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The mindset isn’t about seeking a result — it’s more about the process of getting to that

result. It’s about the journey and the approach. It’s a way of life. I do think that it’s

important, in all endeavors, to have that mentality.

Kobe Bryant



This work is dedicated to my family, for I would not be where I am without them.
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SUMMARY

The field of wearable robotics is an emerging field that seeks to create smarter and

intuitive devices that can assist users improve their overall quality of life. Specifically,

individuals with lower limb amputation tend to have significantly impaired mobility and

asymmetric gait patterns that result in increased energy expenditure than able-bodied

individuals over a variety of tasks. Unfortunately, most of the commercial devices are

passive and lack the ability to easily adapt to changing environmental contexts. Powered

prostheses have shown promise to help restore the necessary power needed to walk in

common ambulatory tasks. However, there is a need to infer/detect the user’s movement to

appropriately provide seamless and natural assistance. To achieve this behavior, a better

understanding is required of adding intelligence to powered prostheses. This dissertation

focuses on three key research objectives: 1) developing and enhancing offline intent

recognition systems for both classification and regression tasks using embedded prosthetic

mechanical sensors and machine learning, 2) deploying intelligent controllers in real-time

to directly modulate assistive torque in a knee and ankle prosthetic device, and 3)

quantifying the biomechanical and clinical effects of a powered prosthesis compared to a

passive device. The findings conducted show improvement in developing powered

prostheses to better enhance mobility for individuals with transfemoral amputation and

show a step forward towards clinical acceptance.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The need to develop smarter prostheses is becoming a more prominent issue, as recent

projections indicate that the number of individuals with lower-limb loss will increase

significantly over the next couple of decades [1]. These individuals ambulate with a

variety of gait abnormalities and as the result of using compensatory strategies, many

develop asymmetric joint biomechanics, chronic leg and back pain, joint degradation,

increased energetic demands, and higher risk of osteoarthritis [2, 3, 4, 5, 6, 7]. These

impairments cause significant disabilities and decrease quality of life. The steady increase

of lower-limb amputations stem from a variety of reasons such as trauma, vascular disease

(i.e. diabetes), congenital limb deficiencies, and cancer across a wide age range of

individuals [8]. The rehabilitation process for an individual suffering an amputation is

very taxing and current available technology may not restore complete function compared

to a pre-amputation state. Hence, there is a significant need to advance lower-limb

prostheses to dampen the negative effects of amputation on the health outcomes of

potential prosthesis users.

Current solutions of lower limb prostheses can be divided into three major groups:

passive, semi-active (i.e. variable damping), and powered/active devices [9]. The most

abundant type of prostheses currently available in the marker are passive, which lack the

ability to generate net positive power over a gait cycle, which leads to an increased

demand in user effort [10]. Although, passive devices serve the purpose of providing

weight-bearing support, they are unable to enable efficient gait biomechanics on different

terrains [11]. The best commercial devices to date, include onboard microprocessors to
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modulate stiffness/damping responses in respect to the environment. These semi-active

devices allow for improvement on purely passive devices by adapting to different terrain,

but still lack the ability to generate net positive work throughout the gait cycle which is

necessary for walking upstairs and at incline [10]. There have been research investigations

in modulating foot properties to allow for the optimal stiffness profiles during walking

which have yielded improved comfort to the user [12]. Powered prostheses are a

promising new technology that may help lower limb amputees function at higher levels in

their daily lives because of their ability to adjust to different terrain and provide

appropriate assistance when required [13, 14, 15, 16].

Active devices can generate net positive work and exert torques that cannot be

achieved with passive systems. Recent advances on the integration of

microprocessors/microcontrollers, sensors, and actuators coupled with innovative

mechanical design have helped in the understanding of creating smarter prosthetic

technology [13, 16]. Lastly, in order for powered prostheses to become the prominent

technology, good mechanical hardware is required. Considerations of weight, power

requirements, and adaptability to users is critical to improve amputee quality of life. Many

different types of prostheses have been created to address this need [14, 15, 17, 18, 13, 19,

20, 21]. Furthermore, prosthesis emulator systems have been established as an alternative

method for quickly testing out control paradigms without the need for building custom

hardware [21]. Still, there exists a gap, powered prostheses are constrained to laboratory

settings with no flexibility to be used in more realistic environments (i.e. home and

community ambulation). Recent advances in mechanical hardware have led to the

culmination of multiple prosthetic platforms that can be used across research groups to

effectively compare control strategies and accelerate the process of having this technology

disseminated for clinical use. In parallel, these advances have led to improvements in

better mobility as well as reductions in energy expenditure [22, 9, 23]. A gap is still seen

in the field of implementing these new devices into clinical settings across a variety of
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users in a robust and reliable manner. Although, these devices have the capability of full

actuation, this implies increased complexity from a control perspective. The need for

further comparison between powered and passive prostheses is required to ensure clinical

acceptance of these devices. To achieve this goal, sophisticated, robust, and reliable

control systems must be developed to recognize user needs and provide seamless

assistance.

As the name suggests, powered prostheses have the ability to aid the user at different

parts of the gait cycle (i.e. typically called the mid-level control tier). In the past decade,

many different mid-level control laws have been investigated including trajectory control

(i.e. echo control), discrete control (i.e. impedance control paired with a finite state

machine), continuous control (i.e. non-linear or phase-variable), and bio-inspired control

(i.e. electromyography (EMG)-based or model based control) [24, 25, 26, 27, 28, 29, 30,

31, 32, 33]. Although a multitude of studies have been conducted, it is still unknown

which control strategy is effective across a wide range of walking tasks. However, there is

a growing consensus that both intrinsic and sensory feedback signals improve the efficacy

of these environmental-adaptive controllers. A challenge in the field is how to avoid

manual user-specific tuning of control parameters across terrains. Investigating how

scaling-enabled controllers can modulate assistance over different terrains will increase

the chance of having these intelligent prostheses be clinically deployed. The idea of using

machine learning and sensor fusion techniques in real-time can be explored to estimate

environmental variables in a more continuous fashion which allows for more natural,

seamless control.

Commanding and adjusting the control parameters for these powered devices is a

much needed and active area of research. The end goal is to have a controller that can

adapt and modulate assistance to enhance human performance across many different

tasks. Since walking is a highly dynamic task, the need to understand what/where the user

is doing as well as understanding the context of the environment is crucial to update the
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controller. Different strategies have been introduced in the literature to estimate the user’s

state and environment [34, 35, 33, 36, 37, 38, 39, 9]. Most strategies will use a mechanical

sensor such as an inertial measurement unit (IMU) to determine the user state [40, 41].

However, these approaches do not yield robust results for more dynamic tasks and are

limited by slow update rates and inaccurate estimations. Recent literature has shown that

implementing machine learning (ML) based strategies show good promise in making

these powered robotic devices autonomous and implementable in real-time. Specifically

in the case of powered prostheses, several research groups have studied how to improve

high-level controllers (i.e. intent recognition algorithms) to replace current methods of

transitioning between ambulation modes such as using a key fob or performing unnatural

movements [34, 35, 33, 36, 37, 38, 39]. Multiple intent recognition strategies have been

explored in the last several decades. There have been key innovations made in the last

decade for improving mode identification or classification for these devices. The first

major study to accomplish offline mode classification was Huang et al. in 2009, where

phase-specific classifiers were used on EMG sensors embedded within the socket of the

passive prosthesis [42]. This showed better results compared to a single window of

information that was fed to one classifier. Building upon this work, Varol et al. showed the

first real-time user-dependent using only mechanical sensors on a powered knee and ankle

prosthesis [36]. In 2014, Young et al. developed time-history methods that improved

steady state classification errors compared to no time-history methods [43]. Hargrove et

al. implemented the first-real time user dependent classifier that used both EMG and

mechanical sensors paired with the previously developed time history methods [38]. Two

key findings were found in a study conducted in 2016, where Young et al. created

mode-specific classifiers as well as the first implementation of a user-independent system

[39]. Utilizing mode-specific classifiers reduced the number of classes each model would

have to predict for specific tasks (ex. LW and SA only). The implementation of a

user-independent system allowed for training models on a pool of subjects and evaluating
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on a novel subject. Simon et al. in 2017 showed that delaying the transition decision by 90

ms between modes did not affect the user but also allowed for richer information for a

mode classifier to detect a mode change which vastly improved the overall classification

accuracy [44]. An additional challenge is that the powered prosthesis is not directly

attached to the user’s motor system. The controller must infer, indirectly, the intent of the

user within the context of the environment and then, aid the user in the desired movement.

Providing feedback or having volitional control of the prosthesis through a neural

interface is key to interpret the user’s intent during locomotion [45, 46, 47, 48, 24, 49].

In the context of powered prostheses, there have been limited research studies

exploring methods of detecting environmental variables such as walking speed and ground

slope. However, methods have been developed for wearable sensor systems (i.e. IMUs)

and exoskeleton devices. Direct integration of a foot IMU’s information was used to

calculate walking speed in healthy individuals [50]. Sup et al. in 2011 took a similar

method but applied to estimating slope on a powered prosthesis [51]. Improvements upon

these methods have been made. Specifically, a study looked at coupling direct integration

methods with kinematic modeling [52]. Kang et al. in 2019 looked at the effect of

utilizing EMG information to improve both speed and slope estimation using a hip

exoskeleton [53]. Few studies have explored this with individuals with transfemoral

amputation. Dauriac et al. in 2019 estimated walking speed with a single shank IMU with

individuals with transfemoral amputation; this study explored both direct integration and

kinematic modeling approaches seen in prior literature [54].

Another issue for developing reliable high-level controllers is the lack of intuitive

human and robot interaction, which can lead to under-utilization or even abandonment of

this type of technology. Currently, it is unknown how to effectively design and utilize

intelligent but reliable control systems that can enhance the user experience when using a

powered prosthesis. Machine learning is becoming a more prominent tool that can be used

to estimate what the user is trying to accomplish and adapt to more versatile and dynamic
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motions. A critical need to be addressed is to have these algorithms be dependable in

real-time as well as generalize across different users.

In order for this type of technology to be translated to clinical settings, a thorough

analysis must be performed to understand the functional benefits of the powered prosthesis

compared to commercially available prostheses. Furthermore, a recent review paper argues

that metabolic analysis over common community ambulation tasks is necessary to advance

the field by making comparisons between prosthetic devices [55]. Both biomechanical and

clinical measures of powered prostheses must be evaluated in order to show improvement

compared to passive devices. A challenge with current state-of-the-art robotic prostheses

is the user acceptance of these devices. Comparative surveys (i.e. prosthesis evaluation

questionnaire (PEQ) or lower extremity functional scale (LEFS)) conveying user perception

and effort of wearing powered prostheses is a must. Additionally, a gap exists in the field,

if these powered devices do not provide an intuitive method of control, users will opt for

traditional but reliable prostheses regardless of the drawbacks. Hence, investigating how to

properly implement intent recognition systems into current robotic prosthetic technologies

will yield wide acceptance of these devices.

