane (approximately equal to equilibrium angle of bank, positive for

turns in direction of rotor rotation)

For any curvature of the flight path, the components, </, and CA.),.?, R
of the aircraft’s spatial angular velocity may be calculated and, conse-~
quently, the approximate equilibrium values of My and My can be obtained
from equations 67 and 68,

Approximate Solution for Equilibrium Values of the Mean Reference Blade

Angle, A, , the lLateral and Longitudinal Components of the Cyclic

Piteh, - z,, and éy , and the Coning Angle, ¢i. o .

An approximate solution of the set of four non-linear, transcendental
equations, 58, 59, 60, and 61, for the four unknowns, Ao, , 4, , 4.,
and f?, » that is sufficiently accurate for most steady-flight helicopter
work and useful as a first trial for steady-flight convertaplane calcula-.
tions may be obtained as follows: setting the small terms and </, ,

W, , and ‘:‘,'7,,( equal to zero and cos Ay = 1 in equations 58 and §9,

and eliminating «¢{, , gives

F)(J;# /a' Jec "i 01&‘)*/‘14 UJCW@.SVLJ
/Q;\_fl?/((' ; fu’(r- ) f)/a,{ &» -

\AC} (72 )
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_ B,uarfjc 7 4__[45 “\/\M,U,VI‘QS
% B
(/\/uv-’- & ?f’/unf ,.[3(:‘ t l—t-,tg A "17%#,5- I&g

a,= (73)

Let d—o be the design coning angle for the general case of semi~rigid
blades (i.e. coning angle for zero blade-root bending moment). Let A4,
be the spring constant of the blade for angular deflections of the three-
guarter radius point from Z, . Then setting the summation of moments
about the blade root equal to zero and solving for <, , the coning angle

at the three-guarter radius point,

$Pra 9K Lye + (@ by i)t Lo (40, 1) L)+ 2, ey P

aoﬁ_" B ‘ 2 )
.Z: .O_ *akao
(74)
where /73 = mass of blade
7° = radius of blade Cogs
I, = mass moment of inertia of blade about
flapping hinge (or root)
(Note: If the blades have a flapping hinge at the axis of rotation
5(-0 =4HKs, = 0. If the flapping hinge is located at radius, I s
7 S V ? ”B.Qa
from the axis of rotation, 4,* O and J{‘aof«» /‘9 5
). 2.
0.75R

Then, knowing &, , it follows from equation 60, that for

CL)X “—'&)?_:C/n? =0
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":20 /(‘Lr‘lf I,BJ‘ vw/’é{"ﬂ “‘Z-sl‘s‘ ( 75 )

: o= 7 B
AL s #Lus+ 7;”5 Las

by =

For those steady, unaccelerated flight conditions where cos Ay 7= 1, the
above solutions are sufficiently accurate and may be used to calculate
the blade loadings and rotor torque, X force, and Y force.

"Exact" Solution for A, , @, , end b, , for Accelerated Flight

Conditions and Those Flight Conditions Where cos Ag 5? 1.

A reasonably rapid and sufficiently accurate solution of the "exact"
equilibrium equations given by the first three rows of equaticn 53 can be
obtained by using an approximate value for the coning angle, <, , such
as that given by equation 74 or that following equation 23.

Then for the approximate value of Ay, given by equation 72 and, for
example, two other values several degrees successively smaller, the "exact"
corresponding values of <, and b, can be determined by rewriting the

equilibrium equations for the rotor pitching and rolling moments in the

form
2 o - S f_z._(;.f"? 2
Aa,+Bs = F e
end Ca,+0é = R+ £ Comx (76)
-, r 7
L , _ , 2
where A =y Caf + &J?‘Q/Amljc - %T' Ay M. ~I;?c (77)

oo
[}

oL N - 12
)‘-/V —Z‘?c 4 (A‘f (")x)/uw- I;?C’TZ- s AL, [d 3 (78)

C B A/I’" 'Z.iilf Lf “‘? M)X)‘}‘tarjjc‘f.-[,yks-*— "[/Ll./y_ '-[;?S' (79)

w B8 =



p v / 2 '
D = — [ (M’“#’ 0)27)//',;,-13(: Y ao/u"/u- IEC ‘ 80)

P = (‘Lb° ?‘”Cl,»"‘,(y_) Iq.s ~doﬂ>zr-I33 (81)
R = _B/f‘/vljc 7"(?"0»),()1915\ 7‘-/)4"/1-,,,‘42:25 (82)
Then
|
L 2Cas
(P-E52e) B i
I N
oy £ Lmx .
(=) b
CZI== - e (83)
| ,‘
A e
; |
e D '
§
and
A (P )
o (R EEeX]
b/ = e e ,._._M______MT____, (84)
A £
K . i
C 0 |

Baving computed the values of &, and &, for each of the assumed
values of AO > the corresponding values of Cp may be found from the

equation for the thrust equilibrium where
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2Cy _ L8 -4 /
_N&‘T.. = ch -+ :é—“./ua""l-lc _/LVI‘.:JS\ 2 (/éf - a),t’)/"j'mllgs‘

+[;(/éf e Lse + m/"ry--z;c e, L, la,

1
'f'[;i e, U ,D_,I‘Q_C E&U‘?"Q)?)I jb/ (85)
. 2C .
Then plotting the values of ~Z s &, , and éV , versus the trial

values of A, , the "exact" value of Ay , and thus 4, and éy , may
be obtained from the plot at the design or desired value of Crp ,

