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INTRODUCTION

For the past few years the double electromagnetic transducer

(1, 2, 3) has been used in this laboratory to determine the complex shear

modulus of pads composed of wet pulp fibers. This instrument, unfortunately,

is limited to shear moduli less than 5 x 109 dyne/cm.2 and is not suitable

for examining the time dependent properties of paper. We have, therefore,

been looking for experimental techniques for obtaining the complex modulus

of materials with moduli in the 10 to 10 dyne/cm. range and in the 20

to 1000 c.p.s. frequency range.:

In the course of our survey on the rheological properties of

papermaking materials we examined a number of experimental techniques

suitable for examining the time dependent mechanical properties of paper.

One of these techniques, the vibrating reed technique, appeared to be

promising enough to warrant experimental investigation under the present

project. The present report contains the results of some of our

investigations on paper and Mylar film.

THE VIBRATING REED METHOD

In the vibrating reed method the clamped end of a cantilever

beam is caused to oscillate with a sinusoidal frequency. The displacement

of the free end of the beam is observed as a function of frequency. The

resonant frequency and band width are determined from amplitude-frequency

curves and used to calculate the real and imaginary components of the

complex Young's modulus.
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If the transverse dimension of the viscoelastic beam is small

compared to both its length and the accoustical wavelength, the fundamental

equation of motion is given by (4),

2 4Ap 4 +E'I + I - 0. (1)at ax ax at

Here, x denotes the distance along the reed measured from its clamped end

and y is the displacement normal to it. Also, t is the time, I is the moment

of inertia of the cross-sectional area A about its neutral axis, p is the

density of the material, E' is the real component of the complex Young's

modulus and I' is the dynamic viscosity coefficient.

The problem of the vibrating reed has been considered by a number

of authors. Nolle (5) obtained solutions to the vibrating reed problem by

considering the solution of an equivalent electrical network. A more

rigorous analysis of the problem is given by Horio and Onogi (4). This

method assumes a simple form for the variation of the complex modulus across

the width of the resonance curve and is valid as long as the mechanical loss

tangent is less than 10 . For those materials where the frequency dependence

of the modulus has a profound effect on the frequency and amplitude of the

resonance peak, the analysis of Bland and Lee (6) must be considered.

According to Horio and Onogi (4) the complex Young's modulus

is given by,

E* = E' + j E" (2)

where j = J and E', the real component of the modulus, is given by,

E' = ( pA/a 2 ()2 (3)p / 0 0) [m (n 
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and E", the imaginary component, is,

E"= (pA/a4 I) 4 hd . (4)

,, ,',- .. .

The circular frequency , .is-the resonance frequency at which the amplitude

of the free end of.the reed is a maximum and the band width &o is the

difference in frequencies at which the amplitude is l/2tlmes its maximum

value. Also, } is the length ofcthe reed and a = 1.875, 4.694, 7.855 for
:* -/ ^^-o

the fundamental mode, first harmonic, and second harmonic of vibration,

respectively.

For paper (7), 6 ,6-nylon (8), viscose rayon (8, 9), acetate rayon

(8, 2), and silk (9), Eis independent of frequency and Meredith and Hsu

(8) have shown that Equations (3) and (4) can be written as:

-E = ~A a.'I ' / (5)' 0

and

ig 4
,, _-. = ',/a 1 - Noh[O l + -L/8)(&/ )J. (6)* i t- i i Pr*~~~~~~ " ,, i ,,' , 0 , 0

The mechanical loss tangent tans ,is'given by, '

· ;. , | ., ', , * X '

* :tankt'i 4SM/Do.l'4 (l/8)(No/I )2 ]. (7)

When Ad/co is less than 0.2, 'the second power term in the bracket can be

ignored with an error of,'less than one-half per cent. For these special

materials the resonance frequency is-independent of internal damping and

is equal to the natural 'frequency of,'the purely elastic system.
1

" '

I
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The equations given thus far are valid only under conditions where

air damping is unimportant or where appropriate corrections have been made.

In the present work air damping corrections were found to be important and

will be discussed in detail in the experimental section of this report.

GENERAL EXPERIMENTAL PROCEDURES AND TECHNIQUES

THE-VIBRATING REED-APPARATUS 

The basic unit of the vibrating reed apparatus is an Astatic (10)

type M 41-8 magnetic recording head of the type used in the cutting of

phonograph records as shown in Figure 1. The recording needle has been

replaced by a lightweight clamp consisting of-a Cook's (11) No. 2 file-

signal silver soldered to 5/8 by 0.037-inch diameter stainless steel pin.

The weight of the clamp is approximately 0.6 gram. The resonance frequency

of the unloaded clamp when mounted in the recording head is above 1000 c.p.s.

for a typical clamp assembly.

The signal from a Hewlett-Packard model 200 J audio oscillator (12)

is amplified by means of a McIntosh Model MC-30, 30-watt power amplifier

(13) and then supplied to the recording head. The recording head is mounted

in a 6-3/4 by 3-inch diameter vacuum chamber having a 1/2-inch thick Lucite

window at one end through which the amplitude of the vibrating reed can be

observed by means of a traveling microscope.

SUITABLE EXPERIMENTAL MATERIALS

In general any flat paper stock or board up to 0.020-inch thick is

suitable for vibrating reed measurements. The only requirement is that the

the material be cut to a reed approximately 1 cm. wide and 4 to 5 cm. long.



P
aaH

 
9
U

T
lB

JQ
T

A
 

U
T

 
P~B

~fl 
P

G
G

S 
PULr 

ID
'aj3

 
~DUTPaoozG>8J 9

9 1N
W

h.C
 

G
 

tID
 

JO
 

ijd
u
j2

~
o
q
o
t4

t

tf

O
J'flW

\

C
f) O

N
~a

C
)

0
0

3

-
an

3
V

9



Project 2332
Report 2
May 9, 1963
Page 6

Crystalline polymeric films are also suitable as are metal foils and coated

papers.

Rubberlike polymeric films are, in general, unsuitable unless they

are examined at temperatures below their glass transition temperatures.

Above the glass temperature they absorb too much energy and cannot be set

into a resonance that can be observed since the accoustic wave is damped out

by the time it reaches the end of the reed.

EXPERIMENTAL PROBLEMS

There are a number of problems that arise in obtaining reliable

experimental data and it is profitable to consider them at this point in our

discussion.

The primary experimental measurements involve the determination of

the amplitude of vibration as a function of frequency. Typical plots

resulting from such measurements are shown in Figure 2 for Mylar film and

a sample of southern softwood solid fiberboard milk carton stock in vacuum. In the

case of the milk carton stock the vacuum was maintained 24 hours before the

measurements were taken.

The curves are of interest since they represent data taken on reeds

of comparable length and have resonance frequencies that are similar. The

original amplitude data have been adjusted so that the curves for both

samples have a maximum amplitude of 0.05 cm. at resonance.

Several features are noteworthy. First, the resonance peaks are

not symmetrical about the resonance frequency. This behavior is typical of

this type of experiment and, indeed, is predicted by theory (4). Secondly,
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the band width, A&, of the two materials is considerably different. This

reflects differences between the mechanical loss tangents of the two

materials. The mechanical loss tangent, Equation (7), can be written as,

tan = i/o

(energy lost/cylce) (8)
i (energy stored/cycle)

The mechanical loss tangent, therefore, is proportional to the ratio of the

energy lost to the energy stored in taking the reed through a cyclic

deformation and is a measure of sample deadness.