1.2 Objectives

In order to improve individual’s quality of life for those with amputation, enhancing

mobility is a must to achieve independence in common ambulatory activities. Even

though there have been many key findings made, there are still key research gaps present.

First there have been many dependent offline studies but there is a lack of exploring user

independent strategies. Although it has been seen that user dependent models can be run

in real-time, there have been no real-time user independent systems that have been tested

using solely mechanical sensors. Third, there have been no studies exploring how well

these user dependent and independent models can generalize to different grades of context

(i.e. stair heights or ground slope angles). Most studies have used methods which require
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at least 1 gait cycle before they can make an estimate, and not many intent recognition

systems try to infer user intent in a continuous fashion. Lastly, there has been no real-time

tiered intent recognition system where a controller first predicts an ambulation mode and

then within continuously estimate an environmental variable like ground slope. The main

objective of this dissertation is to create a deployable real-time intent recognition system

that can infer the user’s intention during different ambulation modes and environmental

contexts. This dissertation focuses on better understanding and applying intelligence to a

control system embedded on an active lower-limb prosthetic device. This works looks to

expand current literature and improve clinical outcome measures such as symmetry and

energy expenditure for individuals with transfemoral amputation. The work entails the

investigation of using sensor fusion techniques coupled with machine learning to improve

control strategies in powered prostheses to promote better human-robot symbiosis. My

central hypothesis is that continuous state and environment estimation using mechanical

and wearable body sensors coupled with implementing machine learning techniques can

enhance robotic prosthetic controllers to seamlessly sync robotic assistance with the user

compared to passive devices. In this dissertation, I focus on 4 main research aims: 1)

offline machine learning analysis of mode classification, 2) offline continuous machine

learning analysis of walking speed, 3) real-time implementation of a tiered mode/slope

system and walking speed estimator to scale parameters across contexts, and 4)

comparison of biomechanical profiles between the powered vs passive prostheses across

level walking, stairs, and ramps.

Aim 1: Develop, optimize, and validate machine learning (ML) algorithms to

predict ambulation mode using sensor fusion and signal processing techniques.

Based on the collection of mechanical sensors onboard the prosthesis, the main goal is to

make a mode classifier that can predict the difference between level ground, ramps, and

stairs. This information could help these high-level controllers to enable individuals with

amputation to seamlessly transition between locomotion modes. Furthermore, I
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hypothesized that more complex and customizable algorithms, like XGBoost, will

improve the accuracy of the classification and scale across different grades of terrain by

learning patterns that are not described by simple methods, especially when using inputs

from multiple sensors. Secondly, I hypothesized that adding extra mechanical sensors can

help to improve the performance of both user-dependent and user-independent classifiers.

Aim 2: Establish and validate a ML framework that can perform continuous

speed determination utilizing embedded sensors. Another aspect of making powered

prostheses more clinically relevant is the ability to estimate what environmental context

you are in. Furthermore, having the ability to continuously estimate the terrain can allow

for adaptive control strategies to be employed to scale assistance in a meaningful way.

The hypotheses here are (a) that the inclusion of more sensors will yield in an

improvement of model accuracy and (b) that optimization of ML algorithms using signal

processing and sensor fusion techniques will reduce the speed of prediction in real-time.

Aim 3: Validate intent recognition systems in real-time coupled with scaling

parameters across environmental contexts. Dynamically changing the appropriate

control law based on amputee’s intent (mid-level) is still not fully understood and not

generalizable across users. Current methods are not capable of changing intrinsic control

parameters to modulate assistance. Hence, I investigated how the use of scaling control

parameters across different terrain can improve the functional benefit of the prosthesis.

Furthermore, taking the information learned from Aims 1 & 2, I developed and validated a

real-time intent recognition system that predicted mode first, and subsequently estimated

slope angle and walking speed while directly adjusting scaling parameters at the

mid-level. There are three main hypotheses in this study: 1) real-time error will perform

worse compared to offline error, 2) the relative improvement in error from offline to

real-time is worse for independent models compared to dependent models, and 3) User

independent models will in general perform worse than user dependent models across

different machine learning tasks.
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Aim 4: Compare and validate prosthetic performance by comparing

biomechanical & clinical measures to current commercially available passive

prostheses. Individuals with transfemoral amputation typically have to use compensatory

strategies (i.e. increased intact side hip work) to compensate for the lack of mechanical

output on their prosthetic side. There is a gap in the field of understanding how the

biomechanics of both the intact and prosthetic side change when utilizing a powered vs.

passive device and how they compare to the results of healthy able-bodied individuals. I

hypothesized that powered prostheses could reduce energy costs & improve symmetry

between intact and prosthetic side compared to their everyday passive devices.

1.3 Innovation

This work is innovative in the lower limb prosthesis control field in the following three

ways: 1) no known studies have done user-independent real-time (online) intent

recognition traversing different types of terrains such as level walking and ramps for a

Figure 1.1: Flow diagram of how to implement these devices into the community more.
Utilizing a powered prosthesis, the overall goal is to identify user intent, and then
adjust control strategies for assisting the user appropriately during real-world community
ambulation. The primary research goals are to create new frameworks of intent recognition
systems that can be used either discretely or continuously to decipher user needs. Lastly
these intent recognition systems must be deployed in real-time to show proper validation
that these devices can be better than currently available technology.
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powered knee/ankle prosthesis. 2) None of the intent recognition strategies proposed so

far incorporate a tiered high-level controller which predicts ambulation mode and

secondly estimates an environmental context variable (i.e. walking speed or inclination

angle) 3) Finally, we provide in-depth biomechanical evaluation of using these active

prosthetic controllers compared to passive devices.

1.4 Dissertation Outline

This document is organized into six chapters. Chapter 2 covers the methods of mode

classification that were employed in this dissertation. The content described shows a novel

machine learning algorithm (i.e. XGBoost) being used as well as showing results of its

generalizability to multiple stair heights and inclination angles. The emphasis of this

chapter is to create a guide of how to collect, process, and build a machine learning

pipeline that can predict user intent in the form of mode classification. This chapter covers

Aim 1 and contains excerpts from:

• Bhakta et al. Machine Learning Model Comparisons of User Independent &

Dependent Intent Recognition Systems for Powered Prostheses. IEEE Robotics and

Automation Letters. 2021. DOI: 10.1109/LRA.2020.3007480.

Chapter 3 focuses on establishing a machine learning framework that can perform

continuous speed determination for real-time applications on knee/ankle prostheses.

Furthermore, there is a more in-depth comparison of user dependent and independent

systems utilizing an expansive embedded sensor suite on a powered prosthesis Lastly,

there is a validation of these techniques in static and dynamic speed tracking scenarios to

emulate real-world scenarios that may be encountered in common ambulatory activities.

This chapter covers Aim 2 and contains excerpts from:

• Bhakta et al. Evaluation of Continuous Walking Speed Determination Algorithms

and Embedded Sensors for a Powered Knee & Ankle Prosthesis. IEEE Robotics and
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Automation Letters. 2021. DOI: 10.1109/LRA.2021.3068711.

Chapter 4 covers the investigation of deploying an embedded real-time intent

recognition system on a powered knee and ankle device. The chapter provides

improvements made to both the mid-level and high-level control paradigm typically

employed on a robotic device. The first part of the chapter describes the tuning of

impedance parameters and how scaling these parameters as a function of the environment

is needed to make these devices more adaptable to various terrains. Secondly, there is a

systematic comparison of deploying user dependent and user independent models in

real-time to predict ambulation mode and then estimate both slope angle and walking

speed. This chapter covers Aim 3 and contains excerpts from:

• Bhakta et al. Impedance control strategies for enhancing sloped and level walking

capabilities for individuals with transfemoral amputation using a powered

multi-joint prosthesis. Journal of Military Medicine. 2020. DOI:

https://doi.org/10.1093/milmed/usz229.

• Bhakta et al. Multi-Context Real-Time Intent Recognition for Powered Lower-Limb

Prostheses (Preparing Manuscript)

Chapter 5 takes a more holistic view of the problem and looks to compare the

biomechanical effects of using a powered vs passive prosthesis. The work contained in

this chapter shows an in-depth analysis of the kinematic, kinetic, and energy profiles for

both ramps and stairs. These results highlight the fact that providing appropriate and

timely assistance profiles is key to enhance human performance metrics such as symmetry

and to reduce work done by the intact side during these tasks. This chapter covers Aim 4

and contains excerpts from:

• Camargo et al. Stair ambulation with an active knee and ankle prosthesis: a step

forward towards biologically inspired biomechanics. (Under Review)
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Lastly, Chapter 6 contains concluding remarks and conclusions of the dissertation with

comments on future research directions. This works hopes to serve as a benchmark and

framework to develop future intent recognition systems that can allow these devices to

bridge the gap between research studies versus clinical settings. This dissertation aims to

provide valuable information to add intelligence to these powered prostheses to be more

useful for individuals with transfemoral amputation.
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CHAPTER 2

OFFLINE MODE CLASSIFICATION OF USER INDEPENDENT & DEPENDENT

INTENT RECOGNITION SYSTEMS

2.1 Background

Over the last two decades there have been many advancements in powered prosthetic

technology that can aid users with lower-limb amputation and restore their locomotive

abilities [13, 14, 56]. However, best practices for effectively coupling powered prostheses

to individual users remain elusive. A recent challenge in creating smarter controllers is

understanding how to recognize and adapt to user intent. Controllers which seamlessly

decipher user intent and provide appropriate assistance will have greater viability in

clinical scenarios.

Recent projections indicate that the number of individuals with lower-limb loss will

increase significantly over the next several decades [1]. The steady increase of lower-limb

amputations warrants the need to develop more advanced technology to allow users to

ambulate more naturally and over terrains that they would often encounter in the

community, such as stairs and ramps. Current solutions are mainly passive, which lack the

ability to generate net positive work over a gait cycle. Hence, users develop compensatory

strategies to walk which include having higher intact limb-joint moments that may lead to

joint degradation, pain, and osteoarthritis [5, 6, 3, 7]. Powered prostheses may help to

reduce some of these compensatory strategies, but still require more advanced and reliable

controller designs [57].

Recent advances on the integration of microprocessors, microcontrollers, sensors, and

actuators coupled with innovative mechanical design have paved the way toward further

advancing smarter prosthetic technology. These powered devices show promise in being
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able to help lower-limb amputees function at higher levels in their daily lives because of

their ability to accommodate and provide appropriate assistance on different terrain which

may in turn improve overall quality of life [38]. Robust and reliable implementation of

controllers capable of accurate intent recognition (i.e. recognizing the desire to change

between ambulation modes) is a non-trivial requirement given the high variability that

frequently presents itself within given clinical populations.

