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Where the world ceases to be the scene of our personal hopes and wishes, where we face it

as free beings admiring, asking and observing, there we enter the realm of Art and

Science.

Albert Einstein

Fantasy, abandoned by reason, produces impossible monsters; united with it, she is the

mother of the arts and the origin of marvels.

Francisco Goya

Beauty in things exists in the mind which contemplates them.

David Hume
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SUMMARY

In an era with remarkable advancements in computer engineering, computational algo-

rithms, and mathematical modeling, data scientists are inevitably faced with the challenge

of working with big and high-dimensional data. For many problems, data reduction is a

necessary first step; such reduction allows for storage and portability of big data, and en-

ables the computation of expensive downstream quantities. The next step then involves the

analysis of big data – the use of such data for modeling, inference, and prediction. This

thesis presents new methods for big data reduction and analysis, with a focus on solving

real-world problems in statistics, machine learning and engineering.

Chapter 1 of my thesis introduces a data reduction method for compacting large datasets

(or in the infinite sense, distributions) into a smaller, representative point set called support

points (SPs). SPs can be viewed as optimal sampling points for distribution representation,

integration, and functional approximation. One advantage of SPs is that it provides an effi-

cient and parallelizable reduction of big data via difference-of-convex programming. Chap-

ter 2 then presents a modification of SPs, called projected support points (PSPs), for com-

pacting high-dimensional datasets into representative points. The key innovation for PSPs

is the use of a sparsity-inducing kernel, which allows for reduction of low-dimensional

properties in high-dimensional data. We then demonstrate the effectiveness of SPs and

PSPs for (a) compacting posterior samples in Bayesian computation, (b) uncertainty prop-

agation, and (c) kernel learning with big data.

Chapter 3 proposes a novel variable selection method for analyzing big data, using

new basis functions called conditional main effects (CMEs). CMEs capture the conditional

effect of a variable at a fixed level of another variable, and represent interpretable phenom-

ena in many engineering and social science fields. We present an algorithm, called cmenet,

which employs the new principles of CME coupling and CME reduction to guide variable

selection. Compared to standard interaction analysis, cmenet yields more parsimonious
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models and improved predictive performance, which we demonstrate using simulations

and a gene association study on fly wing shape.

Chapter 4 introduces a surrogate model for efficient prediction and uncertainty quantifi-

cation of turbulent flows in swirl injectors, devices commonly used in engineering systems.

Here, high-fidelity simulations require weeks of computation time, and a new method is

needed to efficiently survey the desired design space. We propose a new Gaussian process

surrogate model, which incorporates known physical flow properties as simplifying as-

sumptions. This allows for efficient model training with massive simulation data ( 100Gb

in storage), which then enables quick flow predictions at new design settings in around an

hour of computation time.

Chapter 5 considers construction algorithms for a type of experimental design called

minimax designs. Minimax designs reduce a continuous design space to a set of design

points, by minimizing the maximum distance from this space to its nearest point. We pro-

pose a new clustering-based construction of minimax designs on convex design regions,

and demonstrate its effectiveness in simulations and a real-world sensor allocation prob-

lem. We then introduce a novel design called a minimax projection design, which yields

improved minimax performance on projections of the design space.

Finally, Chapter 6 presents a new active sampling method for noisy matrix completion.

This method implicitly makes use of uncertainty quantification (UQ) at unobserved matrix

entries to guide active sampling. Using a singular matrix-variate Gaussian model, we first

reveal novel insights on the role of compressive sensing and coding design on the sampling

and UQ for noisy matrix completion. With these insights, we propose an efficient poste-

rior sampler for quantifying subspace uncertainty, and an information-theoretic algorithm

which uses this subspace learning to guide sampling. The effectiveness of this integrated

method is then demonstrated in simulations and two collaborative filtering examples.

xxi



CHAPTER 1

SUPPORT POINTS – A NEW WAY TO COMPACT DISTRIBUTIONS

1.1 Introduction

This chapter explores a new method for compacting a continuous probability distribution F

into a set of representative points (rep-points) for F , which we call support points. Support

points have many important applications in a wide array of fields, because these point

sets provide an improved representation of F compared to a random sample. One such

application is to the “small-data” problem of uncertainty propagation, where the use of

support points as simulation inputs can allow engineers to quantify the propagation of input

uncertainty onto system output at minimum cost. Another important application is to “big-

data” problems encountered in Bayesian computation, specifically as a tool for compacting

large posterior sample chains from Markov chain Monte Carlo (MCMC) methods [1]. In

this chapter, we demonstrate the theoretical and practical effectiveness of support points

for the general problem of integration, and illustrate its usefulness for the two applications

above.

We first outline two classes of existing methods for rep-points. The first class consists of

the so-called mse-rep-points (see, e.g., Chapter 4 of [2]), which minimize the expected dis-

tance from a random point drawn from F to its closest rep-point. Also known as principal

points [3], mse-rep-points have been employed in a variety of statistical and engineering

applications, including quantizer design [4, 5] and optimal stratified sampling [6, 7]. In

practice, these rep-points can be generated by first performing k-means clustering [8] on a

large batch sample from F , then taking the converged cluster centers as rep-points. One

The paper based on this chapter will appear in Annals of Statistics.

1



weakness of mse-rep-points, however, is that they do not necessarily converge to F (see,

e.g., [9, 10]). The second class of rep-points, called energy rep-points, aims to find a point

set which minimizes some measure of statistical potential. Included here are the minimum-

energy designs in [11] and the minimum Riesz energy points in [12]. While the above point

sets converge in distribution to F , its convergence rate is quite slow, both theoretically and

in practice [12]. Moreover, the construction of such point sets can be computationally

expensive in high dimensions.

The key idea behind support points is that it optimizes a specific potential measure

called the energy distance, which makes such point sets a type of energy rep-point. First

introduced in [13], the energy distance was proposed as a computationally efficient way

to evaluate goodness-of-fit (GOF), compared to the classical Kolmogorov-Smirnov (K-S)

statistic [14], which is difficult to evaluate in high-dimensions. Similar to the existing

energy rep-points above, we show in this chapter that support points indeed converge in

distribution to F . In addition, we demonstrate the improved error rate of support points over

Monte Carlo for integrating a large class of functions. The minimization of this distance

can also be formulated as a difference-of-convex (d.c.) program, which allows for efficient

generation of support points.

Indeed, the reverse-engineering of a GOF test forms the basis for state-of-the-art in-

tegration techniques called Quasi-Monte Carlo (QMC) methods (see [15] and [16] for a

modern overview). To see this, first let g be a differentiable integrand, and let {xi}ni=1 be

the point set (with empirical distribution, or e.d.f., Fn) used to approximate the desired

integral
∫
g(x) dF (x) with the sample average

∫
g(x) dFn(x). For simplicity, assume for

now that F = U [0, 1]p is the uniform distribution on the p-dimensional hypercube [0, 1]p,

the typical setting for QMC. The Koksma-Hlawka inequality (see, e.g., [17]) provides the

following upper bound on the integration error I:

I(g;F, Fn) ≡
∣∣∣∣∫ g(x) d[F − Fn](x)

∣∣∣∣ ≤ Vq(g)Dr(F, Fn), 1/q + 1/r = 1, (1.1)
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where Vq(g) = ‖∂pg/∂x‖Lq , and Dr(F, Fn) is the Lr-discrepancy:

Dr(F, Fn) =

(∫
|Fn(x)− F (x)|r dx

)1/r

. (1.2)

The discrepancy Dr(F, Fn) measures how close the e.d.f. Fn is to F , with a smaller value

suggesting a better fit. Setting r = ∞, the L∞-discrepancy (or simply discrepancy) be-

comes the classical K-S statistic for testing GOF. In other words, a point set with good fit

to F also provides reduced integration errors for a large class of integrands. A more general

discussion of this connection in terms of kernel discrepancies can be found in [18].

For a general distribution F , the optimization of Dr(F, Fn) can be a difficult problem.

In the uniform setting F = U [0, 1]p, there has been some work on directly minimizing the

discrepancyD∞(F, Fn), including the cdf-rep-points in [2] and the uniform designs in [19].

Such methods, however, are quite computationally expensive, and are applicable only for

small point sets on U [0, 1]p (see [20]). Because of this computational burden, modern QMC

methods typically use number-theoretic techniques to generate point sets which achieve an

asymptotically quick decay rate for discrepancy. These include the randomly-shifted lattice

rules [21] using the component-by-component implementation of [22] (see also [23]), and

the randomly scrambled Sobol’ sequences due to [24] and [25]. While most QMC methods

consider integration on the uniform hypercube U [0, 1]p, there are several ways to map point

sets on U [0, 1]p to non-uniform F . One such map is the inverse Rosenblatt transformation

[26]; however, it can be computed in closed-form only for a small class of distributions.

When the density of F is known up to a proportional constant, the Markov chain Quasi-

Monte Carlo (MCQMC) approach [27] can also be used to generate QMC points on F .

Viewed in this light, the energy distance can be seen as a kernel discrepancy [29] for

non-uniform distributions, with the specific kernel choice being the negative Euclidean

norm. However, in contrast with the typical number-theoretic construction of QMC point

sets, support points are instead generated by optimizing the underlying d.c. formulation

for the energy distance. This explicit optimization can have both advantages and disad-

vantages. On one hand, support points can be viewed as optimal sampling points of F (in
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Figure 1.1: n = 50 support points for 2-d i.i.d. Exp(1), Beta(2, 4) and the banana-shaped
distribution in [28]. Lines represent density contours.

the sense of minimum energy) for any desired sample size n. This optimality is evident

in the three examples of support points plotted in Figure 1.1 – the points are concentrated

in regions with high densities, but is sufficiently spread out to maximize the representa-

tiveness of each point. Such a “space-filling” property can allow for improved integration

performance over existing QMC techniques, which we demonstrate in Section 1.4. On the

other hand, the computational work for optimization can grow quickly when the desired

sample size or dimension increases. To this end, we propose two algorithms which exploit

the appealing d.c. formulation to efficiently generate point sets as large as 10,000 points in

dimensions as large as 500.

This chapter is organized as follows. Section 1.2 proves several important theoretical

properties of support points. Section 1.3 proposes two algorithms for efficiently generating

support points. Section 1.4 outlines several simulations comparing the integration perfor-

mance of support points with MC and an existing QMC method. Section 1.5 gives two

important applications of support points in uncertainty propagation and Bayesian compu-

tation. Section 1.6 concludes with directions for future research.
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1.2 Support points

1.2.1 Definition

Let us first define the energy distance between two distributions F and G:

Definition 1 (Energy distance; Def. 1 of [30]). Let F and G be two distribution functions

(d.f.s) on ∅ 6= X⊆ Rp with finite means, and let X,X′
i.i.d.∼ G and Y,Y′

i.i.d.∼ F . The energy

distance between F and G is defined as:

E(F,G) ≡ 2E‖X−Y‖2 − E‖X−X′‖2 − E‖Y −Y′‖2. (1.3)

When G = Fn is the e.d.f. for {xi}ni=1 ⊆ X, this energy distance becomes:

E(F, Fn) =
2

n

n∑
i=1

E‖xi −Y‖2 −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2 − E‖Y −Y′‖2. (1.4)

For brevity, F is assumed to be a continuous d.f. on ∅ 6= X⊆ Rp with finite mean for the

remainder of the chapter.

The energy distance E(F, Fn) was originally proposed in [13] as an efficient GOF test

for high-dimensional data. In this light, support points are defined as the point set with best

GOF under E(F, Fn):

Definition 2 (Support points). Let Y ∼ F . For a fixed point set size n ∈ N, the support

points of F are defined as:

{ξi}ni=1 ∈ Argmin
x1,··· ,xn

E(F, Fn) = Argmin
x1,··· ,xn

 2

n

n∑
i=1

E‖xi −Y‖2 −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2

 . (O)

The minimization of E(F, Fn) is justified by the following metric property:

Theorem 1 (Energy distance, Prop. 2 of [30]). E(F,G) ≥ 0, with equality holding if and

only if F=G.
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This theorem shows that the energy between two distributions is always non-negative, and

equals zero if and only if these distributions are the same. In this sense, E(F,G) can be

viewed as a metric on the space of distribution functions. Support points, being the point set

which minimizes such a metric, can then be interpreted as optimal sampling points which

best represent F .

The choice of the energy distance E(F, Fn) as an optimization objective is similar to its

appeal in GOF testing. As mentioned in the Introduction,E(F, Fn) was originally proposed

as an efficient alternative to classical K-S statistic. However, not only is E(F, Fn) easy-to-

evaluate, it also has a desirable formulation as a d.c. program. We present in Section 1.3

two algorithms which exploits this structure to efficiently generate support points.

In the univariate setting of p = 1, an interesting equivalence can be established between

support points and optimal L2-discrepancy points:

Proposition 1 (Optimal L2-discrepancy). For a univariate d.f. F , the support points of F

are equal to the point set with minimal L2-discrepancy.

Unfortunately, such an equivalence fails to hold for p > 1, since the L2-discrepancy is not

rotation-invariant. Support points and optimal L2-discrepancy points can therefore behave

quite differently in the multivariate setting.

1.2.2 Theoretical properties

While the notion of reverse engineering the energy distance is intuitively appealing, some

theory is needed to demonstrate why the resulting points are appropriate for (a) representing

the desired distribution F , and (b) integrating under F . To this end, we provide three

theorems: the first proves the distributional convergence of support points to F , the second

establishes a Koksma-Hlawka-like bound connecting integration error with E(F, Fn), and

the last provides an existence result for the resulting error convergence rate. The proofs

of these results rely on the important property that, for generalized functions, the Fourier

transform of the Euclidean norm ‖·‖2 is proportional to the same norm raised to some power
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(see pg. 173-174 in [31]). We refer to various forms of this duality property throughout the

proofs.

Convergence in distribution

We first address the distributional convergence of support points to the desired distribution

F :

Theorem 2 (Distributional convergence). Let X ∼ F and Xn ∼ Fn, where Fn is the e.d.f.

of the support points in (O). Then Xn
d−→ X.

In words, this theorem shows that support points are indeed representative of the desired

distribution F when the number of points n grows large. From this, the consistency of

support points can be established:

Corollary 1 (Consistency). Let X ∼ F and Xn ∼ Fn, with Fn as in Theorem 2. (a) If

g : X→ R is continuous, then g(Xn)
d−→ g(X). (b) If g is continuous and bounded, then

lim
n→∞

E[g(Xn)] = lim
n→∞

1
n

∑n
i=1 g(ξi) = E[g(X)].

The purpose of this corollary is two-fold: it demonstrates the consistency of support points

for integration, and justifies the use of these point sets for a variety of other applications.

Specifically, part (a) shows that support points are appropriate for performing uncertainty

propagation in stochastic simulations, an application further explored in Section 1.4.2. Part

(b) shows that any continuous and bounded integrand g can be consistently estimated using

support points, i.e., its sample average converges to the desired integral.

A Koksma-Hlawka-like bound

Next, we present a theorem which upper bounds the squared integration error I2(g;F, Fn)

by a term proportional to E(F, Fn) for a large class of integrands. Such a result provides

some justification on why the energy distance may be a good criterion for integration. Here,

we first provide a brief review of conditionally positive definite (c.p.d.) kernels, its native
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spaces, and their corresponding reproducing kernels, three ingredients which will be used

for proving the desired theorem.

Consider the following definition of a conditionally positive definite kernel:

Definition 3 (c.p.d. kernel; Def. 8.1 of [32]). A continuous function Φ : Rp → R is a

c.p.d. kernel of order m if, for all pairwise distinct x1, · · · ,xN ∈ Rp and all ζ ∈ RN \ {0}

satisfying
∑N

j=1 ζjp(xj) = 0 for all polynomials of degree less than m, the quadratic form∑N
j=1

∑N
k=1 ζjζkΦ(xj − xk) is positive.

Similar to the theory of positive definite kernels (see, e.g., Section 10.1 and 10.2 of

[32]), one can use a c.p.d. kernel Φ to construct a reproducing kernel Hilbert space (RKHS)

along with its reproducing kernel. This is achieved using the so-called native space of Φ:

Definition 4 (Native space; Def. 10.16 of [32]). Let Φ : Rp → R be a c.p.d. kernel of

order m ≥ 1, and let P = πm−1(Rp) be the space of polynomials with degree less than m.

Define the linear space:

FΦ(Rp) =

f(·) =
N∑
j=1

ζjΦ(xj − ·) :

N ∈ N; ζ ∈ RN ; x1, · · · ,xN ∈ Rp,∑N
j=1 ζjp(xj) = 0 for all p ∈ P

 ,

endowed with the inner product:

〈
N∑
j=1

ζjΦ(xj − ·),
M∑
k=1

ζ ′kΦ(yk − ·)

〉
Φ

=
N∑
j=1

M∑
k=1

ζjζ
′
kΦ(xj − yk).

Let {ψ1, · · · ,ψm} ⊆ Rp,m = dim(P) be a P-unisolvent subset1, and let {p1, · · · , pm} ⊆

P be a Lagrange basis of P for such a subset. Furthermore, define the projective map

ΠP : C(Rp)2 → P as ΠP(f) =
∑m

k=1 f(ψk)pk, and the map R : FΦ(Rp) → C(Rp) as

1See Definition 2.6 of [32].
2C(Rp) is the space of continuous functions on Rp.
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Rf(x) = f(x)− ΠPf(x). The native space for Φ is then defined as:

NΦ(Rp) = R(FΦ(Rp)) + P,

and is equipped with the semi-inner product:

〈f, g〉NΦ(Rp) = 〈R−1(f − ΠPf),R−1(g − ΠPg)〉Φ.

After obtaining the native space NΦ(Rp), one can then define an appropriate inner prod-

uct on NΦ(Rp) to transform it into a RKHS:

Theorem 3 (Native space to RKHS; Thm. 10.20 of [32]). The native space NΦ(Rp) for a

c.p.d. kernel Φ carries the inner product 〈f, g〉 = 〈f, g〉NΦ(Rp) +
∑m

k=1 f(ψk)g(ψk). With

this inner product, NΦ(Rp) becomes a reproducing kernel Hilbert space with reproducing

kernel:

k(x,y) = Φ(x− y)−
m∑
k=1

pk(x)Φ(ψk − y)−
m∑
l=1

pl(y)Φ(x−ψl)

+
m∑
k=1

m∑
l=1

pk(x)pl(y)Φ(ψk −ψl) +
m∑
k=1

pk(x)pk(y).

The following generalized Fourier transform (GFT) will also be useful:

Definition 5 (GFT; Defs. 8.8, 8.9 of [32]). Suppose f : Rp → C is continuous and

slowly increasing. A measurable function f̂ ∈ 3Lloc2 (Rp \ {0}) is called the generalized

Fourier transform of f if ∃m ∈ N0/2 such that
∫
Rp f(x)γ̂(x) dx =

∫
Rp f̂(ω)γ(ω) dω is

satisfied for all γ ∈ S2m, where γ̂ denotes the standard Fourier transform of γ. Here,

S2m = {γ ∈ S : γ(ω) = O(‖ω‖2m
2 ) for ‖ω‖2 → 0}, where S is the Schwartz space.

3Lloc
2 denotes the space of locally L2-integrable functions.
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Specific definitions for slowly increasing functions and Schwartz spaces can be found in

Definitions 5.19 and 5.17 of [32]. Here, the order of the GFT f̂ refers to the value m in

Definition 5, which can reside on the half-integers N0/2 since the index of the underlying

space S2m will still be an integer.

With these concepts in hand, we now present the Koksma-Hlawka-like bound. As

demonstrated below, the choice of the negative distance kernel Φ = −‖ · ‖2 is important

for connecting integration error with the distance-based energy distance E(F, Fn).

Theorem 4 (Koksma-Hlawka). Let {xi}ni=1 ⊆ X ⊆ Rp be a point set with e.d.f. Fn, and

let Φ(x) = −‖x‖2. Then Φ is a c.p.d. kernel of order 1. Moreover:

(a) The native space of Φ, NΦ(Rp), can be explicitly written as:

NΦ(Rp) =


f ∈ C(Rp) :

(G1) ∃m ∈ N0 s.t. f(x) = O(‖x‖m2 ) for ‖x‖2 →∞

(G2) f has a GFT f̂ of order 1/2

(G3)
∫
‖ω‖p+1

2 |f̂(ω)|2 dω <∞


,

(1.5)

with semi-inner product given by:

〈f, g〉NΦ(Rp) =
{

Γ((p+ 1)/2)2pπ(p−1)/2
}−1

∫
f̂(ω)ĝ(ω)‖ω‖p+1

2 dω, (1.6)

(b) Consider the function space Gp = NΦ(Rp), equipped with inner product 〈f, g〉Gp =

〈f, g〉NΦ(Rp) + f(ψ)g(ψ) for a fixed choice of ψ ∈ X. Then (Gp, 〈·, ·〉Gp) is a RKHS,

and for any integrand g ∈ Gp, the integration error in (1.1) is bounded by:

I(g;F, Fn) ≤ ‖g‖Gp
√
E(F, Fn), ‖g‖2

Gp
≡ 〈g, g〉Gp . (1.7)

The appeal of Theorem 4 is that it connects the integration error I(g;F, Fn) with the
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energy distance E(F, Fn) for all integrands g in the function space Gp. Similar to the

usual Koksma-Hlawka inequality, such a theorem justifies the use of support points for

integration, because the integration error for all functions in Gp can be sufficiently bounded

by minimizing E(F, Fn).

A natural question to ask is how large Gp is compared with the commonly-used Sobolev

spaceWs,2, i.e., the set of functions whose s-th order differentials have finiteL2 norm. Such

a comparison is particularly important in light of the fact that an anchored variant of the

Sobolev space is typically employed in QMC analysis (see, e.g., [16]). Recall that s can be

extended to the non-negative real numbers using fractional calculus, in which caseWs,2 be-

comes the fractional Sobolev space. By comparing the definition of the fractional Sobolev

space in the Fourier domain (see (3.7) in [33]), one can show that W(p+1)/2,2 is contained

within Gp. Moreover, using the fact that Ws,2 is a decreasing family as s > 0 increases

(see paragraph prior to Prop. 1.52 in [34]), it follows that Wd(p+1)/2e,2 ⊆ W(p+1)/2,2 ⊆ Gp.

In fact, for odd dimensions p, Theorem 10.43 of [32] shows that Gp is indeed equal to the

Sobolev space Wd(p+1)/2e,2 = W(p+1)/2,2, so the embedding result becomes an equality.

Viewing this embedding now in terms of Theorem 4, it follows that all integrands g with

square-integrable d(p+ 1)/2e-th order differentials enjoy the upper bound in (1.7). Hence,

as dimension p grows, an increasing order of smoothness is required for integration using

support points, which appears to be a necessary trade-off for the appealing d.c. formulation

in (O). This is similar to the anchored Sobolev spaces employed in QMC, which requires

integrands to have square-integrable mixed first derivatives.

Error convergence rate

Next, we investigate the convergence rate of I(g;F, Fn) under support points. Under

eigenvalue decay conditions, the following theorem establishes an existence result, which

demonstrates the existence of a point set sequence achieving a particular error rate. An

additional theorem then clarifies when such decay conditions are satisfied in practice. The
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main purpose of these results is to demonstrate the quicker theoretical convergence of sup-

port points over Monte Carlo. From the simulations in Section 1.4, the rate below does not

appear to be tight, and a quicker convergence rate is conjectured in Appendix A.3 of the

supplemental article [35].

Theorem 5 (Error rate). Let Fn be the e.d.f. for support points {ξ}ni=1, and let g ∈ Gp.

Define the kernel k(x,y) = E‖x − Y‖2 + E‖y − Y‖2 − E‖Y − Y′‖2 − ‖x − y‖2,

Y,Y′
i.i.d.∼ F . If (a) E[‖Y‖3

2] < ∞, and (b) the weighted eigenvalues of k under F satisfy∑∞
k=1 λ

1/α
k <∞ for some α > 1, then:

I(g;F, Fn) = O{‖g‖Gpn−1/2(log n)−(α−1)/2}, (1.8)

with constant terms depending on α and p.

Here, the weighted eigenvalue sequence of k under F is the decreasing sequence (λk)
∞
k=1

satisfying λkφk(x) = E[k(x,Y)φk(Y)], E[φ2
k(Y)] = 1.

The following theorem provides some insight on when the eigenvalue decay condition∑∞
k=1 λ

1/α
k <∞ in Theorem 5 is satisfied.

Theorem 6 (Eigenvalue conditions). Let Fn and F be as in Theorem 5, and let g ∈ Gp.

(a) If X ⊆ Rp is a bounded Borel set with non-empty interior, then I(g;F, Fn) =

O{‖g‖Gpn−1/2(log n)−(1−ν)/(2p)} for any ν ∈ (0, 1),

(b) If X ⊆ Rp is measurable with positive Lebesgue measure, and there exists some

β > 0 and C ≥ 0 such that:

lim sup
r→∞

rβ
∫
X\Br(y)

E‖x−Y‖2 dF (x) ≤ C for all y ∈ X, (1.9)

then I(g;F, Fn) = O{‖g‖Gpn−1/2(log n)−(γ−ν)/(2p)} for any ν ∈ (0, γ), where γ =

β/(β + 1) and Br(y) denotes an r-ball around y.
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Here, constant terms may depend on ν, p or β.

In words, Theorem 6 demonstrates the improvement of support points over MC under

certain conditions on the sample space X or the desired distribution F . Specifically, part

(a) requires the sample space X to be bounded with non-empty interior, whereas part (b)

relaxes this boundedness restriction on X at the cost of the mild moment condition (2.15)

on F . This condition holds for a large class of distributions which are not too heavy-tailed.

For illustration, consider the standard normal distribution for F , with sample space

X= Rp. Note that, when ‖x‖2 becomes large, E‖x−Y‖2 ≈ ‖x‖2. Hence, the condition

in (2.15) becomes:

lim sup
r→∞

rβP (r), P (r) ≡ (2π)−p/2
∫
Rp\Br(0)

‖x‖2 exp{−‖x‖2
2/2} dx.

Since P ′(r) ∝ −rp exp{−r2/2}, it follows that P (r) = O(rp−1 exp{−r2/2}), so lim supr→∞ r
βP (r) =

0 for all β > 0. Applying part (b) of Theorem 6, support points enjoy a convergence rate of

O{n−1/2(log n)−(1−ν)/(2p)} for any ν ∈ (0, 1) in this case. An analogous argument shows

a similar rate holds for any spherically symmetric distribution (see, e.g., [2]) with an expo-

nentially decaying density in its radius.

1.2.3 Comparison with MC and existing QMC methods

We first discuss the implications of Theorems 5 and 6 in comparison to Monte Carlo. Using

the law of iterated logarithms [36], one can show that the error convergence rate for MC is

bounded a.s. by O(n−1/2
√

log log n) for any distribution F . Comparing this with (1.8), the

error rate of support points is asymptotically quicker than MC by at least some log-factor

when dimension p is fixed. This improvement is reflected in the simulations in Section 1.4,

where support points enjoy a considerable improvement over MC for all point set sizes n.

When dimension p is allowed to vary (and assuming ‖g‖Gp and Var{g(X)}, X ∼ F , do

not depend on p), note that the MC rate is independent of p, while the rate in (1.8) can
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have constants which depend on p. From a theoretical perspective, this suggests support

points may be inferior to MC for high-dimensional integration problems. Such a curse-

of-dimensionality, however, is not observed in our numerical experiments, where support

points enjoy a sizable error reduction over MC for p as large as 500.

Compared to existing QMC techniques, the existence rate in Theorem 5 falls short in

the uniform setting of F = U [0, 1]p. For fixed dimension p, [2] showed that for any in-

tegrand g with bounded variation (in the sense of Hardy and Krause), the error rate for

classical QMC point sets is O{n−1(log n)p}, which is faster than (1.8). Moreover, when p

is allowed to vary, it can be shown (see [37, 16]) that certain randomized QMC (RQMC)

methods, such as the randomly-shifted lattice rules in [21], enjoy a root-mean-squared

error rate of O(n−1+δ) with δ ∈ (0, 1/2), where constant terms do not depend on dimen-

sion p. On the other hand, support points provide optimal integration points (in the sense

of minimum energy) for non-uniform distributions at fixed sample size n. Because of

this optimality, support points can enjoy reduced errors to existing QMC methods in prac-

tice, which we demonstrate later for a specific RQMC method called randomly-scrambled

Sobol’ sequences [24, 25]. This suggests the rate in Theorem 5 may not be tight, and fur-

ther theoretical work is needed (we outline one possible proof approach in Appendix A.3

of the supplemental article [35]).

1.3 Generating support points

The primary appeal of support points is the efficiency by which these point sets can be

optimized, made possible by exploiting the d.c. structure of the energy distance. Here,

we present two algorithms, sp.ccp and sp.sccp, which employ a combination of

the convex-concave procedure (CCP) with resampling to quickly optimize support points.

sp.ccp should be used when sample batches are computationally expensive to obtain

from F , whereas sp.sccp should be used when samples can be easily obtained. We

prove the convergence of both algorithms to a stationary point set, and briefly discuss their
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running times.

1.3.1 Algorithm statements

We first present the steps for sp.ccp, then introduce sp.sccp as an improvement on

sp.ccp when multiple sample batches from F can be efficiently obtained. Suppose a

single sample batch {ym}Nm=1 is obtained from F . Using this, sp.ccp optimizes the

following Monte Carlo approximation of the support points formulation (O):

argmin
x1,··· ,xn

Ê({xi}; {ym}) ≡
2

nN

n∑
i=1

N∑
m=1

‖ym − xi‖2 −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2. (MC)

The approximated objective Ê was originally proposed by [13] as a two-sample GOF statis-

tic for testing whether {ym}Nm=1 and {xi}ni=1 are generated from the same distribution.

Posed as an optimization problem, however, the goal in (MC) is to recover the point set

which best represents the random sample {ym}Nm=1 from F in terms of goodness-of-fit.

The key observation here is that the objective function Ê can be written as a differ-

ence of convex functions in x = (x1, · · · ,xn), namely, the two terms in (MC). This

structure allows for efficient optimization using d.c. programming methods, which enjoy a

well-established theoretical and numerical framework [38, 39]. While global optimization

algorithms have been proposed for d.c. programs (e.g., [40]), such methods are typically

quite slow in practice [41], and may not be appropriate for the large-scale problem at hand.

Instead, we employ a d.c. algorithm called the convex-concave procedure (CCP, see [42])

which, in conjunction with the distance-based property of the energy distance, allows for

efficient optimization of (MC).

The main idea in CCP is to first replace the concave term in the d.c. objective with a con-

vex upper bound, then solve the resulting “surrogate” formulation (which is convex) using

convex programming techniques. This procedure is then repeated until the solution iterates

converge. CCP can be seen as a specific case of majorization-minimization (MM, see [43]),

a popular optimization technique in statistics. The key to computational efficiency lies in
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Algorithm 1 sp.ccp: Support points using one sample batch

• Sample D[0] = {x[0]
i }ni=1 i.i.d. from {ym}Nm=1.

• Set l = 0, and repeat until convergence of D[l]:

• For i = 1, · · · , n do parallel:

– Set x
[l+1]
i ←Mi(D

[l]; {ym}Nm=1), with Mi defined in (1.11).

• Update D[l+1] ← {x[l+1]
i }ni=1, and set l← l + 1.

• Return the converged point set D[∞].

finding a convex surrogate formulation which can be minimized in closed-form. Here, such

a formulation can be obtained by exploiting the distance-based structure of (MC), with

its closed-form minimizer given by the iterative map x
[l+1]
i ← Mi({x[l]

j }nj=1; {ym}Nm=1),

i = 1, · · · , n, where Mi is given in (1.11). The appeal of CCP here is two-fold. First, the

evaluation of the iterative maps Mi, i = 1, · · · , n requires O(n2p) work, thereby allowing

for the efficient generation of moderately-sized point sets in moderately-high dimensions.

Second, the computation of these maps can be greatly sped up using parallel computing, a

point further discussed in Section 1.3.3.

Algorithm 1 outlines the detailed steps for sp.ccp following the above discussion.

One caveat for sp.ccp is that it uses only one sample batch from F , even when mul-

tiple sample batches can be generated efficiently. This motivates the second algorithm,

sp.sccp, whose steps are outlined in Algorithm 2. The main difference for sp.sccp

is that {ym}Nm=1 is resampled within each CCP iteration (a procedure known as stochastic

MM). This resampling scheme allows sp.sccp to converge to a stationary point set for

the desired problem (O), which we demonstrate next.

1.3.2 Algorithmic convergence

For completeness, a brief overview of MM is provided, following [43].

Definition 6 (Majorization function). Let f : Rs → R be the objective function to be

minimized. A function h(z|z′) majorizes f(z) at a point z′ ∈ Rs if h(z|z′) ≥ f(z), with

equality holding when z = z′.
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Algorithm 2 sp.sccp: Support points using multiple sample batches

• Sample D[0] = {x[0]
i }ni=1

i.i.d.∼ F .
• Set l = 0, and repeat until convergence of D[l]:

• Resample {y[l]
m}Nm=1

i.i.d.∼ F .

• For i = 1, · · · , n do parallel:

– Set x
[l+1]
i ←Mi(D

[l]; {y[l]
m}Nm=1), with Mi defined in (1.11).

• Update D[l+1] ← {x[l+1]
i }ni=1, and set l← l + 1.

• Return the converged point set D[∞].

Starting at an initial point z[0], the goal in MM is to minimize the majorizing function h

as a surrogate for the true objective f , and iterate the updates z[l+1] ← argminz h(z|z[l])

until convergence. This iterative procedure has the so-called descent property f(x[l+1]) ≤

f(x[l]), which ensures solution iterates are always decreasing in f . The key for efficiency

is to find a majorizing function g with a closed-form minimizer which is easy to compute.

Consider now the Monte Carlo approximation in (MC), which has a d.c. formulation in

{xi}ni=1, with concave term−n−2
∑n

i=1

∑n
j=1 ‖xi−xj‖2. Following CCP, we first majorize

this term using a first-order Taylor expansion at the current iterate {x′j}nj=1, yielding the

surrogate convex program:

argmin
x1,··· ,xn

h({xi}ni=1; {x′j}nj=1)

≡ 2

nN

n∑
i=1

N∑
m=1

‖ym − xi‖2 −
1

n2

[
n∑
i=1

n∑
j=1

(
‖x′i − x′j‖2 +

2(xi − x′i)
T (x′i − x′j)

‖x′i − x′j‖2

)]
.

(1.10)

Implicit here is the assumption that the current point set is pairwise distinct, i.e., x′i 6= x′j for

all i, j = 1, · · · , n. From simulations, this appears to be always satisfied by initializing the

algorithm with a pairwise distinct point set, because the random sampling of {ym} and the

“almost-random” round-off errors [44] in the evaluation of Mi force subsequent point sets

to be pairwise distinct. Such an assumption can also be easily checked after each iteration.

While (1.10) can be solved using gradient-based convex programming techniques, this
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can be computationally burdensome when n or p becomes large, because such methods may

require many evaluations of h and its subgradient. Instead, the following lemma allows us

to perform a slight “convexification” of the convex term in (1.10), which then yields a

efficient closed-form minimizer.

Lemma 1 (Convexification). Q(x|x′) =
‖x‖22

2‖x′‖2 + ‖x
′‖2
2

majorizes ‖x‖2 at x′ for any x′ ∈ Rp.

Lemma 1 has an appealing geometric interpretation. Viewing ‖x‖2 as a second-order

cone centered at 0,Q(x|x′) can be interpreted as the tightest convex paraboloid intersecting

this cone at x′. Note that the quadratic nature of the majorizer Q, which is crucial for

deriving a closed-form minimizer, is made possible by the distance-based structure of the

energy distance.

From this, the following lemma provides a quadratic majorizer for (1.10), along with

its corresponding closed-form minimizer:

Lemma 2 (Closed-form iterations). Define the function hQ as:

hQ({xi}ni=1; {x′j}nj=1) ≡ 2

nN

n∑
i=1

N∑
m=1

{
‖ym − xi‖22
2‖ym − x′i‖2

+
‖ym − x′i‖2

2

}

− 1

n2

 n∑
i=1

n∑
j=1

(
‖x′i − x′j‖2 +

2(xi − x′i)
T (x′i − x′j)

‖x′i − x′j‖2

) ,
Then hQ(·; {x′j}nj=1) majorizes Ê at {x′j}nj=1. Moreover, the global minimizer of hQ(·; {x′j}nj=1)

is given by:

xi = Mi({x′j}nj=1; {ym}Nm=1)

≡

(
N∑
m=1

‖x′i − ym‖−1
2

)−1

Nn
n∑
j=1
j 6=i

x′i − x′j
‖x′i − x′j‖2

+

N∑
m=1

ym
‖x′i − ym‖2

 , i = 1, · · · , n.

(1.11)
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One can now prove the convergence of sp.ccp and sp.sccp.

Theorem 7. (Convergence - sp.ccp) Assume X is closed and convex. For any pairwise

distinct D[0] ⊆ X and fixed sample batch {ym}Nm=1 ⊆ X, the sequence (D[l])∞l=1 in Algo-

rithm 1 converges to a limiting point set D[∞] which is stationary for Ê.

Theorem 8. (Convergence - sp.sccp) Assume X is compact and convex. For any pair-

wise distinct D[0] ⊆ X, the sequence (D[l])∞l=1 in Algorithm 2 converges a.s. to a limiting

point set D[∞] which is stationary for E.

(Recall that z ∈ D is a stationary solution for a function f : D ⊆ Rs → R if:

f ′(z,d) ≥ 0 for all d ∈ Rs s.t. z + d ∈ D,

where f ′(z,d) is the directional derivative of f at z in direction d.) Note that the com-

pactness condition on X in Theorem 8 is needed to prove the convergence of stochastic

MM algorithms, since it allows for an application of the law of large numbers (see [45] for

details).

1.3.3 Running time and parallelization

Regarding the running time of sp.ccp, it is well known that MM algorithms enjoy a linear

error convergence rate [46]. This means L = O(log δ−1) iterations of (1.11) are sufficient

for achieving an objective gap of δ > 0 from the stationary solution. Since the maps in

(1.11) require O{n(n + N)p} work to compute, the running time of sp.ccp is O{n(n +

N)p log δ−1}. Assuming the batch sample size N does not increase with n or p, this time

reduces to O(n2p log δ−1), which suggests the proposed algorithm can efficiently generate

moderately-sized point sets in moderately-high dimensions, but may be computationally

burdensome for large point sets. While a similar linear error convergence is difficult to

establish for sp.sccp due to its stochastic nature (see [47, 48]), its running time is quite

similar to sp.ccp from simulations.
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The separable form of (1.11) also allows for further computational speed ups using

parallel processing. As outlined in Algorithms 1 and 2, the iterative map for each point xi

can be computed in parallel using separate processing cores. Letting P be the total number

of computation cores available, such a parallelization scheme reduces the running time of

sp.ccp and sp.sccp to O(dn/P enp log δ−1), thereby allowing for quicker optimization

of large point sets. This feature is particularly valuable given the increasing availability of

multi-core processors in personal laptops and computing clusters.

1.4 Simulations

Several simulations are presented here which demonstrate the effectiveness of support

points in practice. We first discuss the space-filling property of support points, then com-

ment on its computation time using sp.sccp. Finally, we compare the integration perfor-

mance of support points with MC and a RQMC method called IT-RSS (defined later).

1.4.1 Visualization and timing

For visualization, Figure 1.2 shows the n = 128-point point sets for the i.i.d. N(0, 1) and

Exp(1) distributions in p = 2 dimensions, with lines outlining density contours (additional

visualizations provided in Appendix B of the supplemental article [35]). Support points

are plotted on the left, Monte Carlo samples in the middle and inverse Sobol’ points on the

right. The latter is generated by choosing the Sobol’ points on U [0, 1]2 which maximize the

minimum interpoint distance over 10,000 random scramblings (see next section for details),

then performing an inverse-transform of F on such a point set. From this figure, support

points appear to be slightly more visually representative of the underlying distribution F

than the inverse Sobol’ points, and much more representative than MC. Specifically, the

proposed point set is concentrated in regions with high density, but each point is sufficiently

spaced out from one another to maximize their representative power. Borrowing a term

from design-of-experiments literature [49], we call point sets with these two properties to
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Figure 1.2: n = 128 support points, MC points and inverse Sobol’ points for i.i.d. N(0, 1)
and Exp(1) in p = 2 dimensions. Lines represent density contours.

be space-filling on F . A key reason for this space-fillingness is the distance-based property

of the energy distance: the two terms for E(F, Fn) in (1.4) force support points to not

only mimic the desired distribution F , but also ensure no two points are too close together.

This allows for a more appealing visual representation of F , and can provide more robust

integration performance.

Regarding computation time, Figure 1.3 shows the times (in seconds) needed for sp.sccp

to generate support points for the i.i.d. Beta(2, 4) distribution, first as a function of point

set size n with fixed dimension p, then as a function of p with fixed n. The resampling

size is fixed at N = 10, 000 for all choices of n and p. Similar times are reported for

other distributions, and are not reported for brevity. All computations are performed on a

12-core Intel Xeon 3.50 Ghz processor. From this figure, two interesting observations can

be made. First, for fixed n, these plots show that the empirical running times grow quite

linearly in p, whereas for fixed p, these running times exhibit a slow quadratic (but almost
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Figure 1.3: Computation time (in seconds) of sp.sccp as a function of point set size (n)
and dimension (p) for the i.i.d. Beta(2, 4) distribution.

linear) growth in n. This provides evidence for the O(n2p) running time asserted in Section

1.3.3. Second, as a result of this running time, support points can be generated efficiently

for moderate-sized point sets in moderately-high dimensions. For p = 2, the required times

for generating n = 50 − 10, 000 points range from 3 seconds to 2 minutes; for p = 50,

27 seconds to 20 minutes; and for p = 500, 4 minutes to 2.5 hours. While these times

are quite fast from an optimization perspective, they are still slower than number-theoretic

QMC methods, which can generate, say, n = 106 points in p = 103 dimensions in a matter

of seconds. The appeal for support points is that, by exploiting the d.c. structure of the en-

ergy distance in [13], one obtains for any distribution (locally) minimum energy sampling

points which can outperform number-theoretic QMC methods.

1.4.2 Numerical integration

We now investigate the integration performance of support points in comparison with

Monte Carlo and an RQMC method called the inverse-transformed randomized Sobol’ se-

quences (IT-RSS). The former is implemented using the Mersenne twister [50], the default

pseudo-random number generator in the software R [51]. The latter is obtained by (a) gen-
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erating a randomized Sobol’ sequence using the R package randtoolbox [52] (which

employs Owen-style scrambling [25] with Sobol’ sequences generated in the implementa-

tion of [53]), and (b) performing the inverse-transform of F on the resulting point set. As

mentioned in Section 1.2, IT-RSS performs well in the uniform setting F = U [0, 1]p, and

provides a good benchmark for comparing support points with existing QMC methods.

The simulation set-up is as follows. Support points are generated using sp.sccp,

with point set sizes ranging from n = 50 to 10, 000 and resampling size N fixed at

10, 000. Since MC and IT-RSS are randomized methods, we replicate both for 100 tri-

als to provide an estimate of error variability, with replications seeded for reproducibil-

ity. Three distributions are considered for F : the i.i.d. N(0, 1), the i.i.d. Exp(1) and

the i.i.d. Beta(2, 4) distributions, with p ranging from 5 to 500. For the integrand g,

two (modified) test functions are taken from [54]: the Gaussian peak function (GAPK):

g(x) = exp {−
∑p

l=1 α
2
l (xl − ul)2} and the (modified) oscillatory function (OSC): g(x) =

exp{−
∑p

l=1 βlx
2
l } cos (2πu1 +

∑p
l=1 βlxl). Here, x = (xl)

p
l=1, ul is the marginal mean

for the l-th dimension of F , and the scale parameters αl and βl are set as 20/p and 5/p,

respectively.

Figure 1.4 shows the resulting log-absolute errors in p = 5, 50 and 200 dimensions

for GAPK under the i.i.d. Exp(1) distribution, and for OSC under the i.i.d. N(0, 1) dis-

tribution (results are similar for other settings, and are omitted for brevity). For MC and

IT-RSS, the dotted lines indicate average error decay, and the shaded bands mark the area

between the 25-th and 75-th error quantiles. Two observations can be made here. First, for

all choices of n, support points enjoy considerably reduced errors compared to the averages

of both MC and IT-RSS, with the proposed method providing an improvement to the 25-th

quantiles of IT-RSS for most settings. Second, this advantage over MC and IT-RSS persists

in both low and moderate dimensions. In view of the relief from dimensionality enjoyed

by IT-RSS, this gives some evidence that support points may enjoy a similar property as

well, a stronger assertion than is provided in Theorem 5 or 6. Exploring the theoretical
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Figure 1.4: Log-absolute errors for GAPK under the i.i.d. Exp(1) distribution (top) and for
OSC under the i.i.d. N(0, 1) distribution (bottom). Lines denote log average-errors, and
shaded bands mark the 25-th and 75-th quantiles.

performance of support points in high dimensions will be an interesting direction for future

work.

In summary, for point set sizes as large as 10, 000 points in dimensions as large as

500, simulations show that support points can be efficiently generated and enjoy improved

performance over MC and IT-RSS. This opens up a wide range of important applications

for support points in both small-data and big-data problems, two of which we describe next.

1.5 Applications of support points

1.5.1 Uncertainty propagation in expensive simulations

We first highlight an important small-data application of support points in simulation. With

the development of powerful computational tools, computer simulations are becoming the
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Figure 1.5: True and estimated density functions for g(X) using n = 60 points.

de-facto method for conducting engineering experiments. For such simulations, a key point

of interest is uncertainty propagation, or how uncertainty in input variables (resulting from,

say, manufacturing tolerances) propagate and affect output variability. Mathematically, let

g(x) be the observed output at input setting x, and let X ∼ F denote input uncertain-

ties. The distribution g(X) can then be seen as the resulting uncertainty on system output.

For engineers, the estimation of g(X) using as few simulation runs as possible is of great

importance, because each run can be computationally and monetarily expensive.

To demonstrate the effectiveness of support points for this problem, we use the borehole

physical model [55], which simulates water flow rate through a borehole. The 8 input

variables for this model, along with their corresponding uncertainty distributions (assumed

to be mutually independent), are summarized in Appendix C of the supplemental article

[35]. To reflect the expensive cost of simulations, we test only small point set sizes ranging

from n = 20 to n = 100 runs. Support points are generated using sp.sccp with the same

settings as before, with the randomized MC and IT-RSS methods replicated for 100 trials.

Consider now the estimation of the output distribution g(X), which quantifies the un-

certainty in water flow rate. Figure 1.5 compares the estimated density function of g(X)

using n = 60 points with its true density, where the latter estimated using a large Monte

Carlo sample. Visually, support points provide the best density approximation for g(X),
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Table 1.1: Prior specification for the tree growth model (left), and the ratios of thinning
over support point error for posterior quantities (right). Rµ(n) and Rσ2(n) denote the error
ratios for posterior means and variances using n points, respectively.

Parameter Prior Rµ(375) Rµ(750) Rσ2(375) Rσ2(750)

φi1 log φi1
indep.∼ N(µ1, σ

2
1) 2.27 2.75 15.89 6.37

φi2 log(φi2 + 1)
indep.∼ N(µ2, σ

2
2) 2.10 3.58 18.01 2.47

φi3 log(−φi3)
indep.∼ N(µ3, σ

2
3) 1.59 2.23 11.90 102.49

σ2
C σ2

C ∼ Inv-Gamma(0.001, 0.001) 0.98 2.80 6.15 7.69
r(1600)

r(t) = 1
5

∑5
i=1

∂
∂sηi(s)

∣∣
s=t

1.95 3.17 - -
r(1625) 2.30 3.28 - -
r(1650) 2.51 3.04 - -

µj µj
i.i.d.∼ N(0, 100) - - - -

σ2
j σ2

j
i.i.d.∼ Inv-Gamma(0.01, 0.01) - - - -

capturing well both the peak and tails of the desired output distribution. This suggests sup-

port points are not only asymptotically consistent for density estimation, but may also be

optimal in some sense. A similar conclusion holds in the estimation of the expected flow

rate E[g(X)] (see Appendix C of the supplemental article [35]).

1.5.2 Optimal MCMC reduction

The second application of support points is as an improved alternative to MCMC thin-

ning for Bayesian computation. Thinning here refers to the discarding of all but every

k-th sample for an MCMC sample chain obtained from the posterior distribution. This is

performed for several reasons (see [56]): it reduces high autocorrelations in the MCMC

chain, saves computer storage space, and reduces processing time for computing derived

posterior quantities. However, by carelessly throwing away samples, a glaring fault of thin-

ning is that samples from thinned chains are inherently less accurate than that from the full

chain. To this end, the proposed algorithm sp.ccp can provide considerable improve-

ments to thinning by optimizing for a point set which best captures the distribution of the

full MCMC chain.

We illustrate this improvement using the orange tree growth model in [57]. The data
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here consists of trunk circumference measurements {Yi(tj)}5
i=1

7

j=1, where Yi(tj) denotes

the measurement taken on day tj from tree i. To model these measurements, the growth

model Yi(tj)
indep.∼ N(ηi(tj), σ

2
C), ηi(tj) = φi1/(1 + φi2 exp{φi3tj}) was assumed in [57],

where φi1, φi2 and φi3 control the growth behavior of tree i. There are 16 parameters in

total, which we denote by the set Θ = (φ11, φ12, · · · , φ53, σ
2). Since no prior information

is available on Θ, vague priors are assigned, with the full specification provided in the left

part of Table 1.1. MCMC sampling is then performed for the posterior distribution using

the R package STAN [58], with the chain run for 150,000 iterations and the first 75,000

of these discarded as burn-in. The remaining N = 75, 000 samples are then thinned at a

rate of 200 and 100, giving n = 375 and n = 750 thinned samples, respectively. Support

points are generated using sp.ccp for the same choices of n, using the full MCMC chain

as the approximating sample {ym}Nm=1. Since posterior variances vary greatly between

parameters, we first rescale each parameter in the MCMC chain to unit variance before

performing sp.ccp, then scale back the resulting support points after.

These two methods are then compared on how well they estimate two quantities: (a)

marginal posterior means and standard deviations of each parameter, and (b) the averaged

instantaneous growth rate r(t) (see Table 1.1) at three future times. True posterior quantities

are estimated by running a longer MCMC chain with 600,000 iterations. This comparison

is summarized in the right part of Table 1.1, which reports the ratios of thinning over

support point error for each parameter. Keeping in mind that a ratio exceeding 1 indicates

lower errors for support points, one can see that sp.ccp provides a sizable improvement

over thinning for nearly all posterior quantities. Such a result should not be surprising,

because sp.ccp compacts the full MCMC chain into a set of optimal representative points,

whereas thinning wastes valuable information by discarding a majority of this chain.
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1.6 Conclusion and future work

In this chapter, a new method is proposed for compacting a continuous distribution F into

a set of representative points called support points, which are defined as the minimizer of

the energy distance in [30]. Three theorems are proven here which justify the use of these

point sets for integration. First, we showed that support points are indeed representative of

the desired distribution, in that these point sets converge in distribution to F . Second, we

provided a Koksma-Hlawka-like bound which connects integration error with the energy

distance for a large class of integrands. Lastly, using an existence result, we demonstrated

the theoretical error improvement of support points over Monte Carlo. A key appeal of

support points is its formulation as a difference-of-convex optimization problem. The two

proposed algorithms, sp.ccp and sp.sccp, exploit this structure to efficiently generate

moderate-sized point sets (n ≤ 10, 000) in moderately-high dimensions (p ≤ 500). Sim-

ulations confirm the improved performance of support points to MC and a specific QMC

method, and the practical applicability of the proposed point set is illustrated using two

real-world applications, one for small-data and the other for big-data. An efficient C++

implementation of sp.ccp and sp.sccp is made available in the R package support

[59].

While the current chapter establishes some interesting results for support points, there

are still many exciting avenues for future research. First, we are interested in exploring a

tighter convergence rate for support points which reflects its empirical performance from

simulations, particularly for high-dimensional problems. Next, the d.c. formulation of the

energy distance can potentially be further exploited for the global optimization of support

points. Moreover, by minimizing the distance-based energy distance, support points also

have an inherent link to the distance-based designs used in computer experiments [49,

60, 61], and exploring this connection may reveal interesting insights between the two

fields, and open up new approaches for uncertainty quantification in engineering [62] and
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machine-learning [63] problems. Lastly, motivated by [29] and [60], rep-points in high-

dimensions should not only provide a good representation of the full distribution F , but

also for marginal distributions of F . Such a projective property is enjoyed by most QMC

point sets in the literature [16], and new methodology is needed to incorporate this within

the support points framework.
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CHAPTER 2

PROJECTED SUPPORT POINTS – A NEW METHOD FOR

HIGH-DIMENSIONAL DATA REDUCTION

2.1 Introduction

This chapter explores a new way to compact a continuous distribution F into a set of rep-

resentative points with good projective properties, which we call projected support points

(PSPs). Representative point sets have important applications in statistics and engineer-

ing, because they provide an improved representation of F compared to a random sam-

ple. However, in many practical problems, two additional concerns need to be addressed:

(a) the sample space of F (call this X) is often high-dimensional, and (b) the underlying

problem typically focuses on a low-dimensional subspace of X. Such a scenario is com-

monly encountered in Bayesian analysis, where a modeler considers many parameters, but

may only be interested in posterior quantities involving a handful of these parameters. We

present here a flexible framework for generating point sets which not only enjoys excellent

goodness-of-fit (GOF) of F , but also provides good fit of the marginal distributions of F .

