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A BLADE Et•ACRNT ANALYSIS FOR LIFTING ROTORS THAT IS 

APPLICABLE FOR LARGE INFLOW AND BLADE ANGLES AND 

ANY REASONABLE BLADE GEOMETRY 

By Walter Castles, Jr. and Noah C. New 

Daniel Guggenheim School of Aeronautics 
Georgia Institute of Technology 

SUMMARY 

Simple approximate solutions are derived for the relationships be-

tween the rotor thrust and flight-path velocity components and the rotor 

torque and in-plane forces. These approximate solutions, based upon the 

assumption of a triangular distribution of blade circulation and a linear 

variation of blade-element profile drag with lift, are sufficiently ac-

curate for performance estimation and the determination of the equilibrium 

angle of attack and lateral tilt of the tip-path plane. 

A set of more exact blade-element equations are then derived giving 

the relations between the thrust and flight-path velocity components and 

the equilibrium blade angles, torque, and in-plane forces and moments. 

Neither the blade element nor the approximate solutions are dependent up-

on the usual approximations that the inflow angle, 	, and blade angle, 

, of the blade elements are small angles. Thus the present equations 

should be useful for convertaplane as well as helicopter calculations. 

It appears that nonlinear blade twist may be desirable for a con- 

vertaplane rotor in order to obtain useful propeller efficiencies. There- 

fore, the blade-element equations have been arranged so that any reasonable 

distribution of blade twist may be used. Also, the equations were set up 
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in terms of an arbitrary blade-chord distribution since it was found that 

the use of the actual blade-chord distribution and the elimination of the 

usual assumption that the blade airfoil extended inboard to the axis of 

rotation largely eliminated the necessity for the usual reverse-flow cor-

rections. Tables of the necessary factors are included for blades having 

a linear taper, linear twist, and an airfoil contour from r = 0.15 R to 

r = R, and for blades having a linear taper, helical twist, and airfoil 

contours extending from r = 0,20 R to r = Ro 

The present analysis is based upon the following approximations: 

1. The blade-element lift coefficient may be assumed to be propor-

tional to the sine of the blade-element angle of attack, and the blade-

element profile drag coefficient may be represented by the first three 

terms of a Fourier series in the blade-element angle of attack. 

2. The blade axes may be assumed to be, and to remain, straight lines. 

5. The lateral and longitudinal variations of the normal component 

of the induced velocity at the tip-path plane may be assumed to be linear, 

4. The effects of compressibility on the tip sections of the advanc-

ing blade may be neglected. 

5. The radial and tangential components of the induced velocity may 

be neglected. 

6. Blade tip effects may be neglected. 

A comparison of the results given by the present equations with the 

full-scale helicopter test data of reference 1 shows that the equations 

are of useful accuracy for the helicopter flight range covered in that 

reference. At the present time there are no experimental data available 

to check the accuracy of the equations in the convertaplane flight range. 

- 2 



INTRODUCTION 

This project, sponsored by the National Advisory Committee for Aero-

nautics and the Georgia Tech Engineering Experiment Station, was undertaken 

in order to develop a blade-element analysis for lifting rotors that would 

be useful for convertaplane as well as helicopter calculations. This ne-

cessitated the elimination of the usual approximations that the blade-

element inflow angle, 4, , and the blade angle, 6' , are small angles 

and required a reasonably exact treatment of the blade geometry. 

It was found that the small angle approximations could be eliminated 

for the lift forces by writing the lift coefficient of the blade element as 

Cx.  = aSin 0C r  = a 67,0 gip C 0„ -/- C 0 S 	,S//2 cta 

and, consequently, the thrust component of force, CL.00.54.9 on a blade 

element as 

d L cos = j-aakos 0,457n6,(Ucos0,7p)+ cos 6,,,(Usin 044744r 

since e/cos 04, and USA/ 	, the in-plane and normal components of 

velocity at the blade element perpendicular to the blade axis and measured 

with respect to the tip-path plane, can be simply expressed in reasonably 

exact form. Similarly, the tangential component of the lift on a blade 

element may be expressed as 

ctLa94, =i70(2.(Us/40,,,ism6),,, (licosch,)*cos0,(11stnAjCdr 

It was also found that the small angle approximations could be largely 

eliminated and a considerable simplification effected for the helicopter 

flight conditions by expressing the blade-element profile drag coefficient, 
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ado 	as 

Cdo  = Eo  e, Si'2ocr  -7L eR, COSoce. 

It follows that 

GI Do  c.-Os 04, = if? 60 (Ucos Ov.)ar-,* r_o4L/.244,7)2 lucason,, 

4-E, (co .y 	611 12)cos 0,4 c os BM  (Us//2 

+ Ez  ( c as 0,2,1Cos 61,2,..(0 cos 	S/"2 61,v(I/S111 r-zie 

where the radical, 1  
11_ i_Usy,2 0,2)2 

car; , may be approximated by the 

first two terms of its binomial expansion. 

For the more severe convertaplane flight conditions, considerable 

error is introduced by dropping third and higher terms of the binomial 

expansion, since eo  is of the order of 0.50 for the three term ap-
proximation. Thus, for those flight conditions where /A, t,p 0.10 

it becomes more accurate to use the two-term approximation for the pro-

file drag coefficient, cd o  = E, sin oC r  + Ea cosoC r  for which the 

geometry is "exact". This is permissible since the relative effects of 

the profile drag become less important as the propeller condition is ap-

proached. 

The exact blade geometry has been retained throughout by expressing 

the blade-chord and blade-twist distribution in the form of the following 

constants: 
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/lc  x  n czx  
n 	17- R 

c Cosh x " dx 

-4■ 

and Ohs — ,71-/T C' S//7 x h /CtX 

Xi 
where 	= blade twist in the angle of zero lift between the reference 

ss. tatvon 	and nondimensional radius, x 

Values of these constants are given in tables 4, 5, and 6 for blades hav-

ing linear taper, linear twist and x l  = 0.15 and for blades having linear 

taper, helical twist and x1  = 0.20. 

The present system of equations has been set up with respect to tip-

path-plane coordinates or coordinates based on the virtual axis of rotation 

rather than the usual coordinate system based on the plane of zero feather-

ing in order to obtain shorter expressions for the in-plane rotor forces 

and moments, The use of coordinates aligned with the virtual axis of ro-

tation also facilitates the treatment of some accelerated flight prdblems. 

Certain refinements in the induced velocity theory, as given in 

reference 2, have been incorporated with some minor changes in the present 

equations along with the necessary terms for an arbitrary angular velocity 

of roll and pitch of the tip-path plane. 

Standard N.A.C.A, nomenclature has been used where possible, with the 

subscript, 4.7 , for virtual axis of rotation appended to the usual symbols 
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which, in this paper, have a similar meaning but different numerical 

values. 

NOTATION 

(Note: All angles are in radian measure) 

a 	slope of lift curve for blade element at 0.75 R (per radian) 

ao 	rotor' coning angle 

ao 	coning angle for zero blade-root bending moment 

a l 	the coefficient of the sine component of the blade-cyclic-- 

pitch angle measured with respect to the tip-path plane 

where 

e = A 1- 	- ae  S1.9 91/ 7i-  4 COS 9/ 

also the coefficient of the cosine term of the Fourier 

series for the blade-flapping angle„ if , measured with 

respect to the plane of zero feathering where 

i61 = a 0  - a, cash - 4,57/77, - agcose yf - 062 ,5' m 2 yv -  • • • 

ae 	 coefficient of the second harmonic cosine term in a Fourier 

series for the blade-flapping angle 

Ao 	mean blade-pitch angle at reference station, positive above 

tip-path plane. 

b 
	

number of blades in rotor 

b i 
	coefficient of the cosine component of the blade-cyclic--pitch 

angle measured with respect to the tip-path plane, 



also coefficient of the sine term of the Fourier series for 

the blade-flapping angle measured with respect to the plane 

of zero feathering 

b2 	coefficient of the second harmonic sine term in the Fourier 

series for the blade-flapping angle 

c 	blade chord at radius, r 

co 	extended blade-root chord at r = 0 (for linear taper) 

odo 	section profile-drag coefficient 

)2 	section-lift coefficient 

C 	rolling-moment coefficient measured about X axis 

MX 

 

  

C.MY 	rotor pitching-moment coefficient measured about Y axis 

(cr y 
	Alm  

	 6P 
CQ 	rotor torque coefficient (C44) ::= ion..zzaii,,s-  ) 

CT 	rotor thrust coefficient (Cr  == --- ---T 7- 	-.) 

Cx 	rotor X-force coefficient (CI(  = 2-44d 
a' 	 fx  C xy 	rotor blade tangential force coefficient (<2x y 	y ..17.077, j2eR 54) 

positive in direction of rotation 

CY 
	rotor Y-force coefficient 	(Cy "7- 	 P 	a R 

C z 	rotor-blade thrust force coefficient (C2.2 	i1,77f2 2)?  
• 	/72 

mean blade-drag angle positive in the direction of rotation Eo  

and measured between the blade axis and line through rotor 

axis of rotation and drag hinge. 

(i.e0 blade-drag angle, f , is S'.=:Z70  +E,CO35`54')`,571-'" 

) 
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E t 	coefficient of cosine term in expression for blade-drag angle 

coefficient of sine term in expression for blade-drag angle 

Fx 	component of rotor resultant force acting along X axis 

Fxy 	tangential component of the resultant air force on a blade, 

positive in direction of rotation. 

Fy 	component of rotor resultant force acting along Y axis. 

Fz 	Z component of the resultant air force on a blade 

g acceleration of gravity 

h distance between longitudinal fuselage axis taken through cog. 

and rotor hub, measured along the normal to the fuselage 

axis. 

mass moment of inertia of a blade about the flapping hinge. 