From the curves in Figure 2 the mechanical loss tangent for Mylar

was tani 0.0081 and for the milk carton stock, tan = 0.042. This

difference in energy dissipation for the two materials causes a significant

difference between the two as far as sensitivity to room vibration is

concerned. With a 0.0206 by 0.4717 by 4.351-cm. Mylar reed, normal

laboratory vibrations such as a person walking in the room, are great

enough to make measurement impossible unless special precautions are taken

to eliminate vibration. In order to obtain the Mylar data of Figure 2, it

was necessary to mount the instrument on rubber chock mountings and to

work evenings or during laboratory quiet hours. In the case of paper, no

particular difficulty was encountered since the mechanical loss is great

enough to damp out room vibrations.
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83
Frequency, P , co.ps.

Figure 3. The Effect of Air and Vacuum on the Amplitude-Frequency Curves
for a Sample of Southern Softwood Solid Fiber Board Milk
Carlton Stock
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mechanical properties. For paper, therefore, it is necessary to resort to

theoretical corrections for air damping.

Several investigators (14, 15, 8) have considered the effect of

air damping on a vibrating reed. The treatments are based on an equation

due to Stokes for the resistance per unit length experienced by a rigid

pendulum consisting of a cylinder oscillating in an infinite mass of viscous

fluid. The frictional resistance S per unit length is given by,

5 = ak~aA- t2 - k dpat Y (9)

where pa is the density of air and A is the cross-sectional area of the

cylinder. The first term in the equation represents the effect of the inertia

of the displaced fluid and affects the frequency of oscillation. The second

term is the viscous damping which will diminish the amplitude as well as the

frequency of oscillation. The terms k and k' are complicated functions of

the dimensionless parameter m defined by m = p A/47Tp where p is the viscosity
a

of the fluid.

When Equation (1) is written to take into account the frictional

resistance of the air, the band width becomes,

&D-= - )[al -_ (1/4)(A0w/a ) +(3/32)()da/w(a) ](1 +p k) -,k. _ _ (10) -
a a a a a a

where An is the band width in air. The resonance frequency of the undampeda

system is given by,

wo = ma[1 + (1/4)(O a/Wa)2 - (5/32)(Nda/ a)4 ](l +4Ak/2) (11)

where wa is the resonance frequency in air. The quantity f is given by

#3= pa/p where p is the density of air and p the density of the material in

the reed.
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EXPERIMENTS ON MYLAR FILM

The first phases of our experimental program involved vibrating
, } *', -, .I,

reed experiments on a sample of Du Pont, Mlar Film (polyethylene

terephthalate). The film wasi.O'.0206d cm,;'thick andxhad a density of

1.380 g./cm. 3 . , ,',

A 0.4717 by 4-.351-cm. "ryeed'was& cut with a razor blade and straight

edge from a larger Mylar sheet. The thickness of the reed was determined

with a micrometer caliper and the width and effective length of the reed were

determined by means of the traveling microscope.

. R.

All experiments -were conduct'ed-in-a vacuum-of-60 mm.-Hg. in-order

to eliminate air damping. The resonance frequency is inversely proportional

to the square of the reed length so>that a range of frequencies may be

covered by progressive reduction in reedVlength. By this means it was

possible to conduct experiments between 32 and 680 c.p.s.

The results of the experiments on Mylar film are shown in Figure 4.

The real component E' of the complex Young's modulus is essentially

independent of frequency while the imaginary component increases from a

value of 3.7 I 10 dyne/cm. at 32 c.p.s. to 6 x 10 dyne/cm. at 680 c.p.s.

The frequency behavior of E', E" and tang are typical of crystalline polymers.

The values of E' and E" may be determined to approximately - 12%.

This lather laige error is due primarily to the fourth power dependence of

the module on length and the dependence on the cube of the thickness. These

experiments were conducted before our techniques of reed cutting were fully

developed. With our present techniques as described in the following section

this error can be somewhat reduced.
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Mylar Film in Vacuum,
60 mm. Hg.
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Figure 4. Real and Imaginary Components of the Complex Young's Modulus
and Mechanical Loss Tangent for Mylar Film
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EXPERIMENTS ON PAPER

MATERIALS AND SAMPLE PREPARATION

A western softwood bleached sulfite pulp was chosen for our

experiments on paper. This pulp was 100% softwood, fully bleached, containing

80 to 90% spruce, 10 to 20% true fir, and a trace of cedar. The fibers showed

a moderate amount of cutting and fibrillation and fines.

A series of five handsheets was prepared ranging from a basis weight

of 106 g./m to 450 g./mi. with a corresponding density range of 0.737 to

1.01 g./cc. The handsheets were prepared from the pulp on a 9 by 9-inch

Valley sheet mold with a 66-inch high aluminum headbox. The headbox allowed

sufficiently high dilution of the stock to give sheets of good formation.

The sheets were couched from the wire with dry blotters and pressed at 700

p.s.i. in a small handpress for approximately five minutes. The sheets were

then removed from the press, new blotters applied and the sheets pressed

again. This procedure was repeated until the sheets were essentially dry.

The special procedure for drying sheets was necessary to produce

sheets from which flat reeds could be obtained. The normal drying procedures,

using British standard TAPPI drying rings or a steam chest, produce handsheets

with some curvature and do not yield reeds uhich are sufficiently flat for

vibrating reed measurements.

Reeds were cut from these pressed sheets with The Institute of Paper

Chemistry precision paper cutter (16). With this cutter it was possible to

cut rectangular reeds with parallel edges and square ends. The reeds were

then cemented to the reed holders with Epoxy resin.
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A series of brief experiments were conducted to see whether or not

reeds in this basis weight range were suitable for vibrating reed experiments.

The experiments were conducted under a high vacuum of 0.07 >i and in dry

nitrogen at atmospheric pressure. All of the reeds were found suitable for

measurement and would have required air damping corrections had we wished

to calculate their complex moduli.

Rather than conduct experiments on all five basis weight reeds a

single reed was selected as representative of the pulp and our experiments

were confined to it. The reed had a basis weight of 215 g./m. , an apparent

density of 0.8419 g./cc., and was 0.0256 cm. thick, 0.900 cm. wide, and had

a free length of 3.732 cm. at 50% R.H.

BAND WIDTH AND RESONANCE FREQUENCY; SHORT METHOD

In the experiments on Mylar film the entire amplitude-frequency

curves were obtained and used to determine the band width and resonance

frequency. Since this requires from 20 to 30 thirty minutes, the procedure

is too time consuming for routine testing. A short method of determining

the resonance frequency and band width has been devised and these quantities

can now be determined in a few minutes without any sacrifice in the accuracy

of-the determination. This-short method was used on-all of our experiments

on paper.

In the short method, the resonance frequency is observed by setting

the cross hairs of the traveling microscope near the maximum amplitude and

then adjusting the frequency to yield a maximum reed amplitude. The

frequency at which the maximum amplitude is observed is the resonance

frequency.

I
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From the traveling microscope settings at maximum amplitude it is

possible to calculate one of the two microscope settings corresponding to

1/0~2 times the maximum amplitude. The microscope is set at this point and

the frequency is adjusted until the reed amplitude corresponds with this

setting. This will occur at two frequencies, one on either side of the

resonance frequency. The difference between the two frequencies is the

band width.