We refer to the latter property as projected goodness-of-fit (PGOF) for the remainder of the

chapter.

The motivating idea for PGOF – namely, low-dimensional structure in high-dimensional

functions – has been studied in both deterministic sampling (Quasi-Monte Carlo, or QMC)

and experimental design. One of the earliest mentions of this in QMC is in [2] and [29],

who advocated for a discrepancy measure which does not increase under projections of a

point set. A related concept called effective dimension was then proposed in [64] and [65],

The paper based on this chapter is under revision in Journal of the American Statistical Association.
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quantifying the belief that certain dimensions in an integral are more important than others.

These works have culminated in a recent thrust in QMC on establishing dimension-free er-

ror rates for integration on the uniform hypercube U [0, 1]p (see, e.g., [37, 16]). This focus

on low-dimensional structure is mirrored in experimental design literature, specifically in

the principles of effect sparsity, hierarchy and heredity [66, 67, 68], which serve as guiding

rules for analyzing experimental data. Recently, these principles were further developed in

the maximum projection (MaxPro) designs [69], which enjoy good space-filling properties

on projections of the design space. The PSPs proposed here provides a unifying framework

which connects these developments within the context of integration under non-uniform

distributions.

The framework for PSPs can be seen as an extension of two recent developments in

deterministic sampling: kernel herding and support points. The first, kernel herding [70],

generates a point set sequence by sequentially minimizing some kernel-based discrepancy

measure between the desired distribution F and the empirical distribution of the approx-

imating point set. It can be shown [71] that herding points have a theoretical integration

error rate which is at least comparable to Monte Carlo, and enjoy considerably improved

performance in practice. One disadvantage of kernel herding is that it can only be per-

formed for specific kernel-distribution pairs [71]. The second development, support points

(SPs, [72]), aims to find a point set which minimizes a statistical potential measure called

the energy distance [73]. The appeal of SPs lies in the difference-of-convex formulation of

the energy distance, which allows for efficient generation of optimal representative points

for any distribution F . However, by considering only goodness-of-fit on the full space X,

both herding and SPs suffer from poor projected goodness-of-fit. To this end, we present

a new method for generating points which are representative of both F and its marginal

distributions.

The chapter is organized as follows. Section 2 reviews kernel herding and SPs, and

presents the new idea of PSPs. Section 3 presents a unifying framework for PSPs which
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connects PGOF, the three effect principles in experimental design and a dimension-free

error rate. Section 4 provides a Bayesian framework for PSPs, and reveals an interesting

connection with MaxPro designs. Section 5 introduces two algorithms for efficiently gen-

erating PSPs, and proves their convergence to a stationary point set. Section 6 demonstrates

the effectiveness of PSPs in several simulations, and Section 7 illustrates an important ap-

plication of PSPs in optimally reducing Markov-chain Monte Carlo (MCMC) chains. Fi-

nally, Section 8 concludes with some directions for future research. All proofs of technical

results are deferred to the Appendix for brevity.

2.2 Background and definition

2.2.1 Kernel herding and support points

We first review kernel herding, following [70] and [71]. Let γ : X×X→ R be a symmet-

ric, positive-definite (p.d.) kernel, with Hγ its reproducing kernel Hilbert space (RKHS).

Herding generates the following sequential sampling scheme:

xn+1 = Argmax
x∈X

{
E[γ(x,Y)]− 1

n+ 1

n∑
i=1

γ(x,xi)

}
, Y ∼ F. (2.1)

[71] provides a beautiful interpretation of (2.1) as the Frank-Wolfe steps for solving a cor-

responding convex program in the function space Hk. Borrowing results from convex pro-

gramming, it can be proved [71] that for finite-dimensional kernels, the sequence of herding

points (xi)
∞
i=1 enjoy an improved integration error rate over the O(n−1/2) rate for Monte

Carlo. While herding appears to provide better performance over MC in the more useful

setting of infinite-dimensional kernels [70, 71, 74], this has yet to be shown theoretically.

One caveat for herding is that a closed-form expression is needed for E[γ(x,Y)], which

is only possible for specific choices of k and F . However, given a sample batch from the

desired distribution F , herding points can be generated using a Monte Carlo approximation

of (2.1).
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Unlike herding, the support points in [72] are instead motivated by statistical potentials

and its uses in GOF testing. Define first the energy distance between two distribution

functions (d.f.s) F and G:

Definition 7. [73] Let X,X′
i.i.d.∼ G and Y,Y′

i.i.d.∼ F , where G and F are d.f.s on X⊆ Rp

with E‖X‖2, E‖Y‖2 <∞. The energy distance between F and G is defined as:

E(F,G) ≡ 2E‖X−Y‖2 − E‖Y −Y′‖2 − E‖X−X′‖2. (2.2)

One appealing property of E(F,G) is the so-called metric property (Prop. 1, [30]), which

states that E(F,G) ≥ 0, with equality holding if and only if F and G are the same dis-

tribution. Such a property is important for SPs (and the PSPs introduced later), because it

ensures that point sets with low energy also provides a good representation of the desired

distribution F .

Following [72], SPs are defined as the point set whose empirical distribution function

(e.d.f.) Fn has minimal energy to F :

Definition 8. [72] Let Y ∼ F , with E‖Y‖2 < ∞. For fixed point set size n ∈ N, the

support points (SPs) of F are defined as:

Argmin
x1,··· ,xn

E(F, Fn) = Argmin
x1,··· ,xn

{
2

n

n∑
i=1

E‖xi −Y‖2 −
1

n2

n∑
i=1

n∑
j=1

‖xi − xj‖2

}
. (2.3)

The formulation in (2.3) has several interesting connections to kernel herding. To see their

similarities, set γ(x,y) as the negative L2-norm −‖x − y‖2, despite the latter being only

conditionally positive-definite (c.p.d.). The updates in (2.1) can then be viewed as the se-

quential optimization of the (n + 1)-th point xn+1 in (2.3), after fixing the first n points

{xi}ni=1. In this sense, SPs exploit the underlying difference-of-convex (d.c.) structure in
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Figure 2.1: One-dimensional projections of n = 50 point sets for i.i.d. N(0, 1) in p = 10
dimensions.

E(F, Fn) to efficiently generate optimal sampling points for any distribution F , while herd-

ing can be viewed as a greedy, sequential minimization of the kernel analogue forE(F, Fn)

which may lead to suboptimal solutions. SPs also enjoy a theoretical improvement over

Monte Carlo in integrating a large class of integrands [72].

However, by focusing only on the full sample space X, both herding points and SPs

can have poor goodness-of-fit for marginal distributions of F . To see this, Figure 2.1

shows the histograms for the 1-d projections of n = 50 points from Monte Carlo, herding,

SPs and PSPs for the 10-d standard normal distribution, with the true marginal densities

plotted in red. Herding points are generated using the isotropic Gaussian kernel γ(x,y) =

exp{−θ‖x − y‖2} following [70], with θ = 1. One surprising observation is that, after

projection, both herding points and SPs provide a poorer fit of the 1-d marginal distribution

compared to Monte Carlo! On the other hand, the proposed PSPs balance GOF for the

full distribution F with GOF for its marginal distributions, thereby providing a much better

projected fit. We formally introduce this trade-off below.

2.2.2 Projected support points

The key idea for PSPs is to use a flexible kernel family which can quantify the desired GOF

trade-off between F and its marginal distributions. To this end, we assume the general
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Gaussian kernel:

γθ(x,y) ≡ exp

− ∑
∅6=u⊆[p]

θu‖xu − yu‖2
2

 , θu ≥ 0, [p] ≡ {1, · · · , p} (2.4)

for the remainder of this chapter. Assuming that a larger value of θu encodes a greater

importance on the GOF in projection u (a justification for this is provided later in Section

2.3), the kernel in (2.4) provides a general framework for quantifying the importance of

each projected subspace of X. For example, by setting θ{1,2} = 10 and θu = 1, u 6= {1, 2},

one places greater importance on the GOF for the marginal distribution in dimensions 1

and 2, and smaller (but equal) importance for all other projections. It is worth noting that,

while the choice of a Gaussian kernel is made to facilitate theoretical analysis in Sections

2.3 and 6.2.2, the proposed methodology can easily be extended for any scale-parametrized

kernel.

From (2.4), the θ-weighted and π-expected discrepancies can then be defined:

Definition 9. Let X,X′
i.i.d.∼ F and Y,Y′

i.i.d.∼ G, where F and G are d.f.s on X⊆ Rp. For

θ = (θu)∅6=u⊆[p], θu ≥ 0, the θ-weighted discrepancy of F and G is:

Eθ(F,G) ≡ E {γθ(X,X′)} − 2E {γθ(X,Y)}+ E {γθ(Y,Y′)} . (2.5)

Letting θ follow some proper prior π, the π-expected discrepancy isEθ∼π(F,G) ≡ Eθ∼π [Eθ(F,G)].

The following proposition shows that the aforementioned metric property also holds for

Eθ(F,G) and Eθ∼π(F,G), which justifies both as valid goodness-of-fit criteria:

Theorem 9. Eθ(F,G) ≥ 0, with equality holding if and only if F=G. The same holds for

Eθ∼π(F,G) under any proper prior π.

The projected support points (PSPs) of F are then defined as follows:
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Definition 10. For fixed θ = (θu)∅6=u⊆[p], the θ-weighted PSPs are defined as:

Argmin
x1,··· ,xn

Eθ(F, Fn) = Argmin
x1,··· ,xn

[
− 2

n

n∑
i=1

EY {γθ(xi,Y)}+
1

n2

n∑
i=1

n∑
j=1

γθ(xi,xj)

]
.

(2.6)

If θ ∼ π, the π-expected PSPs are defined as:

Argmin
x1,··· ,xn

Eθ∼π(F, Fn) = Argmin
x1,··· ,xn

[
− 2

n

n∑
i=1

EY,θ∼π {γθ(xi,Y)}+
1

n2

n∑
i=1

n∑
j=1

Eθ∼π {γθ(xi,xj)}

]
.

(2.7)

Unfortunately, by parametrizing the importance of all possible projections, the kernel in

(2.4) becomes too general to use for both theoretical analysis and practical implementation.

We therefore consider the following two simplifications on (θu)∅6=u⊆[p]:

• Anisotropic:

θu = θl for u = {l}, l = 1, · · · , p, and θu = 0 otherwise. (2.8)

Under this setting, (2.4) reduces to the anisotropic Gaussian kernel.

• Product-and-order (POD):

θu = Γ|u|
∏
l∈u

θl, (2.9)

where (θl)
p
l=1 and (Γ|u|)

∞
|u|=1 are known as product and order weights, respectively. POD

weights were first introduced by [75] for analyzing partial differential equations, and we

show later that such weights provide a concise quantification of the three effect principles

in experimental design. Note that the earlier anisotropic setting can be recovered by

setting Γ|u| = 0 for |u| > 1.

We make use of the simpler anisotropic setting for theoretical analysis in Sections 2.3 and

6.2.2, and the POD setting for practical implementation from Section 2.4.2 onwards.
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Figure 2.2: The triangle connection for PSPs.

2.3 Theoretical framework

Using the anisotropic setting, a theoretical framework for PSPs is presented here, connect-

ing the ideas of (a) projective goodness-of-fit, (b) the three effect principles in experimental

design and (c) a dimension-free integration error rate. This unifies recent developments in

experimental design and QMC, and extends them in the context of integration under non-

uniform distributions. For reference, Figure 2.2 shows a visualization of this “triangle”

connection, along with their corresponding theorems. This section concludes with a result

demonstrating the theoretical improvement of PSPs over MC for fixed dimension p.

2.3.1 Triangle connection

We first provide some insight on the effect of θ on projected goodness-of-fit:

Theorem 10. Fix θ = (θl)
p
l=1 ∈ Rp

+, and let D = {xi}ni=1 be the SPs of F , with Fn its

e.d.f. and x(l) = (xil)
n
i=1 the l-th dimensional points of D. Under two approximations:

1. γθ(xi,x) ≈ γ̄ for any x ∈ X\ xi,

2.
∫
X

∫
X
|xl − x′l| dFn(x)dFn(x′) ≈

∫
X

∫
X
|xl − x′l| dF (x)dF (x′),

and letting E(Fl, Fl,n) denote the energy distance between the l-th dimensional marginal
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distributions of F and Fn, it follows that:

‖∇x(l)Eθ(F, Fn)‖1 . 4γ̄θlE(Fl, Fl,n). (2.10)

The first approximation is justifiable when θl → ∞ (i.e., greater importance is placed

on PGOF in the l-th dimension), and the second assumption is justifiable when n → ∞,

because SPs converge in distribution to F [72].

Theorem 10 reveals an important connection between θ and PGOF. Recall that the

negative gradient of an objective function indicates the direction of greatest descent, with

the norm of this gradient representing the magnitude of this descent. In this light, Theorem

10 shows that, for the current point set {xi}ni=1, the reduction in Eθ(F, Fn) achievable by

adjusting the l-th dimensional points x(l) is largely dominated by (a) the scale parameter θl

and (b) the l-th dimensional energy E(Fl, Fl,n). This can be interpreted in two ways. First,

assuming equal energies E(Fl, Fl,n) over all dimensions l, a larger value of θl encourages

greater movement for the l-th dimensional points x(l) in the minimization of Eθ(F, Fn).

Second, because the goal in optimization is to obtain an optimal point set with gradient

norm ‖∇Eθ(F, Fn)‖1 equal to 0, a key ingredient for reducing this norm is to reduce the

l-th dimensional energy E(Fl, Fl,n), which corresponds to improving PGOF in the l-th

dimension. In other words, from an optimization perspective, a larger value of θl imposes

a greater emphasis on the l-dimensional PGOF for PSPs.

This interpretation also sheds light on the poor PGOF of herding points and SPs in Fig-

ure 2.1. By assuming a priori the same scale parameters for kernel k, the resulting formu-

lation assumes all dimensions are equally important with certainty. This then encourages

GOF only for the full distribution F , and ignores PGOF for its marginal distributions. To

foreshadow, we address this problem by assigning an appropriate prior distribution on θ.

Next, we explore the connection between the three design principles in experimental
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design and recent QMC work on dimension-free error rates. For clarity, a brief overview is

provided below on both topics. In experimental design, the principles of effect sparsity, hi-

erarchy and (strong) heredity quantify, respectively, the prior beliefs that a response surface

is dominated by a small number of effects, with lower-order effects accounting for most of

the response variability, and higher-order effects active only when all its lower-order ef-

fects are present. These principles are highly useful for selecting appropriate models from

experimental data, because the number of runs is often limited and the effects of interest

fully-aliased. As we show below, this is inherently related to the idea of a dimension-free

rate in QMC, where the integration error rate does not grow in dimension p. Such a rate

provides the theoretical basis for applying QMC methods to high-dimensional integration

problems, and recent results (see [65], [37] and [16]) show that under tractability conditions

on the integrand, certain randomized QMC methods (e.g., the randomly shifted lattice rules

in [21, 22]) can indeed achieve this rate for F = U [0, 1]p. In the current work, the RKHS

for γθ reveals an insightful connection between these conditions and the three effect princi-

ples, which can then be used to demonstrate a dimension-free rate for PSPs on non-uniform

distributions.

We first provide an explicit construction of the RKHS for γθ:

Theorem 11. Let Hγ,θ be the RKHS for the kernel γθ. Then:

Hγ,θ =

g : Rp → R

∣∣∣∣∣ ∃{wα}∞|α|=0 s.t. g(x) = exp(−‖x‖2
θ)

∞∑
|α|=0

wαxα, ‖g‖γ,θ <∞

 ,

(2.11)

with inner product given by:

〈f, g〉γ,θ =
∞∑
k=0

k!

2k

∑
|α|=k

vαwα

Ck
αθ

α , f(x) = exp(−‖x‖2
θ)

∞∑
|α|=0

vαxα. (2.12)

Here, α = (α1, · · · , αp) with |α| =
∑p

l=1 αl, {wα}∞|α|=0, {vα}∞|α|=0 ⊆ R are coefficients,

xα =
∏p

l=1 x
αl
l (similarly for θα) and Ck

α = k!/(α1! · · ·αp!) is the multinomial coefficient.
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In words, the RKHS Hγ,θ consists of all integrands spanned by {exp(−‖x‖2
θ)xα}∞|α|=0,

with corresponding coefficients {wα}∞|α|=0 (we call these ANOVA coefficients from here

on). The explicit construction in (2.11) is quite appealing, because it gives an interpretable,

ANOVA-like decomposition of the function space Hγ,θ. For example, for a function g ∈

Hγ,θ, a larger ANOVA coefficient wα indicates a greater importance of the basis term

exp(−‖x‖2
θ)xα in g.

Using this RKHS along with a simple application of Cauchy-Schwarz, an upper bound

can be obtained which connects integration error with the θ-weighted discrepancy:

Lemma 3. Let Fn be the e.d.f. of an approximating point set for F . For any integrand

g ∈ Hγ,θ, its integration error can be bounded by:

I(g;F, Fn) ≡
∣∣∣∣∫

X

g(x) d[F − Fn](x)

∣∣∣∣ ≤ ‖g‖γ,θ√Eθ(F, Fn). (2.13)

The following theorem then establishes a dimension-free convergence rate for PSPs:

Theorem 12. Let Fn be the e.d.f. of the θ-weighted PSPs, and let g ∈ Hγ,θ. Further

assume the ANOVA coefficients for g are of the POD-like form wα = T|α|
∏p

l=1 w
αl
l . If:

T|α| = O
{
p−1/4 (|α|!)−1/2)

}
and

∞∑
l=1

w4
l /θ

2
l < 4, (2.14)

then I(g;F, Fn) ≤ C/
√
n for some constant C > 0 not depending on p.

The two conditions in (6.5) reveal important insights on the connection between θ and a

dimension-free rate. Consider first the POD-like form of wα (a similar framework also

arises in experimental design, see [76]). The claim is that (a) the product weights (wl)
p
l=1

control effect heredity, and (b) the order weights (T|u|)
∞
|u|=1 dictate effect hierarchy. To see

this, suppose the ANOVA coefficientwα is large, thereby indicating a significant interaction
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effect for g in the subspace of order α. From the product structure
∏p

l=1 w
αl
l in wα, this

suggests all first-order ANOVA coefficients {wl : αl > 0} are also significant, which

is precisely the principle of (strong) effect heredity. Moreover, when (T|α|)
∞
|α|=0 forms

a strictly decreasing sequence, the order structure in wα forces all higher-order ANOVA

effects to be less significant than lower-order effects, which is precisely effect hierarchy.

In this light, the two conditions in Theorem 12 can be interpreted in terms of the effect

principles. The first condition T|α| = O
{
p−1/4 (|α|!)−1/2

}
suggests an effect hierarchy

decay of O
{
p−1/4 (|α|!)−1/2

}
is required for a dimension-free convergence rate. This rate

is quite appealing intuitively, because by effect sparsity and hierarchy, one expects the

order weights to decay rapidly in dimension p and order |u|, respectively. Indeed, a similar

factorial decay of order weights also arises when proving the dimension-free convergence

rate of component-by-component lattice rules (pg. 76 of [16]), which is quite fascinating

and draws a parallel between the standard U [0, 1]p setting of QMC and the non-uniform

setting here. The second condition
∑∞

l=1 w
4
l /θ

2
l < 4 can be viewed as an expression of

effect sparsity. To see this, suppose the simple case where θl = 1 for all dimensions l.

The resulting constraint
∑∞

l=1w
4
l < 4 limits the number of active dimensions in the high-

dimensional setting of p → ∞, which is precisely effect sparsity. Moreover, when too

many factors are active and this condition is violated, the scale parameters θl can be used

to force
∑∞

l=1 w
4
l /θ

2
l < 4. Put another way, a highly influential dimension l for integrand

g can be counteracted by setting a sufficiently large value of θl. As mentioned earlier in

the context of optimization, this places greater emphasis on PGOF in the l-th dimension,

which is as expected.

2.3.2 Convergence rate for fixed p

While Theorem 12 addresses the conditions for avoiding the curse-of-dimensionality, the

asserted O(n−1/2) rate only makes PSPs comparable to MC for fixed dimension p. To this

end, the following theorem borrows techniques from [72] to demonstrate the theoretical
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improvement of PSPs over Monte Carlo for fixed p.

Theorem 13. For some active set A⊆ [p], suppose g ∈ Hγ,θ, with θl > 0 for l ∈ A and

θl = 0 otherwise. Let X⊆ Rp be measurable with positive Lebesgue measure, let Fn be the

e.d.f. for the θ-weighted PSPs of F , and suppose F satisfies the mild moment condition:

∃β > 0, C ≥ 0 s.t. lim sup
r→∞

rβ
∫
X\Br(y)

E[γθ(x,Y)] dF (x) ≤ C, Y ∼ F, for all y ∈ X.

(2.15)

Then, with γ = β/(β + 1), it follows that for any ν ∈ (0, γ):

I(g;F, Fn) ≤ O
{
‖g‖γ,θ n−1/2(log n)−(γ−ν)/(2|A|)} , (2.16)

where constants may depend on p and ν.

Two important insights can be made from this theorem. First, when the integrand g is

active in all dimensions (i.e., A = [p]) and F is not too heavy-tailed, PSPs enjoy a faster

error convergence to MC by at least the log-factor (log n)−1/(2p). While this is indeed an im-

provement, simulation studies in Section 2.6 suggest a quicker rate for PSPs in both low and

high dimensions, and more work is needed to establish this theoretically. Second, when g is

active only in a subset of dimensions (i.e., A( [p]) and the proposed PSPs are constructed

on these active dimensions, this log-factor improves to (log n)−1/(2|A|), where |A| < p. This

generalizes the result in [72] for low-dimensional integrands in high-dimensional spaces.

In practice, the active dimensions for g are not known in advance, and need to be learned

using some form of adaptive sampling. A Bayesian formulation for θ is well-suited for

such a task, and we briefly mention in Section 6.5.2 a posterior update scheme for θ which

can iteratively select active dimensions and generate integration points.
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2.4 Prior specification on POD weights

Having established the theoretical framework of PSPs, we now examine several specifica-

tions for the product weights (θl)
p
l=1 and order weights (Γu)∞|u|=1 under the POD setting

(2.9). We first study the choice of prior π for product weights, revealing a connection to

recent developments in experimental design, then conclude with a brief discussion on order

weights.

2.4.1 Product weights and the projection kernel

Consider the following independent Gamma prior specification for (θl)
p
l=1:

θl
i.i.d.∼ Gamma(ν, λ), i.e., π̃(θ) =

p∏
l=1

{
λν

Γ(ν)
θν−1
l exp (−λθl)

}
. (2.17)

The prior π̃ provides two appealing properties for PSPs. First, the i.i.d. framework reflects

the belief that no subset of dimensions is favored over another, an intuitive assumption to

make a priori. Second, the choice of Gamma priors allows for a closed-form expression for

the expected discrepancy Eθ∼π̃(F, Fn). This closed-form is valuable for two reasons: (a)

it provides insight on the effect of prior hyperparameters ν and λ on PSPs, and (b) reveals

a connection with the MaxPro designs in [69]. While the following discussion entertains

only the i.i.d. Gamma prior, the proposed algorithm in Section 6.5.2 can be used for any

prior π which can be efficiently sampled.

We first provide the closed-form expected discrepancy under π̃:

Proposition 2. Assume the anisotropic setting in (2.8). Under the prior in (6.9):

Eθ∼π̃(F, Fn)

λν
=

∫
X

∫
X

{
p∏
l=1

1

(xl − yl)2 + λ

}ν

d[F − Fn](x) d[F − Fn](y). (2.18)

We call k̃ν,λ = {
∏p

l=1 (xl − yl)2 + λ}−ν the projection kernel for the rest of the chapter,
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because it provides a way to quantify the projected similarities between two points. To

see this, set ν = 1 and λ = 0.01, and consider the three points x = (0, 0), y = (
√

2, 0)

and z = (1, 1). While the Euclidean distance is the same between x and y and between

x and z, the projected kernel gives a much higher similarity measure for the first pair of

points (k̃ν,λ(x,y) = 4930) than the second pair (k̃ν,λ(x, z) = 0.96). An inspection of

k̃ν,λ reveals why this is the case. Whenever two points are close in some dimension l,

the denominator term (xl − yl)
2 + λ becomes small, which results in a large value for

k̃ν,λ. Such a kernel therefore assigns larger values for point pairs which are close in some

coordinate projection. Note that the projection kernel can be viewed as the product kernel

of the generalized inverse multiquadric kernel [77], the latter being a popular tool in image

classification [78].

Proposition 2 also provides some insight on the effect of hyperparameters ν and γ on the

resulting PSPs. Consider first the shape parameter ν. From (2.18), a larger ν places greater

emphasis on the GOF in regions with large k̃ν,λ (i.e., regions with high projected similari-

ties), and a smaller value of ν places greater emphasis on the GOF over the full space X.

In other words, ν partially controls the trade-off between the GOF of the full distribution

F and PGOF of its marginal distributions. Next, for the rate parameter λ, observe that

limλ→0+ λνEθ∼π̃(F, Fn) ≈
∫
X

∫
X

(maxl=1,··· ,p |xl − yl|−2ν) d[F − Fn](x) d[F − Fn](y),

which suggest that smaller values of λ improve the worst-case PGOF of the 1-d marginal

distributions. This again comes at a trade-off, because λ → 0+ introduces asymptotic

behavior for k̃(x,y) whenever x and y are close after projection, which in turn causes nu-

merical instabilities in optimization. We found the choice of (ν, λ) = (0.1, 1) to work quite

well for the simulations in Section 2.6 and the application in Section 2.7.2.

The closed-form discrepancy Eθ∼π̃(F, Fn) also reveals an illuminating connection be-

tween PSPs and the MaxPro designs in [69]. The latter is a popular design choice for

computer experiments, because it has good space-filling properties (see, e.g., [49]) when

projected onto any coordinate subspace of the unit hypercube [0, 1]p. Setting ν = 1 and
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expanding the terms in (2.18), Eθ∼π̃(F, Fn) can be written as:

E

(
p∏
l=1

1

|Yl − Y ′l |2 + λ

)
+

1

n2

n∑
i=1

n∑
j=1

(
p∏
l=1

1

|xil − xjl|2 + λ

)
− 2

n

n∑
i=1

E

(
p∏
l=1

1

|xil − Yl|2 + λ

)
,

(2.19)

where Yl, Y ′l
i.i.d.∼ Fl. The criterion to minimize in MaxPro designs is precisely the limit of

the middle term in (2.19) as λ → 0+! In this sense, PSPs generalize the MaxPro designs

in two important ways. First, in the uniform setting of F = U [0, 1]p, the addition of an ad-

justment factor −(2/n)
∑n

i=1 E {
∏p

l=1(|xil − Yl|2 + λ)−1} to the MaxPro criterion allows

the resulting point set to have good uniformity after projection. Second, PSPs generalize

the desired projective property of MaxPro designs from the uniform hypercube U [0, 1]p to

non-uniform distributions F .

2.4.2 Order weights

Lastly, we provide some insight on the choice of order weights (Γ|u|)
∞
|u=1 in the POD frame-

work (2.9). By effect hierarchy, lower-order terms should be more significant than higher-

order terms, so Γ|u| should form a decreasing sequence in |u|. We consider two settings of

order weights here: (a) the anisotropic setting: Γ|u| = p−1/4 if |u| = 1, Γ|u| = 0 otherwise,

and (b) the factorial decay setting Γ|u| = p−1/4(|u|!)−1/2. The first is appropriate when the

desired integrand g is dominated by first-order effects, whereas the second is appropriate

when g is largely composed of lower-order (but not necessarily first-order) effects. The

specific decay p−1/4(|u|!)−1/2 is motivated by the conditions for a dimension-free rate in

Theorem 12. Both choices of weights are tested in the simulations in Section 2.6.

2.5 Algorithm

We present here two algorithms, psp.ccp and psp.sccp, which can efficiently gener-

ate PSPs using a combination of the convex-concave procedure and resampling. The first

should be used when only a single batch from F and π are available, and the second should

be used when multiple sample batches from F and π can be efficiently generated. These
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Algorithm 3
psp.ccp: PSPs using one sample batch

• Warm-start the initial point set D[0] = {x[0]
i }ni=1 using SPs.

• Set l = 0, repeat until convergence of D[l]:

• For i = 1, · · · , n:

– Set x
[l+1]
i ←Mi(x

[l]
i ; Y, ϑ, D

[l]
−i), with Mi defined in (2.24).

– Update D
[l]
i ← x

[l+1]
i .

• Update D[l+1] ← {x[l+1]
i }ni=1, set l← l + 1.

• Return the converged point set D[∞].

Algorithm 4
psp.sccp: PSPs using multiple sample batches

• Warm-start the initial point set D[0] = {x[0]
i }ni=1 using SPs.

• Set l = 0, repeat until convergence of D[l]:

• For i = 1, · · · , n:

– Resample Y[l] i.i.d.∼ F and ϑ[l] i.i.d.∼ π.

– Set x
[l+1]
i ←Mi(x

[l]
i ; Y[l], ϑ[l], D

[l]
−i), with Mi defined in (2.24).

– Update D
[l]
i ← x

[l+1]
i .

• Update D[l+1] ← {x[l+1]
i }ni=1, and set l← l + 1.

• Return the converged point set D[∞].

can be seen as extensions of the algorithms sp.ccp and sp.sccp in [72] to the general

Gaussian kernel setting (2.4) under the POD weights (2.9), with a suitable prior assigned

to θ. We first provide a brief description of the two algorithms, then discuss theoretical

details on convergence and running times.

2.5.1 Algorithm statement

We first provide the steps for psp.ccp, then introduce psp.sccp as an improvement on

psp.ccp when multiple sample batches from F and π are available. Suppose the sample

batches Y = {ym}Nm=1 and ϑ = {θr}Rr=1 are obtained from F and π, respectively. The
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Monte Carlo approximation of the PSP formulation (2.7) becomes:

Argmin
x1,··· ,xn

Ê({xi}; Y, ϑ) ≡ − 2

nNR

n∑
i=1

N∑
m=1

R∑
r=1

γθr(xi,ym) +
1

n2R

n∑
i=1

n∑
j=1

R∑
r=1

γθr(xi,xj).

(2.20)

Note that, in the specific setting of anisotropic θ with i.i.d. Gamma priors, one can forgo

the resampling of θ by using the closed-form projection kernel k̃ν,λ from Proposition 2.

However, even for such a setting, we found that the resampling of θ provides a more nu-

merically stable algorithm, because k̃ν,λ can be ill-conditioned when design points are close

in some projected subspace.

Recall that a key advantage of SPs is that the energy distance can be viewed as a d.c.

program, which allows for efficient optimization. Indeed, seeing how the kernel γθ(·, ·)

is concave near its origin, a similar technique can be used to efficiently optimize (6.1).

By exploiting this structure, we found that the proposed algorithm performs considerably

quicker than black-box gradient-descent methods (see [79]). This is not surprising, because

the latter requires multiple evaluations of both objective and gradient functions to perform

one update, which can be computationally expensive for the large-scale optimization at

hand.

To exploit this structure, consider the blockwise optimization ofEθ∼π(F, Fn) for design

point xi, fixing the remaining n− 1 points D−i ≡ {xj}j 6=i:

Argmin
x

Êi(x; Y, ϑ, D−i) ≡ −
1

NR

N∑
m=1

R∑
r=1

γθr(x,ym) +
1

nR

n∑
j=1
j 6=i

R∑
r=1

γθr(x,xj). (2.21)

The strategy here is to update xi by solving (2.21), then repeat this optimization cycli-

cally for each of the remaining n − 1 points until the point set converges. This blockwise

technique is known as blockwise coordinate descent (BCD, [80]), and is widely employed

within many optimization algorithms in machine learning and statistics (see, e.g., [81] and

[82]). BCD is adept at solving problems with appealing structure in its blockwise formula-
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tion, as is the case here. Specifically, the problem in (2.21) can be efficiently solved using

a d.c. optimization technique called the concave-convex procedure (CCP, see [42]), with

details provided in the following section.

Following the above description, Algorithm 3 outlines the steps for psp.ccp. Here,

the closed-form updates Mi within the for-loop perform one step of CCP, whereas the for-

loop itself implements the cyclic BCD procedure. When multiple sample batches can be

obtained from either F or π, psp.ccp can be further improved by incorporating such

samples into the algorithm. This motivates the second algorithm, psp.sccp, with steps

outlined in Algorithm 4. The key difference is that the approximating samples Yand ϑ are

resampled before each iterative update in psp.sccp, which allows for convergence to a

stationary solution of the desired problem (2.7).

Finally, recall the result in Theorem 13, which shows a quicker asymptotic rate when

active dimensions can be identified through adaptive sampling. The algorithms proposed

here provide an appropriate framework for such a scheme, in that the Bayesian modeling of

θ allows it to be updated via posterior sampling (say, using a Gaussian process model on g,

see [83, 84]), and the blockwise optimization in psp.ccp allows for efficient generation

of sequential points which incorporate this posterior learning of θ. Given the scope of the

current chapter, we defer this topic to future work.

2.5.2 Algorithm correctedness

Before establishing the theoretical correctedness of psp.ccp and psp.sccp, we first

provide a brief overview of a more general version of CCP called majorization-minimization

(MM), following [43]. Consider first the definition of a majorization function:

Definition 11. Let f : Rs → R be an objective to be minimized. A function h(z|z′)

majorizes f(z) at z′ ∈ Rs if h(z′|z′) = f(z′) and h(z|z′) ≥ f(z) for all z 6= z′.

Starting at an initial point z[0] ∈ Rs, Mm first minimizes the majorization function h(·|z[0])

in place of the true objective f , then iterates the updates z[l+1] ← argminz h(z|z[l]) until
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convergence. The solution sequence from such an update scheme can be shown to have

the descent property f(z[l+1]) ≤ h(z[l+1]|z[l]) ≤ h(z[l]|z[l]) = f(z[l]), which ensures the

sequence of objective values (f(z[l]))∞l=1 is monotonically decreasing.

The key to computational efficiency for MM is to judiciously choose a surrogate g

which not only majorizes f , but also admits an easy-to-compute closed-form minimizer.

We establish such a surrogate majorizer for the blockwise objective Êi in (2.21) by showing

γθ can be majorized and minorized by appropriately-chosen paraboloids:

Lemma 4. Let γθ(z) be the shift-invariant form of the Gaussian kernel (2.4) under the

POD weights (2.9). For any z′ ∈ Rp, γθ(z) is majorized at z′ by the paraboloid:

Q̄θ(z|z′) ≡ γθ(z′)− 2[γθ(z′)Ωθz
′]T (z− z′) + 2(z− z′)T∆θ(z− z′), (2.22)

and minorized at z′ by the paraboloid:

¯
Qθ(z|z′) ≡ γθ(z′) [1 + z′Ωθz

′]− γθ(z′)zTΩθz, (2.23)

where Ωθ = diag
i=1,··· ,p

{∑
i∈u⊆[p] Γ|u|

∏
l∈u θl

}
and ∆θ =

1

e

(
max
l

Ωθ,ll

)
Ip.

Using Q̄ and
¯
Q, a majorizing paraboloid can then be established for Êi:

Lemma 5. Êi(x; Y, ϑ, D−i) is majorized at x′ ∈ Rp by:

hi(x|x′; Y, ϑ, D−i) =
1

nR

n∑
j=1
j 6=i

R∑
r=1

Q̄θr(x−xj|x′−xj)−
1

NR

N∑
m=1

R∑
r=1 ¯

Qθr(x−ym|x′−ym),
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which has the unique closed-form minimizer:

Mi(x
′; Y, ϑ, D−i) =

(
2

NR

N∑
m=1

R∑
r=1

γθr(x
′ − ym)Ωθr +

4(n− 1)

nR

R∑
r=1

∆θr

)−1

 2

NR

N∑
m=1

(
R∑
r=1

γθr(x
′ − ym)Ωθr

)
ym +

2

nR

n∑
j=1
j 6=i

(
R∑
r=1

γθr(x
′ − xj)Ωθr

)
(x′ − xj)+

4(n− 1)

nR

(
R∑
r=1

∆θr

)
x′

]
.

(2.24)

From this, one can then prove the stationary convergence of psp.ccp and psp.sccp:

Theorem 14. Let θ ∈ Θ ⊆ Rp
+, and suppose Xand Θ are convex.

(a) If X and Θ are closed, then for any initial point set D[0] ⊆ X and fixed sample

batches Y⊆ Xand ϑ ⊆ Θ, the sequence (D[l])∞l=1 returned by psp.ccp converges

to a stationary limiting point set D[∞] for Ê,

(b) If X and Θ are compact, then for any initial point set D[0] ⊆ X, the sequence

(D[l])∞l=1 returned by psp.sccp converges a.s. to a stationary limiting point set

D[∞] for Eθ∼π.

For part (b), the compactness condition on X and Θ is necessary for the convergence of

stochastic MM algorithms [45]. In practice, this is not too restrictive, because a truncation

can always be performed on Xor Θ to capture probability sufficiently close to 1.

2.5.3 Algorithm running time

One computational bottleneck for psp.ccp and psp.sccp is the evaluation of the diag-

onal matrix Ωθ in Lemma 4, a step required for calculating the closed-form iterative map

Mi. Addressing this is particularly important for high-dimensions, because a brute-force
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evaluation of each entry in Ωθ requires O(2p) work, which is infeasible for even moderate

choices of p. Similar to the recursive component-by-component construction of POD-

weighted shifted lattice rules (see Section 5.6 of [16]), the following theorem provides a

recursive algorithm for efficiently computing Ωθ:

Theorem 15. The l-th diagonal of Ωθ can be computed as Ωθ,ll = θl
∑p

k=1 Γkr
(−l)
p,k−1. For

each l = 1, · · · , p, r(−l)
p,k−1 can be computed recursively by:

r
(−l)
s,k = θsr

(−l)
s−1,k−1 + r

(−l)
s−1,k, s ∈ [p] \ {l}, r

(−l)
l,k = r

(−l)
l−1,k, (2.25)

with initial values r(−l)
s,0 = 1 and r(−l)

s,k = 0, k > s.

The appeal of such a scheme is that each entry in Ωθ can now be computed in O(p2) work,

which is much faster than the O(2p) work in a brute-force evaluation. For finite-order

order weights, i.e., Γ|u| = 0, |u| > K for some K < p, this work can be further reduced

to O(Kp). Since our choice of order weights impose a quick factorial decay in |u| (see

Section 2.4.2), a simple truncation can satisfy this finite-order condition without sacrificing

much accuracy.

Using this procedure and assuming the subsample sizes N and R are independent of

point set size n or dimension p, the running time for each update of D[l] is O{n(np+Kp2)}.

Since this time grows quadratically in n and p, the proposed algorithm can efficiently gen-

erate high-quality solutions for point set sizes as large as 10,000 in dimensions as large as

200 within a matter of hours (for p ≤ 50, this can be reduced to a matter of minutes). While

this running time is quite fast from an optimization perspective, it is considerably slower

than number-theoretic QMC methods, which can generate millions of points in hundreds

of dimensions within a matter of seconds. The value of the proposed method is its ability

to generate optimal sampling points for any non-uniform distribution, with the flexibility

to adjust the desired level of PGOF.
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Figure 2.3: n = 25-point SPs and PSPs for the 2-d i.i.d. Beta(2, 4) distribution. Diagonals
show the marginal histograms of the point set and the true marginal densities, and off-
diagonals show the scatterplot of the point set and its density contour plot.

2.6 Simulations

We now demonstrate the advantages of PSPs over existing methods in several simulations.

This comparison is made in two parts: we first assess the PGOF of these point sets, then

evaluate their integration performance on several integrands with low-dimensional struc-

ture.

2.6.1 Visualization and metrics

For visualization, consider Figure 2.3, which plots the n = 25-point SPs and PSPs for the

2-d i.i.d. Beta(2, 4) distribution. We see that both SPs and PSPs provide excellent GOF in

the full 2-d space, which is not surprising. However, regarding PGOF, PSPs provide a near-

perfect representation of the marginal Beta(2, 4) distributions, whereas the corresponding

fit for SPs is quite poor. In applications where only one of the two dimensions is active,

PSPs can provide considerably improved performance over SPs.

To quantify this improvement, we compare the PGOF of the proposed point sets with

SPs, kernel herding, MC and the inverse-transform of a Sobol’ sequence [24, 25], a pop-
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Figure 2.4: Log-energy of the worst-case PGOF for various n = 50 point sets on the 20-d
i.i.d. N(0, 1) distribution. A close-up of the first seven and last seven dimensions is shown
on the right.

ular QMC method. For n = 50 point sets on the 20-d i.i.d. N(0, 1) distribution, Figure

2.4 shows the log of the energy distance (see Definition 7) for the worst-case fit over all

projected subspaces of dimension l, l = 1, · · · , 20. Two observations can be made from

these plots. First, both anisotropic and factorial PSPs provide a considerably better fit of

low-dimensional marginal distributions than existing methods. Specifically, PSPs enjoy a

lower log-energy to MC, Sobol’ points and herding points for all projected dimensions, and

offer an improvement to SPs for all subspace dimensions less than 11. Second, a trade-off

can be seen between SPs, factorial PSPs and anisotropic PSPs. On one end, SPs enjoy a

better fit for higher-dimensional marginal distributions than PSPs (see the right-hand plot

in Figure 2.4), which is not surprising because SPs focuses solely on the full 20-d dis-

tribution. On the other end, anisotropic PSPs enjoy improved fit on lower-dimensional

projections, which is again expected because the anisotropic order weights emphasize the

importance of one-dimensional marginals. Factorial PSPs provide an intermediate position

in this trade-off, and is therefore appropriate for integrands with moderate effect sparsity.
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2.6.2 Integration

We now investigate the integration performance of PSPs in comparison to SPs, Monte

Carlo, and the inverse-transform of randomly-shifted lattice rules (IT-RLR, using the CBC

construction in [22]), another popular QMC method. For the special case of F = U [0, 1]p,

IT-RLR enjoys a dimension-free convergence rate [16], and therefore provides a good

benchmark for PSPs. Three choices of F are considered: the i.i.d. N(0, 1), the i.i.d.

Exp(1) and the i.i.d. Beta(2, 4) distributions, with p ranging from 5 to 100. Two choices of

integrands are tested: the Gaussian peak function (GAPK, [54]): g(x) = exp {−
∑p

l=1 α
2
l (xl − ul)2}

and the additive Gaussian function (ADD): g(x) = exp {−
∑p

l=1 βlxl}, where ul is the

marginal mean for Fl. To account for low-dimensional structure, a proportion q of the p

dimensions is randomly chosen to be active, with αl and βl set as 0.1/(qp) and 0.01/(qp)

for active dimensions, and 0 otherwise. The corresponding integrands are abbreviated by

GAPK(q) and ADD(q), respectively.

Figure 2.5 plots the resulting log-absolute errors in p = 5, 20 and 50 dimensions for

the GAPK(0.2) and ADD(0.5) integrands under the i.i.d. Exp(1) distribution (results are

similar for other cases, and are omitted for brevity). We make two observations here. First,

both anisotropic and factorial PSPs provide reduced errors to SPs in most test cases, which

demonstrates the value in minimizing PGOF for problems with low-dimensional structure.

Second, both types of PSPs provide improvements over both MC and IT-RLR in nearly all

test cases, which shows its effectiveness over existing methods. Such results are not too

surprising given the improved PGOF for PSPs in Figure 2.4.

2.7 Applications

Next, we present two real-world applications for which PSPs can be employed as an effec-

tive data reduction technique. The first application involves the reduction of training data

for efficient kernel learning, and the second involves the reduction of MCMC sample data
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for efficient Bayesian computation.

2.7.1 Kernel ridge regression

In statistical learning, there has been a wealth of recent work on the topic of kernel methods.

As its name suggests, kernel methods make use of a kernel function k (typically non-linear)

to quantify similarities between data points; this then allows for effective, non-linear mod-

eling in both supervised and unsupervised learning problems (e.g., support vector machines

[85], kernel principal components analysis [Mea1998], and kernel ridge regression [86]).

LettingN be the number of data points in the training dataset, one key bottleneck for kernel

methods is that it can be very time-consuming to compute for large N . More specifically,

kernel methods require the computation of an N × N matrix inverse, which has a run-
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ning time of O(N3); for N > 5, 000, this becomes computationally infeasible to run on

most desktop computers. This problem is further compounded when training data is high-

dimensional (i.e., p � 1), since a larger sample size N is typically required for learning.

In this context, the proposed PSPs offer a solution to this dilemma, by reducing the large,

high-dimensional training dataset to retain low-dimensional structure for modeling.

We make use of a well-known machine learning dataset, the Million Song Dataset

(MSD; [34]), to illustrate the effectiveness of PSPs for this problem. MSD is an open-

source collection of audio features and metadata, extracted from a million contemporary

music tracks released in the years 1922 – 2011. We consider here a subset of this data from

the UCI Machine Learning Repository (515,345 songs), with N = 463, 715 songs used for

training and the remainder for testing (this training-testing split is recommended by the data

publishers). In total, p = 90 song features (continuous) are extracted, including the loud-

ness, pitch, and timbre of each song track. Here, the goal is to first fit a predictive model

using the training data, then use this to predict the release year (treated as continuous) for

a new song in the testing data.

To build this predictive model, we employ a kernel method called kernel ridge regres-

sion (KRR). Given (a) a kernel of choice k, and (b) training song features {fm}Nm=1 (inputs,

normalized to zero mean and unit variance) and release years {ym}Nm=1 (output, normalized

to zero mean and unit variance), KRR fits the following non-linear smoother ĥ:

ĥ← Argmin
h∈Hk

{
1

N

N∑
m=1

(ym − h(fm))2 + λ‖h‖2
Hk

}
, (2.26)

where Hk is the RKHS of kernel k with corresponding norm ‖ · ‖Hk . Here, the smoother

ĥ can be viewed as the non-linear function which best fits the training dataset, subject to a

regularization penalty λ‖h‖2
Hk

. Using this fitted function, one can then use ĥ(fnew) to pre-

dict the release year of a new song with features fnew. As typical in statistical regularization

problems, the penalty λ is tuned via cross-validation [86].
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Unfortunately, as mentioned previously, the computation of (2.26) requires the inverse

of the N × N matrix [k(fm, fm′)]
N
m=1

N

m′=1 (see [86] for details), which has a running time

of O(N3). Clearly, for MSD, the full fit (2.26) is computationally infeasible with N =

463, 715! To this end, let n� N , and consider the following reduced fit:

ĥ′ ← Argmin
h∈Hk

{
1

n

n∑
i=1

(y′i − h(f ′i))
2 + λ‖h‖2

Hk

}
, (2.27)

where T′ := {(f ′i , y′i)ni=1} is a reduced subset of the full training data T := {(fm, ym)Nm=1}.

Using (2.27), the computation time for ĝ′ reduces from O(N3) to O(n3). The goal then

is to judiciously select a good subset of the training data, so that the objective function

in (2.27) well-approximates that in (2.26). Letting F be the e.d.f. of the full training

data T, this is equivalent to finding a reduced dataset T′ ⊆ T with e.d.f. Fn such that

EX∼F [g(X)] ≈ EX∼Fn [g(X)], where g is the integrand:

g(f , y) = {y − h(f)}2. (2.28)

Moveover, it is highly unlikely that all p = 90 song features are useful for prediction, e.g.,

from intuition, song pitch (and certainty its interaction effects) should not be an important

predictor for release year. This suggests that the true input-output function h (and hence g)

is inherently low-dimensional. In this context, the PSPs of F (rounded to its closest point

in T) should provide a good choice for the reduced dataset T′ in (2.27).

Our set-up is as follows. We compare three different methods: (a) anisotropic PSPs on

F (rounded to its closest point in T), (b) herding points on F using the standard Gaus-

sian kernel (rounded to its closest point in T), and (c) random subsamples from T. All

three reduce the full training dataset T to n = 4, 000 points. These methods are then com-

pared on predictive performance on 250 randomly-chosen songs in the testing set, with this

randomization repeated 250 times to provide an measure of error variability.

Figure 2.6 plots the distribution of these prediction errors for the three methods. Two
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Figure 2.6: (Left) A visualization of the kernel ridge regression procedure for predicting
song release year. (Right) Distribution of prediction error for 250 songs in testing set.

observations are of interest here. First, we see that herding offers no reduction in prediction

error over random sampling. This is not too surprising, since we know from intuition that

the integrand g in (2.28) has low-dimensional structure. Such a structure is, however, not

accounted for in the kernel choice for herding, hence its comparable performance with ran-

dom sampling. Second, we see that PSPs provide noticeably better predictive performance

over both herding and random samping. This is again expected, because the kernel choice

for PSPs accounts for low-dimensional structure when performing data reduction.

Lastly, we compare the running time of these methods for both data reduction and KRR

computation in (2.27) (λ tuned via cross-validation), with the hypothetical running time of

the full KRR problem in (2.26) without data reduction. Random subsampling here is the

quickest method, requiring 1,583 seconds on a single-core processor (this corresponds to

only the KRR fit). Kernel herding and PSPs require 2,631 and 3,057 seconds of computa-

tion time, respectively (this increase in time is due to the data reduction step). To contrast,

the full KRR step in (2.26) (i.e., without data reduction) has a hypothetical running time

of 1, 583 · N3/n3 = 2.47 × 109 sec. (≈ 78.2 years!), and has a memory requirement

of O(N2) ≈ 1, 720 gigabytes; this problem is clearly infeasible on standard computing
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systems. Given time and memory constraints, our approach yields the best predictive per-

formance of all three data reduction methods.

2.7.2 MCMC thinning

Next, we present an important application of PSPs for reducing big data in Bayesian com-

putation. For Bayesian modeling, one learns the underlying parameters of interest by sim-

ulating from a posterior distribution, typically via MCMC sampling methods. In practice,

Bayesian practitioners perform a post-processing step called thinning – the discarding of

all-but-every k-th sample from the MCMC sample chain (call this {ym}Nm=1). Thinning is

done for three reasons [56]: it reduces high autocorrelations in the sample chain, lowers

the memory requirement for sample storage, and reduces the computation time for poste-

rior quantities of interest. One key weakness of thinning is that it is quite wasteful, since

valuable information from posterior samples is carelessly discarded. To this end, PSPs can

offer an improved alternative to thinning, by employing the full MCMC chain to find a good

representative point set. The proposed approach is particularly effective for large-scale

Bayesian modeling problems with many parameters, where (a) the sample chain {ym}Nm=1

is high-dimensional, but (b) posterior quantities of interest are typically computationally

expensive and depend on a small number of parameters.

To illustrate the effectiveness of PSPs, we consider a Bayesian modeling problem in-

volving a solid end milling process, a common cutting process for precise machining of

complicated parts in the aerospace industry. Figure 2.7 visualizes this process: a cutting

tool (in blue) applied at a force to the workpiece (in gray), then moved along the surface of

the workpiece along the blue direction lines, stripping away material as it passes. There are

six design inputs of interest: five for the cutting tool (rake angle, helix angle, relief angle,

corner radius, and flute length), and one for the workpiece material (hardness); Figure 2.8

(left) summarizes the desired design region. Figure 2.8 (right) shows, for several different

input settings, the peak tangential force over time (T = 3, 373 force values in total) – a key
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Figure 2.7: A visualization of the solid end milling procedure.

output response of the milling process. For a fixed input setting, this tangential force can

be obtained via computer simulations on the standard Production Module software from

Third Wave Systems1, with each run requiring a computation time of 2 minutes. The ex-

ploration of the full design space using solely computer simulations can therefore be quite

time-consuming; to this end, our goal is to build an efficient emulator for predicting peak

tangential force (as a function of time) for an unsimulated input setting.

We employ here a standard model for emulation (see [49]): for each slice of time, the

tangential force values are modeled using independent Gaussian process (GP) models with

time-varying correlation parameters. More specifically, for fixed time t, let Ft(c) be the

force observed at time t using input setting c ∈ R6. Our emulator model assumes:

ft(c) ∼ GP{ηt, σ2
t r(·, ·; τ t)}, Ft(c) ⊥ Ft′(c), t 6= t′. (2.29)

Here, ηt and σ2
t are the process mean and variance at time t, and τ t ∈ R6

+ are the length-

scale parameters for the squared-exponential correlation function r. Figure 2.9 shows a

visualization of this emulator model. With this in hand, suppose computer simulations are

1https://www.thirdwavesys.com/production-module/
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Figure 2.8: (Left) Design range of input variables for solid end milling. (Right) Peak
tangential force over time for different input settings.

Figure 2.9: A visualization of the GP emulation model over time.

conducted at input settings {cd}Dd=1, yielding observed forces over time {f1(cd), · · · , fT (cd)}Dd=1.

Using this data with fixed parameters Θt = {ηt, σ2
t , τ t}, the model in (2.29) offers the fol-

lowing closed-form predictor for tangential force at a new input setting cnew:

f̂t(cnew; Θt) = E{ft(cnew)|Data} = µt + rTt,newR−1
t (ft − µt), t = 1, · · · , T, (2.30)

where rt,new = [r(cnew, cd; τ t)]
D
d=1, Rt = [r(cd, cd′ ; τ t)]

D
d=1

D

d=1, and ft = [ft(cd)]
D
d=1. The

uncertainty in this predictor can also be quantified in closed-form:

Vt(cnew; Θt) = Var{ft(cnew)|Data} = σ2
t r
T
t,newR−1

t rt,new, t = 1, · · · , T. (2.31)
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A detailed derivation of these two equations can be found in [49].