Inc 	Tne  sin Ao  + 0-ns  cos Ao  

ins sin A n o  - Ins 	 0-no  cos Ao  

Iv 	mass moment of inertia of rotor about virtual axis of rotation 

I s 	mass moment of inertia of a blade about the drag hinge. 

kao 	blade-root spring constant (blade-root bending moment in foot 

pounds divided by angular deflection in radians of 3/4 R 

point from ao  ) 

rotor torque, negative in direction of rotation 

✓ radius of blade element, c dr 

✓ radius of blade cog. 

radius of flapping hinge 

R 	radius of blade tip 

t tip chord  / 	(for linearly tapered blades) 
1-79 



T 	rotor thrust, component of rotor resultant force along Z axis 

U 	component of the resultant velocity at a blade element that is 

normal to the blade axis 

v 	mean normal component of the induced velocity at the tip-path 

plane (positive down and to the rear) 

V 	velocity along flight path 

Vi 	Z component of the induced velocity at r, yv , 

(positive in the + Z 	direction) 

w 	nondimensional slope of the longitudinal induced velocity 

variation 

gross weight plus down component of any acceleration force 

acting on aircraft 

x 	nondimensional blade radius, R 

x 1 	nondimensional radius of inboard blade airfoil element 

y 	nondimensional slope of the lateral induced velocity variation 

of 	angle of attack of fuselage measured between flight-path 

velocity vector and longitudinal fuselage axis 

ar 	blade-element angle of attack measured from line of zero lift ' 

av 	angle of attack of the tip-path plane measured in the X-Z 

plane between the flight-path velocity vector and the tip-

path plane, positive below tip-path plane 

/ 	blade-flapping angle at azimuth angle, 

(for tip-path plane 41F- ao -a R cosig, - be.syr? 

(for plane of zero feathering 

= 20  -a , cosy, - b,sihy` - czcos e basin 2 51,  ") 



circulation of a blade element at radius, T' , and azimuth 

angle, y/ 	

rr  
47) 1/ 	constants in expression for 	where 1' = 	7" 17 51/7 x 

value of cdo  at Le  = 0 

C 	constant in linear approximation for cdo  

(i.e. 27ci o  = 	16 	) 

e cc0  Ea  constants for first three terms of Fourier series expressing 

the relation between c do  and CX7r 

(i.e. Cdo  = ea  t E S✓i) cc r  -t- Ez  COS cCr 

or 	'Cd0 = 6'/ • 50 /7 CC", t c co_s-acr  

blade-drag angle at azimuth angle, 9% , positive in direction 

of rotation 

twist in zero-lift chord line between axis of rotation and blade 

tip for blades with linear twist, positive for increased angle 

at tip ( i.e. Be  = 6,x) 

twist in rotor-blade angle of zero lift between reference sta- 

tion and radius, 7-  , positive for larger angle outboard 

design helix angle at tip of blade for blades with helical 

twist 

pitch angle of blade element at radius, r , and azimuth 

angle, y , measured between zero-lift chord line and tip-

path plane, positive above tip-path plane 

= 	7L. 61t  - sin 	,61  cos vi) 
ex 	 angular displacement of tip-path plane about X axis from 

horizontal 



	

By 	angular displacement of tip-path plane about Y axis from 

horizontal 

	

A v 	inflow-velocity ratio at center of tip-path plane 

( Ant, 	Vs/, 	rzr" 
R 

	

/4r v 	in-plane velocity ratio at tip-path plane 

`'c.12 R 41- 

g-n 	 x 	, (constants which express the 
n - 

X, 
blade-chord distribution) 

(i.e. 	67 — 	 

)e 

l x cal etc.) 

nc 
	27- R 
	-c cos 611- x" -idx 

ins CS//V 8t x )7-1 cix 

(constants which express the 

blade-chord and twist 

distribution) 

oc 	angle between flight path and horizontal, positive below 

horizontal 



v 	inflow angle at blade element measured in a plane perpen- 

dicular to blade axis and between tip-path plane and 

relative wind, positive below tip-path plane. 

9v 	azimuth angle of blade axis measured about Z axis from X axis 

(Note: This angle is very nearly but not identically equal 

to the equivalent angle in the plane of zero feathering.) 

Cpx angular velocity of roll of tip-path plane about X axis 

angular velocity of pitch of tip-path plane about Y axis 

mean angular velocity of rotor-blade axis about Z axis 



ANALYSIS AND DISCUSSION 

Value of the Normal Component of the Induced Velocity at Radius, 

and Azimuth Angle,  

It is shown in reference 2 that for a lightly loaded single rotor 

composed of a large number of blades, b , each having a circulation 

given by the expression 

/7, -f-  f; si/7 

the mean value of the normal component of the induced velocity is 

/27 	j_f2R C r  

Av-9 1 fv- 

Equation 2 was derived on the assumption that the wake extended to' 

infinity and had the form of a straight elliptic cylinder. Thus, for 

those flight conditions where a "vortex ring" type flow exists, equation 

2 is not applicable and the value of /0- must, at present, be obtained 

2 
from experiment. The term ( / 	Tr-A ar  ) in the denominator of 

equation 2 arises from the lateral dissymmetry in the blade circulation 

that is required for rolling moment equilibrium, and this term is the 

only correction which the elementary theory makes in Glauert's original 

hypothesis that /27 = 	/°./4 

If the distribUtion of the normal component of the induced velocity, 

1/:1 , over the tip-path plane be denoted by a power series in the non-

dimensional radius, )( , and a Fourier series in the azimuth angle, 9/ 

such that for the first order terms 

- 13 - 
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VL  
.QR 	jz 	 ÷ %11-  x cos yt /y x sin yr 

it can be shown from the results of reference 2 that 

.cU —  
, 	2 

[(/ 4 8)- ar/ 

   

(4 ) 

and 

/y ;:.% 	 (5) 

For level flight and /4 4/. > 0.15 the expression for 	may be sim- 

plified to 

C 	 (6) 

It may be noted that for a pair of equally loaded, coaxial, counter-

rotating rotors, the values of AV- and ,y are 

and / 

34E11 &-7 

Approximate Values of the Rotor Torque, X Force, and Y Force Coefficients 

It is convenient for performance estimation and checking, and neces-

sary, in the general case, for the determination of the angle of attack 
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and lateral tilt of the tip-path plane, to have expressions of useful 

accuracy for the rotor torque, X force, and Y force that are independent 

of the rotor-blade angles. One such set of equations which take into ac-

count all the principal variables may be obtained from a consideration of 

the distribution of the blade circulation. It may be noted before proceed-

ing that the major part of the rotor torque and X force, which arises frOm 

the component of velocity normal to the tip-path plane acting on that 

large portion of the blade circulation which does not vary with azimuth 

angle, is independent of the radial distribution of the blade circulation 

for constant thrust and only a function of the magnitude and distribution 

of 'the inflow velocity. Consequently, since the magnitude and distribu-

tion of the inflow velocity are fixed by the flight-path velocity, angle 

of attack of the tip-path plane, and the assumptions as to the magnitude 

and distribution of the induced velocity, any reasonable approximation for 

the radial and azimuth distributions of the blade circulation, I , at 
radius, r , and azimuth angle, (9/ , should give useful results. A 

triangular distribution of /-7  along the radius and a sinusoidal variation 

with azimuth angle would appear to be a reasonable approximation. Then 

p (7z, 7,7  s n 	x 	 (9) 

and the rotor thrust, T , is 

Tt R 

— 1-171-F? 	cos 047  (/o 1- 07 rcalcy r 	( 1 ) 

0 



But //C OS 	= SLR 	+/qv, s /n vi) 

b 	rat -- 71- or C — 7" 	7r_a/c? 	 1/-  ( 12 ) 

Similarly the rotor rolling moment, M , which must be approxi-

mately equal to zero for unaccelerated flizht, is 

277` _ 8 

c oS 	(To' 	4,7 9,),--S i'9 c i dy d r (13) 

or for Mx = 0 

(14) 

and from from equations 12 and 9 

zr: 3  77-  12  f?  Cr 	 // ) 
4/ "IN 

The value of the blade element profile drag coefficient, cd o  , may 

be represented with sufficient accuracy by two terms of a power series 

in the blade-element lift coefficient, 171  , such that 

'ecio  =-- do  E -C2 	 (16) 

where 4-0  and 6' are determined from the values of cd o  at say 

= 0 and "C2 = 0 7 

Then the rotor torque, Q , is 



Pb  

0 

77*-• - 

cos c4 f7ytUa'r f6e 

Cc, 

R 

Us/i7 93,P r 	a'r 

0 

27i R 

c os,„ --c r dy, oi r • 

0 

But 0,5 7 /1 	-S2 eLA t CLI,‘ 	aoi,t,,,) cos y -7- x.rin 5frj 

Thus 

(17 ) 

(18) 

6  crofry. 	(A n.^/ c2 	 (19) 

(7 	-- where 	fr) 	" C h  dx 

For linearly tapered blades the values of CC  may be obtained by in-

terpolation from table 1. Similarly the rotor X and Y forces are 



and 

21r _R 

en-  R 

Pb E  

211-  
1 
o 

cos 0.,„„ rcos q c15 e 

, ,e 
(.7 cos it3,4„. -c cos 9/ cz9, cir 

0 

F 
/y 

0 

934,_ rcos d 5p dr 

217' IR 

'x 
	/°,6 

x 	217.  °sin 	['sin 019/ dr 

0 0 

Pb e -t- 
R 

U cos Ar r7S//9 9 ci5p dr 

e77- 

Pb do  U c os sin 9/ of y, dr (20) err 
o 0 

and the values of the coefficients are 

C = 	Fx 	- cr(2/147/141,- 	teitn i-) 

le 9 	/ 	 h 

and 

c = 	 = 
of- 	i-,077-122R4( 

CT(Air  -  2  as  iz,v) 
( 23 ) 

- 18 - 
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where 

ao  777° R`c"C7-(4:i 	0-- ) 

Equations 19, 22, and 23 for the torque, X-force, and Y-force coefficients 

should yield useful results provided there are no large areas of the rotor 

outside the reverse-flow region where the blade elements are stalled. It 

will be noted that the lateral induced-velocity variation has a relative-

ly large effect on the magnitude of the X force. Table 2 shows a com-

parison of the calculated rotor torque coefficients and tip-path plane 

angles of attack, calculated from the X-force coefficients given by the 

above approximate equation, with the experimental values of reference 1 

having Cr  ct-- .00545. Table 2 also shows a Comparison of the values of 

Cx  and Cy  calculated from the above equations with the more exact val-

ues from the blade-element equations derived in later sections. 

Determination of the Angle of Attack and Lateral Tilt of the Tip-Path  

Plane. 
•••■••••••■■•••■111.11.. 