Prosthetic control strategies have been explored to understand what techniques can be

utilized to develop smarter algorithms [9]. Many research groups have focused on single

lower-limb joint devices, and the lower limb prosthetic market to date only includes single

joint (knee or ankle) powered technology [58, 59]. However, when more than one

biological joint is missing, such as in a transfemoral amputation, an additional challenge is

to ensure that two independently powered prosthetic joints can be controlled in a

synchronous and stable manner. The most common prosthetic control strategies typically

employ a three-tier controller paradigm: high-level, mid-level and low-level control [26,

9].

The high-level controller is responsible for detecting and deciphering user intent (i.e.

determining locomotion mode or estimating environmental variables). The mid-level

controller generates a desired profile at each joint throughout the gait cycle using either

torque or position laws. The low-level controller’s responsibility is to ensure that the

actual torque output from the motor and transmission matches the desired torque. The

focus of this chapter was to enhance the high-level controller as it is critical that these

predictions have high accuracy given their direct impact on the behavior of the other two

tiers, triggering actions of the prosthesis that depend on ambulation mode. Hence, the

complete response of the powered prosthesis heavily depends on the determination of the

user’s ambulation mode. Manual triggers to transition between different locomotion

modes are non-intuitive and presents a cognitive burden to the user while walking.

Machine learning or pattern recognition techniques have been shown to classify the
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ambulation mode in powered prostheses from mechanical sensors [36, 34, 43, 60, 61] and

neuromuscular signals [33]. These techniques have shown levels of accuracy that

demonstrate potential for the application in intelligent control of detecting ambulation

modes. Simon et al. implemented a mode-specific classifier that utilized a delayed mode

transition decision of 90 ms while achieving an error of less than 0.5% [44]. However, as

has been demonstrated in stability and error recovery studies, the response of such a

system is highly sensitive to classification errors [37]. Traditionally, these

implementations use methods that are relatively simple such as linear discriminant

analysis (LDA) based on Bayesian theory [62, 34, 39, 43]. This offers the advantage of

ease of use and fast training but are limited in capturing complex data dependencies. In

addition, most of the methods have been used in a subject dependent setting, where they

require training for everyone that wears the device, failing to capture patterns that are

generalized across different users. Overcoming this challenge could reduce the burden of

gathering lots of training data and may facilitate the adoption of smarter prostheses. In a

previous study we proposed one of the first attempts of a method to produce subject

independent classification that reduced the error levels to a range that allowed its use to

control a prosthetic device [39]. However, we consider that additional development is

needed to improve such systems, in particular with respect to a limitation that is

consistently found in the literature: which is that all the training data is collected on a

single ramp grade/stair height and tested on the same conditions. Furthermore, in most

prior studies, classification accuracy have only been reported for a single height/incline in

the training set. For real-world applications, these methods do not adequately represent

community ambulation which has a larger variation in terrain, and as such, an intent

recognition system must have the capability of adapting to different stair heights and

inclination angles. However, this is a much more complex problem for a machine learning

algorithm and is still an under-explored area of research.

Recent results in machine learning literature show the practical advantage of the
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gradient tree boosting method in classification problems with tabular data in complex

classification scenarios [63, 64, 65, 66, 67]. Amongst different implementations, the open

source package XGBoost [68] has been established as a robust solution in a wide range of

problems, dominating competitions such as Kaggle [69]. XGBoost is a supervised

machine learning algorithm based on gradient boosting and ensemble learning techniques.

This method allows representation of the learning problem as gradient descent on an

arbitrary differentiable loss function. This technique uses clever penalization of individual

trees by including an additional regularization term in the loss function to combat

overfitting and to improve the classification or regression output compared to its

predecessors. This algorithm was selected for multiple reasons which include: 1) additive

tree models that can be seen to adaptively determine the size of local neighborhoods (i.e.

improves the flexibility of the fit to the data), 2) weight functions are updated at each

subsequent iteration of creating the tree while taking the bias-variance tradeoff into

consideration during fitting, and 3) approximating complex functional relationships using

additive tree models [68, 63, 70] . In addition, this model is easily usable and efficient

when training on different tasks. This decision tree boosting algorithm also allows us not

to be constrained with the assumptions of Bayesian classifiers in which a certain

covariance structure is specified. In the realm of exoskeletons and prostheses, several

groups have implemented ensemble algorithms in gait classification tasks [71, 72, 73, 74].

To the authors’ knowledge, this is a new algorithm that has not been implemented in the

field of lower-limb powered prostheses.

One novel aspect of this chapter compared to prior literature is having an expanded

mechanical sensor set embedded on the prosthesis which includes 6-axis IMUs on the

foot, shank and thigh, a 6-axis load cell, and joint encoders at the knee and ankle.

Furthermore, our experimental paradigm allows for a unique data set to test

generalizability across multiple stair heights and ramp inclination angles, and lastly

exploring the use of a new algorithm for wearable robotics (XGBoost) on classifier
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performance. Thus, our first hypothesis is that more complex algorithms like XGBoost

will improve the accuracy of the classification and scale across different grades of terrain

by learning patterns that are not described by more simple methods, especially when using

inputs from multiple sensors. Secondly, we hypothesized that adding extra mechanical

sensors could help to improve the performance of both user-dependent and

user-independent classifiers. This chapter provides meaningful information for future

development of user-intent recognition systems that can be clinically relevant.

2.2 Experimental Methods

2.2.1 Powered Knee & Ankle Device

In this chapter, we utilized a powered knee and ankle prosthesis that features two

independently controlled joints at the knee and ankle, providing powered assistance in the

sagittal plane; a more detailed presentation of the prosthesis can be found in a previous

paper [20, 75]. Briefly, the prosthesis includes six embedded mechanical sensors: two

joint incremental encoders (US Digital E5) to measure knee and ankle kinematics, a

6-DOF (degree of freedom) load cell (SRI M3714C2) to measure ground reaction forces

and moments, and three 6-axis (accelerometer & gyroscope) inertial measurement units

(YOST 3-Space LX embedded) (IMUs) (Figure 2.1). All sensors were collected at 100 Hz

except for IMUs, which were sampled at 250 Hz. A three-tier control paradigm was

implemented in this protocol. The low-level controller was responsible for minimizing

error between the desired and actual torque profiles. The mid-level controller was an

impedance controller paired with a finite state machine. Furthermore, the gait cycle was

discretized into four states (early stance, late stance, swing flexion, and swing extension)

for each ambulation mode [26]. Detailed approaches of how impedance parameters were

tuned were based on previous literature [76, 26]. The high-level controller is responsible

for predicting transitions between different ambulation modes (i.e. user intent) and

estimating features of different terrain. The focus of this chapter was to demonstrate a
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method of developing a user intent recognition system that could be utilized on wearable

robotic devices.

2.2.2 Protocol Design

Eight individuals (7 males/1 female, age: 49.63 ± 13.68 years, height: 1.77 ± 0.07 m,

mass: 87.31 ± 16.47 kg) with unilateral transfemoral amputation (4R/4L) were recruited

and provided informed consent in accordance with the Georgia Institute of Technology

Institutional Review Board. The prosthetic device was configured to each user by a

certified prosthetist for appropriate comfort and alignment. The prosthetist guided the

subjects in adjusting their gait to overcome any exaggerated or over-compensatory

Figure 2.1: Experimental setting in which one individual with transfemoral amputation is
completing a stair ambulation trial across our custom-built terrain park. The terrain park
is adjustable and can be modified between different stair heights and inclination angles.
Embedded sensors on the prosthesis which include two joint encoders, one 6-DOF load
cell, and three 6-axis inertial measurement units are useful in deciphering user intent.
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movements. When the prosthetist was satisfied with the tuning process, we conducted our

collection of ambulation circuits. Users were asked to complete 2 types of ambulation

circuits (ramp circuit: level walking (LW), ramp ascent (RA), & ramp descent (RD), stair

circuit: level walking (LW), stair ascent (SA), & stair descent (SD)) of each preset

condition in our in-lab terrain park area using our powered prosthesis. Our custom built

terrain park was adjusted and set to 4 different presets for which 4 ramp trials occurred at

7.8°, 9.2°, 11.0°, and 12.4°and 4 stair trials at 10.2 cm, 12.7 cm, 15.2 cm, and 17.8 cm.

Hence a total of 32 trials were collected from each subject across all the different modes.

Ambulation mode labels were generated using our finite state machine. Steady state steps

(SS) were identified if the previous gait event (heel contact or toe-off) remained in the

same event. While transitional steps (TS) were identified if the previous gait event on the

previous mode was different on the next mode (e.g. LW LateStance to SA SwingFlexion

– was labeled as SA).

2.2.3 Data Processing and Feature Extraction

To ensure an appropriate input of data to train our mode classifiers, a general workflow

was implemented to investigate and compare multiple machine learning algorithms for

predicting locomotion mode (Figure 2.2). We had 6 embedded sensors on the prosthesis

(2 encoders, 3 IMUs, and 1 load cell). We had 2 channels from each encoder and 6

channels from each IMU and the loadcell. We extracted 5 feature types (minimum,

maximum, mean, standard deviation, and ending value) resulting in a total of 140 features

(28 channels x 5 feature types = 140 total features) for a given window [36, 33, 43]. We

ran two sequential forward simulations to see if certain feature types and channels were

needed. It was found that removing any given feature type did not result in a decrease in

classification error. Similar results were seen in the channel simulation. Hence, to be

conservative, all the features were kept, since there was no evidence of overfitting from

these simulations. The experimental data was neither based on timing or % gait cycle, but
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rather the 6-DOF loadcell to transition between phases of each ambulation mode as seen

in previous studies [26]. Gait decisions were made at toe off (weight under a threshold)

and heel contact (weight exceeding a threshold) to create reliable time points for

transitioning the device between ambulation modes. A normalization scheme was applied

first at the sensor level by dividing the load cell signal by each subject’s respective weight.

Furthermore, a z-score normalization was explored across all sensors on the feature level,

with the load cell showing the best improvement compared to non-normalized data.

2.2.4 Locomotion Mode Classifiers

Initially, five algorithms were chosen for performance comparison in mode classification.

These algorithms were linear discriminant analysis (LDA), quadratic discriminant analysis

(QDA), Naive Bayes (NB), neural networks (NN), and XGBoost. The Bayesian classifiers

were selected as being the current standard in the field of low-error classifiers. We ran

a performance comparison across these Bayesian techniques in which LDA showed the

lowest error. LDA has also been seen in prior work to be the gold standard to compare

against [77]. Hence, the model comparison was reduced to 3 models: LDA, NN, and

XGBoost. For each phase, a specific classifier was trained to capture the optimal transition

point. Depending on the gait mode transition, the time during the gait cycle in which

the classifier must make its decision is inherently gait phase specific. This strategy of

transitioning is not unique and many groups have used a similar phase dependent scheme

to change between gait modes based on gait events, and we adopt a similar approach here

[43, 26, 44, 14].