In-Plane Component of Force, Fxy , on a Blade at Azimuth Angle, W o

The in=plane component in the direction of rotation, ny s On a

blade at azimuth a.ngle, W s is from equations 37 and 40

/- —;5’“ /(Us//?¢m [5‘//79 (Ucm" )+ cos G (Usin @) ar

= /% (Vecos ;‘,V) ZQ“ U+E, [:ézn 8, (Ucos ¢M) +cos@ (Usin ;éd,:g

¥

t & ~Cm“(ﬁ,, (Ueos ¢ﬂf> ~sin b (Ué‘m ¢4~7 i (86)
.J
where Ty, = Cop 1T &, S0, + &, Cofo,.
Then, by the following operations: substituting the previously evaluated
expressions for {/ cos 9&, , U/ sin ¢Qr » sin &, , and cos &, given

by equations 42, 43, 47, and 48; neglecting the effects of second harmonic
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flaepping; expanding the expression

/U 3177 Par \B
Ucoy 95 Ucos &, )

by the binomial theorem and dropping third snd higher terms, the expression

for the constant and first harmonic terms becomes

F
Cy 2 = Zp ”_)}2‘% RE = (A CX{;{)Q "(4 CXy)fo-(A C,‘r?)gl '(A C/‘V;()ga (87)
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As previously mentioned, it is preferable to use the two-term series
approximation for ecg, for those convertaplane flight conditions where
//\,tr/ becomes large (i.e. //\,,,/ 2> 0,10), For these cases the terms
involving &, in the preceding equation and following equations may be dis-
regarded, The values of ¢ and &, will of course be different for
the two-term and three-term approximations for ¢4, , as pointed out in

the discussion on the use of airfoil data,

Rotor Torque

The value of the rotor torque coefficient, Cq , is

ZTCQ = - {(constant terms of Cxy with subseripts, »

on 0, , A,. ,end I, increased ton + 1) (89)

For steady state calculations where <«w), = w, = 0, an approxi-

?f

mate solution that is sufficiently accurate for most purposes may be ob-

tained by neglecting small terms. Then

'éZf—: P —a’Dijc”'E' ao(b,+£w )/“anJ_S' +(2 @y pLy —A‘I/)Aﬂf I,_DJ‘:)
re& [t wda - 7 ayare, 05 + (AL 142 ) 0:;]
/ !
+£/[I$‘C tza, b//u/u--z:?c t+ E—(/u'/y‘fa/ An}‘ )/uanEC t (d/ e ’/‘”)I3\g]
+(€a[(a»//an,“/\m)l3c - (/ - Z‘Lé,,w)I‘,_; - Z’.Lao b//u/erjs

- —é- (al /{/u— f/“rzf)/uv-zas

(90)



Rotor X-Force

The value of the rotor X=-force coefficient, Cx ; is

—éaé;xww = - (sine terms of Cxy) (91)

For steady-state solutions the expression may be simplified to

2C B
_zx = -QZ/?/I_‘?C ' [a/ Am#‘ar)fiﬂr I/C

F (@ ~Lop ot 7ty ph = bpt) I
+“So[?2?’tv--éil€vjcaé]
+&(a, A, +Bu, )Tow+ (2,-rp) Loct(Za, 1, - I
1[NCy Anr TEA Y] Lo 1 T H L3 (’f 1A /{m)/l,,r /5

real(a i Toct (F o oA Tre (it adg) L] (52)

Rotor Y-Force

Similarly, the value of the rotor Y-force coefficient is
2 Cp,. .
——E—%k* = (cosine terms of Cyy) (93)

and for steady-state solutions this expression may be simplified for most

purposes to

C .
%%L- 7~ a!wljc R EYTI "6/*21-/(;
/ i Z
'fj(?d/w/afzr 4 b/?/am*b//im—ﬁw/{ﬂf) 23

HEa, Ayt F 200, ﬂ/.,—),u,wf,sj (94)
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Second Harmonic Flapping

Again letting jao be the spring constant relating the blade-root
bending moment in foot pounds to the angular deflection in radians of the
three-quarter radius point of the blades from the unstressed position, it
follows that the magnitude of the cosine component of the second harmonic

of the blade-flapping angle is

J+KL
Ay, = ——/:—W— (95)

Similarly the magnitude of the sine component is

L+JIM

'bE ~ =k (96)

where J = (terms not involving b;_: in the cos 2 ¢ row of thrust

equation 53 with the I factors changed to one higher sub-

AL £ ps
int 2R a
scrip )(3-1_1_(1‘2-’_*&0

K = (coefficients of bB in the cos £¢ row of thrust equation

53 with the I factors changed to one higher subscript) x
(éﬂﬂﬂaﬁ‘a ]
3L 1%+k,,

L = (terms not involving A 5 1in the sine 24 row of thrust
equation 53 with the I factors changed to one higher sub-
[4Pr P RYa
2
\3IL, a2+ 4, )

seript)

M = (coefficients of a.g in the sine Bl/ row of thrust equation

53 with the I factors changed to one higher subscript) X
A 5
( 2 QR a)

3L, 2t ha,



= 0 the

For steady-state flight conditions where

expressions for the factors, J, X, L, and M may be simplified %o

—~ 'L/C’ﬂ‘v(_ £ H At -
» J - 31 p‘_’k.-ﬁf » - E (a/ /‘/F' +/£‘L’2"-r)"‘¢cfl/'_[2c
L -
*Fra 1°R”
E~x &S0l 98
SL 2+ 4, el ) (58)
/%Tczjl JR /
L = Sy -5
i el LTI
- (6, + F e S, Tye+ 5 a/umId;] (99)
Ay gpd
M — 27 7}“‘1 .AQ /Q (O 100
3_[ —Qz‘f-ﬁdﬂ Itf,_g‘ ( )
and I, = mass moment of inertia of blade about flapping hinge.