Given the flight path velocity, V , climb angle, O ic  , gross 

weight and vertical component of the inertia force, W , fuselage 

and wing drag, lift, moment characteristics, and position of center of 

gravity: the fuselage angle of attack and thus the fuselage and wing 

lift, LP , and drag, Dg , can be obtained for the trim condition by 

setting the summation of moments, acting on the fuselage and wing and 

taken about the rotor hub, equal to zero. Since the lateral tilt of the 

tip-path plane has a negligible effect, it follows from the geometry of 

the above forces, as shown in figure 2, that 

19- 



Dp  cos c 	Sin O/ tF cos 4_ 
tan g = LF  cos Oc  ,OF  S1,7 -1-fr; Sp7 /97  

is a good approximation for unaccelerated flight. In general, the terms 

involving Fx  will have only a small effect on the value of 6? 	and 

a sufficiently exact solution can be obtained on the second iteration. 

Thus, as a first approximation, 

D, cos (be.-  LFZIP OC 	 tan 61  = W — LFCOS oc -DE  Sin 

oCz  = 93c  71--  07, 

C 	
[eV LF COS 0c —  bp s//?

7 	eg S22  R# COS Or 
 cbc  

(24) 

(25)  

(26)  

(27)  

V cos oc , 2, 
12 R 

VS/I7 0C4,- 	/V" 

-2R 	SLR 

(28) 

(29 ) 

/y- 
The values of ----- _aR may be obtained from equation 2 or by double 

interpolation from table 3 which includes the experimental values for 

vertical descent from reference 3 and estimates of the values for the 
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inclined flight "vortex ring" states. The values of w 9 y 
	and 

Fx  can then be determined from equations 4, 5, and 22, and from these 

the second approximations to the values of 	 , and At,,- can 

be made from equations 24, 26, and 28, If necessary, a new value of CT 

may then be obtained from the equation 

- W-L COS - 	 sbc  +/5-s-P7B4. 

`'T 	Pfi- f2 2A*Cose 7 
(30) 

and thus the more exact value of 	from from equation 29. 

For helicopter calculations the first approximation for C T  is 

sufficiently accurate, and 	is small (i.e../A4/. < 0.15) the effect 

of Fx  on OC 	may be neglected for level flight. 

The tail-rotor thrust, T T  , required for a helicopter with a single 

main rotor is 

(31) 

where Ae = perpendicular distance between axis of main and tail 

rotors and the value of C Q  may be obtained from equation 19. The later-

al tilt, Ox , of the tip-path plane for a single-rotor aircraft in 

unaccelerated flight is thus 

OA' k 	tC  

CT 

(32) 

where Cy  is given by equation 23. 



The Application of Two-Dimensional Airfoil Theory and Data to Rotor- 

Blade-Element-Calculations. 

Two-dimensional thin-airfoil theory demonstrates that 

'C2  =-7- Q S/12 oe 	 ( 3 3 ) 

For a two-dimensional cascade of airfoils, equation 33 is modified 

by a multiplying function of the solidity, chord spacing, and blade angles 

that is very nearly unity for average lifting-rotor configurations as 

shown in reference 4o Thus, within the approximation that the radial 

components of flow may be neglected, equation 33 should be applicable 

for blade-element rotor theory over the unstalled range of blade-element 

angles of attack. Beyond the stall, equation 33 is somewhat less in error 

than the usual relation, 'CA  =aCC , as can be seen from figure 3 

which is a plot of the above expressions and the experimental values of 

CI  versus oC for a NACA 0015 airfoil. The use of equation 33, 

rather than the usual approximation that 1 	= GtoC allows the thrust 

and tangential components of lift on a blade element to be exactly ex-

pressed, within the approximations involved in neglecting radial com-

ponents of the flow, in terms of the easily integrated in-plane and 

normal components of the velocity at the blade element, LICOS 04, , 
and US /17 	. Thus the usual approximation that the inflow angle, 

, is a small angle may be eliminated. This may be demonstrated as 

follows: 

Omitting the negligible component of the profile drag, the thrust, 

d T , on a blade element, c dr , is 

=RL  11 2-c -ci  cos 0,, dr 
	

( 34) 
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or since 
c,==aVnacrr-mcz am e cos04„-f- C Ose94,..5717 	 (35) 

dr = -EP& c (1 cos Avis et.(11cos 04,) c os a cijotr (36) 

The tangential component of the lift on a blade element may be similarly 

expressed as 

dL.ssin =tPa..c (Osm 	Acts 0)74- c s A ra's/4 93,4 dr (37) 

The value of the slope of the lift curve, a- , of the blade-element 

airfoil in the above relations may be taken as the value corresponding 

to the Reynolds number, Mich number and surface roughness existing at 

the 3/4-radius point of the rotor blades under consideration. For the 

usual tip speeds, in the 500-feet-per-second range, the Prandtl-Glauert 

Mach number correction 

(3 8) 

where a 	= low Mach number lift-curve slope from two-dimensional 

wind tunnel tests 

= freestream Mach number at 3/4-blade radius 

may be used to correct the lift-curve slope from low Mach number data 

The values of 11'do  obtained from two-dimensional wind tunnel tests 

at appropriate Reynolds numbers and model surface roughness should be 

directly applicable to rotor-blade-element calculations in the unstalled 

range of angles of attack below the Mach numbers and angles of attack 
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for drag divergence, since the effect of subsonic Mach number on profile 

drag is negligible as shown in reference 5, However, the two-dimensional 

values of Cdo  in the high angle-of-attack range around 0C = 90° 

 should probably be reduced from values of the order of 108 to values of 

the order of 1.2 due to the narrow span of the high angle-of-attack 

regions of the rotor blade and the equalizing effects of spanwise flow 

on the normal pressures. This effect may be seen in the variation of the 

drag coefficient of flat plates normal to the flow from a value of 200 

for the two-dimensional plate down to about 104 for the square plate. 

In view of the errors in the magnitude and distribution of the blade 

circulation that arise from the necessary neglect of blade deflections, etc., 

it is probably not justifiable to take into account secondary effects of 

the profile drag. Thus, expressing the relation between the profile-drag 

coefficient and the blade-element angle of attack by the first three terms 

of a Fourier series gives 

cdo  = Eo  -t- synoc r  1 	cox oc r 	 (39) 

The constants in the above equation may be evaluated from the two-

dimensional wind tunnel data for the blade airfoil at say QC = 0°, 5o, 

and 10°. The advantages of equation 39 over the usual expression, 

Coto = dra *cfloct- liocr
a 

 

are: the latter two terms of equation 39 can be exactly expressed in the 

known velocity components 6/COSA 	and US/I! 	; the resulting 

expressions for the forces and moments on the blade are considerably 
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simplified by the absence of the squared term in oC ),.. ; and it is an 

equally accurate approximation to the experimental values of cd o  as 

may be seen from figure 4 (page 	). However, in using equation 39 

it may be noted that the calculated value of cd  is the small differ- o  

ence between large quantities and thus the values of C o  , 	, and 

ea 	, should be determined to four places in order to obtain the 

value of cdo  to the customary accuracy. For the more severe conver-

taplane flight conditions where the inflow velocity is large ()A m ) > 

0.10) a certain error arises in the treatment of the e o  terms, and it 

is necessary to fall back on the two-term approximation for cd o  , 

cdo  = E, S//JoC r -t- eeCOSoCr  , where 61  and e:4, are evaluated from 

the experimental data at say GC 	2 °  and cX7 = 7° . This additional 

approximation is permissible for these flight conditions, since the rela-

tive effects of the profile drag become less important as the inflow ve-

locities and rotor blade angles increase. For example, in propeller cal- 

culations the single point approximation, cdo  = 	, is ustly used. 

It follows from the geometry and equations 35 and 39 that the tan-

gential component of the profile drag on a blade element may be ex-

pressed as 

Cl Do  cos 	= fi-C (0 cos 

teiPcosk)Sin 	(1 zs-7.2 Ay ) cos 60,,J 

* 41/co s 0,)cose94r —  (0-rm 47„)..sv)? 44j (40) 
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Thrust of a Blade at Azimuth Angle, 9/ 

The thrust, Fz 	, of a blade at azimuth angle, yr/ 	, is 

= 	(1lc es 0,1,Pcos 	 (vim 0.)cos(,,,_ (41) 

A, 

In the general case it follows from the geometry that 

()cos 9 4r  = SL R x -t,u„,,rin 
	

(42) 

and OS /17 04,- _n_lirA Ar t 66(...- 2( + c.44X a0/1.1-4.r) COS VI 

(/y - cA)A) x sp.? -i- 2bb X cos 8 yi 

(43) 

where C.qx = angular velocity of tip-path plane about x axis 

= angular velocity of tip-path plane about y axis. 

Neglecting the higher harmonics of the cyclic pitch that may arise 

from control system linkages, the pitch angle, alp , of a blade 

element ar radius, r , and azimuth angle, ( 1 ' 	, measured with re- 

spect to the tip-path plane, is 

= 1 p t et  - a, sin sif Y.- 4 cos 9/ 
	

(44) 



	

where AD 	= mean blade-pitch angle at reference station. 

twist in rotor-blade angle of zero lift between 

reference station and radius, r 

= minus the coefficient of the sine component of the 

blade cyclic-pitch angle measured with respect to 

the tip-path plane. 

	

b, 	= coefficient of the cosine component of the cyclic- 
pitch angle measured with respect to the tip-path 

plane. 