MOISTURE CONTENT AND DIMENSIONAL CHANGES

Moisture has several effects:on the mechanical properties measured

by the vibrating reed technique. The dimensions of the reed as well as the

apparent density depend on the moisture content so that these changes must

be considered in determining the modulus. The moisture also serves as a

plasticizer and alters both real and imaginary components of the complex

modulus.

In order to keep track of the dimensional changes of the reed a

5 by 6 -inch rectangular piece of stock from which the reed was cut was

conditioned along with the reed. Reference marks were placed on the strip

anid ubliges in thickness ard length were noted whenever the moisture content

of the reed and reference strip were changed. The distance between the

reference marks was measured to 0.005 inch with a steel rule and the

thickness with a Federal gage,

The reference specimen was weighed on an analytical balance

whenever the moisture content was altered. At the conclusion of a set of

experiments as a function of moisture content the reference specimen was

oven dried and the absolute moisture contents were then calculated for

I
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each moisture condition. The relative humidity was always noted for a given

moisture content.

CORRECTIONS FOR AIR DAMPING

Air damping corrections were of considerable importance and were

determined from experiments conducted under high vacuum and in dry nitrogen.

The vacuum chamber containing the reed was attached to the high vacuum line

of the gas adsorption apparatus and held at a pressure of 0.07 p for 24 hours.

The band width and resonance frequency were then determined as a function of

the amplitude of oscillation. Both were found to be amplitude dependent as

a result of nonlinear viscoelastic effects. Air damping was negligible in

this system since the mean free path of an air molecule is of the order of

17 cm. at this pressure.

Dry nitrogen was admitted to the chamber and the experiment was

repeated as a function of amplitude. Equations (10) and (11) were then used

to calculate k and k' as a function of amplitude. The value of p was taken

as p = 1.40 x 10 - 3 . Values of k'and k' were plotted as a function of reed

amplitude as shown in Figure 5. Correction factors were obtained from these

plots assuming that k and k'w are independent of frequency.

RESULTS AND DISCUSSION

The results of vibrating reed experiments on the western softwood

bleached sulfite pulp are shown in Figures 6 and 7 where the real and

imaginary components of the complex Young's modulus are shown as a function

of the maximum dynamic strain E given by,

E = 4 tym/ 2 (12)



Project 2332
Report 2
May 9, 1963
Page 18

45

35-

6

ona,
Ct0

x

41

5

4

3

2

0

00

2 x Amplitude, cm.

Air Damping Factors k and k'm as a
a- a

Amplitude of Vibration for a 0.0256

Reed of Western Softwood Pulp

Funct Lon of

x 0.900 x 3.732 cmo

0.1

Figure 5.

0.20o



Project 2332
Report 2

May 9, 1963
Page 19

0 1 2 3 4'.yW ,-,, 6 %y7
"I1

S -~~~~~~~~ 

0 1 2 3c 5~ 6o~a

E x 10

1 2 3 4 ~ 5
6Ex104 .I

, Y

r 
1¼1 

II , 

V

N4 

I'

I i 

I ft, -
'A,. 

Ci

a)

H

FA

C

I-i

3

2 

,Z;0

3

2

'I

3

2

1

1 2,3 4 5 6 7
ILe 10

6o% R.H.
I I I I - I

6 x 1

[ ~~~: 70% R.H.

b0 1 2 3 4 5 6 7
e x 10 4t2-Vt, 

3 I,

,2 

'tilE
-v.0' P

.4
- I

�r: /.. *'�.

* A -
-A'

I -, .
I. .4 �

-1. 2 3 , 4 5
E 0

6 7

O 1 2 3- 4 5 '6'-7' II
II

I Maimum Dynmaiic Strain

Figure 6. Real Component of
Softwood Bieached
Strain, *,' ;I~~

the'Complex Young's Modulus for a Western
SulfiteJtPul as a Function of Maximum Dynamic
"It

I 'I I
4t

J
2

4

3

2

50% RH .1
I I a I I

C\i

C)

0I

0
H

Xr

I
n O O n O 1,

- 15%,R.H.1:I I .1� -, � . , 1,

4

3

2

4

3

2
0

25.5%R.H
I I I I '

80% R.H.

C *I I I _ I I

4 

3
2'

-,, 33,'5%R:H.
-- C I I~~~~~~~,'I

I

I

I
I

1, � ,
I,"o"'.
i I-II
, IL

1-1

I

II
1; �
1,



Project 2332
Report 2
May 9, 1963
Page 20

11 12

9- 10-

8 0% R.H. ~~~~9 50R.H.

7 I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~8 I

~x1 'o x 104

12 llj11 

10 00-: ; 60% R.H

7 lo,% R.H. ~ H112 J%4

9 8~~~~~~~~~~~~

yE 08L07

8 ~~~~Ex 104 8

10 6~~~~~~~~

--- 2%5%B5R H. 5

11~~~~~~1

10~~~~~~~~

9

8 3

7
0 1 2 3 6 7

X x0
Maximum= Dynamic St

Figure 7. Imaginary Component of the Con
Western Softwood Bleached Suit
Maximum Dynamic Strain

E x 104

0 

80% B.H,

;rain

iplex Young's Modulus for a
'ite Pulp as a Function of

I



Project 2332
Report 2

May 9, 1963
Page 21

where t is the thickness of the reed, k is its free length, and y is the

maximum displacement of the reed. The corresponding relative humidities,

moisture contents, reed dimensions, and approximate resonance frequencies

and band widths are indicated in Table I. The components of the complex

Young's modulus were determined at strains up to 3 =7 x 10-4 and over a

humidity range from 0 to 80% R.H.

The real component, E', decreased only slightly with increasing

strain. The behavior of the imaginary component is more complicated.

In general, E" increases with increasing dynamic strain except above 70%

R.H. where a maximum is observed. This peculiar strain dependence of E'

and E" appears to be characteristic of crystalline polymeric materials

and has been observed for cotton, viscose rayon, and nylon (17). The

strain behavior of the mechanical loss tangent is shown in Figure 8 and

is similar to the strain behavior observed for E".

The behavior of E', 'E", and tanrextrapolated to zero strain is

shown in Figure 9 as a function of moisture content. There is a linear

decrease in E' with increasing moisture content and E' decreases from a

value of 3.60 x 10 dyne/cm. at 0% moisture to 1.45 xl100 dyne/cm.

at 13.7% moisture. The imaginary component shows a distinct drop from a

value for E" of 8.05 x 10 dyne/cm. at 0% moisture to a value of the

order of 6 x 10 dyne/cm, at 2.7% moisture. The values of E` then rise

to a maximum of 8.5 x 10 dyne/cm.2 at 8% moisture and then decrease to

6 x 10 dyne/cm.2 at 13.7% moisture.

The mechanical loss tangent is similar to E" in its behavior

at low moisture contents but approaches an asymptotic limit of 0.041 at

high moisture contents rather than passing through a maximum at 8% moisture.

I
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From the behavior of the mechanical loss tangent with increasing

moisture content there appear to be two loss mechanisms. One is associated

with the "dry" cellulose and the other.with the plasticizing effect of the

water. The source of theseimechanisms;,is probablymolecular in nature but

cannot at present be attributedt'to a specific type of motion such as the

motion of anhydroglucose units, hydroxyl group motion or relative motion

between polymer molecules lying-in; successive crystallographic planes. The

loss mechanisms do not appear to reflect changes in sheet structure since

sheet geometry factors cancel out in the expressions for the loss tangent.