Of course, in practice the parameters Θt are never known and require estimation. From

a Bayesian view, we are interested in the posterior means of these terms, namely EΘt|Data[f̂t(cnew)]

and EΘt|Data[Vt(cnew)]. Using posterior samples Θ
(1)
t , · · · ,Θ(N)

t ∼ [Θt|Data], these two

quantities can then be estimated via the sample averages:

1

N

N∑
m=1

f̂t(cnew; Θ
(m)
t ) and

1

N

N∑
m=1

Vt(cnew; Θ
(m)
t ), t = 1, · · · , T. (2.32)

The computational bottleneck is now apparent: every evaluation of the integrand in (2.32)

requires O(D3) work (for the matrix inverse), so the prediction and uncertainty quantifi-

cation (UQ) of tangential force at a new setting cnew needs O(NTD3) work. With many

time steps T and a moderately large design size D, the computation of (2.32) becomes

time-consuming even for a small number of posterior samples. In this context, the PSPs of

Θ
(1)
t , · · · ,Θ(N)

t can offer considerable reduction in computation time.

Our set-up is as follows. First, D = 30 computer simulations are conducted, with

input settings allocated using a MaxPro design [69]. Next, for each t = 1, · · · , T , we

sample N = 50, 000 MCMC samples from the posterior distribution [Θt|Data], and re-

duce this sample down to n = 1, 000 points. Finally, the new input setting cnew is chosen

as the center point of the design region in Figure 2.8 (left), and prediction / UQ is per-

formed via (2.32) using the reduced MCMC sample. As before, three reduction methods

are used: thinning, herding using the standard Gaussian kernel, and (anisotropic) PSPs.

The resulting tangential force predictions and UQ over time are then compared (in a mean-

squared, time-averaged sense) with the desired posterior quantities EΘt|Data[f̂t(cnew)] and

EΘt|Data[Vt(cnew)], which we estimate via a longer MCMC validation chain with 200,000

samples.

Table 2.1 summarizes the time-averaged errors for prediction and UQ for the three

data reduction methods. There are two observations of interest here. First, PSPs offer
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Thinning Herding PSPs
Prediction 0.073 0.080 0.068

UQ 0.214 1.680 0.201

Table 2.1: Mean-squared-time-averaged errors for prediction EΘt|Data[f̂t(cnew)] and UQ
EΘt|Data[Vt(cnew)] for the three MCMC reduction methods.

a noticeable improvement over random sampling, which is to be expected, since PSPs

make use of information from the full MCMC chain for data reduction. More interestingly,

herding performs significantly worse than thinning, for both prediction and UQ! This is

surprising to us at first, because one would expect the deterministic reduction from herding

to yield an improvement over thinning (which can be thought of as random sampling). From

an engineering perspective, one likely reason is that not all design inputs (and certainty

not all interactions effects) are influential for affecting tangential force output. Given this

context, our results show that PSPs (which accounts for this underlying low-dimensional

structure) provides more effective MCMC reduction than thinning, while herding (which

does not incorporate this structure) yields poorer reduction to thinning.

Lastly, we compare the running time of these methods for both data reduction and re-

sulting prediction / UQ via (2.32), with the running time of (2.32) without data reduction.

Similar to before, thinning is the quickest method, requiring 15,972 seconds (≈ 4.5 hours)

of computation time on a single-core processor (this corresponds to only the prediction and

UQ). Herding and PSPs require 18,576 and 20,192 seconds of computation time, respec-

tively (this increase in time is due to the data reduction step). To contrast, the prediction /

UQ in (2.32) using the full N = 50, 000 MCMC samples requires 798, 600 seconds (≈ 9.2

days). Note that this timing is only for predicting tangential force over time for one new

input setting; to predict for multiple input settings, the computation time of (2.32) using

the full MCMC sample would be infeasible. Given this computation constraint, PSPs offer

the best prediction and UQ performance of the three data reduction methods tested.
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2.8 Conclusion

In this chapter, a new type of point set called projected support points is introduced, which

provides excellent goodness-of-fit for a desired distribution F as well as its marginal dis-

tributions. Using the generalized Gaussian kernel discrepancy, a theoretical framework is

provided for PSPs, connecting the desired idea of projected goodness-of-fit with key prin-

ciples in experimental design and the notion of a dimension-free error rate in QMC. The

idea of a projection kernel is then motivated by assigning a specific prior on kernel scale

parameters, through which an interesting link is revealed between PSPs and the maximum

projection designs in [69]. The two algorithms psp.ccp and psp.sccp are proposed,

both exploiting a recursive structure in product-and-order weights to efficiently generate

PSPs. The effectiveness of PSPs for integration is then demonstrated using numerical sim-

ulations and two data reduction applications for kernel learning and MCMC reduction.

While the results and connections presented here are quite interesting, there are still

many avenues for future work. First, although the function space Hγ,θ provides valuable

insight on effect sparsity, hierarchy and heredity, it is of interest to us to expand this connec-

tion to a larger family of integrands. Second, given that psp.ccp and psp.sccp have

a running time of O{n(np + Kp2)}, the generation of large point sets in high-dimensions

can be computationally burdensome. Since both proposed algorithms rely on subsampling

from F , incorporating an additional layer of subsampling for the underlying kernel k (fol-

lowing the doubly-stochastic approach in [87]) may provide a quicker algorithm, and we

look forward to studying this further. Finally, it will be useful to explore an adaptive sam-

pling method which incorporates the posterior updating of θ to learn which dimensions are

active in a high-dimensional integrand.

64



CHAPTER 3

CMENET – A NEW METHOD FOR BI-LEVEL VARIABLE SELECTION OF

CONDITIONAL MAIN EFFECTS

3.1 Introduction

This chapter proposes a new method for selecting main effects (MEs) and a set of reparametrized

effects called conditional main effects (CMEs) from observational data. A CME can be de-

scribed as follows. Let A and B denote two binary factors with levels + and −. The CME

A|B+ is then defined as the effect A when effect B is at the + level, and 0 when B is at

the − level. In words, such an effect quantifies the influence of A only when B is at the

level +. The CME A|B− can be defined analogously.

The appeal for CMEs as basis functions for variable selection comes from its inter-

pretability in a wide range of applications, including genomics and the social sciences.

For example, in gene association studies, where the goal is to identify important genetic

contributions for a trait or disease, the CME A|B+ quantifies the significance of gene A

only when gene B is present. Such conditional effects are biologically interpretable and

meaningful, as noted in [88]: “[the examination] of how one mutation behaves when in the

presence of a second mutation forms the basis of our understanding of genetic interactions,

and is part of the fundamental toolbox of genetic analysis.” Viewed this way, the selection

of CMEs can therefore serve as an effective tool for investigating the activation and inhibi-

tion behavior of gene-gene interactions, namely, which genes are conditionally active, and

which are important in activating or inhibiting other genes. CMEs also arise naturally in

many engineering applications. For example, in an injection molding experiment with two

The paper based on this chapter will appear in Journal of the American Statistical Association.
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settings for mold temperature A and holding pressure B (pg. 352 of [89]), the CME A|B+

measures the effectiveness of mold temperature only at a high level of holding pressure.

This conditional effect may be a result of material properties for the molding liquid, and

the discovery of such effects can provide valuable insight on the injection process.

The idea of CMEs was first introduced in [90] as a way to disentangle effects which are

fully-aliased (i.e., perfectly correlated) in a designed experiment. Ever since the pioneer-

ing work of [91], it has been widely accepted in the design community that fully-aliased

effects in a regular, two-level design cannot be “de-aliased” without adding more exper-

imental runs. Such a belief was shown to be false in [90], where the author employed a

reparametrization of these fully-aliased effects into CMEs, and allowed for the selection of

the resulting conditional effects. A variable selection method for designed experiments is

further developed in [92], making use of the natural groupings of CMEs into so-called twin,

sibling and family effects. In this chapter, we generalize this CME selection framework to

observational data, by exploiting the implicit structure of CMEs to form new effect groups

and to motivate a novel penalized selection criterion.

For penalized variable selection methods, the usual procedure for two-level factors is

to first normalize each factor to zero mean and unit variance [93]. Treating these rescaled

factors as continuous variables, standard variable selection techniques using the l1-penalty

in LASSO [93] or non-convex penalties (e.g., [94, 95, 96]) can then be used to identify

significant effects. For the problem at hand, however, such methods are inappropriate,

because they do not account for the implicit group structure present in CMEs. Grouped

selection techniques, such as the group LASSO [97] or the overlapping group LASSO

[98], are also not suitable here, because such methods select all effects from an active

group, whereas only a handful of effects may be active within a CME group.

In this light, a bi-level selection strategy is needed to select both active CME groups and

active effects within CME groups. In recent years, there have been important developments

on bi-level variable selection, including the sparse group LASSO [99, 49] and the group
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exponential LASSO [100, 101]. We extend the latter framework here, because it allows us

to encode within the penalization criterion two important selection principles called CME

coupling and CME reduction. These two principles guide the search for good CME models,

and can be seen as an extension of effect heredity and effect hierarchy [68], two guiding

principles used for model selection in designed experiments.

The chapter is organized as follows. Section 2 provides some motivation for the prob-

lem at hand, including the implicit collinearity structure of CME groups and its effect

on selection inconsistency. Section 3 proposes a new penalization criterion for CME selec-

tion, and illustrates two appealing selection principles (CME coupling and CME reduction)

encoded within this criterion. Section 4 introduces a coordinate descent optimization al-

gorithm using threshold operators, and presents an efficient tuning procedure for penalty

parameters. Section 5 outlines several simulations comparing the CME selection perfor-

mance of cmenet to existing variable selection methods. Section 6 then demonstrates the

usefulness of the proposed method in a gene association study, and Section 7 concludes

with directions for future research.

3.2 Background and motivation

3.2.1 CME and CME groups

We first define some notation. Let y ∈ Rn be a vector of n observations, and suppose p

main effects are considered. For effect J , let x̃j = (x1,j, · · · , xn,j) ∈ {−1,+1}n be its

binary covariate vector, j = 1, · · · , p. The tilde on x̃j distinguishes the binary covariate

from its normalized analogue xj , which is introduced later. A CME can then be defined as

follows:

Definition 12 (Conditional main effect). The conditional main effect (CME) of J given K

at level +, denoted as J |K+, quantifies the effect of covariate vector x̃j|k+ = (x̃1,j|k+, · · · , x̃n,j|k+),
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Table 3.1: Model matrix for the two MEs A and B, and its four CMEs.

A B A|B+ A|B− B|A+ B|A−
+1 +1 +1 0 +1 0
+1 -1 0 +1 -1 0
-1 +1 -1 0 0 +1
-1 -1 0 -1 0 -1

where:

x̃i,j|k+ =


x̃i,j, if x̃i,k = +1

0, if x̃i,k = −1

, for i = 1, · · · , n.

The CME J |K− can be defined in a similar manner.

Throughout this chapter, the effects J andK are respectively referred to as the parent effect

and the conditioned effect of J |K+. Using this terminology, J |K+ quantifies the effect of

parent J , given its conditioned effect K is at level +. For illustration, Table 3.1 shows the

four possible CMEs constructed from two main effects A and B.

Restricted to two-level, fractional factorial designed experiments, [92] identified three

important CME groups for selecting an orthogonal model, in which active effects are or-

thogonal to each other. These three groups are: (a) sibling CMEs: CMEs with the same

parent effect, (b) twin CMEs: CME pairs with the same parent and conditioned effect, but

with the sign for the latter flipped, (c) family CMEs: CMEs with fully-aliased interaction

effects. Leveraging this group structure, [92] proposed three rules for selecting a parsimo-

nious and orthogonal model. Rule 1 (the most important selection rule) relies on the two

simple mathematical identities:

x̃j|k+ =
1

2
(x̃j + x̃j∗k) and x̃j|k− =

1

2
(x̃j − x̃j∗k) . (3.1)

Here, x̃j∗k = x̃j ◦ x̃k is the covariate vector for the traditional two-factor interaction (2FI)

J ∗ K, where ◦ is the Hadamard (entry-wise) product. From (3.1), the CME J |K+ can

then be viewed as an average of the main effect for J and the interaction effect for J ∗K; a
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similar interpretation holds for the CME J |K−. Motivated by this interpretation, Rule 1 of

[92] replaces a selected ME J and 2FI J ∗K with either (a) the CME J |K+, if the signs for

J and J ∗K are identical and their effect magnitudes are similar, or (b) the CME J |K−, if

the signs for J and J ∗K are different and their effect magnitudes are similar. Such a rule

(along with Rules 2 and 3) allows for the disentangling of fully-aliased interaction effects

in a designed experiment.

The above CME groupings, however, are not suitable for analyzing observational data,

because an orthogonal model is most likely not attainable for this more general setting.

Instead, by exploring the correlation structure of CMEs, the following new groupings can

be derived:

1. Sibling CMEs: CMEs which share the same parent effect, e.g., {A|B+, A|B−, A|C+,

A|C−, A|D+, A|D−, · · · }. This is the same as in [92].

2. Parent-child pairs: An effect pair consisting of a CME and its parent ME, e.g.,

{A|B+, A}, {A|C+, A}, · · · .

3. Cousin CMEs1: CMEs which share the same conditioned effect, e.g., {B|A+, B|A−,

C|A+, C|A−, D|A+, D|A−, · · · }.

We first outline the justification for these groups in terms of collinearity, then discuss why

such groupings are appealing from a selection consistency perspective.

3.2.2 Group structure for collinearity

To explore the group structure of CMEs, consider the following latent model for the main

effects {x̃j}pj=1 ⊆ {−1,+1}n. Define the latent matrix Z = (zi,j)
n
i=1

p
j=1 ∈ Rn×p, where

each row of Z is drawn independently from the equicorrelated normal distribution N{0, ρJp+
1From a purely linguistic point-of-view, these effects are not cousins, because their parent effects are

unrelated. However, the notion of cousin nicely encapsulates a weaker form of a sibling relationship, which
is the intended meaning here.
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Figure 3.1: Pairwise correlations within the four effect groups as a function of latent corre-
lation ρ.

(1−ρ)Ip}. Here, Ip is the p×p identity matrix, Jp is the p×pmatrix of ones, and ρ ∈ [0, 1].

We then assume the following form for the binary covariates {x̃j}pj=1:

x̃i,j = 1{zi,j > 0} − 1{zi,j ≤ 0}, i = 1, · · · , n, j = 1, · · · , p. (3.2)

Note that a larger value of ρ induces a higher correlation between the binary main effects.

Without loss of generality, assume here that the conditioned effects are set at the + level

for all CMEs. With the above model, the following theorem reveals an interesting group

structure for CMEs. For brevity, proofs of all technical results are deferred to the Appendix.

Theorem 16 (Pairwise correlation within groups). Under the latent model (3.2) for main

effects, the four effect groups have the following pairwise correlations:

Group Pairwise correlation Group Pairwise correlation

Main effects 2 sin−1 ρ
π Parent-child 1

2σc

Siblings 1
σ2
c

{
1
4 + sin−1 ρ

2π −
(

sin−1 ρ
π

)2
}

Cousins 1
σ2
c

{
sin−1 ρ
π −

(
sin−1 ρ
π

)2
}

where σ2
c = 1/2− (sin−1 ρ/π)2.

Figure 3.1 plots the pairwise correlations in Theorem 16 as a function of the latent

correlation parameter ρ. Two key observations can be made. First, the magnitudes of these

correlations impose a natural hierarchy on the effect groups. For all values of ρ ∈ (0, 1),
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parent-child pairs have the largest correlations, followed by sibling pairs, then main effect

and cousin pairs. Second, the correlation group structure can vary considerably for different

choices of ρ. In the independent setting of ρ = 0, sibling and parent-child pairs exhibit high

correlations of 0.5 and 1/
√

2 (≈ 0.71), respectively, whereas the remaining two groups

have zero correlation. For moderately large choices of ρ, say, ρ = 1/
√

2 (≈ 0.71), these

correlations become larger and more distinct between different groups, thereby amplifying

the underlying CME group structure.

In light of this complex collinearity structure, one may suspect that standard variable

selection techniques, such as the LASSO, would perform poorly for CME selection, be-

cause such methods impose the same regularization penalty over all variables, and ignore

the implicit grouped correlation structure. This is indeed the case, and we demonstrate its

poor selection performance in the following section and in the simulations of Section 3.5.

3.2.3 Selection inconsistency

An important property of a selection method is its consistency in choosing the correct

model. Put mathematically, a method is (sign-)selection consistent if limn→∞ P(β̂n =s

β) = 1, where β ∈ Rp is the true coefficient vector, β̂n is the estimated vector from

n observations, and =s denotes equality in sign (see [102] for a precise definition). The

following theorem shows that LASSO is indeed inconsistent for simple CME models:

Theorem 17 (Selection inconsistency of LASSO). Under the latent model (3.2), the LASSO

is selection inconsistent in the following situations: (a) for ρ ≥ 0, a model with q ≥ 3 ac-

tive siblings, (b) for ρ ≥ 0.27, a model with q = 2 active main effects, and (c) for ρ ≥ 0.29,

a model with q ≥ 6 active cousins.

Theorem 17 demonstrates the poor selection of LASSO for simple CME models, even when

little-to-no latent correlation is present. Part (a) says that, even in the uncorrelated setting of

ρ = 0, LASSO yields poor selection whenever three (or more) siblings are present; part (b)

says that, for mild correlations as low as 0.27, the same poor selection arises for two active
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MEs; part (c) says that, for correlations lower than 0.29, LASSO enjoys good selection

even when many cousins (up to 5) are active – this is not too surprising, because cousins

experience the lowest pairwise correlations of the four groups. The proof of this theorem

relies on the irrepresentability condition [102], which shows that the LASSO is selection

inconsistent when active variables are highly correlated with non-active ones.

3.3 cmenet: Penalization framework

To address these selection concerns, we propose a novel bi-level variable selection method

called cmenet, which can identify both active CME groups and active effects within such

groups. Similar to popular selection methods such as the elastic net [103] and SparseNet

[104], the name cmenet draws an analogy between the proposed method’s ability to se-

lect active variables amongst non-active ones, and a fishing net’s ability to catch larger fish

amongst smaller ones. The penalization scheme for cmenet encodes two important prin-

ciples, called CME coupling and CME reduction, which, as we show in this section, help

guide the selection procedure for CMEs.

3.3.1 Selection criterion

We first introduce the selection criterion. Let xj ∈ Rn be the normalized vector for the

binary main effect covariate x̃j , with xTj 1n = 0 and n−1‖xj‖2
2 = 1, along with a similar

notation for CME covariates. Further let X = (x1, · · · ,xp′) ∈ Rn×p′ be the full model

matrix consisting of these normalized ME and CME effects, where p′ = p + 4
(
p
2

)
is the

total number of effects considered. For simplicity, assume all considered effects are MEs

and CMEs for the following exposition; Section 3.4.1 gives a simple extension for selecting

these effects along with other covariate factors. Let β ∈ Rp′ be the coefficient vector, with

βj and βj|k+ its corresponding coefficients for ME J and CME J |K+. Finally, assume that

y is centered, i.e., yT1n = 0.

For effect groups, define S(j) = {J, J |A+, J |A−, J |B+, J |B−, · · · } as the sibling
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group for parent effect j, and C(j) = {J,A|J+, A|J−, B|J+, B|J−, · · · } as the cousin

group for conditioned effect j, j = 1, · · · , p. We propose the following selection criterion,

which can be viewed as an extension of the hierarchical framework in [100]:

min
β
Q(β) ≡ min

β

{
1

2n
‖y −Xβ‖2

2 + PS(β) + PC(β)

}
,

PS(β) ≡
p∑
j=1

fo,S

 ∑
k∈S(j)

fi,S (βk)

 , PC(β) ≡
p∑
j=1

fo,C

 ∑
k∈C(j)

fi,C (βk)

 .

(3.3)

Here, fo,S and fi,S (similarly, fo,C and fi,C) are outer and inner penalties which control the

between-group and within-group selection for sibling (similarly, cousin) groups, respec-

tively. While the specific penalty functions are left arbitrary in (3.3), we will introduce

cmenet for the specific choice of the exponential penalty in [101] for outer penalty, and

the (scaled) minimax concave-plus penalty (MC+) in [96] for inner penalty:

Outer: fo,S(θ) = ηλs,τ (θ), fo,C(θ) = ηλc,τ (θ), where ηλ,τ (θ) =
λ2

τ

{
1− exp

(
−τθ
λ

)}
,

Inner: fi,S(β) = gλs,γ(β), fi,C(β) = gλc,γ(β), where gλ,γ(β) =

∫ |β|
0

(
1− x

λγ

)
+

dx.

(3.4)

This inner penalty is a scaled version of the MC+ penalty λgλ,γ(β) in [96] without the

scaling factor λ; such a factor is accounted for in the outer exponential penalty ηλ,τ (θ).

The appeal for the “exponential-MC+” framework in (3.4) is that it provides a concise

parametrization of the grouped collinearity structure in Section 3.2. First, the penalty pa-

rameters λs > 0 and λc > 0 allow for differing regularization within sibling and cousin

groups, respectively, with larger penalty values reducing the number of selected effects

in each group. Assuming such parameters are tuned via cross-validation, a smaller tuned

value of λs suggests many sibling effects are present in the data, while a smaller λc sug-

gests the same for cousin effects. Second, the parameter γ > 1 controls the non-convexity

of the inner MC+ penalty, and provides a “bridge” between the l0-penalty (obtained when
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γ → 1+) and the l1-penalty in LASSO (obtained when γ → ∞). In view of the selection

problems for LASSO (see Theorem 17), such a parameter allows for improved selection of

the highly correlated CMEs, say, within a sibling group. Lastly, the parameter τ provides

two appealing principles called CME coupling and reduction, which we introduce below.

3.3.2 CME coupling and reduction

Consider first a CME J |K+ which has yet to be selected, and assume without loss of

generality that xTj|k+(y−Xβ)/n > 0. Taking the derivative of Q(β) with respect to βj|k+,

and setting βj|k+ = 0 (as J |K+ is not in the model), we get:

∂

∂βj|k+

Q(β)
∣∣∣
βj|k+=0

= − 1

n
xTj|k+(y −Xβ) + ∆S(j) + ∆C(k),

where ∆S(j) = λs exp

{
−
τ‖βS(j)‖λs,γ

λs

}
and ∆C(k) = λc exp

{
−
τ‖βC(k)‖λc,γ

λc

}
.

(3.5)

Here, βg ∈ R|g| denotes the coefficient vector for an effect subset g ⊆ {1, · · · , p′}, and

‖βg‖λ,γ ≡
∑

l∈g gλ,γ(βl) denotes its “norm” under the inner MC+ penalty. (For complete-

ness, a full derivation of the subgradient for Q(β) – which is quite technical and requires

several applications of the chain rule – is found in equation (C.4) of the Appendix.)

Equation (3.5) reveals an appealing selection property of cmenet called CME cou-

pling, which we describe below. Note that, when more effects have been selected in the

sibling group S(j) (or cousin group C(k)), the effect norms ‖βS(j)‖ (or ‖βC(k)‖) become

larger. This then results in a smaller linearized slope ∆S(j) (or ∆C(k)), which generates a

decrease in the derivative ∂
∂βj|k+

Q(β) in (3.5). Since the goal is to minimize the selection

criterion Q(β), a smaller derivative allows for greater decrease in Q(β) when βj|k+ enters

the model. In other words, the CME J |K+ has a greater chance of entering the model

when other effects in its sibling group S(j) or its cousin group C(k) have already been

selected; the selection of sibling or cousin effects can couple in the selection of the CME
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J |K+. We call this property CME coupling, following the idea of effect coupling in [101].

Consider next a ME J which has yet to be selected, and assume again that xTj (y −

Xβ)/n > 0. Taking the derivative of Q(β) with respect to βj , and setting βj = 0 (as J is

not in the model), we get:

∂

∂βj
Q(β)

∣∣∣
βj=0

= − 1

n
xTj (y −Xβ) + ∆S(j) + ∆C(j). (3.6)

The interpretation of equation (3.6) is similar to that for (3.5). When more effects have

already been selected in the sibling group S(j) (or the cousin group C(j)), the linearized

slopes ∆S(j) (or ∆C(j)) become smaller, which then decreases the derivative ∂
∂βj
Q(β) in

(3.6). Hence, the ME J enters the model more easily when effects in its sibling group S(j)

or its cousin group C(j) have already been selected; the selection of many sibling or cousin

effects can then reduce to its underlying main effect. We refer to this phenomenon as CME

reduction.

The notions of CME coupling and reduction are quite intuitive to expect in many CME

applications. Consider the gene expression example in the Introduction, where the selec-

tion of the CME A|B+ indicates the effectiveness of gene A only when gene B is present.

When several sibling CMEs of A, say, A|B+ and A|C+, are already selected in the model,

one naturally expects gene A to be conditionally active under more genes as well. In other

words, conditional effects with parent A are more likely to be active compared to condi-

tional effects with no selected siblings – this is precisely the principle of CME coupling.

However, when many sibling effects of geneA have already been selected, one may suspect

that the underlying parent effect for gene A is active instead of these selected siblings – this

is precisely the principle of CME reduction. A similar intuition holds for cousin effects.

An interesting parallel can also be made connecting CME coupling and reduction with

the two guiding principles for model selection in designed experiments [68]. The first

principle, called (weak) effect heredity, states that higher-order interactions can be selected
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only when either of its parent main effects are in the model. This idea is quite similar

to CME coupling, which allows for easier selection of a CME when effects with either

the same parent or conditioned ME have been selected. Furthermore, note that a CME

can be interpreted as a component of an interaction effect, because the difference of the

two CMEs A|B+ and A|B− is precisely the two-factor interaction A ∗ B [92]. Coupling

can therefore be seen as an extension of effect heredity, after breaking an interaction effect

(which is often difficult to interpret) into more interpretable conditional effects. The second

principle, called effect hierarchy, states that lower-order interactions are more likely active

than higher-order ones. This is akin to CME reduction, which encourages the reduction of

selected sibling (or cousin) CMEs to its parent (conditioned) effect when too many siblings

(cousins) are in the model.

3.4 cmenet: Optimization framework

With the proposed penalty Q(β) in hand, we now present an optimization framework for

cmenet in three parts. We first introduce the optimization algorithm for minimizingQ(β),

then describe several computational techniques for tuning penalty parameters, and finally

conclude with several novel CME screening rules for speeding up the tuning procedure.

3.4.1 Optimization algorithm

Coordinate descent and threshold operators

We first develop the algorithmic framework for minimizing the selection criterion Q(β).

A key tool in this optimization algorithm is coordinate descent, which can be explained as

follows. Viewing Q(β) as a function of only the first coefficient β1 (call this Q1(β1)), we

first update β1 as the minimizer of Q1(·), keeping the remaining p′ − 1 coefficients fixed.

The same procedure is then applied cyclically over β2, · · · , βp′ , and repeated until the full

coefficient vector β converges. In recent years, coordinate descent has become widely

used in the variable selection literature (see, e.g., [105, 106, 107]), due to its simplicity and
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efficiency for high-dimensional problems. The key to efficiency lies in the existence of a

closed-form minimizer for the coordinate-wise objective Qj(·), also known as a threshold

function from signal processing [108]. We derive below such a threshold function forQ(β).

Before delving into details, we first investigate the convexity properties of Q(β):

Proposition 3 (Strict convexity). Q(β) is strictly convex whenever τ+1/γ < λmin(XTX)/(2n),

where λmin(·) returns the minimum eigenvalue. Also, assuming each column xj of X is nor-

malized (i.e., xTj 1 = 0 and n−1‖xj‖2
2 = 1 for any j = 1, · · · , p′), it follows that Qj(βj) is

strictly convex for any j = 1, · · · , p′, whenever τ + 1/γ < 1/2.

In words, this shows that a sufficiently small choice of τ + 1/γ is needed to ensure some

form of convexity for the objective Q(β). The first part of this proposition shows a unique

global minimum exists for Q(β) when τ + 1/γ < λmin(XTX)/(2n). Such a result is

quite restrictive, because it applies only to the low-dimensional setting of n ≤ p′, where

λmin(XTX) is strictly positive. The second part guarantees the coordinate-wise objective

Qj(βj) is strictly convex whenever τ + 1/γ < 1/2, a result which holds in the high-

dimensional setting of n > p′. This coordinate-wise convexity is important for deriving the

threshold function below.

For a main effect J , consider now its coordinate-wise minimization:

min
βj

Qj(βj) = min
βj

[
1

2n
‖r−j − xjβj‖2

2 + ηλs,τ
{
‖βS(j)‖λs,γ

}
+ ηλc,τ

{
‖βC(j)‖λc,γ

}]
,

(3.7)

where r−j = y−Xβ + xjβj is the residual vector fitted without xj . Similarly, for a CME

J |K+, its coordinate-wise minimization becomes:

min
βj|k+

Qj|k+(βj|k+) = min
βj|k+

[
1

2n
‖r−(j|k+) − xj|k+βj|k+‖2

2 + ηλs,τ
{
‖βS(j)‖λs,γ

}
+ ηλc,τ

{
‖βC(k)‖λc,γ

}]
.

(3.8)

An optimization technique called majorization-minimization (MM, see Chapter 12 of [109])

can now be used to derive a threshold function. The main idea of MM is as follows. In-
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Figure 3.2: (1st and 2nd plots) A comparison of the baseline threshold function Sλ1,λ2

(baseline setting: (λ1, λ2, γ, τ) = (1, 0.5, 3, 0.05) with no selected group effects) with soft-
, hard- and MC+ thresholding. (3rd plot) A comparison of the baseline threshold function
with two new settings (1.5, 0.75, 3.0.05) and (1, 0.5, 4.5, 0.05), all with no selected group
effects. (Last) A comparison of the baseline threshold with two new settings (1, 0.5, 3, 0.05)
and (1, 0.5, 3, 0.25), the latter with grouped norms ‖βg‖λ1,γ = ‖βg‖λ2,γ = 5.

stead of minimizing the original objective function, one first obtains a majorizing surrogate

function which lies above the desired objective. This surrogate is then minimized in place

of the original objective. Under certain conditions, the solution iterates generated by re-

peating this procedure converge to a minimizer for the original problem [109]. For Qj and

Qj|k+, a simple first-order expansion yields a nice majorizing surrogate function which can

be minimized in closed form, as the following theorem demonstrates:

Theorem 18 (Threshold function). Suppose τ + 1/γ < 1/2. For fixed β̃ ∈ Rp′ , define

Q̄j(·|β̃) and Q̄j|k+(·|β̃) as:

Q̄j(βj|β̃) =
1

2n
‖r−j − xjβj‖2

2 + ηλs,τ

{
‖β̃S(j)‖λs,γ

}
+ ηλc,τ

{
‖β̃C(j)‖λc,γ

}
+ ∆̃S(j)

{
gλs,γ(βj)− gλs,γ(β̃j)

}
+ ∆̃C(j)

{
gλc,γ(βj)− gλc,γ(β̃j)

}
, and

Q̄j|k+(βj|k+|β̃) =
1

2n
‖r−(j|k+) − xj|k+βj|k+‖2

2 + ηλs,τ

{
‖β̃S(j)‖λs,γ

}
+ ηλc,τ

{
‖β̃C(k)‖λc,γ

}
+ ∆̃S(j)

{
gλs,γ(βj|k+)− gλs,γ(β̃j|k+)

}
+ ∆̃C(k)

{
gλc,γ(βj|k+)− gλc,γ(β̃j|k+)

}
,

where ·̃ indicates the quantity is computed with β̃ instead of β. Then:

(a) Q̄j(·|β̃) and Q̄j|k+(·|β̃) are majorization functions for Qj(·) and Qj|k+(·), respec-

tively,
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(b) The unique minimizers of Q̄j(·|β̃) and Q̄j|k+(·|β̃) are given by Sλs,λc(xTj r−j/n; ∆̃S(j), ∆̃C(j))

and Sλs,λc(xTj|k+r−j|k+/n; ∆̃S(j), ∆̃C(k)), respectively. Here, Sλ1,λ2(·; ∆1,∆2) is the

threshold function:

Sλ1,λ2(z; ∆1,∆2) =



z if z ∈ [λ(1)γ,∞),

sgn(z)
(
|z| −∆(1)

)
/

(
1−

∆(1)

λ(1)γ

)
if z ∈

[
λ(2)γ + ∆(1)

(
1−

λ(2)

λ(1)

)
, λ(1)γ

)
,

sgn(z)
(
|z| −∆(1) −∆(2)

)
/

(
1−

∆(1)

λ(1)γ
−

∆(2)

λ(2)γ

)
if z ∈

[
∆(1) + ∆(2), λ(2)γ + ∆(1)

(
1−

λ(2)

λ(1)

))
,

0, otherwise.

(3.9)

where λ(1) = max(λ1, λ2) and λ(2) = min(λ1, λ2), with ∆(1) and ∆(2) its corresponding

slopes.

To better understand the shrinkage behavior of this new threshold function, the left two

plots in Figure 3.2 show a baseline setting of the cmenet threshold Sλ1,λ2(z; ∆1,∆2),

compared with the soft-threshold function (corresponding to the shrinkage operator in

LASSO), the hard-threshold function (corresponding to best-subset selection; see [86]),

and the MC+ threshold function [107]. The baseline setting for the proposed threshold

Sλ1,λ2(z; ∆1,∆2) is set as (λ1, λ2, γ, τ) = (1, 0.5, 3, 0.05), with ‖βg‖λ1,γ = ‖βg‖λ2,γ = 0

(i.e., no selected grouped effects). We see that the proposed threshold function is contin-

uous and piecewise linear in four segments. Beginning from the left, the first segment is

a horizontal line at zero, and represents the inner-product values for which a coefficient

is shrunk to zero after thresholding. The last segment, which matches the identity line,

represents the values for which the full coefficient signal is retained without any shrink-

age. The middle two segments provide a two-step transition between these two extremes,

with slopes controlled by the sibling and cousin penalties. Similar to the MC+ threshold,

the cmenet threshold bridges the gap between the two extremes of full shrinkage and no
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Algorithm 5 cmenet: An algorithm for bi-level CME selection
1: function CMENET(X,y, λs, λc, γ, τ,β = 0p′) . Assume columns of X are normalized
• Initialize r← y − ȳ, ∆S(j) = λs, ∆C(j) = λc for j = 1, · · · , p

2: repeat
3: for j = 1, · · · , p do . For all main effects...
• β0 ← βj , βj ← Sλs,λc{xTj r/n+ β0; ∆S(j),∆C(j)} . Shrinkage
• r← r + xj(β0 − βj) . Update residual
• ∆S(j) ← ∆S(j) exp{−τ/λs [gλs,γ(βj)− gλs,γ(β0)]} . Update slopes
• ∆C(j) ← ∆C(j) exp{−τ/λc [gλc,γ(βj)− gλc,γ(β0)]}

4: for j = 1, · · · , p and k = 1, · · · , p do . For all CMEs (both J |K+ and
J |K−) ...
• β0 ← βj|k+, βj|k+ ← Sλs,λc{xTj|k+r/n+ β0; ∆S(j),∆C(k)} . Shrinkage
• r← r + xj|k+(β0 − βj|k+) . Update residual
• ∆S(j) ← ∆S(j) exp{−τ/λs

[
gλs,γ(βj|k+)− gλs,γ(β0)

]
} . Update slopes

• ∆C(k) ← ∆C(k) exp{−τ/λc
[
gλc,γ(βj|k+)− gλc,γ(β0)

]
}

5: until β converges
6: return the converged coefficient vector β

shrinkage; however, the former threshold accomplishes this transition in one step, while

the latter achieves this in two steps. This two-step transition for cmenet is a consequence

of the two-tiered coupling effect from sibling and cousin groups.

Consider next the right two plots of Figure 3.2, which investigate the sensitivity of the

proposed threshold Sλ1,λ2(z; ∆1,∆2) to changes in penalty parameters. From the first plot,

an increase in λ1, λ2 or γ appears to yield greater shrinkage of the coefficient signal. This is

expected, because a larger choices of λ1 and λ2 induce greater regularization, and a larger

γ generates a “more convex” penalty (see [107]). From the second plot, an increase in the

coupling parameter τ in the presence of selected group effects appears to greatly reduce

signal shrinkage. This observation nicely demonstrates the earlier CME coupling principle

in Section 3.3.2, where the selection of sibling or cousin effects increases the chances of a

CME entering the model.
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Algorithm statement

Putting all the pieces together, Algorithm 5 summarizes the detailed steps for cmenet,

which minimizes the selection criterion Q(β) given fixed parameters λs, λc, γ and τ . Start-

ing with an initial solution of β = 0p′ , the threshold function in (3.9) is applied cyclically

over each element in β. This iterative procedure is then repeated until β converges. Using

the majorization function in Theorem 18, one can prove the convergence of cmenet to a

stationary solution.

Corollary 2 (Convergence of cmenet). When τ + 1/γ < 1/2, cmenet converges to a

stationary solution β̂ satisfying∇Q(β̂) = 0.

As for its running time, one can show that one coordinate descent cycle in cmenet over all

p′ ME and CME coefficients requires O(np′) work, because each coordinate descent step

requires O(n) work. The linear running time in both sample size n and total effects p′ is

crucial for the computational efficiency of cmenet, particularly when a large number of

main effects p� 1 is considered.

We mention here several extensions for cmenet. First, while Algorithm 5 considers

only the selection and estimation of CMEs, the proposed algorithm can easily be extended

for the selection of both CMEs and other covariate factors (whether continuous or discrete).

For example, if the l1-penalty were imposed on these latter factors, one can simply modify

the coordinate descent loop in Algorithm 5 by incorporating soft-threshold updates [108] to

the coefficients of such factors. The algorithmic convergence for this extension is analogous

to Corollary 2, and is not included for brevity. Second, we note that cmenet, as stated in

Algorithm 5, is suitable for selecting binary CMEs – CMEs which quantify the effect of

a binary factor at fixed levels of another factor, but not continuous CMEs – CMEs which

quantify the effect of a continuous factor at fixed levels of another factor. One way to

extend cmenet for the latter problem is to first (a) discretize the underlying continuous

factor into two levels, then (b) perform cmenet on the resulting binary CMEs, and finally
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(c) quantify the continuous component of these continuous CMEs using the residuals from

cmenet as a new response vector. However, this extension requires further developments,

and given the length of the current chapter, we defer such an extension to future work.

3.4.2 Parameter tuning, warm starts and active set optimization

While Algorithm 5 provides an efficient method for minimizing the selection criterion

Q(β) given fixed penalty parameters λs, λc, γ and τ , such parameters are typically not

known in practice, and therefore require tuning. We present below a method for perform-

ing this tuning procedure, as well as two computational tools – warm starts and active set

optimization – which greatly speed up this tuning in practice.

For parameter tuning, we adopt the relatively standard procedure (see, e.g., [86, 107])

of finding the optimal penalty setting whose corresponding model (fitted using cmenet)

minimizes some estimate of prediction error. In our implementation, called cv.cmenet2,

this prediction error is estimated using a technique called K-fold cross validation (or K-

fold CV; see [86]), which randomly splits the observed data into K parts, and uses one part

of the data to validate the model fitted with the remaining K − 1 parts. After obtaining

this optimal penalty setting, the corresponding fitted model is then used for variable selec-

tion and prediction. For brevity, the specific details for cv.cmenet are summarized in

Appendix C.6.

One practical challenge for this tuning procedure is that there are four parameters

(λs, λc, γ, τ) to tune for in cv.cmenet. Some guiding rules are therefore needed to effi-

ciently explore this 4-d parameter space. The proposition below provides one such rule for

(λs, λc):

Proposition 4 (Search rule for (λs, λc)). Suppose λs + λc ≥ max
j=1,··· ,p′

|xTj y|/n. When Q(β)

is strictly convex, the unique minimizer of Q(β) is the zero solution β = 0p′ .

It should be noted that, in the high-dimensional setting of n > p′, Q(β) cannot be strictly
2In later sections, the tuning procedure cv.cmenet is often referred to as simply cmenet for brevity.
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convex (see discussion for Proposition 3), soβ = 0p′ is only a stationary solution. Nonethe-

less, the restriction of λs + λc < max
j=1,··· ,p′

|xTj y|/n allows for considerable reduction in the

search for interesting choices of λs and λc. From Proposition 3, another rule is τ + 1/γ <

1/2, which ensures the strict convexity of the coodinate-wise problem and therefore the

numerical stability of the optimization procedure. For brevity, the incorporation of these

rules in cv.cmenet is outlined in Appendix C.6.

Two computational tools can be used to greatly speed up the tuning procedure cv.cmenet

in high-dimensions. The first tool, called warm starts, makes use the converged solution

from a previous parameter setting to initialize the optimization problem for the current

setting. The use of warm starts in variable selection was popularized in [106] for effi-

ciently fitting multiple models along the full LASSO path, and we found such a tool to be

equally effective for efficiently fitting multiple models over a grid of penalty parameters for

cmenet. The second tool, called active set optimization (see, e.g., [110, 82]), performs

coordinate descent updates over a small subset of active variables, instead of over the full

set of p′ variables. This technique is most effective when there are only a small number

of active effects present, because one can avoid performing redundant coordinate descent

updates on coefficients of inactive effects. Appendix C.6 provides specific details on how

these two tools can be incorporated into cv.cmenet.

3.4.3 CME screening rules

When the number of main effects p grows large, performing even one full coordinate de-

scent over all p′ = p + 4
(
p
2

)
total effects can be computationally cumbersome. One ef-

fective way of reducing computation time in such a situation is the use of screening rules,

or strong rules, which screen out a large number of inactive variables from consideration

using previously-solved coefficient solutions. The term “strong rules” is first coined in

[111], where the authors used previously-solved solutions along the LASSO path to screen

out inactive effects for subsequent optimizations. We derive below similar strong rules for
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screening out inactive effects for cmenet, and reveal an interesting connection between

these screening rules and CME coupling.

Suppose the parameters γ and τ are fixed, and let j index a variable of interest (ME

or CME), with S and C its corresponding sibling and cousin group. Furthermore, let

β̂(λs, λc) be an optimal solution of the selection criterion Q(β) under penalties λs and λc,

and let cj(λs, λc) = xTj (y − Xβ̂(λs, λc))/n denote the inner-product of effect j with the

current residual vector. Denoting λ1
s > λ2

s > · · · > λLs and λ1
c > λ2

c > · · · > λMc as

the desired (decreasing) penalty sequences for λs and λc, the screening procedure can be

summarized by the following three strong rules:

1. Suppose there are no active effects in S and C for penalty settings (λl−1
s , λmc ) or

(λls, λ
m−1
c ). Then effect j is marked as inactive for penalty setting (λls, λ

m
c ) if:

|cj(λl−1
s , λmc )| < λls + λmc +

γ

γ − 2
(λls − λl−1

s ) (3.10)

or:

|cj(λls, λm−1
c )| < λls + λmc +

γ

γ − 2
(λmc − λm−1

c ). (3.11)

2. If there are no active effects in the sibling group Sfor penalty setting (λl−1
s , λmc ), then

effect j is marked as inactive for penalty setting (λls, λ
m
c ) if:

|cj(λl−1
s , λmc )| < λls + ∆′C +

γ

γ − (∆′C/λ
m
c + 1)

(λls − λl−1
s ), (3.12)

where ∆′C = λmc exp
{
−τ‖βC(λl−1

s , λmc )‖λmc ,γ/λmc
}

.

3. If there are no active effects in the cousin group C for penalty setting (λls, λ
m−1
c ),

then effect j is marked as inactive for penalty setting (λls, λ
m
c ) if:

|cj(λls, λm−1
c )| < ∆′S + λmc +

γ

γ − (∆′S/λ
l
s + 1)

(λmc − λm−1
c ), (3.13)
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where ∆′S = λls exp
{
−τ‖βS(λls, λ

m−1
c )‖λls,γ/λ

l
s

}
.

A theoretical derivation of these rules is provided in Appendix C.7.

While these three rules may appear complicated and technical, they are in fact quite

intuitive to understand. All three rules consider conditions under which it would be “safe”

to screen out effect j from the optimization problem for the penalty setting (λls, λ
m
c ). The

first rule applies when there are no active effects in Sand C from previous penalty settings,

and screens out effect j if the previous inner-products cj(λl−1
s , λmc ) or cj(λls, λ

m−1
c ) are

within the upper bounds provided in (3.10) and (3.11). The intuition here is that if effect j

is not correlated enough with the residual vectors at the previous penalty settings (λl−1
s , λmc )

or (λls, λ
m−1
c ), then it cannot “catch up” in time to be active for the current setting (λls, λ

m
c )

(see [111] for details). This first rule can be viewed as an extension of the MC+ strong rule

in [112] to the current model. The second rule applies when there are no active effects in

the sibling group S (but some in cousin group C) for the previous setting (λl−1
s , λmc ). In

such a scenario, effect j is screened out if the previous inner-product cj(λl−1
s , λmc ) is within

the upper bound in (3.12). The key difference between this and the first rule is that, as

more effects are selected in the cousin group C, the linearized slope ∆′C decays smaller

than λmc , which then decreases the screening bound in (3.12) compared to the original

bounds in (3.10) and (3.11)3. In other words, the presence of coupled cousin effects from

a previous setting can decrease the screening power of strong rules for the current setting.

This is quite similar to the CME coupling phenomenon in Section 3.2, except instead of

encouraging the selection of effect j, the coupled CMEs make it more diffcult to screen out

effect j via strong rules. The third rule, which applies when there are no previously-active

cousins in C (but some siblings in S), enjoys a similar interpretation: as more siblings are

coupled in from S at a previous setting, effect j becomes more difficult to screen out via

strong rules.

Lastly, we note that while these three rules do screen out a large proportion of inert
3Here, we assume the last terms in (3.10) and (3.12) are nearly equal in this comparison; the discrepancy

between (3.10) and (3.12) is dominated by the first two terms for most feasible parameter settings.
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Table 3.2: Test settings for simulation study.

Simulation parameters Settings

Sample size n = 50, 100 or 150
# of main effects considered p = 50, 100 or 150

(total effects considered)
(
p′ = p+ 4

(
p
2

)
= 4, 950, 19, 900 or 44, 850

)
# of active groups 6 or 8

# of active effects within a group 2 or 3
Effect type Siblings, cousins, main effects

Latent correlation ρ = 0 or 1/
√

2

CMEs, it is possible (but highly unlikely) that an active CME is erroneously screened

out. This is illustrated numerically in the following section. To prevent any false-negative

screenings, we recommend that the KKT conditions (see equation (C.3) in the Appendix)

be checked as a final step for each optimization problem.

3.5 Simulations

We now explore the performance of the proposed method in several simulation studies. Ta-

ble 3.2 summarizes the test settings for these simulations, with varying sample sizes n and

main effects p, varying number of active groups x and active effects within a group y (de-

noted as GxAy), and whether the grouped effects are siblings or cousins (main effect mod-

els are considered here as well). Active effects are assigned a value of 1 in the coefficient

vector β, and non-active effects assigned a value of 0. Each simulation case is then repli-

cated 100 times, with the model matrix X simulated from the equicorrelated latent model

in Section 3.2.2 with ρ = 0 and ρ = 1/
√

2, and the response y simulated independently

from N(Xβ, In). For brevity, we only report the results for (n, p) = (50, 50), (100, 100)

and (150, 150) with G4A2 and G6A2, but similar conclusions hold for other settings.

Under such a set-up, our simulations aim to answer two questions: (a) Does the pro-

posed method cmenet yield improved selection of CMEs compared to more generic selec-

tion methods? (b) For an active CME, say J |K+, is cmenet more effective at identifying
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this conditional, non-additive relation between J and K, compared to the more traditional

2FI analysis? To answer the first question, we compare cmenet with two generic variable

selection techniques from the literature: the LASSO [113] using the R package GLMNET

[114], and SparseNet [107] using the R package SPARSENET [104]. All three methods

perform selection on the same set of MEs and CMEs, with penalty parameters tuned using

10-fold CV. In this comparison, a better selection performance for cmenet shows that the

proposed penaltyQ(β) is more appropriate for selecting CMEs compared to generic penal-

ties. To answer the second question, we compare cmenet with a popular selection method

called hierNet [115] for selecting 2FIs. A better selection performance for cmenet over

hierNet thereby demonstrates the effectiveness of the proposed method in identifying the

conditional, non-additive nature of CMEs.

We employ two criteria to conduct the above comparisons. The first criterion returns

the number of misspecified variables: #{A \ Ân} + #{Ân \ A}, where A is the true

active set of MEs and CMEs, and Ân is the set of selected effects after n observations.

Smaller values of this indicate better selection performance. Such a criterion is appropriate

for cmenet, LASSO and SparseNet, which perform selection on the MEs and CMEs

in A, but a slight modification is needed for hierNet, which performs selection on the

traditional 2FIs. To this end, let A(ME) consist of the original MEs in active set A as well

as the parent MEs of the CMEs in A, and let A(2FI) consist of the 2FIs corresponding

to the CMEs in A. The misspecification criterion for hierNet can then be written as:

#{A(ME) \ Â(ME)
n } + #{Â(ME)

n \ A(ME)} + #{A(2FI) \ Â(2FI)
n } + #{Â(2FI)

n \ A(2FI)},

where Â
(ME)
n and Â

(2FI)
n are the selected MEs and 2FIs from hierNet. Put another way,

this modified criterion first translates the true CME model into its component MEs and

2FIs (see the identities in (3.1)), then reports the number of misspecifications for the fitted

hierNet model based on these component effects. The second criterion is the mean-

squared prediction error (MSPE): E‖ynew − Xnewβ̂‖2
2, where (Xnew,ynew) is an out-of-

sample dataset with nnew = 20 observations simulated from the true model A. Smaller
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MSPE values suggest better predictive performance. Here, the focus is on a method which

yields the best selection performance of CMEs (first criterion); however, such a method

should have comparable predictive performance to other methods (second criterion).

Figures 3.3 show the number of misspecifications and MSPE for the four methods with

ρ = 0 and ρ = 1/
√

2, under the simulation settings presented earlier. Consider first the sib-

ling and cousin models in the ρ = 0 setting (left part of Figure 3.3), where the underlying

MEs are uncorrelated. For these models, cmenet provides noticeably improved selection

performance over LASSO and SparseNet for nearly all simulation settings. This shows

that the penalization scheme in Q(β) is indeed more effective than generic penalties for

selecting active CMEs; by accounting for the implicit group structure of CMEs, the pro-

posed method can better guide the variable selection procedure using the novel principle of

CME coupling. cmenet also yields a sizable selection improvement over hierNet for

sibling and cousin models, which shows that the proposed approach can better identify the

conditional, non-linear nature of CMEs compared to traditional 2FI analysis. One likely

explanation is that, because a CME can be decomposed into its component ME and 2FI

effects (recall the identities in (3.1) and Rule 1 of [92]), the selection signal of an active

CME is much stronger than the signals from its component ME and 2FI effects. cmenet,

by performing selection directly on the CMEs with greater signal, can more easily identify

the underlying active effects compared to hierNet, which performs selection on its com-

ponent ME and 2FI effects with diluted signals. As for MSPE, cmenet enjoys comparable

or improved performance to the other three methods, which is as desired.

Consider next the main effect models for ρ = 0 (left part of Figure 3.3). We see

that cmenet enjoys superior selection performance to LASSO and SparseNet, which

demonstrates the effectiveness of the CME reduction principle in reducing selected CMEs

into its underlying parent ME. Compared to hierNet, cmenet provides comparable

(but slightly worse) selection for these main effect models, an observation not too sur-

prising given that the proposed method specifically tackles the problem of CME selection.
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Figure 3.4: (Left) Boxplots of computation times for cmenet with (n, p) = (200, 150)
and (500, 200); (Right) Proportion of inactive variables screened for (n, p) = (200, 150).

cmenet is therefore most effective in applications where one expects some conditional

effects to be active in the model; in other words, in applications where CMEs represent

interpretable, domain-specific phenomena.

Finally, consider the results for ρ = 1/
√

2 (right part of Figure 3.3), where the under-

lying MEs are moderately correlated. For the sibling and cousin models, cmenet again

provides an improvement in selection performance over the other three methods, with this

improvement much greater than that for the uncorrelated setting ρ = 0. Such an observation

is expected in light of Section 3.2.2, because the CME group structure is most prominent

for moderate choices of ρ. For the main effect models, cmenet and hierNet again pro-

vide the best selection performance, with the relative performance of cmenet noticeably

better than that for ρ = 0. This again can be explained by the more pronounced CME group

structure for moderate ρ, which allows for more effective CME reduction. As before, the

MSPE for cmenet is comparable to or better than the other three methods, which is as

desired.

To numerically demonstrate the effectiveness of the CME screening rules in Section

C.7, the left plot in Figure 3.4 shows the boxplots of the computation times for cmenet

with (n, p) = (200, 150) and (500, 200), under a G2A6 sibling model with latent corre-
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lation ρ = 0. We see that the proposed screening rules significantly reduce computation

time, with over 20% reduction in median time for (n, p) = (200, 150), and 30% reduction

for (n, p) = (500, 200). This effectiveness appears to grow for larger sample sizes n and

greater number of main effects p, which is as desired. The right plot in Figure 3.4 shows the

proportion of inactive variables removed by the screening procedure for (n, p) = (200, 150)

as a function of the sibling and cousin penalties λs and λc. We see that the proposed screen-

ing rules correctly remove a large proportion of inactive variables (over 80% for smaller λs

and λc), which greatly speeds up the ensuing coordinate descent algorithm. In total, only

3 active variables were incorrectly screened over all values of (λs, λc) tested, and all such

violations were corrected in post-convergence check of KKT conditions.