In the general case (i.e, for the convertaplane) 4, and ot  
may not be small angles., However, it appears that the magnitude of the 

cyclic-pitch angle will always be limited by tip stall on the retreating 

blade to the range where it is a good approximation that 

	

sp? (- a, 	9/ t 6, cos 0= - a, sirs Y-  cos 9/ 	 (45) 

and CAS T 0,.!'n! 71-  C IP) = 	 (46) 

It follows from equation 44, upon expanding the functions sin 6 ),I, and 

cos (94, , that 

efv..=[smA0 -f- coslifo( 	t 6, cos cy j c o &2t. 

itcos4, -s)72,10 (--a,s/n -t- 6, cos js / 6), 	(47) 



(so) h - / 
X -S117 9 dx 

COS 	=Lsc os /10 -  sin A 0 (-al -57/791 7" cosySC.0S 6t 

lli40 7" COSA o r a l  Sin 74'4 6.054.5,m 9e 	(48) 

Substituting the values of 6/COS 
	

/Ism 0, 	sth 	and 

co s  0 
	

from equations 42, 43, 47, and 48, in equation 41, defining 

n-i CI;ic 	fC X cos Bt  dx 

X, 
( 49 ) 

1 7c 7-7 G;ic sir? /lo 	s "S A 	 (51) 

hs. = Or-  J-vi 	- 0"- 	os,40 hc (52) 

and multiplying out the terms and reducing the functions of 91 	to 

F 2 
harmonic form gives for the thrust coefficient, Cz == b„17.12 2/04 

of one blade at an azimuth angle, 9/ 	, the expression of equation 53: 
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Equation 53 is written in tabular form where the coefficients in the 

boxes must be multiplied by row and column heads. Values of 07 7c  and 

hs 
	may be obtained by interpolation from tables 4 and 5 for linear- 

ly tapered and twisted blades, where 

= 	1 + t x) from x = 0.15 to x = 1 	(54) 

ot=4x 
	

(55) 

(Jo 
Co 	 (56) 

and 	C0  = extended blade-root chord at r = 0 

= tip chord 

  

.Co 

= twist in angle of blade zero lift between axis of 

rotation and tip 

In order to use the tabulated values of Ori",c  and CS  for blades with 

linear twist and taper, it is necessary to take the reference blade-pitch 

angle, Ao  , at the extended blade-root chord, /70  , at r = x = 0. 

The use of the lower limit, X/ = 0.15, in the computations for the 

blades having linear taper and twist corresponds to present practice and 

largely' eliminates the necessity of making any reverse-flow correction to 

the blade thrust. The reverse-flow effects are discussed in the following 

section. 

Additional tables, 6 and 7, give the values of Gr;Ic  and Cri/ss- for 

blades having linear taper from x = 0020 to x = 1 and helical 

twist where 



= tan -i(  tan. 64) 
	

(57) 

and 
	= design helix angle at x = 1 

In this case, the reference station for A o  is taken at the blade tip. 

The tables for helical twist are included for convertaplane usage since 

helical twist would appear to be desirable for a reasonable propeller ef-

ficiency. An inner limit of X i  = 0.20 was used for the computation of 

the values of G71-7c  and 0)77s  for this case of helical twist in order to 

minimize the severe root stall likely to occur under some convertaplane 

flight conditions. It might be pointed out that helical twist would also 

appear to afford an increase in helicopter-rotor performance over that ob-

tainable with linear twist. 

Reverse-Flow Considerations 

For normal helicopter and convertaplane flight conditions where there 

is a downflow through the rotor and 0 	is negative over the reverse-flow 
region, the maximum value of Av, is limited to relatively low values of 

the order of 0,30 by tip stall on the retreating blades. Under these con-

ditions the portion of the retreating blade extending inboard from the 

outer edge of the reverse-flow region at x = ... ja t,...TA tfe where the in-

plane component of velocity is zero, to x = xl  , where the blade-airfoil 

section ends, has a negligible thrust loading because the in-plane compo-

nents of velocity are very small. The present equations take into account 

the fact that the blade airfoil does not exist inboard of x = x l  , for 

which region the in-plane components of velocity are larger, within the 

reverse-flow circle, and previous equations erred in assuming the blade 

airfoil to exist. 
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For those flight conditions where there is an upflow through the 

rotor and the tip-stall limitations on /a,,v-  are relaxed, the present e-

quations give the proper direction to the blade-element thrust for those 

blade elements within the reverse-flow region and inside the radius where 

---Z" 	c9,,, 	• 

Thus, for all practical purposes, it is not necessary to use reverse-

flow corrections when applying the present equations to conventional rotors. 

Mean Rotor Thrust  

Omitting the coefficients of the second harmonic flapping angle which 

have a negligible effect on the mean rotor thrust, the value of the mean 

rotor thrust coefficient obtained from row 1 of equation 53 is 

2 T 
 E,, 	- cox ) - 6, Cufr* cdtil 	ao bierc a b 

ikX' +/61,71)14/1/1/C -[1 41" a1/14, 74-  t(ty coid,u,j-res 	(58) 

Mean Rotor Air-Rolling Moment  

The value of the mean rotor air-rolling moment coefficient, C.,knx 

 about the X axis 

where CO X  
--Lf 12..4h*r a rr 

is found, upon integration, to be obtained by multiplying the second row 

of equation 53 by ib and writing the subscripts of .Z1c  and ins. to 

one higher order. 
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Thus, 

aCm  x r; 	3 / 
a.b 	a-/^ 4/4-  a/(7-  wx).41 1,- -  u/ 	col.),/14,1r3c 

-fry ao A-1/1,- 12c* (a/ -1 1- WX )  

(f 	A.2.1147,--47,5 

Mean Rotor Air-Pitching Moment 

Similarly, the mean rotor air-pitching moment coefficient 

obtained from the third row of equation 53 is 

1C/7r rb, A, — y  ai(44.` 1-  (-02d/um- +ill. hi 	- cox )/44„j 

-1- 	ao 	1,e4,27  _rac 	 74-  C07).1-i ,s' 

ao",- 1-3s 1-  4-  hi 	-ras 

Mean Blade-Root Air Moment 

The coefficient, Lam®  , of the blade-root air moment, no 	is 

merely the first row of equation 53 with the I factors to one higher sub- 

script. Thus, for 6-:470  = 

 

(59) 

(so) 
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cl° = P 	-wx) 	(w-  cd7))-Tyc 	a0 "I, ̂Z.3C 

-1(z, A4,-*/av-) 14w--rec -[;\fv--  a/Ay-74(1 -  widAtfl Ix (61)  

Equilibrium Values of the Mean Rotor Pitching Moment 	 Moment 

With three or more Oiddes.5-  
If an external moment, fl, , be applied to a single rotorAabout a 

diameter, axis 1, the differential equations of motion about axis 1 at 

(4/ 	, and axis 2 at 9/ = 9/, 	900 can be shown by the use 

of Euler's equations to be 

ei co 	.4 co Si co 	= d t 	4 lafr  

and d t 	1Z CJ -t- 	-r  — 
-IL Al. 	0 

where GU/  and We  are the angular velocities of the tip-path 

plane about axes 1 and 2, respectively° 

and-ARGOe  are the damping moments 

is the mass moment of inertia of the rotor about the 

virtual axis of rotation. 

The general solution of equations 62 and 63 is a pair of equations of the 

form 

ior2 =E;IsintS2 2  (tTzt) t ti3CoS 

_ 	 
/2 (kk 	 t 

(6 4.) 

coe 	 .he W e  

(62)  

(63)  



In the actual case, damping of the nutation appears to be very rapid 

for an articulated rotor. Also, for pilot-controlled motion, 	o 

For example, for a constant control moment, M / 	_he  = 0 and A =2124. 

the value for critical damping 

= 	t e 	 (65) 

GOR, 	
e 	

(66) 

It can be seen from equations 65 and 66 that the transients decay very 

rapidly and their effects can be neglected in most problems. Therefore, 

to a good approximation for a single rotor 

= /4,12 col  +//),,,,. 	 (67) 

(68) 

where 1Vxic and 	are are any moments transmitted about the X and 

Y axes from the fuselage to the rotor. 

For steady straight and level flight 

cuX = (A)
1 

= 0 
	

(69) 

For steady banked turns the value of CT can be taken proportional to 

SEC OA, . Also 

gx t'QrJ  61 	 (70) COX V 



and 

q- ,sm 6 f  ta cA)Y 
	 V 

where ex  is the equilibrium lateral-tilt angle of the tip-path 

plane (approximately equal to equilibrium angle of bank, positive for 

turns in direction of rotor rotation) 

For any curvature of the flight path, the components, r2t,),A,  and W„ , 

of the aircraft's spatial angular velocity may be calculated and, conse-

quently, the approximate equilibrium values of Mx  and My can be obtained 

from equations 67 and 68, 

Approximate Solution for Equilibrium Values of  the Mean Reference Blade  

Angle, Aa  , the Lateral and Longitudinal Components of the Cyclic 

Pitch, - ez i  , and 6, , and the Coning Angle, Ct o 

An approximate solution of the set of four non-linear, transcendental 

equations, 58, 59, 60, and 61, for the four unknowns, Ao 	, ea, , 

and , that is sufficiently accurate for most steady-flight helicopter

•  work and useful as a first trial for steady-flight convertaplane calcula-

tions may be obtained as follows: setting the small terms and 

604f  , and (-),/ equal to zero and cos Ao  = 1 in equations 58 and 59, 

and eliminating LL , , gives 

4.. 	 ,T" La  _45 	• -)t 	 77,77,-0„„(r,e, 	, 

r (673C iFTA 6-C-C 4 	tt: (7 /I(''I'" 	— Aar (rgS) 477/111.e"‘ (--142C 	 7 

(71) 

Then, from equation 59 for 
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azfrj- y 	1, 	c*-1-43. 	Ies 
	 (73) 

Let ao  be the design coning angle for the general case of semi-rigid 

blades (i.e, coning angle for zero blade-root bending moment), Let .A'a c, 

be the spring constant of the blade for angular deflections of the three-

quarter radius point from Z., . Then setting the summation of moments 

about the blade root equal to zero and solving for a o  , the coning angle 

at the three-quarter radius point, 

2 
101 R R 5LC t* (a/  Aar 1:A4v)A1,12c4A,,-- a/ /14)13s) ichao-tfa 

a0 	
12 a  Jea  

where 	118 = mass of blade 

r-  = radius of blade cog. 

= mass moment of inertia of blade about 

flapping hinge (or root) 

(Note: If the blades have a flapping hinge at the axis of rotation 

fro  Az°  - 0. If the flapping hinge is located at radius, r:e 

/2  s2 a  from the axis of rotation, 50 17. 0 and A 0 ';',t 	® 

0.75 

Then, knowing ao  , it follows from equation 60, that for 

(74) 

9 



-13s 
	

(75) 

A T 

For those steady, unaccelerated flight conditions where cos A o 	1, the 

above solutions are sufficiently accurate and may be used to calculate 

the blade loadings and rotor torque, X force, and Y force. 