Above a moisture,content of 8% where E" passes through a maximum,

the E" vs. measurements are somewhat dependent on strain history. This

reflects primarily a strain-history dependence of the polymeric substance

*.-, -,f^ './yW - -:*:*'-'' ^ - -

of the fiber resulting fromnonlonear/viscoelastic effects rather than

structure breakdown of the-sheet' .) This conclusion is based on the fact that

tan k also shows a strain-history dependence and as we have stated, -this
I. 5 5 Jr?' ';. i' I ' -X'

quantity is independent ofr'sheet'tstructcure . , /
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THE VIBRATING REED TECHNIQE AND PULP AND PAPER CHARACTERIZATION

The vibrating reed technique shows considerable promise as a

tool for the characterization of pulp and paper. The technique provides a

convenient means of determining Young's modulus in flexure and is suitable

for papers having a Young's modulus ranging from 0.38 to 46 x 1010 dyne/cm.

(7)° Any uniform paper sheet is suitable provided it is thick enough to

obtain reliable measurements of thickness and not too rough or soft.

By determining the real and imaginary components of the complex

Young's modulus one can calculate the mechanical loss tangent. Since this

quantity is independent of sheet geometry it is a useful index to changes

taking place at the molecular level.

Corrections for air damping are easy to make so that the technique

can be used to study the effect of moisture on the mechanical properties.

In addition, by using a short reed one can conduct measurements at frequencies

approaching 1,000 c.p.s. and thereby obtain the complex Young's modulus in

the time scales common to calendering and corregating operations.

The cost of the experimental equipment involved is nominal and the

measurements are such that they can be made by a good technician The

accuracy of' the method depends to a large extent on the nature of the sheet

being tested: however, an accuracy of -10% for E' is typical of measurements

with paper. Relative changes in modulus may be obtained with greater

accuracy if, for example, experiments such as we have reported are conducted

as a function of humidity on a single reed. In this case relative changes

in E' can be determined to - 2% and changes in E' to approximately - 5%.
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INTRODUCTION

The material presented here is intended to serve as an introduction to

the terminology and mathematical forms in current use in the study of

viscoelastic materials. The subject matter is covered in two sections.

The first section on viscoelastic principles is intended to serve as a

brief presentation of basic principles in the stress and strain behavior of

materials. In this section we introduce the concept of the complex modulus and

its application to the viscoelastic solid. A discussion of the Maxwell and

Kelvin-Voigt models has also been included. The use of these models has been

prompted by several factors. In spite of the fact that their use is avoided in

current experimental and theoretical work, we feel that their retention is

justified on the basis of their mathematical form. The relations that exist

between the relaxation modulus and the complex modulus of the Maxwell model and

between creep compliance and the complex compliance of the Kelvin-Voigt model

are clearly demonstrated. The mathematical forms introduced by these models

will become important in dealing with viscoelasticity on a phenomenological

basis and in discussing the results of molecular theories on polymer viscoelas-

ticity. Current theoretical work on wave propagation in viscoelastic media has

been confined to solutions based on these elementary models. The rheological

behavior of certain simple liquids can be adequately described in terms of such

models.' Finally, the simple Maxwell model can be profitably employed in

isolating discrete relaxation times that occur in certain polymeric media.

In the second section on phenomenological viscoelasticity we take a

strictly mathematical approach. While no assumption is made concerning molecular

structure, this-approach is extremely useful in expressing the results of
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experimental observations and in correlating and interrelating experimental

results obtained through the use of various experimental techniques. Its

strength lies in the general validity of the Boltzmarnsuperposition integral.

This section includes a survey of various approximational techniques for the

determination of relaxation and retardation distribution functions.

VISCOELASTIC PRINCIPLES

THE HOOKEAN SOLID

If a strain is applied to an isotropic Hookean solid, a corresponding

stress will be observed which is proportional to the applied strain, Fig. 1.

The relation between stress and strain is given by,

mE (1)

where C is the stress, E the strain, and m the modulus. The nature of the

modulus will depend upon the manner in which the solid is strained. In

accordance with the recommendations of the Society of Rheology (1), the symbol

E will be used to designate Young's modulus, G for the shear modulus, and K

for the bulk modulus.

Occasionally, it is more convenient to deal in terms of compliance

relations. Accordingly, the strain is related to the corresponding stress by

the relation,

6 = k cr (2)

where k is known as the compliance.
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Figur(L 1:.> Straess'-4strainiRelatibns for, a Hookean Solid 
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The symbol D is used for the compliance of a solid under tension, J is the shear

compliance, and B is the bulk compliance. The modulus can be determined from

the compliance by means of,

m (3)

NEWTONIAN LIQJIDS

Consider a Newtonian liquid sheared between two flat parallel plates,

one fixed in space, the other moved by a tangential force, F (see Fig. 2). If

A is the area of the plates, the force will give rise to a shear stress

0 = F/A and will set up a laminar velocity distribution as indicated. The

velocity, V, at any point Z from the stationary plate is given by

V = Z (4)

where qr is the shear viscosity. Since the velocity gradient dV/dZ equals the

rate of strain d6/dt,

= i - ' ~(5)dt

According to Equation (5), the shear stress is proportional to the rate of strain.

THE VISCOELASTIC SOLID

Consider a sinusoidal stress, : = d Sin w t where Co is the amplitude

and c is the circular frequency. If a sinusoidal stress is applied to a

Hookean solid, a sinusoidal strain will be observed which is in phase with the

applied stress, Fig. 3. This will not be true for a viscoelastic solid for it

has both "liquidlike" and "solidlike" properties. If a sinusoidal stress is

applied to a viscoelastic solid the resulting sinusoidal strain will be out of
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Stress Rate-of-Strain Relations for a Newtonian
Liquid 
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phase with the applied stress. The relations between the sinusoidal stress

and sinusoidal strain can be represented by means of a vector diagram as shown

in Fig. 4. The sinusoidal stress is represented by a vector in the x-y plane.

Its magnitude is given by the amplitude of the sinusoidal stress. The

sinusoidal strain is represented by a vector along the x-axis. The rate of

strain vector is along the y-axis. The phase difference between the stress and

strain vectors is measured by the loss angle, 2.

The stress 6 can be decomposed into a solidlike and a liquidlike

component. As in the case of the Hookean solid, the solidlike component is

represented by a vector along the x-axis. The rate of strain vector is a

vector lying along the y-axis. The phase difference between the stress and

strain vectors is measured by the loss angle, A . As in the case of the

Hookean solid the solidlike component is in phase with the strain. The

liquidlike stress is in phase with the rate-of-strain just as in the' case of

a Newtonian liquid. These basic liquidlike and solidlike features may be

carried over to a consideration of the modulus. In so doing, the ratio of

solidlike stress to strain is the solidlike component of the modulus, m',

given by

solidlike stress - m(m).
strain

.- S.. Similarly, the liquidlike ' component-of the midulusm"-is-giveniby, -. - --. . -

liquidlike stress = m,"(M)
strain

As indicated in the following section, it is most convenient to write the

modulus of a viscoelastic solid as a complex quantity.
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THE COMPLEX MODULUS AND COMPLEX COMPLIANCE

A complex number is a number of the form U + jV, where U and V are

real numbers and j is a number such that j2 = -1. The complex number U + JV

can be represented by a point in a plane referred to a pair of orthogonal X

and Y-axes. The real number U is agreed to represent the abscissa and the

real number V the ordinate of the point (U, V), Fig. 5. The point (U, V)

may be located by the terminus of a vector Z with its origin at O. The vector

Z can be thought of as the resultant of two vectors U and V with U directed

along the X-axis and V along the Y-axis. One can therefore write,

, Z = U + JV,

where U is the real part of the complex number Z and jV is the-imaginary part.

