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INTRODUCTION

For the past few years the doublé electromagnetic transducer
(;, 2, é) has been used in this laboratory to determine the complex shear
modplus of peds composed of wet pulp fibers. This instrument, uhfortunately,
is limited to shear moduli less than 5 x 109 dyne/cm.2 and is not suitable
for examining the time dependent properties of paper. We have, therefore,
been looking for experimental techniques for obtaining the complex modulus
of materials with moduli in the lOlO to lO12 dyne/cm.a range_and in the 20
to 1000 c.p.s. frequency range.,

In the course of our survey on the rheological properties of
papermakiﬁé materials we examined a number of experimental techniques
suitable for examining the time dependent mechanical proﬁerties of paper.
One of these techniques, the vibrating reed. technigue, appeared to be
promiging enough to warrant experimental investigation under the present

project. The present report contains the results of some of our

investigatioﬂs on paper and Mylar film.
THE VIBRATING REED METHCD

In the vibrating reed method the clamped end of a cantilever

beam is caused to oséiliétel;ifh a sinuéoidai'f;eﬁuency. -&he-diéﬁlécémeni 7
of the free end of the beam is obsefved as a function of freguency. The
resonant frequency and band width are determined from amplitude:f;equency
curves and used to calculate the real and imaginary components of ﬁhe

complex Young's modulus.
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If the transverse dimension of the viscoelastic beam is small

compared to both iis length and the accoustical wavelength, the fundamental

equation of motion is given by (%),

]
o

2 L 5
a2+ g1 L+ n'I 9

(1)
2 a8 3x ot

\
Here, x denotes the distance along the reed measured from its clamped end
and y is the displacement normal to it. Also, 1 is the time, I is the moment
of inertia of the cross-gectional area A sbout its neutral axis, p is the

density of the material, E' is the real component of the complex Young's

modulus and n' is the dynamic viscosity coefficient.

_The ﬁféﬁlem_of the vibrating reed has been considered by a—humber
of authors. Nolle (2) obtained solutions to the vibrating reed problem by
considering the solution of an equivalent electrical network. A more
rigorous analysis of the problem is given by Horio and Onogi (4). This
method assumes a simple form for the variation of the complex modulus across
the width of the rescnance curve and is valid as long as the mechanical loss
tangent is less than 10_1. For those materials where the frequency dependence
of the modulus has a profound effect on the frequency and amplitude of the

resonance peak, the analysis of Bland and Lee (é) must be considered.

According to Horio and Onogi (&) the complex Young's modulus

is given by,

E¥ = E' + j E" (2)

where J = V~l and E', the real component of the modulus, is gilven by,

m- (pafal DT + (00)?] (3)
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and E", the imaginary component, 1s,
E" = (pA/auOI)ﬁu b w_ . (L)

sl-"wu- IR

.n; nﬁb !

The circular frequency w. 1sithe resonanqe frequency at which the amplitude
J"i.‘: \"\v”é}, \.,;“1( ‘- . r_\“ . o {{.‘

of the free end of.the reed is: 4a maximum and the band width An is the

P

e
B

‘r‘,i(

difference 1n frequencies’ at whlch thé emplitude 1s 1/V2 times its maximum

value. Also, £ is the length «f‘the reed and a_ = 1.875, 4.694, 7.855 for

“",\f sl

the fundamental mode, flrst harmonic , and second harmonic of wvibration,

respectively.

For paper (1), 6 6-—ny'lon (8) viscose rayon (8, 9), acetate rayon
(8, 9), and silk (2), E"‘:Ls 1ndependent of frequency and Meredith and Hsu

(8) have shown that Equations (3) and (4) can be written as:
‘ ‘,‘1.. : ‘.
b U‘!“

’ - :
N <Ay ll 2' e
u El =f‘"({'p’A/a.o I).Q c (5)
nd ,; .
T
. JJN“ ..n :‘\‘““ ¥ h; -
Ly WPRT X '"A/a I)er 0] 1 + (1/8)(Aw/w . (6)
’ rl'- "'{;:f “ * "2 'l"’l 'r"::'\l,' ’;‘l“ . P ’ s
: : SRS el

. & ar;‘;,_, ,.r,q -‘t"- el \4,,
i a
- The mechanlcal 1oss ta.ngent 'ta.n£ «:.sf glven by,

S POy :\;: e
e Vo H '
R 1‘5 Wbl R r
- \1}‘\'“: <"

 tan B‘iv(m/ )1 (1/8)(Am/m ) 1. (1

— - “re- --..-.—--"-u-.,-. b e e 3 e
r‘ ate v

‘!

B T P - — - rae —
, 1

When M)/cuo 1s less than|0.2, -the second .power term in the bracket can be
i ‘

ignored with an error of: less than one-half per cent. For these special
: t \,'.. h v }'\‘

materials the resonance frequency 1s: 1ndependent of internal damping and

P
\ ‘fi‘ ',';

15 equal to the natural frequency of the purely elastic system.

- - %,
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The equatiocns given thus far are valid only under conditions where
air damping is unimportant or where appropriate corrections have been made.

In the present work air damping corrections were found to be important and

will be discussed in detail in the experimental section of this report.
GENERAL EXPERIMENTAL, PROCEDURES AND TECHNIQUES

THE VIBRATING REED™ APPARATUS - e - - - .

The basic unit of the vibrating reed apparatus is an Astatic (;g)
t&pe M 41-8 magnetic recording head of the type used in the cutting of
Phonograph records as shown in Figure l.l. " The recording needle has been
-replaced by a lightweight clamp consisting of-a Cock's (li) Now 2 file- -—
signal silver soldered to 5/8 by 0.037-inch diameter stainless steel pin.

The weight of the clamp ig approximately 0.6 gram. The rescnance frequency
of the unloaded clamp when mounted in the recording head is above 1000 c.p.s.

for a typical clamp assembly.

The signal from a Hewlett-Packard model 200 J audic oscillatoer (;g}
is amplified by means of a McIntosh Model MC-30, 30-watt power amplifier
(lﬁ) and then supplied tc the reccording head. The recording head is mounted
in a 6-3/4 by 3-~inch diameter vacuum chamber having a 1/2-inch thick Luecite
window at one end through which the amplitude of the vibrating reed can be

obscrved by means of a traveling micrcscope.

SU}TABLE EXFERIMENTAL MATERTALS

In general any flat paper stock or board up to 0.020-inch thick is
suitable for vibra%ing reed measurements. The only regquirement is that the

the material be cut to a reed approximately 1 cm. wide and 4 to 5 cm. long.
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Crystalline polymeric films are also suitable as are metal foils and coated

PAPETS »

Rubberlike polymeric films'are, in general, unsuitable unless they
gre examined at temperstures below their glass transition temperatures.
Above the glass temperature they absorb too much energy and cannot be set
into a resonance that can be observed since the accoustic wave is damped out

by the time it reaches the end of the reed.

EXPERTMENTAT, PROBLEMS

There are a number of problems that arise in obtaining reliable

experimental data and it is profitable to consider them at this point in our

discussion.

The primary experimental measurements involve the determination of
the amplitude of vibration as a function of frequency. Typical plots
resulting from such measurements are shown in Figure 2 for Mylar film and
a sample of southern softwood solid fiberboard milk carton stock in vacuum.

case of the milk carton stock the vacuum was maintained 24 hours before the

measurements were taken.

The curves are of interest since they represent data taken cn reeds
of comparable length and have resonance freguencies that are similar. The
original amplitude data have been adjusted so that the curves Tor both

samples have a maximum amplitude of 0.0% cm. at resonance.