"Exact" Solution for A , a , and 6 
	

for Accelerated Flight 

Conditions and Those Flight Conditions Where cos A 

A reasonably rapid and sufficiently accurate solution of the "exact" 

equilibrium equations given by the first three rows of equation 53 can be 

obtained by using an approximate value for the coning angle, Z0  , such 

as that given by equation 74 or that following equation 23. 

Then for the approximate value of A o  given by equation 72 and, for 

example, two other values several degrees successively smaller, the "exact" 

corresponding values of a, and 4 can be determined by rewriting the 

equilibrium equations for the rotor pitching and rolling moments in the 

form 

2C 

and 	Ca 7L.  I) 6/ 	 (76) 

where 
0 L. A = 	(.cv- 601.),Lc„,, 	aO /an , -1-?c (77) 

B e 
3C` 	 )/a4/-  — /tn. ,  -I- a S 

(78) 

C = A4,. 2 
9-  y /tt/r 1.1c  1-  .1 	2  -- (79) 
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T. D 	— = 	/./ 	 t7-  6c4)- t c.,- /4.4-,v-,Te 7  ir 	/ad,- - 

.T.3 ( 	(.4 it 	/4  r-  

	

R  = 	.13c 	 ) 9- 1- 	-712s 

	

/ 
	

C ) y  
a 	8 

a, (83) 

A 5 

C 

Then 

t 80) 

(81)  

(82)  

and 

A 

C 	f. 	117̀  

(84) 

A 

C: 

Having computed the values of and b, for each of the assumed a 

values of Ao  , the corresponding values of CT may be found from the 

equation for the thrust equilibrium where 



r 	T 
,? 	 ic 	2-1 	ttLiz, 'Rs 

+[t( _c(1,01:9c  A-Am./a/v.1,c t-A,2,--2-Rsj a/ 

411- 	„, 	- 	7{-to .  7".  
1 L  
I °, (85) 

Then plotting the values of 
2 Cr 

 
eZ 

, and b, , versus the trial 

values of Ao  , the "exact" value of A o  , and thus a, and 6, , may 

be obtained from the plot at the design or desired value of CT 

In-Plane Component of Force, 	on a Blade at Azimuth Angle, 9/ 	. 

The in-plane component in the direction of rotation, Pxy  , on a 

blade at azimuth angle, 9) 	, is from equations 37 and 40 

'e (Us 17 S15,2 T5v 17 19, ,10 c o s 54c)t C OS 64,, (1/41l2 954,-3 d r 
A 

cass 0) iL fsin. 67  (0c oss )1- COS it (215/4 

Y - 1 

	

-t-  [cos 	Wcos 	- sm ar (Osti7 0/1"-V 
	

(86) 

	

where ci =- 	-t- -NW OCr  E cosocr  

Then, by the following operations: substituting the previously evaluated 

expressions for 	(..) cos At  , V sin A„ sin 6?„ , and cos ✓ , given 

by equations 42, 43, 47, and 48; neglecting the effects of second harmonic 



flapping; expanding the expression 

by the binomial theorem and dropping third and higher terms, the expression 

for the constant and first harmonic terms becomes 
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As previously mentioned, it is preferable to use the two-term series 

approximation for cdo  for those convertaplane flight conditions where 

[A,v1 becomes large (i.e. /A j > 0.10). For these cases the terms 

involving 4, in the preceding equation and following equations may be dis- 

	

regarded. The values of 6, 	and 6e  will of course be different for 

the two-term and three-term approximations for cdo  , as pointed out in 

the discussion on the use of airfoil data. 

Rotor Torque 

The value of the rotor torque coefficient, CQ , is 

?- 22  = - (constant terms of C xy  with subscripts, )7 

on C 	, 1-„c  • and Ins increased to n + 1) 
	

( 89) 

For steady state calculations where WA. = 6010, = 0, an approxi-

mate solution that is sufficiently accurate for most purposes may be ob-

tained by neglecting small terms. Then 

-aTA,4„+2016,*ezt4,41,1-3,5  t (-E a„a, -Av)/i4, 1-4 .59 

ec, [61- 	- 	 t(A,a -1a„2  ) 0R] 

+-6  /[14,c4 aa iz -2.9c t 2 \/a/v-.1` ANJIL.- 	t (2,A4v- 

t  [(a /illay A/v)-Z-3c 	 6//41-17,s 	,Z1N-2-ss 

(al 	).A4  4, 1  es j 

(90) 
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Rotor X-Force 

The value of the rotor X-force coefficient, C x  , is 

= 	(sine terms of Cxy) (91) 

For steady-state solutions the expression may be simplified to 

2  1, 	—42. 174/13c (a, 	 lc 

(a/A/ -21y /44,-* 3 -  a, 1/1-44,--  

6/ [(62/ Air + 4av-irRc + (4/ -y)13si-- (4apii,„--.1411,lj 

7-6f 	 --(e/a4,4.49,11)1.2.s] (92 ) 

Rotor Y-Force 

Similarly, the value of the rotor Y-force coefficient is 

6C1- 
	

= (cosine terms of Cxy) 
	

(93 ) 

and for steady-state solutions this expression may be simplified for most 

purposes to 

444,-I3c  a 01247 C -1-1/ 

L 	T  

1-6 IT ail-17"zr 	4 yia,v- -  4 Aa- -  g417/1/z,-)-Tes  

+(e a, 	71.- a ,„ ai  ,&„„),1,t,i/si (94) 
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Second Harmonic Flapping 

Again letting -4,20  be the spring constant relating the blade-root 

bending moment in foot pounds to the angular deflection in radians of the 

three-quarter radius point of the blades from the unstressed position, it 

follows that the magnitude of the cosine component of the second harmonic 

of the blade-flapping angle is 

fr< L 
a 	

1-1111 

Similarly the magnitude of the sine component is 

L 477.1 
I - 11 

where J = (terms not involving 1,R  in the cos 27 row of thrust 

equation 53 with the I factors changed to one higher sub- 

script)((-  
.32/ Seq-Aao i 

K = (coefficients of ba in the cosR9,  row of thrust equation 

53 with the I factors changed to one higher subscript) X 

iiff/-Reea  
31, -2.2  tA,„ 

L = (terms not involving a R  in the sine RV row of thrust 

equation 53 with the I factors changed to one higher sub- 

-LA f/7-.12. 2  /Via  script ) (- 
3 r, 12.21-461, 

M = (coefficients of a a  in the sine 2 9,  row of thrust equation 

53 with the I factors changed to one higher subscript) X 
fon-s/'R  -ra 

(95) 

( 9 6 ) 



For steady-state flight conditions where 	 =0 the 

expressions for the factors, J, K, L, and M may be simplified to 

j 	/C17' _fa a 	ri  J- 

31  
• 	- 

— 	i/d11,),&4,---I-3.ssi 

*rL P  r
-  .f2.2 	 171. 

(97) 

(98) 

..(g 	L 	,A 	47 

-r  
(6, t TADIA‘4,- -L3S Z5  a0,1-44,-1-2s 	

(99) 

p 

32;0!14, 	Lc' 
77' ,2..3 	rc (100) 

and 	I ;  mg mass moment of inertia of blade about flapping hinge. 

It may be noted that 4a,  = 0 for blades haring a flapping hinge at 

the axis of rotation. If the flapping hinge is located at radius, 

then 

,4 
ao 

K 

L 



Amplitude  of the Constant and First Harmonic Component s  of the Lag Angles 

In Unaccelerated Flight. 

For an articulated rotor having lag hinges normal to the plane of ro-

tation and located at a small radius, e , the equilibrium blade lag angle, 

E0  , is 

Cl
y 6    /- C.4 - from  egvation ?;;_) 
Ye 0 L 6 

(101) 

where M = mass moment of blade about lag hinge. 

Similarly the coefficients of the cosine and sine components of the 

lag angle are 

and 

4-fIr vrr 	1,45.1 

Mee Y 	y 

boi-t 	+2Q0 als  
Cis  e 

(102)  

(103)  

where ass  and 	are the cos?",  and sin 9% components of the 

angle between the tip-path plane and the hub plane. 

For unaccelerated flight the values of ass  and b/s  are approximately 

oc,s, - 

b 	g - g /3' 	x 

where (9,:t 9c = equilibrium lateral tilt of fuselage. 

(104)  

(105)  
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Also 13  = mass moment of inertia of a blade about the lag hinge 

E I = coefficient of cosine 9, in equation 88 for Cxy  with sub-

scripts of I factors changed from n to n + 1 

or 

r,tv- ,„c- a„,a,13c -  (6,1-  2,1v)/3, 13s +- 12- ao AA.-i- 44, I es] 
	

(106) 

F 	= coefficient of sin 9' in equation 88 for C xy  with subscripts 

of I factors changed fro, n to n + 1 

or 

Fs  ',Z.; a 1-1/. 	 c k 

—eo E 	A 	e,tt) 6:9] 

	

P.", -T„ Q/  -TY-s 	a/AA -, — Air)//i-,1,--Tzsj 

[-(a/ 	sic t  ( t an 	— 	1-  Re — 	 ( 107) 

Thrust Unbalance 

 

Two-bladed rotor. The second harmonic variation in CT for a two 

  

bladed rotor is 

 

CT 
- a--- = Yth t sth rows of eQueittoi) 0:3 (108) 

For WA = C.37. = 0 and steady state conditions, the equation for the 

amplitude may be simplified to 



 

0 

*P6o 1-3s amitrv-I4s] (109) 

Three-bladed rotor. - The third harmonic variation in CT for a three-

bladed rotor is approximately 

20 Cam- 	6 th t 7th rovvs. of 42 gvatvon 	 (110) a 

or for Oi* = 6,07  = 0 the amplitude is approximately 

i_/ a 1_21e 
3a 	 (al 	j ..41-4,--L is 

An Independence-of-Blade-Element Analysis for Hoverin Vertical Ascent, 

and the Convertaplane Propeller Condition.  

The use of the relation /C. 	= £2- sin GC permits a considerable 

simplification of the equations resulting from the assumption of the inde-

pendence of blade elements. As the "exact" propeller solutions of Betz, 

Goldstein, and Theodorsen are not applicable to a lifting rotor at zero 

or small advance ratios, a simple independence of blade element analysis 

may be useful. 