2.2.5 Algorithm Optimization

Hyperparameter optimization of NN and XGBoost was completed to ensure model

architectures were appropriate for generalizing our mechanical sensor information for the

task of mode classification; LDA did not require any additional tuning. Scripts were
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Table 2.1: Final mode classification optimized parameters

NN XGBoost

DEP

Layers: 1
Nodes: 50
Optimizer: Adam
Learning rate: 0.001
Activation function: relu
Batch size: 32

Max depth: 1
Lambda: 0.5
Min split loss: 0
Learning rate: 0.3

IND

Layers: 3
Nodes: 10
Optimizer: Adam
Learning rate: 0.001
Activation function: tanh
Batch size: 128

Max depth: 3
Lambda: 1
Min split loss: 0.1
Learning rate: 0.3

written for all models and case studies (dependent, independent,

remove-one-height/incline) and an initial window size of 250 ms was selected. We started

with a directed search of unique hyperparameters for each algorithm. The subset of

parameters resulting in the lowest average error between steady state and transitional error

was selected until all of the parameters were swept. In XGBoost, the set of

hyperparameters explored included: the learning rate used to influence the convergence to

a solution, the maximum allowable tree depth, the regularization term to control the

sensitivity, and minimum gain required to further split on a node in the tree (Table 2.1). In

the NN, the set of hyperparameters included: layers and nodes to determine adequate size

of the network needed, optimizer and learning rate to influence the convergence to a

solution, and activation function and batch size to limit model complexity.

After model optimization, a window size sweep was performed from 50 ms to 500

ms in increments of 50 ms, with the evaluation metric of taking the average of the steady

state and transitional error together. The optimal window size was found to be 250 ms.

Specifically, the transitional error had a minimum at 250 ms, with larger error associated

with smaller or larger windows; while steady-state error was reduced the most at 250 ms

and held approximately constant with larger window sizes.
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Figure 2.2: The machine learning workflow used to predict user locomotion mode is shown. Users were asked to perform ambulation
circuits which involved walking in 5 locomotion modes - LW, RA, RD, SA, and SD. Joint encoders that measured angular position
and velocity, 6-DOF loadcell that measured ground reaction forces & moments, and IMUs that measured acceleration and rotational
velocities were first segmented into two phases - heel contact and toe-off. The next algorithm consisted of transforming the data into
several features (minimum, maximum, mean, standard deviation, and ending value) for a fixed window size. Next, a window size sweep
was performed to find optimal window length to predict locomotion mode based on transitional error. The features were then passed
through each machine learning algorithm (LDA, NN, and XGBoost) to predict locomotion mode. NN and XGBoost had to undergo an
extra step of hyper-parameter tuning. In NN, layers, nodes, optimizer, learning rate, activation function, and batch size were swept. In
XGBoost, learning rate, maximum tree depth, regularization term, and minimum gain were swept. After an optimized set of parameters
were chosen, models were trained for our 6 different case studies to predict locomotion mode.
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2.2.6 Model Evaluation

Several steps were taken to prevent overfitting of each model. First, six different case

studies were explored: dependent (DEP), independent (IND), remove-one-height

dependent (RM-1-H-DEP), remove-one-height independent (RM-1-H-IND),

remove-one-incline dependent (RM-1-I-DEP), and remove-one-incline independent

(RM-1-I-IND). The DEP case study was similar to previous literature where data was

trained on each individual subject and evaluated using a remove-one-trial cross validation.

The IND case study was also taken as a traditional method of training on all users except

for one which in turn became the test set. Thus, in these first two cases, both the train and

test set had examples from the same stair height and ramp incline conditions. The

RM-1-H-DEP and RM-1-I-DEP conditions were trained with all of the ramps and stairs

conditions except for the unknown height or incline that served as the test set. This

procedure was repeated until each height or incline was included in the test set. Lastly, the

RM-1-H-IND and RM-1-I-IND conditions were trained with all the data except for all of

the subjects’ data at a specific height or incline and the removed subject’s data. These

were then tested on the removed subject’s specific height or incline that was not in the

train set. Similar to the RM-1-DEP cases, this procedure was repeated until each height or

incline was swept. Our error criteria for evaluating the model’s performance can be seen

in the following equations (Equation 2.1, Equation 2.2, Equation 2.3), where SS is steady

state steps, TS is transitional steps, HC is heel contact, and TO is toe off. This error was

then averaged across subjects for both the steady state and transitional errors.

SS error = 1− SS correct HC + SS correct TO

SS total HC + SS total TO
(2.1)

TS error = 1− TS correct HC + TS correct TO

TS total HC + TS total TO
(2.2)
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sensor error = 1− SS error + TS error

2
(2.3)
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Figure 2.3: Three different models (LDA/NN/XGBoost) were compared for the classification of ambulation mode in ramps, stairs and
level-ground, resulting in XGBoost outperforming other models. The y-axis shows the performance metric, consisting of the error in
classification during steady state walking within a mode and the error of transitioning between modes. The x-axis show the six conditions
of evaluation: subject dependent (i.e. training and testing on the same subject), subject independent (i.e. training on all subjects but the
testing subject), and remove-1 condition for the stair height and ramp inclination for both a) dependent and b) independent. Error bars
represent ± standard error of the mean. Asterisks indicate statistical significance (p<0.05).
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2.2.7 Statistical Analysis

We conducted a one-way repeated measures analysis of variance (ANOVA) to compare

the model performance across only the DEP and IND conditions (α = 0.05). The

independent variable was the machine learning model (LDA/NN/XGBoost). A

Dunn–Bonferroni post-hoc correction was used to compute the statistical differences

between each condition (Minitab 19.0, USA).

2.3 Results

2.3.1 Model Comparison

In the DEP case for steady state error, XGBoost (2.93% ± 0.49%) was found to be the best

model compared to LDA (5.20% ± 0.85%) and NN (7.01% ± 0.73%)(p<0.05). Similar

results were found in the transitional error case, where XGBoost (7.03% ± 0.74%) had the

lowest error compared to LDA (10.26% ± 1.36%) and NN (14.66% ± 1.02%)(p<0.05).

In the IND case for steady state error, XGBoost (10.12% ± 3.16%) was found only to be

statistically different than NN (17.89% ± 2.19%). Similar trend was seen in the transitional

error, where XGBoost (15.78% ± 2.39%) was found to be only statistically different than

NN (28.65% ± 2.48%).

2.3.2 Remove-One-Preset Comparison

From the model comparison above, XGBoost was selected as our best model, and the

results for Figure 2.3 are only displayed for this model. Across all of the remove-one-

incline conditions, the transitional and steady state error rates were consistent across incline

rates. However, for remove-one-stair height conditions, the transitional and steady-state

error rate decreased with large stair heights. The average steady error for user-dependent

classifiers across both preset conditions was 4.59% ± 2.05%, while the transitional error

was 7.60% ± 2.57%. The average steady error for user-independent classifiers across both
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preset conditions was 6.54% ± 1.92%, while the transitional error was 17.26% ± 4.92%

(Figure 2.4).

2.3.3 Sensor Contribution

A sequential forward sensor selection using the XGBoost algorithm revealed that in both

DEP and IND cases, the inclusion of all sensors yielded the lowest error (p<0.05). In this

Figure 2.4: XGBoost showed the best performance across all case studies. It can be seen
that this model can generalize to different stair heights and inclination angles with relatively
low error. The y-axes show the error for each condition - a) RM-1-H-DEP, b) RM-1-I-DEP,
c) RM-1-H-IND, and d) RM-1-I-IND, while the x-axes show the 4 preset conditions for the
2 types of ambulation circuits. Results are presented for both DEP and IND cases to show
how well the algorithm behaves under different validation strategies. Error bars represent
the ± 1 standard error of the mean.
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analysis, each sensor’s features were independently tested. In the first iteration, we took

one of the sensors and its features (6 total sensors, 140 total features: 6-DOF loadcell – 30

features, foot IMU - 30 features, shank IMU – 30 features, thigh IMU – 30 features, and

joint encoders – 20 features) and determined which sensor, when removed from the training

set of the model, would yield the highest test error implying that this was the most useful

sensor needed for the mode classifier. If selected, the sensor was kept in the feature space,

while the remaining sensors were tested again in another iteration; this continued until all

sensors were swept. The error metric used was the average of the steady state (SS) and

transitional (TS) errors to determine what combination of sensors would yield the lowest

error (Eq. 3). Across both steady state and transitional errors, the forward sensor selection

algorithm chose the load cell as the best sensor that contributed the lowest error across both

test (DEP and IND) cases. (Figure 2.5).

Figure 2.5: The XGBoost algorithm was evaluated incrementally for each sensor that was
selected on a sequential forward feature selection process. This was implemented for both
a) subject dependent and b) subject independent models. In both cases, the loadcell was the
most favorable sensor for locomotion mode classification. For example, in a) the first bars
show the model trained with only the features of the loadcell (6 channels x 5 feature types =
30 features), the second bars show adding the foot IMU (30 previous features from loadcell
+ 30 new features, and so on until all the features were trained upon - 140 total features).
The y-axes show the sensor error (Equation 2.3) for each condition, while the x-axes show
the added sensor to the pool on each iteration. Error bars represent the ± standard error of
the mean.
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2.3.4 XGBoost Confusion Matrices

We created several confusion matrices to show how the model performed across

individual modes. Note LW data was present in both classifier types. We concatenated

across subjects and combined steady state and transitional errors to show how XGBoost

performed in classifying each mode. In the DEP case, XGBoost correctly classified

3170/3227 (98.23%) level walking (LW) steps, 592/633 (93.52%) ramp ascent (RA) steps,

594/643 (93.84%) ramp descent (RD) steps, 400/421 (95.01%) stair ascent (SA) steps,

and 268/299 (89.63%) stair descent (SD) steps. Overall, across all modes in the DEP case,

XGBoost correctly classified 5024/5223 steps (96.19%). In the IND case, XGBoost

correctly classified 3098/3227 (96.00%) level walking (LW) steps, 516/633 (81.52%)

ramp ascent (RA) steps, 457/643 (71.07%) ramp descent (RD) steps, 391/421 (92.87%)

stair ascent (SA) steps, and 233/299 (77.93%) stair descent (SD) steps. Overall, across all

modes in the IND case, XGBoost correctly classified 4695/5223 steps (89.89%).

2.4 Conclusions

In this chapter, we explored two key features in enhancing the locomotion mode

classification performance by 1) comparing different model complexities of current

state-of-the-art models to XGBoost and evaluating the performance of these algorithms

across users and different stair heights and inclination angles, and 2) understanding

whether the user-independent classifiers with the addition of extra sensors could achieve

similar performance to the dependent classifiers.