If (r,©) are the polar co-ordinates of the point (U,V), then

U = r cos 6 , V = r sin 6

and

r = (U + V2)1/2 and E = tanl V

The number r is called the modulus or absolute value, and 6 is called the

_argument or amplitude ofthe complex number Z = U + jV._ The modulus, r,~ is 

often written using absolute value signs, that is

r = |z| = |U + jv = (U2 + v2)1/2

and the argument 6 as, 6 = arg Z.
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The strain on a viscoelastic body can be written as,

Nf g=E. ejt (6)

6 = E [cosclt + j sin ut]. (7)

The strain can be represented in the complex plane as a vector of magnitude

*o which makes an angle awt with the x-axis, Fig. 6. The x and y components of

the vector are Eocos ct and 6osin ct, respectively. The rate-of-strain may

be obtained by differentiation of (6) to yield,

i= d 6 e jcut (8)6 d = J cgoe

or,

= Eo (jw cos cat - sin ct). (9)

It is thus seen that 6 can be represented as a vector in quadrature with the

strain. The stress likewise can be written as,

C- =T e ( t +A) (10)

or, 0 = 0-o, [cos(ot + ) + j sin(cot +5 )]. (11)

\

The stress can also be represented as a vector in Fig. 6. It should be noted

that the entire diagram rotates counterclockwise about the orgin with an

angular velocity co. If it is now agreed to keep 6 along the real or x-axis,

then the stress, strain and rate-of-strain vectors are given by Fig. 4.

The modulus of a viscoelastic solid can be written as a complex

quantity, called the complex modulus. The complex modulus, m*, is given by,

m*() = m,( ) + jm ( ) = sinusoidal stress (12)
m sinusoidall strain
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where m' is the real or solidlike component of the complex modulus

the imaginary or liquidlike component. The liquid nature of m" is

by writing,

and m" is

revealed

(13)

where T'(c) is known as the dynamic viscosity.

Another important relation is the mechanical loss tangent, tan + ,

given by,

f m (XW) C' (@)
tan = m-"(w)) i =:T-'m} m')

energy lost/cycle ·

energy stored/cycle

This relation is of considerable importance since it gives the ratio of energy

lost to energy stored and as such is a measure of the resilience of the material.

Just as it is possible to speak of the viscosity of a liquid it is

possible to define a complex viscosity for a viscoelastic solid. The complex

viscosity, i*(o), is given by,

*(u) = n'(wo) - jT"( ) = (15)
rate-of-strain

where q' (m) is the real or liquidlike component of the complex viscosity and

I'"(w) is the imaginary or solidlike component.

The followiing'relations exist between the complex modulus and the- 

viscosity. Equation (8) can be written as,

rate-of-strain = jcu (strain)

and m*(n) rate-of-strain
- T*( =-) strain

(16)

(14)

m" W = U)9 I M)

= jA,
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or m*(W) = jmq*(c) . (17)

A complex compliance can also be obtained for a viscoelastic solid. The

complex compliance k*(o) is related to the complex modulus by,

k*(w) = (X) (18)

By substituting (12) into (18) one has,

k*(w) = k' () - jk"(uw) (19)

where the real component of the complex compliance, k', and the imaginary

component, k", are given by,

k'(O) (m') + (m )2

and k" () = (m") (20)
m')2 + (m")

The vector diagrams corresponding to the complex modulus and the complex

compliance are given in Fig. 7.

All of the complex relations given in this section are used

extensively in the physics of viscoelastic materials. They are experimentally

observable quantities and are exceptionally useful in interpreting mechanical

properties in terms o[' molecular motion. It is through the complex quantities

that modern molecular theories of viscoelasticity are most readily tested.

THE MAXWELL SOLID

In the older literature on viscoelasticity considerable effort was

devoted to devising mechanical models to represent the mechanical behavior

of a viscoelastic body. While the use of mechanical models consisting of
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springs and dashpots cannot be justified on the basis of what we now know about

the molecular origin of viscoelasticity, their inclusion in the present section

is justified on the basis of their mathematical form which is now observed in the

modern molecular theories. Apart from historical interest, the reader will find

the mathematical form of these models useful in understanding the mathematically

more complex phenomenological theories of viscoelasticity.

In 1867 Maxwell (2) suggested that the stress and strain of a real

solid could be related by the equation,

dE _ d: _ : (21)
dt m dt * '

while a purely elastic solid obeys Equation (1) . One of the common experiments

that can be carried out on viscoelastic systems is the stress relaxation

experiment. An initially unstrained material is suddenly strained and held at

constant strain while the time decay of stress is observed. If this experiment

is performed on a Maxwell solid, 6 = 0 at t = 0 while for t> 0, 6 is constant

and d /dt = 0. For t) 0, Equation (21) becomes,

d C = 0. (22)
m dt r

Upon integration this becomes,

J(t) = C e-rt/ , (23)
0

or after dividing by the strain 6 and employing Equation (1),

m(t) = m e-t/t (24)

where T = ri/m is the relaxation time. At times short compared to T , the
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material behaves as an elastic solid. For long times the behavior is that of

a viscous liquid and the modulus decays to zero. The Maxwell solid is often

represented by means of a mechanical model consisting of a spring in series

with a viscous element of dashpot, Fig. 8. The spring is assumed to be a

Hookean spring while the dashpot can be considered to be a piston which is

drawn through a Newtonian liquid.

The relaxation of stress in an actual solid does not, in general,

follow that of the Maxwell solid and schemes have been devised to represent

the actual solid by means of a series of Maxwell elements in parallel with a

Hookean spring, Fig. 9. The mathematical expression for stress relaxation/is

therefore given by the series summation,

i

m(t) m. -t/ri + m (25)

where m is the equilibrium modulus of the parallel spring. The summation

extends over the (i) Maxwell elements in parallel and (mi) refers to the modulus

at zero time for-element (i). The use of a series of parallel elements is;

of course, an arbitrary procedure. It is introduced here since molecular

theories of viscoelasticity predict precisely this form and in addition provide

for the distribution of relaxation times, i.

.....THEDYNAMIC MAXWELL ELEMENT

If a sinusoidal stress is applied to a Maxwell solid, it is possible

to obtain an expression for the complex modulus, m*, where the real and

imaginary components are, respectively,

"2 2 
(= 1 r (26)
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and m"() = m 2 T (27)
2 $ r 2

where X is the circular frequency and T is the relaxation time. The frequency

response of the dynamic Maxwell element is shown in Fig. 10, where m' and m"

are given as a function of coT. At low frequency where c<1, both m' and m"

are small. As the frequency is increased to the point where c 7 = 1, both

components have a value of m/2, however, m" is at a maximum and m' is at an

inflection point. At high frequencies m" will become zero and m' will approach

the value m. The behavior of the Maxwell solid in stress relaxation is also

given for comparison. It should be noted that once the relaxation time is

known the time dependent behavior is established for both dynamic and stress

relaxation experiments.