From momentum considerations the thrust, dl r  , on an annulus of 

the rotor disk, 24-trd.r , is related to the induced velocity, Vti „ 

at the rotor element by the expression 

- 52 - 



dT 
IfitIc'r dr 	VA°. ( VA! 	VS/ /7 cc/r ) (112) 

but 
	

I/sin oc,= vS/17 char 
	 (113) 

Thus 
d  - 

*n 'Pr dr 
(liSMcka LS/I7 	1/57190C.) (114) 

The thrust of the annulus is also equal to the thrust acting on the por-

tions of the blades within the annulus which is 

olT = 2 1°15 U c cos 04, dr 
	

(115) 

where fC2 = a sin 6c ,.. = a (s/ /7 64, cos c6,-t- cos 11,...sin 0y) 
	

(116) 

Thus dT = il'a60/cosAjbw76?„(4/cos 

J= cos c9„(lisin 	-c dr 	 (117) 

Substituting the above values of d T in equation 114and solving for 

U sin 0,, 

US/P_Oev- 	C/24 	a. 6 	cos9,) 
12 I? 	 / 

- yi(4)-12- 	 * et 6 a---r 	 - A'S/I7 / 
(11s) 

53 



where 	
V S/17 GC 
	

(119) 

0-r 
-c 

R 
(120) 

Then from equation 117 

a b 
	rx sin 61 ) cos 6,107: x etx 

	
(121) 

where the value of -- US/4 .1,-  
S2 

Similarly from blade-element considerations 

CI:177R  Av)[2( sih 6 +(1)--..afs  4R  01) c os 0,1 x ctx 

at x is given by equation 118. 

11-XSM g/tr, 1" (v hii-0-4 )COS6hriCi^ CO( 
A. 	,- 

of SP7oC 
'"714 	is obtained from a plot of 

r  

versus oCt  for the blade airfoil at 

oc r  
where the value 

(122) 

"Cat o  

S/17 cC r  

oc r  = 04/.t t a ;-) 	0--)SIR4417 	 (123) 

If it is necessary to take into account the rotation of the slip-

stream for large rates of vertical ascent or the propeller condition, this 

may be accomplished to a first approximation by using an effective .12 

_R e 	, in every case where 

(124) 



(125 ) 

The geometry of the above equations is exact and they are convenient 

for graphical or numerical integration on account of the repetition of 

factors. 

Neglecting the induced radial and tangential velocity components, 

the optimum blade-angle distribution for minimum induced power and a 

given blade-chord distribution and nondimensional axial-flight path veloc-

ity, ,2 	, may be obtained by setting a 
R 

5W2 04,/- 	equal to the 

constant value SIN  , giving 

where .= a b  
8 

 

(126 ) 

    

and /241 — A 	 4rai) + ( a a Cr  (127) 

The optimum chord distribution for a given desired constant value of ce 

along the blade and the same restrictions is 

8,1,, Oar  —err' 
0`1 =6/ci

2 

(128) 

For this optimum chord distribution, the optimum distribution of 0,, 

reduces to 

s 	 1- / 
, G[. A  - 	(4 4.-  x 2) 	 j (128) 

x a-  



For calculations where the flight-path velocity and equilibrium 

value of CT are known or can be estimated, the following procedure may 

be followed: 

1. Calculate and plot the radial distribution of Tr  

2. Calculate the effective value of CT and 411 where 

Cre  7= Cr  Ct-Y 

/1/,e ' /2), (t) 

3. Calculate the approximate value of Ao  from equation 72 which 

for these flight conditions reduces to 

61  
Cre  cis - A 	c)(6S,  c A4.- 8:1s) 

Smvi 	6  

6:3C - 	qS)(6-itc /L- 0":3s) 

4. Calculate and plot the radial distribution of Iv  = Ao  + 4 

foi. the value of Ao  obtained under Item 3 and two lower 

values at increments of several degrees. 

J7e  R 
for the above distribution of 0,, from equation 118 

using 	= fi e  throughout. 

6. Calculate and plot the radial distribution of the integrand of 

equation 121 for the three values of Ao  and graphically or 

e  numerically integrate for the values of 	Cr  

	

Q b 	corres- 

ponding to the three values of A.0  

7. Obtain the correct value of A o  from a plot of CTe  versus Ao 

8. Calculate and plot the radial distribution of the integrand of 

equation 122 for the three values of A.0  and graphically or 

5. Calculate and plot the radial distribution of VS I h  
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ge numerically integrate for the values of a (2 

 corresponding to the three values of Ao  

9. Obtain the equilibrium value of Ccze  at the equilibrium value 

of Ao  from a plot of CQe  versus Ao  

10. Calculate the equilibrium value of CQ = CQe (112-a9 

22222.21so mentalanL92.1.21.0.ated Values of the Parameters  

Table 8 shows a comparison of the experimental data of reference 1 

for those runs where CT ti 0.00545 with the values calculated by the 

approximate blade-element equations of this report. The blade-element 

lift-curve slope was taken as a = 6.,5 from the experimental results of 

reference 6. The values of eo  , 	, and ee  were evaluated for 

the points cdo  = 0,0095, 0.0105, and 0.0140, at oC 	= 0, 4, and 8°, 

respectively, from figure 19 of reference 6. 

The "exact" solutions for the various parameters differ fram the 

tabulated approximate solutions by a negligible amount for these helicop-

ter flight conditions. 

The values of the parameters from reference 1 calculated for a = 

5.75 by the previous equations, which are based on the use of an effective 

solidity and the approximations that B 	and 0 are small angles, are 

also included in table 8 although the results are not strictly comparable 

because of the difference in assumed lift-curve slope and profile-drag 

parameters. 

A consideration of the results presented in tables 2 and 8 would 

indicate that much of the remaining discrepancy between experimental and 

calculated blade angles and torque coefficients may be due to the neglect, 

6 
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in the present calculations, of the effects of the rotor induced veloci-

ty on the lift and drag of the fuselage° 

Also it will be seen from the results of run 2 that the present 

equations considerably underestimate the power required for those flight 

conditions where the tip stall on the retreating blades is severe. 

If the experimental results of run 7 be assumed correct, it would 

also appear that the present elementary vortex theory overestimates the 

magnitude of the mean induced velocity for low speed forward flight, though 

this seems unlikely. 

The present calculated values of the coning and lag angles are slight-

ly too large since standard sea-level air density was used in the calcu-

lations in the absence of the experimental values° 

I

(

t may be noted that the longitudinal component of the angle, 

tan-I 	C 	, between the rotor resultant force and the thrust compo- 
R C

.74.
r 

nent normal to the tip-path plane is very small for all these helicopter 

flight conditions and that the direction of the resultant is inclined for-

ward for those flight conditions where there is a net dawnflaw through the 

rotor. The inclinations of the tip-path plane to the horizontal, ex  
and 	are , are also small angles and consequently for many unaccelerated- 

flight helicopter calculations the rotor resultant force can be assumed to 

be perpendicular to the tip-path plane and the thrust equal to the gross 

weight without introducing serious errors° 



CONCLUDING REMARKS 

Simple relations for CQ C x  , and Cy  , derived upon the assumption 

of a triangular distribution of blade-element circulation along the 

radius and a sinusoidal variation with azimuth angle in conjunction with 

a linear variation of profile drag with lift, would appear to be useful 

for helicopter and convertaplane performance estimation and the deter-

mination of the equilibrium angle of attack and lateral tilt of the tip-

path plane. 

The blade-element equations, based upon the relation that et  = 

CZ sincc r.= a (sin 	 cosqv 	0,r + cos ®4„ sin 4_), and the C"-nc  and 0--)7s  

functions of the blade-chord and blade-twist distribution, afford a 

reasonably exact and concise treatment of the geometry, and should be 

useful for convertaplane as well as helicopter calculations provided 

that there are no large areas of the rotor outside the reverse-flaw 

region where the blade elements are stalled. 

The use of the empirical relation, cdo  = Co  + 	 ez  cos °cp. 

rather than the usual expression that cd o  = do  cf; oc, t cre  c7cr
2  

considerably simplifies the equations for the in-plane forces and moments 

and presents a sufficiently exact solution of the geometry for helicopter 

calculations. 

For convertaplane calculations, the approximation that cdo  = 

sin ocr  ea cosocr  allows an "exact" treatment of the geometry and 

should be a sufficiently accurate expression for cdo  at the larger ad-

vance ratios where the effects of the profile drag become of less rela-

tive importance. 
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The larger sources of the remaining errors in the blade-element 

analysis probably have the following order of importance for contemporary 

helicopters: 

1. The neglect of the effects of blade-element stall implied in 

the relation that /21  ..., a Sirld' r  

2 0  The neglect of the effects of blade flexibility. 

3. The neglect of the radial variation in the normal component 

of the induced velocity. 

4. The neglect of the effects of compressibility on the tip 

sections of the advancing blade° 

Although Item one above might be eliminated by writing the blade-

element lift coefficient as an odd Fourier series in the blade-element 

angle of attack s  this results in great complexities and difficulties with 

the integrations and the results would probably not be useful. Similar 

difficulties arise in attempting to write the blade-element profile drag 

as an even Fourier series in the angle of attack. 

The error involved in the neglect of blade deflections would appear 

to depend to a large extent on the individual design and thus be intract-

able in a general analysis. 

Sh0241r The inclusion of a term in the equation for (4 

R 	
to ac- 

count for a radial variation of the induced velocity would be feasible 

provided that the relation for the necessary constant could be derived 

from the vortex theory. A reasonable approach might be to assume a tri-

angular distribution of circulation along the blade radius. 

It would be very difficult to include the effects of compressibility 

on the advancing blade tip sections in present blade-element analysis on 
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account of the complexities that arise in defining the boundaries of the 

affected rotor area 

Thus, of the larger remaining sources of error in present blade-

element theory, only that arising from the neglect of the radial varia-

tion in the induced velocity would appear to be amenable to correction. 
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TABLE 1 

VALUES OF 0; FOR BLADES WITH LINEAR TAPER 

Note: Interpolate for values for given t 

0 
. co 	, t 	etiP - 1, c 00 (1 + tx) 

x R 	 co 

Part A for Xi = 0,15 

1 	g".." Go  0; To  

t = 	0 - t-  0.8500 0,4888 0,3322 0,2499 
t = -1 0.3612 1 	0.1566 0.0823 0.0499 

Part B for x1 = 0.20 

; 	0"; TR 0-  ,Y 64 
GS To Gro  0; 

t = 	0 ' 0.8000 0.4800 0.3307 0.2496 
t = -1 0.3200 0.1493 0.0811 0.0497 



TABLE 2 

COMPARISON OF EXPERIMENTAL VALUES OF OCR  AND CQ  WITH THOSE 

CALCULATED FROM APPROXIMATE BLADE-CIRCULATION EQUATIONS 

Experimental Values for C T  0,00545 

From Ref. 1. Values of f from Ref. 7 

Run CN:.  f 14-  o r CQ AA. 