Several features are noteworthy. First, the resonance pegks are
not symmetrical about the resonance frequency. This behavior is typical of

this type of experiment and, indeed, is predicted by thecry (E). Secondly,

In the
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the band width, Aw, of the two materials is considerably different. This

reflects differences between the mechanical loss tangents of the two

materials. The mechanical loss tangent, Equation (T), can be written as,

tan b = djw

o {energy lost/cylce) (8)
< {energy stored/cycle) °

The mechanical loss tangent, therefore, is proportional to the ratio of the,
energy lost to the energy stored in teking the reed through a cyclie

deformation and is a measure of sample deadness.

From the curves in Figure 2 the mechanical loss tangent for Mylar

was tand = 0.0081 and for the milk carton stégk, tan S = 0.042. This
difference in energy dissipation for the two materials causes a significant
difference between the two as far as sensitivity to room vibration is
concerned. With a 0.0206 by 0.4717 by 4.351-cm. Mylar reed, normal
laboratory vibrations such as a perscn walking in the rcom, are great
enough to make measurement impossible unless special precavtions are taken
to eliminate vibration. In order to obtain the Mylar data of Figure 2, it
was necessary to mount the instrument on rubber chock mountings and to
work evenings or during labcratory quiet hours. In the case of paper, no

Particular difficulty was encountered since the mechanical loss is great

enough to damp out room vibrations.
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ATR DAMPING

Air damping affects both the rescnance frequency and the band
width of the vibrating reed so that if Equations (5), (6), and (7) are
to be used appropriate corrections must be made or the air damping must
be eliminated. The simplest procedure is to evacuate the sample chamber
and thereby eliminate the source of air damping. This is suitable for
polymeric materials such as Mylar where one is not in danger of altering

the mechanical properties of the reed by evacuation.

In order to illustraﬁé the effect of air damping we have shown
typical amplitude-frequency curves for a 3.88 by 0.04LT by 0.95-cm. reed
of southern softwood solid fiberboard milk carton stock in Figure 3. All
curves were obtained using the same driving voltage on the recording head.
The reed wgs held under a vacuum of 56 ﬁm: Hg. for 2L hours and
the amplitude-frequency curve was obtained with a m;;imum amplitude of
0.0615 cm. at a resonance frequency of 78.1 c.p.s. and a band width of .
3.2 ¢.p.s. Dry air, obtained by passing air through a drierite column,
was admitted to the vacuum chamber. The resonance frequency at atmospheric
pressure decreased to T76.1 c.p.s., and the maximum amplitude at resonance

decreased to_0.0525_cm. The band width increased to 3.25 c.p.s. as a

3

result of air damping. The reed was then conditioned for 24 hours at

50% R.H. and the resonance frequency decreased to 72.7 c.p.s. apd the band

~

width increased to 3.5 c¢.p.s.

It is apparent that for paper simple evacuation of the chamber

to reduce air damping is not satisfactory since in addition to eliminating

air damping, the moisture content of the paper is altered and hence, the
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Figure 3. The Effect of Air and Vacuum on the Amplitude-Frequency Curves
for a Sample of Southern Softwood. Solid Fiber Board Milk
Carton Stock
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mechanical properties. For paper, therefore, i1t is necessary to resort to

thecretical corrections for air damping.

Several investigators (1L, 15, 8) have considered the effect of
air damping on a vibrating reed. The treatments are‘based on an equation
due tc Stokes for the resistance per unit length experienced by a rigid
pendulum consisting of a cylinder oscillating in an infinite mass of viscous

fluid. The frictional resistance § per unit length is given by,

§=_kpA.ai\i_kl dy .
2 paﬁ“ﬁ% (9)

2y

where Py is the density of air and A is the cross-sectional area of the
cylinde;. The first term in the equation represents the effect of the inertia
of the displaced fluid and affects the frequency of oscillation. The second
term is the viscouéﬁdamping which will diminish the amplitude as well as the
frequency of oscillation. The terms k and k' are complicafed functions of

. 2 - . .
the dimensionless parameter m defined by m~ = paA/hTTu where p is the viscosity

of the fluid.

When Equation (1) is written to take into account the frictional

resistance of the air, the band width becomes,

- ho-= o [1 - (1/8) (/e ) +(3/32)(&na/mé)h](1A+ﬁ k) -pklo. _ (10). .

where &na is the band width in air. The resonance frequency of the undamped

system is given by,

@y = o 11+ (1/8) ([0 )® - (5/32) (a0 /o )11 + pK/2) (11)

where w, is the resonance frequency in air. The quantity'ﬁ is given by

B=p, /o where p_ is the density of air and p the density of the material in

“the reed.
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EXPERIMENTS ON MYLAR FILM

The first phases of our experimental program involved vibrating
};'..- +
(\‘ ",({.r..

reed experiments on a sample of Du Pont Mylar Film (polyethylene

terephthalate). The film wasio'Qoag6\,pgn=:~;"tpick' end had'a density of

3 L
1.380 g./cm.”. Cort g

. \ .
DI

A 0.4717 by W.351<cm. reed wds cut with a razor blade and straight
wJ“ﬂ“i llz\ﬂ .
edge from a larger Mylar sheet. The thlckness of the reed was determined
with a micrometer caliper and the width and effective length of the reed were

determined by means of the traveling microscope.

n <
e {

A1l experlmentsvwere conducted in a vacuum-of-60 mm.-Hg. -in-order
;\J, ey

to eliminate air damping. The resonance frequency 1s inversely proporticnal

to the square of the reed length|so\thgt 8 range of frequencies may be

! H W :nl

covered by progressive reduction iq(reeqxlength. By this means i1t was

possible to conduct experiments between 32 and 680 c.p.s.

v

The resuits of the experiments on Mylar film are shown in Figure ,
The real component E' of the complex Young's modulus is essentially
independent of frequenecy while the imaginary component increases from a
8 2 & 2
value of 3.7 x 10~ dyne/em.” at 32 c.p.s. to 6 x 10° dyne/cm.” at 680 c.p.s.

The frequency behavior of E', E" and tan £ are typical of crystalline polymers .

The values of E'and E" may be determined to approximately ! 12%.
This rather large error 1s due primarily to the fourth power dependence of
the modulyi on length and the dependence on the cube of the thickness. These
experiments were cgonducted before our techniques of reed cutting were fully
developed. With our present techniques as descrabed in the following secticn

this error can be somewhat reduced:
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Mylar Film in Vacuum,
60 mm. Hg.
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Figure 4. Real and Imaginary Components of the Complex Young's Modulus
and Mechanical Loss Tangent for Mylar Film
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EXPERIMENTS ON PAPER
MATERIALS AND SAMPLE PREPARATION

A western softwood bleached sulfite pulp was chosen for our
experiments on paper. This pulp was 100% softwood, fully bleached, containing
80 to 90% spruce, 10 to 20% true fir, and a trace of cedar. The fibers showed

a moderate amount of cutting and fibrillation and fines.

A series of five handsheets was prepared ranging from a basis weight
of 106 g./m? to 450 g./m.2 with a corresponding density range of 0.737 to
1.01 g./cc. The handsheets were prepéred from the pulp on a 9 by 9-inch
Valley sheet mold with a 66-inch high aluminum headbox. The headbox allowed
sufficiently high dilution of the stock to give sheets of good formation.

The sheets were couched from the wire with dry blotters and pressed at 700
P.5.1. in a small handpress for approximately five minutes. The zheets uwere
then removed from the press, new blotters applied and the sheets pressed

again. This procedure was repeated until the sheets were essentially dry.

The special procedure for drying sheets was necessary to produce
sheets from which flat reeds could be obtained. The normal drying procedures,
using British standard TAPPT drying rings or a steam chest, produce handsheets
with some curvature and do not yield reeds which are sufriciently llawn for

vibrating reed measurements.