!
It may be noted that ”Aegﬁ = 0 for blades having a flapping hinge at

the axis of rotation. If the flapping hinge is located at radius, Zg

then
Ao / — r .
Y ousk
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Amplitude of the Constant and First Harmonic Components of the Lag Angles

In Unaccelerated Flight.

For an articulated rotor having lag hinges normal to the plane of ro-
tation and located at a small radius, e , the equilibrium blade lag angle,

B 5 is

L S
7R [ 2C
fo/,:: /\’;;/;( —e _‘-' 5 Q. from equation 9?7 (101)
! Q7R)

where My = mass moment of blade about lag hinge.
Similarly the coefficients of the cosine and sine components of the

lag angle are

;4'/"77'/?‘5_5! ~LCa, b/-j"I_y
£ 102
f; M L e~ I ¥ ( )
and
7 7 de ],
£ = g R FstEadis Ly (103)

/‘13@ “_Z—\\f‘

where <,. and 6/5 are the cos! and sin ¢ components of the
angle between the tip-path plane and the hub plane,

For unaccelerated flight the values of &,; and b/_g are approximately

Ay XX, ~oCy (104)

b/.‘i = €Xf—§2' (105)

where (9)7: = equilibrium lateral tilt of fuselage.

]
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Also Iy = mass moment of inertia of a blade about the lag hinge
E: = coefficient of cosine ¢ in equation 88 for ny with sub-

scripts of I factors changed from n ton + 1

or
By afwTyaou, Ly (b 2udhy Ty 2ag Ay pny Tos| (166)
Fy = coefficient of sin Y in equation 88 for ny with subscripts
of I factors changed fro, n ton + 1
or

Fe & aly Ty tdy iy Inc+(a,-24) 4, Tog |
—%[(7 Aor # 2 1,,) 03]
m& [ Toc + 2, Tus + (F D Yo Iy |
- &, [(a,—/f/)I% +(Fa - )y Lag - EA,IQ (107)

Thrust Unbalance

Two~bladed rotor. - The second harmonic variation in GT for a two-

bladed rotor is
— = Yth + Sth rows of equatron I3 (108)

For &Jy = Cb%y = 0 and steady state conditions, the equation for the

amplitude may be simplified to
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2
AC+ / > i
L =T A {I—fagij~ﬂ>,+éar)/uﬂ ,251"2/ a, f— /_J

Y
-/-[13631'33 + a, mIas]} (109)

Three-bladed rotor. = The third harmonic variation in Cp for a three-

bladed rotor is approximately

2ACyr ) ‘
o Eth+ Tth rows of equation S3 (110)
or for ), = Cb%f = 0 the eamplitude is approximately
[
3a T % (a/ rb,)/u,,, L) (111)

An Independence-of-Blade-Element Analysis for Hovering, Vertical Ascent,

and the Convertaplane Propeller Condition,

The use of the relation /(Ee = (@ s3incC permits a considerable
simplification of the equations resulting from the assumption of the inde-
pendence of blade elements. As the "exact" propeller solutions of Betz,
Goldstein, and Theodorsen are not applicable to a lifting rotor at zero
or small advance ratios, a simple independence of blade element analysis
may be useful,

From momentum considerations the thrust, & 7 s on an annulus of
the rotor disk, 27 7rdr , is related to the induced velocity, l{b 5

at the rotor element by the expression

= 52 =



Foprar = Vel + Voun e, ) - ()
vut Ve o+ Vsinoc, = Usin ¢, (113)
Thus 77%0»-;—3;—» = (Vsin ¢,,,)( Vsin o = Vsin oc,,,) (114)

The thrust of the annulug is also equal to the thrust acting on the por-

tions of the blades within the annulus which is

A7 = ;?'—/%UECQ cos g, dr (115)
where C, = & $/hC,. = A [J/n 8,.coS §,+ cos G, .sin ¢”) (116)
Thus A7 = ‘%Fab(Ucosan,)[J/n @,(Ucos b

+ cos G (Usin 9%),] Tdr (117)

Substituting the above values of d T in equation 114 and solving for

U sin ¢”

_@{@ﬂzz(% a b or
0R 2 T T C"J‘Qar)

4
- V (%[*— r 250 COS@) + ‘—‘%@v‘r sin b, (118)



where

= _%/%ocv (119)
Gy = _T.r%__ (120)

Then from equation 117

ECI ‘/X\r/ﬁ (U&/n ”)60,5‘49]0')’42’ (121)

Ysin ¢a-
2R

Similarly from blade-element considerations

where the value of at x is given by equation 118,

%;- - /( S’”¢")[xsm€ e ¢”§co.m9,, G xdx

Tdo Usm G ]

Sinoc, / XS Gt (TG g COSE, (122)
Cdo

where the value of S/li - is obtained from a plot of ~W—7

versus oC for the blade airfoil at

oy = 54,'/* tanJ[ Ysin, gs”—)] (123)

If it is necessary to take into account the rotation of the slip-
stream for large rates of vertical ascent or the propeller condition, this
may be accomplished to a first approximation by using an effective (Z ,

Ne , in every case where

_(le=,(2(/-:f'~67) (124)
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The geometry of the above equations is exact and they are convenient
for graphical or numerical integration on account of the repetition of
factors.