3.6 Polygenic association study on fly wing shape

In this section, we demonstrate the usefulness of cmenet for an important, real-world

problem on polygenic association. Polygenes are a group of non-epistatic genes which

serve as biological markers for many characteristics of interest called phenotypes (e.g.,

susceptibility to diabetes for youth [116] and major depressive disorders [117]), and the as-

sociation of influential polygenes to particular phenotypes is an important area of research

in the biomedical community. Here, we investigate the polygenic association for the wing

shape of Drosophila Melanogaster, the common fruit fly.

The data employed here is collected from a study by [118], where the authors consid-

ered p = 48 homozygous (i.e., binary4) polygene markers on the second chromosome of

Drosophila Melanogaster and its effect on fly wing shape, using n = 701 observations

collected from recombinant isogenic lines. The response of interest is a continuous index

4For organisms with diploid cells (including Drosophila Melanogaster), chromosomes are found in pairs;
these chromosome pairs can be further categorized as either heterozygous – meaning the pair contains dif-
ferent alleles for each gene, or homozygous – meaning the pair contains identical alleles for each gene. For
alleles with levels + and –, heterozygous pairs allow for four allele combinations (+,+), (+,–), (–,+) and (–,–),
while homozygous pairs allow for two combinations (+,+) and (–,–). For this fly wing study, [118] found very
little heterozygous behavior on chromosome 2, and reported subsequent results using modified homozygous
chromosomes, which are binary and fit within the framework of this chapter.
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Table 3.3: Number of selected effects and some selected effects (p-values bracketed) from
cmenet and hierNet in the gene association study of fly wing shape.

Method # of selected effects Some selected effects (p-values)

cmenet 21 g14|g27- (6.1× 10−4),

g45|g10+ (7.3× 10−7)
g14|g38+ (2.0× 10−2),
g17|g14- (1.6× 10−12),
g23|g14+ (2.5× 10−30)

hierNet 129
g14 (8.3× 10−1)

g45 (1.5× 10−1),
g45 ∗ g10 (8.1× 10−1)

for wing shape, which incorporates both the width of the wing across the middle and the

width across the base. As in simulation studies, our focus lies primarily on the selection

of important CMEs, which here represents the effect of a gene conditional on another gene

being active or absent. This is because the identification of these novel conditional effects

yields valuable insight into the activation structure of gene-gene interactions, whereas the

more traditional two-factor interaction analysis can be less interpretable in such a setting.

Here, we compare the analysis provided by cmenet with that from hierNet. As

before, cmenet performs selection on MEs and CMEs (p′ = p + 4
(
p
2

)
= 4, 560 variables

in total), while hierNet performs MEs and 2FIs (p′′ = p +
(
p
2

)
= 1, 176 variables in

total). The purpose of such a comparison is to understand the practical advantages and

disadvantages in employing the novel CMEs as basis functions, compared to the typical

approach of using 2FIs for analyzing gene-gene interactions [119]. For brevity, we do not

include either the LASSO or SparseNet selection of CMEs in this comparison, because

it was already shown in Section 3.5 that cmenet enjoys better selection performance.

Consider first Table 3.3, which shows (a) the number of selected effects for cmenet

and hierNet, and (b) some selected effects for each method, along with their correspond-

ing p-values from a regular linear model fit. We see that the fitted model from cmenet,

which has 21 selected effects, is much smaller than the model returned by hierNet, which

has 129 selected effects. This model parsimony for cmenet suggests that there are indeed

active CMEs for the problem at hand, i.e., there are certain polygenes which affect wing
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Figure 3.5: Boxplots of the 10%, 25%, 50%, 75% and 90% MSPE quantiles for cmenet
and hierNet in the gene association study of fly wing shape.

shape only in the presence or absence of other polygenes. Taking a closer look at some

of the selected effects for cmenet and hierNet from Table 3.3, two interesting insights

can be observed on this conditional gene association structure. From the first column of

selected effects, hierNet deemed the 14-th polygene g14 to be active, while cmenet

instead selected the two sibling effects g14|g27- and g14|g38+, and the two cousin effects

g17|g14- and g23|g14+. In other words, under traditional analysis, gene g14 is deemed

influential in all situations, whereas the conclusion is more nuanced under the proposed

CME analysis, with g14 influential (a) when gene g27 is absent or gene g38 is active, or (b)

in inhibiting gene g17 or activating gene g23. The latter provides a more careful analysis

of the signal from g14, and judging by the much smaller p-values for these conditional

effects, also yields greater insight on the underlying gene activation structure. From the

second column of selected effects, hierNet deemed both g45 and its interaction g45∗g10

to be active, while cmenet selected only the CME g45|g10+. This nicely illustrates why

cmenet provides parsimonious models: by selecting the CME g45|g10+ in place of its

component ME g45 and 2FI g45∗g10, we obtain a smaller model with considerably smaller

p-values, which is as desired (this is akin to Rule 1 of [92] for selecting CMEs in designed

experiments; see Section 3.2.1, especially equation (3.1)).

Consider next Figure 3.5, which shows the MSPE boxplots for cmenet and hierNet

in predicting the continuous wing shape index. Here, MSPE is estimated by randomly
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sampling 80% of the data for model training, then using the remaining 20% to test the

trained model; this procedure is then repeated 200 times to provide error variability. We

see that cmenet enjoys considerable improvements over hierNet in terms of MSPE,

yielding at least a 12% reduction at all five error quantiles. This again reaffirms the likely

conditional nature of the underlying polygenic association structure, with certain polygenes

active only in the presence or absence of other polygenes.

To summarize, this gene association study highlights two important advantages of

cmenet. First, in applications where CMEs are interpretable phenomena, the proposed

selection method can provide much more parsimonious models compared to traditional

analysis using two-way interactions, and can yield greater insight on the underlying prob-

lem of interest. This is particularly true in genetic applications, where selected CMEs can

be used to further investigate why some genes are conditionally active, and why some play a

more supportive role in activating or inhibiting other genes. Second, when CMEs have nat-

ural domain-specific interpretations, using such effects as basis functions can also improve

the predictive performance of the fitted model as well.

3.7 Conclusion and future work

In this chapter, a new method is presented for selecting binary variables and a set of

reparametrized variables called conditional main effects (CMEs) from observation data.

While CMEs are intuitive basis functions with appealing interpretations in many applica-

tions, existing selection methods can perform poorly due to the inherent grouped structure

of these effects. We proposed a novel selection method called cmenet, which accounts for

this underlying grouped structure using two selection principles called CME coupling and

reduction; the former allows CMEs to more easily enter the model given selected siblings or

cousins, and the latter encourages the selection of the underlying ME given many selected

siblings or cousins. A coordinate descent algorithm is then introduced for minimizing the

selection criterion, and several computational tools are proposed for efficient optimization
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and parameter tuning in high-dimensions. Simulation studies showed considerable im-

provements for cmenet over existing methods with respect to selection accuracy. Applied

to a real-world gene association study on fly wing shape, the proposed method provides

not only improved predictive performance over the standard two-way interaction analysis,

but also a more parsimonious and interpretable model which reveals important insights on

gene activation behavior.

Given the positive results here, there are many exciting avenues for future work. First,

in the high-dimensional setting of p � 1, the tuning of the four selection parameters in

Q(β) can be computationally expensive due to the grid structure of feasible parameter

combinations in cv.cmenet. With recent advances on the topic of optimal designs for

convex spaces (e.g., [120, 61]), it may be interesting to see whether the use of such designs

as candidate settings allows for more efficient parameter tuning. Second, we are working

to broaden the proposed methodology to higher-order conditional effects, e.g., the effect

of A conditional on both B+ and C+. The main challenge here is again computational

efficiency, but such a direction would enable the investigation of, say, more complex ac-

tivation phenomena in the earlier gene study. Lastly, we are interested in extending the

current framework for selecting the continuous CMEs mentioned earlier in Section 3.4.1.

This would allow the proposed methodology to be applicable for more general datasets,

and we look forward to exploring this in future research.
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CHAPTER 4

AN EFFICIENT SURROGATE MODEL FOR EMULATION AND PHYSICS

EXTRACTION OF LARGE EDDY SIMULATIONS

4.1 Introduction

In the quest for designing advanced propulsion and power-generation systems, there is an

increasing need for an effective methodology that combines engineering physics, computer

simulations and statistical modeling. A key point of interest in this design process is the

treatment of turbulence flows, a subject that has far-reaching scientific and technological

importance [121]. Turbulence refers to the irregular and chaotic behavior resulting from

motion of a fluid flow [122], and is characterized by the formation of eddies and vortices

which transfer flow kinetic energy due to rotational dynamics. Such a phenomenon is an

unavoidable aspect of everyday life, present in the earth’s atmosphere and ocean waves,

and also in chemically reacting flows in propulsion and power-generation devices. In this

chapter, we develop a surrogate model, or emulator, for predicting turbulent flows in a swirl

injector, a mechanical component with a wide variety of engineering applications.

There are two reasons why a statistical model is required for this important task. First,

the time and resources required to develop an effective engineering device with desired

functions may be formidable, even at a single design setting. Second, even with the avail-

ability of high-fidelity simulation tools, the computational resources needed can be quite

costly, and only a handful of design settings can be treated in practical times. For example,

the flow simulation of a single injector design takes over 6 days of computation time, paral-

lelized using 200 CPU cores. For practical problems with large design ranges and/or many

The paper based on this chapter will appear in Journal of the American Statistical Association.
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design inputs, the use of only high-fidelity simulations is insufficient for surveying the full

design space. In this setting, emulation provides a powerful tool for efficiently predicting

flows at any design geometry, using a small number of flow simulations as training data.

A central theme of this chapter is that, by properly eliciting and applying physical proper-

ties of the fluid flow, simplifying assumptions can be made on the emulator which greatly

reduce computation and improve prediction accuracy. In view of the massive simulation

datasets, which can exceed many gigabytes or even terabytes in storage, such efficiency is

paramount for the usefulness of emulation in practice.

The proposed emulator utilizes a popular technique called kriging [123], which em-

ploys a Gaussian Process (GP) for modeling computer simulation output over a desired

input domain. The main appeal of kriging lies in the fact that both the emulation predictor

and its associated uncertainty can be evaluated in closed-form. For our application, a krig-

ing model is required which can predict flows at any injector geometry setting; we refer to

this as flow kriging for the rest of the chapter. In recent years, there have been important de-

velopments in flow kriging, including the works of [124] and [125] on regular spatial grids

(i.e., outputs are observed at the same spatial locations over all simulations), and [126]

on irregular grids. Unfortunately, it is difficult to apply these models to the more general

setting in which the dimensions of spatial grids vary greatly for different input variables.

In the present work, for instance, the desired design range for injector length varies from

20 mm to 100 mm. Combined with the high spatial and temporal resolutions required in

simulation, the resulting flow data is much too large to process using existing models, and

data-reduction methods are needed.

There has been some work on using reduced-basis models to compact data for emula-

tion, including the functional linear models by [127], wavelet models by [128] and princi-

pal component models by [129] and [130]. Here, we employ a generalization of the latter

method called proper orthogonal decomposition (POD) [131], which is better known in

statistical literature as the Karhunen-Loève decomposition [132, 133]. From a flow physics
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perspective, POD separates a simulated flow into key instability structures, each with its

corresponding spatial and dynamic features. Such a decomposition is, however, inappro-

priate for emulation, because there is no way to connect the extracted instabilities of one

input setting to the instabilities of another setting. To this end, we propose a new method

called the common POD (CPOD) to extract common instabilities over the design space.

This technique exploits a simple and physically justifiable linearity assumption on the spa-

tial distribution of instability structures.

In addition to efficient flow emulation, our model also provides two important features.

First, the same domain-specific model simplifications (e.g., on the spatio-temporal corre-

lation structure) which enable efficient prediction also allow for an efficient uncertainty

quantification (UQ) for such a prediction. This UQ is highly valuable in practice, since the

associated uncertainties for variable disturbance propagations can then be used for miti-

gating flow instabilities [134]. Second, by incorporating known properties of the fluid flow

into the model, the proposed emulator can in turn provide valuable insights on the dominant

physics present in the system, which can then be used to guide further scientific investiga-

tions. One key example of this is the learning of dominant flow coupling mechanisms using

a large co-kriging model [135, 12] under sparsity constraints.

The chapter is structured as follows. Section 4.2 provides a brief overview of the phys-

ical model of concern, including injector design, governing equations and experimental

design. Section 4.3 introduces the proposed emulator model, and proposes a parallelized

algorithm for efficient parameter estimation. Section 4.4 presents the emulation predic-

tion and UQ for a new injector geometry, and interprets important physical correlations

extracted by the emulator. Section 5 concludes with directions for future work.

4.2 Injector schematic and large eddy simulations

We first describe the design schematic for the swirl injector of concern, then briefly outline

the governing partial differential equations and simulation tools. A discussion on experi-
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Figure 4.1: Schematic of injector configuration.

Table 4.1: Range of geometric parameters.

Parameter Range
L 20 mm - 100 mm
Rn 2.0 mm - 5.0 mm
δ 0.5 mm - 2.0 mm
θ 45◦ − 75◦

∆L 1.0 mm - 4.0 mm

mental design is provided at the end of this section.

4.2.1 Injector design

Figure 4.1 shows a schematic of the swirl injector under consideration. It consists of an

open-ended cylinder and a row of tangential entries for liquid fluid injection. The config-

uration is typical of many propulsion and power-generation applications [136, 137, 138].

Liquid propellant is tangentially introduced into the injector and forms a thin film attached

to the wall due to the swirl-induced centrifugal force. A low-density gaseous core exists

in the center region in accordance with conservation of mass and angular momentum. The

liquid film exits the injector as a thin sheet and mixes with the ambient gas. The swirl

injection and atomization process involves two primary mechanisms: disintegration of the

liquid sheet as it swirls and stretches, and sheet breakup due to the interaction with the sur-

roundings. The design of the injector significantly affects the atomization characteristics

and stability behaviors.
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Figure 4.1 shows the five design variables considered for injector geometry: the injector

length L, the nozzle radius Rn, the inlet diameter δ, the injection angle θ, and the distance

between inlet and head-end ∆L. From flow physics, these five variables are influential for

liquid film thickness h and spreading angle α (see Figure 4.1), which are key measures of

injector performance of a swirl injector. For example, a larger injection angle θ induces

greater swirl momentum in the liquid oxygen flow, which in turn causes thinner film thick-

ness and smaller spreading angle. Table 4.1 summarizes the design ranges for these five

variables. To ensure the applicability of our work, broad geometric ranges are considered,

covering design settings for several existing rocket injectors. Specifically, the range for

injector length L covers the length of RD-0110 and RD-170 liquid-fuel rocket engines.

4.2.2 Flow simulation

The numerical simulations here are performed with a pressure of 100 atm, which is typ-

ical of contemporary liquid rocket engines with liquid oxygen (LOX) as the propellant.

The physical processes modeled here are turbulent flows, in which various sizes of turbu-

lent eddies are involved. A direct numerical simulation to resolve all eddy length-scales is

computationally prohibitive. To this end, we employ the large eddy simulation (LES) tech-

nique, which directly simulates large turbulent eddies and employs a model-based approach

for small eddies. To provide initial turbulence, broadband Gaussian noise is superimposed

onto the inlet velocity components. Thermodynamic and transport properties are simulated

using the techniques in [139] and [140]; the theoretical and numerical framework can be

found in [141] and [142]. To optimize computational speed, a multi-block domain decom-

position technique combined with the message-passing interface for parallel computing is

applied. Each LES simulation takes 6 days of computation time, parallelized over 200 CPU

cores, to obtain T = 1, 000 snapshots with a time-step of 0.03 ms after the flow reaches

statistically stationary state. From this, six flow variables of interest can be extracted: axial

(u), radial (v), and circumferential (w) components of velocity, temperature (T ), pressure
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Table 4.2: Elicited flow physics and corresponding assumptions for the emulator model.

Flow physics Model assumption
Coherent structures in turbulent flow [131] POD-based kriging

Similar Reynolds numbers for cold-flows [145] Linear-scaling modes in CPOD
Dense simulation time-steps Time-independent emulator

Couplings between flow variables [122] Co-kriging framework with
covariance matrix T

Few-but-significant couplings [122] Sparsity on T−1

(P ) and density (ρ).

Numerical simulations are conducted for n = 30 injector geometries in the timeframe

set for this project. These simulation runs are allocated over the design space in Table 4.1

using the maximum projection (MaxPro) design proposed by [69]. Compared to Latin-

hypercube-based designs (e.g., [143], [144]), MaxPro designs enjoy better space-filling

properties in all possible projections of the design space, and also provide better predictions

for GP modeling. While n = 30 simulation runs may appear to be too small of a dataset

for training the proposed flow emulator, we show this sample size can provide accurate

flow predictions for the application at hand, through an elicitation of flow physics and the

incorporation of such physics into the model. For these 30 runs, one issue which arises

is that the simulation data is massive, requiring nearly a hundred gigabytes in computer

storage. For such large data, a blind application of existing flow kriging methods may

require weeks for flow prediction, which entirely defeats the purpose of emulation, because

simulated flows can generated in 6 days. Again, by properly eliciting and incorporating

physics as simplifying assumptions for the emulator model, accurate flow predictions can

be achieved in hours despite a limited run size. We elaborate on this elicitation procedure

in the following section.
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4.3 Emulator model

We first introduce the new idea of CPOD, then present the proposed emulator model and a

parallelized algorithm for parameter estimation. A key theme in this section (and indeed,

for this chapter) is the elicitation and incorporation of flow physics within the emulator

model. This not only allows for efficient and accurate flow predictions through simplify-

ing model assumptions, but also provides a data-driven method for extracting useful flow

physics, which can then guide future experiments. As demonstrated in Section 4, both ob-

jectives can be achieved despite limited runs and complexities inherent in flow data. Table

4.2 summarizes the elicited flow physics and the corresponding emulator assumptions; we

discuss each point in greater detail below.

4.3.1 Common POD

A brief overview of POD is first provided, following [131]. For a fixed injector geometry,

let Y (x, t) denote a flow variable (e.g., pressure) at spatial coordinate x ∈ R2 and flow

time t. POD provides the following decomposition of Y (x, t) into separable spatial and

temporal components:

Y (x, t) =
∞∑
k=1

βk(t)φk(x), (4.1)

with the spatial eigenfunctions {φk(x)}∞k=1 and temporal coefficients {βk(t)}∞k=1 given by:

φk(x) = argmax
‖ψ‖2=1,

〈ψ,φl〉=0,∀l<k

∫ {∫
Y (x, t)ψ(x) dx

}2

dt, βk(t) =

∫
Y (x, t)φk(x) dx.

(4.2)

Following [146], we refer to {φk(x)}∞k=1 as the spatial POD modes for Y (x, t), and its

corresponding coefficients {βk(t)}∞k=1 as time-varying coefficients.

There are two key reasons for choosing POD over other reduced-basis models. First,

one can show [133] that any truncated representation in (4.1) gives the best flow reconstruc-
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Figure 4.2: Common grid using linearity assumption for CPOD.

tion of Y (x, t) in L2-norm, compared to any other linear expansion of space/time products

with the same number of terms. This property is crucial for our application, since it allows

the massive simulation data to be optimally reduced to a smaller training dataset for the

proposed emulator. Second, the POD has a special interpretation in terms of turbulent flow.

In the seminal paper by [131], it is shown that, under certain conditions, the expansion in

(4.1) can extract physically meaningful coherent structures which govern turbulence insta-

bilities. For this reason, physicists use POD as an experimental tool to pinpoint key flow

instabilities, simply through an inspection of φk(x) and the dominant frequencies in βk(t).

For example, using POD analysis, [136] showed that the two flow phenomena, hydrody-

namic wave propagation on LOX film and vortex core excitation near the injector exit, are

the key mechanisms driving flow instability. This is akin to the use of principal components

in regression, which can yield meaningful results in applications where such components

have innate interpretability.

Unfortunately, POD is only suitable for extracting instability structures at a single ge-

ometry, whereas for emulation, a method is needed that can extract common structures

over varying geometries. With this in mind, we propose a new decomposition called com-

mon POD (CPOD). The key assumption of CPOD is that, under a physics-guided partition

of the computational domain, the spatial distribution of coherent structures scales linearly

over varying injector geometries. For cold flows, this can be justified by similar Reynolds
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numbers (which characterize flow dynamics) over different geometries [145]. This is one

instance of model simplification through elicitation, because such a property likely does

not hold for general flows. This linearity assumption is highly valuable for computational

efficiency, because flows from different geometries can then be rescaled onto a common

spatial grid for instability extraction. Figure 4.2 visualizes this procedure. The grids for

each simulation are first split into four parts: from injector head-end to the inlet, from the

inlet to the nozzle exit, and the top and bottom portions of the downstream region. Each

part is then proportionally rescaled to a common, reference grid according to changes in

the geometric variables L, Rn and ∆L (see Figure 4.1). From a physics perspective, such

a partition is necessary for the linearity assumption to hold.

Stating this mathematically, let c1, · · · , cn ∈ Rp be the n simulated geometries, let

Y (x, t; ci) be the simulated flow at setting ci, and fix some setting c ∈ {ci}ni=1 as the

geometry for the common grid. Next, define Mi : R2 → R2 as the linear map which

rescales spatial modes on the common geometry c back to the i-th simulated geometry ci

according to geometric changes in L, Rn and ∆L. Mi can be viewed as the inverse map

of the procedure described in the previous paragraph and visualized in Figure 4.2, which

rescales modes from ci to the common geometry c (see Appendix A.1 for details). CPOD

provides the following decomposition of Y (x, t; ci):

Y (x, t; ci) =
∞∑
k=1

βk(t; ci)Mi{φk(x)}, (4.3)

with the spatial CPOD modes {φk(x)} and time-varying coefficients {βk(t; ci)} defined as:

φk(x) = argmax
‖ψ‖2=1,

〈ψ,φl〉=0,∀l<k

n∑
i=1

∫ {∫
Y (x, t; ci)Mi{ψ(x)} dx

}2

dt,

βk(t; ci) =

∫
Y (x, t; ci)Mi{φk(x)} dx.

(4.4)

Here, φk(x) is the spatial distribution for the k-th common flow structure, with βk(t; ci) its
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time-varying coefficient for geometry ci. As in POD, leading terms in CPOD can also be

interpreted in terms of flow physics, a property we demonstrate later in Section 4.4. CPOD

therefore not only provides optimal data-reduction for the simulation data, but also extracts

physically meaningful structures which can then be incorporated for emulation.

Algorithmically, the CPOD expansion can be computed by rescaling and interpolating

all flow simulations to the common grid, computing the POD expansion, and then rescaling

the resulting modes back to their original grids. Interpolation is performed using the inverse

distance weighting method in [147], and can be justified by dense spatial resolution of the

data (with around 100,000 grid points for each simulation). Letting T be the total number

of time-steps, a naive implementation of this decomposition requires O(n3T 3) work, due

to a singular-value-decomposition (SVD) step. Such a decomposition therefore becomes

computationally intractable when the number of runs grows large or when simulations

have dense time-steps (as is the case here). To avoid this computational issue, we use

an iterative technique from [148] called the implicitly restarted Arnoldi method, which

approximates leading terms in (4.3) using periodically restarted Arnoldi decompositions.

The full algorithm for CPOD is outlined in Appendix A.

4.3.2 Model specification

After the CPOD extraction, the extracted time-varying coefficients {βk(t; ci)}i,k are then

used as data for fitting the proposed emulator. There has been some existing work on dy-

namic emulator models, such as [149], [150] and [151], but the sheer number of simulation

time-steps here can impose high computation times and numerical instabilities for these

existing methods [126]. As mentioned previously, computational efficiency is paramount

for our problem, since simulation runs can be performed within a week. Moreover, existing

emulators cannot account for cross-correlations between different dynamic systems, while

the flow physics represented by different CPOD modes are known to be highly coupled

from governing equations. Here, we exploit the dense temporal resolution of the flow by
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using a time-independent (TI) emulator that employs independent kriging models at each

slice of time. The rationale is that, because time-scales are so fine, there is no practical need

to estimate temporal correlations (even when they exist), since prediction is not required

between time-steps. This time-independent simplification is key for emulator efficiency,

since it allows us to fully exploit the power of parallel computing for model fitting and flow

prediction.

The model is as follows. Suppose R flow variables are considered (with R = 6 in

the present case), and the CPOD expansion in (4.3) is truncated at Kr terms for flow r =

1, · · · , R. Let β(r)(t; c) = (β
(r)
1 (t; c), · · · , β(r)

Kr
(t; c))T be the vector ofKr time-varying co-

efficients for flow variable r at design setting c, withβ(t; c) = (β(1)(t; c)T , · · · ,β(R)(t; c)T )T

the coefficient vector for all flows at c. We assume the following time-independent GP

model on β(t; c):

β(t; c) ∼ GP{µ(t),Σ(·, ·; t)}, β(t; c) ⊥ β(t′; c) for t 6= t′. (4.5)

Here, K =
∑R

r=1Kr is the number of extracted modes over all R flow variables, µ ∈ RK

is the process mean vector, and Σ(·, ·) : Rp × Rp → RK×K its corresponding covariance

matrix function defined below. Since the GPs are now time-independent, we present the

specification for fixed time t, and refer to β(t; c), µ(t) and Σ(·, ·; t) as β(c), µ and Σ(·, ·)

for brevity.

For computational efficiency, the following separable form is assumed for Σ(·, ·):

Σ(c1, c2) = rτ (c1, c2)T, rτ (c1, c2) =

p∏
j=1

τ
4(c1j−c2j)2

j , c1, c2 ∈ Rp, τj ∈ (0, 1),

(4.6)

where T ∈ RK×K is a symmetric, positive definite matrix called the CPOD covariance

matrix, and rτ (·, ·) is the correlation function over the design space, parameterized by τ =

(τ1, · · · , τp)T ∈ (0, 1)p. This can be viewed as a large co-kriging model [135] over the

design space, with the multivariate observations being the extracted CPOD coefficients
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for all flow variables. Note that rτ is a reparametrization of the squared-exponential (or

Gaussian) correlation function exp{−
∑p

j=1 θj(c1j − c2j)
2}, with θj = −4 log τj . In our

experience, such a reparametrization allows for a more numerically stable optimization of

MLEs, because the optimization domain τj ∈ (0, 1) is now bounded. Our choice of the

Gaussian correlation is also well-justified for the application at hand, since fully-developed

turbulence dynamics are known to be relatively smooth.

Suppose simulations are run at settings c1, · · · , cn, and assume for now that model

parameters are known. Invoking the conditional distribution of the multivariate normal

distribution, the time-varying coefficients at a new setting cnew follow the distribution:

β(cnew)|{β(ci)}ni=1 ∼N

(
µ+ (T⊗ rτ,new)T

(
T−1 ⊗R−1

τ

)
(β − 1n ⊗ µ) ,

T− (T⊗ rτ,new)T
(
T−1 ⊗R−1

τ

)
(T⊗ rτ,new)

)
,

(4.7)

where rτ,new = (rτ (cnew, c1), · · · , rτ (cnew, cn))T and Rτ = [rτ (ci, cj)]
n
i=1

n
j=1. Using al-

gebraic manipulations, the minimum-MSE (MMSE) predictor for β(cnew)|{β(ci)}ni=1 and

its corresponding variance is given by

β̂(cnew) = µ+
(
(rTτ,newR−1

τ )⊗ IK
)

(β − 1n ⊗ µ) ,V{β(cnew)|{β(ci)}ni=1} =
(
1− rTτ,newR−1

τ rτ,new
)
T,

(4.8)

where IK and 1n denote aK×K identity matrix and a 1-vector of n elements, respectively.

Substituting this into the CPOD expansion (4.3), the predicted r-th flow variable becomes:

Ŷ (r)(x, t; cnew) =
Kr∑
k=1

β̂
(r)
k (cnew)Mnew{φ(r)

k (x)}, (4.9)

with the associated spatio-temporal variance:

V{Y (r)(x, t; cnew)|{Y (r)(x, t; ci)}ni=1} =

Kr∑
k=1

V{β(r)
k (cnew)|{β(ci)}ni=1}}

[
Mnew{φ(r)

k (x)}
]2
,

(4.10)

where φ(r)
k (x) is the k-th CPOD mode for flow variable r. This holds because the CPOD
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Figure 4.3: Illustration of the CPOD correlation matrix T. Red indicates a diagonal matrix,
while blue indicates non-diagonal entries.

modes for a fixed flow variable are orthogonal (see Section 3.1).

It is worth noting that, when model parameters are known, the MMSE predictor in

(4.8) from the proposed co-kriging model (which we call MA) is the same as the MMSE

predictor from the simpler independent GP model with T diagonal (which we call M0).

One advantage of the co-kriging model MA, however, is that it provides improved UQ

compared to the independent modelM0, as we show below. Moreover, the MMSE predictor

for a derived function g of the flow can be quite different between MA and M0. This is

demonstrated in the study of turbulent kinetic energy in Section 4.3.

CPOD covariance matrix

We briefly describe why the CPOD covariance matrix T is appealing from both a physical

and a statistical perspective. From the underlying governing equations, it is well known

that certain dynamic behaviors are strongly coupled for different flow variables [122]. For

example, pressure oscillation in the form of acoustic waves within an injector can induce

velocity and density fluctuations. In this sense, T incorporates knowledge of these physical

couplings within the emulator itself, with Tij � 0 indicating the presence of a significant
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coupling between modes i and j, and vice versa. The covariance selection and estimation

of T therefore provide a data-driven way to extract and rank significant flow couplings,

which is of interest in itself and can be used to guide further experiments. Note that the

block submatrices of T corresponding to the same flow variable (marked in red in Figure

4.3) should be diagonal, by the orthogonality of CPOD modes.

The CPOD covariance matrix T also plays an important statistical role in emulation.

Specifically, when significant cross-correlations exist between modes (which we know to

be true from the flow couplings imposed by governing equations), the incorporation of this

correlation structure within our model ought to provide a more accurate quantification of

uncertainty. This is indeed true, and is made precise by the following theorem.

Theorem 19. Consider the two models M0 : β(c) ∈ RK ∼ GP{µ,Σ(0)} and MA :

β(c) ∼ GP{µ,Σ(A)}, where Σ(0)(c1, c2) = rτ (c1, c2)D and Σ(A)(c1, c2) = rτ (c1, c2)T

with T � 0 and D = diag{T}. Let C0 be the 100(1− α)% highest-density confidence re-

gion (HDCR, see [152]) ofβ(cnew)|{β(ci)}ni=1 underM0. Suppose λmin(T1/2D−1T1/2) >

1. Then:

P {β(cnew) ∈ C0|MA, {β(ci)}ni=1} < 1− α.

Proof. For brevity, let β ≡ β(cnew)|{β(ci)}ni=1, and let β̂ ≡ E[β(cnew)|{β(ci)}ni=1]. Let-

ting Z ∼N(0, IK), it is easy to show that

β − β̂|M0 ∼N
{
0,
(
1− rTτ,newR−1

τ rτ,new
)

D
} d

=
√

1− rTτ,newR−1
τ rτ,newD1/2Z, and

β − β̂|MA ∼N
{
0,
(
1− rTτ,newR−1

τ rτ,new
)
T
} d

=
√

1− rTτ,newR−1
τ rτ,newT1/2Z.

Under the independent model M0, the 100(1− α)% HDCR becomes:

C0 = {ξ :
(
1− rTτ,newR−1

τ rτ,new
)−1

(ξ − β̂)TD−1(ξ − β̂) ≤ χ2
K(1− α)},
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where χ2
K(1− α) be the (1− α)-quantile of a χ2-distribution with K degrees of freedom.

Now, let λmin denote the minimum eigenvalue of T1/2D−1T1/2. It follows that

P (β ∈ C0|MA) = P
{

(β − β̂)TD−1(β − β̂) ≤
(
1− rTτ,newR−1

τ rτ,new
)
χ2
K(1− α)

∣∣∣MA

}
= P

{
ZT (T1/2D−1T1/2)Z ≤ χ2

K(1− α)
}

≤ P
{
ZTZ ≤ λ−1

minχ
2
K(1− α)

}
,

since ZT (T1/2D−1T1/2)Z ≥ λminZ
TZ almost surely. The asserted result follows because

P
{
ZTZ ≤ λ−1

minχ
2
K(1− α)

}
is strictly less than 1− α when λmin > 1.

In words, this theorem quantifies the effect on coverage probability when the true co-

kriging model MA, which accounts for cross-correlations between modes, is misspecified

as M0, the independent model ignoring such cross-correlations. Note that an increase in

the number of significant non-zero cross-correlations in T causes T1/2D−1T1/2 to deviate

further from unity, which in turn may increase λmin. Given enough such correlations,

Theorem 19 shows that the coverage probability from the misspecified model M0 is less

than the desired 100(1 − α)% rate. In the present case, this suggests that when there are

enough significant flow couplings, the co-kriging model MA provides more accurate UQ

for the joint prediction of flow variables when compared to the misspecified, independent

modelM0. This improvement also holds for functions of flow variables (as we demonstrate

later in Section 4.4), although a formal argument is not presented here.

It is important to mention here an important trade-off for co-kriging models in general,

and why the proposed model is appropriate for the application at hand in view of such

a trade-off. It is known from spatial statistics literature (see, e.g., [12, 153]) that when

the matrix T exhibits strong correlations and can be estimated well, one enjoys improved

predictive performance through a co-kriging model (this is formally shown for the current

model in Theorem 19). However, when such correlations are absent or cannot be estimated
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well, a co-kriging model can yield poorer performance to an independent model! We claim

that the former is true for the current application at hand. First, the differential equations

governing the simulation procedure explicitly impose strong dependencies between flow

variables, so we know a priori the existence of strong correlations in T. Second, we will

show later in Section 4.4.4 that the dominant correlations selected in T are physically

interpretable in terms of fluid mechanic principles and conservation laws, which provides

strong evidence for the correct estimation of T.

One issue with fitting MA is that there are many more parameters to estimate. Specif-

ically, since the CPOD covariance matrix T is K × K dimensional, there is insufficient

data for estimating all entries in T using the extracted coefficients from the CPOD ex-

pansion. One solution is to impose the sparsity constraint ‖T−1‖1 ≤ γ, where ‖A‖1 =∑K
k=1

∑K
l=1 |Akl| is the element-wise L1 norm. For a small choice of γ, this forces nearly

all entries in T−1 to be zero, thus permitting consistent estimation of the few significant

correlations. Sparsity can also be justified from an engineering perspective, because the

number of significant couplings is known to be small from flow physics. γ can also be

adjusted to extract a pre-specified number of flow couplings, which is appealing from an

engineering point-of-view. The justification for sparsifying T−1 instead of T is largely

computational, because, algorithmically, the former problem can be handled much more

efficiently than the latter using the graphical LASSO ([81]; see also [154]). Such efficiency

is crucial here, since GP parameters need to be jointly estimated as well.

Although the proposed model is similar to the one developed in [155] for emulating

qualitative factors, there are two key distinctions. First, our model allows for different pro-

cess variances for each coefficient, whereas their approach restricts all coefficients to have

equal variances. Second, our model incorporates sparsity on the CPOD covariance matrix,

an assumption necessary from a statistical point-of-view and appealing from a physics ex-

traction perspective. Lastly, the algorithm proposed below can estimate T more efficiently

than the semi-definite programming approach in [155].
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4.3.3 Parameter estimation

To estimate the model parameters µ, T and τ , maximum-likelihood estimation (MLE) is

used in favor of a Bayesian implementation. The primary reason for this choice is com-

putational efficiency: for the proposed emulator to be used as a fast investigative tool for

surveying the design space, it should generate flow predictions much quicker than a direct

LES simuation, which requires several days of parallelized computation.

From (4.5) and (4.6), the maximum-likelihood formulation can be written as argminµ,T,τ

lλ(µ,T, τ ), where lλ(µ,T, τ ) is the penalized negative log-likelihood:

lλ(µ,T, τ ) = n log det T+K log det Rτ +(B−1n⊗µ)T [R−1
τ ⊗T−1](B−1n⊗µ)+λ‖T−1‖1.

(4.11)

Note that, because the formulation is convex in T−1, the sparsity constraint ‖T−1‖1 ≤ γ

has been incorporated into the likelihood through the penalty λ‖T−1‖1 using strong duality.

Similar to γ, a larger λ results in a smaller number of selected correlations, and vice versa.

The tuning method for λ should depend on the desired end-goal. For example, if predictive

accuracy is the primary goal, then λ should be tuned using cross-validation techniques

[86]. However, if correlation extraction is desired or prior information is available on flow

couplings, then λ should be set so that a fixed (preset) number of correlations is extracted.

We discuss this further in Section 4.4.

Assume for now a fixed penalty λ > 0. To compute the MLEs in (4.11), we propose

the following blockwise coordinate descent (BCD) algorithm. First, assign initial values

for µ, T and τ . Next, iterate the following two updates until parameters converge: (a)

for fixed GP parameters µ and τ , optimize for T in (4.11); and (b) for fixed covariance

matrix T, optimize for µ and τ in (4.11). With the use of the graphical LASSO algorithm

from [81], the first update can be computed efficiently. The second update can be computed

using non-linear optimization techniques on τ by means of a closed-form expression for µ.

In our implementation, this is performed using the L-BFGS algorithm [156], which offers
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Algorithm 6 BCD algorithm for maximum likelihood estimation
1: for each time-step t = 1, · · · , T do parallel
• Set initial values µ← 0K , T← IK and τ ← 1p, and set B← (β(c1), · · · ,β(cn))T

2: repeat
3: Optimizing T:
• Set W← 1

n(B− 1n ⊗ µT )TR−1
τ (B− 1n ⊗ µT ) + λ · IK

4: repeat
5: for j = 1, · · · ,K do
• Solve δ̃ = argminδ

{
1
2‖W

1/2
−j,−jδ‖22 + λ‖δ‖1

}
using LASSO

• Update W−j,j ←W−j,−j δ̃ and WT
j,−j ←W−j,−j δ̃

6: until W converges
• Update T←W−1

7: Optimizing µ and τ :
• Update τ ← argminτ lλ(µτ ,T, τ ) with L-BFGS, with µτ = (1TnR−1

τ 1n)−1(1TnR−1
τ B)

• Update µ← µτ

8: until µ, T and τ converge
9: end parallel for
• return µ(t), T(t) and τ (t)

a super-linear convergence rate without the cumbersome evaluation and manipulation of

the Hessian matrix [79]. The following theorem guarantees that the proposed algorithm

converges to a stationary point of (4.11) (see Appendix B for proof).

Theorem 20. The BCD scheme in Algorithm 6 converges to some solution (µ̂, T̂, τ̂ ) which

is stationary for the penalized log-likelihood lλ(µ,T, τ ).

It is worth noting that the proposed algorithm does not provide global optimization.

This is not surprising, because the log-likehood lλ is non-convex in τ . To this end, we

run multiple threads of Algorithm 6 in parallel, each with a different initial point τ 0 from a

large space-filling design on [10−3, 1−10−3]p, then choose the converged parameter setting

which yields the largest likelihood value from (4.11). In our experience, this heuristic

performs quite well in practice.

4.4 Emulation results

In this section, we present in four parts the emulation performance of the proposed model,

when trained using the database of n = 30 flow simulations described in Section 2. First,
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we briefly introduce key flow characteristics for a swirl injector, and physically interpret the

flow structures extracted from CPOD. Second, we compare the numerical accuracy of our

flow prediction with a validation simulation at a new injector geometry. Third, we provide

a spatio-temporal quantification of uncertainty for our prediction, and discuss its physical

interpretability. Lastly, we summarize the extracted flow couplings from T, and explain

why these are both intuitive and intriguing from a flow physics perspective.

4.4.1 Visualization and CPOD modes

We employ three flow snapshots of circumferential velocity (shown in Figure 4.4) to in-

troduce key flow characteristics for a swirl injector: the fluid transition region, spreading

angle, surface wave propagation and center recirculation. These characteristics will be used

for assessing emulator accuracy, UQ and extracted flow physics.

• Fluid transition region: The fluid transition region is the region which connects compressed-

liquid near the wall (colored blue in Figure 4.4) to light-gas (colored red) near the cen-

terline at supercritical pressure [137]. This region is crucial for analyzing injector flow

characteristics, as it provides the instability propagation and feedback mechanisms be-

tween the injector inlet and exit. An important emulation goal is to accurately predict

both the spatial location of this region and its dynamics, because such information can

be used to assess feedback behavior at new geometries.

• Spreading angle: The spreading angle α (along with the LOX film thickness h) is an

important physical metric for measuring the performance of a swirl injector. A larger α

and smaller h indicate better performance of injector atomization and breakup processes.

The spreading angle can be seen in Figure 4.4 from the blue LOX flow at injector exit

(see Figure 4.1 for details).

• Surface wave propagation: Surface waves, which transfer energy through the fluid medium,

manifest themselves as wavy structures in the flowfield. These waves allow for propaga-

114



Figure 4.4: Flow snapshots of circumferen-
tial velocity at t = 6, 12 and 18 ms.

Figure 4.5: Energy distribution of CPOD
modes for circumferential velocity flow.

Figure 4.6: The leading two spatial CPOD
modes for circumferential velocity flow.

tion of flow instabilities between upstream and downstream regions of the injector, and

can be seen in the first snapshot of Figure 4.4 along the LOX film boundary.

• Center recirculation: Center recirculation, another key instability structure, is the circu-

lar flow of a fluid around a rotational axis (this circular region is known as the vortex

core). From the third snapshot in Figure 4.4, a large vortex core (in white) can be seen at

the injector exit, which is expected because of sudden expansion of the LOX stream and

subsequent generation of adverse pressure gradient.
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Regarding the CPOD expansion, Figure 4.5 shows the energy ratio captured using the

leading M terms in (4.3) for circumferential velocity, with this ratio defined as:

ξ(M) =

∑M
k=1

∑n
i=1

∫ [∫
βk(t; ci)Mi{φk(x)} dx

]2
dt∑∞

k=1

∑n
i=1

∫ [∫
βk(t; ci)Mi{φk(x)} dx

]2
dt
.

Only M = 10 and M = 45 modes are needed to capture 90% and 99% of the total flow

energy over all n = 30 simulation cases, respectively. Compared to a similar experiment in

[136], which required around M = 20 modes to capture 99% flow energy for a single ge-

ometry, the current results are very promising, and show that the CPOD gives a reasonably

compact representation. This also gives empirical evidence for the linearity assumption

used for computation efficiency. Similar results also hold for other flow variables as well,

and are not reported for brevity. Additionally, the empirical study in [136] showed that

the POD modes capturing the top 95% energy have direct physical interpretability in terms

of known flow instabilities. To account for these (and perhaps other) instability struc-

tures in the model, we set the truncation limit Kr as the smallest value of M satisfying

ξ(M) ≥ 99%, which appears to provide a good balance between predictive accuracy and

computational efficiency.

The extracted CPOD terms can also be interpreted in terms of flow physics. We il-

lustrate this using the leading two CPOD terms for circumferential velocity, whose spa-

tial distributions are shown in Figure 4.6. Upon an inspection of these spatial plots and

their corresponding spectral frequencies, both modes can be identified as hydrodynamic

instabilities in the form of longitudinal waves propagating along the LOX film boundary.

Specifically, the first mode corresponds to the first harmonic mode for this wave, and the

second mode represents the second harmonic and shows the existence of an antinode in

wave propagation. As we show in Section 4.4, the interpretability of CPOD modes allows

the proposed model to extract physically meaningful couplings for further analysis.
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Figure 4.7: Simulated and emulated tem-
perature flow at t = 21.75 ms, 23.25 ms
and 24.75 ms.

Figure 4.8: MRE at injector inlet (top), fluid
transition region (middle) and injector exit
(bottom).
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Figure 4.9: Injector subregions (dotted in blue) and probe locations (circled in white).

4.4.2 Emulation accuracy

To ensure that our emulator model provides accurate flow predictions, we perform a val-

idation simulation at the new geometric setting: L = 22 mm, Rn = 3.215 mm, ∆L =

3.417 mm, θ = 58.217◦ and δ = 0.576 mm. This new geometry provides a 10% variation

on an existing injector used in the RD-0110 liquid-fuel engine [157]. Since the goal is

predictive accuracy, the sparsity penalty λ in (4.11) is tuned using 5-fold cross-validation

[86]. We provide below a qualitative comparison of the predicted and simulated flows, and

then discuss several metrics for quantifying emulation accuracy.

Figure 4.7 shows three snapshots of the simulated and predicted fully-developed flows

for temperature, in intervals of 1.5 ms starting at 21.75 ms. From visual inspection, the

predicted flow closely mimics the simulated flow on several performance metrics, includ-

ing the fluid transition region, film thickness and spreading angle. The propagation of

surface waves is also captured quite well within the injector, with key downstream recir-

culation zones correctly identified in the prediction as well. This comparison illustrates

the effectiveness of the proposed emulator in capturing key flow physics, and demonstrates

the importance of incorporating known flow properties of the fluid as assumptions in the

statistical model.

Next, three metrics are used to quantify emulation accuracy. The first metric, which

reports the mean relative error in important sub-regions of the injector, measures the spa-

tial aspect of prediction accuracy. The second metric, which inspects spectral similarities
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between the simulated and predicted flows, measures temporal accuracy. The last metric

investigates how well the predicted flow captures the underlying flow physics of an injector.

For spatial accuracy, the following mean relative error (MRE) metric is used:

MRE(t;S) =

∫
S
|Y (x, t; cnew)− Ŷ (x, t; cnew)| dx∫

S
|Y (x, t; cnew)| dx

× 100%,

where Y (x, t; cnew) is the simulated flow at setting cnew, and Ŷ (x, t; cnew) is the flow

predictor in (4.9) (for brevity, the superscript for flow variable r is omitted here). In words,

MRE(t;S) provides a measure of emulation accuracy within a desired sub-region Sat time

t, relative to the overall flow energy in S. Since flow behaviors within the injector inlet,

fluid transition region and injector exit (outlined in Figure 4.9) are crucial for characterizing

injector instability, we investigate the MRE specifically for these three sub-regions. Figure

4.8 plots MRE(t,S) for t = 15 − 30 ms, when the flow has fully developed. For all three

sub-regions, the relative error is within a tolerance level of 10% for nearly all time-steps,

which is very good from an engineering perspective.

To assess temporal accuracy, we conduct a power spectral density (PSD) analysis of

predicted and simulated pressure flows at eight specific probes along the region of surface

wave propagation (see Figure 4.9). This analysis is often performed as an empirical tool

for assessing injector stability (see [136]), because surface waves allow for feedback loops

between upstream and downstream oscillations [158]. Figure 4.10 shows the PSD spectra

for the predicted and simulated flow at four of these probes. Visually, the spectra look

very similar, both at low and high frequencies, with peaks nearly identical for the predicted

and simulated flow. Such peaks are highly useful for analyzing flow physics, because

they can be used to identify physical properties (e.g., hydrodynamic, acoustic, etc.) of

dominant instability structures. In this sense, the proposed emulator does an excellent job

in mimicking important physics of the simulated flow.

Finally, we investigate the film thickness h and spreading angle α, which are key per-
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Figure 4.10: PSD spectra for pressure flow at probes 1, 3, 5 and 7 (see Figure 4.9).

formance metrics for injector performance. Since both of these metrics are computed using

spatial gradients of flow variables, an accurate emulation of these measures suggests accu-

rate flow emulation as well. For the validation setting, the simulated (predicted) flow has a

film thickness of 0.47 mm (0.42 mm) and a spreading angle of 103.63◦ (107.36◦), averaged

over the fully-developed timeframe from t = 15 − 30 ms. This corresponds to relative

errors of 10.6% and 3.60%, respectively, and is within the desired error tolerance from an

engineering perspective.

4.4.3 Uncertainty quantification

For computer experiments, the quantification of predictive uncertainty can be as important

as the prediction itself. To this end, we provide a spatio-temporal representation of this UQ,
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Figure 4.11: Absolute prediction error (top)
and pointwise CI width (bottom) for x-
velocity at t = 15 ms.

Figure 4.12: CI width of x-velocity at probe
1.

and show that it has a useful and appealing physical interpretation. For spatial UQ, the top

plot of Figure 4.11 shows the one-sided width of the 99% pointwise confidence interval (CI)

from (4.10) for x-velocity at t = 15 ms. It can be seen that the emulator is most certain in

predicting near the inlet and centerline of the injector, but shows high predictive uncertainty

at the three gaseous cores downstream (in green). This makes physical sense, because these

cores correspond to flow recirculation vortices, and therefore exhibit highly unstable flow

behavior. From the bottom plot of Figure 4.11, which shows the absolute emulation error

of the same flow, the pointwise confidence band not only covers the realized prediction

error, but roughly mimics its spatial distribution as well.

For temporal UQ, Figure 4.12 shows the same one-sided CI width at probe 1 (see Figure

4.9). We see that this temporal uncertainty is relatively steady over t, except for two abrupt

spikes at time-steps around 300 and 800. These two spikes have an appealing physical in-

terpretation: the first indicates a flow displayment effect of the central vortex core, whereas

the second can be attributed to the boundary development of the same core. This again

demonstrates the usefulness of UQ not only as a measure of predictive uncertainty, but also
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as a means for extracting useful flow physics without the need for expensive simulations.

To illustrate the improved UQ of the proposed model (see Theorem 19), we use a de-

rived quantity called turbulent kinetic energy (TKE). TKE is typically defined as:

κ(x, t) =
1

2

∑
r∈{u,v,w}

{
Y (r)(x, t)− Ȳ (r)(x)

}2
, (4.12)

where Y (u)(x, t), Y (v)(x, t) and Y (w)(x, t) are flows for x-, y- and circumferential veloci-

ties, respectively, with Ȳ (u)(x), Ȳ (v)(x) and Ȳ (w)(x) its corresponding time-averages. Such

a quantity is particularly important for studying turbulent instabilities, because it measures

fluid rotation energy within eddies and vortices.

For the sake of simplicity, assume that (a) the time-averages Ȳ (u)(x), Ȳ (v)(x) and

Ȳ (w)(x) are fixed, and (b) the parameters (µ,T, τ ) are known. The following theorem

provides the MMSE predictor and pointwise confidence interval for κ(x, t) (proof in Ap-

pendix C).

Theorem 21. For fixed x and t, the MMSE predictor of κ(x, t) at a new setting cnew is

κ̂(x, t) =
1

2

∑
r∈{u,v,w}

{
Ŷ (r)(x, t)− Ȳ (r)(x)

}2
+ tr{Φ(x, t)}, (4.13)

where Ŷ (u)(x, t), Ŷ (v)(x, t) and Ŷ (w)(x, t) are predicted flows for x-, y- and circumferen-

tial velocities from (4.9), and Φ(x, t) is defined in (C.1) of Appendix C. Moreover, κ̂(x, t)

is distributed as a weighted sum of non-central χ2 random variables, with an explicit ex-

pression given in (C.3) of Appendix C.

In practice, plug-in estimates are used for both time-averaged flows and model parameters.

With this in hand, we compare the prediction and UQ of TKE from the proposed

model MA and the independent model M0 (see Theorem 19) with the simulated TKE at

the validation setting. Figure 4.13 shows the predicted TKE κ̂(x, t) at probe 8 over the

fully-developed time-frame of t = 15 − 30 ms, along with the 90% lower pointwise con-

fidence band constructed using Theorem 21. Visually, the proposed model MA provides

122



Figure 4.13: Predicted TKE and lower 90% confidence band for MA and M0 at probe 8.

Table 4.3: Computation time for each step of the proposed emulator, parallelized over 200
processing cores.

Step Comp. time (mins)
CPOD extraction 33.91

Parameter estimation 11.31
Flow prediction 20.19

Total 65.41

an improved prediction of the simulated TKE than the independent model M0. As for the

confidence bands, the average coverage rate for MA over the fully-developed time-frame

(85.0%) is much closer to the desired nominal rate of 90% compared to that forM0 (73.8%).

The proposed model therefore provides a coverage rate closer to the desired nominal rate

of 90%. The poor coverage rate for the independent model is shown in the right plot of

Figure 4.13, where the simulated TKE often dips below the lower confidence band. By in-

corporating prior knowledge of flow couplings, the proposed model can provide improved

predictive performance and uncertainty quantification.

4.4.4 Correlation extraction

Finally, we demonstrate the use of the proposed model as a tool for extracting common flow

couplings on the design space. Setting the sparsity penalty λ so that only the top nine cor-
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Figure 4.14: Graph of selected flow couplings from T. Nodes represent CPOD modes, and
edges represent non-zero correlations.

relations are chosen, Figure 4.14 shows the corresponding graph of the extracted couplings

of CPOD modes. Nodes on this graph represent CPOD modes for each flow variable, with

edges indicating the presence of a non-zero correlation between two modes. Each con-

nected subgraph in Figure 4.14 is interpretable in terms of flow physics. For example, the

subgraph connecting u1, w1 and P1 (first modes for x-velocity, circumferential velocity and

pressure) makes physical sense, because u1 and w1 are inherently coupled by Bernoulli’s

equation for fluid flow [159], while w1 and P1 are connected by the centrifugal accelera-

tion induced by circular momentum of LOX flow. Likewise, the subgraph connecting T1,

ρ1 and w2 also provides physical insight: T1 and ρ1 are coupled by the equation of state and

conservation of energy, while ρ1 and w2 are connected by conservation of momentum.