Reeds were cut from these pressed sheets with The Institute of Paper
Chemistry precision paper cutter (16). With this cutter it was possible to
cut rectangular reeds with parallel edges and square ends. The reeds were

then cemented to the reed holders with Epoxy resin.
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A series of brief experiments were conducted to see whether or not
reeds in this basis weight range were sultable for vibrating reed experiments.
The experiments were conducted under a high vacuum of 0.07 p and in dry
nitrogen at atmospheric pressure. All of the reeds were found suitable for

measurement and would have required air damping corrections had we wished

t0 calculate thelr complex moduli.

Rather than conduct experiments on all five basis weight reeds a
single reed was selected as representative of the pulp and our experiments
were confined to it. The reed Had a basis weight of 215 g./m.z, an apparent
density of 0.8419 g./cc., and was 0.0256 cm. thick, 0.900 cm. wide, and had

a free length of 3.732 cm. at 50% R.H.
BAND WIDTH AND RESONANCE FREQUENCY; SHORT METHCD

In the experiments on Mylar film the entire amplitude-frequency
curves were obtained and used to determine the band width and £esonance
frequency. Since this requires from 20 to 30 thirty minutes, the procedure
is too time consuming for routine testing. A short method of determining
the resonance frequency and band width has been devised and these quantities
can now be determined in a few minutes without any sacrifice in the accuracy

of- the determination. This-short method was .used on.all of our experiments _

Oon paper..

In the short method, the resonance frequency is observed by setting
the cross hairs of the traveling microscope near the maximum amplitude and
then adjust%pg the frequency to yield a maximum reed amplitude. The
frequency at which the maximum amplitude is observed is the resonance

frequency.
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From the traveling microscope settings at maximum amplitude it is
possible to calculate one of the two microscope settings corresponding te
L/f—é times the maximum amplitude. The microscope is .set at this point and
the frequency is adjusted until the reed amplitude corresponds with this
setting. This will occur at two frequencies, one on either side of the
resonance frequency. The difference between the two frequencies is thé

band width. S ’
MOISTURE CONTENT AND DIMENSIONAL CHANGES

Moisture has seversal effects;on the mechanical properties measured
by the vibf??%ng_rged techn}quef The q;mensions of theﬁree& as wellrégrtpe
apparent density depend on the moisture content so that these changes must
be considered in determining the modulus. The molsture also serves as a
plasticizer and alters both real and imaginary components of the complex

modulus .

In order to keep track of the dimensicnal changes of the reed a
5 by 6-inch rectangular piece of stock from which the reed was cut was
conditioned along with the reed. Reference marks were placed on the strip
and changes Lo thickoess and length were noted whenever the moisture content
of the r=ed and refersnce strip were changed. The dislance between the
reference marks was measured to 0.005 inch with a steel rule and the

thickness with a Federal gage.

The reference specimen was weighed on an analytical balance
whenever the moisture content was altered. At the conclusion of a set of

experiments as a function of moisture content the reference specimen was

oven dried and the absolute moisture contents were then calculated for




Projeet 2332
Rerort 2

' May 9, 1963
Page 17

each moisture condition. The relative humidity was always noted for a given

moisture content.

CORRECTIONS FOR AIR DAMPING

Air damping corrections were of considerable importance and were

determined from experiments conducted under high vacuum and in dry nitrogen.

The vacuum chamber containing the reed was attached to the high vacuum line

of the gas adsorption apparatus and held at a pressure of 0.07 p for 24 hours.
The band width and resonance frequency were then determined as a funetion of
the amplitude of oscillation. Boph were found to be amplitude aepéndent as

a result of nonlinear viscoelastic effects. Air damping was negligible in
this system since the mean free path of an air molecule is of the order of

17 em. at this pressure.

Dry nitrogen was admitted to the chamber and the experiment was
repeated as a function of amplitude. Equations (10) and (11) were then used
to calculate k arnd k' as a function of amI;litude. The value of p was taken
as p = 1.40 x 10_3. Values of k -and E' were plotted as a function of reed
amplitudg as shown in Figure 5. Correction factors were obtained from these

plots assuming that k and lf'w are independent of frelquency.

~_RESULTS AND DISCUSSION

The results of vibrating reed experiments on the western softwood
bleached sulfite pulp are shown in Figures & and 7 where the real and
imaginary components of the complex Young's modulus are shown as a function

of the maximum dynamic strain & given by,

€=1bty /ff (12)
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Western Softwood Bleached Sulfite Pulp as a Function of
Maximum Dynamic Strain
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where t is the thickness of the reed, £ is its free length, and y, 15 the
maximum displacement of the reed. The corresponding relative hum;dities,
moisture contents, reed dimensions, and approximate rescnance frequencies
and band widths are indicated in Table I. The components of the complex

Young's modulus were determined at strains up to £ =7 x lO-LL and over a

humidity range from O to 80% R.H.

The real component, E', decreased only slightiy with increasing
strain. The behavior of the imaginary compenent is more complicated.
In general, E" increases with increasing dynamic surain except above T0%
R.H. where a maximum is observed. This peculiar strain dependence of @'
and @” appears to be characteristic of crystalline polymeric materials
and has been observed for cotton, viscose rayon, and nylon (;1). The
strain behavior of the mechanical loss tangent is shown in Figure 8 and

is similar to the strain behavior cbserved for E".
\ -

The behavior of E', E", and tanfextrapolated to zero strain is
shown in Pigure 9 as a function of moisture content. There is a linear
decrease in E' with increasing moisture content and E' decreases from a
value of 3.60 x 10%° dyne/cma2 at 0% moisture to 1.45 x.10t° dyne/cm..2

at 13.7% moisture. The imaginary component shows a distinect drop from a

- - - - — - - - - s -

. ) 8L 2 . - . '
value for @' of 8.05 x 108 dyne/cm: at 0% moisture to a value of the
order of 6 x 108 dyne/cm,2 at 2.7% moisture. The values of E" then rise

. 8 2
to a maximum of 8.5 x 10 dyne/cm.” at 8% moisture and then decrease to

6 x 108 dyne/cm.2 at 13.7% moisture.

The mechanical loss tangent is similar to E" in its behavior
at low moisture contents but approaches an asymptotic limit of 0.04l at

high moisture contents rather than passing through a maximum at 8% moisture.
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TABLE T

SUMMARY DATA FOR A REED OF WESTERN SCFTWOOD BLEACHED SULFITE PULP

Sheet Resonance*  Band¥
Relative Length, Thickness, Density, Frequency, Width,
Humidity, Moisture, 4, t, 0, Hos AP,
% cm. cm. g./cm,3 C.p.S. C.p.s.
0 ] 0 3.715 0.02410 N 0,85;8 A 5T.4 1.3
10 2.76 3.715 0.02410 0.8618 éh,é _ i,l
15 3.56 3.715 0.02433 0 .8605 5h .5 1.3
25.5 L .6h 3.718 0.02469 0.8550 5k .8 1.6
33.5 5.69 3.722 0.02507 0.84ok 52.6 1.6
50.0 747 3.729 0.02563 0.8419 50 .8 1.8
60 8.36 3.732 0.02588 0.8393 50.1 1.8
70 10.33 3.732 0.02654 0.8321 46.9 1.8
80 13.69 3.7hk 0.02761 0.8205 43.1 1.7

*The values are reported at zero dynamic strain and have been corrected for
air damping.
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From the behavior of the mechanical loss tangent with increasing

moisture content there appear to be two loss mechanmisms. One 1s associated

-
f L
“ \)i A\‘a' > t:‘l'_;,“’ .;; Ly

with the "dry" cellulose and the other with the plast1c1z1ng effect of the

2 w, i, i j
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THE VIBRATING REED TECHNIQUE AND PULP AND PAPER CHARACTERIZATION

The vibrating reed technique shows considerable promise as a
tool for the characterization of pulp and paper. The technique provides a
convenient means of determining Young's modulus in flexure and is suitable

1 2
for papers having a Young's modulus ranging from 0.38 to 6 x 10 0 dyne/cm.