Neglecting the induced radial and tangential velocity components,
the optimum blade-angle distribution for minimum induced power and a
given blade-chord distribution and nondimensional axial=flight path veloc~
ity, ¢, , may be obtained by setting .lZ?%%%Q&c_ equal to the

constant value Anr » giving

Sih 8, A0zeat) ]+ (AM‘%) )
where = —c—l—%—fo’m (126)
and Ay = 2 — 1/(”;3— “ 5 Cr (127)

The optimum chord distribution for a given desired congtant value of 426

along the blade and the same restrictions is

05 = fi”az‘/ﬁ_)?: (128)
2y Ayt X

For this optimum chord distribution, the optimum distribution of &,

reduces to

g2 __2s02 2
sime, x_»gemrm[,_/_//* a /{,,)—E'C,e(/\m+)( ) ] (129)

2
T, X
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For calculations where the flight-path velocity and equilibrium
value of Cp are known or can be estimated; the following procedure may
be followed:

1, Calculate and plot the radial distribution of (.

2, Calculate the effective value of Cp and 2; where

3, Calculate the approximate value of A, from equation 72 which

for these flight conditions reduces to

'%%1:& ~ 035 _/‘/v- OEC)(U;‘C _/{/u-@s)
(aﬁc - nrdzs)(byc'_Aarq}S>

4, Calculate and plot the radial distribution of &, = A, + &,

SINA, %

for the value of A, obtained under Item 3 and two lower
values at increments of several degrees.

S, Calculate and plot the radial distribution of wé%%figgl
for the above distribution of é%r from equation 118
using {2 = (1, throughout.

6, Calculate and plot the radial distribution of the integrand of
equation 121 for the three values of A, and graphically or

numerically integrate for the values of -fg—%§31—~— corres=
a

ponding to the three values of A, .
7. Obtain the correct value of A, from a plot of cTe versus Ag
8, Calculate and plot the radial distribution of the integrand of

equation 122 for the three values of A, and grabhically or
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2Cgoe

numerically integrete for the values of —=-=
corresponding to the three wvalues of A, .

9. Obtein the equilibrium value of CQe at the equilibrium value
of A, from a plot of CQg Versus 4o -

2
10, Calculate the equilibrium value of Cg = cqe&ls).,

Comparigon of Experimentel and Calculated Values of the Parameters

Teble 8 shows a comparison of the experimental data of reference 1
for those runs where Cp = 0,00545 with the values calculated by the
approximate blade-element equations of this report. The blade-slement
lift-curve slope was teken as @& = 6,5 from the experimental results of
reference 6. The values of &, , &, , and &, were evaluated for
the points ¢4, = 0.0095, 0.0105, and 0.0140, at o = 0, 4, and 89,
respectively, from figure 19 of reference 6.

The "exact"™ solutions for the various parameters differ from the
tabulated approximate solutions by a negligible amount for these helicop-
ter flight conditions.

The values of the parameters from reference 1 calculated for <& =
6,75 by the previous equations, which are based on the use of an effective
solidity and the approximations that & and gb are small angles, are
also included in teble 8 although the results are not strictly comparable
becauge of the difference in assumed lift-curve slope and profile-drag
parameters.

A consideration of the results presented in tables 2 and 8 would
indicate that much of the remaining discrepancy between experimental and

calculated blade angles and torque coefficients may be due to the neglect,
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in the present calculations, of the effects of the rotor induced veloci-~
ty on the 1lift and drag of the fuselage.

Also it will be seen from the results of run 2 thet the present
equations considerably underestimate the power required for those flight
conditions where the tip stall on the retreating blades is severe,

If the experimental results of run 7 be assumed correct;, it would
also appear that the presént elementary vortex theory overestimates the
magnitude of the mean induced velocity for low speed forward flight, though
this seems unlikely.

The present calculated values of the coning and lag angles are slight=
ly too large since standard sea-level air density was used in the calcu-
lations in the absence of the experimental values,

It may be noted that the longitudinel component of the angle,
tan™ __J;ZL_) » between the rotor resultant force and the thrust compo=
nent normal to the tip~path plane is very small for all these helicopter
flight conditions and that the direction of the resultant is inclined for-
ward for those flight conditions where there is a net downflow through the
rotor, The inclinations of the tip-path plane to the horizontal, 65
and 6%f » are also small angles and consequently for many unaccelerated=-
flight helicopter calculations the rotor resultant force can be assumed to
be perpendicular to the tip-path plane and the thrust equal to the gross

weight without introducing serious errors.
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CONCLUDING REMARKS

Simple relations for Cq , Cx and Cy s derived upon the assumption
of a triangular distribution of blade-element circulation along the
radius and a sinusoidal variation with azimuth angle in conjunction with
a linear variation of profile drag with 1ift; would appear to be useful
for helicopter and convertaplene performance estimation and the deter-
mination of the equilibrium angle of attack and lateral tilt of the tip-
path plane.

The blade-element equations, based upon the relation that ’CA =

@ sincC, = & (sin 8 cos ¢, + cos &, sin ¢, ), and the ;. and 0,
functions of the blade-chord and hlade-twist distribution, afford a
reasonably exact and concise treatment of the geometry, and should be
useful for convertaplane as well as helicopter calculations provided |
that there are no large areas of the rotor outside the reverse-flow
region where the blade elements are stalled,

The use of the empirical relation, cd, = & + &, sineC, + &, cosol,
rather than the usual expression that cq, = d, + d,oc, + JE on
considerably simplifies the equations for the in-plane forces and moments
and presents a sufficiently exact solution of the geometry for helicopter
calculations,

For convertaplane calculations, the approximetion that Cdy =

&, sinoC, + &, cosoC, allows an "exact" treatment of the geometry and
should be a sufficiently accurate expression for ¢d, at the larger ad-
vance ratios where the effects of the profile drag become of less rela=

tive importance.
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The larger sources of the remaining errors in the blade-element
analysis probably have the following order of importance for contemporary
helicopters:

1. The neglect of the effects of blade-element stall implied in

the relation that €, = 4 sineC, .