7 -2.2 22.4----(  0 -2.08 ----0.000202 - 0.142 
4 -4.5 22.7 0 -3.83 0.000244 0.189 
2 -6.9 23.1 0 -5.82 0.000342 0.230 

11 -10.1 24.4 ' 	-6.57 -9.97 0.000359 0.166 
15 -19.4 ___. 	26.4 20.80 	_ 18.77 -0.000008 0 119  . 

Calculated Values for a = 6.5 

Run ../ii/zr 
(BcchappriddApr) 

Am- 
(iX=.0) 

°ca.- 
(24=d4F17 ) 

oC4,- 
(i,5..aPP"x. )  

Cp 
(/se'AP1') 

  	Cx 
(Pcd..5.9am4 

(..0 

C'.  .41  C
  \  I  I

-
1 L

O
  

I-1
 r-I 

0.144 -0.0241 -2.13 -2.00 0.000226 -0.0010 43 0.000224 
0.192 -0.0272 -3.88 -3.71 0.000247 -0.0000313 0.000244 
0.235 -0.0354 -5.89 -5.58 0.000307 -0.0000602 0.000300 
0.169 -0.0447 -9.88 -9.54 0.000349 -0.0000650 0.000343 
0.118 0.0166 18.90 18.75 -0.000003 -0.0000279 -0.000002 

Note: 2 ft. 2  of drag area has been added to the fuselage drag area to 
allow for drag of C.T. rotor, camera installation, etc. 

Lift of fuselage has been neglected. 

Severe tip stall occurred on Run 2. 

Comparison of Values of C x  and Cy  

From Approximate Circulation and Blade-Element Equations (a = 6.5) 

Circulation Values 
(2cd.dpprvirhwaic#7) 

Blade Element Values 

Run Cx C Cx  Cy  Y 
7 -0.0000238 -0.000288 -0.0000256 -0.000279 
4 -0.0000301 -0.000321 -0.0000351 -0.000318 
2 -0.0000572 -0.000372 -0.0000754 -0.000370 

11 -0.0000635 -0.000301 -0.0000549 -0.000261 
15 0.0000276 -0.000283 0.0000255 -0.000308 
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TABLE 3 - Section 1 

VALUES OF 

 

=  
- SLR 	Cr 

FOR GIVEN VALUES OF 

    

= /11/ir  
CT 

AND /\ 2_ = VS/1")  c?ca.3.t. 1/1-Z1--332  
ILR 	

- 	

t*,  

Note: Values above double line are experimental, values 
single line are estimated. 

above 

.00 .40 .60 .80 1.00 1,20 1,40 1.60 1.80 2.00 

0.960 0.740 0.580 0.481 0,457 0.433 0.410 0,390 0,371 0,349 
1.14 0,88 0,68 0,543 0,509 0,476 0,444 0.418 0,392 0,369 
1.36 1,07 0,82 0.630 0.574 0,526 0.484 0.450 0,418 0,389 
1,65 1.34 1,03 0.767 0,659 0.585 0,529 0.483 0,445 0,410 
2,26 1,81 1.42 1,000 0,769 0,654 0,577 0,518 0.472 0.432 
2.44 2.05 1,77 1.220 0.896 0.727 0.627 0,550 0.496 0.452 
2.24 1.88 1.65 1,25 0.976 0.789 0.668 0.582 0.520 0.470 
2.01 1.72 1.52 1.21 1.000 0.824 0.698 0.613 0.539 0.485 
1.80 1.56 1.39 1.15 0.984 0.833 0.713 0.621 0.552 0.494 
1.60 1.41 1.27 1.07 0.947 0.820 0.712 0.625 0,556 0.500 
1.42 1.28 1.16 1,00 0.897 0.792 0.698 0.619 0.554 0.500 
1.25 1.15 1.06 0.924 0.842 0.756 0.677 0.606 0.547 0.494 
1.10 1.02 0.96 

1.000 0.961 0.914 0.854 0.786 0.715 0.648 0.586 0.533 0.486 
0.905 0.874 0.833 0.787 0.731 0.673 0.613 0.564 0.516 0.474 
0.820 0.796 0.765 0.724 0.680 0.632 0.584 0.539 0.497 0.461 
0.744 0.725 0.699 0.668 0.630 0.592 0.551 0.513 0.477 0.443 
0.677 0.658 0.640 0.615 0.586 0.553 0.520 0.487 0.453 0.426 
0.618 0.605 0.588 0,569 0.544 0.517 0.489 0,462 0.135 0.409 
0.566 0.556 0.543 0.526 0.506 0.484 0.460 0.433 0.413 0.392 
0.521 0.512 0.501 0.488 0.472 0.453 0.433 0.413 0.394 0.374 
0.481 0.473 0.464 0.454 0.440 0.426 0.408 0.391 0.374 0.358 
0.445 0.439 C.433 0.424 0.411 0.399 0.385 0.371 0.356 0.341 
0.414 0.409 0.403 0.395 0.386 0.376 0.364 0.352 0.339 0.326 
0.362 0.358 0.355 0.350 0.342 0.334 0.327 0.318 0.308 0.298 
0.320 0.318 0,316 0.311 0.306 0,301 0.294 0.287 0.280 0.273 
0.287 0.284 0.282 0.280 0.276 0.272 0.267 0.262 0.256 0.250 
0.259 0.257 0.256 0.254 0.251 0.248 0.244 0.240 0.236 0.231 
0.236 0.235 0.234 0.233 0.230 0.227 0.225 0.223 0.221 0.214 
0.193 0.192 0.192 0.191 0.189 0.187 0.186 0.184 0.182 0.180 
0.162 0.162 0.162 0.161 0.160 0,159 0.158 0.157 0.156 0,155 
0.123 0.123 0.123 0.122 0,122 0,122 0.121 0.121 0.120 0.120 
0.100 0.100 0.100 0.100 0.099 0.099 0.099 0.098 0.098 0.097 

2x= 
z 

2,40 

2,20 
2,00 

1.80 
1.60 
1.40 
1.20 
1.00 
0.80 
0,60 
0.40 
0.20 
0.00 

0.00 
-0.20 
-0.40 
-0.60 
-0.80 
-1.00 
-1.20 
-1.40 
-1.60 
-1.80 
-2.00 
-2.40 
-2.80 
-3.20 
-3.60 
-4.00 
-5.00 
-6.00 
-8.00 
10.00 
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TABLE 3 - Section 2 

VALUES OF FOR GIVEN VALUES OF CT 

, a 
V s ,o1 oc'g- 	e---7-3L, 47  Cr(.- 

, e , .7,44,24_____ AND 	z - 	il.  R /1 .)"' = 14-4"at I 	Cr 

I , 

Ay = 	2.40 	2,80 	3,20 	3,60 	4,00 	5,00 	6,00 	8,00 	10.00 

	

0.00 	0.410 0.354 

	

-0 , 20 	0.404 0.350 

	

=.40 	0,395 0.345 

	

-P0,60 	0.386 0.339 
-0,80 	0.374 0.331 
-1,00 	0,362 0.323 

	

-1,20 	0.349 0.314 

	

-1,40 	0.337 0.305 
-1,60 	0.325 0.296 
-1,80 	0.312 0,286 

	

-2,00 	0.300 0.277 

	

-2,40 	0.278 0.259 

	

-2,80 	0.258 0,242 

	

-3,20 	0.239 0.226 

	

-3,60 	0.222 0,216 

	

-4,00 	0.207 0,198 

	

-5,00 	0.175 0.170 

	

..6.00 	0.152 0.14-8 

	

:8.00 	0.118 0.120 

	

10.00 	0.096 0,095 

	

2,40 	0.315 0,285 

	

2,20 	0.329 0,295 

	

2,00 	0,344 0,305 

	

1.80 	0,357 0,315 

	

1,60 	0,370 0,325 

	

1.40 	0,384 0,333 

	

1.20 	0.395 0.341 

	

1,00 	0,404 0.347 

	

0.80 	0,413 0.352 

	

0.60 	0.415 0,356 

	

0.40 	0.416 0,357 

	

0.20 	0.414 0.357 
0.00 

0,261 0,239 0,210 0.184 0,156 0.120 0.097 

0,267 0,245 0,224 0,186 0,158 0,121 0,098 

0,275 0,250 0,228 0,188 0,159 0,122 0,099 
0.282 0,256 0,233 0,191 0,161 0,122 0,099 

0,289 0,260 0,237 0,192 0,162 0,123 0,099 
0,295 0,265 0.240 0,195 0,163 0,124 0,099 
0.301 0.269 0.243 0.196 0,164 0,124 0,099 

0,306 0.272 0.246 0,197 0.165 0.124 0,100 
0.309 0.276 0.248 0.198 0,166 0.125 0.100 
0,311 0.277 0.249 0,199 0.166 0.125 0.100 
0,312 0.278 0.250 0.200 0,167 0.125 0.100 
0,312 0,278 0.250 0.200 0.167 0,125 0.100 

0,310 0.278 0.250 0.200 0.167 0.125 0.100 
0.309 0,275 0.248 0.199 0.166 0.125 0.100 

0.305 0,273 0.247 0.198 0.166 0.125 0,100 
0.301 0,270 0.245 0.197 0.165 0.125 0.100 
0,296 0.267 0.242 0,196 0.165 0.125 0.100 
0.290 0.262 0.239 0,194 0.164 0.124 0.099 
0.284 0.258 0.235 0.192 0.163 0.124 0,099 
0.277 0.252 0.231 0.190 0.161 0.123 0.099 

0.270 0.247 0.227 0.188 0.160 0.122 0,099 
0.263 0.242 0.223 0.186 0.158 0.121 0,098 
0.255 0.238 0.219 0.183 0,157 0,121 0.098 
0,241 0.22♦ 0.209 0.178 0.153 0.119 0,097 
0.227 0.213 0.200 0.172 0.149 0,117 0,096 

0.214 0.202 0.191 0.166 0.145 0.115 0.095 
0.201 0.191 0.182 0,160 0.141 0.113 0.094 
0.189 0.181 0,173 0.154 0.137 0,111 0,093 
0.164 0.159 0.155 0.139 0.127 0,105 0,089 
0.144 0.140 0.137 0,126 0.117 0.094 0.085 
0,115 0.112 0.111 0.105 0.093 0.088 0.078 
0.094 0.093 0.092 0,089 0.085 0.078 0,070 
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TABLE 4 

VALUES OF C 	FOR BLADES WITH LINEAR TAPER, LINEAR TWIST 

AND x = 0,15 

Note: Interpolate for values for given t first and then 
for values for given 0/ 0 Reference station for Ao 

 at x = O. 