As in the case of stress relaxation the response of an actual

viscoelastic solid may be represented by a series ofMaxwell elements in

parallel with a Hookean spring resulting in,

m'(@) = Emi (2r2 +m (28)
i 1 2+ 2 i

and

m"() mi 2 2 (29)

i --- / 1 + ( D .1

for the real and imaginary components of the complex modulus. As in the case

of stress relaxation molecular theories predict this mathematical form for the

complex modulus and predict the distribution of relaxation times.
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THE KELVIN-VOIGT MODEL

A rather simple mathematical model can be constructed for the creep

of a viscoelastic solid. This representation was first proposed in 1875 by

Kelvin (3) and independently in 1890 by Voigt (4). The stress on a Kelvin-

Voigt solid is given by,

= dE + m, (30)

and the mechanical model is represented in Fig. 11 as a Hookean spring in

parallel with a Newtonian dashpot. An important feature of this model is

that it is impossible to cause an instantaneous deformation. If the stress

is constant, Equation (30) can be integrated to yield,

mO- (1 - e-t/T ) (31)

where T is the retardation time given by r= - . Relation (31) can bem

written in terms of compliances as

k(t) = k(l - et/), with k = .(32)
m

The response of the Kelvin-Voigt solid is shown in Fig. 11. The compliance

increases with time and eventually approaches the value k at long times. Most

materials exhibit a finite initial strain and some have a steady flow viscosity

......in-addition-so that the -Kelvin=Voigt-solid-is--inadequate-for-most-materials.--

In order to describe an actual solid in terms of mechanical models

it is necessary to use a sequence of Kelvin-Voigt elements in series with a

single Maxwell element, Fig. 12. The corresponding mathematical expression is

k(t) = k + t + k (1 - e-t/r), (33)

".
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Solid
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where k is the instantaneous compliance and n the steady flow viscosity. The
-g .

form of this equation is, of course, arbitrary but we have introduced it in the

present form since it anticipates results obtained from the phenomenological

and mathematical basis of viscoelasticity.

THE DYNAMIC KELVIN-VOIGT MODEL

If a sinusoidal stress is applied to a Kelvin-Voigt model, one can

speak in terms of the complex compliance k*(c), in which case k'(c) the real,

and k"(W) the imaginary components are given by

k( = k -+ 22 (34)

and

k"' )- -k 7 (35)
-- '-+ W 1 14

The creep compliance, and the real and imaginary components of the complex

compliance are given in Fig. 13. The creep compliance increases from a value

of zero at short times to the value, k, the compliance of the spring at long

times. The real component of the complex compliance increases to a value of

2 k at w ~ = 1 and then to a maximum value of k at high frequency. The

imaginary component is zero at low frequency, reaches a maximum of 2 k at

X .= 1 and again decreases to zero at high frequencies.

The response of the generalized Kelvin-Voigt model can be expressed

as a complex compliance with:
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k'(a) = ~ ki 2r 2
k (36)

i 1

and

k"() ki 2 + (37)
1 + 2 W

This mathematical structure will appear again in the phenomenological and

mathematical basis of viscoelasticity.

THE PHENOMENOLOGICAL APPROACH TO VISCOELASTICITY

THE BOGTfZMANSSUP ERPOSITION PRINCIPLE

The phenomenological approach to viscoelasticity has played an

important role in the analysis of time dependent stress and strain measurements.

The underlying principle was first formulated as early as 1874 by Boltzmam (5)

as his, principle of superposition. He suggested that the mechanical behavior

of a solid is a function of its entire previous loading history. When a "

specimen.has undergone a series of deformations, the effect of each deformation.

is assumed to be independent of the others. . Accordingly, the resultant

behavior can be calculated by a simple addition of effects that would occur if

the deformations had taken place independently. This assumption is the

substance of the Principle of Superposition.

This simple assumption makes it possible to compare the results of

measurements obtained by different experimental techniques. In addition, it

shows under what conditions an arbitrary'strain history may be related to the

corresponding stress history. For example, this principle can be used to predict

the results of a creep experiment from a stress relaxation experiment.
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THE SUPERPOSITION INTEGRAL

There are several ways to carry out a formulation of the super-

position principle. We have chosen to carry out the formulation in terms

of the linear superposition integral. Once the Boltzmannprinciple is stated in

this manner the rigor of a well formulated mathematical structure can be

applied. This mathematical basis of viscoelasticity is discussed in detail by

Gross (6) and reviewed by Ferry (7).

Leaderman (8),gives three derivations of the BoltzmamSuperposition

Principle. This includes a derivation-due to Becker (9) and Boltzmann's

presentation (5). The derivation given here is based on Leaderman's "first

method" but is in a slightly more general form.

The response of a specimen of material subjected to a stress relaxation

experiment is given by,

C = [m + m(t - u)]6 = 0 t (u (38)
e =C O t> u

where m(t - u) is the relaxation modulus function or memory function and m is

the equilibrium elastic modulus. The strain 6 is zero for time t (u and equal

to a constant value Eo for t u. By agreement, the relaxation modulus function

is zero for t~u and equal to m(t - u) for t¼u. The response of the specimen of

material is given in Fig. 14 as the ratio of stress to strain. At time u the

specimen is suddenly strained and the relaxation modulus function m(t - u)

decays to zero at infinitely long times.
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The creep response of a specimen of material under a constant applied

stress is given by,

= [k + u + k(t - u)] O t 0 (39)

where k is the instantaneous compliance, I the viscosity coefficient and
-g

k(t - u) is the creep compliance function. The specimen is initially unstressed.

Later at some arbitrary time u the material is subjected to a constant stress 0o.

It is understood that the creep compliance function is zero at time u and

increases to a finite limiting value at infinite time. The response of the

specimen in creep is shown in Fig. 15.

The response of a linear viscoelastic material to an arbitrary strain

pattern may be described as follows, Fig. 16. The time is divided into

increments Au and the strain is approximated by a series of incremental steps,

Au u

The stress response to an incremental step started at time u is given by,

A6(u) Au [m(t.- u) + m ].L Au e

The total stress response at any time t is then given by,

t

:((t) =A 6(u) [m(t - u) + m ]Au, (40)
-..... ........ Au _ e _

t = Au

with the strain C(- oo) taken as zero. If Au is allowed to approach zero,

the sum has the limit,
t

5((t) = d (u) [m(t - u) + m ]du . (41)
_ du e
-00
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By using considerations similar to those used in deriving (41), the total creep

response due to an arbitrary stress history is given by,

t

6(t)= du) [k + t- + k(t - u)]du. (42)
du g 

-00

The integrals (41) and (42) taken together, are known as the principle of

superposition. The equations are, of course, not independent of one another.

Mathematically they are known as Duhamel's integrals(6). The principle of

superposition is important in many areas of physics and finds application in

the study of electrical networks and dielectrics.