2o The neglect of the effects of blade flexibility.,

3s The neglect of the radial variation in the normal component

of the induced velocity,

4, The neglect of the effects of compressibility on the tip

sections of the advancing blads.

Although Item one above might be eliminated by writing the blade-
element lift coefficient as an odd Fourier series in the blade-element
angle of attack, this results in great complexities and difficulties with
the integrations and the results would probably nct be useful. Similar
difficulties arise in attempting to write the blade-element profile drag
as an even Fourier series in the angle of attask.

The error involved in the neglect of blade deflections would appear
to depend to & large sxtent on the individual design and thus be intract-
able in a general analysis.

The inclusion of a term in the equation for ~i£%%%?¢45n to ac~
count for a radial variation of the induced velocity would be feasible
provided that the relation for the necessary constant could be derived
from the vortex theory. A reasonable approach might be to assume a tri-
angular distribution of c¢irculation along the blade radius.

It would be very difficult to include the effects of compressibility

on the advancing blade tip sections in present blade~element analysis on
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account of the complexities that arise in defining the boundaries of the
affected rotor area,

Thus, of the larger remaining sources of error in present blade-
element theory, only that arising from the neglect of the radial varia-

tion in the induced wvelocity would appear to be amenable to correction.
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TABIE 1

VALUES OF U, FOR BLADES WITH LINEAR TAPER

Note: Interpolate for values for given t

c
o = 0 t =

Ctip
Co

-1,

¢ = ¢o(l + tx)

Part A for X1 = 0.15
o E @G 4
Js 0, as J,
t = 0| 0.8500 | 0,4888 | 0,3322 | 0,2499
t = -1 | 0,3612 | 0,1566 | 0,0823 | 0,0499
|
Part B for xj = 0,20 |
ai o % Jq.
04 Jo Ts s
t = 0| 0,8000 | 0,4800 | 0.3307 | 0.2496
t =<1 || 0,3200 | 0,1493 | 0,0811 | 0,0497
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TABLE 2

COMPARISON OF EXPERIMENTAL VALUES OF ©<,_ AND Cq WITH THOSE

CALCULATED FROM APPROXIMATE BLADE-CIRCULATION EQUATIONS

Experimental Values for Cp = 0,00545

From Ref. 1.

Values of ¥ from Ref, 7

Run ocC s ff_‘ @k X C:G’ A
7 "2 .2 2203‘ O “"2 008 00000202 00142
4 -405 22p7 0 “3083 00 000244 03 189
2 -6.9 23,1 0 -5,82 0,000342 0.230
11 -10.1 24.4 { =6,57 -9,97 0.000359 0.166
15 -19,4 26,4 20,80 18,77 -0,000008 0,119
Calculated Values for &2 = 6,5
(2cd. sppnrliCcd. appr) | (£ =0) (2cdappr)| (st opprox)  |(1st approx)  |(Ecd. approx)
Run | AL, Lo | OCop Co Cx Ceo
7 || 0,144 | «0,0241 | =2,13 | =2,00 0.000226 | =0.0000243 | 0,000224
4 || 0,192 } ~0,0272 | -3.88 } =3,71 0.000247 | =0,0000313| 0,000244
2 | 0.235 | =-0,0354 [ =5,89 | =5.58 0.000307 | =0,0000602 | 0,000300
11 1 0,169 | «0,0447 | =9,88 | =9,54 0.000349 | ~0,0000650| 0,000343
15 || 0,118 0.,0166 | 18,90 | 18,75 =0,000003 | =0,0000279 | =0,000002
Note: 2 ft.® of drag area has been added to the fuselage drag eree to
ellow for drag of C,T, rotor, camera installation, etc.
Lift of fuselege has been neglected.
Severe tip stall occurred on Run 2.
Comperison of Values of Cyx end Cy
From Approximate Circulation and Blade-Element Equations (& = 6,5)

Circuletion Valuesg Blade Element Values
(2cd. approximation)
. Bun Cx Cy Cx Cy

7 =0, 0000258 | =0,000288 | =0,0000256]=0,000279
4 -0,0000301!(-0,000321 | =0,0000351]~0,000318
2 -0,0000572 | -0,000372 «0,0000754( -0,000370
1] =0,0000635|=-0,000301 | -0,000054%|0,000261
156 0,0000276| ~0,000283 0.0000255| =0,000308
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TABLE 3 ~ Section 1

AND A, =

. W
VALUES OF A, 0p
SN EE
X - /aﬂr« ) CT
Note

VS19 oCop / éf';;¢4§,

FOR GIVEN VALUES OF

aR

&

Values above double line are experimental, valuss above
single line are estimated.