The interpretability of these extracted flow couplings in terms of fundamental conser-

vation laws from fluid mechanics is not only appealing from a flow physics perspective,

but also provides a reassuring check on the estimation of the co-kriging matrix T. Recall

from the discussion in Section 4.3.2 that an accurate estimate of T is needed for the im-

proved predictive guarantees of Theorem 19 to hold. The consistency of the selected flow

couplings (and the ranking of such couplings) with established physical principles provides
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confidence that the proposed estimation algorithm indeed returns an accurate estimate of

T. These results nicely illustrate the dual purpose of the CPOD matrix T in our co-kriging

model: not only does it allow for more accurate UQ, it also extracts interesting flow cou-

plings which can guide further experiments.

4.4.5 Computation time

In addition to accurate flow emulation and physics extraction, the primary appeal of the

proposed emulator is its efficiency. Table 4.3 summarizes the computation time required

for each step of the emulation process, with timing performed on a parallelized system of

200 Intel Xeon E5-2603 1.80GHz processing cores. Despite the massive training dataset,

which requires nearly 100GB of storage space, we see that the proposed model can provide

accurate prediction, UQ and coupling extraction in slightly over an hour of computation

time. Moreover, because both CPOD extraction and parameter estimation need to be per-

formed only once, the surrogate model can generate flow predictions for hundreds of new

settings within a day’s time, thereby allowing for the exploration of the full design space in

practical turn-around times. Through a careful elicitation and incorporation of flow physics

into the surrogate model, we show that an efficient and accurate flow prediction is possible

despite a limited number of simulation runs, with the trained model extracting valuable

physical insights which can be used to guide further investigations.

4.5 Conclusions and future work

In this chapter, a new emulator model is proposed which efficiently predicts turbulent cold-

flows for rocket injectors with varying geometries. An important innovation of our work

lies in its elicitation and incorporation of flow properties as model assumptions. First,

exploiting the deep connection between POD and turbulent flows [131], a novel CPOD

decomposition is used for extracting common instabilities over the design space. Next,

taking advantage of dense temporal resolutions, a time-independent emulator is proposed
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that considers independent emulators at each simulation time-step. Lastly, a sparse covari-

ance matrix T is employed within the emulator model to account for the few significant

couplings among flow variables. Given the complexities inherent in spatio-temporal flows

and the massive datasets at hand, such simplifications are paramount for accurate flow pre-

dictions in practical turn-around times. This highlights the need for careful elicitation in

flow emulation, particularly for engineering applications where the time-consuming nature

of simulations limits the number of available runs.

Applying the model to simulation data, the proposed emulator provides accurate flow

predictions and captures several key metrics for injector performance. In addition, the pro-

posed model offers two appealing features: (a) it provides a physically meaningful quantifi-

cation of spatio-temporal uncertainty, and (b) it extracts significant couplings between flow

instabilities. A key advantage of our emulator over existing flow kriging methods is that

it provides accurate predictions using only a fraction of the time required by simulation.

This efficiency is very appealing for engineers, because it allows them to fully explore the

desired design space and make timely decisions.

Looking ahead, we are pursuing several directions for future research. First, while

the CPOD expansion appears to work well for cold-flows, the justifying assumption of

similar Reynolds numbers does not hold for more complicated (e.g., reacting) turbulent

flows. To this end, we are working on ways to incorporate pattern recognition techniques

[160] and machine learning methods [161] into the GP kriging framework to jointly (a)

identify common instability structures that scale non-linearly over varying geometries, then

(b) predict such structures at new geometric settings. The key hurdle is again computational

efficiency, and the treed GP models in [111] or the local GP models in [162] and [163]

appear to be attractive options. Some preliminary results on these extensions can be found

in [164] and [165]. Next, a new design is proposed recently in [61] which combines the

MaxPro methodology with minimax coverage, and it will be interesting to see whether such

designs can provide improved performance. Lastly, to evaluate the stability of new injector
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geometries, the UQ for the emulated flow needs to be fed forward through an acoustics

solver. Since each evaluation of the solver can be time-intensive, this forward uncertainty

propagation can be performed more quickly by reducing this UQ to a set of representative

points, and the support points in [72] can prove to be useful for conducting such a task.

The exploration of a physics-guided uncertainty quantification method is also of interest;

preliminary results on this can be found in [166] and [167].
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CHAPTER 5

MINIMAX AND MINIMAX PROJECTION DESIGNS USING CLUSTERING

5.1 Introduction

For a desired design space X⊆ Rp, a minimax distance design (or simply minimax design)

is the set of points which minimizes the maximum distance from any point in X to its

nearest design point. In other words, minimax designs provide a uniform coverage of

the design space X in worst-case scenarios, by ensuring every point in X is sufficiently

well-covered by a design point. The emphasis on mitigating worst-case scenarios allows

minimax designs to be applied in a wide range of settings. One such application is in

the field of computer experiments, where the goal is to construct a computationally cheap

emulator of an expensive simulator using a small number of simulation runs. By conducting

these simulations at the points of a minimax design, it can be shown [168] that the resulting

emulator minimizes worst-case prediction error. Minimax designs are also useful for sensor

allocation. In particular, by placing sensors according to a minimax design, the minimum

information sensed at any point can be maximized. This is particularly important in health

and safety monitoring (see, e.g., [169]), where failure to detect faults in any part of X

may result in catastrophic human or structural loss. Minimax designs are also useful for

resource allocation problems for which an equitable distribution of limited resources is

desired [170].

Despite its many uses, there has been little algorithmic developments for computing

minimax designs [171]. A major reason for this is that, when X is a continuous space, the

minimax objective (introduced later in Section 2) requires evaluating the supremum over

The paper based on this chapter will appear in Journal of Computational and Graphical Statistics.
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an infinite set, which is costly to approximate. Some existing work include the seminal

paper on minimax designs by [168] and the minimax Latin hypercube designs proposed

by [172], but both papers only consider two-dimensional designs with restricted design

sizes. This greatly limits the applicability of these methods in practice. There has also

been some work on minimax designs when X is approximated by a finite set of points.

For example, [173] studied these designs in the context of two-level factorial experiments,

and [174] proposed a set-covering binary integer program (BIP) for computing minimax

designs when points restricted to a finite candidate set of size N < ∞. As we show later,

BIP can be very time-consuming and provides poor minimax designs for high-dimensional

regions. In this chapter, we propose a hybrid clustering algorithm which can generate near-

optimal minimax designs efficiently, both for large design sizes and in high-dimensions.

Although most clustering-based designs are not intended for minimax use, there are two

reasons for discussing and comparing these designs in this chapter. First, an understanding

of clustering-based designs allows us to better motivate the proposed minimax clustering

algorithm. Second, since the proposed algorithm is similar to the popular Lloyd’s algorithm

[175, 8] used in k-means clustering, our simulation studies show that many clustering-

based designs indeed possess good minimax properties, and it would be worthwhile to use

these designs as a comparison benchmark. The use of clustering in experimental design

dates back to [6] and [7], who proposed designs for optimal stratified sampling. K-means

clustering using Lloyd’s algorithm is also employed for generating a variety of designs,

such as principal points [3], minimum-MSE quantizers [176] and mse-rep-points [2]. To

foreshadow, we show later that minimax designs can be obtained using a modification

of Lloyd’s algorithm. More recent applications of clustering in design include the Fast

Flexible space-Filling (FFF) designs proposed by [177], which make use of hierarchical

clustering to generate space-filling designs for computer experiments. A more in-depth

discussion of these designs is provided in Section 2.

The chapter is outlined as follows. To better motivate the need for minimax designs,
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Section 2 begins with an overview of existing methods, then compares these methods with

the proposed algorithm for a real-world example on air quality monitoring. Section 3

presents the new hybrid clustering algorithm for generating minimax designs, and provides

some theoretical results on its correctedness and running time. Section 4 then outlines

some numerical simulations comparing the proposed method with existing algorithms for

a variety of design spaces. Section 5 introduces a new type of experimental design called

minimax projection designs, which are obtained by performing a simple refinement step on

a minimax design. Finally, Section 6 discusses some future research directions.

5.2 Background and motivation

We begin by formally defining a minimax design:

Definition 13. [168] Let X ⊆ Rp be a desired design space. An n-point minimax design

on X is defined as the optimal solution of

argmin
Dn∈Dn

sup
x∈X
‖x−Q(x, Dn)‖, (5.1)

where Dn ≡ {{mi}ni=1 : mi ∈ X} is the set of all unordered n-tuples on X, and

Q(x, Dn) ≡ argminz∈Dn ‖x− z‖ returns the nearest design point to x under norm ‖ · ‖.

For the remainder of this chapter, ‖ · ‖ is taken to be the Euclidean norm ‖ · ‖2, although

the proposed algorithm can easily be generalized to other norms.

This section begins by detailing the existing methods for generating minimax designs

mentioned in the Introduction. A real-world application on air monitoring is then presented

to motivate the importance of minimax designs in practice.

5.2.1 Existing algorithms

We first introduce the BIP algorithm in [174], which generates minimax designs on the

finite design space X = {yi}Ni=1. Let I1, · · · , IN be binary decision variables, with Ij = 1
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indicating point j is included in the design and Ij = 0 otherwise. Also, let Ωi denote the

index set of points in Xwith (Euclidean) distance at most S. The BIP algorithm optimizes

the following problem:

z(S) = min
I1,··· ,IN

N∑
j=1

Ij s.t.
∑
j∈Ωi

Ij ≥ 1, i = 1, · · · , N, Ij ∈ {0, 1}, j = 1, · · · , N,

dij = ‖yi − yj‖2, Ωi = {j : dij ≤ S, j = 1, · · · , N}.
(5.2)

In words, the optimization in (5.2) chooses the smallest number of design points from X,

denoted as z(S), needed to ensure all points in X are at most a distance of S away from

its nearest design point. The n-point minimax design can then be obtained by finding the

smallest radius S for which the optimal design size z(S) satisfies z(S) = n. When the

candidate points {yj}Nj=1 are, in some sense, representative of a continuous design space,

the design generated by BIP can be used to approximate the minimax design in (5.1).

Unfortunately, BIP has a major caveat which greatly limits its applicability in practice:

the optimization in (5.2) is computationally tractable only when the number of candidate

points N is small. For example, due to memory and time constraints, N cannot exceed

1,000 for most desktop computers. In this sense, BIP is not only computationally demand-

ing, but provides poor minimax designs when p is large, since 1,000 points are insufficient

for representing a high-dimensional space. This is illustrated in the simulations in Section

4.

Next, we discuss two types of clustering-based designs: principal points [3] and FFF

designs [177]. Assume the design space X is convex and bounded, and let U(X) denote

the uniform distribution on X. Just as minimax designs are defined as a minimizer of

the minimax objective in (5.1), the principal points of U(X) are similarly defined as a

minimizer of the integrated squared-error criterion:

argmin
Dn∈Dn

∫
X

‖x−Q(x, Dn)‖2
2 dx, (5.3)
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where Dn and Q(x, Dn) are defined as in (5.1). In words, principal points aim to provide a

uniform coverage of X by ensuring that, for a point uniformly sampled on X, the expected

squared-distance to its closest design point is minimized. Principal points are also known

as minimum-MSE quantizers in signal processing literature [176], and mse-rep-points in

quasi-Monte Carlo literature [2].

To compute principal points, [178] proposed the following two-step algorithm. First,

generate a large random sample {yj}Nj=1
i.i.d.∼ U(X), along with an initial design {mi}ni=1

i.i.d.∼

U(X). K-means clustering using Lloyd’s algorithm [175, 8] is then performed with the

large sample {yj}Nj=1 as clustering data. In particular, Lloyd’s algorithm iterates the fol-

lowing two updates until design points converge: (a) each sample point in {yj}Nj=1 is first

assigned to its closest design point; (b) each design point is then updated as the arithmetic

mean of sample points assigned to it. The converged design is then taken as the princi-

pal points of U(X). A similar algorithm is used in the popular Linde-Buzo-Gray (LBG)

algorithm [176] for generating minimum-MSE quantizers.

Justifying why such an algorithm provides locally optimal solutions of (5.3) requires

two lines of reasoning. First, using the random sample {yj}Nj=1, the Monte Carlo approxi-

mation of (5.3) becomes:

min
γ,m1,··· ,mn

1

N

n∑
i=1

N∑
j=1

γij‖yj −mi‖22 s.t. γij ∈ {0, 1}, i = 1, · · · , n, j = 1, · · · , N ;

mi ∈ Rp, i = 1, · · · , n;

n∑
i=1

γij = 1, j = 1, · · · , N.

(5.4)

Here, γ = {γij} is the set of binary decision variables, with γij = 1 indicating the assign-

ment of sample point yj to design point mi. These binary variables serve the same role as

Q(x, Dn) in (5.3), namely, to assign each point in X to its closest design point. Likewise,

the decision variables {mi}ni=1 correspond to the design optimization of Dn ∈ Dn in (5.3).

Second, the two updates in Lloyd’s algorithm iteratively optimize the assignment variables
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{γij} and design points {mi} in (5.4) respectively, while keeping other decision variables

fixed. Specifically, by assigning each sample point yj to its closest design point mi, the

assignment variables {γij} in (5.4) are optimized for a fixed design {mi}. Similarly, by

updating each design point mi as the arithmetic mean of sample points assigned to it, the

design {mi}ni=1 in (5.4) is optimized for fixed assignment variables. Iterating these updates

until convergence therefore returns a locally optimal design for (5.3).

The FFF designs proposed by [177] are of a similar flavor to principal points. These

designs are generated by first obtaining a large sample {yj}Nj=1
i.i.d.∼ U(X), conducting hi-

erarchical clustering with Ward’s minimum-variance criterion [179] to form n clusters of

{yj}Nj=1, then using cluster centroids as design points. The computation time of FFF de-

signs can be shown to be O(pN2 logN) [180], which suggests that, although these designs

can be generated efficiently in high-dimensions for a fixed sample size N , its computa-

tion may be prohibitive when N increases. To contrast, the proposed algorithm generates

minimax designs efficiently both in high-dimensions and for large sample sizes.

In this chapter, we compare the minimax performance of BIP designs, principal points

and FFF designs to the designs generated by the proposed method. To reiterate, while

the latter two designs are not intended for minimax use, they are included to provide a

benchmark for our algorithm, and to show that such designs indeed provide decent minimax

performance.

5.2.2 Motivating example: Air quality monitoring

To motivate the use of minimax designs in real-world situations, consider the problem of

air quality monitoring in the state of Georgia. With wildfire occurrences and air pollution

levels on the rise in many parts of the United States [181], there is an increasing need

for precise air quality monitoring, both for supporting warning systems and for guiding

public health and policy decisions. To this end, many states have adopted the Ambient

Monitoring Program (AMP), which requires hourly reporting of concentration levels for
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Figure 5.1: Four different 20-point designs for the state of Georgia. The red line on each
plot connects the point in Georgia furthest from the design to its nearest design point, with
its length equal to the minimax criterion of the design. Of these four designs, the new
method MMC-PSO provides the best minimax design.

six key air pollutants. Unfortunately, only a small number of monitoring stations can be

set-up for each state, since the building and maintenance of these stations can be very

expensive. As a result, there are only 30 such stations situated in the state of Georgia [182].

A key problem then is to allocate these limited stations in such a way that each part of the

state is covered sufficiently well by a station. The optimal allocation scheme, by definition,

is that provided by a minimax design.

Figure 5.1 plots the 20-point designs generated by the three existing methods: BIP,

principal points and FFF, along with the design generated by the proposed algorithm MMC-

PSO. The red line on each plot connects the point in Georgia furthest from the design to

its nearest design point. Note that the minimax criterion in (5.1) (reported at the top of

each plot) corresponds to the length of this line. Two key observations can be made here.

First, principal points and MMC-PSO appear to provide the best visual uniformity of the

four methods, whereas the design generated by BIP appears to be visually non-uniform.

Second, MMC-PSO provides the lowest minimax distance of the four methods, which

illustrates the improvement that the proposed method offers over existing methods. We

show that this improvement holds for a wide range of design regions in Section 4.
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5.3 Methodology

In this section, we first present the minimax clustering algorithm as a generalization of

Lloyd’s algorithm, then establish theoretical results for the correctedness and running time

for the proposed method. Finally, we introduce a global optimization modification for

minimax clustering, which allows near-optimal minimax designs to be generated.

5.3.1 Minimax clustering

To begin, we introduce a new type of center for a finite set of points:

Definition 14. For a finite set of m points Z= {zi}mi=1 ⊆ Rp, its Cq-center is defined as:

argmin
z∈Rp

Dq(z; Z) ≡ argmin
z∈Rp

1

mq

m∑
i=1

‖z− zi‖q2. (5.5)

Cq-centers can be seen as Fréchet means [183], which are of the form:

argmin
z∈Rp

m∑
i=1

wid(z, zi),

with weights wi = 1/(mq) and distance function d(x,y) = ‖x − y‖q2. With q = 2,

the Cq-center becomes the arithmetic mean, used for updating cluster centers in Lloyd’s

algorithm. More importantly, as q → ∞, the Cq-center returns the point which minimizes

the maximum distance between it and a point in Z. To foreshadow, C∞-centers will be

used in place of arithmetic means in the proposed clustering scheme.

The intuition for minimax clustering can then be presented by direct analogy to prin-

cipal points. Consider the minimax objective in (5.1), and note that for sufficiently large

choices of q > 0, this objective can be approximated as:

argmin
Dn∈Dn

(∫
X

‖x−Q(x, Dn)‖q2 dx
)1/q

, (5.6)
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Algorithm 7 Minimax clustering
1: function MMC({mi}ni=1, N, q, tmMc, εin) . {mi}ni=1 - initial design, tmMc - max. iterations
• Initialize {yj}Nj=1 using a Sobol’ sequence

2: repeat
• For j = 1, · · · , N , assign yj to its closest design point in Euclidean norm.
• For i = 1, · · · , n, update mi ← Cq-AGD(Zi, q, εin), where Zi is the set of points assigned
to mi

• t← t+ 1.
3: until design points converge OR t ≥ tmMc.
• return converged design {mi}ni=1.

In practice, q should be large enough to provide a good approximation of (5.1), yet small

enough to avoid numerical instability. The choice of q is discussed further in Section 3.2.1.

The similarities between the approximation (5.6) and the integrated squared-error (5.3)

allows for a modification of Lloyd’s algorithm to generate minimax designs. First, generate

a large sample {yj}Nj=1
i.i.d.∼ U(X), along with initial cluster centers {mi}ni=1

i.i.d.∼ U(X). The

Monte Carlo approximation of (5.6) becomes:

min
γ,m1,··· ,mn

1

N

n∑
i=1

N∑
j=1

γij‖yj −mi‖2q s.t. γij ∈ {0, 1}, i = 1, · · · , n, j = 1, · · · , N ;

mi ∈ Rp, i = 1, · · · , n;

n∑
i=1

γij = 1, j = 1, · · · , N.

(5.7)

where γ = {γij} is again the set of binary assignment variables, and {mi}ni=1 the set of

design points. Minimax clustering then iteratively applies the following two updates until

design points converge: (a) each sample point in {yj}Nj=1 is first assigned to its closest

design point, which optimizes the assignment variables {γij} in (5.7) for a fixed design

{mi}; (b) each design point is then updated as the C(q)-center of points assigned to it,

which optimizes the design {mi}ni=1 in (5.7) for fixed assignments. By iterating these

two updates until convergence, one should obtain a locally-optimal minimax design. The

above procedure, which we call minimax clustering (or MMC for short), is summarized in

Algorithm 7.

In our implementation, deterministic low-discrepancy sequences [17] are used in place
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of random samples for {yj}Nj=1, since such sequences provide a better approximation of

integrals compared to Monte Carlo methods. Assume for now that the design space X is

[0, 1]p, the unit hypercube in Rp. We employ a specific type of low-discrepancy sequence

in Algorithm 7 called a Sobol’ sequence [24], which can be generated efficiently using

the function sobol in the R package randtoolbox [52]. Section 4.2 provides a brief

discussion on low-discrepancy sequences for general design spaces.

5.3.2 Convergence results

The above discussion still leaves two questions unanswered. First, how can Cq-centers

computed efficiently? Second, does minimax clustering indeed converge in finite iterations

to a local optimum, and if so, at what rate? These concerns are addressed in this subsection.

Since the discussion below is quite technical, readers interested in the hybridization

of MMC with particle swarm should skip to Section 5.3.3. Some background readings

on convex programming (e.g., [184] and [185]) may also be useful for understanding the

developments in this subsection. For brevity, proofs are deferred to the Appendix.

Computing Cq-centers

We first present an algorithm for computing Cq-centers, and prove that this algorithm con-

verges quickly even when the number of points m or dimension p become large. The

following theorem shows that the objective Dq(z; Z) in (5.5) is strictly convex, and that

the Cq-center of Z is unique and contained in the convex hull of Z, defined as conv(Z) =

{z =
∑m

i=1 αizi : αi ≥ 0,
∑m

i=1 αi = 1}.

Theorem 22. Let Z = {zi}mi=1 and let q ≥ 2. Then Dq(z; Z) is strictly convex in z.

Moreover, the Cq-center Cq(Z) in (5.5) is unique, and contained in conv(Z).

Next, recall that a function h : Rp → R is β-Lipschitz smooth (or simply β-smooth) if:

‖∇h(z)−∇h(z′)‖2 ≤ β‖z− z′‖2,
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Algorithm 8 Computing Cq-centers

1: function Cq-AGD({zi}mi=1, q, εin) . εin - desired tolerance
• Set t = 1 and initialize starting points z[1] ← 1

m

∑m
i=1 zi, u[1] ← 1

m

∑m
i=1 zi.

• Initialize the sequences {λt}∞t=0 and {γt}∞t=1 from (5.9).
• Compute the Lipschitz constant β̄ in (5.8).

2: while ‖z[t] − z[t−1]‖2 < εin do
• Update u[t+1] ← z[t] − 1

β̄

(
1
m

∑m
i=1 ‖z[t] − zi‖q−2

2 (z[t] − zi)
)

.

• Update z[t+1] ← (1− γt)u[t+1] + γtu
[t].

• t← t+ 1.
• return z[t].

where∇h is the gradient of h. Likewise, h is µ-strongly convex if:

(∇h(z)−∇h(z′))T (z− z′) ≥ µ‖z− z′‖2.

We show next that, for some specified β̄ > 0 and µ̄ > 0, the objective function Dq(z; Z) is

β̄-smooth and µ̄-strongly convex.

Theorem 23. For q ≥ 4, Dq(z; Z) is β̄-smooth and µ̄-strongly convex for z ∈ conv(Z),

where:

β̄ = (q − 1)(q − 2) max
j=1,··· ,m

Dq−2(zj; Z) > 0 and µ̄ = (q − 2)Dq−2(Cq−2(Z); Z) > 0.

(5.8)

The β̄-smoothness and µ̄-strong convexity in Theorem 23 allow us to employ a quick

convex optimization technique called accelerated gradient descent [186], or AGD, to com-

pute Cq-centers. The implementation of AGD is straightforward. Suppose h : Rp → R, the

desired objective to minimize, is twice-differentiable, convex and β-smooth. Let u[t] ∈ Rp

be the t-th solution iterate, and let z[t] ∈ Rp be an intermediate vector. Also, define the

sequences {λt}∞t=0 and {γt}∞t=1 by the recursion equations:

λ0 = 0, λt =
1 +

√
1 + 4λ2

t−1

2
, γt =

1− λt
λt+1

for t = 1, 2, 3, · · · . (5.9)
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AGD then iterates the following two updates until the solution sequence {u[t]}∞t=1 con-

verges:

u[t+1] ← z[t] − 1

β
∇h(z[t]), z[t+1] ← (1− γt)u[t+1] + γtu

[t]. (5.10)

A direct application of AGD for the optimization in (5.5) is provided in Algorithm 8.

One may perhaps ask why this accelerated scheme is preferred over traditional line-

search methods (see, e.g., [79]), in which the solution sequence {u[t]}∞t=1 is updated by the

line-search optimization:

u[t+1] = u[t] − ηt∇h(u[t]), ηt = argmin
η>0

h(u[t] − η∇h(u[t])). (5.11)

In other words, for a given iterate u[t], the next iterate u[t+1] in line-search methods is

obtained by searching for the optimal step-size ηt to move along the direction of its negative

gradient −∇h(u[t]). The advantages of AGD are two-fold. First, AGD exploits the β-

smoothness and µ-convexity of (5.5) to achieve an optimal rate of convergence among

gradient-based optimization methods [187]. Second, the step-size optimization in (5.11)

requires multiple evaluations of the objective h and its gradient∇h. Since the evaluation of

bothDq(z; Z) and∇Dq(z; Z) requireO(mp) work, such evaluations become prohibitively

expensive to compute when either the number of points m or dimension p are large. AGD

avoids this problem by replacing the optimized step-size ηt with a fixed stepsize 1/β̄.

Using Theorem 23, the correctedness and running time of Algorithm 8 can be estab-

lished.

Corollary 3. For Z= {zi}mi=1 and q ≥ 4, consider the sequence of solutions {z[t]}∞t=1 from

Algorithm 8. To guarantee an εin-accuracy for the objective in (5.5), i.e., |Dq(z
[t]; Z) −

Dq(Cq(Z); Z)| < εin, the computation work required is:

O

(
mp
√

(q − 1)κq−2(Z) log
1

εin

)
, where κq(Z) =

maxj=1,··· ,mDq(zj; Z)

Dq(Cq(Z); Z)
(5.12)
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is the ratio of maximum and minimum values of Dq(z; Z) for z ∈ conv(Z).

Several illuminating observations can be made from this corollary. First, consider-

ing only the error tolerance εin, the computational work required for AGD to achieve εin-

accuracy is O(log(1/εin)), which is sizably smaller than the O(1/εin) work needed for

standard line-search methods [79]. Hence, Algorithm 8 not only avoids multiple evalu-

ations of the objective and gradient, but also converges with fewer iterations compared

to line-search methods. Second, the bound in (5.12) grows on the order of
√
q, meaning

Algorithm 8 takes longer to terminate as q grows larger. This illustrates the trade-off be-

tween performance and accuracy: a larger value of q ensures a better approximation of the

minimax criterion (5.6), but requires longer time to compute. In our simulations, q = 10

appears to provide a good compromise in this trade-off. Lastly, the bound in (5.12) grows

as κq−2(Z) increases, meaning Cq-centers may take longer to compute when points in Z

are more scattered.

Correctedness and running time of minimax clustering

The correctedness and running time of minimax clustering can then be established by direct

analogy to that for Lloyd’s algorithm. This is formally demonstrated below.

Theorem 24. Algorithm 7 terminates after at most Nn iterations. Moreover, assuming

n ≤ N1/2, each iteration of the loop in Algorithm 7 requires O
(
N3/2p

√
q − 1 log 1

εin

)
work, where εin is the inner tolerance in Corollary 3. Lastly, when Cq-center updates in

(5.5) are exact, Algorithm 7 also returns a locally optimal design for (5.7).

Unfortunately, it is difficult to establish a bound on the number of iterations required

for termination of Algorithm 7, since there is still a gap between theory and practice for

the same problem in Lloyd’s algorithm. Theoretical work ([188, 189]) suggests that in the

worst-case, the number of iterations can grow rapidly in the number of clustering points N .

However, in practice, Lloyd’s algorithm nearly always terminates after several iterations,
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leading many practitioners (see, e.g., [190]) to evaluate total running time by the running

time of one iteration. From our simulations, Algorithm 7 also converges after a small

number of iterations, so we similarly use the single-iteration time in Theorem 24 to measure

for total running time of minimax clustering.

In this light, the running time of Theorem 24 illustrates two computational advantages

of minimax clustering. First, since this time is linear in p, minimax clustering can be

performed efficiently in high-dimensions, which is similar to what is observed for FFF

designs in Section 2.1. Furthermore, the running time of minimax clustering grows at a rate

of N3/2, which is much faster than the O(N2 logN) work for FFF designs. Hence, a larger

number of approximating points N can be used in minimax clustering, suggesting that the

proposed method provides higher quality minimax designs when X is high-dimensional.

As we see later in Section 4, this is indeed the case.

5.3.3 Minimax clustering with particle swarm optimization

Due to its greedy nature, Lloyd’s algorithm has two drawbacks: it is sensitive to choices of

initial cluster centers, and may return a locally optimal design which is far from the global

design [191]. Since minimax clustering employs the same greedy steps, it suffers from the

same downfalls. A simple but computationally expensive remedy is to perform Lloyd’s al-

gorithm multiple times with different initial centers, then pick the solution with the small-

est criterion in (5.4). More elaborate methods requiring less computation include kernel

k-means [192], sequential k-means [193], and combining k-means with particle swarm op-

timization [194]. To retain the iterative nature of Algorithm 7, we adopt the latter hybrid

approach for global optimization of minimax clustering.

Particle swarm optimization [195], or PSO for short, is a stochastic, derivative-free al-

gorithm for global minimization of a general function h. This algorithm can be described

as follows. First, a representative set of s feasible solutions, or a swarm of particles, is

chosen. Each particle is then guided towards the solution with lowest objective encoun-
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Algorithm 9 Minimax clustering with PSO
1: function MMC-PSO(n,N, q, s, tmMc, tpp, εin)
• Generate {yj}Nj=1 using a Sobol’ sequence and initial design particles Dk = {mk

i }ni=1, k =
1, · · · , s using scrambled Sobol’ sequences.
• Define hq as the objective in (5.7), and h as the minimax criterion in (5.1) with X= {yj}Nj=1.
• Minimax clustering PSO: Initialize local-best designs Lk ← Dk, k = 1, · · · , s, and global-
best design G← argminDk

hq(Dk). Set initial velocities vk ← 0, k = 1, · · · , s.
2: for t = 1, · · · , tmMc do . tmMc - max. PSO iterations
3: for k = 1, · · · , s do . For each design particle...
• Dk ← MMC(Dk, N, q, 1, εin) . One step of minimax clustering
• vk ← wvk + c1r1(Lk − Dk) + c2r2(G− Dk), r1, r2

i.i.d.∼ U [0, 1]np . Update vel.
• Dk ← Dk + vk . Move particle towards best positions

4: if hq(Dk) < hq(Lk) then Lk ← Dk . Update local-best designs

5: if hq(Dk) < hq(G) then G← Dk . Update global-best design

• Post-processing: Reset global-best design G← argminDk
h(Dk) and velocities vk ← 0.

6: for t = 1, · · · , tpp do . tpp - max. post-proc. iterations
7: for k = 1, · · · , s do . For each design particle...
• vk ← wvk + c1r1(Lk − Dk) + c2r2(G− Dk), r1, r2

i.i.d.∼ U [0, 1]np . Update vel.
• Dk ← Dk + vk . Move particle towards best positions

8: if h(Dk) < h(Lk) then Lk ← Dk . Update local-best designs
9: if h(Dk) < h(G) then G← Dk . Update global-best design
• return global-best design G.

tered along its own path (called the local-best solution), as well as the solution with lowest

objective over the entire swarm (called the global-best solution). In this sense, PSO mimics

the behavior of a bird flock searching for food: each bird naturally flies towards the closest

position to a food source explored by the flock, but is also guided by the closest position

explored along its own flight. When the optimization problem at hand has some desirable

structure, PSO can be combined (or hybridized) with other algorithms to provide quicker

convergence. We therefore propose a hybridization scheme below which combines PSO

with the minimax clustering algorithm MMC.

The details are as follows. First, generate the set of approximating points {yj}Nj=1 using

a Sobol’ sequence, and generate the s initial designs (forming the particle swarm) using

scrambled Sobol’ sequences [196]. In non-technical terms, these scrambled sequences pro-

vide different initial designs in the swarm, with each retaining its low-discrepancy property.

Next, repeat the following steps:
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• For each design particle, do one iteration of minimax clustering.

• Move each design particle towards to its local-best and global-best designs.

• Update the local-best and global-best designs for the desired objective in (5.7).

Finally, as a post-processing step, the general version of PSO described previously is ap-

plied to the minimax objective (5.1), with X approximated by {yj}Nj=1. The above proce-

dure, which we call MMC-PSO, is detailed in Algorithm 9. MMC-PSO will be used to

generate the minimax designs in our simulations later.

Three parameters are used to control the PSO behavior of MMC-PSO: c1 and c2, which

account for the velocities at which each particle drifts towards its local-best and global-best

solutions respectively, and w, which controls each particle’s momentum from one iteration

to the next. For the PSO of Lloyd’s algorithm proposed by [194], the authors recommend

the setting of w = 0.72 and c1 = c2 = 1.49, which can be shown to provide quick empirical

convergence. Since this variant is similar to MMC-PSO, we adopt the same choices here.

Other settings have also been tested, but we found this setting to provide the best minimax

performance.

To illustrate the ability for MMC-PSO to generate near-global minimax designs, we

compare the 7-point design for p = 2 from MMC-PSO with the global minimax design in

[168]. Here, N = 105 approximating points are used, along with s = 10 PSO particles.

The maximum iteration counts are set at tmMc = 300 and tpp = 300. The left plot in

Figure 5.2 compares the design generated by MMC-PSO with the global minimax design.

Visually, these two designs are nearly identical. Objective-wise, the minimax distance

(5.1) for MMC-PSO is within 0.001 of the global minimum, suggesting that the proposed

algorithm indeed provides near-global optimization of (5.1). Similar results also hold for

the remaining designs in [168], but these are not reported for brevity.

The right plot in Figure 5.2, which outlines the 7-point design from Algorithm 7 (min-

imax clustering without PSO) and the global-best design G in MMC-PSO before post-

processing, highlights the effectiveness of both PSO and post-processing. From this figure,
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Figure 5.2: (Left) The 7-point design using MMC-PSO and the global minimax design in
[168]. Since these designs are nearly identical, this demonstrates the near-global minimax
performance of MMC-PSO. (Right) The 7-point design using MMC and the global-best
design G in MMC-PSO before post-processing. The reduction in minimax distance for the
latter design highlights the need for PSO.

G clearly gives a better approximation of the global design than mMc, both visually and

criterion-wise, which suggests that the proposed PSO for minimax clustering is indeed ef-

fective. However, there is one glaring problem with G: design points are pushed away from

the boundaries of [0, 1]2, whereas two design points can be found on the top and bottom

boundaries for the global minimax design. The post-processing step on G, which performs

PSO directly on the minimax criterion (5.1), allows design points to move towards their

globally optimal positions on design boundaries.

5.4 Numerical simulations

In this section, we compare the minimax performance of designs using MMC-PSO with

the existing methods in Section 2.1. The comparison is first made on the unit hypercube

[0, 1]p, then on the unit simplex and ball. This section concludes by returning to the original

motivating example on air quality monitoring.
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Figure 5.3: Minimax criterion for various design sizes on [0, 1]2 and [0, 1]8. Designs gen-
erated by MMC-PSO consistently give the lowest minimax distance for all design sizes.

5.4.1 Minimax designs on [0, 1]p

We first illustrate the minimax performance and computation time of MMC-PSO on the

unit hypercube [0, 1]p in p = 2, 4, 6 and 8 dimensions. For brevity, only results for p =

2 and p = 8 are reported here, with additional results deferred to the Appendix. The

simulation settings are as follows. For MMC-PSO, we generate n = 20, 30, · · · , 100-point

designs using s = 10 PSO particles with N = 105 approximating points. The maximum

iterations in Algorithm 9 are set at tmMc = 500 and tpp = 250. Our implementation of

MMC-PSO is written in C++, and is available in the R package minimaxdesign [197]

in CRAN. For principal points, N = 105 approximating points are also used to provide a

fair comparison with MMC-PSO. Lastly, for BIP, designs of the same sizes are generated

with the candidate set taken from the first 1,000 points of the Sobol’ sequence. FFF designs

are also generated from JMP 12 using the cluster centers option.

For each design, Figure 5.3 plots the minimax criterion (5.1) with X= [0, 1]p approxi-

mated by the first 107 points from the Sobol’ sequence. For p = 2, designs generated using

MMC-PSO have the lowest minimax distance of the four methods for all design sizes n,

which shows the proposed method indeed provides better minimax designs compared to

existing methods. FFF designs, on the other hand, have the largest minimax distance for
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Figure 5.4: Four different 50-point designs for [0, 1]2. The red line on each plot connects
the point in [0, 1]2 furthest from the design (marked by ‘x’) to its nearest design point, with
its length equal to the minimax criterion. The proposed method MMC-PSO again provides
the best minimax design.

nearly all design sizes. Surprisingly, designs generated using BIP also have large min-

imax distances, suggesting that a candidate set of 1,000 design points is insufficient for

representing the unit hypercube even in 2 dimensions. On the other hand, even though

principal points provide relatively higher minimax distance compared to MMC-PSO, it is

consistently better than BIP or FFF. Hence, although principal points are not intended for

minimax use, the minimax performance of these designs can be quite good. From Figure

5.4, which plots the 50-point designs for the four methods, principal points and MMC-PSO

also enjoy a more visually uniform coverage of [0, 1]2 compared to FFF and BIP.

From the right plot of Figure 5.3, similar results hold for p = 8 as well. MMC-PSO

again provides the best minimax designs, with the improvement gap in minimax distance

greater than that for p = 2. This suggests that MMC-PSO provides an increasing improve-

ment over existing methods as dimension p increases. A contributing factor is the ability

for MMC-PSO to manipulate a larger number of approximating points N compared to FFF

or BIP, an observation which was made in Section 3.2.2. This then allows the proposed

algorithm to provide better minimax designs in high-dimensions.

For computation time, Figure 5.5 plots the time (in log-seconds) required for each of

the four methods, with computation performed on a 6-core 3.2 Ghz desktop computer.
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Figure 5.5: Time (in log-seconds) required for generating designs on [0, 1]p. The computa-
tion times for MMC-PSO are slightly higher than principal points and FFF, but lower than
BIP.

Since the BIP optimization in (5.2) searches for the smallest design for a fixed minimax

criterion, instead of the smallest criterion for a fixed design size, the timing for each BIP

design is instead reported as the average time needed to generate all n = 20, 30, · · · , 100-

point designs. From Figure 5.5, the computation time for MMC-PSO appears to be quite

reasonable. For p = 2, this time ranges from 15 to 90 seconds, whereas for p = 8, this

time ranges from 4 to 8 minutes. Not surprisingly, BIP takes the longest computation

time, requiring nearly 30 minutes for each design. FFF designs can be computed faster

than MMC-PSO, but provide inferior minimax performance since fewer approximating

points can be used. Lastly, although principal points provide higher minimax distances

than MMC-PSO, they can be computed the quickest of the four methods. These points can

therefore be used as crude minimax designs when computation time is limited.

5.4.2 Minimax designs on convex and bounded sets

Next, we investigate the minimax performance of MMC-PSO for other convex and bounded

design regions. Although much of existing literature considers designs on [0, 1]p, designs

on other design regions are also of practical importance. For example, in studying the
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effects of temperature and pressure on injection molding, a hypercube design may be inap-

propriate since, from an engineering perspective, regions with high temperature and pres-

sure may cause combustion of molding material, and experimental runs allocated in these

regions therefore become wasted. MMC-PSO can be easily modified to generate minimax

designs on design regions Xwhich are convex and bounded. Convexity of X is necessary,

since it ensures the Cq-centers updates in MMC-PSO remain in X.

As mentioned previously, the key reason for using low-discrepancy sequences as the

representative sample {yj}Nj=1 is because such sequences provide a better approximation

of the integral in (5.6). The question is how to generate these sequences for non-hypercube

design regions, and to this end, this section is divided into two parts. First, when the Rosen-

blatt inverse transform for U(X) (defined later) is easy to compute, there is an easy way

to generate such sequences on X. We illustrate this by computing minimax designs on the

unit simplex and ball. When this transform is difficult to compute, uniform random sam-

pling can be used as a last resort. This latter scenario is demonstrated using the motivating

air quality example in Section 2.2.

Minimax clustering using the Rosenblatt transform

We begin by first defining the Rosenblatt transform tX:

Definition 15. Let X ⊆ Rp, and define the random vector X = (X1, · · · , Xp) ∼ U(X).

The Rosenblatt transform is defined as the transform tX : Rp → Rp satisfying:

(x1, · · · , xp) 7→ (y1, · · · , yp), where y1 = F1(x1), yi = Fi(xi|x1, · · · , xi−1), i = 2, · · · , p,

(5.13)

where F1(·) is the distribution function (d.f.) of X1, and Fi(·|x1, · · · , xi−1) is the condi-

tional d.f. of Xi given X1, · · · , Xi−1.

It can be shown [2] that the inverse Rosenblatt transform of a low-discrepancy sequence

on [0, 1]p also has low-discrepancy on X. Hence, when t−1
X can be easily computed, mini-
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Figure 5.6: Minimax criterion for various design sizes onA2, B2, A8 andB8. Designs from
MMC-PSO consistently give the lowest minimax distance for nearly all design sizes.

max designs can be generated with Algorithm 9 by simply taking the representative points

{yj}Nj=1 as the inverse transform of a Sobol’ sequence.

Fortunately, when X is regularly-shaped, closed-form equations exist for the inverse

Rosenblatt transform t−1
X . Transforms for common geometric shapes can be found in [2].

Using these equations, we generate minimax designs for the two regions:

1. The unit simplex in Rp: Ap ≡ {(x1, · · · , xp) ∈ Rp : 0 ≤ x1 ≤ · · · ≤ xp ≤ 1},

2. The unit ball in Rp: Bp ≡ {(x1, · · · , xp) ∈ Rp : x2
1 + · · ·+ x2

p ≤ 1}.

The simulation settings are the same as before, with the exception that the candidate

set for BIP is taken as the inverse transform of the first 1,000 points of a Sobol’ sequence.

Figure 5.6 plots the minimax criterion of designs for p = 2 and p = 8, and Figure 5.7 plots

the corresponding 80-point designs. Two interesting observations can be made. First, for

both p = 2 and p = 8, MMC-PSO provides the best minimax designs for every design
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Figure 5.7: Four different 80-point designs for A2 and B2. The red line connects the point
in X furthest from the design (marked by ‘x’) to its nearest design point, with its length
equal to the minimax criterion. The proposed method MMC-PSO again provides the best
minimax designs.

size n, which confirms the superiority of the proposed method in both low and high dimen-

sions. Second, compared to principal points, MMC-PSO performs much better for the unit

simplex Ap compared to the unit ball Bp. This can be intuitively justified by the fact that

both the arithmetic mean and C∞-center of a unit ball correspond to the same point, the

center of the ball. However, when the design region is highly asymmetric, these two centers

can indeed be quite different, which explains the sizable improvement of MMC-PSO over

principal points for the unit simplex Ap.
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Figure 5.8: Minimax criterion for various
design sizes on Georgia. Designs from
MMC-PSO give the best minimax designs
for all design sizes.

Figure 5.9: 50-point designs on Georgia
using MMC-PSO and MINIMAXPRO. The
refinement step in the latter corrects some
visual non-uniformities in the former de-
sign (circled in blue).

Back to the motivating example

When X is irregularly-shaped, the inverse transform t−1
X can be difficult to compute. In this

case, the approximating points {yj}Nj=1 can be generated using uniform random sampling

on X. We illustrate this using the earlier example of air quality monitoring in the state

of Georgia. Note that, while the state of Georgia is not convex, it is “convex enough” to

ensure Cq-centers remain in X, so the proposed method can still be applied.

Figure 5.8 compares the minimax performance of n = 20, 30, · · · , 100-point designs

generated on Georgia, with the 20-point designs plotted in Figure 5.9. The simulation set-

tings used here are the same as before. From the first figure, the minimax performance of

MMC-PSO is sizably lower than existing methods for all design sizes, which illustrates

the effectiveness of the proposed algorithm. One caveat of MMC-PSO, however, is that

the generated designs appear visually non-uniform. For example, the 50-point design from

MMC-PSO in the left plot of Figure 5.9 shows several design points huddled closely to-

gether (such as the pair of points circled in blue), despite the design having a low minimax

distance. One way to improve visual uniformity is to improve the uniformity of the design

when projected onto the horizontal or vertical axis. This can be accomplished by perform-
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ing the refinement step introduced in the following section. The right design in Figure 5.9,

obtained by applying this refinement to the left design, is more visually uniform compared

to the original design, despite having a slightly larger minimax distance. Users should

therefore apply this refinement depending on whether visual uniformity or minimaxity is

desired.

5.5 Minimax projection designs

As mentioned previously, minimax designs minimize the worst-case prediction error in

computer experiment emulation [168]. However, when a computer experiment has a large

number of input variables, minimax designs as defined in (5.1) may not be appropriate. This

is because, by the effect sparsity principle [68], only a few of these inputs are expected to

be active. Emulator designs in high dimensions should therefore provide not only good

minimax performance on the full space X, but also for projected subspaces of X. Recent

developments in this vein include the MaxPro designs proposed by [69], which minimize

the criterion:

n−1∑
i=1

n∑
j=i+1

1

dprod(mi,mj)
, dprod(mi,mj) =

p∏
k=1

(mik −mjk)
2, (5.14)

where mi = (mi1, · · · ,mip) denotes the i-th design point. Extending this idea, we present

below a new type of design called minimax projection designs, which are obtained by

refining the minimax design from MMC-PSO using the MaxPro criterion in (5.14).

In words, this refinement step improves projected minimaxity while maintaining the

low minimax distance of the original MMC-PSO design. The details are as follows. Let

D = {mi}ni=1 be the design generated by MMC-PSO. Define the minimax distance of each
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Algorithm 10 Minimax projection designs
1: function MINIMAXPRO(· · · ) . · · · - MMC-PSO params.
• Generate an n-point minimax design D = {mi}ni=1 ← MMC-PSO(· · · ).

2: repeat
3: for i = 1, · · · , n do
• Update {di}ni=1 in (5.15).
• Update d∗ = maxi di.
• Update mi by (5.16).

4: until design points converge.
• return miniMaxPro design {mi}ni=1.

design point mi as:

di = sup
x∈Xi
‖x−mi‖, where Xi = {x ∈ X : ‖x−mi‖ ≤ ‖x−mj‖, ∀j = 1, · · · , n}

(5.15)

is the collection of points in X closest in distance in mi. Note that the overall minimax

distance in (5.1) is simply the maximum of these distances, d∗ = maxi=1,··· ,n di. For each

point mi, the refinement step consist of two parts. First, compute the minimax distances

{di}ni=1 and d∗. Next, update mi by the optimization:

mi ← argmin
m∈Rp

n∑
j=1,j 6=i

1

dprod(m,mi)
s.t. ‖m−mi‖ ≤ d∗ − di, mi ∈ X. (5.16)

This update can be viewed as the block-wise minimization of the MaxPro criterion (5.14)

for the i-th design point mi, with the constraint ‖m−mi‖ ≤ d∗− di ensuring the updated

point is sufficiently close to the previous point. In our implementation, (5.16) is computed

using the R package nloptr [198]. Repeating this two-stage refinement for each design

point until convergence gives a point set which enjoys good space-filling properties af-

ter projections. Algorithm 10 summarizes the detailed steps for generating this so-called

minimax projection (miniMaxPro) design.

An appealing feature of miniMaxPro designs is that its projective space-fillingness does

not come at a cost of increased minimax distance! That is, the minimax distance of the

converged miniMaxPro design has the same minimax distance on X as the original design
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Figure 5.10: A 2-d projection of 60-point MMC-PSO and miniMaxPro designs. The re-
finement step in MINIMAXPRO improves projected minimaxity.

from MMC-PSO. This is stated formally in the following proposition:

Proposition 5. When {di}ni=1 and d∗ are computed exactly, the two-stage refinement in

lines 6 - 8 of Algorithm 10 does not increase the minimax distance of D in line 2.

The proof of this proposition relies on the constraint ‖m −mi‖ ≤ d∗ − di in (5.16); see

Appendix for details. In practice, {di}ni=1 and d∗ are estimated by appsroximating Xusing

a finite representative set {ym}Nm=1 (a Sobol’ sequence is used in our implementation), so

the overall minimax distance may increase after refinement. However, this increase is quite

small when the number of approximating points N is large (i.e., N = 105), as shown in the

simulations below.

To illustrate the effectiveness of this refinement, Figure 5.10 plots a two-dimensional

projection of the 60-point design from MMC-PSO on [0, 1]8 and its corresponding mini-

MaxPro design. The MMC-PSO design clearly has poor minimax coverage after projection

onto this 2-d subspace, with points closely focused around the four points (0.5±0.25, 0.5±
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0.25). The miniMaxPro design, on the other hand, exhibits much better minimax perfor-

mance after projection, which shows the refinement performs as intended.

Since one use of miniMaxPro designs is for computer experiment emulation, we com-

pare its performance with two existing computer experiment designs: the MaxPro de-

sign [69] and the FFF design [177]. Three metrics are used to evaluate projective space-

fillingness: mMk, avgk and Mmk, which are defined as:

mMk = max
r=1,··· ,(pk)

sup
x∈Pr(X)

{
1

n

n∑
i=1

1

‖x−Prmi‖2k

}−1/(2k)

,

avgk = max
r=1,··· ,(pk)

∫
Pr(X)

‖x−Q(x, {Prmi}ni=1)‖ dx and

Mmk = min
r=1,··· ,(pk)

1(
n
2

) {n−1∑
i=1

n∑
j=i+1

1

‖Prmi −Prmj‖2k

}−1/(2k)

.

Here, r = 1, · · · ,
(
p
k

)
enumerates all projections of X ⊆ Rp onto a subspace of dimen-

sion k, with Pr its corresponding projection operator. The metrics mMk and Mmk were

proposed in [69] to incorporate the minimax and maximin index of the design when pro-

jected into k dimensions. The last metric avgk measures the average distance to a de-

sign point when projected into k dimensions. Larger values of Mmk suggest better space-

fillingness in terms of maximin, whereas smaller values of mMk and avgk indicate better

space-fillingness in terms of minimax and average distance, respectively.

Figure 5.11 plots mMk, avgk and Mmk for the 60-point MaxPro, FFF, miniMaxPro

and the design from MMC-PSO (we refer to the latter as simply “minimax design” be-

low). Similar results hold for other design sizes, and are not reported for brevity. For the

minimax metric mMk, both the miniMaxPro and minimax designs enjoy sizably improved

performance in moderate dimensions (4 ≤ k ≤ 8). In lower dimensions (1 ≤ k ≤ 3), the

refinement step for the miniMaxPro design allows it to be comparable with MaxPro. For

the average distance metric avgk, the miniMaxPro design appears to be the best choice over

all projection dimensions. For the maximin metric Mmk, the minimax and miniMaxPro
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Figure 5.11: mMk, avgk and Mmk for four different 60-point designs on [0, 1]8. The pro-
posed miniMaxPro design provides the best performance for mMk and avgk, but performs
worse for Mmk.

designs give poorer performance to MaxPro. The refinement step for the latter, however,

allows for sizable improvements with respect to maximin. To summarize, miniMaxPro

designs appear to enjoy an improvement over existing designs in terms of projected mini-

max and average distance, but this comes at a cost of poorer performance for the projected

maximin criterion.

5.6 Discussion

Minimax designs, by minimizing the maximum distance from any point in the design space

X ⊆ Rp to its closest design point, provide uniform coverage of X in the worst-case.

Despite its many uses in computer experiments, optimal sensor placement and resource

allocation problems, there have been little work on generating these designs efficiently. In

this chapter, we propose a new algorithm called MMC-PSO for computing minimax de-

signs on convex and bounded design spaces, and demonstrate the efficiency of this method

in low and highdimensions. Simulations on the unit hypercube, the unit simplex and ball,

and the state of Georgia show that MMC-PSO provides better minimax designs compared

to existing methods in literature. A new experimental design, called miniMaxPro designs,

can then be constructed by refining the minimax design from MMC-PSO to ensure good

projective space-fillingness.
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Despite the developments in this chapter, there are still many avenues for further work.

One of these is exploring the properties of minimax designs when the Euclidean norm is

replaced by another norm for ‖ · ‖ in (5.1). Pursuing this may reveal better ways for gen-

erating designs in high-dimensions with good projective space-filling properties. Another

direction is to explore more sophisticated hybridization schemes (e.g., [199, 200]) for in-

corporating PSO within clustering algorithms. This allows better minimax designs to be

generated using less computational resources.
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CHAPTER 6

ACTIVE MATRIX COMPLETION WITH UNCERTAINTY QUANTIFICATION

6.1 Introduction

Low-rank matrices play an important role in a variety of applications in statistics, machine

learning and engineering. For many such applications, however, only a small portion of

matrix entries can be observed as data. The reasons for this are two-fold: the underlying

matrix X ∈ Rm1×m2 can be high-dimensional, or the cost of observing each entry can be

expensive. For example, in genetic studies, the expression levels of various genes across

different diseases can be viewed as a low-rank matrix [201]. Here, not only is such a

matrix high-dimensional (spanning millions of genes and thousands of diseases), but mea-

suring the expression level at each gene-disease pair also requires expensive experiments.

The problem of recovering the low-rank matrix X from noisy, incomplete observations is

known as noisy matrix completion [202]. In this chapter, we propose a novel, information-

theoretic approach for active sampling (or designing) of matrix entries in X via uncertainty

quantification (UQ), and demonstrate its effectiveness over random sampling for noisy ma-

trix completion.