MATHEMATICAL RELATIONS

The results of mechanical measurements on the modulus of a viscoelastic

material can be expressed as,

m(t) = m +/ H()e-t/r d in t (43)
e -co

for stress relaxation or as,

m' W = e H(¥)-m2 din (44)

-00

m"(W) = 2() d in r (45)
1 + Cor

-c

for a dynamic experiment. Equations (43), (44), and (45) are linear integral

equations of the convolution type. It should be noted that time appears on

both sides of (43) and m on both sides of (44) and (45). The modulus on the

left is the experimentally accessible quantity and is a function of time or



Project 2332
Nov. 15, 1962
Page 31

frequency. The function H(r) is the relaxation distribution function and is

an unknown function which is to be determined from the modulus. By comparing

(43) with (25), and (44) and (45) with (28) and (29), it is seen that H(T) is

just the contribution to the modulus from Maxwell elements lying between in 

and ln)'+ d in?. These equations are simply the integral expressions for

the generalized Maxwell model.

If the Boltzman superposition principle applies, then (43), (44), and

(45) are related through H(T) since this function will be identical when

determined from each relation. Experimental techniques which determine both

m' (c) and m"(cX) are quite powerful since H(r) can be determined from both

components and this yeilds internal verification of the superposition principle.

It is apparent that this principle also makes it possible to compute the results

of a stress relaxation experiment from the results of a dynamic experiment.

Close relations also exist between creep experiments and dynamic

experiments. The creep compliance of a linear viscoelastic material is given

by, 

k(t) = k + /L(T)[1 - e- t / ]d lnr + (46)

-0D

and the components of the complex compliance by,

k'(o) = k + L d lnr (47)

-02

and oo

k (co) = - + L( 2 d n r (48)
" J 1 + cur

-00

Here the similarity of these equations to the Kelvin-Voigt model of a

viscoelastic solid should be noted. As in the case of the modulus, time
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appears on both sides of Equation (46) and w on both sides of (47) and (48).

The experimental quantities are on the left side of the equations and the

unknown retardation spectrum L(T) is to be determined. The creep compliance,

Equation (46), represents a continuous series of Kelvin-Voigt elements and

(47) and (48) a continuous series of dynamic Kelvin-Voigt elements. The

retardation distribution function, L(T), simply represents the contribution

to the compliance from elements with retardation times lying between In T and

InT + d ln T. Here again if the superposition principle applies the results

of a dynamic experiment can be used to calculate the behavior of a material

under creep.

In view of the fact that compliances and moduli are related, by

Equations (18) and (20), it is not surprising to find that relaxation spectra

and retardation spectra are also related. Direct relations between the spectra

are discussed by Gross (6) and by Ferry (7), and the reader is referred to

these sources. A discussion will not be included here since retardation and

relaxation spectra are not interconverted in general practice.

The practice of describing experimental results in terms of

continuous spectra has certain advantages over the use of the generalized

Maxwell and Kelvin-Voigt models. The results of any stress relaxation

experiment may be described in terms of the generalized Maxwell element,

Provided only that the results decrease monotonically with time. The

experimental results can be fitted to any degree of accuracy by including a

sufficient number of elements in the model. A given choice of elements is,

however, not unique and hence, it is not possible to associate relaxation times

with molecular motion. The generalized Maxwell and Kelvin-Voigt elements are

therefore not useful for theoretical interpretation. The advantage of the
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continuous relaxation and retardation spectra lies,iin the fact that the spectra

areunique;and therefore, amenable to theoretical interpretation.

METHODS FOR OBTAINING RELAXATION SPECTRA

The utility of the equations in the preceding section depends on the

ability to determine the distribution functions H(r) and L(t). As the result

of experimental observation, it is possible to determine the moduli or

compliances of a viscoelastic material as a function of time or frequency. The

problem is then to determine the value of the distribution function under the

integral sign. In general, the modulus will not be a simple function of time

or frequency and one is required to devise approximational techniques in order

to determine relaxation distribution functions from an arbitrary modulus time

or frequency curve. There are a number of methods for determining relaxation

distribution functions and these are discussed by Ferry (7). We have selected

several for discussion here because of their usefulness to specific materials

used in papermaking. The first order approximations discussed by Andrews (10)

are given here because of their applicability to pulp and paper. The higher

approximation method of Ferry and Williams (11) is discussed because of the

ease with which spectra can be determined from experimental data. The

complicated and more accurate method of Roessler (12) is included since it is

not discussed in detail by Ferry (7). Finally, the recent method of Tobolsky

and Murakami (13) is included since it enables one to isolate discreet

relaxation times under certain conditions.

Simple Approximational Methods

A simple approximation of the relaxation distribution function can

be obtained in the following way (10). Equation (43) is differentiated under

the integral sign with respect to time to yield,
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d = ()P'd log r (49)whereog r-00
where the term in square brackets can be considered as an intensity function

which specifies the contribution of various regions of H(T) to the value of the

integral. When the intensity function is plotted versus (logt- log t) it is

seen to have a fairly sharp maximum at t = t and falls rapidly to zero on either

side. If H(T) is constant in the neighborhood of time, t, it may be removed from

under the integral sign and since
00

Jr ̂.3e 'cd logr = 1, (50)

we get

dm(t) =H(T)
d log t I = t (51)

thus providing a first approximation to the distribution function.

A similar situation exists with respect to the components of the

complex modulus. Equation (44) can be differentiated under the integral

sign with respect to 1/0 with the result,

d log 1/0 = H(r) r d log . (52)
-00

As in the ca-c of stress relaxation the intensity function in square brael",Pts

has a fairly sharp peak at 1/at = T and decreases to zero on either side.

Again, if H(T) is nearly constant in the neighborhood of T = 1/r it can be

brought out from under the integral sign. The remaining integral is,
oo

/ 4.606 8 21 d log = 1 (53)

and one has,
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- dm' co H(()
d log l1ico l 1 (54)

The imaginary component of.the modulus (45) already has a peaked

function under the integral. The function

[ +c2 ](55)
1 + u) I

has a peak at r = 1/ro and is a symmetrical curve. If H(T) is assumed constant

in the neighborhood of ?r = 1/c it may be brought out from under the integral

sign. The remaining integral is
00

-oo

and one gets the approximation,

MI· ( ' Tr H: ) (57)

Second order approximations (10) 'can be obtained by assuming a

relaxation distribution function of;-tie, form,

H(r) =oC +h (16gr - log.t) (5N3)

where OC is the value of H(T)C'a T'-=- -.'This leads-to the results,

H() d m(t) + 5d 2m (t ) 9)
H)t = - d m(t)log log t2 (59)

for stress relaxation. When (58) is substituted into (52) the contribution

of the second term of (58) to the-slope of (54) is zero. This results from the

symmetry of the itensity function'about its peak at T= t. This means that

(54) is second approximation as well as first. A similar situation exists

I
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with respect to (57) and hence, this also is a second order approximation as

well as first. Other second and higher order approximations are given by

Schwarzl and Staverman (14), Okano (15), and Fujita (16), and an iterative

numerical method is outlined by Roesler and Twyman (17). A method that does

not involve the measurement of slopes is described by Ninomiya and Ferry (18).

Ferry-Williams Method

The method of Ferry and Williams (19) yields the following relation

for the determination of H(T) from the relaxation modulus;

H(r) = -M(n) m(t) d log m(t) (60)
d logt t =

where M(n)= l/r(n + 1), r is the gamma function, and -n is the slope of a

double logarithmic plot of H(^) versus 7 . The method is limited to positive

m values. As a first approximation, M(n) is set equal to unity and (60)

becomes the first approximate relation (51) from which an estimate of H(7)

is obtained. The negative slope of double logarithmic plot H(7) versus 8 is

used to determine n. Values of M(n) are tabulated for values of n, (7), (18),

and Equation (60) is corrected accordingly.