R I
Ax= .00 040 060 .80 1,00 1,20 1,40 1,60 1,80 2,00 :
- ‘ AR A
2,40 0,960 # 0,740 00580§ 0,481 0,457 0,433 0,410 0,390 0,371 0,349
2,20 1,14 (0.8 0,68 0,543 0,509 0,476 0.444 0,418 0,392 0,369
2,00 1,36 ;1,07 0.8 | 0,630 0,574 0,526 0,484 0,450 0,418 0,389
1,80 1,66 1,34 1,03 | 0,767 0,659 0,585 0,529 0,483 0.445 0,410
1,60 2,26 11,81 1,42 | 1,000 0,769 0,654 0,577 0,518 0,472 0,432
1.40 2,44 2,05 1,77 | 1,220 0,896 0,727 0,627 0.550 0,496 0,452

[ 1,20 2,24 [1.88 1,65 |1.,26 0,976 0,789 0,668 0.582 0,520 0.470

! 1,00 2,01 1,72 1,52 1,21 1,000 0.824 0,698 0,613 0,539 0,485

. 0.80 1,80 1,56 1,39 |1.,15 0,984 0.833 0,713 0,621 0,552 0,494
0.60 1,60 11.41 1,27 |1,07 0.947 0.820 0,712 0.625 0,556 0,500
0,40 l.42 11,28 1,16 1,00 0,897 0,792 0,598 0.819 0,554 0,500

| 0,20 1,25 11,15 1,06 |0.924 0.842 0.756 0.677 0.606 0.547 0,494

. 0,00 1,10 [1.02 0,96 :
0.00 1,000 0.961 0,914 0.854 0,786 0.715 0,548 0.586 0,533 0,486

{=0.20 0,905 0,874 0,833 0.787 0,731 0.673 0.613 0,564 0,516 0,474

{ =0,40 0.820 0,796 0,765 0.724 0.680 0,632 0,584 0,539 0,497 0.461

{ =0,60 0,744 0,725 0,699 0.668 0,630 0,592 0,551 0,513 0,477 0,443

| =0,80 0.677 0.658 0,640 0,615 0,586 0,553 0,520 0,487 0,453 0,426

| =1,00 0.618 0,605 0,588 0,569 0,544 0,517 0,489 0,462 0,435 0,409

=1,20 0,566 0,556 0.543 0,526 0,506 0.484 0,460 0,433 0,413 0,392
=1,40 0.521 0,512 0,501 0.488 0.472 0.453 0,433 0,413 0.394 0,374
=1,60 0.481 0,473 0.464 0,454 0.440 0.426 0.408 0,391 0,374 0,358
-1.80 0,445 0,439 C(C.422 0,424 0,411 0.399 0.385 0,371 0.356 0.341
=2 ,00 0.414 0,409 0,403 0,395 0,386 0,376 0,364 0,352 0,339 0,326
=2,40 0,362 0,358 0,355 0,350 0,342 0.334 0,327 0,318 0,308 0,298
=2,80 0,320 0,318 0.316 0,311 0,306 0,301 0,294 0,287 0.280 0,273!
=3.20 0.287 0,284 0.282 0,280 0.276 0,272 0,267 0,262 0,256 0,250]
=3,60 0,259 0,257 0,256 0,254 0,251 0,248 0,244 0,240 0,236 0,231
=4,00 0,236 0,235 0,234 0,233 0,230 0,227 0,225 0,223 0,221 0,214
-5,00 0,193 0,192 0,192 0,191 0,189 0,187 0,186 0,184 0,182 0,180
=6,00 0,162 0,162 0,162 0,161 0,160 0,159 0,158 0,157 0,156 0,155
-8.00 0,123 0,123 0,123 0,122 0,122 0,122 0,121 0,121 0,120 0,120
10,00 0,100 0,100 0,100 0,100 0,099 0,029 0,099 0,098 0,098 0,097
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TABLE 3 - Section 2

1
. /o _ 24,8
VALUES OF A, = _(/,” 7|/ &3 ar . §oR GIVEN VALUES OF
L (:T

' 2 , B
A - } 273l ayp A = Ysmocw 1| 2-34l0
X L 1 % A=
A ¢, z* TQar C,
AX‘ 2,40 2,80 3,20 3,60 4,00 5,00 6,00 8,00 10,00
2 & 0,
2,40 0,315 0,285 0,281 0,239 0,210 0,184 0,156 0,120 0,097
2,20 0,329 0,295 0,267 0,245 0,224 0,186 0,158 0,121 0,098
2,00 0,344 0,305 0,275 0,250 0,228 0,188 0,159 0,122 0,099
1,80 0,357 0,315 0,282 0,256 0,233 0,191 0.161 0,122 0,099
1,80 0,370 0,325 0,289 0,260 0.237 0,192 0,162 0,123 0,099
1,40 0.384 0,333 0,295 0,265 0,240 0,195 0,163 0,124 0,099
1,20 0,395 0,341 0,301 0,269 0,243 0,196 0,164 0,124 0,099
1,00 0,404 0,347 0,306 0,272 0,246 0,197 0,165 0,124 0,100
0,80 0,413 0,352 0,309 0,276 0,248 0,198 0,166 0,125 0,100
0,60 0,415 0,356 0,311 0,277 0,249 0,199 0,166 0,125 0,100
0,40 | 0,416 0.357 0,312 0,278 0,250 0,200 0,167 0,125 0,100
0.20 . 0,414 0,357 0,312 0,278 0,250 0,200 0,167 0,125 0.100
0,00
0,00 é 0,410 0.354¢ 0,310 0,278 0,250 0,200 0,187 0,125 0,100
=0,20 | 0,404 0,350 0,309 0,275 0.248 0,199 0,166 0,126 0,100
=0,40 0,395 0,345 0,305 0,273 0,247 0,198 0,166 0,125 0,100
~0,60 0,386 0,339 0,301 0,270 0,245 0,197 0,165 0,125 0,100
~0,80 0,374 0,331 0,296 0,267 0,242 0,196 0,165 0,125 0,100
~1,00 ! 0,362 0,323 0,290 0.262 0,239 0,194 0,164 0,124 0,099
-1,20 | 0,349 0,314 0.284 0,258 0,235 0,192 0,163 0,124 G,099
~1,40 | 0,337 0,305 0,277 0,252 0,231 0,190 0,161 0,123 0,099
~1,60 0,325 0,296 0,270 0,247 0,227 0,188 0,160 0,122 0,099
=1.80 0,312 0,286 0.263 0,242 0,223 0,186 0,168 0,121 0,098
=2,00 0,300 0,277 0,255 0,238 0,219 0,183 0,157 0,121 0,098
=2 0,40 0,278 0,259 0,241 0,224 0,209 0,178 0,15% 0,119 0,097
=2 .80 0,258 0,242 0,227 0,213 0,200 0,172 0,149 0,117 0,096
~3.20 0,239 0,226 0,214 0,202 0,191 0,166 0,145 0,115 0,095
~3,60 0,222 0,216 0,201 0,191 0,18 0,160 0,141 0,113 0,094
=4,00 0,207 0.198 0,189 0,181 0,173 0,154 0,137 0,111 0,093
: ~5,00 0,175 0,170 0,164 0,159 0,155 0,139 0,127 0,106 0,089
{ =6,00 0,162 0,148 0,144 0,140 0,137 0,126 0,117 0,094 0,085
-8,00 0,118 0,120 0,115 0,112 0,111 0,105 0,093 0,088 0,078
~10,00 : 0,096 0,095 0,094 0,093 0,092 0,089 0,08 0,078 0,070
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TABLE 4