= co = 	°tip  _ 1,  c 	c o  (1 + tx))  et = e, x 
rrR 	 co 

/ ---, 
Tic _ 
0; 

Oic  0:7qc 0-4-4(.: 
GO 00 To 

t = 0 t = -1 t= 0 t= = 0 t = m1 t= 0 t = - 

Oa 0,8500 0,3612 0,4888 0,1566 0,332 2 0,0823 0,2499f 0.0499 

-4 0.8492 0,3611 0,4882 0,1565 003317 0,0822 0,2495 0.0498 

-8 0,8468 0,3604 0,4864 0,1561 0.3303 0,0820 0,2483 	0.0497 

-12 0.8427 0,3594 0,4833 0,1555 0,32781 0,0816 	0,2462 	0,0494 

-16 0,8371 0,3580 004791 0,1546 0.3244 	0.0810 	0.2434 	0,0490 

-20 0,8299 0,3562 0,4737 0,1536 0.3201 	0.0803 	0,2398 0,0485 

I 
-24 0.8211 0,3541 0,4671 0,1522 0.3148 	0,0794 0,2354 0.0478 I 

-28 0,8108 0,3515 0,4594 0,1507 0.3087 	0,0784 0,23031 000471 

I 



TABLE 5 

VALUES OF 077,9  FOR BLADES WITH LINEAR TAPER, LINEAR TWIST 

AND xi  = 0.15 

Note: Interpolate for values for given t first and then 
for values for given e,. Reference station for Ao 

 at x = O. 

Po = 
co 
TIR 

t = 	 1,  
co 

c = co  (1 + tx))  et = A, x 

Or/s 
Gres 

073S 0--I'S 

0; ; 

t = 0 t = = 0 t = - = o t = = o t=- 1 

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

-4 -.0341 -.0109 -.0232 -.0057 -.0174 -.0035 -.0139 -.0023 

-8 -.0681 -.0219 -.0463 -.0115 -.0348 -.0070 -.0279 -.0047 

-12 -.1020 -.0327 -.0693 -.0172 -.0521 -.0104 -.0417 -.0070 

-16 -.1356 -.0435 -.0920 -.0229 -.0692 -.0138 -.0553 -.0092 

-20 -.1699 -.0531 -.1145 -.0284 -.0860 -.0173 -.0688 -.0115 

-24 -.2017 -.0650 -.1367 -.0341 -.1026 -.0206 -.0820 -.0137 

-28 	-.2340 -.0756 -.1585 -.0396 -.1189 -.0239 -.0950 -.0159 



TABLE 6 

VALUES OF Ilry, c  FOR BLADES WITH LINEAR TAPER, HELICAL TWIST 

AND x i  = 0.20 

Note: Interpolate for values for given t first and then for 
values of given G T . Reference station for Ao  at blade 
tip 

otiP  - 1, c = co  (1 + tx), 

1 
= tan ( - tan eT) 

Ci c 0  R c 03c arc 
0;3 To To  

t - 0 t- - -1 t= 0 t = -1 t= 0 t 

0.8000 0.3200 0.4800 0.1493 0.3307 	0.0810 0.2496 0.0497 

-4 0.7906 0.3144 0.4762 0.1474 0.3287 	0.0803 0.2484 0.0493 

-8 0.7654 0.3002 0.4651 0.1419 0.3233 	0.0782 0.2451 0.0483 

-12 0.7305 0.2804 0.4500 0.1351 0.3149 0.0751 0.2398 0.0468 

-16 0.6907 0.2594 0.4313 0.1270 0.3042 0.0714 0.2328 0.0448 

-20 j 0.6489 0.2385 0.4104 0.1185 0.2919 0.0674 0.2244 0.0427 

-24 i 0.6065 0.2184 0.3882 0.1100 0.2782 0.0632 0.2151 0.0404 

-28 	ij  0.5645 0.1994 0.3651 0.1016 0.2635 0.0590 0.2046 0.0379 

-32 	l ' 0.5231 0.1815 0.3416 0.0934 0.2481 0.0547 0.1935 0.0354 

Co 
trR 

t 

et 



TAB LE 7 

VALUES OF 0-s  FOR BLADES WITH LINEAR TAPER, HELICAL TWIST h 

AND x = 0.20 

Note: Interpolate for 
values for given t first and then for 

values for given OT. Reference station for 
Ao  at blade tip 

opir; = 	CO 
 trR 	
t  = 	 1, 

c = co (1 + tx), ' 

/ 
ait tan' X tan OT) et 

Br 
0 s 

gitS 

a; 

-12 

-16 

-20 

I -24 
-28 

-32 

t=0 

0.0000 0.0000 

t=0 

0.0000 0.0000 

t = 0 

0.0000 

t = -1 

0.0000 

t = 0 

0.0000 0:0000 
.1106 -.0553 -.0553 -.0220 -.0333 -.0103 -.0230 -.0056 

-.2121 -.1045 -.1076 -.0422 -.0654 -.0200 -.0454 
- .0110 

-.3005 -.1452 -.1553 -.0596 -.0957 -.0287 -.0669 -.0160 
-.3761 -.1780 -.1981 -.0744 -.1237 -.0364 -.0872 -.0205 
-.4405 

-.4956 

-.2044 

-.2256 

-.2365 

-.2701 

-.0872 

-.0972 

-.1494 

-.1728 

-.0431 

-.0490 

-.1062 

-.1239 

-.0245 

-.0281 1 
fl 	.5430 

-.5838 

-.2428 

.2570 

-.3002 

-.3269 

-.1060 

-.1134 

-.1941 

-.2134 

-.0540 

-.0584 

-.1401 

-.1551 

.0313 1 

-.0342 I 



TABLE 8 - Section 1 

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF THE PARAMETERS 

FOR THOSE RUNS OF REFERENCE 1 FOR WHICH CT 0.00545 

All Angles in Degrees, Severe Tip Stall on Run 2 

f
 

	

o
,
 
	

it  

	

r u
 ftg

 •-• 
	

-
 

	

V
 
	

4
-.k: 
	 0 	 9',  rsi  w

- 8
4 

 
; C 
e 

Level Flight 
Exp. 

RUN -7 
at 43.7 

Cad, 
m. 	.h. 

RUN 4 
Level Flight at 58.6 m.p.h. 

RUN 2 
Level Flight  at 71.7 m.p.h. 

Cal.Ref.1 Exp. Cal. Cal.Ref.1 Exp. Cal. Cal.Ref.1 

-2.08 -2.00 -3.83 -3.71 -5.82 -5.58 
7.11 7.42 8.5 8.17 7094 9.3 10.10 9,11 11.3 
2.92 2.88 2.9 4037 3084 4.0 6.08 5.03 5.5 
8.16 8.38 7.9 8.30 8.31 8.2 8.67 8.44 8.4 
3.24 2.89 2.4 3.30 3.14 2.7 3.93 3.48 3.2 
0.24 0.18 0.15 0.35 0.28 0.26 0.46 0.42 0.40 

i. 	0.00 -0.04 -0.05 -0.08 -0.09 -0.10 -0.11 -0.17 -0.18 
0.000202 0.000213 0.000244 0.000240 0.000342 0.000310 

-7.45 -7.58 -8.83 -8.50 -12.50 -11.02 
0.41 0.51 0.54 0.58 0.67 0.69 

-0.21 -0.07 -0.18 -0.10 -0.27 -0.17 
-0.000026 -0.000035 -0.000075 
-0.000279 -0.000318 -0.000370 

-0.13 -0.18 -0.43 

0.02 0.00 0.11 
-2.00 -3.71 -5.58 

0.012 0.027 0.049 

41r Note: Mechanical Input Subtracted 



TABLE 8 - Section 2 

COMPARISON OF EXPERIMENTAL AND CALCULATED VALUES OF THE PARAMETERS 

FOR THOSE RUNS OF REFERENCE 1 FOR WHICH CT "..= 0.00545 

All Angles in Degrees, Severe Tip Stall on Run 2 

RUN 11 
525 f. an. climb at 51,8 m.p.h. 

RUN 
1260 f.p.m. autorotative descent at 37.7 m.p.h. 

Exp. Cal. Cal.Ref.1 Exp. Cal. Ca.Ref.1 

ccap  -9.97 -9.54 18.77 18.75 
Ao  10.00 9.50 11.0 5.40 3.57 5.0 
a, 
ao 

4.23 
9.15 

3.81 
8.64 

3.93 
8.34 

1.07 
7.55 

1.76 
7.88 

1.85 
7.53 

3.56 2.93 1.87 2.86 2.85 1.23 
aR 0.53 0.24 0.19 0.08 0.12 0.08 
be  -0.10 -0.08 -0.10 -0.02 -0.00 -0.03 
CQ 0.000359 0.000334 -0.000008 -0.000019 
4 -13.03 -11.88 -0.03 0.67 
E l * 0.70 0.55 0.21 0.47 
F 1 * -0.37 -0.16 0.26 0.03 
Cx  -0.000055 0.000026 

CY 
-0.000261 -0.000308 

1 ( -0.29 0.27 Tan 
Cr  

x 0.78 -1.49 

Y 
-2.98 -2.05 

(Cr' 0.020 0.007 
Cr 	han 

* Note: Mechanical Input Subtracted 
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