As we explored the effect of model complexity across different case studies, XGBoost

outperformed both LDA and NN in the steady state error across independent and

dependent models (p<0.05), while only outperforming NN in the transitional case

(p<0.05). Therefore, our first hypothesis was partially accepted in that the most complex

algorithm (XGBoost) performed the best, but simply adding complexity did not yield
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benefits as LDA still outperformed more complex NN in certain situations, and is rejected

that more complex algorithms are better for improving performance. Thus, an optimal

level in complexity can reduce classification error. Across all case studies performed,

XGBoost showed best performance which is one step closer to creating algorithms that

can generalize across multiple grades of terrain. Note that RM-1-cases were generally

Figure 2.6: Confusion matrices for our best model (XGBoost) to show individual
classification accuracies for each mode and phase type - a) DEP HC classifier, b) DEP
TO classifier, c) IND HC classifier, and d:) IND TO classifier). The results show that in
the DEP case, XGBoost had a 96.19% classification accuracy and that in the IND case,
XGBoost had a 89.89% classification accuracy. The y-axes show the true label while the
x-axes show the predicted label.
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more difficult for a machine learning algorithm to predict modes compared to a DEP or

IND setup. This is because the classifier must generalize to a ramp incline or stair height

that does not exist in the training data. Our goal was to understand if these algorithms

could learn on limited data and generalize to unknown environmental conditions.

Although sensor (Figure 2.5), channel (not shown) and feature type (not shown)

selection were analyzed, no sensors/channels or feature types all were useful for reducing

user-independent classification errors. Our second hypothesis on the addition of sensor

information was accepted. It was shown that the inclusion of sensors continually

improved model performance across both DEP and IND cases. Results indicated that the

6-DOF loadcell was the most essential sensor. Additional analysis could be performed to

determine the influence of specific feature components from each sensor to minimize the

amount of information that is extracted from the sensors while maintaining model

performance.

We believe that direct comparisons cannot be made to prior literature due to our

dataset’s unique inclusion of multiple stair heights and inclination angles which do not

exist in previous studies. Hence, we found other literature methods that created intent

recognition systems; LDA and NN was commonly used as a baseline and we applied that

same method to make an equal comparison to our dataset. The results indicate that

XGBoost shows potential in generalizing across subjects when employing a user

independent intent recognition system. We observed that XGBoost had some difficulty in

differentiating between LW and RA (Figure 2.6). Future work should look into combining

these modes as one label as seen in prior work to see if there is an improvement in model

performance [39, 44]. Similar results were seen in Young et al., where steady state and

transitional errors of 8% and 13% were achieved but required more complicated dynamic

bayesian networks (DBN - useful methods that incorporate time history information using

current observations and prior probabilities) and mode specific architectures which are

much more challenging to implement than the methods presented here [34, 39].
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One limitation of our conducted study is the small number of subjects (N=8) especially

when trying to create a user independent system. The purpose of each ambulation circuit

was to capture the behavior of traversing different terrain types from level walking to allow

for inclusion of both steady state and mode transitional steps. However, the amount of

training data is relatively small. For every ambulation circuit, there are only 4 transitional

steps compared to 12-16 steady state steps. Future work is still required to address the

issue of achieving smaller transitional errors with a small training dataset. Lastly, our

analysis was limited in that it was just an offline analysis. Previous studies have indicated

that implementing these models in real-time must be done properly in order to avoid the

dangerous outcomes of misclassification errors [36, 38, 37]. To make these algorithms

prevalent in prosthetic controllers for clinical applications, real-time validation of these

models is imperative.
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CHAPTER 3

OFFLINE EVALUATION OF CONTINUOUS WALKING SPEED

DETERMINATION ALGORITHMS UTILIZING EMBEDDED SENSORS

3.1 Background

Lower-limb loss is a continually increasing issue, warranting the pursuit of advanced

technologies to aid in restoring natural gait functionality over a variety of terrains [1].

Most commercially available prosthetic solutions are passive; while the simplistic

mechanisms make them easy to implement clinically, they are linked to significantly lower

walking speed ranges and compensatory ambulation strategies [6, 7]. Powered prostheses

may reduce these compensatory strategies and increase both self-selected walking speed

and range of comfortable walking speeds, but more advanced and intuitive control

strategies are required before such devices can be widely adopted.

Powered prosthetic technology has seen significant advances in the last two decades,

allowing for the restoration of natural gait function [13, 38]. However, intelligent and

intuitive control of these devices remains difficult. While sound performance has been

achieved in steady-state, unperturbed ambulation, more complex functionalities such as

mode transitioning and dynamic ambulation have yet to see conclusive advances. Many of

these dynamic control problems require fast and accurate gait parameter determination -

such as walking speed - to function at a usable level.

Gait parameter determination is a common metric used in mobility evaluation and gait

speed is an essential metric to understand the level of mobility of individuals that are

impaired with gait pathologies. While not an all-encompassing measure, decreased

walking speed correlates strongly with impaired mobility in clinical applications [78].

Walking speed and associated energy expenditure can also be used to asses physical and
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cardiovascular fitness in amputees [79].

The most common prosthetic control strategies typically employ a three-tier controller

paradigm: high-level, mid-level, and low-level control [9]. Determination of walking

speed, handled by the high-level controller, could be used to inform the mid-level

controller to apply a more optimal torque profile across speeds. Implementation of

real-time parameter scaling may positively impact patient mobility as well as increase the

range of comfortable walking speeds, both significant advantages over passive prostheses.

Ultimately, these adaptations may be more intuitive and comfortable for the user and

promote a broader and more dynamic range of use cases.

Previous studies have applied wearable sensors (ex. inertial measurement units) that

measure acceleration and gyroscopic information to gait parameter determination (e.g.,

walking speed). There are typically three techniques of determining walking speed: 1)

direct integration (typically the gold standard), 2) kinematic gait modeling, and 3)

regression modeling or machine learning. Although direct integration methods are simple

to compute, they tend to drift over time. Correction methods (i.e., zero velocity updates)

have yielded improved results. Previous studies have utilized a single foot IMU to

estimate walking speed and achieved an RMSE of 0.05 m/s [50]. Other studies have also

applied direct integration methods using an inverted pendulum model in which they

achieved an RMSE of 0.07 m/s using a shank IMU[80]. Kinematic models have also been

evaluated but are less accurate without subject dependent calibration [80, 81, 82, 52].

However, each of these methods was severely limited by a maximum of one prediction per

gait cycle, making it much more difficult for the method to respond quickly to changes in

non-steady state walking. For this reason, machine learning and simple regression models

have recently gained traction as a leading method of estimating walking speed [83, 84, 85,

86, 87, 88]. However, applying these methods to populations beyond healthy individuals

has not been extensively explored; preliminary investigations into individuals with

amputation have been conducted [89, 90, 54]. Our approach aims to address the gap in the
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field, by creating an algorithm capable of accurate and fast real-time determination of

walking speed on a powered prosthesis.

In this chapter, we evaluated the efficacy of multiple machine learning algorithms in

determining walking speed of individuals with transfemoral amputation. We developed a

machine learning pipeline and validated its performance by achieving low error and delay

in determining walking speed, especially for dynamically changing situations.

Furthermore, in the remove-one-subject validation, these methods can achieve similar

errors to direct integration methods, but with the advantage of continuous real-time

determination of walking speed. A sensor-level analysis showed that the inclusion of more

sensors can reduce the overall error of determining walking speed. The novel aspects and

contributions of this chapter are: 1) establishment of a ML framework that can perform

continuous speed determination for real-time applications on knee/ankle prostheses, 2)

development and comparison of user dependent and independent systems, 3) utilization of

an expansive embedded sensor suite on a powered prosthesis (three 6-axis IMUs on the

foot, shank, and thigh, a 6-DOF load cell, and two joint encoders at the knee and ankle),

and 4) validation of these techniques in static and dynamic speed tracking scenarios. We

aimed to provide meaningful information for the future development of clinically relevant

gait parameter determination systems.

3.2 Experimental Methods

3.2.1 Protocol Design

In this chapter, we employed a powered knee and ankle prosthesis that features two

independently controlled joints at the knee and ankle, providing powered assistance in the

sagittal plane; more details of the prosthesis can be found in previous papers [20, 75]. The

prosthesis includes six embedded mechanical sensors: two joint incremental encoders (US

Digital E5) to measure knee and ankle kinematics, a 6-DOF (degree of freedom) load cell

(SRI M3714C2) to measure ground reaction forces and moments, and three 6-axis
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(accelerometer & gyroscope) inertial measurement units (IMUs) (YOST 3-Space LX

embedded). All sensors were collected at 100 Hz except for IMUs, which were sampled at

250 Hz. The focus of this chapter was to demonstrate a walking speed determination

system that could ultimately be used to tune assistance parameters dynamically during

ambulation.

Six individuals (6 males, age: 50.83±10.22 years, height: 1.76±0.06 m, mass:

83.82±12.06 kg) with unilateral transfemoral amputation (4R/2L) were recruited and

provided informed consent in accordance with the Georgia Institute of Technology

Institutional Review Board. The prosthetic device was configured to each user by a

certified prosthetist for appropriate comfort and alignment. The prosthetist instructed the

subjects to correct their gait to overcome any exaggerated or over-compensatory

movements. When the prosthetist was satisfied with the tuning process, users were asked

to complete a total of 10 walking trials (Figure 3.1) on a force instrumented Bertec

treadmill (Columbus, Ohio): 9 static speed trials (1 minute each), each collected at a speed

from between 0.5 m/s and 0.9 m/s in 0.05 m/s intervals, and a single dynamic trial lasting

approximately 112 seconds. In dynamic trials, speeds were changed every 20 seconds,

allowing a 4 second continuous transition to the next speed, covering speeds between 0.5

m/s and a subject-selected maximum speed (5 subjects chose 0.9 m/s; 1 subject chose 0.85

m/s).

3.2.2 Data Processing and Feature Extraction

To ensure an appropriate input of data to train our walking speed models, a general

workflow was implemented to investigate and compare multiple machine learning

algorithms. We extracted 8 features (minimum, maximum, mean, standard deviation, start

value, ending value, signal magnitude area, and signal energy), resulting in a total of 224

features (28 channels x 8 feature types) for a given window [36, 33, 43]. Phase

segmentation relied on the transition criterion of our finite state machine to separate the

36



gait cycle into early stance, late stance, swing flexion, and swing extension phases, as seen

in previous studies [26].

3.2.3 Walking Speed Models

Three algorithms were chosen for performance comparison in walking speed

determination: linear regression (LR), extreme gradient boosting (XGBoost), and neural

networks (NN). Linear regression is a simple method that attempts to model the

Figure 3.1: Experimental setting in which one individual with transfemoral amputation
was completing a walking speed protocol for 1 minute at one of nine equally spaced speeds
ranging from 0.5 m/s to 0.9 m/s. Embedded sensors on the prosthesis include two joint
encoders, one 6-DOF loadcell, and three 6-axis inertial measurement units were used in
determining walking speed.
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relationship between two variables using a linear fit. A neural network is a biologically

inspired network of connections in which each neuron can adapt with its associated

weights that can be used in predictive modeling to draw conclusions about a problem from

complex and sometimes unrelated set of features. XGBoost is an optimized gradient tree

boosting library that can solve a problem in an efficient and parallelized structure [68].