(7). Any uniform paper sheet is suitable provided it is thick enough to

obtain reliable measurements of thickness and not too rough or soft.

By determining the real and imaginary components of the complex
Young's modulus one can calculate the mechanical loss tangent. Since this
quantity is independent of sheet geometry it is a useful index to changes

taking place at the molecular level.

Corrections for air damping are easy to make sc that the technique
can be used to study the effect of moisture on the mechanical properties.
In additicn, by using a short reed one can conduct measurements at, frequencies
approaching 1,000 c.p.s. and thereby obtain the complex Young's modulus in

the time scales common to calendering and corregating operations .

The cost of the experimental eguipment involved is nominal. and the
measurements are such that they can be made by a good technician. The
accuracy of the method depends to a large extent on the nature of the sheet

. - 1 + : - o
being tested; however, an accuracy of - 10% for B' is typical of measurements
with paper. Relative changes in modulus may be cobtained with greater
accuracy if, for example, experiments such as we have reported are conducted
as a function of humidity on a single reed. In this case relative changes

+
in E' can be determined to - 2% and changes in E" to approximately b 5%.
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INTRCDUCTION

The material presented here is intended to serve as an introducticn to
the terminclecgy and mathematical forms in current use in the study of

viscoelastic materials. The subject matter is covered in two sections.

The first section on viscoelastic principles is intended to serve as a
brief presentation of basic principles in the stress and strain behavior of
materials. In this section we introduce the concept of the complex modulus and
its application to the viscoelastic sclid. A discussion of the Maxwell and
‘Kelvin-Voigt models has also beén included. The use of these models has been
prompted by several factors. In spife of the fact that their use is avoided in
current experimental and theoreticél work, we feel that thelr retention is
Justified on the basis of their mathematical form. The relations that exist
between the relaxation modulus and the complex modulus of the Maxwell model and
between creep compliance and the complex compliance of the Kelvin-Voigt medel

_ are Elear%y demonstrated. The mathematical forms introduced by these models
will become important in dealing with viscgelés;i;ityio; a—phéno%enﬁlééical
basis and in discussing the results of molecular theories on polymer viscoelas-
ticity. Current theoretical work on wave propagation in viscoelastic media has
been confined.to solutions based on these elementary models. The rheological

behavior of certain simple liquids can be adequately described in terms of such

0

[pE— — mm - e e e e T I e

models.  Finally, the simple Maxwell model can be profitably empioyed in =

isolating discrete relaxation times that occur in certain polymeric media.

In the second section on phenomenclogical viscoelasticity we take a
strictly mathematical approach. While no assumption 1s made concerning molecular

structure, this =approach is extremely useful in expressing the results of

e — e .
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experimental observations and in correlating and interrelating experimental
results obtained through the use of various experimental techniques. Its
strength lies in the general validity of the Boltzmam superposition integral,

This section includes a survey of various approximational techniques for the

determination of relaxation and retardation distribution functions.

VISCCELASTIC FRINCIPLES
THE HOOKEAN SOLID -

If a strain is applied to an isotropic Hockean solid, a corresponding
stress will be observed which is proﬁortional to the applied strain, Fig. 1.

The relation between stress and strain is given by,

- O=m¢ | (1)

where & is the stress, € the strain, and mn the modulus. The nature of the
modwlus will depend upon the manner in which the s50lid 15 strained, In
accordance with the recommendations of the Soclety of Rheology (%), the symbol
E will be used to designate Young's modulus, G for the shear modulus, and K

for the bulk modulus.

Cccasionally, it is more convenient to deal in terms of compliance
relations. Accordingly, the strain is related tc the corresponding stress by

the relation,

where k is known as the compliance.
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Figuré'l. ' Stress-strainRelatibns for. a Hookean-

Solid .
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The symbol D is used for the compliance of a solid under tension, { is the shear

compliance, and B is the bulk compliance. The modulus can be determined from

the compliance by wmeans of,

(3)

=
1
el

kY

NEWTONTAN LIQJIDS

Consider a Newtonian liduid sheared between two flat parallel plates,
one fixed in space, fhe other movéd by a tangential force, F (see Fig. 2). If
A is the area of the plates, the force will give rise to a shear stress
0 = E/& and will set up a lamina% velocity distribution as indicated. The

velocity, V, at any poinf.§ from ﬁhe stationary plate is given by

V =

= -

0z (4)

where 1 is the shear viscosity. O8ince the velocity gradient dY/@% equals the

rate of strain gE/gE,

o
H
=
Q“Q
m

(5)

1
1

According to Egquation (5), the shear stress is proportional to the rate of strain.

THE VISCOELASTIC SCLID

Consider a sinusoidal stress, J = do $in @ t where Oy is the amplitude
and w is the circwlar frequency. If a sinuscidal stress is applied to a
Hockean solid, a ginusoidal strain will be observed which is in phase with the
applied stress, Fig. 3. This will not be true for a viscoelastic solid for it
has both "liquidli;e" and "solidlike" properties. If a sinuscidal stress is

applied to a viscoelastic solid the resulting sinusoidal strain will be cut of
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Stress Rate-of-S8train Relations for a Newtonian

Liguid
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phase with the applied stress. The relations between the sinusoidal stress
and sinusoidal strain can be represented by means of a vector diagram as shown
in Fig. 4. The sinusoidal stress is represented by a vector in the X-y plarne .
Its magnitude is given by the amplitude of the sinusocidal sitress. The
sinusoidal strain is represented by a vector along the x-axis. The rate of
strain vector is along the y-axis. The phase difference between the stress and

strain vectors is measured by the loss angle,én

The stress O can be decomposed into a s0lidlike and a liquidlike
component . As in the case of the Hookean solid, the solidlike- component is
represented hy a vector along the=g-axis. The rate of strain vector is a
vector lying along the y-axis. The phase difference between the stress and
strain vectors is measured by the loss angle, 5.. As in the case of the
Hookean solid the solidlike component is in phase with the strain. The
liquidlike stress is in phase with the rate-of-strain just as in the case of
a Newtonian liquid. These basic liquidlike and solidlike features may be
carried over to a consideration of the modulus. In so doihg, the rafio of
solidlike stress to strain is the solidlike component of the modulus, m',

given by

solidlike stress _

1
strain m' ().

Similarly, the 1liquidiike componentof tﬁé'mbdulﬂé?'@"'is_giveﬂ'by;' T

liguidlike stress _ " (w)
strain - )

As indicated in the following section, it is most convenient to write the

modulus of a viscoelastic solid as a complex quantity.

, t
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THE COMPLEX MODULUS AND COMPLEX COMPLIANCE

A complex number 1s a nmumber of the form U+ gV, where U and V are

real numbers and J 15 & number such that je = -1, The complex number U + jV

can be represented by & point in a plane referred to a pair of orthogonal X
and Y-axes. The real number U is agreed to represent the abscissa and the
real number V the ordinate of the point (g, Y), Fig. 5. The point (g, Y)

may be located by the terminus of a vector Z with its origin at O. The vector
Z can be thought of as the resultant of two vectors g and V with g directed

along the X-axis and V along the Y-axis. One can therefore write,

. -

2 by Z=10U+ Jv,
i ! V\‘V"

where g 15 the real part of the complex number 2 and QY 15 the -1magilnary part.