In recent years, there has been significant progress on the topic of matrix completion,

particularly on theoretical properties of such a completion via convex optimization. This

includes the pioneering work of [203], [204] and [205], who established bounds on error

convergence under uniform random sampling and nuclear-norm minimization. The noisy

matrix completion problem – where matrix entries are observed with noise – has also re-

ceived considerable attention, with important theoretical results in [202, 206, 207], among

The paper based on this chapter has been submitted to IEEE Transactions on Signal Processing.
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others. We consider the latter noisy setting in our work.

This chapter presents a novel approach for designing the entries to observe in X for ma-

trix completion, with the goal of maximizing information on X via such samples. While

most of the matrix completion literature assumes that entries are sampled uniformly-at-

random, there have been some recent work on adaptive sampling schemes. [49] employed

several intuitive metrics for guiding sequential sampling. [208] used graph regularization

methods with a query-by-committee framework for sequential sampling. [209] investigated

the problem of active sequential sampling for completing positive semi-definite matrices.

[210] proposed a method for querying entries by evaluating the instability of an underly-

ing system of linear equations. Our approach differs from these works in several ways.

First, we offer an integrated approach to sampling and UQ, in that the uncertainties for

unobserved entries are employed within an integrated framework to guide active sampling.

Second, this framework yields new insights on the link between information-theoretic sam-

pling, compressive sensing, and statistical experimental design. Using such insights and

the so-called maximum entropy principle [211], we derive an efficient algorithm for active

sampling on X.

To learn this adaptive sampling scheme, the proposed method also makes use of a new

uncertainty quantification approach for noisy matrix completion. Here, UQ measures how

uncertain the completed matrix entries are from their true values, given a partial observation

of X. UQ plays a central role in many areas in engineering and applied math [212], and for

the matrix completion problem, this UQ can be nearly as valuable as the completed matrix

itself. In the earlier gene study example, the UQ of gene expression levels at unobserved

gene-disease pairs allows a biologist to test which genes are most influential for a particular

disease. One way to perform UQ is via a stochastic model on X; in this sense, Bayesian

matrix completion methods [213, 214, 34] can be used to quantify uncertainty (even though

this may not be their primary focus). Our UQ approach is novel in the following ways.

First, using a new Bayesian modeling framework on X, our method allows for effective
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learning and UQ of the subspaces of X via an efficient Gibbs sampling algorithm. Second,

our integrated framework incorporates this learned subspace information to guide active

sampling on X.

Our work also makes novel contributions to the topic of information-theoretic design for

matrix completion. In recent years, there has been a large body of literature on information-

theoretic design (e.g., for compressive sensing), including the seminal paper [215] on the

connection between mutual information and parameter estimation for linear vector Gaus-

sian channels, and its important developments [70, 216, 217] for compressive sensing and

phase retrieval. Our approach differs from these works in that, instead of maximizing the

mutual information between signal (i.e., X) and observed entries (denoted as YΩ), we

study a dual but equivalent problem of maximizing the entropy of observations YΩ. Using

the maximum entropy principle, this dual view yields new insights on the link between

matrix completion sampling and code design, and provides a simple, closed-form criterion

for sequential sampling.

This integrated sampling approach also has interesting connections to the idea of hyper-

parameter tuning in machine learning [218]. There, hyperparameters refer to parameters

which control certain properties of a learning algorithm [219]. The tuning of hyperpa-

rameters from data plays an important role in ensuring the effectiveness of state-of-the-art

machine learning algorithms (e.g., Google’s Cloud Machine Learning system [220]). In

our framework, hyperparameters encode important subspace properties for the matrix X.

Given such hyperparameters, the proposed model yields a closed-form scheme for sequen-

tial sampling; however, these parameters need to be adaptively learned via the UQ method.

Our integrated sampling strategy can be viewed as a learning active learning approach

[221] for noisy matrix completion, in that it adaptively learns key subspace hyperparame-

ters on X, before using such parameters for active learning.

Contribution. We summarize three important contributions of our work. First, we

present a novel integrated framework which tackles sampling and UQ for noisy matrix
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completion, via a new Bayesian model for X. Second, we reveal several insights on the

role of compressive sensing (e.g., coherence) and coding design (e.g., Latin squares) on

the sampling performance and UQ for noisy matrix completion, which then yields new

results on error monotonicity and decay. Lastly, using such insights along with information-

theoretic design principles, an efficient sampling scheme is developed, which can yield

improved matrix completion performance over random sampling.

The chapter is organized as follows. Section 2 introduces a new Bayesian model frame-

work for matrix completion. Section 3 reveals some useful insights on the role of coherence

on UQ and error convergence. Section 4 outlines the maximum entropy design principle,

then derives several novel sampling properties for initial and sequential learning on X. Sec-

tion 5 incorporates these properties into a practical sampling and UQ algorithm. Sections

6 and 7 demonstrate the effectiveness of the proposed methodology in simulation studies

and in two real-world collaborative filtering datasets. Finally, Section 8 concludes with

directions for future work.

6.2 A Bayesian model for matrix completion

We begin with a brief problem set-up, then introduce the singular matrix-variate Gaussian

model for X. This serves as a versatile probabilistic model for the low-rank matrices of

interest. We then show how a Bayesian implementation of this model plays an important

role in sampling and UQ.

6.2.1 Problem set-up

Let X = (Xi,j) ∈ Rm1×m2 be the low-rank matrix of interest. Suppose X is observed with

noise at N indices Ω1:N = {(in, jn)}Nn=1 ⊆ [m1] × [m2]1 (this is sometimes denoted as Ω

for brevity). Let Yi,j be the observation at index (i, j) ∈ Ω, and assume Yi,j follows the

1[m] := {1, · · · ,m}.
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Gaussian noise model:

Yi,j = Xi,j + εi,j, εi,j
i.i.d.∼ N(0, η2). (6.1)

Further let XΩ ∈ RN and YΩ ∈ RN denote the vectorized entries of X and Y at observed

indices Ω, and let XΩc ∈ Rm1m2−N and YΩc ∈ Rm1m2−N denote the vectorized entries of

X and Y at unobserved indices Ωc = ([m1] × [m2]) \ Ω. The noisy matrix completion

problem aims to recover the full matrix X from the noisy and partial observations YΩ.

6.2.2 Model specification

The singular matrix-variate Gaussian distribution

The motivation for our model comes from the popular use of Gaussian processes for func-

tional approximation [222]. There, the goal is to recover an unknown function f : Rp → R

by observing it at several sampled points f = [f(x1), · · · , f(xN)]T . Assuming f follows

a Gaussian process parametrized by some correlation function, the vector f then follows a

multivariate Gaussian distribution. This can then be used to derive closed-form expressions

for (a) predicting the function f at unobserved points, and (b) quantifying the uncertainty

of such predictions. The ability to quantify uncertainty in closed-form is an important ad-

vantage of Gaussian process learning over other learning methods. With this in mind, our

strategy is to employ the so-called singular matrix-variate Gaussian model (introduced be-

low) – an extension of Gaussian process modeling for low-rank matrices – to derive similar

closed-form expressions for noisy matrix completion. Such expressions will then play a

central role for UQ and active matrix sampling.

Consider now the following model for the low-rank matrix X (assumed to be normal-

ized with zero mean):

Definition 16 (Singular matrix-variate Gaussian (SMG); Definition 2.4.1, [223]). Let Z ∈

Rm1×m2 be a random matrix with entries Zi,j
i.i.d.∼ N(0, σ2) for (i, j) ∈ [m1]×[m2]. The ran-
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dom matrix X has a singular matrix-variate Gaussian (SMG) distribution if X
d
= PUZPV

for some choice of projection matrices PU = UUT and PV = VVT , where U ∈ Rm1×R,

UTU = I, V ∈ Rm2×R, VTV = I and R < m1 ∧ m2.2 We will denote this as

X ∼ SMG(PU,PV, σ
2, R).

In other words, a realization from the SMG distribution can be obtained by first (a) sim-

ulating a matrix Z from a Gaussian ensemble with variance σ2 (i.e., a matrix with i.i.d.

N(0, σ2) entries), then (b) performing a left and right projection of Z using the projection

matrices PU and PV. Recall that the projection operator PU = UUT ∈ Rm1×m1 maps a

vector in Rm1 to its orthogonal projection on theR-dimensional subspace Uspanned by the

columns of U. By performing this left-right projection, the resulting matrix X = PUZPV

can be shown to be of rank R < m1 ∧ m2, with its row and column spaces U and V

corresponding to the subspaces for PU and PV. With a small choice of R, this distribution

provides a flexible model for the low-rank structure of X.

We will illustrate throughout this chapter why projection matrices provide a useful

parametrization for both sampling and UQ. The reasons are two-fold. First, it is known

[224] that for each projection operator P ∈ Rm×m of rank R, there exists a unique R-dim.

hyperplane (or an R-plane) in Rm containing the origin which corresponds to the image of

such a projection. This connects the space of rank R projection matrices and the Grass-

mann manifold GR,m−R, the space of R-planes in Rm. Viewed this way, the projection

matrices parametrizing X ∼ SMG(PU,PV, σ
2, R) encode valuable information on the

row and column spaces of X. Second, since the projection of a Gaussian random vector is

still Gaussian, the left-right projection of the Gaussian ensemble Z results in each entry of

X being Gaussian-distributed as well. This is crucial for deriving closed-form expressions

for sampling and UQ below.

The following lemma provides several important properties of this model for matrix

completion:

2m1 ∧m2 := min(m1,m2),m1 ∨m2 := max(m1,m2).
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Lemma 6 (Distributional properties). Let X ∼ SMG(PU,PV, σ
2, R), with PU ∈ Rm1×m1 ,

PV ∈ Rm2×m2 , σ2 > 0 and R < m1 ∧m2 known. Define the linear space

T :=
⋃

uk∈U,vk∈V

span({ukvTk }Rk=1), (6.2)

where U∈ GR,m1−R and V∈ GR,m2−R are the R-planes for PU and PV. Then:

(a) It follows that X ∈ T, with the density of X given by

f(X) = (2πσ2)−R
2/2 etr

{
− 1

2σ2

[
(XPV)T (PUX)

]}
, (6.3)

where etr(·) := exp{tr(·)}. Equivalently, vec(X) ∈ Rm1m2 follows the degenerate

Gaussian distribution N{0, σ2(PV⊗PU)} when restricted to vec(T).

(b) Consider the block decomposition of PV⊗PU:

PV⊗PU =

 (PV⊗PU)Ω (PV⊗PU)Ω,Ωc

(PV⊗PU)TΩ,Ωc (PV⊗PU)Ωc

 . (6.4)

Conditional on the observed noisy entries YΩ, the unobserved entries XΩc follow the

distribution3

[XΩc |YΩ] ∼N(XP
Ωc .Σ

P
Ωc). (6.5)

Here, γ2 := η2/σ2, and

RN (Ω) := (PV⊗PU)Ω ∈ RN×N , (6.6)

XP
Ωc := (PV⊗PU)TΩ,Ωc

[
RN (Ω) + γ2I

]−1
YΩ, (6.7)

ΣP
Ωc := σ2

{
(PV⊗PU)Ωc−

(PV⊗PU)TΩ,Ωc
[
RN (Ω) + γ2I

]−1
(PV⊗PU)Ω,Ωc

}
.

3Here, [X] denotes the distribution of a random variable (r.v.) X , and [X|Y ] denotes the distribution of a
r.v. X given r.v. Y .
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Remark: Lemma 6 reveals two key properties of the SMG model. First, prior to observ-

ing data, part (a) shows that the low-rank matrix X lies on the linear space T, and fol-

lows a degenerate multivariate Gaussian distribution with mean zero and covariance matrix

σ2(PV ⊗ PU) (the Kronecker product of projection matrices for X). Second, after ob-

serving the noisy entries YΩ, part (b) shows that the conditional distribution of XΩc (the

unobserved entries in X) given YΩ is still multivariate Gaussian, with closed-form expres-

sions for its mean vector XP
Ωc and covariance matrix ΣP

Ωc in (6.7).

Prior specification

In most practical settings, there is little-to-no prior knowledge on either the rank of X or its

subspaces. In such cases, a Bayesian approach [225] assigns non-informative prior distri-

butions to model parameters, which here are the projection matrices PU, PV, the variance

parameters η2, σ2 and the matrix rank R. To this end, we assume that PU and PV are uni-

formly and independently distributed over their corresponding Grassmann manifolds, i.e.:

[PU] ∼ U(GR,m1−R), [PV] ∼ U(GR,m2−R). (6.8)

For the remaining model parameters, we assign the non-informative priors:

[η2] ∼ IG(αη2 , βη2), [σ2] ∼ IG(ασ2 , βσ2), P(R = r) = πr, (6.9)

where
∑m1∧m2

r=1 πr = 1, and IG(α, β) is the Inverse-Gamma distribution with shape and

rate parameters α and β. These Inverse-Gamma priors provide so-called conjugate priors

[225] for the proposed model, which allow for an efficient, closed-form sampling scheme

for UQ (see Section 6.5.1). The full model is summarized in Table 6.1 and visualized in

Figure 6.1.
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Table 6.1: Model specification for noisy matrix completion.

Model Distribution

Observations [YΩ|X, η2]: Yi,j
i.i.d.∼ N(Xi,j, η

2)

Low-rank matrix [X|PU,PV, σ
2, R] :

X ∼ SMG(PU,PV, σ
2, R)

Priors [PU,PV, σ
2, η2, R]

= [PU|R] [PV|R] [η2][σ2][R]
Mtx. subspaces [PU|R] ∼ U(GR,m1−R)

[PV|R] ∼ U(GR,m2−R)
Meas. noise [η2] ∼ IG(αη2 , βη2)
Mtx. variance [σ2] ∼ IG(ασ2 , βσ2)
Rank [R] ∼ Discrete({πr}m1∧m2

r=1 )

Figure 6.1: Visualization of model specification.

6.2.3 Connection to existing estimators

The following lemma reveals an inherent connection between the SMG model and existing

completion methods:

Lemma 7 (MAP estimator). Assume the model in Table 6.1, with πr ∝ 1, and η2 and σ2

fixed. Conditional on YΩ, the maximum-a-posteriori (MAP) estimator X̃ for X becomes

Argmin
X∈Rm1×m2

[
‖YΩ −XΩ‖22

η2
+ log(2πσ2)rank2(X) +

‖X‖2F
σ2

]
, (6.10)

where ‖X‖F =
√∑

i,j X
2
i,j is the Frobenius norm of X.

The MAP estimator X̃ in (6.10) reveals an illuminating connection between our model

and existing (deterministic) matrix completion methods (see [226] and references therein).
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Consider the following approximation to the MAP formulation (6.10). Treating log(2πσ2)rank2(X)

as a Lagrange multiplier, we can replace this by the constraint rank(X) ≤
√
ξ. Changing

this constraint back to its Lagrangian form, and replacing the rank function rank(X) by

its nuclear norm ‖X‖∗ (its tightest convex relaxation [206]), the optimization in (6.10)

becomes:

Argmin
X∈Rm1×m2

[
‖YΩ −XΩ‖22 + λ

{
α‖X‖∗ + (1− α)‖X‖2F

}]
, (6.11)

for some choice of λ > 0 and α ∈ (0, 1). Using (6.11) to approximate (6.10), the MAP

estimator can then be viewed as an analogue of the elastic net estimator [103] from linear

regression for noisy matrix completion.

To see the connection between the MAP estimator X̃ and existing matrix completion

methods, set α = 1 in (6.11). The problem then reduces to:

X̂ = Argmin
X∈Rm1×m2

 ∑
(i,j)∈Ω

(Yi,j −Xi,j)
2 + λ‖X‖∗

 , (6.12)

which is precisely the nuclear-norm formulation widely used for matrix completion [203,

204, 205]. This link will be used later to develop an efficient subspace learning algorithm

for active matrix sampling.

6.3 Coherence and uncertainty quantification

Next, we review the notion of (subspace) coherence, then discuss its connection to UQ and

error convergence.

6.3.1 The role of coherence in matrix completion

Consider the following definition of subspace coherence from [203] (ignoring scaling fac-

tors):

Definition 17 (Coherence; Definition 1.2, [203]). Let U ∈ GR,m−R be an R-plane in Rm,

and let PU be the orthogonal projection onto U. The coherence of subspace Uwith respect
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Figure 6.2: A visualization of near-maximal coherence (red basis vector) and minimal
coherence (black basis vector) for subspace U.

to the i-th basis vector, ei, is defined as

µi(U) := ‖PUei‖2
2, (6.13)

and the coherence of U is defined as µ(U) = max
i=1,··· ,m

µi(U).

In words, coherence measures how correlated a subspace U is with the basis vectors

{ei}mi=1. A large µi(U) suggests that U is highly correlated with the i-th basis vector

ei, in that the projection of ei onto U preserves much of its original length; a small value

of µi(U) suggests that U is nearly orthogonal with ei, so a projection of ei onto U loses

most of its length. Figure 6.2 visualizes these two cases using the projection of three ba-

sis vectors on a two-dim. subspace U. Note that the projection of the red vector onto U

retains nearly unit length, so U has near-maximal coherence for this basis. On the other

hand, the projection of the black vector onto U results in a sizable length reduction, so U

has near-minimal coherence for this basis. Here, the overall coherence of U, µ(U), is large

due to the high coherence of the red basis vector.

In matrix completion literature, coherence is widely used to quantify the recoverability

of a low-rank matrix X. To see why, let X = UDVT be the singular value decomposition

(SVD) of X. Consider two simple examples for X. For the first example, set U = V = e1
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and D = 1, which results in maximal coherences for both the row and column spaces U

and V. The matrix X then consists of all zeroes, except for an entry of 1 in the first row and

column. Clearly, there is no hope of recovering X from incomplete entries here, because

one would need to observe nearly all entries to detect the lone non-zero entry. This shows

that higher coherence for Uor V leads to greater matrix “spikiness”, so X is more difficult

to complete when its row or column space has high coherence. For the second example, set

U = (1/
√
m1)1 and V = (1/

√
m2)1, which results in minimal coherences for U and V.

X then becomes a constant matrix with entries 1/
√
m1m2, which can be completed from

observing a single entry. In other words, X is easier to complete when its row and column

spaces have low coherence. A more rigorous argument of this is found in [204, 202, 203],

where it is shown that the matrix completion error bound via nuclear-norm minimization

depends explicitly on the coherence term max{µ(U), µ(V)}.

6.3.2 The role of coherence in uncertainty quantification (UQ)

Here, the same notion of coherence arises in a different context – within the uncertainty

quantification for the proposed model. We show this first for the unconditional model

uncertainty (i.e., prior to observing any entries), then for the conditional uncertainty after

observing noisy entries YΩ.

Consider first the case where no matrix entries have been observed. From Lemma 6 (a),

vec(X) follows the degenerate Gaussian distribution N{0, σ2(PV⊗ PU)}. The variance

of the (i, j)-th entry in X can then be shown to be:

Var(Xi,j) = σ2(eiPUei)(ejPVej) = σ2µi(U)µj(V). (6.14)

Hence, prior to observing data, the model uncertainty for entry Xi,j is proportional to the

product of coherences for the row and column spaces U and V, with respect to the i-th

and j-th basis vectors. Put another way, the proposed model assigns greater variation to
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matrix entries with high subspace coherence in either its row or column index. This is quite

appealing in view of the original role of coherence in matrix completion, where larger row

(or column) coherences imply greater “spikiness” for entries; our framework accounts for

this by assigning greater model uncertainty to such entries.

Consider next the case where noisy entries YΩ have been observed. A more general

notion of coherence is then required:

Definition 18 (Cross-coherence). Adopt the notation in Definition 17. The cross-coherence

of subspace Uwith respect to the basis vectors ei and ei′ is defined as νi,i′(U) = eTi′PUei.

In words, the cross-coherence νi,i′(U) quantifies how correlated the basis vectors ei and ei′

are, after a projection onto U. For example, in Figure 6.2, the pair of red / blue projected

basis vectors have negative cross-coherence for U, whereas the pair of blue / black pro-

jected vectors have positive cross-coherence. When i = i′, this cross-coherence reduces to

the original coherence in Definition 17.

Define now the cross-coherence vector νi(U) = [νi,in(U)]Nn=1 ∈ RN , where again

Ω = {(in, jn)}Nn=1. From equation (6.7) in Lemma 6, the conditional variance of entry Xi,j

for an unobserved index (i, j) ∈ Ωc becomes:

Var(Xi,j |YΩ) = σ2µi(U)µj(V)− σ2νTi,j
[
RN (Ω) + γ2I

]−1
νi,j , (6.15)

where νi,j := νi(U) ◦ νj(V), and ◦ denotes the entry-wise (Hadamard) product. The

expression in (6.15) also enjoys a nice interpretation. From a UQ perspective, the first term

in (6.15), µi(U)µj(V), is simply the unconditional uncertainty for entry Xi,j , prior to

observing data. The second term, νTi,j[RN(Ω) + γ2I]−1νi,j , can be viewed as the reduction

in uncertainty, after observing the noisy entries YΩ. This uncertainty reduction is made

possible by the correlation structure imposed on X, via the SMG model. (6.15) also yields

valuable insight in terms of subspace correlation. The first term µi(U)µj(V) can be seen

as the joint correlation between (a) row space U to row index i, and (b) column space V to
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column index j, prior to any observations. The second term can be viewed as the portion

of this correlation explained by observed indices Ω.

6.3.3 UQ, error monotonicity and error convergence

Using this link between coherence and uncertainty, we present two novel insights on ex-

pected error decay. The following theorem forms the basis for these insights:

Theorem 25 (Variance reduction). Suppose Uand Vare fixed. Let YΩ contain the entries

at Ω ⊆ [m1]× [m2], and let YΩ∪(i,j) contain an additional observation at (i, j) ∈ Ωc. For

any index (k, l) ∈ [m1]× [m2], the conditional variance of Xk,l can be decomposed as

Var(Xk,l|YΩ∪(i,j)) = Var(Xk,l|YΩ)− Cov2(Xk,l, Xi,j|YΩ)

Var(Xi,j|YΩ) + η2
, (6.16)

where

Cov(Xi,j , Xk,l|YΩ) =

σ2{νi,k(U)νj,l(V)− νTi,j
[
RN (Ω) + γ2I

]−1
νk,l}.

(6.17)

Remark: This theorem shows, given observed indices Ω, the reduction in uncertainty (as

measured by variance) for an unobserved entry Xk,l, after observing an additional entry

at index (i, j). The last term in (6.16) quantifies this reduction, and can be interpreted

as follows. For an unobserved index (k, l) /∈ Ω ∪ (i, j), this uncertainty reduction can be

seen as a signal-to-noise ratio, the signal being the conditional squared-covariance between

the “unobserved” entry Xk,l and the “to-be-observed” entry Xi,j , and the noise being the

conditional variance of the “to-be-observed” entry.

The first insight of error monotonicity follows immediately:

Corollary 4 (Error monotonicity; arbitrary sequential sampling). Suppose U and V are

fixed. Let [(in, jn)]m1m2
n=1 ⊆ [m1]× [m2] be an arbitrary sampling scheme, where (in, jn) 6=
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(in′ , jn′) for n 6= n′. Let XP
k,l be the (k, l)-th entry of the conditional mean in (6.7). Define

ε2N(k, l) := E
{(
Xk,l −XP

k,l

)2
∣∣∣YΩ1:N

}
, (k, l) ∈ [m1]× [m2]

as the expected squared-error for Xk,l after observing YΩ1:N
. Then ε2N+1(k, l) ≤ ε2N(k, l)

for any N = 1, 2, · · · .

Remark: This corollary shows that, for any sequential sampling scheme and any index

(k, l), the expected squared-error in estimating Xk,l with the conditional mean XP
k,l is al-

ways monotonically decreasing as more samples are collected. This is intuitive, since one

expects to gain more information on the unknown matrix X as more entries are observed.

The fact that the proposed model quantifies this monotonicity property provides a reassur-

ing check on our UQ approach.

The second insight connects expected error decay with the entry-wise correlations from

the model:

Corollary 5 (Lower bound for error decay; arbitrary sequential sampling). Adopt the same

notation in Corollary 4. For any N ≥ 1 and (k, l) /∈ Ω1:N ,

ε2N(k, l) ≥ σ2µk(U)µl(V)·[
N∏
n=1

(
1−

Corr2(Xin,jn , Xk,l|YΩ1:(n−1)
)

1 + γ2

)]
.

(6.18)

where Corr(Xi,j, Xk,l|YΩ) is the correlation between entries Xi,j and Xk,l given observa-

tions YΩ.

Remark: Corollary 5 shows the expected squared-error ε2N(k, l) is lower bounded by the

coherence term σ2µk(U)µl(V), times a product of terms quantifying the correlation be-

tween the unobserved entry Xk,l and the observed entries {Xin,jn}Nn=1. Note that a larger

conditional correlation for Corr2(Xin,jn , Xk,l|YΩn−1) results in a smaller value for 1 −

Corr2(Xin,jn , Xk,l|YΩn−1)/(1+γ2), which in turn yields a quicker error decay from (6.18).
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This makes sense intuitively, because one expects an improved recovery of the unobserved

entry Xk,l when previously observed samples {Xin,jn}Nn=1 are highly correlated with Xk,l.

While such insights are valuable, it is difficult to use (6.16) or (6.18) as a optimization

criterion for sampling. This is because, for each potential index (i, j) to sample, one would

need to evaluate the error reduction term in (6.16) over all unobserved entries (k, l), which

quickly becomes computationally infeasible. We introduce next an efficient information-

theoretic sampling scheme which, using the so-called maximum entropy principle, achieves

the desired properties from Corollary 5.

6.4 Maximum entropy sampling for matrix completion

With this model in hand, we now present a information-theoretic approach based on entropy

for sampling (or designing) matrix entries for matrix completion. This sampling method

consists of two stages: (a) an initial design strategy for preliminary learning on X, and

(b) a sequential design strategy to greedily maximize information gain. We first review

the maximum entropy principle for noisy matrix completion, then present several novel

insights on information-theoretic design for both initial and sequential sampling.

6.4.1 The maximum entropy sampling principle

The principle of maximum entropy sampling was first introduced in [211] and further de-

veloped in [227] for (statistical) experimental design of spatio-temporal models. In words,

this principle states that, under regularity assumptions on an observation model with un-

known parameters, a sampling scheme which maximizes the entropy of observations also

maximizes information gain on model parameters. Here, this means the sampling scheme

which maximizes information on the unknown matrix X is the same sampling scheme

which maximizes the entropy of the observed entries YΩ. As we show below, the max-

imum entropy principle yields two advantages: (a) it reveals several novel insights on

information-theoretic design for matrix completion, and (b) it allows for an efficient sam-
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pling algorithm.

To present this formally, we first define some notation. Let (X, Y ) be a pair of r.v.s

with marginal densities (fX(x), fY (y)) and joint density fX,Y (x, y). The entropy of X

[228] is defined as H(X) = E[− log fX(X)], with larger values indicating greater un-

certainty for r.v. X . Similarly, the joint entropy of (X, Y ) is defined as H(X, Y ) =

E[− log fX,Y (X, Y )], and the conditional entropy of Y given X is defined as H(Y |X),

the entropy of the conditional r.v. Y |X . The well-known chain rule (Theorem 2.2.1 in

[228]) connects the joint entropy H(X, Y ) with the conditional entropy H(Y |X):

H(X, Y ) = H(X) + H(Y |X). (6.19)

We will use this identity below to derive the maximum entropy principle for matrix com-

pletion.

Consider now the noisy matrix completion problem. Here, the parameter-of-interest is

the unknown low-rank matrix X, the design scheme is the choice of sampled indices Ω,

and the collected data are the observed entries YΩ. Applying the chain rule (6.19), we get

the following decomposition:

H(YΩ,X) = H(YΩ) + H(X|YΩ). (6.20)

The first term H(YΩ,X) is the joint entropy of observations YΩ and matrix X, the middle

term H(YΩ) is the entropy of observations YΩ at entries Ω, and the last term H(X|YΩ)

is the conditional entropy of matrix X after observing YΩ. To maximize the information

gained on the unknown matrix X from observing YΩ, we want to sample indices Ω which

minimize the conditional entropy H(X|YΩ).

We can now derive the maximum entropy principle for matrix completion. Let εΩ :=

(εi,j)(i,j)∈Ω be the vector of measurement errors. Applying the chain rule to the joint entropy
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H(YΩ,X) in (6.20), we get:

H(YΩ,X) = H(X) + H(YΩ|X) (by (6.19))

= H(X) + H(XΩ + εΩ|X)

= H(X) + H(εΩ|X) (XΩ is fixed given X)

= H(X) + H(εΩ). (εΩ indep. of X)

Since the measurement noise in εΩ are i.i.d. Gaussian, its entropy H(εΩ) does not depend

on the choice of sampled indices Ω. Hence, the final quantity H(X)+H(εΩ) above does not

depend on Ω. It follows that the joint entropy H(YΩ,X) also does not depend on Ω, and

by (6.20), the indices Ω which minimize H(X|YΩ) also maximize H(YΩ). This yields the

maximum entropy sampling principle for matrix completion – a sampling scheme which

maximizes the entropy of observations YΩ also yields maximum information gain on X.

This principle allows us to manipulate the simpler entropy term H(YΩ) as an efficient proxy

for the desired entropy term H(X|YΩ), the latter being more complicated and difficult to

optimize in high-dimensions.

Consider now the observational entropy H(YΩ), which we abbreviate as H(Ω1:N). For

the proposed model on X, the following lemma gives a closed-form expression for H(YΩ):

Lemma 8 (Observational entropy). For fixed PU and PV,

H(Ω1:N) := H(YΩ) = det{σ2RN(Ω1:N) + η2I}, (6.21)

where RN(Ω) is the covariance matrix defined in (6.6).

The index set maximizing this entropy is then defined as:

Definition 19 (Maximum entropy index set). For fixed PU and PV, the maximum entropy
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index set Ω∗1:N is defined as

Ω∗1:N := Argmax
Ω1:N∈([m1]×[m2])N

H(Ω1:N). (6.22)

Remark: By maximizing H(Ω1:N), the maximum entropy index set minimizes the condi-

tional entropy term H(X|YΩ1:N
) via the maximum entropy principle. Sampling at these

indices should then maximize information on X, and yield improved completion perfor-

mance to uniform sampling. One way to quantify the connection between H(X|YΩ1:N
)

and completion error is via the lower bound (Eq. 27 in [229]):

E[‖X− X̃‖2
F |YΩ1:N

] ≥ 1

2πe
exp {2H(X|YΩ1:N

)} . (6.23)

This bound shows that by maximizing information gain on X (i.e., minimizing H(X|YΩ1:N
)),

one can minimize the expected completion error E[‖X − X̃‖2
F |YΩ1:N

] under the proposed

model on X. The advantage in using an entropy-based sampling criterion is that it allows

us to work with the simpler observation entropy H(Ω1:N), whereas minimizing the error

term E[‖X − X̃‖2
F |YΩ1:N

] directly is more cumbersome. We show below several novel

properties of maximum entropy sampling for initial and sequential learning on X.

6.4.2 Initial sampling: Latin square design

Consider first the initial sampling problem. For simplicity, assume m1 = m2 = m (this

will be generalized later), with total initial samples N = m. The following lemma shows

that a certain balance property is desirable for initial sampling:

Proposition 6 (Lower bound on observation entropy). For fixed PU and PV, we have

H1/N (Ω1:N ) ≥ min
n=1,··· ,N

[
σ2µin(U)µjn(V) + η2−

σ2(N − 1)

2

{
max
n′:n′ 6=n

ν2
in,in′

(U) + max
n′:n′ 6=n

ν2
jn,jn′

(V)

}]
.

(6.24)
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Remark: Proposition 6 can be interpreted as follows. Take first the right-hand side of

(6.24), which provides a lower bound for the entropy term H1/N(Ω1:N) for fixed PU and

PV. Given no prior knowledge on subspaces U and V, it makes sense to assume PU and

PV are uniformly distributed on the Grassmann manifolds GR,m1−R and GR,m2−R, i.e.:

[PU] ∝ 1, [PV] ∝ 1. (6.25)

Under (6.25), the expected left-hand term in (6.24), EPU,PV
{σ2µin(U)µjn(V)}, is constant

for any index (in, jn), since the uniform distributions on GR,m1−R and GR,m2−R are rotation

invariant. Moreover, under (6.25), the right-hand term in (6.24) becomes:

σ2(N − 1)

2

{
max
n6=n′

(eTinein′ )
2 + max

n6=n′
(eTjnejn′ )

2

}
. (6.26)

Next, consider the minimization of (6.26) over all possible index sets Ω1:N = {(in, jn)}Nn=1,

which serves as a proxy for the maximization of H(Ω1:N) via the lower bound in (6.24).

This amounts to jointly minimizing the two terms in (6.26), i.e.:

min
{in}Nn=1∈[m]N

max
n 6=n′

(eTinein′ )
2 and min

{jn}Nn=1∈[m]N
max
n6=n′

(eTjnejn′ )
2. (6.27)

Clearly, if in = in′ for some n 6= n′ (i.e., the same row is sampled twice), then the first

term in (6.27) attains the maximum possible value of 1. Likewise, if jn = jn′ for some

n 6= n′ (i.e., the same column is sampled twice), then the second term in (6.27) attains

the maximum possible value of 1 as well. Both scenarios are undesirable, because the

goal is to jointly minimize the two objectives in (6.27). Hence, with no prior knowledge

on the subspaces of X, an initial sampling scheme satisfying maximum entropy should be

balanced, in that no row or column is sampled more than once in X.

This desired balance of Ω∗1:N has an illuminating connection to existing work in matrix
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 1 3 2

3 2 1
2 1 3




1 2 3 4

3 4 1 2

4 3 2 1
2 1 4 3


Figure 6.3: A 3× 3 and a 4× 4 Latin square. A balanced sampling scheme is obtained by
sampling the entries with 1 (circled).

completion, specifically the injectivity property introduced in [203]. This property arises

when the sampling operator RΩ (which maps X to XΩ) is injective over a large class of

low-rank matrices. In [203], the authors showed that this property is necessary to ensure a

unique solution for the nuclear-norm formulation in (6.12). One consequence of this injec-

tivity property is that the sampling operator must observe (at least) one entry from every

row and column, which is precisely the balance property of Ω∗1:N derived earlier. In this

sense, sampling an entry in every row and column not only improves theoretical guarantees

for completion, but also yields greater information gain on X. More importantly, instead

of achieving such a property via uniform random sampling (which is the typical approach

in the literature, and requires N = O(m logm) samples), we instead impose this balance

directly within the initial sampling scheme (reducing the required samples to N = O(m)).

This balance property of Ω∗1:N can be nicely represented as a Latin square, which has

been used extensively for designing error-correcting codes [230, 231] and in experimental

design [232]. An m×m Latin square is an arrangement of the elements [m] = {1, · · · ,m}

in an m × m square, so that each row and column contains every entry of [m] exactly

once. Figure 6.3 shows an example of a 3 × 3 and a 4 × 4 Latin square. Consider now

an initial sampling scheme obtained by sampling the entries of a Latin square at a given

value (say, ‘1’). From Figure 6.3, the resulting design has exactly one sample in every row

and column, which is as desired. This can easily extended for generating initial designs for

non-square X (see Section 6.5.2).

Of course, there are multiple ways to select a balanced initial sampling scheme. For

example, one can sample the entries labeled ‘2’ in the Latin squares in Figure 6.3, and
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end up with a different balanced design. A natural question to ask is whether all balanced

designs yield the same performance on average. From an information-theoretic perspective,

the following theorem answers this in the affirmative:

Proposition 7 (Equivalence of balanced designs). Suppose PU,PV
i.i.d.∼ U(GR,m−R). For

any two balanced designs Ω1 and Ω2, with |Ω1| = |Ω2| = m, we have EPU,PV
{H(Ω1)} =

EPU,PV
{H(Ω2)}.

In other words, under the belief that all row and column spaces are equally likely, all bal-

anced sampling schemes yield the same expected information gain on X. To take advantage

of this, we will employ an initial sampling algorithm using random Latin squares; more on

this in Section 6.5.2.

6.4.3 Sequential design: Insights from coherence

Consider now the setting where the noisy entries YΩ have been observed at indices Ω1:N ,

and suppose informed estimates can be obtained on the subspaces U and V from such

observations (more on this in Section 6.5.2). Fixing the observed indices Ω1:N , the sequen-

tial problem of sampling the next index (i, j) /∈ Ω1:N maximizing observational entropy

H(Ω1:N ∪ (i, j)) can be formulated as follows:

Lemma 9. For fixed PU, PV and observed indices Ω1:N ,

Argmax
(i,j)∈Ωc1:N

H(Ω1:N ∪ (i, j))

= Argmax
(i,j)∈Ωc1:N

{
µi(U)µj(V)− νTi,j [RN (Ω1:N ) + γ2I]−1νi,j

}
=: Argmax

(i,j)∈Ωc1:N

H((i, j)|Ω1:N ), (6.28)

where νi,j = νi(U) ◦ νj(V).

In other words, given observations at Ω1:N , the next index (i, j) ∈ Ωc
1:N maximizing infor-

mation gain on X can be obtained via the maximization problem on the right side of (6.28).
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This information-greedy sampling approach has been employed in a variety of fields, e.g.,

compressive sensing [84].

Lemma 9 is appealing from a computational perspective, because it provides an easy-

to-evaluate criterion for greedily maximizing information gain on X. Note that, for each

unobserved index (i, j) ∈ Ωc, the left-hand criterion H(Ω1:N ∪ (i, j)) requires O(N3) work

to evaluate, so a total work of O(|Ωc|N3) is needed for optimizing this criterion. On the

other hand, the right-hand criterion H((i, j)|Ω1:N) can be evaluated in O(N2) work (as-

suming [RN(Ω1:N) + γ2I]−1 is computed beforehand with O(N3) work), which reduces

total optimization work to O(N3 + |Ωc|N2). This computation reduction becomes valu-

able when m1 and m2 grow large (i.e., in high-dimensions). We will provide an efficient

implementation of this sequential optimization in Section 6.5.2.

Lemma 9 also reveals a curious link between this information-greedy sequential sam-

pling and the earlier discussion on UQ, coherence, and error convergence in Section 6.3.

The clue lies in the reformulated right-hand criterion in (6.28) and the conditional variance

in (6.15), which are identical up to constants. This reveals three insights. First, the sequen-

tial criterion in (6.28) can be seen as the information gained from entry Xi,j prior to any

observations (first term), minus the information gained on Xi,j after observing the indices

in Ω (second term). The optimization in (6.28) then samples the entry with the largest

residual information unexplained by Ω. Second, sampling the entry with maximum infor-

mation gain is equivalent to sampling the entry with maximum uncertainty (conditional

on observations in Ω), or sampling the entry with the greatest unexplained “spikiness” (as

measured by coherence). Third, by sampling the row and column with greatest unexplained

coherence, we jointly maximize the signal-to-noise ratios in (6.16) for unobserved entries

with large variances, which then improves error convergence by Corollary 5.
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Figure 6.4: Two visualizations of H(Ω1:N). The red ellipse is the covariance matrix for the
red and blue entries (projected onto T); the black ellipse for the black and blue entries.

6.4.4 Coherence and sampling: A geometric view

This maximum entropy sampling approach also yields a nice geometric interpretation. To

see this, recall the form of the observational entropy H(Ω1:N):

H(Ω1:N) = det{σ2RN(Ω1:N) + η2I}, (6.29)

which we wish to maximize. Rewrite RN(Ω1:N) as:

RN(Ω1:N) = [〈PUMnPV,PUMn′PV〉F ]Nn,n′=1, (6.30)

where Mn := eine
T
jn and 〈·, ·〉F is the Frobenius inner product. Here, Mn can be seen as a

rank-1 binary measurement mask [233] which returns the entrywise measurement Xin,jn =

〈Mn,X〉F . From (6.30), the (n, n′)-th entry in RN(Ω1:N) can be viewed as the inner

product between the binary masks Mn and Mn′ , after projection onto the subspaces of X.

Finally, ignoring the noise term η2I in (6.29), the entropy H(Ω1:N) can then be interpreted

as the ellipsoid volume of the covariance matrix for the N masks (for observed entries),

after a projection onto the subspaces of X.

Figure 6.4 visualizes two examples of H(Ω1:N) for three entries to sample in X. Here,

the solid vectors (black, blue and red) represent the binary masks Mn for these sampled

entries, projected onto T (see (6.2)). The red ellipse is the covariance matrix for the red
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and blue sampled entries, and the black ellipse the covariance matrix for the black and

blue sampled entries. Consider first the right-hand plot. Here, the red and black ellipses

have the same volume, which suggests that (a) sampling the red and blue entries, and (b)

sampling the black and blue entries yield the same information gain on X. Consider next

the left-hand plot. Here, the red ellipse has much larger volume than the black ellipse,

which suggests that sampling scheme (a) yields greater information gain on X.

This interpretation nicely visualizes two desired sampling properties derived earlier.

First, rows and columns with high coherences should be prioritized in sampling. In Figure

6.4, this means choosing vectors with the greatest lengths after projection onto T, which

increases ellipsoid volume and thereby information gain on X. Second, a new sample

should maximize the information left unexplained by observed entries in Ω. This is akin to

choosing vectors as orthogonal as possible in Figure 6.4, which again increases ellipsoid

volume and maximizes information gain.

6.5 UQ and sampling algorithms for matrix completion

We now combine the insights from previous sections into a practical, information-theoretic

matrix sampling algorithm using UQ. We first outline a posterior sampling algorithm,

gibbs.mc, which makes use of manifold sampling methods to quantify uncertainty on

X via its subspaces, then present an information-theoretic design scheme, MaxEnt, which

employs this UQ to guide the active sampling algorithm.

6.5.1 gibbs.mc: A posterior sampling algorithm for UQ

We first present a posterior sampling algorithm for quantifying uncertainty on X. For

noisy matrix completion, posterior sampling refers to sampling from the so-called posterior

distribution [X|YΩ], which encodes information learned on the unknown matrix X given

observed noisy entries YΩ. Sampling from this distribution provides insight on not only

likely values for unobserved entries, but a measure of uncertainty (UQ) for such entries
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as well. Note that this posterior sampling algorithm is different from the matrix sampling

algorithm introduced later: the former provides uncertainty on X given observed entries

YΩ, while the latter is used to guide the data collection procedure at unobserved entries.

For efficient posterior sampling, we require a slight parametrization of X via its SVD

X = UDVT . Define first the Stiefel manifold VR,m, the space of m × R matrices with

orthonormal columns (anR-frame in Rm). By the SVD, the matrix of left and right singular

vectors, U and V, must lie on the Stiefel manifolds VR,m1 and VR,m2 , respectively. Note

that the span of an R-frame from the Stiefel manifold VR,m corresponds to a unique R-

plane from the Grassmann manifold GR,m−R, but an R-plane from GR,m−R corresponds to

infinitely many R-frames from VR,m.

For the proposed model in Table 6.1, we can then apply random matrix theory [234]

to show that: (a) U and V are independently and uniformly distributed on the Stiefel

manifolds VR,m1 and VR,m2 , and (b) D = diag({dk}Rk=1) follows the so-called Quadrant

Law (QL; [234]), which has connections to the limiting spectral distribution of random

matrices [235]. The uniform distributions on VR,m1 and VR,m2 can be seen more generally

as the von Mises-Fisher (MF) distributions [224]MF (m1, R,0) andMF (m2, R,0), where

a random matrix W ∼MF (m,R,F) has density [236]:

[W|R,F] =

[
0F1

(
;
m

2
;
FTF

4

)]−1

etr(FTW), W ∈ VR,m, (6.31)

and 0F1(; ·; ·) is the hypergeometric function. The singular values D follow QL(0, σ2),

where QL(µ, δ2) is the quadrant law with density:

[D|µ, δ2] =
exp

{
− 1

2δ2

∑R
k=1(dk − µk)2

}
ZR(2πδ2)R/2

R∏
k,l=1;k<l

|d2
k − d2

l |, (6.32)

and ZR is a normalization constant depending on R. Both QL and MF can be efficiently

sampled via the Metropolis-Hastings algorithm [237, 238] and state-of-the-art manifold

183



Algorithm 11 gibbs.mc: Gibbs sampler for fixed rank R
Require: Observations YΩ, rank R, prior parameters αη2 , βη2 , ασ2 , βσ2

• Initialization: Complete X0 from YΩ via nuclear-norm minim. [202]. Initialize
[U0,D0,V0]← svd(X0), η2

0 and σ2
0 .

• Gibbs sampler: For t = 1, . . . , T : . T - total samples

• Xt ← Ut−1Dt−1V
T
t−1.

• Impute missing entries YΩc by sampling from [YΩc |YΩ] ∼N(XP
Ωc ,Σ

P
Ωc + η2I).

• Sample Ut ∼MF (m1, R,YVt−1Dt−1/η
2
t−1).

• Sample Vt ∼MF (m2, R,Y
TUtDt−1/η

2
t−1).

• Sample Dt ∼ QL(µ, δ2) using Metropolis-Hastings, where µ =
[σ2
t−1u

T
k,tYvk,t/(η

2
t−1 + σ2

t−1)]Rk=1 and δ2 = η2
t−1σ

2
t−1/(η

2
t−1 + σ2

t−1).

• Sample σ2
t ∼ IG(ασ2 + R/2, βσ2 + tr(D2

t )/2) and η2
t ∼ IG(αη2 + m1m2/2, βη2 +

‖Y −Xt‖2
F/2).

• Return posterior samples Θ(R) = {(Xt,Ut,Vt)}Tt=1.

sampling methods [236], respectively.

With this in hand, we present an efficient UQ algorithm gibbs.mc for sampling the

posterior distribution [X|YΩ] for fixed rank R, which makes use of an iterative, closed-

form sampling method called Gibbs sampling [239]. We describe this sampler in several

steps. First, conditional on U, V and D, one can view the unobserved entries YΩc as

a missing data problem [240], and impute these missing entries using the distribution in

Lemma 6 (b). Next, conditional on the imputed matrix Y, the full conditional distributions

for singular vectors, [U|V,D,Y] and [V|U,D,Y], can be then be sampled from the MF

distributions. Lastly, the full conditional distribution for singular values, [D|U,V,Y], can

be sampled from the quadrant law. By iteratively sampling (a) the conditional uncertainty

in unobserved entries, (b) the row and column spaces of X, and (c) its singular values,

gibbs.mc can quantify the full uncertainty in X given observations YΩ and rank R.

Algorithm 11 provides the detailed steps for gibbs.mc, which has a running time of

O{(m1 ∨ m2)R3 + N3} for each iteration. Technical derivations of this sampler and its

running time are provided in Appendix F.10.

This framework can be extended to quantify the uncertainty of matrix rank R, which
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is typically unknown in practice. Let Θ(r) denote the model parameters for fixed rank r,

and suppose the posterior samples {Θ(r)
t }Tt=1 have been generated from gibbs.mc for

r = 1, · · · ,m1 ∧m2. The posterior distribution of R given YΩ can be written as:

[R|YΩ] =

∫
[R|Θ(r),YΩ] d[Θ(r)|YΩ]

∝
∫

[YΩ|Θ(r), R][Θ(r)|R][R] d[Θ(r)|YΩ].

(6.33)

The posterior probabilities on R can be approximated via:

πPr := P(R = r|YΩ) ≈
∑T

t=1 f(YΩ|Θ(r)
t )p(Θ

(r)
t )πr∑m1∧m2

r=1

∑T
t=1 f(YΩ|Θ(r)

t )p(Θ
(r)
t )πr

, (6.34)

where f(YΩ|Θ(r)
t ) is the Gaussian density for YΩ given rank r and posterior sample Θ

(r)
t

(see (6.3)), and p(Θ(r)
t ) is the prior density of Θ

(r)
t given rank r (see (6.9), (6.31) and (6.32)).

These probabilities can then be used to provide inference and UQ on X with unknown

rank. Using the posterior samples for each rank r, the posterior mean of X can be estimated

by:

E(X|YΩ) = E[E(X|R,YΩ)|YΩ] ≈
m1∧m2∑
r=1

πPr
T

T∑
t=1

X
(r)
t . (6.35)

Similarly, with unknown rank, one can perform UQ for an unobserved entry Xi,j , (i, j) ∈

Ωc by iterating the two steps: (a) sample a potential rank R′ from the posterior probabil-

ities {πPr }
m1∧m2
r=1 , then (b) select the (i, j)-th entry for a random matrix from the posterior

samples {X(R′)
t }Tt=1. This yields a sample chain for the posterior distribution [Xi,j|YΩ],

from which one can then compute point estimates and confidence intervals quantifying the

uncertainty of Xi,j .

6.5.2 MaxEnt: A maximum entropy active sampling algorithm

Next, we summarize the insights from Section 6.4 into an information-theoretic sampling

algorithm called MaxEnt (see Algorithm 12). For initial sampling, recall that a balanced
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Algorithm 12 MaxEnt: Maximum entropy matrix sampling
Require: Total samples Nmax ≥ m1 ∨m2, m1 ≥ m2

• Initial (Nini = m1 ∨m2 samples):

• Stack bm1/m2c random m2 × m2 Latin squares to form an (m2bm1/m2c) × m2

rectangle.

• Set Ω as the entries labeled ‘1’ from this rectangle. Ifm2 - m1, add a random sample
in each of the remaining m1 − bm1/m2cm2 rows.

• Sequential: For n = Nini + 1, . . . , Nmax = Nini +Nseq:

• Run gibbs.mc for r = 1, · · · ,m1 ∧m2.

[Obtain X̂ from YΩ via nuclear-norm minimization. Estimate subspaces ( Û, V̂)
from svd(X̂).]

• Compute the next index (in, jn) from (6.36).

[Compute the next index (in, jn) from (6.28), with subspaces (U, V) estimated by
( Û, V̂).]

• Update Ω← Ω ∪ (in, jn).

• Complete X̂ from YΩ via nuclear-norm minimization.
• Return X̂.

design on X – one entry from each row and column – is desired. Assuming m1 ≥ m2,

we guarantee this balance property in MaxEnt by (a) generating bm1/m2c random Latin

squares of size m2 × m2 (see [241]), (b) vertically stacking these squares to form an

(m2bm1/m2c) × m2 rectangle, and (c) sampling the entries labeled ‘1’ from this rect-

angle. By randomly allocating one sample in the remaining m1 − bm1/m2cm2 rows of X,

this ensures at least one observation in each row and column for the initial Nini samples.

Having observed the initial sample YΩ, the row and column spaces U and V can then

be learned via the posterior subspace samples {U(r)
t ,V

(r)
t }Tt=1 from gibbs.mc. Using this

information, we then sample the unobserved matrix entry yielding the greatest expected

posterior information gain on X:

Argmax(i,j)∈Ωc

{
m1∧m2∑
r=1

πPr
T

T∑
t=1

H(r)
t ((i, j)|Ω1:N)

}
, (6.36)

where H(r)
t ((i, j)|Ω1:N) is the sequential entropy criterion in (6.28) with fixed rank r and
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subspace sample (U
(r)
t ,V

(r)
t ). These two steps are then repeated until a desired error is

achieved on X. From a machine learning perspective, this procedure can be viewed as an

learning active learning method for matrix completion – we first learn key hyperparameters

on the subspaces of X via the UQ algorithm gibbs.mc, then employ this learning to guide

active learning on X.

While the above approach offers closed-form updates for both UQ and sampling, it can

be computationally intensive when the dimensions of X grow large. To this end, we found

several computational speed-ups to be effective in high-dimensions. First, given the inher-

ent connection between the MAP estimator X̃ and the nuclear-norm estimator X̂ (Lemma

7), state-of-the-art algorithms for the latter (e.g., [203, 204]) can be used to efficiently ob-

tain a point estimate of X for our model. An SVD of this point estimate yields estimates

for subspaces U and V, which can then be incorporated for sequential sampling. From a

Bayesian perspective, one can view this as an empirical Bayes approach [242] for learning

the active sampling procedure. This shortcut is bracketed in Algorithm 12. Second, for

m1 and m2 large, the exhaustive search for the next index (either (6.28) or (6.36)) can be

time-consuming. One way to reduce computation is to screen out indices which are likely

poor entries to sample, then perform the search over a much smaller index set. In our im-

plementation, we screened out unobserved indices (i, j) from rows and columns with small

coherences µi(U) and µj(V), which ensures indices with small values of H((i, j)|Ω) in

(6.28) are screened out from optimization. Lastly, performing this sequential sampling

point-by-point may also be computationally expensive in high-dimensions. In this case,

one can simply extend the sequential optimization in (6.36) to select a batch of indices with

greatest information gain (rather than just one index). Combined together, these speed-ups

allow for an efficient and effective information-greedy sampling scheme which improves

upon random sampling.
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6.6 Numerical examples

6.6.1 Simulations

We now investigate the numerical performance of this integrated UQ and sampling method.

For illustration, consider first a small 7 × 7 example, with X ∈ R7×7 simulated from the

model in Table 6.1. Here, the true matrix rank is R = 2, the variance parameters set at

σ2 = 1 and η2 = 10−4, with prior parameters αη2 = ασ2 = 9, βη2 = 10−3, βσ2 =

10, and πr = 1/5, r = 1, · · · , 5. Posterior sampling is performed using gibbs.mc,

with T = 10, 000 posterior samples for each rank choice. Figure 6.5 shows the resulting

posterior mean of X (see (6.35)), and the nuclear-norm estimator (6.12) optimized via the

CVX solver [243]. Both methods employ the same Nini = 25 observations (marked with

‘x’), which are uniformly sampled. Visually, both estimates provide a close approximation

of the true matrix X, with our posterior mean estimate yielding slightly lower error. This

shows the proposed model offers comparable completion performance to existing methods,

and supports the connection in Lemma 7.