VALUES OF CI;C FOR BLADES WITH LINEAR TAPER, LINEAR TWIST

AND x = 0,15

Note: Interpolate for wvalues for given t first and then

for values for given 6, .

Reference station for A,

at x = O,
G= % , ¢t = %P -1, ¢ = co (1+tx)6r =6x
R Co )
69 Jic _ Yec ,QEE, | _Fac
! Uo Jo Jo o
I t=0{t==1] t=0/t==1] t=0/t==1| t=0{t=-=1
oé 0.8500 | 0,3612 | 0,4888 | 0,1566 | 0.3322 + 0,0823 | 0,2499 | 0,0499
4| 0.8492 0.3611| 0.4882 ; 0,1565 o°3317} 000822} 0.2495 | 0,0498
-8 || 0.8468  0,3604 | 0,4864 | 0.1561 | 0.3303 | 0,0820  0,2483 | 0,0497
=12 | 0.8427 | 0,3594 | 0,4833 | 0,1555 003278% 000816% 0,2462 | 0.0494
-16 || 0.8371| 0.3580 0.4791 | 0,1546 003244§ oooslo§ 002434% 0.0490
-20 || 0,8299 | 0.3562 | 0.4737 | 0.1536 003201% ooososg 0023982 0,0485
-24 | 0,8211| 0.3541) 0,4671 | 10,1522 003148§ 0,0794§ 0,23547 0,0478
-28 || 0.8108 | 0.3515 | 0,4594 | 0,1507 003087% 000784i 002303§ 0.0471
, i i
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TABLE 5

VALUES OF OZS‘ FOR BLADES WITH LINEAR TAPER, LINEAR TWIST

AND x, = 0,15

Note: Interpolate for values for given t first and then
for values for given 6, . Reference station for A,
at x = 0.
G = =2, t = —BP _1, ¢ = ¢ (1+tx)6t=6x
(s = ] Co s (o] ) /i
J7s Jzs J3s Tys
& 7 7 7 75
t=0lt=<1] t=0i{t=~1| t=0;t==1] t=0|t =-1
0°| 0.0000 | 0.0000 | 0,0000 ; 0,0000 | 0,0000 | 0,0000 { 0,0000 { 0,0000
-4 || -,0341 | -.0109 | -.0232 | -,00587 | -.0174 | ~.0035 | ~.0139 | -.0023
-8 || -.0681 | -.0219 | -.,0463 | -,0115 | -.0348 | -,0070 -00279 -, 0047
-12 || =,1020 | -,0327 | -.0693 | =-,0172 | ~.0521 | -.0104 | -,0417 | -.0070
| 216 || =.1356 | -.0435 | -.0920 | -.,0229 | -,0692 | -,0138 | =.0553 | ~,0092
=20 I =,1699 | =,0531 | =,1145 | -,0284 | ~.0860 | =,0173 | =,0688 | =,0115
-24 || -,2017 | -.06560 | =,1367 | =.0341 | -.1026 | =,02086 =008201 =,0137
=28 f -.,2340 | =.0756 | -.1585 | -,0396 | =,1189 | ~,0239 | =,0950 | =,0159
| |
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VALUES OF U,

TABLE 6

FOR BLADES WITH LINEAR TAPER, HELICAL TWIST

AND x, = 0.20
Note: Interpolate for values for given t first and then for
values of given Op, Reference station for A, at blade
tip
G= —2—, t = —HB .1, o = ¢ (1+1tx),
6t = tanﬁl( %-tan er)
Gc Ozc U3¢ Ty
& 0s iz 0@ Ts
t=0it==1] t=0]t==1} t=0;t=-1] t, =0}t ==1
0%|| 0.8000 | 0.3200 } 0,4800 | 0,1493 | 0.3307 | 0.0810 | 0.2496 | 0.0497
~4 | 0,7906 | 0,3144 | 0,4762 | 0,1474 003287% 0.0803 | 0,2484 | 0,0493
-8 | 0,7654 | 0,3002 | 0,4651 | 0,1419 O,3233§ 0,0782 | 0,2451 | 0,0483
=12 || 0.,7305 | 0,2804 | 0,4500 | 0,1351 | 0,3149 : 0.,0751 | 0.2398 | 0,0468
=16 | 0,6907 | 0,2594 { 0.4313 | 0,1270 | 0,3042 | 0,0714 | 0,2328 | 0,0448
=20 | 0,6489 | 0,2385 [ 0.4104 | 0,1185 | 0.2919 | 0,0674 | 0.,2244 | 0,0427
-24 | 0,6065 | 0,2184 | 0.3882 | 0.1100 0,2782/ 0.0632 | 0.2151 | 0,0404
: ~28 1 0,5648 | 0,1994 | 0.36561 | 0.,1016 | 0.2635 | 0.0590 | 0,2046 | 0,0379
=32 i 0.5231 | 0,18156 |0.3416 | 0,0934 | 0,2481 | 0,0547 | 0.1935 | 0,0354
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TABLE 7