If (r,6) are the polar co-ordinates of the point (U,V), then

£

v
K

U=rcos® , V=1rsin®
" and : S
’ EE T TR, 1. ;alw\:vh"{r.‘
- 2 || “1 .-4 i -
r'= (U + Ve)l/e,and & = tan . g

The number r 1s called the modulus or abscolute value, and € is called the
—argument or amplitude of.the complex number g. = g + Q‘f .. The modulus, r, 18 _

often written using absolute velue signe, that is

2)1/2

H
1]

2] = o+ o = @By

@
1

and the argument © as, arg Z.
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The strain on a viscoelastic body can be written as,
jest (6)
€ =€, ed
€ =€, [coswt + j sin wt]. (7)

The strain can be represented in the complex plane as a vector of magnitude

(0 which makes an angle wt with the x-axis, Fig. 6. The x and y components of

the vector are £,cos wE and Ecﬁin wt, respectively. The rate-of-strain may

be obtained by differentiation of (6) to yield,

é= %% N .meoejmt (8)
or,
é =€, (Jw cos wt -  sin at). : (9)

It is thus seen that € can be represented as a vector in quadrature with the

strain. The stress likewise can be written as,

T oo et +d)
o
or, g = 0;,[cos(wt-+£ } + j sinf{at +4 )}].

Y

The stress can also be represented as & vector in Fig. 6. It should be noted

that the entire diagram rotates counterclockwise about the orgin with an

angular velocity w. If it is now agreed to keep € along the real or x-ax

then the stress, strain and rate-of-strain vectors are given by Fig. k4.

The modulus of a viscoelastic solid. can be written as a complex

(10)

(11)

is,

quantity, called the complex modulus. The complex medulus, m¥, is glven by,

sinusoidal stress
sinusoidal strain

m*(w) = m'{w) + jn'"(w) =

(12)
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where m' is the real or solidlike component of the complex modulus and m" is
the imaginary or liquidlike component. The liquid nature of m" is revealed

by writing,

n"(w) = oy (w) (13}
where 7' (w) is known as the dynamic viscosity.

Another important relation is the mechanical loss tangent, tan A ;

given by,

_m"(w)  on'(ew) _ energy lost/cycle.
tan 5 = m'{w)” m'{w) =~ energy stored/cycle (a4)

This relation is of considerable importance since it gives the ratio of energy

lost to energy stored and as such is a measure of the resilience of the material.

Just as it is possible to speak of the viscosity of a ligquid it is
possible to define a complex viscosity for a viscoelastic solid. The complex

viscosity, n*(w), is given by, .

- stress..

*(w) = 1" (w) - jn"(w) = ;;{,e-:(jf-straiﬁ (15)

where n'(w) is the real or liquidlike component of the complex viscosity and

n"(w) is the imaginary or sclidlike component.

The following relations ‘exist between the complex modulus and the

viscosity. Equation (8) can be written as,

rate-of-strain = jo (strain)

and m*(w)  rate-of-strain _ | :
- ¥(w) ~ strain = IO, : (16)
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or m*(w) = jon*(w) . (17}

A complex compliance can also be gbtained for a viscoelastic solid. The

complex compliance g*(w) is related to the complex modulus by,
k(o) = =, () (18)
W) =y

By substituting (12) into (18) one has,

k¥(w) = k'(w) - Jk"{w) (19)

where the real component of the complex compliance, E', and the imaginary

component, k", are given by,

{m')
o k' (w) = (m‘)2'+ (m")2

(m")
()" + (m")°

and k" (w) (e0)
The vector diagrams corresponding to the complex modulus and the complex

compliance are given in Fig. 7.

All of the complex relaticns given in this section are used
extensively in the physics of viscoelastic materials. They are experimentally
observable quantities and are exceptionally useful in interpreting mechanical
properties in terms of wmolecular motion. It is through the complex quantities

that modern molecular theories of viscoelasticity are most readily tested.

THE MAXWELL SCLID

In the older literature on visccelasticity considerable effort was
devoted to devising mechanical models to represent the mechanical behavior

of a viscoelastic body. While the use of mechanical models consisting of
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springs and dashpots cannot be justified on the hasis of what we now know about
the molecular origin of viscoelasticity, their inclusion in the present section
is justified on the basis of their mathematical form which is now observed in the
modern molecular theories. Apart from historical interest, the reader will find
the mathematical form of these models useful in understanding the mathematically

more complex phenomenological theories of viscoelasticity.

In 1867 Maxwell (2) suggested that the stress and strain of a real

solid could be related by the equation,

_ladag .0
“smty (21)

while a purely elastic solid cbeys Equation {1). One of the common experiments
that can be carried out on viscoelastic systems is the stress relaxation

experiment. An initially unstrained material is suddenly strained and held at
constant strain while the time decay of stress is observed. If this experiment
is performed on a Maxwell solid, € = O at t =0 while for E) 0, £ is constant

and d€ /dt = 0. For )0, Equation (21) becomes,

130+ 0

mdt 7 0. (22)
Upon integration this bhecomes,

o(t) - o N (23)

0

or after dividing by the stirain £ and employing Eguation (1),
m(t) =m e-t/T (24)

where 7 = n/m is the relaxation time. At times short compared to T, the




. .THE.DYNAMIC MAXWELL ELEMENT _ __

Project 2332
Nov. 15, 1962
Page 17
material behaves as an elastic solid. PFor long times the behavior is that of
a viscous liquid and the modulus decays to zero. The Maxwell solid is often
represented by means of a mechanical model consisting of a spring in series
with a viscous element of dashpot, Fig. 8. The spring is assumed to be a

Hockean spring while the dashpot can be considered to be a piston which is

drawn through a Newtonian liquid.

i

The relaxation of stress in an actual solid does not, in general,
follow that of the Maxwell solid and schemes have been devised to represent
the actual solid by means of a series of Maxwell elements in parallel with a

Hookean spring, Fig. 9. The_mathgmatical expression for stress relaxation is

therefore given by the series summation,

i
u(t) = E m, e—t/Ti +m , (25)
1 * € L
where @e iz the equilibrium modulus of the parallel spring. The summation ' SR

EX ]

extends over the (i) Maxwell elements in parallel and (mi) refers to the modulus
at zero time for element (i). The use of a series of paréllel elements is; : RN
of course, an arbitrary procedure. It is introduced here since molecular

theories of viscoelasticity predict precisely this form and in addition provide

for the distribution of relaxation times,’Ti.

If a sinusoidal stress is applied to a Maxwell solid, it is possible
to obtain an expression for the complex modulus, m*, where the real and

imaginary components are, respectively,

- (@) = met T (26)
e
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Figure 8. Mechanical Model for the Maxwell Solid and Its Behavior
1n Stress Relaxation

é

cSpges £S

Figure 9. The generalized Maxwell element
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w T

and n"(w) =m - 572 {(27)

15w

~

where w is the circular frequency and T is tﬁe reléxation time. The frequency
response of the dynamic Maxwell element is shown in Fig. 10, where m' and @"
are given as a function of @7 . At low fréquency where o7<l, both m' and m"
are small. As the frgquency is increased to the point where w T = 1, both
’c0mponents have a value of @/2,.however, m" is at a meximum and m' is at an
inflection point. At high frequencies @" will become zerc and @' will approzch
the value m. The behavior of the Maxwell solid in stress relaxation is also
given for comparison. It should ye noted that once the relaxa%ion time is
known the time dependent behavior is established for both dynamic and stress

relaxation experiments.