Using the same toy example, we show how the proposed UQ method gibbs.mc pro-

vides uncertainty for (a) unobserved entries in X, (b) matrix rank, and (c) subspace proper-

ties. This is visualized in Figure 6.6. The left plot shows, for each unobserved matrix entry

(not marked ‘x’), the widths for the mean-symmetric entrywise 95% confidence intervals

from posterior samples. Larger widths indicate greater uncertainty for an unobserved entry,

and vice versa. We see that entries with greater uncertainty from our method (Figure 6.6,

left) tend to have higher incurred errors as well (Figure 6.5, right), with the entrywise 95%

posterior intervals covering the actual incurred errors for all unobserved entries. This shows

our method not only identifies which entries are most uncertain in the completed matrix,

but also yields reliable error bounds for such entries. The middle plot in Figure 6.6 shows

the prior and posterior rank probabilities πr and πPr ; the former reflects prior belief on ma-

trix rank, and the latter is the resulting rank uncertainty from our method after observing
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Figure 6.5: Absolute errors (in Frob. norm) for the nuclear-norm estimation of X (left) and
the posterior mean for the proposed method (right). ‘x’ marks the observed noisy entries.

Figure 6.6: (Left) Confidence interval widths for unobserved entries in X. (Middle) Prior
and posterior probabilities for matrix rank. (Right) Posterior samples for row coherences
µ3(U) and µ6(U). True coherences in red.

data. After observing Nini = 25 entries, our UQ approach identifies with near certainty

the true rank of R = 2, which is as desired. The right plot shows the posterior samples

for two row coherences µ3(U) and µ6(U), with true coherence values marked in red. This

posterior sample can be seen to be highly concentrated around the true coherence values,

which shows our method provides effective subspace learning from partial observations.

Next, we compare the initial completion performance of a balanced sampling scheme

compared to uniformly sampled entries. The left and middle plots in Figure 6.7 show, for

two realizations of these sampling schemes with Nini = 7, the absolute errors between X

and its posterior mean estimate (6.35). We see that the balanced design, by ensuring at
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Figure 6.7: (Left and middle) Absolute errors (in Frob. norm) for balanced sampling and
uniform sampling. (Right) Error boxplots for 25 randomized balanced and uniform sam-
ples.

Figure 6.8: Avg. Frob. errors (line) and 25-th/75-th error quantiles (shaded) for the 7× 7,
30× 30 and 60× 60 matrices, using MaxEnt and uniform sampling.

least one sample from every row and column, indeed provides lower errors than uniform

sampling; the latter also yields much higher errors in unsampled rows or columns. The

right plot in Figure 6.7 shows the error boxplots for 25 random designs with Nini = 7.

Again, balanced sampling yields lower errors to uniform sampling at all quantiles, which

supports the insight from Section 6.4.2 on initial design.

Finally, we explore the sequential sampling performance of MaxEnt for this small 7×7

case, as well as for two larger matrices of sizes 30×30 and 60×60. Simulation settings are

the same as before, except with the true rank set as R = 3 and R = 4 for the two larger ma-

trices, respectively. In all three cases, we begin with an initial sample of Nini = m1 = m2
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entries. For the 7×7 case, Nseq = 28 entries are then observed sequentially; for the 30×30

case, Nseq = 50 entries; for the 60 × 60 case, Nseq = 100 entries. This procedure is then

replicated 10 times to measure error variability. Figure 6.8 shows the averaged errors and

the 25-th/75-th error quantiles for MaxEnt and uniform sampling. Again, the initial sam-

pling for MaxEnt yields noticeably reduced errors to uniform sampling. Moreover, this

improvement gap appears to grow larger as more sequential entries are observed; near the

end of the sampling procedure, the averaged errors from uniform sampling are noticeably

higher than the 75% error quantiles from MaxEnt. This shows the effectiveness of our in-

tegrated UQ / sampling framework in first (a) learning the underlying subspaces via the UQ

model, then (b) incorporating this subspace learning to guide the active learning procedure.

The error decay in Figure 6.8 also reveals two insights. First, despite not knowing the

subspaces U and Vbeforehand, the error decays for both sampling schemes are relatively

monotone, which supports the error monotonicity result in Corollary 4. Second, the error

decay for MaxEnt is considerably quicker than that for uniform sampling. When Ω is

uniformly sampled, it is known [202] that the completion error ‖X−X̃‖F is upper bounded

by O{
√

(m1 ∧m2)(2 + p)/p}, where p = |Ω|/(m1m2) is the fraction of observed entries.

Our numerical results suggest that MaxEnt may enjoy an improved theoretical error rate

to uniform sampling; we look to establish this rate (perhaps via Corollary 5) in a future

work.

6.6.2 Collaborative filtering

Finally, we investigate the performance of MaxEnt on two collaborative filtering datasets.

The first, ‘Jester’, is collected from the Jester Online Joke Recommender System [244].

Jester contains anonymous user ratings (from -10 to +10) on a test bank of 100 jokes;

Figure 6.9 shows some of the arguably better jokes in this test bank. Here, the goal of com-

pleting X from incomplete observations YΩ can be viewed as deducing the joke prefer-

ences of each person from a partial survey of their ratings. The proposed sampling scheme
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Figure 6.9: Sample jokes from the Jester dataset.

Figure 6.10: Avg. Frob. errors (line) and 25-th/75-th error quantiles (shaded) for Jester
(left) and MovieLens (right), using MaxEnt and uniform sampling. The grey line marked
‘Comparison’ compares the error decays for the two methods, by tracing error decay for
uniform sampling starting at the initial error for MaxEnt.

MaxEnt then provides guidance on which user and joke to query next, so that maximum

information is gained on the joke preferences of the entire community. The second dataset,

‘MovieLens’, contains anonymous ratings (from 1 to 5) for 1,000 users on 1,700 movies.

For this dataset, MaxEnt sheds light on which user and movie to query next, so that maxi-

mum information is gained on the movie preferences of the full userbase.

The simulation settings are as follows. For Jester, we randomly select m1 = 500 users

with completed ratings for all m2 = 100 jokes, and take the resulting ratings matrix as

X. MaxEnt is then compared with uniform sampling, with an initial design of Nini =

500 observations and an additional Nseq = 1, 000 observations taken sequentially. For

MovieLens, we first pick the m1 = 300 users and m2 = 300 movies with most ratings, and

obtain X by completing the incomplete ratings from these users and movies. MaxEnt is

then compared with uniform sampling, withNini = 300 andNseq = 1, 500. This procedure

is replicated 10 times to provide a measure of error variability. Since these matrices are
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quite large, the fully-Bayesian implementation of gibbs.mc can be time intensive, so we

employ the computational speed-ups detailed in Section 6.5.2 for efficient active sampling.

Figure 6.10 shows the averaged errors and the 25-th/75-th error quantiles using MaxEnt

and uniform sampling, for the Jester and MovieLens datasets. Two observations are of in-

terest. First, MaxEnt yields noticeably lower initial errors to uniform sampling at all error

quantiles, which again demonstrates the importance of a balanced initial sample. Second,

the improvement gap between MaxEnt and uniform sampling grows larger as entries are

observed sequentially, more so than from simulations. One reason for this is that high row

and column coherences are present in both datasets – there may be users who are overly

critical in their ratings, or jokes or movies which are particularly good or bad. By first (a)

identifying these preference structures via subspace learning from the UQ model, then (b)

incorporating this into an active learning procedure which maximizes information on X,

the proposed method offers an effective way of learning the underlying ratings matrix from

partial observations.

6.7 Conclusion

In this chapter, we introduce a novel methodology for tackling the joint problems of un-

certainty quantification (UQ) and sampling for noisy matrix completion. The proposed

method has useful applications in many low-rank modeling problems in statistics, machine

learning, and engineering, particularly when the cost of observing each matrix entry is ex-

pensive. The centerpiece of this method is a new Bayesian modeling framework, which

parametrizes key subspace properties of the desired low-rank matrix X. Using this model,

we reveal several new insights on the connection between the problem of UQ and sampling

for matrix completion, and well-known concepts from compressive sensing (e.g., coher-

ence) and coding design (e.g., Latin squares). We then present (a) an efficient posterior

sampling called gibbs.mc, which uses closed-form Gibbs sampling to provide uncer-

tainty on both X and its subspaces, and (b) a novel information-theoretic active matrix
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sampling algorithm called MaxEnt, which makes use of this learned subspace informa-

tion to guide the matrix sampling procedure. Simulations and two real-world applications

demonstrate the effectiveness of MaxEnt over uniform sampling, and confirm the insights

developed in this chapter.

Looking forward, there are several intriguing directions for future work. First, it would

be interesting to explore other flavors of design in the experimental design literature, e.g.,

integrated mean-squared error designs [245] or distance-based designs [72, 61, 246]. Sec-

ond, it may be worth exploring the theoretical error rate of MaxEnt (perhaps via Corollary

5), and how such a rate compares to uniform sampling. Lastly, we are interested in apply-

ing MaxEnt to design experiments in real-world engineering problems, such as in gene

expression studies [201, 247] and quantum state tomography [248].
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APPENDIX A

APPENDIX FOR CHAPTER 2

A.1 Proof of Proposition 1

It can be shown [249] that E(F, Fn) = 2D2
2(F, Fn), where Fn is the e.d.f. of {xi}ni=1 ⊆

X ⊆ R and D2(F, Fn) is the one-dimensional L2-discrepancy in (1.2). This proves the

assertion.

A.2 Proof of Theorem 2

The proof of this theorem relies on the following lemma, which slightly extends the Lévy

continuity theorem to the almost-everywhere (a.e.) pointwise convergence setting.

Lemma 10. Let (Fn)∞n=1 be a sequence of d.f.s with characteristic functions (c.f.s) (φn(t))∞n=1,

and let F be a d.f. with c.f. φ(t). If Xn ∼ Fn and X ∼ F , with limn→∞ φn(t) = φ(t) a.e.

(in the Lebesgue sense), then Xn
d−→ X.

Proof. (Lemma 10) This proof is a straight-forward extension of Theorem 9.5.2 in [250],

but we provide the full argument for clarity. Assume for brevity the univariate setting of

p = 1, since the proof extends analogously for p > 1. Let Ω ⊆ C be the set on which

limn→∞ φn(t) = φ(t). By the a.e. assumption, it follows that µ{Ωc} = 0, where µ is the

Lebesgue measure. We will first show that {Fn}∞n=1 is tight, i.e., for all ε > 0, ∃ a finite

interval I ⊂ R satisfying:

G(Ic) ≤ ε, ∀F ∈ {Fn}. (A.1)

To prove (A.1), fix M > 0, ε > 0, and let I = [−M,M ]. By Lemma 9.6.3 in [250],

∃α ∈ (0,∞) satisfying:

lim sup
n→∞

Fn(Ic) ≤ lim sup
n→∞

αM

∫
[0,M−1]

{1− Re φn(t)} dt
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= lim sup
n→∞

αM

[∫
[0,M−1]∩Ω

{1− Re φn(t)} dt+

∫
[0,M−1]∩Ωc

{1− Re φn(t)} dt

]

= lim sup
n→∞

αM

∫
[0,M−1]∩Ω

{1− Re φn(t)} dt

since µ{[0,M−1] ∩ ΩC} = 0,

= αM

∫
[0,M−1]∩Ω

lim sup
n→∞

{1− Re φn(t)} dt

by dominated convergence, since 1− φn(t) is bounded,

= αM

∫
[0,M−1]∩Ω

{1− Re φ(t)} dt.

Since φ is a characteristic function, it follows that limt→0 φ(t) = 1, so limt→0 {1− Re φ(t)} =

0. Hence, for M sufficiently large, the above becomes:

αM

∫
[0,M−1]∩Ω

{1− Re φ(t)} dt ≤ αM

∫
[0,M−1]∩Ω

ε dt = αε,

which proves the tightness of {Fn}.

The remainder of the proof follows exactly as in Theorem 9.5.2 of [250]: one can show

that any two convergent subsequences of {Fn} must converge to the same limit, thereby

proving the convergence of Fn to F . Readers can consult the aforementioned reference for

details.

Proof. (Theorem 2) Define the sequence of random variables (Yi)
∞
i=1

i.i.d.∼ F , and let F̃n

denote the e.d.f. of {Yi}ni=1. By the Glivenko-Cantelli lemma, limn→∞ supx∈Rp |F̃n(x) −

F (x)| = 0 a.s., so F̃n(x) → F (x) a.s. for all x. Let φ(t) and φ̃n(t) denote the c.f.s

of F and F̃n, respectively. Since | exp(i〈t,x〉)| ≤ 1, applying the Portmanteau theorem

(Theorem 8.4.1 in [250]) and the dominated convergence theorem gives:

lim
n→∞

E[|φ(t)− φ̃n(t)|2] = 0. (A.2)
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Using Prop. 1 of [30] (this is a duality result connecting the energy distance with c.f.s),

the expected energy between F̃n and F becomes:

E[E(F, F̃n)] =
1

ap
E

[∫
|φ(t)− φ̃n(t)|2

‖t‖p+1
2

dt

]
=

1

ap

∫ E
[
|φ(t)− φ̃n(t)|2

]
‖t‖p+1

2

dt, (A.3)

where ap is some constant depending on p, with the last step following from Fubini’s the-

orem. Note that E
[
|φ(t)− φ̃n(t)|2

]
= 1

n
Var [exp(i〈t,Y1〉)], so E

[
|φ(t)− φ̃n(t)|2

]
is

monotonically decreasing in n. By the monotone convergence theorem and (A.2), we have:

lim
n→∞

E[E(F, F̃n)] =
1

ap

∫
lim
n→∞

E[|φ(t)− φ̃n(t)|2]

‖t‖p+1
2

dt = 0. (A.4)

Consider now the e.d.f.s (Fn)∞n=1 and c.f.s (φn)∞n=1 for support points. By Definition

2, E(F, Fn) ≤ E[E(F, F̃n)], so limn→∞E(F, Fn) = 0 by (A.4) and the squeeze theorem.

Take any subsequence (nk)
∞
k=1 ⊆ N+, and note that:

lim
k→∞

E(F, Fnk) = lim
k→∞

∫
|φ(t)− φnk(t)|2

‖t‖p+1
2

dt = 0.

We know by the Riesz-Fischer Theorem (pg. 148 in [251]) that a sequence of functions (fn)

which converge to f in L2 has a subsequence which converges pointwise a.e. to f . Applied

here, this suggests the existence of a further subsequence (n′k)
∞
k=1 ⊆ (nk)

∞
k=1 satisfying

φn′k(t)
k→∞→ φ(t) a.e., so by Lemma 10, Xn′k

d−→ X. Since (nk)
∞
k=1 was arbitrarily chosen,

it follows by the proof of Corollary 1 in Chapter 9 of [252] that Xn
d−→ X, which is as

desired.

A.3 Proof of Corollary 1

Proof. Part (a) follows from the continuous mapping theorem and Theorem 2. Part (b)

follows by the Portmanteau theorem.
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A.4 Proof of Theorem 4

Proof. (Theorem 4) Consider first part (a). Let Φ(·) = −‖ · ‖2, and let Φ̂ be its GFT of

order 1. From Theorem 8.16 of [32], we have the following duality representation:

Φ̂(ω) =
2p/2Γ((p+ 1)/2)√

π
‖ω‖−p−1

2 , ω ∈ Rp \ {0}.

By Corollary 8.18 of [32], Φ(·) is also c.p.d. of order 1. Using the fact that Φ(·) is even

along with the continuity of Φ̂(ω) on Rp \ {0}, an application of Theorem 10.21 in [32]

completes the proof for part (a).

Consider now part (b). By Prop. 3 of [30], the kernel Φ(·) is c.p.d. with respect to the

space of constant functions P = {f(x) ≡ C for some C ∈ R}, with dimP = 1. Note that

any choice ofψ ∈ Xprovides a P-unisolvent subset, with the Lagrange basis for the single

point ψ being the unit function p(·) ≡ 1. Hence, by Theorem 11, the native space NΦ(Rp)

can be transformed into a RKHS Gp by equipping it with a new inner product 〈f, g〉Gp =

〈f, g〉NΦ(Rp) + f(ψ)g(ψ). From the same theorem, the corresponding reproducing kernel

for the RKHS (Gp, 〈·, ·〉Gp) becomes k̃(x,y) = Φ(x− y)− Φ(ψ − y)− Φ(ψ − x) + 1.

Next, let k̃x(z) = k̃(x, z). We claim the function
∫
k̃x(·) d[F − Fn](x) belongs in Gp.

To see this, define the linear operator L : Gp → R as Lf =
∫
f(x) dF (x). Note that L is

a bounded operator, because for all f ∈ Gp:

|Lf | =
∣∣∣ ∫ f(x) dF (x)

∣∣∣ ≤ ∫ |f(x)| dF (x)

=

∫
|〈f(·), k̃x(·)〉Gp | dF (x) (RKHS reproducing property)

≤
∫
‖f‖Gp‖k̃x(·)‖Gp dF (x) (Cauchy-Schwarz)

= ‖f‖Gp
∫
k̃1/2(x,x) dF (x), (RKHS kernel trick)
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and the last expression must be bounded because
∫
k̃1/2(x,x) dF (x) ≤ [

∫
k̃(x,x) dF (x)]1/2,

the latter of which is finite due to the earlier finite mean assumption on F . By the Riesz

Representation Theorem (Theorem 8.12, [253]), there exists a unique f̃ ∈ Gp satisfying

Lf =
∫
f(x) dF (x) = 〈f, f̃〉Gp for all f ∈ Gp. Setting f(x) = k̃z(x) in this expres-

sion, we get
∫
k̃z(x) dF (x) = 〈k̃z(·), f̃〉Gp = f̃(z) by the RKHS reproducing property,

so f̃ =
∫
k̃x(·) dF (x) ∈ Gp. Finally, note that

∫
k̃x(·) dFn(x) ∈ Gp because a RKHS is

closed under addition, so
∫
k̃x(·) d[F − Fn](x) ∈ Gp, as desired.

With this in hand, the integration error can be bounded as follows:

I(g;F, Fn) =

∣∣∣∣∫ g(x) d[F − Fn](x)

∣∣∣∣
=

∣∣∣∣∫ 〈g(·), k̃x(·)
〉

Gp

d[F − Fn](x)

∣∣∣∣ (Reproducing property)

=

∣∣∣∣〈g(·),
∫
k̃x(·) d[F − Fn](x)

〉
Gp

∣∣∣∣
≤ ‖g‖Gp

∥∥∥∥∫ k̃x(·) d[F − Fn](x)

∥∥∥∥
Gp

. (Cauchy-Schwarz)

The last term can be rewritten as:√√√√∥∥∥∥∫ k̃x(·) d[F − Fn](x)

∥∥∥∥2

Gp

=

√〈∫
k̃x(·) d[F − Fn](x),

∫
k̃y(·) d[F − Fn](y)

〉
Gp

=

√∫ ∫
〈k̃x(·), k̃y(·)〉Gp d[F − Fn](x) d[F − Fn](y)

=

√∫ ∫
k̃(x,y) d[F − Fn](x) d[F − Fn](y)

(Kernel trick)

=

√∫ ∫
Φ(x− y) d[F − Fn](x) d[F − Fn](y)

=
√
E(F, Fn), (Equation (1.4))

where the second-last step follows because
∫

Φ(ψ−y) d[F −Fn](x) =
∫

Φ(ψ−x) d[F −
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Fn](y) =
∫
d[F − Fn](x) = 0. This completes the proof.

A.5 Proof of Theorem 5

The proof of this theorem exploits the fact that E(F, Fn) is a goodness-of-fit statistic.

Specifically, writing E(F, Fn) as a degenerate V-statistic Vn, we appeal to its limiting dis-

tribution and a uniform Barry-Esseen-like rate to derive an upper bound for the minimum

of Vn. The full proof is outlined below, and relies on the following lemmas.

Lemma 11. ([254]) Let (Yi)
∞
i=1

i.i.d.∼ F , and let k be a symmetric, positive definite (p.d.)

kernel with E[k(x,Y1)] = 0, E[k2(Y1,Y2)] < ∞ and E|k(Y1,Y1)| < ∞. Define the V-

statistic Vn ≡ n−2
∑n

i=1

∑n
j=1 k(Yi,Yj). Then Wn ≡ nVn

d−→
∑∞

k=1 λkχ
2
k ≡ W∞, where

(χ2
k)
∞
k=1

i.i.d.∼ χ2(1), and (λk)
∞
k=1 are the weighted eigenvalues of k under F .

Lemma 12. ([255]) Adopt the same notation as in Lemma 11, and let FWn and FW∞ denote

the d.f.s for Wn and W∞. If E[k(x,Y1)] = 0, E|k(Y1,Y2)|3 <∞ and E|k(Y1,Y1)|3/2 <

∞, then:

sup
x
|FWn(x)− FW∞(x)| = O(n−1/2), (A.5)

with constants depending on dimension p.

Lemma 13 (Paley-Zygmund inequality; [256]). Let X ≥ 0, with constants a1 > 1 and

a2 > 0 satisfying E(X2) ≤ a1E2(X) and E(X) ≥ a2. Then, for any θ ∈ (0, 1), P(X ≥

a2θ) ≥ (1− θ)2/a1.

The proof of Theorem 5 then follows:

Proof. (Theorem 5) Following Section 7.4 of [30], the energy distance E(F, Fn) can be

written as the order-2 V -statistic:

E(F, Fn) =
1

n2

n∑
i=1

n∑
j=1

k(ξi, ξj) ≤
1

n2

n∑
i=1

n∑
j=1

k(Yi,Yj) ≡ Vn, (A.6)
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where k(x,y) is defined in Theorem 5 and (Yi)
n
i=1

i.i.d.∼ F . The last inequality follows by

the definition of support points.

By [257], the kernel k is symmetric and p.d., and the conditions for Lemma 11 can

easily be shown to be satisfied. Invoking this lemma, we have:

inf{x : FWn(x) > 0} = nE(F, Fn), (A.7)

The strategy is to lower bound the left-tail probability of W∞, then use this to derive an

upper bound for inf{x : FWn(x) > 0} using Lemma 12.

We first investigate the left-tail behavior of W∞. Define Zt = exp{−tW∞} for some

t > 0 to be determined later. Since Zt is bounded a.s., E(Zt) =
∏∞

k=1(1 + 2λkt)
−1/2 and

E(Z2
t ) =

∏∞
k=1(1 + 4λkt)

−1/2. From Lemma 13, it follows that, for fixed x > 0, if our

choice of t satisfies:

[A1] : E(Zt) ≥ 2 exp{−tx} > exp{−tx}, [A2] : E(Z2
t ) ≤ a1E2(Zt), (A.8)

then, setting θ = 1/2 and a2 = 2 exp{−tx}, we have:

FW∞(x) = P(Zt ≥ exp{−tx}) ≥ P(Zt ≥ E(Zt)/2) ≥ (4a1)−1. (A.9)

Consider [A1], or equivalently: tx ≥ log 2 + (1/2)
∑∞

k=1 log(1 + 2λkt). Since log(1 +

x) ≤ xq/q for x > 0 and 0 < q < 1, and
∑∞

k=1 λ
1/α
k < ∞ by assumption, a sufficient

condition for [A1] is:

tx ≥ log 2 + (α/2)
∞∑
k=1

(2λkt)
1/α ⇔ Pα(s) ≡ sα − bpsx−1 − (log 2)x−1 ≥ 0,

where s = t1/α and bp = α21/α−1
∑∞

k=1 λ
1/α
k > 0.

Since log 2 > 0 and bpsx−1 > 0, there exists exactly one (real) positive root for Pα(s).
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Call this root r, so the above inequality is satisfied for s > r. Define P̄α(s) as the lineariza-

tion of Pα(s) for s > s̄ = (bpx
−1)1/(α−1), i.e.:

P̄α(s) =


Pα(s), 0 ≤ s ≤ s̄

−x−1 log 2 + P ′α(s̄) · (s− s̄), s > s̄.

From this, the unique root of P̄α(s) can be shown to be r̄ = s̄ + x−1(log 2)[P ′α(s̄)]−1.

Since Pα(s) ≥ P̄α(s) for all s ≥ 0, r̄ ≥ r, the following upper bound for r̄ can be obtained

for sufficiently small x:

r̄ = (bpx
−1)1/(α−1) + (log 2)(α− 1)−1b−1

p ≤ 2(bpx
−1)1/(α−1).

Hence:

t = sα ≥ 2α(bpx
−1)α/(α−1) ⇔ s ≥ 2(bpx

−1)1/(α−1) ≥ r̄ ≥ r

⇒ sα − bpx−1s− (log 2)x−1 ≥ 0,

(A.10)

so setting t = 2α(bpx
−1)α/(α−1) ≡ cpx

−α/(α−1) satisfies [A1] in (A.8).

The next step is to determine the smallest a1 satisfying [A2] in (A.8), or equivalently,

1
2

∑∞
k=1 log(1 + 4λkt) ≥

∑∞
k=1 log(1 + 2λkt)− log a1. Again, since log(1 + x) ≤ xq/q for

x > 0 and 0 < q < 1, a sufficient condition for [A2] is:

log a1 ≥
∞∑
k=1

log(1 + 2λkt)⇐ log a1 ≥ α

∞∑
k=1

(2λkt)
1/α

Plugging in t = cpx
−α/(α−1) from (A.10) and letting dp ≡ α(2cp)

1/α
(∑∞

k=1 λ
1/α
k

)
, we get

log a1 ≥ dpx
−1/(α−1) ⇔ a1 ≥ exp

{
dpx

−1/(α−1)
}

.

The choice of t = cpx
−α/(α−1) and a1 = exp

{
dpx

−1/(α−1)
}

therefore [A1] and [A2] in
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(A.9). It follows from (A.9) that:

FW∞(x) ≥ (4a1)−1 = exp{−dpx−1/(α−1)}/4, (A.11)

so FW∞(x) converges to 0 at a rate of O(exp
{
−dpx−1/(α−1)

}
) as x→ 0+.

Consider now the behavior of inf{x : FWn(x) > 0} as n → ∞. From the uni-

form bound in Lemma 12, there exists a sequence (cn,p)
∞
n=1, limn→∞ cn,p = 0 such that

|FWn(x) − FW∞(x)| ≤ cn,pn
−1/2 for all x ≥ 0. Setting the right side of (A.11) equal to

2cn,pn
−1/2 and solving for x, we get:

x∗ =
dα−1
p

[1
2

log n− log(8cn,p)]α−1
⇒ FW∞(x∗) ≥ exp

{
−dp(x∗)−1/(α−1)

}
= 2cn,pn

−1/2.

(A.12)

so Lemma 12 ensures the above choice of x∗ satisfies FWn(x∗) ≥ cn,pn
−1/2 > 0.

Using this with (A.7), it follows that:

E(F, Fn) = O
{
n−1(log n)−(α−1)

}
,

with constants depending on p. Finally, by Theorem 4, we have:

I(g;F, Fn) = O{‖g‖Gpn−1/2(log n)−(α−1)/2}

which is as desired.

A.6 Proof of Theorem 6

Proof. We first show that k(x,y) is Lipschitz, i.e., ∃L < ∞ such that supz∈X |k(x, z) −

k(y, z)| ≤ L‖x− y‖2. Note that:

|k(x, z)− k(y, z)| = |E‖x−Y‖2 − ‖x− z‖2 − E‖y −Y‖2 + ‖y − z‖2|
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≤
∫ ∣∣∣‖x− z‖2 − ‖y − z‖2

∣∣∣ dF (z) +
∣∣∣‖x− z‖2 − ‖y − z‖

∣∣∣
≤
∫
‖x− y‖2 dF (z) + ‖x− y‖2 = 2‖x− y‖2,

where the last step holds by the triangle inequality, because ‖x− y‖2 ≥ |‖x− z‖2−‖y−

z‖2|. Hence, k is Lipschitz with L = 2.

Consider first part (a) of the theorem. Having satisfied this Lipschitz condition, it fol-

lows from Theorem 4 of [258] that λk = O{k−(1+1/p)}, so
∑∞

k=1 λ
1/α
k < ∞ for α ∈

(0, 1 + 1/p). Applying Theorem 5 proves part (a).

Consider next part (b). From the first example in Section 5 of [259], X is (p, 1)-

compact. Moreover, because F (·) is bounded and k is Lipschitz, k must be in Lip1,0(X, F )

(see [259] for specific definitions). Applying Theorem 5.4 of [259] and noting that k(x,x) =

2E‖x − Y‖2 − E‖Y − Y′‖2, it follows that λk = O{k−(1+γ/p)}, where γ = β/(β + 1).

Hence,
∑∞

k=1 λ
1/α
k <∞ for α ∈ (0, 1 + γ/p), and part (b) is proven using Theorem 5.

A.7 Proof of Lemma 1

Proof. Clearly, Q(x′|x′) = ‖x′‖2. When x 6= x′, note that:

(‖x‖2 − ‖x′‖2)2 = ‖x‖2
2 + ‖x′‖2

2 − 2‖x‖2‖x′‖2 ≥ 0⇒ ‖x‖2
2 + ‖x′‖2

2 ≥ 2‖x‖2‖x′‖2,

so Q(x|x′) =
‖x‖22

2‖x′‖2 + ‖x′‖2
2

=
‖x‖22+‖x′‖22

2‖x′‖2 ≥ 2‖x′‖2‖x‖2
2‖x′‖2 = ‖x‖2.

A.8 Proof of Lemma 2

Proof. The majorization claim follows directly from Lemma , and the minimizer in 1.11

can be obtained by first setting∇hQ to zero and solving for xi, i = 1, · · · , n.
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A.9 Proof of Theorem 7

Proof. This follows by Theorem 1 of [260] under certain regularity conditions, which we

verify below. Under the earlier assumption of pairwise distinctness for {x′j}nj=1, hQ(·|{x′j}nj=1)

majorizes Ê(·) at {x′j}nj=1 by Lemma 6, which satisfies assumptions (A1) and (A2) in [260].

Moreover, hQ is continuous, with its directional derivative hQ′({x′j}nj=1,d; {x′j}nj=1) equal

to the directional derivative Ê ′({x′j}nj=1,d) for all feasible directions d ∈ Rnp, which

satisfies assumptions (A3) and (A4) in [260]. This proves the stationary convergence of

sp.ccp.

A.10 Proof of Theorem 8

Proof. Under certain regularity conditions, Prop. 3.4 of [45] shows that a stationary so-

lution can be obtained for E by repeatedly applying MM iterations on the Monte Carlo

approximation of E (namely, Ê), with each iteration employing a new batch sample {y[l]
m}

independently generated from F . Such regularity conditions are satisfied by the compact-

ness of X and the existence of directional derivatives for Ê and E, so the claim holds.
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APPENDIX B

APPENDIX FOR CHAPTER 3

B.1 Proof of Theorem 9

Since γθ is a strictly p.d. kernel, −γθ must be strictly negative-definite (n.d.). By Prop. 3

in [30], the metric property holds for Eθ(F, Fn).

To prove this for the π-expected kernel −Eθ∼π[γθ], we need to show that this expected

kernel is strictly n.d. Since −γθ is strictly n.d., we know that for any function c : X→ R,

c ∈ L2(X), we have −
∫
X

∫
X
c(x)c(y)γθ(x,y) dx dy ≥ 0, with equality holding if and

only if c(x) = 0. Letting π be a proper prior for θ, note that:

Eθ

[∫
X

∫
X

|c(x)||c(y)|γθ(x,y) dx dy

]
≤
∫

Θ

∫
X

∫
X

|c(x)||c(y)|π(θ) dx dy dθ

∝
∫
X

c2(x) dx <∞.

Hence, by Fubini’s theorem:

0 ≤ −Eθ

[∫
X

∫
X

c(x)c(y)γθ(x,y) dx dy

]
= −

∫
X

∫
X

c(x)c(y)Eθ [γθ(x,y)] dx dy,

with equality holding if and only if c(x) = 0. Hence, −Eθ∼πγθ must also be strictly n.d.,

and so the metric property holds for Eθ∼π(F, Fn).
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B.2 Proof of Theorem 10

Let Y,Y′
i.i.d.∼ F . For any i = 1, · · · , n and l = 1, · · · , p, note that:

∣∣∣∣ ∂∂xilEθ(F, Fn)

∣∣∣∣ =
∣∣∣4θl
n
E {(xil − Yl)γθ(xi,Y)} − 4θl

n2

n∑
j=1
j 6=i

(xil − xjl)γθ(xi,xj)
∣∣∣

(by dominated convergence)

≈
∣∣∣4θlγ̄
n

∫
−(xil − z) d[Fl,n − Fl](z)

∣∣∣ (by Assumption 1)

≤
∣∣∣4θlγ̄
n

∫
−|xil − z| d[Fl,n − Fl](z)

∣∣∣
=
∣∣∣4θlγ̄
n

(
E|xil − Yl| −

1

n

n∑
j=1

|xil − xjl|

)∣∣∣,
where the second-last line follows because−|x−z|+(x−z) = −2(z−x)+ is conditionally

p.d. (see [30]). It follows that:

‖∇x(l)
Eθ(F, Fn)‖1 =

n∑
i=1

∣∣∣∣ ∂∂xilEθ(F, Fn)

∣∣∣∣
≤ 4θlγ̄

n∑
i=1

∣∣∣∣∣ 1nE|xil − Yl| − 1

n2

n∑
j=1

|xil − xjl|

∣∣∣∣∣
≈ 4θlγ̄

n∑
i=1

[
2

n
E|xil − Yl| −

1

n2

n∑
j=1

|xil − xjl| − E|Yl − Y ′l |

]
(by Assumption 2)

= 4θlγ̄E(Fl, Fl,n).

B.3 Proof of Theorem 11

We require an important lemma to prove this theorem:

Lemma 14. [261] Suppose H is a separable Hilbert space of functions on X with or-

thonormal basis {φk(x)}∞k=0. Then H is a RKHS if and only if
∑∞

k=0 |φk(x)|2 <∞ for any

x ∈ X, with unique kernel given by k(x,y) =
∑∞

k=0 φk(x)φk(y).
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We adopt a similar approach as [262] to derive the RKHS for γθ. Note that:

γθ(x,y) = exp(−‖x− y‖2
θ)

= exp(−‖x‖2
θ) exp(−‖y‖2

θ) exp(2〈x,y〉θ)

= exp(−‖x‖2
θ) exp(−‖y‖2

θ)
∞∑
k=0

2k

k!

∑
|α|=k

Ck
αxαyαθα,

(B.1)

where the last step follows by the series expansion:

exp(2〈x,y〉θ) =
∞∑
k=0

2k〈x,y〉kθ
k!

=
∞∑
k=0

2k

k!

∑
|α|=k

Ck
αxαyαθα.

Now, assumeHγ,θ is the space in (2.11) with inner product (2.12). The completeness of

Hγ,θ can be shown using a similar argument in [262], so (Hγ,θ, 〈·, ·〉γ,θ) is a valid Hilbert

space. Define the basis φα(x) =
√

2kCk
αθ

α/|α|! exp(−‖x‖2
θ)xα, |α| ∈ N0, and note that

(a) this basis is orthonormal under the inner product in (2.12), and (b) span{φα(x)} = Hγ,θ,

which shows Hγ,θ is separable. Moreover, because:

∞∑
k=0

∑
|α|=k

φ2
α(x) <∞

and:

∞∑
k=0

∑
|α|=k

φα(x)φα(y) =
∞∑
k=0

∑
|α|=k

2kCk
αθ

α

k!
exp(−‖x‖2

θ) exp(−‖y‖2
θ)xαyα = γθ(x,y),

it follows by Lemma 14 that (Hγ,θ, 〈·, ·〉γ,θ) is the RKHS corresponding to kernel γθ.
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B.4 Proof of Lemma 3

By the reproducing property of (Hγ,θ, 〈·, ·〉γ,θ), it follows that g(x) = 〈g(·), γθ(x, ·)〉γ,θ.

Hence:

I(g;F, Fn) ≡
∣∣∣∣∫

X

g(x) d[F − Fn](x)

∣∣∣∣ =

∣∣∣∣∫
X

〈g(·), γθ(x, ·)〉γ,θ d[F − Fn](x)

∣∣∣∣
=

∣∣∣∣〈g(·),
∫
X

γθ(x, ·) d[F − Fn](x)
〉
γ,θ

∣∣∣∣
≤ ‖g‖γ,θ

√∥∥∥∥∫
X

γθ(x, ·) d[F − Fn](x)

∥∥∥∥2

γ,θ

(Cauchy-Schwarz)

= ‖g‖γ,θ

√∫
X

∫
X

γθ(x,y) d[F − Fn](x) d[F − Fn](y)

(using the kernel trick on (Hγ,θ, 〈·, ·〉γ,θ))

= ‖g‖γ,θ
√
Eθ(F, Fn),

where the inequality follows from a simple application of Cauchy-Schwarz.

B.5 Proof of Theorem 12

To prove this theorem, we require a lemma:

Lemma 15. For fixed p and α = (α1, · · · , αp), αl ∈ Z+, limk→∞
∑
|α|=k 1/Ck

α = p.

Proof. Fix p ∈ Z+, and consider the following decomposition for sufficiently large k ∈

Z+:

∑
|α|=k

1

Ck
α

=
∑

|α|=k,∃αl=k

1

Ck
α

+
∑

|α|=k,∃αl=k−1

1

Ck
α

+· · ·+
∑

|α|=k,∃αl=k−p+1

1

Ck
α

+
∑

|α|=k,αl≤k−p

1

Ck
α

.

For the first sum, it is easy to see that
∑
|α|=k,∃αl=k 1/Ck

α = p, because there are p terms

in this sum, with each term equal to 1. For the second sum, one can similarly show that

210



∑
|α|=k,∃αl=k−1 1/Ck

α = O(p2/k), because there are O(p2) terms in this sum, with each

term bounded above by 1/k. Extending the same argument for remaining terms, the above

decomposition can be rewritten as:

∑
|α|=k

1

Ck
α

= p+ O

(
p2

k

)
+ · · ·+ O

(
pp+1

k(k − 1) · · · (k − p+ 1)

)
+

∑
|α|=k,αl≤k−p

1

Ck
α

.

Consider now the last sum
∑
|α|=k,αl≤k−p 1/Ck

α. Note that |{α :
∑

l αl = k}| =
(
k−1
p−1

)
(this

is the number of ways to put k balls in p containers), so there are at most
(
k−1
p−1

)
terms in

this term. Moreover, 1/Ck
α ≤ p!/(k(k− 1) · · · (k− p+ 1)) whenever |α| = k, αl ≤ k− p.

Combining these two facts, we get
∑
|α|=k,αl<k−p 1/Ck

α ≤ p/k. Hence:

lim
k→∞

∑
|α|=k

1

Ck
α

= lim
k→∞

{
p+ O

(
p2

k

)
+ · · ·+ O

(
pp+1

k(k − 1) · · · (k − p+ 1)

)
+
p

k

}
= p.

Consider the two terms in the bound of Lemma 3: ‖g‖γ,θ and
√
Eθ(F, Fn). Letting F̃n

be the e.d.f. of {xi}ni=1, (xi)
∞
i=1

i.i.d.∼ F , the expected discrepancy for this random point set

becomes:

E[Eθ(F, F̃n)] = E{xi}

[
E{γθ(Y,Y′)} − 2

n

n∑
i=1

E{γθ(xi,Y)}+
1

n2

n∑
i=1

n∑
j=1

γθ(xi,xj)

]

= E

[
γθ(Y,Y′)− 2

n

n∑
i=1

E{xi}{γθ(xi,Y)}+
1

n2

n∑
i=1

n∑
j=1

E{xi}{γθ(xi,xj)}

]

= E{γθ(Y,Y′)} − 2E{γθ(Y,Y′)}

+
1

n2
[n(n− 1)E{γθ(Y,Y′)}+ nE{γθ(Y,Y)}]

=
1

n
[1− E{γθ(Y,Y′)}] ≤ 1

n
.

Because PSPs are defined as the minimizer of Eθ(F, Fn), it follows by the above averaging

argument that
√
Eθ(F, Fn) ≤ 1/

√
n.
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Next, consider the second term ‖g‖γ,θ. By Theorem 11, we have:

‖g‖2
γ,θ =

∞∑
k=0

k!

2k

∑
|α|=k

w2
α

Ck
αθ

α =
∞∑
k=0

k!

2k

∑
|α|=k

(
1

(Ck
α)3/2

)(√
Ck

αw
2
α

θα

)

≤
∞∑
k=0

k!

2k

√∑
|α|=k

1

(Ck
α)3

√√√√∑
|α|=k

Ck
αw

4
α

θ2α (Cauchy-Schwarz)

=
∞∑
k=0

C
√
p2k

√∑
|α|=k

1

(Ck
α)3

√√√√∑
|α|=k

Ck
α

p∏
l=1

(
w4
l

θ2
l

)αl
(POD form of wα and Γ|α| ≤ C/{p1/4(|α|!)1/2})

≤
∞∑
k=0

C
√
p2k

√∑
|α|=k

1

(Ck
α)

√√√√∑
|α|=k

Ck
α

p∏
l=1

(
w4
l

θ2
l

)αl

≤
∞∑
k=0

C
√
p2k

√∑
|α|=k

1

(Ck
α)

√√√√ p∑
l=1

w4
l

θ2
l

k

.

(Binomial theorem)

Taking the limit as k → ∞, Lemma 15 gives
√∑

|α|=k 1/(Ck
α) → √

p. Finally, if∑∞
l=1 w

4
l /θ

2
l < 4, the above series converges to a constant independent of p, as desired.

Combining this with Lemma 3, the proof is complete.

B.6 Proof of Theorem 13

This follows by a direct extension of Theorems 4 and 5 in [72].
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B.7 Proof of Proposition 2

Rewrite the π̃-expected discrepancy asEθ∼π̃(F, Fn) =
∫
X

∫
X
Eθ∼π̃{γθ(x,y)} d[F−Fn](x) d[F−

Fn](y). The integrand Eθ∼π̃{γθ(x,y)} can be simplified as:

Eθ∼π̃{γθ(x,y)} = Eθ∼π̃

[
exp

{
−

p∑
l=1

θl(xl − yl)2

}]

=

p∏
l=1

[∫ ∞
0

exp{−θl(xl − yl)2} ·
{

λν

Γ(ν)
θν−1
l exp(−λθl)

}
dθl

]

=

p∏
l=1

{
λ

(xl − yl)2 + λ

}ν
,

which completes the proof.

B.8 Proof of Lemma 4

First consider the majorizing paraboloid Q̄ in (2.22). It is easy to show that:

∇zγθ(z) = −2γθ(z)Ωθz and ∇2
zγθ(z) = 2γθ(z)

[
2Ωθz(Ωθz)T − Ωθ

]
.

Note that, for any z ∈ Rp:

∇2γθ(z) � 4γθ(z)(Ωθz)(Ωθz)T � 4γθ(z)‖Ωθz‖2
2Ip

� 4 exp

{
−

p∑
l=1

Ωθ,ll‖zl‖2
2

}(
p∑
l=1

Ωθ,ll‖zl‖2
2

)(
max
l

Ωθ,ll

)
Ip

� 4

e

(
max
l

Ωθ,ll

)
Ip = 4∆θ. (min

z
exp{−z2}z2 =

1

e
)

Using a second-order Taylor expansion of γθ(z) at z = z′, the following must hold for

some ξ = (1− t)z + tz′ with t ∈ [0, 1]:

γθ(z) = γθ(z′)− 2[γθ(z′)Ωθz
′]T (z− z′) +

1

2
(z− z′)T [∇2γθ(ξ)](z− z′) ≤ Q̄(z|z′).
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By definition, Q̄(z|z′) majorizes γθ(z) at z = z′.

Next, consider the minorizing paraboloid
¯
Q in (2.23). Note that exp(t) ≥ (1−t′) exp(t′)+

t exp(t′) by convexity. Hence:

γθ(z) ≥ γθ(z′)

1 +
∑

∅6=u⊆[p]

θu‖z′u‖22

− γθ(z′)
∑

∅6=u⊆[p]

θu‖zu‖22

= γθ(z′)
[
1 + z′Ωθz′

]
− γθ(z′)zTΩθz,

which completes the proof.

B.9 Proof of Lemma 5

The majorization claim follows directly from Lemma 4, and the closed-form minimizer can

be obtained by setting the gradient of hi to zero and solving for x.

B.10 Proof of Theorem 14

Under certain regularity conditions, parts (a) and (b) follow from Theorem 1 of [260] and

Prop. 3.4 of [45], respectively. These conditions are satisfied by the closedness / compact-

ness of X and Θ, and the differentiability of γθ(·).

B.11 Proof of Theorem 15

Starting from the i-th entry of the diagonal of Ωθ, i = 1, · · · , p, we get:

Ωθ,ii =
∑

i∈u⊆[p]

Γ|u|
∏
l∈u

θl =

p∑
k=1

∑
i∈u⊆[p],|u|=k

Γ|u|
∏
l∈u

θl

= θi

p∑
k=1

Γk
∑

u⊆[p]\{i},|u|=k−1

∏
l∈u

θl = θi

p∑
k=1

Γkr
(−i)
p,k−1,
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where r(−i)
s,k =

∑
u⊆[s]\{i},|u|=k

∏
l∈u

θl for s = 0, · · · , p. For s > 0, s 6= i, note that:

r
(−i)
s,k =

∑
s∈u⊆[s]\{i},|u|=k

∏
l∈u

θl +
∑

s/∈u⊆[s]\{i},|u|=k

∏
l∈u

θl = θsr
(−i)
s−1,k−1 + r

(−i)
s−1,k,

with initial values r(−i)
s,0 = 1 and r(−i)

s,k = 0 for k > s. This proves the correctedness of the

recursive procedure.
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APPENDIX C

APPENDIX FOR CHAPTER 4

C.1 Proof of Theorem 16

The proof of this requires a simple lemma on normal orthant probabilities:

Lemma 16. [263] Let (X1, · · · , Xp) follow the equicorrelated normal distribution, with

E(Xj) = 0, E(X2
j ) = 1 and E(XjXk) = ρ for all j 6= k, and let pm = P(X1 >

0, · · · , Xm > 0). Then:

p2 =
sin−1 ρ

2π
+

1

4
and p3 =

3 sin−1 ρ

4π
+

1

8
.

For the main proof, note that each row of the latent matrix Z is i.i.d., so it suffices to fix

n = 1 and explore the correlation amongst the scalar ME quantities x̃1,A and CME quanti-

ties x̃1,A|B+. We denote these as x̃A and x̃A|B+ for brevity. Under the latent equicorrelated

distribution N{0, ρJ+(1−ρ)I}, it is easy to show that E[x̃A] = 0 and Var[x̃A] = 1. More-

over, the CME x̃A|B+ can be conditionally decomposed as x̃A|B+
d
= R[2p2] if x̃B = +1, and

0 if x̃B = −1, where R[q] is the Rademacher random variable taking on +1 w.p. q ∈ [0, 1]

and -1 otherwise. From this, we get:

µc ≡ E[x̃A|B+] = E[E[x̃A|B+|x̃B]] =
1

2
(4p2 − 1),

σ2
c ≡ Var[x̃A|B+] = Var[E[x̃A|B+|x̃B]] + E[Var[x̃A|B+|x̃B]] =

1

2
−
(

sin−1 ρ

π

)2

.

Consider the correlation between the MEs x̃A and x̃B. Note that x̃Ax̃B equals +1 when

x̃A and x̃B have the same sign, and equals -1 otherwise. Letting P(++) be the probability

of (x̃A, x̃B) = (+1,+1) (with similar notation for +−, −+ and −−), Lemma 16 then
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gives:

Corr(x̃A, x̃B) = [P(++) +P(++)]− [P(+−) +P(−+)] = 2p2− 2[1/2− p2] =
2 sin−1 ρ

π
.

Next, consider the two sibling CMEs x̃A|B+ and x̃A|C+. Note that x̃A|B+x̃A|C+ equals

+1 when both x̃B = +1 and x̃C = +1, and equals 0 otherwise. It follows that:

Corr(x̃A|B+, x̃A|C+) =
1

σ2
c

[P(++)−µ2
c ] =

1

σ2
c

[p2−µ2
c ] =

1

σ2
c

{
−
(

sin−1 ρ

π

)2

+
sin−1 ρ

2π
+

1

4

}
.

The correlation for parent-child pairs can be proved in an analogous way.

Consider now the two cousin CMEs x̃B|A+ and x̃C|A+. Note that x̃B|A+x̃C|A+ equals

+1 when x̃A = +1 and x̃B = x̃C , x̃B|A+x̃C|A+ equals -1 when x̃A = +1 and x̃B 6= x̃C , and

equals 0 otherwise. We then have:

Corr(x̃B|A+, x̃C|A+) =
1

σ2
c

[
{P(+ + +) + P(+−−)} − {P(+ +−) + P(+ +−)} − µ2

c

]
=

1

σ2
c

[{P(+ + +) + (P(−−)− P(−−−))}

−2 {P(++)− P(+ + +)} − µ2
c

]
=

1

σ2
c

[2p3 − p2 − µ2
c ] =

1

σ2
c

{
−
(

sin−1 ρ

π

)2

+
sin−1 ρ

π

}
.

C.2 Proof of Theorem 17

Let X ∈ Rn×p′ be the normalized model matrix consisting of all main effects and CMEs,

where p′ = p + 4
(
p
2

)
. By the strong law of large numbers, the sample covariance matrix

Cn = XTX/n converges elementwise to some matrix C ∈ Rp′×p′ with unit diagonal en-

tries and off-diagonal entries given in Theorem 16. Consider the following block partition

of C =

C11 C12

C21 C22

, where C11 is the block for the active set A, and C22 the block for the

remaining variables. [102] proved that the LASSO is sign-selection consistent only when
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the (weak) irrepresentability condition holds: ∀ζ ∈ {−1,+1}p′ , |C21C
−1
11 ζ| < 1 (this

is a slight simplification of the original condition under the current i.i.d. setting). Hence,

sign-selection inconsistency can be proven if ∃ζ ∈ {−1,+1}p′ and an inactive effect j

satisfying:

|C21,jC
−1
11 ζ| ≥ 1, where C21,j is the row corresponding to effect j. (C.1)

Consider first a model with only q ≥ 3 active siblings of the form A|B+, A|C−, ...,

A|R−. Using the same principles as in Theorem 16, C11 can be shown to be a q× q matrix

with unit diagonal, [(1/2−p2)−µ2
c ]/σ

2
c for off-diagonal entries in the first row and column,

and ψsib(ρ) for all other off-diagonal entries 1. Letting A be the inactive effect, we have

C21,A = ψpc(ρ)1Tq , and letting ζ = 1q, it follows that |C21,AC−1
11 ζ| ≥ 1 for ρ ≥ 0. By

(C.1), part (a) is proven.

Next, consider a model with only q = 2 active main effects, say, A and −B. From

Theorem 16, C11 is a q × q matrix with unit diagonal and −ψme(ρ) on the off-diagonals.

Let A|B− be the inactive effect, so C21,A|B− = (ψpc(ρ), ψ̃(ρ)). Taking ζ = (1, 1)T ,

|C21,A|B−C−1
11 ζ| ≥ 1 for ρ ≥ 0.27, thereby proving selection inconsistency.

Lastly, consider a model with only q ≥ 6 active cousins of the form B|A+, C|A−, ...,

R|A−. Using the same principles as in Theorem 16, C11 is a q×q matrix with unit diagonal,

−µ2
c/σ

2
c for the off-diagonal entries in the first row and column, and ψcou(ρ) for all other

off-diagonal entries. Let B be the inactive effect with C21,B = (ψsib(ρ), ψ̃(ρ)1q−1). Taking

ζ = 1q, |C21,BC−1
11 ζ| ≥ 1 for ρ ≥ 0.29, which proves inconsistency.

1ψme(ρ), ψsib(ρ), ψpc(ρ) and ψcou(ρ) are the pairwise correlations in Theorem 16 for main effects,
siblings, parent-child pairs and cousins, respectively. ψ̃(ρ) = sin−1(ρ)/(πσc) is the pairwise correlation
between a CME and its conditioned effect.
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C.3 Proof of Proposition 3

As a note, since the objective Q(β) is non-differentiable at β = 0, what we mean by strict

convexity here is that∇2
uQ(β), the directional Hessian of Q(β) in direction u, is positive-

definite for all β and all ‖u‖ = 1. We follow a similar approach as Proposition 1 of [101].

Note that∇2‖y−Xβ‖2
2 = 2XTX. Moreover, with η′λ,τ (θ) = λ exp(−θτ/λ) and η′′λ,τ (θ) =

−τ exp(−θτ/λ), one can show that ∇2
uPs(β) ≥ −τ(1) + λ(−1/(λγ)) = −τ − 1/γ and

similarly∇2
uPc(β) ≥ −τ − 1/γ, for all u and β. Hence, for all u and β:

∇2
uQ(β) = ∇2

u

{
1

2n
‖y −Xβ‖2

2 + Ps(β) + Pc(β)

}
≥ λmin(XTX)

n
− 2

(
τ +

1

γ

)
,

which is strictly positive when τ + 1/γ < λmin(XTX)/(2n). The second part of the claim

follows by replacing X with xj in the argument above, and using the fact that ‖xj‖2
2 = n.

C.4 Proof of Theorem 18 and Corollary 2

The majorization claim a) follows from a first-order Taylor expansion of the outer penalty:

ηλ,τ (‖βg‖λ,γ) ≥ ηλ,τ (‖β̃g‖λ,γ)+∆̃g

{
‖βg‖λ,γ − ‖β̃g‖λ,γ

}
, where the inequality holds due

to the concavity of η. See Lemma 1 in [101] for details.