Two formulas are required to obtain H(r) for the real component of

the modulus depending on whether n is greater or less than unity. Usually,

n(1, so that,

H(r) =A m(w)d logm ) (61)d log 1

where

A = (2-n)/2r(2-n/2)r(ln/2)
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When 1 (n (2, the appropirate formula is

H(T) = A'm'()(2i-d log m'/d log W) (62)

where

A = m/2r(l+ni/2)r(2-m/2).

As a first approximation A' is set equal to unity and a procedure similar to

that already outlined is used to obtain H(r). The relaxation spectrum is

determined from the imaginary component of the modulus by,

H(T) =%B m"(w)(l- d log m"(o)/d log eo ) (63)

with

B = ( + InI)2T(3/2 -I n1|/)r(3/2 + I|n|/2).

Retardation spectra may also be determined by the present method.

Stern (2Q) has shown that

L(T) = M(-n)[k(t) - t/q] d log [k(t) - t/n]/d log t (64)

t = T

where +n is the slope of a double logarithmic plot of L versus 7 , and M(-n) is

-.. -- .- --the same as -before. This method-cannot be- used if creep- experiments have not-- -

been carried long enough to determine n reliably. When the real portion of

the loss modulus is used,

L(t) = -A k'()) d log k'(O)/d log X . (65)

Kin 
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when n (1 When n) 1 one must use,

L(r) = A'k'(cu) (2 + d log k'(o)/d log u) (66)

8 1 =

with A' and A the same as before. If the imaginary compliance is used, then

"E k''m('dlog I
L(-) = Bk"(o) (I -1d log k"(o)/d log c|)

c l -. . * -' a = T (67)

with B as given earlier. ' 

The method of Ferry and Williams is convenient since it involves

simple graphical manipulation of logarithmic curves of modulus and compliance

as a function of log timepor log frequency. _Since such curves must be

constructed anyway in order to display experimental results, no large amount

of extra work is required. j n I '

Method of Roesler

The method of Roesler (12) is more involved than any of the

preceding methods but is also potentially the most accurate. It is assumed

that m_'(c) and m"(co) are given as a function of I1nr, Fig. 17. A domain L

extending from 0 to 7T is selected so as to include the range of m'(c) and

m"(o). A vaiiable x is chosen so that it is linearly related to Inm) and such

that O( x<T. The quantities m'(m) and m"(c) are now expressed in terms of

Fourier series in A, that is,

n
m'(x) = ck cos kx (68)

0

and n
m"(co) =ak sin kx. (69)

1

r
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The relaxation spectrum is then given by

n

H(x) = k sin kx

where the bk are related to both ak and ck by

and

2ak k~2 2ck , __bk - 2a cosh(k - ) = k sinh( 1k )

k = Tr 2L )~k 2L

k = ck tanh(---).
ak = ck2L

(7o)

(71)

(72)

The determination of relaxation spectra from a stress relaxation

experiment is considerably more complicated and will be described only briefly.

The modulus m(lnt) is given as a function of the variable (int) such that it

lies within a domain 2L, Fig. 18. A linear function (lint) is defined such

that the difference

m(lnV) - (ln) = M*(ln 7) (73)

vanishes for those values of lnT which correspond to x = -i and x =7 ,

Fig. 18. The function M*(x) is then fitted to the mixed Fourier series,

n n
M*(x) =1 A cos Ik + ro k B cos kx.

o0 1 L
(74)

The relaxation spectrum is given by

n n
H*(x) =Pkcos kx + Rk sin kx

1 k 1 k

with

and

(75)

k T AkOk - Bk g k
pk - k

L2 k +k

k TT k + Bk
Rk L2 =+ 2 k2L +-~

(76)

(77)
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The coefficients OC k and k are determined by numerical integration and are

tabulated (12) for k = 0 to 16 and depend on the value of L chosen. The tabu-

lated values are given for L = 12.8 units of In T, corresponding to approximately

11 decades in log t. The correct relaxation spectrum is obtained by adding the

constant,

d' m in(-T) -m(7r)
_ d P = () 2L ((78)
d? 2L '

to (75).

Discrete Relaxation Times

A method for obtaining discrete relaxation times is described by

Tobolsky and Murakami(1-3). The results of a stress relaxation experiment are

expressed in terms of a discrete distribution,

(t) = ma exp - t/ta+ ... +m n 1 exp - t/tl + mn exp - t/

(79)

A plot of log m(t) versus t should approach a straight line for t)n providing

a resolvable maximum relaxation time exists. The straight line will have a

slope of -2.303/7r and an intercept of log m . Equation (79) is now

rewritten in the form,

m(t) - m exp - t/ n7 = m exp - t/7a +-,+mTn exp -t/ . (80)n n a n-l n-l

A plot of log m(t)-m exp(-t/tn) versus t should approach a straight line

for t) -r providing a discrete relaxation time 1 exists and is reasonably

separated in time from Qn and t -. This process can be repeated as far as
n n-2

is warranted to resolve additional relaxation times. In practice this method

when applied to monodisperse polystyrene yielded discrete relaxation times n
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and T . The isolation of additional relaxation times might also be ofn-l'

significance. The ability to isolate relaxation time depends on the accuracy

of long time low modulus data. This, of course, confines the measurements to

the rubbery flow region for high molecular weight polystyrene. When the method

is applied to polydisperse samples, relaxation times T and r are probably

meaningful but additional relaxation times are probably artifacts.
meaningful but additional relaxation times are probably artifacts.

The dynamic analogue has not been discussed in the literature. We

have been able to devise a procedure for obtaining discrete relaxation times

from the complex modulus and present it here since it differs in.some respects

from the case of stress relaxation; The real and imaginary components of the

complex modulus are given in terms of the series,

2 2
m DoT

'm't() =+ .... +

a

2 2 2n2
mn-1 l -1 n n

1( 2r 2r 1+2r 2
n-l n

mra r m X-a Tmr m mrma a a + n-l n

l+n2r 2 1+ r 2 1+n2a n.Jln

(82)

If the relaxation times are sufficiently separated, so that T ) ) 7-l) n-2'

then at low frequencies when ((1/ l n

(83)mnl (U n n 1m' T0 = CT= T1
M' HW) n tans '

The relaxation time, rn, is to be determined from the slope of a plot of

'/mn" versus Ao. At low frequencies, (8) and (82) become, respectively

and

(81)
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m'() = m2n 2 (84)

and

m"()) =.n:o Eno.."- (85)
., ,'{W A! 'tt

2 2A plot of m' versus c2 yields a slope of !mnn and a plot of m' versus X~- -- · , q, n n- -

yields a slope mn ' n . The value of m can be determined from either of thesen n k -niL -

slopes. An alternate and possibly better procedure is to plot m' versus

co 2 /(142 n- ) and m" versus F- /(l1- V 2). In each case the slope will yield

Tm directly. Additional relaxation times may be determined as in the case of

stress relaxation. The'reader should bear in mind that the method has not been

tested on experimental-data.- ,Atcritical discussion of-the procedure is-given by

Grossman (21) where the use and limitations of the method are analyzed.

***i dJSr
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