As in the case of stress relaxation the response of an actual

viscoelastic sollid may be represented by a series of Maxwell elements in

parallel with a Hookean spring resulting in, '

A 21"2
m'({jj) = m _"“'_"'_J'_‘w = -+ m (28)
i 2, 2 e
3 Lo Ty :
T ) 2
m"(w) = M, = mmm (29)
- 1 1+ wETiE

for the real and imaginary components of the complex modulus . -As in the case
of stress relaxation molecular theories predict this mathematical Form for the

complex modulus and predict the distribution of relaxation times. -



Project 2332
Nov. 15, 1962
Page 20

Modulus
n*{w), m"(w), and m(%)

C 1

0
Log t/r y - Log wT

Figure 10. Response of the Marwell Sclid
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THE KELVIN-VOIGT MODEL

A rather simple mathematical model can be constructed for the creep
of a viscoelastic solid. This representation was first proposed in 1875 by
Kelvin (3) and independently in 1890 by Voigt (&). The stress on a Kelvin-

Voigt solid is given by,

gzné‘%+me, (30)

and the mechanical model is represented in Fig. 11 as a Hookean spring in
parallel with a Newtonian dashpot. An important feature of this model is
that 1t is impogsible to cause an.instantaneous deformation. If the stress

is constant, Equation (30) can be integrated to yield,
o} -
e=T (-t (31)

where T is the retardation time given by 7' = a . Relation {31) can be

written in terms of compliances as

k(t) = k(1 - e 7}, with x = & . S (32)

=

The response of the Kelvin-Voigt solid is shown in Fig. 11. The compliance
increases with time and eventually approaches the value k at long times. Most

materials exhibit a finite initial strain and some have a steady flow viscosity

In order to describe an getual solid in terms of mechanical models
it is necessary to use a sequence of Kelvin-Voigt elements in series with a

single Maxwell element, Fig. 12. The corresponding mathematical expression is

i
= k(t) = Ky * 3:-] +Z k, (1 - e't/Ti), (33)

in"addition”so that the Kelvin=Voigt—solid-is—-inadequate—for-most-materials,—— - -
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Figure 12. The Generalized ¥elvin-Yoigt Model of a Viscoelastic
Solid
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where Eg is the instantaneous compliance and 7n the steady flow viscosity. The
form of this eguation 18, of course, arbitrary but we have introduced it in the

present form since it anticipates results obtained from the phencmenoclogical

and mathematical basis of viscoelasticity.
THE DYNAMIC KELVIN-VOIGT MODEL

If a sinusoidal stress is applied to a Kelvin-Voigt model, one can
speak in terms of the complex compliance k*¥{w), in which case k'(w) the real,

and k"(w) the imaginary components are given by

' . ' I .

k'(U.)) =k 1+ mETE (3}4‘)
and
’ k"(w) =k —-&9—%'2— . (35)
Ll T

The creep compliance, and the real and imaginary components of the complex
compliance are given in Fig; 13. The c}éep compliance increaées from a value
of zero at short times to the value, k, the compliance of the spring at long
times. The real component of the complex compliance increases to a value of
%'k. at @7 =1 and then to a maximum value of k at high frequency. The
imaginary component is zero at low frequency, reaches a maximum of 7%‘3 at
‘@7 ="1 and again decreases to zero at high frequencies. T -
The response of the generalized Kelvin-Voigt model can be expressed

as a complex compliance with:
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1

K (@) = K, ————— o+ X (36)

E::: 1+ wET.2 &

1 1
and

K"(w) = Ek el L (37)

1+ on

This mathematical structure #ill appear again in the phenomenological and

mathematical basis of viscoelasticity.

THE PHENOMENCLOGICAL APPROACH TC VISCOELASTICITY
THE | BOLTZMANN. SUPERPOSITION PRINCIPLE

The phenomenoiogical approach t¢ viscoelasticity has pleyed an
important role in the analysis of time dependent stress and strain measurements.
The underlying principle was first formulated as early as 18Th by Boltzmanu(g)
as his principle ‘of superposition. .He suggested that the mechanical behavior
of a g0lid is a function Qf-its entire previone loading histony; When a
specimen has undergone a series of deformations, the‘effect of each deformation.
1s assumed to be independent of the others. . Accordingly, the resultant
behaviorlcan be calculated by a simple additien of effects that wonld occur if

fhe deformations had taken place independently. This assumption 1s the

— e - . - — - -l e e a _

substance of the Pr1nc1ple—of Supefp051tion.

This simple aésumption makes it possible to compare the results of
measurements obtained by different experlmental techniques. 1In addition, it
shows under what conditions an arbltrary straln hlstory mgy be related to the
corresponding stress history. For examp;e,'this principle can be used to predict

the results of a creep experiment from a stress relaxation experiment.
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THE SUPERPOSITION INTEGRAL

There are several ways to carry out a formulation of the super-
position principle. We have chosen to carry out the formulation in terms
of the linear superposition integral. Once the Boltzmamprinciple is stated in
this manner the ri%or of a well formulated mathematicai structure can be
applied. This mathematical basis of viscoelasticity is discussed in detail by

Gross (6) and reviewed by Ferry ().

Leaderman (B) gives three derivations of the Boltzmam Superposition
Principle. This includes a derivation -due to Beckér (g) and Boltzmann's
presentation (5). The derivation given here is based on Leaderman's "first

method" but is in a slightly more general form.

The response of a specimen of material subjected to a stress relaxation

experiment is given by,

0= [m_ +m{t - u)le t (u (38)
where @(@ - g) is the relaxaticn modulus function or memory function and M, is
the equilibrium elastic modulus. The strain € is zero for time E <g and equal
to a constant value 60 for §>,9. By agreement, the relaxation modulus function
is zero for t{u and equal to m(t - u) for tyu. Uhe response of the spscimen of
material is given in Fig. 14 as the ratio of stress to strain. At time u the
specimen is suddenly strained and the relaxation modulus function m{t - P)

decays to zero at infinitely long times.
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The creep response of a specimen of material under a constant applied

stress 1s given by,

k- u £ L0 (39)

+k(t -wW) O

where Eg is the instantaneocus compliance, 7 the viscosity coefficient and
k(t - u) is the creep compliance function. The specimen is initially unstressed.
Later at some arbitrary time u the material is subjected to a constant stress 0;.
It is understood that the creep compliance function is zero at time u and

inereases to a finite limiting value at infinite time. The response of the

specimen in creep is shown in Fig. 15.

The response of a linear viscoelastic material to an arbitrary strain
_pattern may be described as follows, Fig. 16. The time is divided into
increments Au and the strain is approximated by a series of incremental steps,

[ﬂﬁ}m

Au

The stress response to an inéreméntal étep started af-fime u is-given by,
[;éjiﬁgl] tu [m(t - u) +m 1.
Adu e

The total stress response at any time t is then given by,

]

t
o - Z 2E0) (s - w) + m_la, (10)
t =4

with the strain € (- oo) taken as zero. If Au is allowed to approach zero,

the sum has the limit,

t
o(t) =/d—%ﬂl [t - u) +m_lau . (41)
- -00
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Figure 1k. Stress kelaxaticn of a Viscoelastic Solid
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By using considerations similar to those used in deriving (hl), the total creep

response due to an arbitrary stress history is given by,

t
€ (t) =/ %u—) [x + o, k(t - u)ldu. (42)
u g n
-00

The integrals (41) and (42} taken together, are known as the principle of
superposition. The quations are, of course, not_independent of one another.
Mathematically they are known as Duhamel's integrals(é). The principle of
superposition is important in many areas of physics and finds application in

the study of electrical networks and dielectrics.
MATHEMATLICAL RELATIONS

The results of mechanical measurements on the modulus of a viscoelastic

material can be expressed as,

co
m{t) = m ﬁ}/r H(??e_tfr d1n 7 (h3)
© -
for stress relaxation or as,
s ]
. H(T)wg?z
m(w)=me+/mdln7 (LLP)
-0
and
o0
m' (o) = J[.ELZlﬁglg d1ln 7T (45)
L+ w7
- Q0

for a dynamic experiment. Equations (43), (44), and (45) are linear integral
equations of the convolution type. It should be noted that time appears on
both sides of (43) and @ on both sides of (M) and (45). The modulus on the

left is the experimentally accessible quantity and is a function of time or
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frequency. The function H(T) is the relaxation distribution function and is
an unknown function which is to be determined from the modulus. By comparing
(43) with (25), and (4k4) and (45) with (28) and (29), it is seen that H(T) is
Just the contribution to the modulus from Maxwell elements lying between %Q‘f

and InT+ d 1InT. These equations are simply the integral expressions for

the generalized Maxwell model.