To derive the threshold function in b), take the following optimization problem:

β̂j = argmin
βj

{
1

2n
‖r− xjβj‖2

2 + ∆1gλ1,γ(βj) + ∆2gλ2,γ(βj)

}
. (C.2)

The KKT condition for (C.2) is:

0 ∈ − 1

n
xTj r+β̂j+∆1∂λ1,γβ̂j+∆2∂λ2,γβ̂j, ∂λ,γβj =


sgn(βj)

(
1− |βj|

λγ

)
+

if |βj| > 0,

[−1, 1] if βj = 0.

(C.3)
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Without loss of generality, assume z ≡ xTj r/n > 0. Consider the same four cases for z as

presented in (3.9):

1. z ≥ λ(1)γ: Suppose β̂j = z. Then the KKT condition (C.3) becomes 0 ∈ −z + β̂j ,

which is satisfied. Since (C.2) is strictly convex, β̂j = z must be its unique solution.

2. c2 ≤ z < λ(1)γ (see (3.9) for c2): Suppose β̂j = (z − ∆(1))/
(

1− ∆(1)

λ(1)γ

)
. Since

λ(2)γ ≤ β̂j < λ(1)γ, the KKT condition (C.3) becomes 0 ∈ −z+β̂j+∆(1)

(
1− β̂j

λ(1)γ

)
,

which is satisfied. Hence, β̂j is the unique solution to (C.2).

3. ∆(1)+∆(2) ≤ z < c2 (see (3.9) for c3): Suppose β̂j = (z−∆(1)−∆(2))/
(

1− ∆(1)

λ(1)γ
− ∆(2)

λ(2)γ

)
.

Since 0 < β̂j < λ(2)γ, the KKT condition (C.3) becomes 0 ∈ −z+β̂j+∆(1)

(
1− β̂j

λ(1)γ

)
+

∆(2)

(
1− β̂j

λ(2)γ

)
, which is satisfied. Hence, β̂j is the unique solution to (C.2).

4. 0 ≤ z < ∆(1) + ∆(2): Suppose β̂j = 0. The KKT condition then becomes 0 ∈

−z + (∆(1) + ∆(2))[−1, 1], which is satisfied, so β̂j is the unique solution to (C.2).

From this, Corollary 2 can be proved in a similar way as Proposition 3 of [101].

C.5 Proof of Proposition 4

Since Q(β) is strictly convex, it must have at most one minimizer β. By definition, β must

satisfy the KKT condition:

0 ∈ − 1

n
xTj (y −Xβ) + ∆S(β)∂λs,γβj + ∆C(β)∂λc,γβj, j = 1, · · · , p′, (C.4)

where ∂λ,γβj is the subgradient defined in (C.3), and ∆S(β) and ∆C(β) are the linearized

slopes in (3.5) for the sibling and cousin groups of effect j. Setting β = 0, the right side of

(C.4) becomes:

− 1

n
xTj y + λs[−1, 1] + λc[−1, 1] = − 1

n
xTj y + [−λs − λc, λs + λc],
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which contains 0 when λs + λc ≥ |xTj y|/n. Hence, when λs + λc ≥ maxj=1,··· ,p′ |xTj y|/n,

one can invoke the strict convexity ofQ(β) to show that the trivial solution β = 0 is indeed

the unique minimizer.

C.6 Algorithm statement for cv.cmenet

Algorithm 13 cv.cmenet: A cross-validation algorithm for tuning cmenet
1: function CV.CMENET(X,y,K)
• Initialize grid of potential parameters max

j=1,··· ,p′
|xTj y|/n > λ1

s > · · · > λLs > 0,

max
j=1,··· ,p′

|xTj y|/n > λ1
c > · · · > λMc > 0, γ1 < · · · < γG and τ1 < · · · < τT (satisfy-

ing τ + 1/γ < 1/2).
• Obtain the tuned MC+ parameters (λ∗, γ∗) using cv.sparsenet in the R package
SPARSENET, and set λ∗s, λ

∗
c ← λ∗/2 as an initial estimate.

• Randomly partition the data D = (X, y) into K equal pieces {D1, · · · , DK}.
2: for k = 1, · · · ,K do . K-fold CV for tuning γ and τ
3: for γ ∈ {γ1, · · · , γG} do . For each γ...
• βprev ← 0p′ . Reset warm start solution

4: for τ ∈ {τ1, · · · , τT } do . For each τ ...
• βλ∗s ,λ∗c (γ, τ ; k)← cmenet(X−k,y−k, λ

∗
s, λ
∗
c , γ, τ,βprev) . Train w/o part k

• βprev ← βλ∗s ,λ∗c (γ, τ ; k) . Update warm start solution

• (γ∗, τ∗)← argmin
γ,τ

K∑
k=1

‖yk −Xkβλ∗s ,λ∗c (γ, τ ; k)‖22 . Estimate optimal γ and τ

5: for k = 1, · · · ,K do . K-fold CV for tuning λs and λc
6: for λc ∈ {λ1

c , · · · , λMc } do . For each λc...
• βprev ← 0p′

7: for λs ∈ {λ1
s, · · · , λLs } do . For each λs...

8: if λc + λs < maxj=1,··· ,p′ |xTj y|/n then
• Screen using the three strong rules in Section C.7.
• βλs,λc(γ

∗, τ∗; k)← cmenet(X−k,y−k, λs, λc, γ
∗, τ∗,βprev),

using only screened effects.
• Check KKT conditions on converged solution βλs,λc(γ

∗, τ∗; k).
• βprev ← βλs,λc(γ

∗, τ∗; k)

• (λ∗s, λ
∗
c)← argmin

λs,λc

K∑
k=1

‖yk −Xkβλs,λc(γ
∗, τ∗; k)‖22 . Estimate optimal λs and λc

• β̂ ← cmenet(X,y, λ∗s, λ
∗
c , γ
∗, τ∗,0p′) . Refit using optimal parameters

return optimal coefficients β̂.

Some comments on the implementation of active set optimization within cmenet:

• The active set of variables is initialized by performing the full coordinate descent cycle
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for 25 iterations, then choosing the variables whose coefficients are non-zero.

• Repeat coordinate descent iterations over the active set until convergence.

• Perform a full coordinate descent cycle over all p′ variables. If this cycle does not change

the active set, cmenet is terminated; otherwise, the active set is updated, and the above

steps repeated.

C.7 Theoretical derivation of CME screening rules

Fix γ and τ , and suppose β̂j(λs, λc) ∈ (0,min{∆(1) +∆(2), λ(2)γ}). For brevity, we denote

β̂j(λs, λc) as β̂j from here on. Using equation (3.9), we know that β̂j takes the form:

β̂j = sgn(zj)
(
|zj | −∆(1) −∆(2)

)
+
/

(
1−

∆(1)

λ(1)γ
−

∆(2)

λ(2)γ

)
= sgn(zj) (|zj | −∆S −∆C)+ /

(
1− ∆S

λSγ
− ∆C

λCγ

)
,

(C.5)

where zj = xTj r−j/n (see Theorem 18), and ∆S and ∆C are the linearized slopes for the

current penalty setting (λs, λc). Plugging this expression into (C.4), the KKT condition for

β̂j can be simplified to:

0 = −cj(λs, λc) + sgn(β̂j)∆S

1− (|zj | −∆S−∆C)+

λs

(
γ − ∆S

λs
− ∆C

λc

)
+ sgn(β̂j)∆C

1− (|zj | −∆S−∆C)+

λc

(
γ − ∆S

λs
− ∆C

λc

)


⇔ cj(λs, λc) = sgn(β̂j)∆S

1− (|zj | −∆S−∆C)+

λs

(
γ − ∆S

λs
− ∆C

λc

)
+ sgn(β̂j)∆C

1− (|zj | −∆S−∆C)+

λc

(
γ − ∆S

λs
− ∆C

λc

)
 .

(C.6)

Suppose no effects are active in either the sibling group S or the cousin group C, in

which case ∆S = λs and ∆C = λc. The KKT condition in (C.6) can then be rewritten as:

cj(λs, λc) = sgn(β̂j)

{
λs −

(|zj| − λs − λc)+

γ − 2

}
+ sgn(β̂j)

{
λc −

(|zj| − λs − λc)+

γ − 2

}
.

(C.7)
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Taking the derivative with respect to λs (and assuming zj is approximately constant in λs,

following [112]), we get:

∣∣∣ ∂
∂λs

cj(λs, λc)
∣∣∣ . 1 +

1

γ − 2
+

1

γ − 2
=

γ

γ − 2
. (C.8)

A similar argument shows that this approximate upper bound also holds for |(∂/∂λc) cj(λs, λc)|.

Now, suppose no effects are active in the sibling group S (but some in the cousin group

C), in which case ∆S = λs. The KKT condition in (C.6) can then be rewritten as:

cj(λs, λc) = sgn(β̂j)

{
λs −

(|zj| − λs −∆C)+

γ − 1− ∆C

λc

}
+sgn(β̂j)∆C

1− (|zj| − λs −∆C)+

λc

(
γ − 1− ∆C

λc

)
 .

(C.9)

Taking the derivative on λs (and assuming zj is approximately constant in λs), we get:

∣∣∣ ∂
∂λs

cj(λs, λc)
∣∣∣ . 1 +

1

γ − 1− ∆C

λc

+
∆C

λc

γ − 1− ∆C

λc

=
γ

γ − 1− ∆C

λc

. (C.10)

Finally, suppose there are no active effects in the cousin group C (but some in sibling group

S). One can do a similar approximation and show that:

∣∣∣ ∂
∂λc

cj(λs, λc)
∣∣∣ . 1 +

1

γ − ∆S

λs
− 1

+
∆S

λs

γ − ∆S

λs
− 1

=
γ

γ − ∆S

λs
− 1

. (C.11)

These upper bounds on the absolute derivatives of cj(λs, λc), along with the proposed

strong rules in Section C.7, can then be used to demonstrate the inactivity of effect j at

penalty setting (λls, λ
m
c ):

1. Consider the first part of the first strong rule, which applies when no active effects

are in S and C for setting (λl−1
s , λmc ). This rule discards effect j at setting (λls, λ

m
c )

if:

|cj(λl−1
s , λmc )| < λls + λmc +

γ

γ − 2
(λls − λl−1

s ).

This can be justified as follows. Using the approximate upper bound in (C.8), the
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inner-product of effect j at setting (λls, λ
m
c ) can be approximately upper bounded as:

|cj(λls, λmc )| ≤ |cj(λls, λmc )− cj(λl−1
s , λmc )|+ |cj(λl−1

s , λmc )|

≈
∣∣∣ ∂
∂λs

cj(λ
l−1
s , λmc )

∣∣∣(λl−1
s − λls) + |cj(λl−1

s , λmc )|

<
γ

γ − 2
(λl−1

s − λls) +

[
λls + λmc +

γ

γ − 2
(λls − λl−1

s )

]
= λls + λmc .

Assuming effect j is the first variable to potentially be selected in S or C at current

setting (λls, λ
m
c ), the KKT conditions in (C.4) suggest that effect j is inactive, which

justifies the screening rule. A similar argument can be used to derive the second part

of this rule.

2. Consider next the second strong rule, which applies when no active effects are in S

for setting (λl−1
s , λmc ). This rule discards effect j at setting (λls, λ

m
c ) if:

|cj(λl−1
s , λmc )| < λls + ∆′C +

γ

γ − (∆′C/λ
m
c + 1)

(λls − λl−1
s ).

This can be justified as follows. Using the approximate upper bound in (C.10), the

inner-product of effect j at setting (λls, λ
m
c ) can be approximately upper bounded as:

|cj(λls, λmc )| ≤ |cj(λls, λmc )− cj(λl−1
s , λmc )|+ |cj(λl−1

s , λmc )|

≈
∣∣∣ ∂
∂λs

cj(λ
l−1
s , λmc )

∣∣∣(λl−1
s − λls) + |cj(λl−1

s , λmc )|

<
γ

γ − (∆′C/λ
m
c + 1)

(λl−1
s − λls)

+

[
λls + ∆′C +

γ

γ − (∆′C/λ
m
c + 1)

(λls − λl−1
s )

]
= λls + ∆′C.

Assuming:
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• Effect j is the first variable to potentially be selected in Sat current setting (λls, λ
m
c ),

• The linearized slope ∆′C at previous setting (λl−1
s , λmc ) is approximately the lin-

earized slope ∆C at current setting (λls, λ
m
c ),

the KKT conditions in (C.4) suggest that effect j is inactive, which justifies the

screening rule.

3. The third strong rule can be justified in a similar manner to the above two rules.
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APPENDIX D

APPENDIX FOR CHAPTER 5

D.1 Computing the CPOD expansion

The driving idea behind CPOD is that a common spatial domain is needed to extract com-

mon instabilities over multiple injector geometries, since each simulation run has different

geometries and varying grid points. We first describe a physically justifiable method for

obtaining such a common domain, and then use this to compute the CPOD expansion.

D.1.1 Common grid

1. Identify the densest grid (i.e., with the most grid points) among the n simulation runs,

and set this as the common reference grid.

2. For each simulation, partition the grid into the following four parts: (a) from injector

head-end to the inlet, (b) from the inlet to the nozzle exit, (c) the top portion of the

downstream region and (d) the bottom portion of the downstream region (see Figure

D.1 for an illustration). This splits the flow in such a way that the linearity assumption

can be physically justified.

3. Linearly rescale each part of the partition to the common grid by the corresponding

geometry parameters L, Rn and ∆L (see Figure D.1).

4. For each simulation, interpolate the original flow data onto the spatial grid of the

common geometry. This step ensures the flow is realized over a common set of grid

points for all n simulations. In our implementation, the inverse distance weighting

interpolation method [147] is used with 10 nearest neighbours.
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Figure D.1: Partition of the spatial grid for the first simulation case.

D.1.2 POD expansion

After flows from each simulation have been rescaled onto the common grid, the origi-

nal POD expansion can be used to extract common flow instabilities. Let {xj}Jj=1 and

{tm}Tm=1 denote the set of common grid points and simulated time-steps, respectively, and

let Ỹ (x, t; ci) be an interpolated flow variable for geometric setting ci, i = 1, · · · , n (for

brevity, assume a single flow variable, e.g., x-velocity, for the exposition below). The

CPOD expansion can be computed using the following three steps.

1. For notational convenience, we combine all combinations of geometries and time-

steps into a single index. SetN = nT and let l = 1, · · · , N index all combinations of

n design settings and T time-steps, and let Ỹl(x) ≡ Ỹ (x, (t, c)l). Define Q ∈ RN×N

as the following inner-product matrix:

Ql,m =
J∑
j=1

Ỹl(xj)Ỹm(xj).

Such an inner-product is possible because all n simulated flows are observed on a set

of common gridpoints set.

First, compute the eigenvectors ak ∈ RN satisfying:

Qak = λkak,
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where λk is the k-th largest eigenvalue of Q. Since a full eigendecomposition re-

quires O(N3) work, this step may be intractible to perform when the temporal reso-

lution is dense. To this end, we employed a variant of the implicitly restarted Arnoldi

method [148], which can efficiently approximate leading eigenvalues and eigenvec-

tors.

2. Compute the k-th mode φk(x) as:



φk(x1)

φk(x2)

...

φk(xJ)


=


Ỹ1(x1) · · · ỸN(x1)

... . . . ...

Ỹ1(xJ) · · · ỸN(xJ)

 ak.

To ensure orthonormality, apply the following normalization:

φk(xj) :=
φk(xj)

‖φk(x)‖
, ‖φk(x)‖ =

√√√√ J∑
j=1

φk(xj)2

3. Lastly, derive the CPOD coefficients (βl,1, · · · , βl,N)T for the snapshot at index l (i.e.,

with design setting and time-step (c, t)l) as:



βl,1

βl,2
...

βl,N


=


φ1(x1) · · · φ1(xJ)

... . . . ...

φN(x1) · · · φN(xJ)





Ỹl(x1)

Ỹl(x2)

...

Ỹl(xJ)


.

Using these coefficients and a truncation at Kr < N modes, it is easy to show the

following decomposition of the flow at the design setting ci and time-step tm indexed

by l:

Y (xj, tm; ci) ≈
Kr∑
k=1

βl,kMi{φk(xj)}, j = 1, · · · , J,
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as asserted in (3).

D.2 Proof of Theorem 2

Define the mapA : RK×RK×K×Rp → RK×RK×K×Rp as a single-loop of the graphical

LASSO operator for optimizing T with µ and τ fixed, and defineB : RK×RK×K×Rp →

RK×RK×K×Rp as the L-BFGS map for a single line-search when optimizingµ and τ with

T fixed. Each BCD cycle in Algorithm 1 then follows the map composition S = AM ◦BN ,

where M < ∞ and N < ∞ are the iteration count for the graphical LASSO operator and

number of line-searches, respectively. The parameter estimates at iteration m of the BCD

cycle can then be given by:

Θm+1 = S(Θm), where Θm = (µm,Tm, τm).

Define the set of stationary solutions as Γ = {Θ : ∇lλ(Θ) = 0}, where ∇lλ is the

gradient of the negative log-likelihood lλ. Using the Global Convergence Theorem (see

Section 7.7 of [264]), we can prove stationary convergence:

lim
m→∞

Θm = Θ∗ ∈ Γ,

if the following three conditions hold:

(i) {Θm}∞m=1 is contained within a compact subset of RK × RK×K × Rp,

(ii) lλ is a continuous descent function on Γ under map S,

(iii) S is closed for points outside of Γ.

We will verify these conditions below.

(i) This is easily verified by the fact that |µm| ≤
(

maxi,r,k |β(r)
k (ci)|

)
1K , 0 � Tm �
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(
maxk,r s

2{β(r)
k (ci)}ni=1

)
IK and τm ∈ [0, 1]p, where s2{·} returns the sample stan-

dard deviation for a set of scalars.

(ii) To prove that S is a descent function, we need to show that if Θ ∈ Γ, then lλ{S(Θ)} =

lλ{Θ}, and if Θ /∈ Γ, then lλ{S(Θ)} < lλ{Θ}. The first condition is trivial, since

M = 0 and N = 0 when Θ is stationary. The second condition follows from the

fact that the maps A and B incur a strict decrease in lλ whenever T and (µ, τ ) are

non-stationary, respectively.

(iii) Note that AM is a continuous map (since the graphical LASSO map is a continuous

operator) and the line-search map BN is also continuous. Since S = AM ◦ BN , it

must be continuous as well, from which the closedness of S follows.

D.3 Proof of Theorem 3

Fix some spatial coordinate x and time-step t, and let:

y = (Y (u)(x, t; cnew), Y (v)(x, t; cnew), Y (w)(x, t; cnew))T

be the true simulated flows for x-, y- and circumferential velocities at the new setting cnew,

ŷ = (Ŷ (u)(x, t; cnew), Ŷ (v)(x, t; cnew), Ŷ (w)(x, t; cnew))T

be its corresponding prediction from (9), and

ȳ = (Ȳ (u)(x; cnew), Ȳ (v)(x; cnew), Ȳ (w)(x; cnew))T
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be its time-averaged flow. It is easy to verify that, given the simulation data D = {Y (r)(x, t; ci)},

the conditional distribution of y|D is N(ŷ,Φ(x, t)), where:

Φ(x, t) ≡


m(u) 0 0

0 m(v) 0

0 0 m(w)

 [V{β(t; cnew)|{β(t; ci)}ni=1}]uvw


m(u) 0 0

0 m(v) 0

0 0 m(w)


T

,

(D.1)

with:

m(r) =

[
Mnew{φ(r)

1 (x)}, Mnew{φ(r)
2 (x)}, · · · Mnew{φ(r)

Kr
(x)}

]
, r = u, v, w.

Letting Φ(t) = UΛUT be the eigendecomposition of Φ(t), with Λ = diag{λj}, it

follows that Λ−1/2UT (y − ȳ)|D d
= N(µ, IK), where µ = Λ−1/2UT (ŷ − ȳ) and K =

Ku + Kv + Kw. Denoting a = Λ−1/2UT (y − ȳ), the TKE expression in (13) can be

rewritten as:

κ(x, t) =
1

2
(y − ȳ)T (y − ȳ) =

1

2
(UΛ1/2a)T (UΛ1/2a)

=
1

2
(aTΛ1/2UTUΛ1/2a)

=
1

2
aTΛa =

1

2

K∑
j=1

λja
2
j .

(D.2)

Since a ∼ N(µ, IK), a2
j has a non-central chi-square distribution with one degree-of-

freedom and non-centrality parameter µ2
j (we denote this as χ2

1(µ2
j)). κ(x, t) then becomes:

K∑
j=1

λj
2
χ2

1(µ2
j), (D.3)

which is a sum of weighted non-central chi-squared distributions. The computation of the

distribution function for such a random variable has been studied extensively, see, e.g.,

[265], [266, 267], [268], and [269], and we appeal to these methods for computing the

231



pointwise confidence interval of κ(x, t) in Section 4. Specifically, we employ the method

of [269] through the R [270] package CompQuadForm [271].
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APPENDIX E

APPENDIX FOR CHAPTER 6

E.1 Proof of Theorem 22

Lemma 17. Let h : Rp → R+ be a strictly convex function, and let g : R+ → R+ be a

convex and strictly increasing function. Then the composition g ◦ h : Rp → R+ is strictly

convex.

Proof. (Lemma 17) This is easy to show using first principles. Let α ∈ (0, 1) and let z 6= z′

be two points in Rp. By strict convexity, we have:

h(αz + (1− α)z′) < αh(z) + (1− α)h(z′).

Moreover, since g is strictly increasing and convex, it follows that:

(g ◦ h)(αz + (1− α)z′) < g(αh(z) + (1− α)h(z′)) ≤ α(g ◦ h)(z) + (1− α)(g ◦ h)(z′),

which proves the strict convexity of g ◦ h.

Proof. (Theorem 22) Let g(x) = xq/2 and h(z) = ‖z − zi‖2
2. It is easy to verify that h is

strictly convex, and g is convex and strictly increasing on R+. By Lemma 1, it follows that

(g ◦ f)(x) = ‖z− zi‖q2 is strictly convex. Hence, for any α ∈ (0, 1) and z, z′ ∈ Rp, z 6= z′,

we have:

Dq(αz + (1− α)z′; Z) =
1

mq

n∑
i=1

‖ {(αz + (1− α)z′)− zi} ‖q2

<
1

mq

n∑
i=1

{α‖z− zi‖q2 + (1− α)‖z′ − zi‖q2}

= αDq(z; Z) + (1− α)Dq(z
′; Z),
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so the objective Dq(z; Z) is strictly convex in z.

Using this fact, we show that (5.5) has a unique minimizer. Note that the objective

Dq(z; Z) is continuous and coercive on the closed set Rp, where the latter term implies

that for all sequences {zk}∞k=1 satisfying ‖zk‖2 →∞, limk→∞Dq(zk; Z) =∞. It follows

from Proposition A.8 in [272] and the strict convexity of Dq(z; Z) that there exists exactly

one one global minimum of (5.5), so Cq(Z) is uniquely defined.

To prove that the unique minimizer Cq(Z) is contained in conv(Z), note that by first-

order optimality conditions, Cq(Z) must satisfy:

∇Dq(Cq(Z); Z) =
1

n

m∑
i=1

{
‖Cq(Z)− zi‖q−2

2 (Cq(Z)− zi)
}

= 0

⇔ Cq(Z) =
m∑
i=1

{
‖Cq(Z)− zi‖q−2

2∑n
j=1 ‖Cq(Z)− zj‖q−2

2

zi

}
≡

m∑
i=1

αizi.

Since the weights {αi}mi=1 satisfy αi ≥ 0 and
∑m

i=1 αi = 1, it follows by definition that

Cq(Z) ∈ conv(Z), which is as desired.

E.2 Proof of Theorem 23

Lemma 18. Let Z= {zi}mi=1 be a set of points in Rp. Then there exists some point zj ∈ Z

such that Dq(zj; Z) ≥ Dq(z; Z) for all z ∈ conv(Z).

Proof. (Lemma 18) Since conv(Z) is a compact set, the set of maximizers in:

M= argmaxz∈conv(Z)Dq(z; Z)

is non-empty, so an equivalent claim is that zj ∈ M for some j = 1, · · · ,m. Suppose,

for contradiction, that zj /∈ M for all j = 1, · · · ,m, and let z′ =
∑m

i=1 αjzj /∈ Z be a
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maximizer in M, with αj ≥ 0 and
∑m

j=1 αj = 1. Then, by convexity, we have:

Dq(z
′; Z) =

1

mq

m∑
i=1

∥∥∥∥∥∥
m∑
j=1

αj(zj − zi)

∥∥∥∥∥∥
q

2

≤ 1

mq

m∑
i=1

m∑
j=1

αj‖zj − zi‖q2 =
1

mq

m∑
j=1

αj

(
m∑
i=1

‖zj − zi‖q2

)

=
m∑
j=1

αjDq(zj ; Z),

which implies that Dq(z
′; Z) ≤ Dq(zj; Z) for at least one j = 1, · · · ,m. Since z′ ∈ M,

this implies that zj ∈M, which is a contradiction. The lemma therefore holds.

Proof. (Theorem 23) Since Dq(z; Z) is twice-differentiable, it is β-smooth on conv(Z) if

and only if:

∇2Dq(z; Z) � βI for all z ∈ conv(Z). (E.1)

Letting λmax{A} denote the largest eigenvalue of A, it follows that:

λmax{∇2Dq(z; Z)}

= λmax

{
q − 2

m

m∑
i=1

{
‖z− zi‖q−4

2 (z− zi)(z− zi)
T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 I

}

≤ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 λmax

{
(z− zi)(z− zi)

T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 λmax{I}

=
q − 2

m

m∑
i=1

‖z− zi‖q−4
2 · ‖z− zi‖2

2 +
1

m

m∑
i=1

‖z− zi‖q−2
2

=
q − 1

m

m∑
i=1

‖z− zi‖q−2
2 ≤ q − 1

m
max

j=1,··· ,m

m∑
i=1

‖zj − zi‖q−2
2 = β̄,

where the last inequality holds by Lemma 18. Hence, ∇2Dq(z; Z) � β̄I for all z ∈

conv(Z), so Dq(z; Z) is β̄-smooth on conv(Z) by (E.1).

Likewise, since Dq(z; Z) is twice-differentiable, it is µ-strongly convex on conv(Z) if

and only if:

µI � ∇2Dq(z; Z) for all z ∈ conv(Z). (E.2)
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Letting λmin{A} denote the smallest eigenvalue of A, we have:

λmin{∇2Dq(z; Z)} = λmin

{
q − 2

m

m∑
i=1

{
‖z− zi‖q−4

2 (z− zi)(z− zi)
T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 I

}

≥ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 λmin

{
(z− zi)(z− zi)

T
}

+
1

m

m∑
i=1

‖z− zi‖q−2
2 λmin{I}

≥ q − 2

m

m∑
i=1

‖z− zi‖q−4
2 · 0 +

1

m

m∑
i=1

‖z− zi‖q−2
2

≥ 1

m

m∑
i=1

‖Cq−2(Z)− zi‖q−2
2

= µ̄,

where the last inequality holds by definition of Cq−2(Z). Hence by (E.2), Dq(z; Z) is

µ̄-strongly convex.

E.3 Proof of Corollary 3

Consider a β-smooth and µ-strongly convex function h with unique minimizer u∗. It can

be shown [273] that an iteration upper bound of t = O
(√

β
µ

log 1
εin

)
guarantees an εin-

accuracy in objective, i.e. |h(u[t])− h(u∗)| < εin. Combining this iteration bound with the

result in Theorem 23, and using the fact that each update requires O(mp) work, we get the

desired result.

E.4 Proof of Theorem 24

The three parts of this theorem are individually easy to verify. For finite termination, we

showed in Section 3.1 that the objective in (5.7) strictly decreases after each loop itera-

tion of Algorithm 7. Moreover, there are exactly Nn possible assignments of the sample

{yj}Nj=1 to the design points {mi}ni=1. Suppose, for contradiction, that Algorithm 7 does

not terminate after Nn iterations. Then there exists at least two iterations which begin with

the same assignment of {yj}Nj=1. This, in turn, generates the same design {mi}ni=1 at the

236



end of both iterations, which presents a contradiction to the strictly decreasing objective

values induced by each loop iteration of Algorithm 7. The first claim therefore holds.

Next, regarding running time, consider the two updates in a single loop iteration of

Algorithm 7. The first update assigns each sample point in {yj} to its closest design

point, which requires O(Nnp) work. The second update computes, for each design point,

the Cq-center of samples assigned to it. Let Z = {zj}mij=1 be the mi points assigned

to the i-th design point. From Corollary 3, the computation of its Cq-center requires

O(mip
√

(q − 1)κq−2(Z) log(1/εin)) work. Letting z̃ = argmaxj=1,··· ,miDq(zj; Z), it fol-

lows that for any q ≥ 2:

κq(Z) =
Dq(z̃; Z)

Dq(Cq(Z); Z)
≤
∑mi

i=1 ‖zi − Cq(Z)‖q2 +mi‖z̃− Cq(Z)‖q2∑mi
i=1 ‖zi − Cq(Z)‖q2

≤ 1 +
mi‖z̃− Cq(Z)‖q2∑mi
i=1 ‖zi − Cq(Z)‖q2

≤ mi + 1.

Hence, updating Cq-centers for all n design points require a total work of:

n∑
i=1

O(mip
√

(q − 1)κq−2(Z) log(1/εin)) ≤ O

({
n∑
i=1

m
3/2
i

}
p
√
q − 1 log

1

εin

)

≤ O

{ n∑
i=1

mi

}3/2

p
√
q − 1 log

1

εin


= O

(
N3/2p

√
q − 1 log

1

εin

)
.

Finally, since n ≤ N1/2, the running time of the second step dominates the first, which

completes the argument.

Finally, assume that the Cq-center updates in (5.5) are exact. By the termination con-

ditions of Algorithm 7, the converged design is optimal given fixed assignments, and the

converged assignment variables are optimal given a fixed design. Hence, the converged

design (as well as its corresponding assignment) are locally optimal for (5.7).
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E.5 Proof of Proposition 5

This can be shown by a simple application of the triangle inequality. Let D = {mi}ni=1 be

the design at the current iteration, and without loss of generality, suppose the first design

point m1 is to be updated. Also, let {di}ni=1 be the minimax distances for each design point

(defined in (5.15)), with d∗ = maxi di being the overall minimax distance of D.

Let m̃1 be the optimal design point in (5.16), and note that, by optimization constraints,

‖m̃1 −m1‖ ≤ d∗ − d1. Denoting d̃∗ as the overall minimax distance of the new design

D̃ = {m̃1,m2, · · · ,mn}, the claim is that d̃∗ ≤ d∗. To prove this, let x be the point in X

achieving the minimax distance d̃∗, and consider the following three cases:

• If Q(x, D̃), the closest design point to x in D̃, equals m̃1, then:

d̃∗ = ‖x− m̃1‖ ≤ ‖x−m1‖+ ‖m1 − m̃1‖ ≤ d1 + (d∗ − d1) = d∗.

• If Q(x, D̃) = mi for some i = 2, · · · , n, and Q(x, D) = m1, then:

d̃∗ = ‖x−mi‖ ≤ ‖x− m̃1‖ ≤ ‖x−m1‖+ ‖m1 − m̃1‖ ≤ d1 + (d∗ − d1) = d∗.

• If Q(x, D̃) = mi for some i = 2, · · · , n, and Q(x, D) = mj for some j = 1, · · · , n,

then it must be the case that i = j, since the only change from D to D̃ is the first design

point. Hence:

d̃∗ = ‖x−mi‖ ≤ di ≤ d∗.

This proves the proposition.
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E.6 Additional minimax designs on [0, 1]p

Figure E.1: Minimax criterion on [0, 1]p for p = 2, 4, 6 and 8.
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Figure E.2: 20-, 40-, 60-, 80- and 100-point designs on the unit hypercube [0, 1]2.
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E.7 Additional minimax designs on Ap and Bp

Figure E.3: Minimax criterion on Ap and Bp for p = 2, 4, 6 and 8.
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Figure E.4: 20-, 40-, 60-, 80- and 100-point designs on the unit simplex A2.
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Figure E.5: 20-, 40-, 60-, 80- and 100-point designs on the unit ball B2.
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E.8 Additional minimax designs on Georgia

Figure E.6: 20-, 40-, 60-, 80- and 100-point designs on Georgia.
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APPENDIX F

APPENDIX FOR CHAPTER 7

F.1 Proof of Lemma 6

Proof. We first prove part (a) of the lemma. To show that X ∈ T almost surely, let Z be

an arbitrary matrix in Rm1×m2 , with SVD Z = ŨDṼT , D = diag({dk}Rk=1). Letting uk =

PUũk and vk = PVṽk, where ũk and ṽk are column vectors for Ũ and Ṽ respectively, we

have uk ∈ U and vk ∈ V for k = 1, · · · , R. From Definition 16, X can then be written

as X = PUZPV = (PUŨ)D(PVṼ)T =
∑R

k=1 dkukv
T
k , as desired. Next, note that the

pseudo-inverse of Pu, (Pu)+, is simply Pu, since Pu(Pu)+Pu = (Pu)+Pu(Pu)+ = Pu

by the idempotency of Pu, and Pu(Pu)+ = (Pu)+Pu are both symmetric. Moreover,

letting det∗ be the pseudo-determinant operator, we have det∗(PU) = det∗(UUT ) =

det(UTU) = 1, and det∗(PV) = 1 by the same argument. Using this along with Theorem

2.2.1 in [223], the density function f(X) and the distribution of vec(X) follow immedi-

ately.

We now prove part (b) of the lemma. From part (a), we have vec(X) ∼N{0, σ2(PV⊗

PU)}, so:

[YΩ,XΩc ] ∼N

0,

 σ2RN (Ω) + η2I σ2(PV⊗PU)Ω,Ωc

σ2(PV⊗PU)TΩ,Ωc σ2(PV⊗PU)Ωc

 .

The expressions for XP
Ωc and ΣP

Ωc in (6.7) then follow from the conditional density of the

multivariate Gaussian distribution.

F.2 Proof of Lemma 7

Proof. Since U(GR,m−R) is a special case of the matrix Langevin distribution (Section

2.3.2 in [224]), it follows from (2.3.22) of [224] that [PU|R] ∝ 1 and [PV|R] ∝ 1. For
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fixed η2 and σ2, the MAP estimator for X then becomes:

X̃ ∈ Argmax
X∈Rm1×m2

[YΩ|X, η2] [X|PU,PV, σ
2, R]·

[PU|R] [PV|R] [R]

s.t. PU ∈ GR,m1−R,PV ∈ GR,m2−R, R ≤ m1 ∧m2

∈ Argmax
X∈Rm1×m2

exp

{
− 1

2η2
‖YΩ −XΩ‖2

2

}
·[

1

(2πσ2)R2/2
exp

{
− 1

2σ2
tr
[
(XPV)T (PUX)

]}]
·

1 · 1 · 1

s.t. PU ∈ GR,m1−R,PV ∈ GR,m2−R, R ≤ m1 ∧m2

∈ Argmin
X∈Rm1×m2

[
1

η2
‖YΩ −XΩ‖2

2 + log(2πσ2)R2+

1

σ2
tr
[
(XPV)T (PUX)

]]
s.t. PU ∈ GR,m1−R,PV ∈ GR,m2−R, R ≤ m1 ∧m2.

Since X = PUZPV, we have X = UDVT for some D = diag({dk}Rk=1), U ∈ Rm1×R

and V ∈ Rm2×R, where U and V are R-frames satisfying PU = UUT and PV = VVT .

Hence:

tr
[
(XPV)T (PUX)

]
= tr

[
(VVT )(VDUT )(UUT )(UDVT )

]
= tr

[
(VTV)2D(UTU)2D

]
(cyclic invariance of trace)

= tr
[
D2
]

(VTV = I and UTU = I)

= ‖X‖2
F , (Frob. norm is equal to Schatten 2-norm)

which proves the expression in (6.10).
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F.3 Proof of Theorem 25

Proof. Consider the following block decomposition:

RN+1(Ω ∪ (i, j)) + γ2I =

 RN(Ω) + γ2I νi(U) ◦ νj(V)

[νi(U) ◦ νj(V)]T µi(U)µj(V) + γ2

 .

Using the Schur complement identity for matrix inverses [274], we have:

[
RN+1(Ω ∪ (i, j)) + γ2I

]−1
=

Γ + τ−1ΓξξTΓ −τ−1ξTΓ

−τ−1Γξ τ−1

 , (F.1)

where ξ = νi(U) ◦ νj(V), Γ = [RN(Ω) + γ2I]
−1 and τ = µi(U)µj(V) − ξTΓξ + γ2.

Using the conditional variance expression in (6.15), τ = Var(Xi,j|YΩ)/σ2 + γ2. Letting

ξ̃ = νk(U) ◦ ν l(V) and applying (6.15) again, it follows that:

Var(Xk,l|YΩ∪(i,j))

= σ2
{
µk(U)µl(V)− ξ̃

T
Γξ̃
}

− τ−1σ2
{
νTi,j

[
RN(Ω) + γ2I

]−1
νk,l − νi,k(U)νj,l(V)

}2

(using (F.1) and algebraic manipulations)

= Var(Xk,l|YΩ)− Cov2(Xi,j, Xk,l|YΩ)

Var(Xi,j|YΩ) + η2
, (from (6.7))

which proves the theorem.

F.4 Proof of Corollary 4

Proof. This follows directly from Theorem 25 and the fact that:

Cov2(Xi,j, Xk,l|YΩ1:N
)/{Var(Xi,j|YΩ1:N

) + η2} ≥ 0.
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F.5 Proof of Corollary 5

Proof. Note that ε2N(k, l) = Var(Xk,l|YΩ1:N
). From Theorem 25, it follows that:

ε2N+1(k, l)

= ε2N(k, l)−
Corr2(XiN+1,jN+1

, Xk,l|YΩ1:N
)Var(Xk,l|YΩ1:N

)

1 + η2/Var(XiN+1,jN+1
|YΩ1:N

)

≥ ε2N(k, l)

(
1−

Corr2(XiN+1,jN+1
, Xk,l|YΩ1:N

)

1 + γ2

)
.

where the last step follows because:

Var(XiN+1,jN+1
|YΩ1:N

) = ε2N(iN+1, jN+1)

≤ ε2N−1(iN+1, jN+1) ≤ · · ·

≤ ε20(iN+1, jN+1) ≤ σ2,

by the error monotonicity in Corollary 4, where ε20(k, l) := σ2µk(U)µl(V) from (6.14).

Telescoping the first inequality, we get:

ε2N+1(k, l) ≥ ε20(k, l)

[
N+1∏
n=1

(
1−

Corr2(Xin,jn , Xk,l|YΩ1:(n−1)
)

1 + γ2

)]
.

This completes the proof.

F.6 Proof of Lemma 8

Proof. A straight-forward extension of Lemma 6 (a) shows that, for fixed PU, PV, σ2 and

η2, the noisy entries YΩ follow the multivariate Gaussian distribution:

[YΩ|PU,PV, σ
2, η2] ∼N{0, σ2RN(Ω) + η2I}.
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The entropy expression for YΩ then follows immediately.

F.7 Proof of Proposition 6

Proof. Note that the (in, jn)-th entry of X can be written as Xin,jn = 〈Mn,X〉F , where

Mn := eine
T
jn is a rank-1 measurement mask on X. This proposition then follows by

applying Lemmas 4 and 5 from [63].

F.8 Proof of Proposition 7

Proof. Assume the uniform priors PU,PV
i.i.d.∼ U(GR,m−R), and let Ω1 and Ω2 be two

arbitrarily chosen balanced sampling schemes (i.e., with one observation in each row and

column). By Section 1.4.2 in [224], the uniform measure P ∼ U(GR,m−R) is invariant

under the transformation P→ HPHT for any H ∈ O(m), where O(m) is the orthogonal

group of m ×m orthonormal matrices. Equivalently, this means the uniform measure on

the Grassmann manifold GR,m−R is invariant under rotations around the origin). Since

RN(Ω) = [eiPUei′ejPej′ ](i,j)∈Ω,(i′,j′)∈Ω, it follows from (a) the above rotation invariance

of U(GR,m−R), and (b) the balance of Ω1 and Ω2 that RN(Ω1)
d
= RN(Ω2). The claim then

follows.

F.9 Proof of Lemma 9

Proof. This can be shown by a direct application of the determinant identity for Schur

complements [274], which states that if M is in the block form:

M =

A B

C D



249



with D invertible, then det(M) = det(D) det(A − BD−1C). Using this along with the

following block representation:

RN+1{Ω ∪ (i, j)}+ γ2I =

µi(U)µj(V) + γ2 (νi(U) ◦ νj(V))T

νi(U) ◦ νj(V) RN(Ω) + γ2I

 ,
the expression for H{(i, j)|Ω1:N} then follows.

F.10 Derivation of Gibbs sampler

Suppose, for the sake of derivation, that the full matrix X has been observed with noise

(call this noisy matrix Y); the imputation of missing entries in Y is discussed in a later

step. For fixed rank R, the full posterior distribution of parameters U, D, V, σ2 and η2 can

be written as:

[U,D,V, σ2, η2|Y]

∝ [Y|U,D,V, η2, σ2, R] · [U|R] · [V|R] · [D|σ2] · [σ2] · [η2]

∝ 1

(η2)(m1m2)/2
exp

{
− 1

2η2
‖Y −UDVT‖2

F

}
· 1 · 1 · 1

(σ2)R/2
exp

{
− 1

2σ2

R∑
k=1

d2
k

}
R∏

k,l=1
k<l

|d2
k − d2

l |

· 1

(σ2)ασ2+1
exp

{
−βσ

2

σ2

}
· 1

(η2)αη2+1 exp

{
−
βη2

η2

}
.

From this, the full conditional Gibbs updates can be derived as follows (algebraic details

omitted for brevity):

[YΩc|YΩ,U,D,V, σ
2, η2] ∼N(XP

Ωc ,Σ
P
Ωc + η2I),

(Missing data imputation; see (6.5) and (6.7))

[U|Y,D,V, σ2, η2] ∝ etr{(YVD)TU/η2}
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∼MF (m1, R,YVD/η2),

[V|Y,U,D, σ2, η2] ∝ etr{(YTUD)TV/η2}

∼MF (m2, R,Y
TUD/η2),

[D|Y,U,V, σ2, η2] ∼ QL(µ, δ2)

(µ = [σ2uTkYvk/(η
2 + σ2)]Rk=1, δ

2 = η2σ2/(η2 + σ2))

[σ2|Y,U,D,V, η2] ∼ IG(ασ2 +R/2, βσ2 + tr(D2)/2)

[η2|Y,U,D,V, σ2] ∼ IG(αη2 +m1m2/2,

βη2 + ‖Y −UDVT‖2
F/2).

Regarding computation time, it can be shown [236] that the posterior sampling of Ut

and Vt requires O(m1R
3) and O(m2R

3) work, and it is also easy to see that the imputation

of YΩc requires O(N3) work. Each iteration of gibbs.mc therefore requires O{(m1 ∨

m2)R3 +N3} work (remaining steps have negligible running time in the sense of big-O).
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573, 2012.

[34] H. Bahouri, J.-Y. Chemin, and R. Danchin, Fourier Analysis and Nonlinear Partial

Differential Equations. Springer Science & Business Media, 2011, vol. 343.

[35] S. Mak and V. R. Joseph, “Supplement to “Support points””, 2017.

[36] J. Kiefer, “On large deviations of the empiric df of vector chance variables and

a law of the iterated logarithm”, Pacific Journal of Mathematics, vol. 11, no. 2,

pp. 649–660, 1961.

[37] F. Y. Kuo and I. H. Sloan, “Lifting the curse of dimensionality”, Notices of the

AMS, vol. 52, no. 11, pp. 1320–1328, 2005.

[38] H. Tuy, “DC optimization: Theory, methods and algorithms”, in Handbook of Global

Optimization, Springer, 1995, pp. 149–216.

[39] P. D. Tao and L. T. H. An, “Convex analysis approach to DC programming: The-

ory, algorithms and applications”, Acta Mathematica Vietnamica, vol. 22, no. 1,

pp. 289–355, 1997.

[40] H. Tuy, “A general deterministic approach to global optimization via dc program-

ming”, in J. B. Hiriart-Urruty (ed.), Fermat Days 1985: Mathematics for Optimiza-

tion, North-Holland, Amsterdam, 1986, pp. 137–162.

255



[41] T. Lipp and S. Boyd, “Variations and extension of the convex–concave procedure”,

Optimization and Engineering, vol. 17, no. 2, pp. 1–25, 2016.

[42] A. L. Yuille and A. Rangarajan, “The concave-convex procedure”, Neural Compu-

tation, vol. 15, no. 4, pp. 915–936, 2003.

[43] K. Lange, MM Optimization Algorithms. SIAM, 2016.

[44] U. M. Ascher and C. Greif, A First Course on Numerical Methods. SIAM, 2011.

[45] J. Mairal, “Stochastic majorization-minimization algorithms for large-scale opti-

mization”, in Advances in Neural Information Processing Systems, 2013, pp. 2283–

2291.

[46] J. M. Ortega and W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in

Several Variables. SIAM, 2000.

[47] O. Bousquet and L. Bottou, “The tradeoffs of large scale learning”, in Advances in

Neural Information Processing Systems, 2008, pp. 161–168.

[48] S. Ghadimi and G. Lan, “Stochastic first-and zeroth-order methods for nonconvex

stochastic programming”, SIAM Journal on Optimization, vol. 23, no. 4, pp. 2341–

2368, 2013.

[49] T. J. Santner, B. J. Williams, and W. I. Notz, The Design and Analysis of Computer

Experiments. Springer Science & Business Media, 2013.

[50] M. Matsumoto and T. Nishimura, “Mersenne twister: A 623-dimensionally equidis-

tributed uniform pseudo-random number generator”, ACM Transactions on Model-

ing and Computer Simulation, vol. 8, no. 1, pp. 3–30, 1998.

[51] R Core Team, R: A language and environment for statistical computing, R Founda-

tion for Statistical Computing, Vienna, Austria, 2017. [Online]. Available: https:

//www.R-project.org.

256

https://www.R-project.org
https://www.R-project.org


[52] C Dutang and P Savicky, “randtoolbox: Generating and testing random num-

bers”, R package, 2013.

[53] S. Joe and F. Y. Kuo, “Remark on algorithm 659: Implementing Sobol’s quasiran-

dom sequence generator”, ACM Transactions on Mathematical Software, vol. 29,

no. 1, pp. 49–57, 2003.

[54] A. Genz, “Testing multidimensional integration routines”, in Proc. of International

Conference on Tools, Methods and Languages for Scientific and Engineering Com-

putation, Elsevier North-Holland, Inc., 1984, pp. 81–94.

[55] B. A. Worley, “Deterministic uncertainty analysis”, Oak Ridge National Laborato-

ries, Tech. Rep. ORNL-6428, 1987.

[56] W. A. Link and M. J. Eaton, “On thinning of chains in MCMC”, Methods in Ecol-

ogy and Evolution, vol. 3, no. 1, pp. 112–115, 2012.

[57] N. R. Draper and H. Smith, Applied Regression Analysis. John Wiley & Sons, 1981.

[58] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A.

Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic programming lan-

guage”, Journal of Statistical Software, vol. 76, no. 1, pp. 1–32, 2017.

[59] S. Mak, support: Support points, R package version 0.1.0, 2017. [Online]. Avail-

able: https://CRAN.R-project.org/package=support.

[60] V. R. Joseph, E. Gul, and S. Ba, “Maximum projection designs for computer exper-

iments”, Biometrika, vol. 102, no. 2, pp. 371–380, 2015.

[61] S. Mak and V. R. Joseph, “Minimax and minimax projection designs using cluster-

ing”, Journal of Computational and Graphical Statistics, 2017, In press.

[62] S. Mak, C.-L. Sung, X. Wang, S.-T. Yeh, Y.-H. Chang, V. R. Joseph, V. Yang, and

C. F. J. Wu, “An efficient surrogate model for emulation and physics extraction of

257

https://CRAN.R-project.org/package=support


large eddy simulations”, Journal of the American Statistical Association, 2017, To

appear.

[63] S. Mak and Y. Xie, “Maximum entropy low-rank matrix recovery”, arXiv preprint

arXiv:1712.03310, 2017.

[64] R. E. Caflisch, W. J. Morokoff, and A. B. Owen, Valuation of Mortgage Backed

Securities using Brownian Bridges to reduce Effective Dimension. Department of

Mathematics, University of California, Los Angeles, 1997.
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optimization”, in Advances in Neural Information Processing Systems, 2011, pp. 2546–

2554.

[219] J. Snoek, H. Larochelle, and R. P. Adams, “Practical Bayesian optimization of ma-

chine learning algorithms”, in Advances in Neural Information Processing Systems,

2012, pp. 2951–2959.

[220] D. Golovin, B. Solnik, S. Moitra, G. Kochanski, J. Karro, and D Sculley, “Google

Vizier: A service for black-box optimization”, in Proceedings of the 23rd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining,

ACM, 2017, pp. 1487–1495.

[221] K. Konyushkova, R. Sznitman, and P. Fua, “Learning active learning from data”, in

Advances in Neural Information Processing Systems, 2017, pp. 4228–4238.

[222] C. E. Rasmussen and C. K. Williams, “Gaussian processes for machine learning”,

2006.

[223] A. K. Gupta and D. K. Nagar, Matrix Variate Distributions. CRC Press, 1999.

[224] Y. Chikuse, Statistics on Special Manifolds. Springer Science & Business Media,

2012.

[225] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian data analysis.

Taylor & Francis, 2014, vol. 2.

273



[226] M. A. Davenport and J. Romberg, “An overview of low-rank matrix recovery from

incomplete observations”, IEEE Journal of Selected Topics in Signal Processing,

vol. 10, no. 4, pp. 608–622, 2016.

[227] P. Sebastiani and H. P. Wynn, “Maximum entropy sampling and optimal Bayesian

experimental design”, Journal of the Royal Statistical Society, Series B, vol. 62,

no. 1, pp. 145–157, 2000.

[228] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley &

Sons, 2012.

[229] S. Prasad, “Certain relations between mutual information and fidelity of statistical

estimation”, arXiv preprint arXiv:1010.1508, 2010.

[230] C. J. Colbourn, T. Klove, and A. C. Ling, “Permutation arrays for powerline com-

munication and mutually orthogonal Latin squares”, IEEE Transactions on Infor-

mation Theory, vol. 50, no. 6, pp. 1289–1291, 2004.

[231] S. Huczynska, “Powerline communication and the 36 officers problem”, Philosoph-

ical Transactions of the Royal Society of London A, vol. 364, no. 1849, pp. 3199–

3214, 2006.

[232] R. A. Fisher, The Design of Experiments. Oliver and Boyd, London, 1937.

[233] E. J. Candes and Y. Plan, “Tight oracle inequalities for low-rank matrix recovery

from a minimal number of noisy random measurements”, IEEE Transactions on

Information Theory, vol. 57, no. 4, pp. 2342–2359, 2011.

[234] J. Shen, “On the singular values of Gaussian random matrices”, Linear Algebra

and its Applications, vol. 326, no. 1-3, pp. 1–14, 2001.

[235] E. P. Wigner, “Characteristic vectors of bordered matrices with infinite dimen-

sions”, Annals of Mathematics, vol. 62, pp. 548–564, 1955.

274



[236] P. D. Hoff, “Simulation of the matrix Bingham–von Mises–Fisher distribution, with

applications to multivariate and relational data”, Journal of Computational and

Graphical Statistics, vol. 18, no. 2, pp. 438–456, 2009.

[237] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller,

“Equation of state calculations by fast computing machines”, The Journal of Chem-

ical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[238] W. K. Hastings, “Monte Carlo sampling methods using Markov chains and their

applications”, Biometrika, vol. 57, no. 1, pp. 97–109, 1970.

[239] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images”, IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, no. 6, pp. 721–741, 1984.

[240] R. J. Little and D. B. Rubin, Statistical Analysis with Missing Data. John Wiley &

Sons, 2014.

[241] M. T. Jacobson and P. Matthews, “Generating uniformly distributed random Latin

squares”, Journal of Combinatorial Designs, vol. 4, no. 6, pp. 405–437, 1996.

[242] B. P. Carlin and T. A. Louis, Bayes and Empirical Bayes Methods for Data Analy-

sis. Chapman & Hall, 2000, vol. 17.

[243] M. Grant, S. Boyd, and Y. Ye, “CVX: Matlab software for disciplined convex pro-

gramming”, 2008.

[244] K. Goldberg, T. Roeder, D. Gupta, and C. Perkins, “Eigentaste: A constant time

collaborative filtering algorithm”, Information Retrieval, vol. 4, no. 2, pp. 133–

151, 2001.

[245] J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, “Design and analysis of

computer experiments”, Statistical Science, pp. 409–423, 1989.

275



[246] S. Mak and V. R. Joseph, “Projected support points, with application to optimal

MCMC reduction”, arXiv preprint arXiv:1708.06897, 2017.

[247] S. Mak and C. Wu, “Cmenet: A new method for bi-level variable selection of con-

ditional main effects”, Journal of the American Statistical Association, 2018, To

appear.

[248] L. E. Ghaoui, V. Viallon, and T. Rabbani, “Safe feature elimination for the lasso

and sparse supervised learning problems”, arXiv preprint arXiv:1009.4219, 2010.
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