This method is especially useful for learning problems that are nonlinear and complex in

nature. Linear regression is the simplest to use and offers the advantage of easy to train

and fast training but can be limited in capturing more complex behaviors. Extreme

gradient boosting was selected for multiple reasons which include: clever penalization of

trees to overcome overfitting, uses weighted functions to create additional trees with

respect to a bias-variance tradeoff, and also utilizes a differentiable loss function to reach a

global minimum, which in turn makes this algorithm easy to use and flexible to different

problems [68, 63]. Neural networks were selected due to their inherent ability to capture

more complex data patterns and has also been a gold standard in many machine learning

tasks. A phase sweep was performed to determine the optimal phase configuration for

each individual regressor to train on, including 1-Phase (full gait cycle), 2-Phase

(stance/swing), and 4-Phase (early stance/late stance/swing flexion/swing extension)

models. 4-phase was shown to be the optimal phase configuration: for each phase of

walking, a separate regressor was trained on data from that specific phase to capture phase

dependent signal information. In this method, speed determinations were generated

continuously throughout the gait cycle, switching between models during the appropriate

phase based on the state machine. This allows for continuous determination of gait speed

at a clock rate of 50 Hz, a significant improvement over the delay incurred by direct

integration methods, which require at least one stride to update the determination.
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3.3 Algorithm Optimization

Hyperparameter optimization is a critical step in improving an algorithm’s capability of

performing better at the task. It should be noted that the parameter search should not be

only to capture the best possible configuration but also make the model generalizable to

unknown data [91]. Hyperparameter optimization of the NN and XGBoost models were

completed to ensure model architectures were appropriate for generalizing our mechanical

sensor information for the task of walking speed determination; LR did not require any

additional tuning. Scripts were written for all models and case studies (dependent,

independent, remove-one-speed, and dynamic) and an initial window size of 250 ms was

selected. For each subset of parameters, the parameter resulting in the smallest

phase-specific RMSE was selected until all of the parameters were swept (Table 3.1)). It

should be noted that for each configuration setup, different validation scenarios were used

to understand how well the algorithm could generalize (see Model Evaluation).

Furthermore, the selection of the hyperparameter space was similar to the recommended

default values of each algorithm [91]. In XGBoost, the set of hyperparameters explored

included: the learning rate used to influence the convergence to a solution, the maximum

allowable tree depth, the regularization term to control the sensitivity, and the number of

estimators utilized to learn the data. Note, the early stopping functionality was utilized to

prevent overfitting of the model. In NN, the set of hyperparameters included: layers and

nodes to determine the adequate size of the network needed, optimizer and learning rate to

influence the convergence to a solution, and activation function and batch size to limit

model complexity.

After model optimization, a Kalman filter was implemented to take advantage of the

time-series nature of the regression task. Process noise and window size were swept

simultaneously; process noises were varied from 1.0e − 6 to 0.5, and window size was

swept from 50 ms to 1000 ms to determine the optimal time-dependent parameters for the
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Table 3.1: Final walking speed estimation optimized parameters

NN XGBoost

Parameter
Ranges

Layers: 1-3
Nodes: 10, 20, 30, 40, 50
Optimizer: Adam, SGD,
& RMSprop
Learning rate: 0.001, 0.005,
0.01
Activation function: sigmoid
& tanh
Batch size: 32, 64, 128

# of Estimators: 50,
100, 150, 200, 300
Max depth: 1, 3,
6, 9
Lambda: 0, 0.5, 1,
2, 4
Learning rate: 0.01,
0.05, 0.1, 0.3, 0.5

DEP

Layers: 1
Nodes: 40
Optimizer: Adam
Learning rate: 0.001
Activation function: sigmoid
Batch size: 128

# of Estimators: 300
Max depth: 6
Lambda: 0.5
Learning rate: 0.1

IND

Layers: 3
Nodes: 10
Optimizer: SGD
Learning rate: 0.001
Activation function: sigmoid
Batch size: 128

# of Estimators: 300
Max depth: 3
Lambda: 1
Learning rate: 0.3

Kalman-filtered model performance. The evaluation metric was the smallest

phase-specific RMSE. The optimal window size was found to be 500 ms for all cases and

models, while process noises where independently optimized for each phase

configuration.

3.3.1 Model Evaluation

Several steps were taken to prevent overfitting of each model. First, six different case

studies were explored: dependent (DEP), independent (IND), remove-one-speed

dependent (RM-1-S-DEP), remove-one-speed independent (RM-1-S-IND), dynamic

dependent (DYN-DEP), and dynamic independent (DYN-IND). The DEP case study was

similar to previous literature, where data was trained on a particular subject and evaluated
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using a 5-fold cross validation. The IND case study was also taken as a traditional method

of training with a remove-one-subject validation, which in turn became the test set. Thus,

in these first two cases, both the train and test set had examples from all static speeds. The

RM-1-S-DEP and RM-1-S-IND conditions were trained with all of the static speeds

except for the unknown speed that served as the test set. This procedure was repeated until

each speed was included in the test set. Lastly, the DYN-DEP and DYN-IND conditions

were trained with all the static data, and tested on the subject’s dynamic trial. In dynamic

cases, average model delay was calculated during a change in speed as the average

horizontal (time) distance between the ground truth line and the model prediction to

characterize how quickly the model responds to changing speed. All cases were coupled

with a Kalman filter, which was optimized on the DYN-DEP and DYN-IND cases, then

applied to the remaining cases. The RMSE was recorded for each unfiltered phase-specific

model, as well as the Kalman filtered RMSE over each phase-specific model and also over

the entire gait cycle. The variety in collected errors allows for the efficacy of the Kalman

filter to be independently determined, as well as comparisons to determine the optimal

phase combination for walking speed determination.

3.3.2 Statistical Analysis

We conducted three separate two-way repeated measures analysis of variance (ANOVA)

to compare the model performance across the DEP and IND conditions for each validation

method (Static, RM-1-Speed, Dynamic) , where the independent variables were the

models (LR/NN/XGBoost) and types (DEP/IND) (Figure 3.2A). In the phase comparison,

a three-way ANOVA was performed with independent variables of models, types, and

phases (early stance/late stance/swing flexion/swing extension) (Figure 3.2B). Finally, in

the sensor selection, two separate two-way ANOVA were run, with model and sensors

(thigh IMU, shank IMU, foot IMU, load cell, encoders) as the independent variables. In

each analysis, α = 0.05 and a Bonferroni post-hoc correction were used to compute the
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statistical differences between each condition (Minitab 19.0, USA).

3.4 Results

3.4.1 Model & Phase Comparison

From the model comparison described above, all ML models performed similarly in the

standard DEP and IND cases, LR performed best in the RM-1-S cases, and XGBoost

performed best in the DYN cases. Figure 3.2 displays the model evaluation using Kalman

filtered RMSE over the entire gait cycle. In the DEP and IND cases, no model performed

statistically significant from the others. XGBoost achieved the minimal DEP error at

0.014±0.001 m/s, while NN achieved minimal IND error at 0.070±0.007 m/s. DEP

models were shown to perform better than IND models (p<0.05). In the RM-1-S cases,

XGBoost performed worse than LR and NN and DEP models outperformed IND models

(p<0.05). LR performed optimally in the RM-1-S cases achieving errors of:

RM-1-S-DEP 0.034±0.001 m/s; RM-1-S-IND 0.068±0.008 m/s; finally, no statistically

significant differences were observed between models or cases for the dynamic validation

cases. XGBoost performed the best in the dynamic case, with errors of DYN-DEP

0.067±0.005 m/s; DYN-IND 0.070±0.014 m/s.

A phase comparison of each ML algorithm was also performed to understand if there

are specific locations during the gait cycle that would improve the determination of

walking speed. The model output was combined with a Kalman filter for five different

cases (Figure 3.2B). The results show for the best phase to select in the DEP case was the

early stance phase with an RMSE of 0.014±0.001 m/s for XGBoost. In the IND case, late

stance shows the best for a subject-independent model with LR achieving an RMSE of

0.060±0.007 m/s. DEP models outperform IND models (p<0.05), and swing extension

performed worse than early stance and late stance (p<0.05). Kalman filtering over the

entire gait cycle led to errors of 0.014±0.001 m/s (DEP) and 0.068±0.009 (IND). These

results indicate that walking speed determination error varies over the gait cycle, and in
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Figure 3.2: (A) Three models (LR/NN/XGBoost) were compared for walking speed
determination. The y-axis shows the average RMSE across subjects, evaluated for each
Kalman filtered model. The x-axis shows the six conditions of evaluation: subject
dependent i.e., training and testing on the same subject, subject independent i.e., training
on all subjects but the testing subject, remove-1-speed conditions for both DEP and IND,
and dynamic conditions for both DEP and IND. Error bars represent ± standard error of
the mean. Asterisks indicate statistical significance (p<0.05). (B) A phase comparison
was performed to understand if using a regressor at a specific section of the gait cycle
could improve results on static speed determination. The average RMSE across subjects is
plotted against phase. 43



the IND case predicting selectively in certain phases can lead to a reduction in error.

3.4.2 Remove-One-Speed & Dynamic Tracking Validation

LR was the best performer in the RM-1-S-DEP and RM-1-S-IND comparison.

Figure 3.3(A,B) displays the RMSE as a function of removed speed, where all models

used a phase configuration of the entire gait cycle. All models performed similarly across

the removed speeds in which the algorithm was interpolating (removed speed 0.55-0.85

m/s), but had substantially worse performance (an average error percentage increase of

64.8% in the DEP case and 42.6% in the IND case) when removed speeds required the

algorithm to extrapolate (0.5, 0.9 m/s).

DEP Dynamic tracking performance, shown in Figure 3.3(C) was similar across

models, with LR achieving a slight edge at 0.057±0.006 m/s. LR performed stronger than

other models in the IND case, Fig. 3(D), achieving 0.058±0.007 m/s. Time delay was

calculated to determine each model’s responsiveness to changes in speed. NN achieved

the minimum average time delay in the DEP case of 132 ms. LR followed at 207 ms, and

XGBoost performed worst with a delay of 241 ms on average. In the IND case, XGBoost

performed best with a time delay of 264 ms. NN and LR obtained delays of 339 ms and

384 ms, respectively. These delays are much shorter than one stride, the minimum time

required to update most direct integration methods.