If the Boltzman superposition principle applies, then (43), (L), and
(45) are related through g(?) gince this function will be identical when
determined from each relation. Experimental techniques which determine both
m'{w) and m"(w) are quite powerful since H(7) can be determined from both
components and this yeilds internal verification of the superposition principie.
It is epparent that this principle also makes it possible to compute the results

of a stress relaxation experiment from the results of a dynemic experiment.

Close relations also exist between creep experiments and dynamic

experiments. The creep compliance of a linear viscoelastic material is given

by, o
k(t) = K+ /L(T)[l - e't/'r la 1n? +% (46)

-

and the components of the complex compliance by,

K (cu) IJ.":. d1n?Y (u47)
_—— . e e —1 + W . et e e eme o .o -

and

1+ m?Te

Here the similarity of these equations to the Kelvin-Voigt model of a

k'"{w) = [M d1ln? (48)

viscoelastic solid should be noted. As in the case of the modulus, time
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appears on both sides of Equation (46) and w on both sides of (47) and (48).
The experimental quantities are on the left side of the equations and the
unknown retardation spectrum Q(T) is to be determined. The creep compliance,
Equation (46), represents a continuous series of Kelvin-Voigt elements and
(47) and (48) a continuous series of dynamic Kelvin-Voigt elements. The
retardation distribution funetion, L(T), simply represents the contribution
to the complisnce from elements with retardation times lying between %Q'T and

InT +d 1n7. Here again if the superposition principle applies the results

of a dynamic experiment can be used to calculate the behavior of a material

under creep.

In view of the fact that compliances and moduli are related, by
Equations (18) and (20), it is not surprising to find that relaxation spectra
and retardation spectra are also related. Direct relations between the spectra
are discussed by Gross (6) and by Ferry (7), and the reader is referred to
these sources. A discussion will not be included here since retardation and

relaxation spectra are not interconverted in general practice.

The practice of describing experimental results in terms of
continuous spectra has certain adventages over the use of the generalized
Maxwell and Kelvin-Voigt models. The results of any stress relaxation
experiment may be described in terms of the generalized Maxwell element,
Provided only that the results decrease monotonically with time. The
experimental results can be titited to any degree of accuracy by including a
sufficient number of elements In the model. A given choice of elements is,
however, not unique and hence, it is not possible to associate relaxation times
with molecular motion. The generalized Maxwell and Kelvin-Voigt elements are

therefore not useful for thecretical interpretation. The advantage of the
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continuous relaxation and retardation spectra liescin the fact that the spectra

are.uniqueiand therefore amenable tP theoretical interpretation.

METHODS FOR OBTAINING RELAXATION SPECTRA

The utility of the equations in the preceding section depends on the
ability to determine the distribution functions H(?) and L{7). As the result
of experimental cbservation,.it is possible to determine the moduli or
compliances of a Yiscoelastic méterial as a function of time or fregquency. The
problem is then to determine the value of the distribution functién under the
integral sign. In general, the modulus will not be a simple function of time
or frequency and one is ;eqﬁired td‘devise approximational techniqués in order
to determine relaxation distribution functions from an arbitrary modulus time
or frequency curve. There are a number of methods for determining relaxation
distribution functions and these are discussed by Ferry (g).' We have selected
several for discussion here because of their usefulness to specific materials
used in_papermaking. Thé Tirst order approximations discussed by Andrews (;g)
are given here because of their applicability to pulp and paper. The higher
approximation method of Ferry and Williams (11) is discussed because of the
ease with which spectra can be determined from experimental data. The
complicated and more accurate method of Roessler (12) is included since it is

not discussed in detail by Ferry (1). Finally, the recent method of Tobolsky

and Murakami (;ﬁ) is included since it ;nébiés‘5ﬁe-£o_isoiafé_diséfee£
relexation times under certain conditions.

Simple Approximational Methods

A simple approximation of the relaxation distribution function can
be obtained in the following way (10). 'Equation (43) is differentiated under

the integral sién with respect to time to yield,
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> -]

-t
Td_dulégl' - /H(T)[&ig—;iﬂ]d log T (49)

<00

where the term in square brackets can be considered as an intensity function
which specifies the contribution of various regions of @(T) to the value of the
integral . When the intensity function is plotted versus (log?‘- log t) it is
seen to have a fairly sharp maximum at T = t and falls rapldly to zero on either
side. If E(T) is constant in the neighborhood of time, t, it may be removed from

under the integral sign and since
e /]

'[2.‘3'03 e 7 |

= d logT =1, (50)
-c0
we get
dm(t) = H('r)l
“d log t T=t (51)

thus providing a first approximatim to the distribution funetion.

A similar situation exists with respect to the components of the
complex modulus. Equation {44) can be differentiated under the integral

sign with respect to 1l/w with the result,
00

' 2
B 3 Toéug?m - 5(T) [%i%%gﬁégz;} d log T . (52)

00

As in the casc of stress rvelaxation the intensity funection in sqguare brachkets
has a fairly sharp peak at l/m = T and decreases to zero on either side.
Again, if @(T) is nearly constant in the neighborhood of T = l/w it can bhe

brought out from under the integral sign. The remaining integral is,
o0

2,2
(___”-6052(;; G rog¥ <1 (53)
1+bo

and one has,
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L Hm’ . (54)

The imaginary component of the modulus (45) already has a peaked

function under the integral. The function 3 .
“w?
— 3575 (55)
1+wy

has a peak at 7 = 1/w and is a symmetrical curve. If g(T) is assumed constant
in the neighborhood of T = l/m it may be brought out from under the integral

s1gn. The remaining integral 1is
o0

[ e (DT Tr
, d log? = (56)
N /[1 + were] L.606

-

and one gets the approximation,

]
H

ST b;:‘%} W v
“(m) .60, H('r) (57)
l/w .
Second order approximations (lO) can be, obtained by assumlng a
R ALY
,relaxatlon distribution function of‘the form,
— N ok ";;,‘; f ‘f ‘; »‘f 3,»:)"-)” *

H(‘r) —oc +: ,B (1og T - 1og ) - (58)

where o is the value of ﬁ(??'hé 7{%“§:“'This leads -to the results,

————— e — I _ I e e I e e e - mem—e—— - —— - ——

H(T) ﬁ—)—- + 0 251—ln—(t— (59)
% T ogt d log £2

7 Lt

for stress relaxation. When (58) is substituted into (52) the contribution
of the second term of (58) to the slope of (54) is zero. This results from the

. - ) L
symmetry of the itensity function about its peak at T=t. This means that

(54) is second approximation as well as first. A similar situation exists
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with respect to (57) and hence, this also is a second order approximation as
well as first. Other second and higher order approximations are given by
Schwarzl and Staverman (1), Okano (15), and Fujita (16}, and an iterative
numerical methoa is outlined by Roesler and Twyman (17). A method that does

not involve the measurement of slopes is described by Ninomiyas and Ferry (;g).

Fe?:y-Williams Method

The method of Ferry and Williams (19) yields the following relation
for the determination of H(?) from the relaxation modulus;
H(?) = -M(n) m(t) 4 log m(t) (60)

d log t N =AT

where M(g)z l/Tﬂ(g + 1), Tﬂ is the gamma function, and -n is the slope of a
double logarithmic plot of g(?ﬁ versus 7 . The method is limited to positive
m values. Ag a first approximation; @(g) is set equal to unity and (60)
becomes the first approximate relation (51) from which an estimate of H(7T)
is obtained. The negative slope of double logarithmic plot @(T} versus T is
used to determine n. Values of M(g) are tabulated for values of n, (I), (l@),

and Equation (60} is corrected accordingly.

