Large interaction asymptotics for the Spin-Boson model

Thomas Norman Dam

Department of Mathematics Aarhus University

Georgia Tech, Atlanta 11th October, 2016

Joint work with Jacob Schach Møller

Let $\mathcal{H}_b = L^2(\mathbb{R}^{\nu})$ denote the single particle Hilbert space for the bosons. The total state space then becomes $\mathcal{H} = \mathbb{C}^2 \otimes \mathcal{F}_s(\mathcal{H}_b)$.

Let $\mathcal{H}_b = L^2(\mathbb{R}^{\nu})$ denote the single particle Hilbert space for the bosons. The total state space then becomes $\mathcal{H} = \mathbb{C}^2 \otimes \mathcal{F}_s(\mathcal{H}_b)$.

The Hamiltonian describing the system is

$$H_{e,g} = e\sigma_z \otimes 1 + 1 \otimes d\Gamma(\omega) + g\sigma_x \otimes \phi(v)$$

where ω is the kinetic energy operator of one boson, $v \in \mathcal{H}_b$, $\sigma_x, \sigma_y, \sigma_z$ are the Pauli matrices, 2e is the gap in the two-level system and g is the strength of the interaction.

First a basic statement

Theorem

Assume ω is injective and non-negative. Assume furthermore that $v \in \mathcal{D}(\omega^{-1/2})$. Then $H_{e,g}$ is self-adjoint for all e,g real. For $e,g \in \mathbb{R}$ we define $E_{e,g} = \inf \sigma(H_{e,g})$. Then $(e,g) \mapsto E_{e,g}$ is concave and in particular continuous.

First a basic statement

Theorem

Assume ω is injective and non-negative. Assume furthermore that $v \in \mathcal{D}(\omega^{-1/2})$. Then $H_{e,g}$ is self-adjoint for all e,g real. For $e,g \in \mathbb{R}$ we define $E_{e,g} = \inf \sigma(H_{e,g})$. Then $(e,g) \mapsto E_{e,g}$ is concave and in particular continuous.

The following theorem goes back to a result due to Gerard and a paper by Herbst and Hassler.

Theorem

Assume ω is injective and non-negative. Assume furthermore that $v \in \mathcal{D}(\omega^{-1})$ and $m = \mathrm{essinf}\,\omega > 0$ or ω goes to infinity at infinity. Then $E_{e,g}$ is an eigenvalue for $H_{e,g}$ for all $e,g \in \mathbb{R}$. Furthermore, it is non degenerate.

The Spin Boson model- Diagonalization

First we introduce the so called "Fiber-Hamiltonians" corresponding to the spin boson model. They are operators on $\mathcal{F}_s(\mathcal{H}_b)$ given by the formal expression

$$F_{e,g} = e(-1)^N + d\Gamma(\omega) + g\varphi(v)$$

Here *N* is the number operator defined by $N = d\Gamma(1)$.

The Spin Boson model- Diagonalization

First we introduce the so called "Fiber-Hamiltonians" corresponding to the spin boson model. They are operators on $\mathcal{F}_s(\mathcal{H}_b)$ given by the formal expression

$$F_{e,g} = e(-1)^N + d\Gamma(\omega) + g\varphi(v)$$

Here N is the number operator defined by $N=d\Gamma(1)$. This operator is self-adjoint under the same conditions as $H_{e,g}$. Define $\Sigma(e,g)=\inf(\sigma(F_{e,g}))$.

The Spin Boson model- Diagonalization

First we introduce the so called "Fiber-Hamiltonians" corresponding to the spin boson model. They are operators on $\mathcal{F}_s(\mathcal{H}_b)$ given by the formal expression

$$F_{e,g} = e(-1)^N + d\Gamma(\omega) + g\varphi(v)$$

Here *N* is the number operator defined by $N = d\Gamma(1)$.

This operator is self-adjoint under the same conditions as $H_{e,g}$.

Define $\Sigma(e,g) = \inf(\sigma(F_{e,g}))$.

There is a unitary map $U:\mathcal{H}\to\mathcal{F}_s(\mathcal{H}_b)\oplus\mathcal{F}_s(\mathcal{H}_b)$ such that

$$UHU^* = F_{-e,g} \oplus F_{e,g}$$

so we may just analyze the fibers!

The fibers

Theorem

Assume that $v/\omega \in \mathcal{H}_b$. Define

$$\begin{split} &U_g = \exp(ig\phi(iv/\omega)) \\ &\tilde{F}_{e,g} = U_g F_{e,g} \, U_g^* + g^2 \|v/\omega^{1/2}\|^2 \end{split}$$

Then $\tilde{F}_{e,g}$ converges to $d\Gamma(\omega)$ in strong resolvent sense. If the mass is positive then the convergence is in uniform resolvent sense.

The fibers

One may then easily prove the following.

Corollary

Assume that m>0 then $\Sigma(e,g)+g^2\|v/\omega^{1/2}\|^2$ converges to 0 for g tending to ∞ . Furthermore for g large enough $F_{e,g}$ has a non degenerate ground state and we may pick the ground state vectors ψ_g such that

$$\lim_{g\to\infty} \lVert \psi_g - U_g^* \Omega \rVert = 0$$

The fibers

One may then easily prove the following.

Corollary

Assume that m>0 then $\Sigma(e,g)+g^2\|v/\omega^{1/2}\|^2$ converges to 0 for g tending to ∞ . Furthermore for g large enough $F_{e,g}$ has a non degenerate ground state and we may pick the ground state vectors ψ_g such that

$$\lim_{g\to\infty} \lVert \psi_g - U_g^* \Omega \rVert = 0$$

One may also show that

$$\lim_{g\to\infty} \lvert \langle \psi_g, \mathsf{N} \psi_g \rangle - g^2 \lVert \mathsf{v}/\omega \rVert^2 \lvert = 0$$

Conclusion

It follows directly from the equation

$$UH_{e,g}\,U^*=F_{-e,g}\oplus F_{e,g}$$

that $H_{e,g}$ will have two non degenerate eigenvalues in the mass gap [E(e,g), E(e,g)+m] for sufficiently large g. (The eigenvalues in each fiber are different due to non degeneracy of the total system)

Conclusion

It follows directly from the equation

$$UH_{e,g}U^* = F_{-e,g} \oplus F_{e,g}$$

that $H_{e,g}$ will have two non degenerate eigenvalues in the mass gap [E(e,g), E(e,g)+m] for sufficiently large g. (The eigenvalues in each fiber are different due to non degeneracy of the total system) Furthermore, the difference between the eigenvalues goes to 0 for g tending to infinity. Furthermore any higher order eigenvalues in the mass gap must converge to E(e,g)+m as g tends to infinity.

Thank You For Your Attention