3.4.3 Sensor Selection

A sequential forward sensor selection revealed that in the DEP case, the inclusion of all

sensors yielded the lowest Kalman filtered error; however, in the IND case, error leveled

off and eventually increased as the final sensors were added. Figure 3.4 shows continually

decreasing error in the DEP case, with the thigh IMU being the most important sensor;

XGBoost was capable of achieving 0.025±0.002 m/s from only this sensor. Adding the

shank IMU and encoders added significant information, reducing XGBoost error to
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Figure 3.3: (A) DEP and (B) IND RMSE errors plotted across speed for the RM-1-S cases,
with error bars representing the ± standard error of the mean. In (C) DEP and (D) IND
dynamic trial tracking profiles are shown for each model with the solid black line indicating
treadmill speed, with speed on the y-axis and time on the x-axis.
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Figure 3.4: The optimal ML algorithm was selected to determine the sensor order using a
sequential feature selection process. This was implemented for the remaining (A) subject
dependent and (B) subject independent models. In both cases, the thigh IMU and shank
IMU were the most favorable sensors for walking speed determination. The y-axes show
the average RMSE across subjects for each condition, while the x-axes show the added
sensor to the pool on each iteration. Error bars represent the ± standard error of the mean.

0.016±0.001 m/s. Further sensor addition contributed less to error reduction; in the DEP

case, the thigh IMU was statistically more significant than each of the encoders, loadcell,

and foot IMU (p<0.05). The thigh and shank exhibit a similar relationship for XGBoost

in the IND case, combining for optimal unfiltered error of 0.083±0.002 m/s; further

sensor addition was seen to increase error.

3.4.4 Comparison of Computational Costs

An analysis was performed to understand the computational resources needed to run these

algorithms in real-time. We measured the processing time it took to perform feature

extraction and prediction using the 3 different models on a commercially available

microprocessor (i.e. Raspberry Pi 4 Model B+ (4GB) with default settings). Linear

regression showed the smallest computational time with 17.5±2.9 ms, followed by

XGBoost with 19.8±4.4 ms, and lastly NN with 21.2±4.7 ms. The authors realize that

hardware is different for many devices, but hope this can serve as a benchmark test to

46



ensure that our proposed algorithm may be viable to embed on a powered prosthesis in

real-time.

3.5 Conclusions

In this chapter, we explored two aspects in enhancing walking speed determination. In each

case study, our results were either strongly competitive or better than results achieved by

direct integration or kinematic models in literature. Our RMSE errors are comparable to

prior literature values while predicting at higher rates; Sabatini et. al achieved 0.05 m/s

using direct integration methods on a foot IMU [50]; Li et. al achieved 0.07 m/s using

combined direct integration and kinematic model methods employed on a shank IMU [80];

and Dauriac et. al obtained 0.09 m/s using a kinematic model on a prosthesis mounted

shank IMU [54]. Our minimum DEP error with XGBoost of 0.014±0.001 m/s was lower

than these numbers, while the NN’s IND performance of 0.070±0.007 m/s was competitive

with these strategies as well as other machine learning approaches [82, 84, 83, 85, 53]. Our

system notably has more sensors than comparable studies in literature, but these sensors

tend to be standard on robotic knee/ankle prostheses.

Our method not only showed that these algorithms are suitable for static speeds, but

were able to handle other validation cases such as remove-1-speed and dynamic tracking

profiles. The RM-1-S cases demonstrate moderate robustness of the models to compensate

for missing data towards the center of the training range (LR DEP 0.025±0.001 with 0.65

m/s removed), while they struggle to extrapolate to data outside of the training range (LR

DEP 0.057±0.005 with 0.9 m/s removed), as seen in Figure 3.3(A, B). Additionally, the

low error rate and tracking delay of our models also allows for real-time continuous output

of walking speed, compared to a minimum one stride delay inherent in direct integration

methods. The benefit of this continuous prediction was best highlighted by the dynamic

tracking case, where our models achieve low delays (NN DEP 132 ms, XGBoost IND 264

ms), showing promise in real-time applications. This validation highlights that these
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models may serve as a solution to determining walking speed in more dynamic

environments outside of the lab setting. Furthermore, the sensor selection showed the

inclusion of additional sensors beyond a single IMU reduced errors in the subject

dependent case. The thigh IMU was the most important sensor, followed by the shank.

The remaining sensors all behaved similarly, with diminishing impacts on error reduction.

Specific calibration and location choices must be implemented to integrate directly from

the IMUs, which can be non-trivial and time consuming. A potential benefit of ML methods

over direct integration is an increased robustness to variation in the location and calibration

of wearable sensors when placed on the user or prosthesis. One limitation of our protocol

was the small number of subjects (N=6) as the recruitment and training of patients was non-

trivial. It is plausible that the user independent system could be improved by including more

subjects [39]. Gathering enough data could be the largest disadvantage of this approach.

Compared to other methods that have addressed estimating walking speed via tracking

user cadence and integrating IMUs which require no prior data collection is a large benefit.

However, a balance tradeoff of achieving higher accuracies and the amount of data required

should be considered. In this approach, the users walked for ≈10 minutes in order to train

a model. Additionally, by creating user-independent models, the need for gathering more

data may be alleviated, as the model can generalize to patterns seen in other subjects. The

authors believe that exploring how to make effective user-independent models that can be

embedded in powered prostheses is a critical need. Furthermore, our study was limited

to an offline analysis. Previous studies have indicated that implementing these models in

real-time is a must for robotic controllers to be utilized for clinical applications [38, 37,

53]. Our results demonstrates that walking speed determination can be done continuously

throughout the gait cycle, which, if implemented in real-time, allows for control parameters

to be updated instantly compared to waiting for a delayed system (e.g. waiting for the next

stride), as would be necessary with direct integration systems [80, 50, 54]. Future work

will look to perform studies with an online system that incorporates real-time assistance
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scaling based on estimated parameters.

Based on the results presented in this chapter, we can conclude that determining

walking speed is feasible, but a major milestone is needed to ensure that this approach can

be useful for the wearable robotic field; whether these algorithms can be utilized in more

real-world scenarios such as overground walking and uneven terrain. While there was a

limitation of training these algorithms with treadmill data, future studies will be needed to

ensure that these methods can be accurate and efficient in other situations. The hardest

challenge is being able to determine what the walking speed will be when the user is

starting/stopping to walk and during turning. We believe that the methods proposed in this

chapter is a step in the right direction to determining walking speed in more dynamic

situations since they allow for continuous real-time output throughout the gait cycle.
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CHAPTER 4

MULTI-CONTEXT REAL-TIME INTENT RECOGNITION FOR POWERED

LOWER-LIMB PROSTHESES

4.1 Background

Developing real-time intent recognition systems are critical for powered prostheses to

adapt to different terrains and allow for smooth symbiosis with the user. Transitioning

currently available powered prostheses between modes and environmental contexts are

cumbersome – they require users to slow down, stop, manually trigger a change, or even

perform an exaggerated movement to get the leg to behave in the correct mode [92]. To

maximize the benefits of these devices, control systems must be able to identify the terrain

correctly to provide the appropriate prosthesis response. Patient safety is critical in

lower-limb applications, since a misclassification of mode or wrong torque commands

could lead to increased fall risk. The first real-time intent recognition system for powered

prostheses was developed by Varol et al. where a user-dependent classifier was trained

only on mechanical sensors [36]. Since then this work was expanded to adding classifiers

that predicted ambulation mode using EMG and mechanical sensors coupled with time

history methods. In 2018, Spanias et al. created an adaptive pipeline that would take a

baseline DEP model and add EMG information over long periods of time [37]. The results

of the study were also implemented in real-time. Recent work by Woodward et al. showed

that by making a real-time adaptive framework that enhanced a baseline IND model had

similar results compared to a user-dependent system, but with a substantial reduction in

training time [93].

The accurate classification of ambulation modes and estimation of walking parameters

is a challenging problem that is key to many applications in wearable robotics. Direct
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knowledge of user’s current state can enable assistive devices to adapt to dynamic

conditions; furthermore it can provide clinicians with more detailed patient activity

information. This chapter describes the development process of a real-time combined

locomotion mode classifier and environmental parameter estimator using machine

learning and wearable sensors. A detailed analysis of the different results, show trends for

how future intent recognition systems should be developed.

The novelty of this real-time intent recognition system is that it is the first tiered

user-independent system to be run using solely mechanical sensors on a powered

prosthesis. If the system correctly identifies the ramp modes, it will subsequently make a

prediction of slope which will update the scaling equations implemented at the mid-level

controller. The main difference here is that compared to the training session before, the

researcher would have to manually trigger the device into the correct mode. In this system

it will automatically change the locomotion mode when it predicts a new mode using its

embedded microprocessor. It allows for the user to seamlessly walk between modes with

any exaggerated motions. There are three main hypotheses in this study: 1) real-time error

will perform worse compared to offline error, 2) the relative improvement in error from

offline to real-time is worse for IND models compared to DEP models, and 3) User IND

models will in general perform worse than user DEP models across different machine

learning tasks.

4.2 Methods

4.2.1 Powered Robotic Knee & Ankle Prosthesis

Our study utilized the Open Source Leg (OSL), a powered knee and ankle prosthesis, that

was open-sourced and designed by the Neurobionics Lab at the University of Michigan.

The primary benefit of using this device allows for control strategies to be tested and

compared as it is a common platform that many researchers can use without the hassle of

designing different hardware unique to each lab [17, 18]. The prosthesis features two
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independently controller joints that provide powered assistance in the sagittal plane to the

user. The device allows for quick and easy adjustments to fit any user’s socket

configuration as well as an able-bodied adapter. A more detailed description of the

prosthesis can be found in the literature [17, 18]. Briefly, the prosthesis contains six

embedded sensors: two joint encoders to provide kinematic information, one 6-DOF

loadcell (SRI M3564F) to measure forces and moments exerted onto the device by the

user and environment, and 3 inertial measurement units to capture acceleration and

gyroscopic information. The shank IMU is directly measured from the Dephy ActPack

(Dephy Inc.), while the thigh and foot IMU’s are recorded using external sensors (Lord

Microstrain 3DMGX5-25) mounted on the residual limb and device respectively. All

sensors were collected at 100 Hz. A Raspberry Pi 4 was utilized as the main processor to

control the leg. The focus of this chapter was to develop a multi-context real-time intent

recognition system that could be deployed for a tiered control paradigm of predicting

mode and continuously estimating an environmental variable such as ground slope angle

or walking speed.