Two formulas are reguired to obtain H(T) for the real component of
the modulus depending ¢n whether n is greater or less than unity. Usually,

n{l, so that,

B(T) = (o) toE (o) (61)

where
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Whenjl<r1(2, the appropirate formula is

H(T) = A'm' (w)(2-d log w'/a 10g‘m) (62)

Lo
w

wpere

A = m/2](hi/2) ] (2-n/2) .

As a first approximation A' is set equal to unity and a procedure similar to
that already outlined is used to obtain H(?). The relaxation spectrum is

determined from the imaginary component of the modulus by,

H(T) =B n"(w)(1- |a log m"(w)/d 1og | ) (63)

g
|

| with

5=+ |n])2l3/2 - | n|/aT(s/2 + |nl/2).

Retardation spectra may also be determined by the present method.
Stern (20) has shown that ‘

L(T) = M(-n)[k(t) - t/n] 4 log [k(t) - t/n]/d log t (64)
t =7

where +n is the slope of a double logarithmic plot of L versus T, and g(-n)’is

-~ -- — ~- --the same as -before.. This method-cannot be-used if creep. experiments have not..

been carried long enough to determine n reliably.

When the real portion of
the loss modulus is used,

L(T) = -A k' (o) d log k'(w)/d log @ (65)

g I
1l
=
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when n <l . When g) 1 cone must use,

L(7) = A‘k'(w? (2 + d log k'{w)/d log w) (66)
$o

g
!

[

P
LX4

with A’ and A the same as before. If the imaginary compliance is used, then

w T YT .
L(1) = Bk"({w) (1 -|’d log k"(w)/d log a)|)
e L_
€ R g Ty - = T (67)

+

L

—

with B as given earlier. N

+
2

The method of Ferry énd Williams 1s canvenlent since 1t 1nvolves
s1mple graphical manlpulation'of:logaiithmic curves of modulus and compliance
as _a function of log tihb;pr_;gg tgéguengy;_ﬂs;nce such curves must be
constructed anyway 1n order to display experimental results, no large amount

of extra work i1s required. . 1 ,({Wﬂ_ig{
N Ty i v LA .[u

Method of Roesler

The method of Roesler (;g) 1s more involved than any of the

preceding methods but 1s also potentially the most accurate. It 1s assumed
. '

‘

that m' (w) and n"(w) are given as a function of lmw, Fig. 17. A domain L
extending from O to T 1s selected so as to include the range of T'(w) and
T"(m). A variable x 18 chosen so that 1t 1s linearly related to low and such
that O<_x<ﬂl The quantities @'(m) and m"(w) are now expressed in terms of

Fourier serics in «, that ig,

mt{x) =§Z}k cos kx {68)
and n
- m' (w) :E:?k sin kx. (69)

1
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Figure 17. Method of Roesler Applied to the Components
of the Complex Modulus
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The relaxation spectrum is then given by

n
H(x) =§:1:k sin kx (70)
where the Ek are related to both 8, and N by

Eak 2 2¢c Tr2

- & KTy _ _k kil
b, = T cosh( o ) = 7 sinh( o } (11)

and
2

8 = ck tanh(kgz ). (12)

The determination of relaxation spectra from a stress relaxation
experiment is considerebly more complicated and will be described only briefly.

The modulus @(%g?? is given as a function of the variable (%g@) such that itl

lies within a domain 2L, Fig. 18. A linear function ¥ (1n?) is defined such

that the difference

a(lnT) - $lnt) ;M*(ln ) {73)

vanishes for those values of %g7’which correspond tc x = -7 and X =T,

Fig. 18. The function M¥(x) is then fitted to the mixed Fourier series,

n e
M*(X) :[ A_ji cos KX +E _T'_- k B; cos kx. (Tu)
0 1 L

The relaxaticn spectrum is given by

n I
H* (%) =[1Pkcos kx +§Rk sin kx (75)
with x *
kTT Ak’ek B, ‘Bk
"TT T2 aE (76)
- L k +ﬁk
and *
R_kTrAk k+Bk§( (TT)
k™12 o2, B2
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The coefficients OCk and ﬂk are determined by numerical integration and are
tebulated (12} for k = O to 16 and depend on the value of L chosen. The tabu-
lated values are given for % = 12.8 units of EE’T’ corresponding to approximately
11 decades in log t. The correct relaxation spectrum is obtained by adding the

constant,

- if -l -l (78)

to (75).

Discrete Relaxation Times

A method for obtaining discrete relaxation times is described by
" Tobolsky and Murakami(l3). The results of a stress relaxation experiment are -
expressed in terms of a discrete distribution,

n(t) = m o exp - t/7;+ e +mn_l exp - t/Th-l‘ + m o exp - t/?h 679)

A plot of log m(t) versus t should approach a straight line for §>7h providing
a resolvable maximum relaxation time exists. The straight line will have a
slope of —2.303/7; and an intercept of log - Eguation (?9) is now

revritten in the form,

m(t) - m. Exp - t/Th =m_exp - t/?ﬁ +..'+mn-l axp -t/7%—l . (Bo)

A plot of log m(t)-mn exp(—t/Tﬁ) versus t should approach a straight line

for 3775_1 providing a discrete relaxation time ?h exists and is reascnably

1

separated in time from ’Tn and.'Tn This process can be repeated as far as

o
is warranted to resolve additicnal relaxation times. In practice this method

when applied to monodisperse polystyrene yielded discrete relaxation times T%
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and 7 ,. The isolation of additional relaxation times might also be of

1
significance. The ability to isclate relaxation time depends on the accuracy
of long time low modulus data. This, of course, confines the measurements to
the rubbery flow region for high molecular weight polystyrene. When the method

is applied to polydisperse samples, relaxation times 7; and‘T;_l are probably

meaningful but additional relaxation times are probably artifacts.

The dynamic analogue has not heen discussed in the literature. We
have been able to devise a procedure for obtaining discrete relaxation times
from the complex modulus and present it here since it differs in. some respects
from the case of stress relaxation: The real and imaginary components of the

. " 1
complex modulus are given in terms of the series,

mw2’r 2 o qu_ 2 mm2¢2
o {w) = a - a2 oL n-l2 n-é + .0 > n2 (81)
1+~ T 1+~ T 1+°T
a n-1 n
and _
_ . m ot m w7 mw?
©omte) = AR e “'12 n; s 2B (82)
1+~ T 1+~ T 1+w 72
a n-1 n

If the relaxation times are sufficiently separated, so that Tn» 7’n_ » 7;1_2, .

then at low frequencies when u)«l/ Tn

- — - —_—— = = . S, [ - e em — -

.ml o) —,—;;. -
n"{w) w?l.'l " tang (83)
J

The relaxation time, ?Jn’ is to be determined from the slope of a plot of

m'/m" versus w. At low frequencies, (8) and (82) become, respectively




r
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2. 2
1 -
w {w) = mw™ 7 (84)
and
A U
" =y O TETEN
o) o (85)
M }ns H .m? elq{ ;r%‘:? L

A plot of m' versus w? yields*a slope of.m 'T and s plot of m' versus w
4 "‘! = -

yields a slope m *r . The value of m , can be determined from either of these

2
’-w.- ..‘“..4 -y 'I" Lt

slopes. An alternate and possibly better procedure is to plot m versus

st fe

waTnz/(lﬁD Th and m" versus w?‘/(l*w??h ). In each case the slope will yield

moert ?

n directly. Additional relaxation tlmes may be determined as 1n the case of

stress relaxastion. The*reader should bear in mlnd that the method has not been
,r; ‘\ " fj]"ii 0t s

tested on experimental.- data. A‘critical discussion of -the procedure 1s_given by

4

Grossman (g;) where the use and 1im£tations of the method are analyzed.

- . - |
1. o
5 \‘-\\
1 o & ‘,('u, '
’ AL |

v
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