VALUES oF CSS FOR BLADES WITH LINEAR TAPER, HELICAL TWIST
AND x, = 0.20

Note: Interpolate for values for given t first and then for

values for given 87. Reference station for A, at blade
tip

r 2.t s Sty oo (1 + tx),

o] & [ [ = T
/L_t = o] t = =] f t=0[t = l t =0 !t = -1 } t = [

0 || 0,0000 | 0,0000 0,0000 | 0,0000 0,0000 | 0,0000 0.0000 | 0,0000

-

o

-4 | -,1106 ~+0683 | -,0553 =.0220 | =,0333 =.0103 | -,0230 -.0056
-8 || ~,2121 =.1045 | ~,1076 =.0422 | -, 0654 =.0200 | -,0454 -.0110
=12 || -.3005 -.1452 | ~,1553 =.0596 | -,0957 =.0287 | «=,0669 =,0160
=16 || -.3761 =,1780 | -.,1981 =.0744 | -, 1237 <.0364 | ~,0872 =, 0205
=20 f -.4406 | -,2044 =.2365 | -,0872 =.1494 | =, 0431 ~51062 | ~,0245

!
| =.4956 | -,2256 =s2701 | «,0972 =.1728 | =,0490 =.1239 | =,0281
!

S

~28 % ~.5430 | ~, 2428 =.3002 | =,1080 =.1941 | =,0540 =.1401 | ~,0313

!
(4]
[\ ]

!
|
|
|
| ~+5838 | =,2570 | -, 3269 =+1184 | -.2134 | -, 0584 | -,1551 -.0342 |

—
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TABIE 8 - Section 1

FOR THOSE RUNS OF REFERENCE 1 FOR WHICH C7 = 0.00545

All Angles in Degrees, Severe Tip Stall on Run 2

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF THE PARAMETERS

RUN 7 RON Z RUN 2
Level Flight at 43.7 m.p.h. Level Flight at 58.6 m.p.h. Level Flight at 71.7 m.p.h.
Exp. Cal, Cal.Ref.l | Exp. Cal. Cal.Ref.l| Exp. Cal. Cal.Ref.1l
o, r |l -2.08 -2.00 -3.83 =3,71 ~5.82 -5.58
Ao 7.11 7.42 8,5 8.17 7.9 9.3 10.10 9.11 11.3
a/ 2092 2088 209 4057 5084 400 6008 5005 505
QD 8016 8058 709 8\:50 8n51 802 8@67 8@44 804
5, 3.24 2.89 R.4 3,30 3.14 R.7 3,93 3.48 3,2
as 0.24 0,18 0,15 0.35 0.28 0.26 0.46 0.4 0.40
ba OoOO '-0004 -0005 —0.,08 —0,.,09 -0010 -Ooll -0917 -0018
Co 0,000202 | 0,000213 0.000244 |  0.000240 0,000342| 0.000310
Jo =7.45 -7.58 -8.83 -8.50 -12.50 -11.02
E* | 0.41 0,51 0,54 0,58 0.67 0,69
F" * ‘=‘Oe 21 "0007 “’0018 -0\:10 -0027 -0017
Cx -0,000026 -0.000035 -0.000075
Cy ~0.000279 =0,000318 -0,000370
Ta.n'é—g.&}’ -0.13 -0,18 ~0.43
Iz
64 0.02 0,00 0.11
By ~R.00 =3.71 -5.58
raly
S 0,012 0,027 0,049
I
¥ Note: Mechanical Input Subtracted
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TABIE 8 - Section 2

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF THE PARAMETERS
FOR THOSE RUNS OF REFERENCE 1 FOR WHICH Cp ~ 0.00545

Allr Angles in Degrees, Severe Tip Stall on Run 2

RUN 11 ~ RUN 15
525 f.p.m. climb at 51.8 m.p.h.| 1260 f.p.m., autorotative descent at 37.7 m.p.h.
Exp. Cal., Cal.Ref.l EXpo Cal. Ca.Ref,l
oC 10 =9.97 -9.54 18.77 18.75
A, 10,00 9.50 11.0 3.40 3,57 5.0
a, 4,23 3.81 3,93 1.07 1.76 1.85
Qo 9.15 8.64 8.34 7.55 7.88 7.53
b, 3.56 2.93 1.87 R.86 2,85 1.23
Qp 0.33 0.24 0.19 0,08 0.12 0.08
b, =0.10 -0,08 -0,10 =0,02 -0.00 -0.03
Cq 0.000359] 0.000334 -0,000008| -0,000019
3 =13.03 -11.88 : =-0,03 0.67
E,* 0,70 0.5% 0.21 0.47
F* =0.37 =0,16 0.6 0,03
Cx =0,000055 0.000026
Cy -0.,000261 -0,.000308
-/ C
Tan (ECT | 0.29 0.27
6, 0.78 -1.49
@ y =2.98 =2.05
AC_r) 0.020 0.007
Cr/3rd. har

* Note: Mechanical Input Subtracted
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