4.2.2 Protocol Design

Offline Collection

Ten individuals with unilateral transfemoral amputation were recruited and provided

informed consent in accordance with the Georgia Institute of Technology Institutional

Review Board. The prosthetic device was configured to each user by a certified prosthetist

for appropriate comfort and alignment. The prosthetist guided subjects in adjusting their

gait to overcome any exaggerated or over-compensatory movements as needed. When the

prosthetist was satisfied with the tuning process, we began our formal collection. The

experimental protocol was split into two separate sessions: offline collection and real-time

collection. Furthermore, each collection was split into two types of protocols: mode/ramp

circuits and treadmill walking. Ten individuals participated in the tiered mode/ramp
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protocol and nine individuals participated in the walking speed protocol. During the

offline collection, users were asked to complete 12 ramp ambulation circuits over 4

different presets consisting of level walking (LW), ramp ascent (RA), and ramp descent

(RD) steps and 3 overground level walking (LW) circuits. Our custom built terrain park

was adjusted and set to 4 different presets for which 4 ramp trials occurred at 7.8°, 9.2°,

11.0°, and 12.4°respectively. Users were also asked to complete 9 walking trials on a

force instrumented Bertec treadmill (Columbus, Ohio): 7 static speed trials (60 seconds

each), each collected at a speed ranging between 0.3 m/s and 0.9 m/s in 0.1 m/s

increments, and two dynamic trials (one 120 seconds (staircase) and one 90 seconds

(triangle)). Although certain subjects could walk faster In the dynamic profiles, speeds

were changed with varying acceleration profiles to capture real-world scenarios of

transitioning between speeds. Note the offline protocols designed here followed the

experimental protocols seen in Aims 1 & 2, but the key difference was that this data was

collected on our Open Source Leg (OSL).

4.2.3 Real-Time Collection

During the real-time collection (6 individuals participated), users were asked to complete

10 ramp ambulation circuits and 3 overground level walking circuits for each condition.

There were 3 novel presets (7, 9, 11 deg) evaluated and 2 presets (9.2 and 11.0) that were

collected from the offline day Two conditions were tested: evaluating how well a user-

dependent (DEP) tiered mode and slope intent recognition system compared to a user-

independent (IND) system. A total of 26 trials were collected for each subject (≈325 steps).

In the second part of the real-time collection, 3 conditions were tested: user-dependent

(DEP), user-independent (IND), and semi-independent (SEMI). In each condition, users

were asked to walk on the treadmill under 2 different dynamic profiles, for a total of 6

walking trials. The first dynamic profile was similar to the offline day (staircase), and the

second was a novel speed profile (trapezoid). Additionally user outcome measures were
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collected such as stance time spent on the prosthetic leg.

4.2.4 Scaling Across Contexts

At the mid-level controller, an impedance control law was utilized. Equations were used

that smooth the behavior between phases. These phases were determined by our finite

state machine which splits the cyclic behavior of walking into 4 unique phases. A previous

study was done to analyze the effects of which parameters change across subjects in 3

different ambulation modes: level walking, ramp ascent, and ramp descent. The results

from this study indicated that only 5-7 parameters change across subjects (see Figure 4.1)

[76]. However, these equations did not scale as a function of environmental context such as

slope angle, walking speed, or stair height. In this aim, scaling equations were developed to

appropriately scale impedance parameters as a function of these environmental variables.

In level walking, push-off was scaled with walking speed, where the ankle stiffness and

equilibrium angle were changed in late stance. In ramp ascent, knee extension was scaled

with slope angle, where the knee stiffness parameter in early stance was changed (see

Figure 4.2). Finally, in ramp descent, the knee flexion torque was scaled with slope angle,

where the damping coefficients were changed in the stance portion of the gait cycle. Similar

scaling equations could be implemented for stair ascent and descent.

54



Figure 4.1: The final set of impedance parameters across participants for LW, RA, and RD. Green highlights the subject-specific tuning
parameters. Baseline values and the associated tuning range in brackets are displayed for each green highlighted portion.
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4.3 Data Preparation

4.3.1 Machine Learning Pipeline

The DEP models were trained on each individual subject. The IND models were trained

on all other individual subjects except for the test subject. The SEMI models were only

trained for walking speed and followed the IND structure but also adding a small portion

of user specific data (30 secs from 0.4 m/s, 0.6 m/s, and 0.8 m/s each).

4.3.2 Training: Classification

Ambulation mode labels were generated using our finite state machine. Steady state steps

(SS) were identified if the previous gait event (i.e. heel contact) remained in the same event.

While transitional steps (TS) were identified if the previous gait event on the previous mode

was different on the next mode (e.g. LW EarlyStance to RA EarlyStance – was labeled as

RA). From our previous work, it was seen that XGBoost was the best algorithm to use for

mode classification. A similar process was conducted of performing feature extraction and

hyperparameter tuning for our data collected with the Open Source Leg. A more detailed

description of the machine learning pipeline can be found in Chapter 2 [95]. One additional

change made to our control system of our device was to include mode transition delays as

seen in literature [44]. We found that incurring a 150 ms delay did not alter the user and

did not perturb the user whilst walking. The optimal window size was found to be 250 ms

and both DEP and IND model was found to use the following hyperparameters: learning

rate of 0.1, number of estimators of 300, max depth of 3, lambda term of 0, and gamma

term of 0.5.

4.3.3 Training: Regression

Two tasks were estimated in the real-time collect: slope/inclination angle and walking

speed. Ground truth labels for the ramp circuits were based on the preset mapping as
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Figure 4.2: We used an open-source dataset that provides the locomotion biomechanics
across different walking speeds, ramp angles, and even stair heights [94]. Specifically,
we investigated how we could create scaling equations that follow similar patterns seen
in healthy individuals. We looked at this for ramp ascent, and saw that the knee moment
increased as slope angle increased. We took this information and made a scaling equation
that would adjust the impedance parameter appropriately (i.e. knee stiffness). Similar
methodologies were done for ramp descent and level walking (i.e. walking speed).
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mentioned above. Walking speed profiles were generated using a custom MATLAB script

that would send commands to the Bertec treadmill. The creation of both these models

followed a similar pipeline seen in our previous work, where XGBoost was selected and

allowed for continuous estimation of these environmental variables at 50 Hz. Detailed

information can be found in Chapter 3 [76]. The optimal window size was found to be 500

ms and all 3 models (DEP, IND, and SEMI) used the following hyperparameters: learning

rate of learning rate of 0.1, number of estimators of 300, max depth of 3, lambda term of 0,

and gamma term of 0.5.

4.3.4 Real-Time Implementation

Custom scripts were made in our control architecture to perform real-time feature

extraction on the prosthetic embedded sensors coupled with online prediction and

estimation models depending on the context of locomotion. The primary performance

metric these systems were classification error and RMSE for regression tasks. Although

these metrics could be computed offline as a baseline comparison, this does not directly

affect the control of the device. However, in real-time, when the prediction or estimation

changes, the behavior of the prosthetic leg will change which will influence the gait of the

user.

4.4 Statistical Analysis

We conducted three separate two-way repeated measures analysis of variance (ANOVA)

to compare the performance for each machine learning task (mode classification, slope

estimation, and speed estimation) , where the independent variables were the models

(DEP/IND) and validation types (Offline/Real-Time). In the speed estimation statistical

analysis, one more model was tested as one of the independent variables (DEP, IND, and

SEMI). Across all tasks, the dependent variable was error (mode: %error, slope: RMSE

(deg), and speed: RMSE (m/s))). In each analysis, an α = 0.05 and a Bonferroni post-hoc
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correction was used to make pairwise comparisons to understand if there were statistical

differences between each condition (Minitab 19.0, USA). Additionally, for mode

classification, there was a 2-sided paired t-test (α=0.05) performed to quantify the relative

change across models (DEP and IND) between offline and real-time results. The rationale

behind this was to evaluate the validity of optimizing offline models and whether they

would translate to similar real-time results.

4.5 Results

4.5.1 Mode Classification

Figure 4.3 shows the comparison of average error (% percent) across DEP and IND models

from offline to real-time. The error was computed by taking the total number of incorrect

steps across both steady-state steps and transitional steps over the total number of strides

taken. The offline DEP model error was 5.24±0.54% and offline IND model error was

13.16±2.48%. The real-time DEP error was 21.86±3.29% while the real-time error IND

error was 20.18±4.00%. There was a statistical difference overall between offline models

and real-time models. Furthermore, there was a statistical difference between the offline

DEP model and both real-time DEP and IND models. There was also a statistical difference

found between the relative change in error across subjects between DEP and IND models

from offline to real-time error. The relative change was calculated using Equation 4.1. The

average relative change for the DEP models was 359.50±98.69% and for IND models was

61.82±25.82%.

RelativeChange =
Real − TimeError −OfflineError

OfflineError
(4.1)
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Figure 4.3: Average percent error across subjects (N=6) between offline models and
real-time models for both dependent (DEP) and independent (IND) systems. Error bars
represent ± standard error of the mean. Asterisks indicate statistical significance (p<0.05).
Real-time errors are generally worse compared to offline models for both systems which is
an expected result.
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Figure 4.4: Average relative percentage change across subjects (N=6) between offline
models and real-time models for both dependent (DEP) and independent (IND) systems.
Error bars represent ± standard error of the mean. Asterisks indicate statistical significance
(p<0.05). IND models show better promise of translating results from offline to real-time
systems.
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4.5.2 Slope Estimation

Figure 4.5 shows the comparison of average RMSE (deg) across DEP and IND models

from offline to real-time. The offline DEP model error was 0.8531±0.0793 deg and offline

IND model error was 1.1218±0.0841 deg. The real-time DEP error was 1.1995±0.0953

deg while the real-time error IND error was 1.0421±0.0555 deg. There was a statistical

difference between the offline and real-time DEP models. Similarly, the average relative

change for the DEP models was 46.97±20.27% and for IND models was -4.44±8.81%.

However, no statistical difference was found between the relative change across both

models.

4.5.3 Walking Speed Estimation

Figure 4.6 shows the comparison of average RMSE (m/s) across DEP, IND, and SEMI

models from offline to real-time. The offline DEP model error was 0.0666±0.0074 m/s,

the offline IND model error was 0.1003±0.0208 m/s, and the offline SEMI model was

0.0685±0.0050 m/s. The real-time DEP model error was 0.1054±0.0083 m/s, the

real-time IND model error was 0.1144±0.0163 m/s, and the real-time SEMI model was

0.1051±0.0075 m/s. There was a statistical difference overall between offline models and

real-time models, but no other statistical differences were found. Similarly, the average

relative change for the DEP models was 67.72±21.69%, IND models was 21.76±12.16%,

and for SEMI models 56.22±13.15%. However, no statistical difference was found

between the relative change across all three models. Figure 4.7 shows an example of the

tracking performance of a representative subject from the IND model on the staircase

dynamic profile. The average RMSE was 0.0658 m/s.
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Figure 4.5: Average RMSE (deg) across subjects (N=6) between offline models and
real-time models for both dependent (DEP) and independent (IND) systems. Error bars
represent ± standard error of the mean. Asterisks indicate statistical significance (p<0.05).
IND models show no degradation of error when going from offline to real-time, and in the
context of slope estimation, the results are shown to improve.
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Figure 4.6: Average RMSE (m/s) across subjects (N=6) between offline models and real-
time models for both dependent (DEP), independent (IND), and semi-independent (SEMI)
systems. Error bars represent ± standard error of the mean. Asterisks indicate statistical
significance (p<0.05).

64



Figure 4.7: IND walking speed model tracking a dynamic trial (i.e. staircase profile) for
one user. The RMSE of this trial was 0.0658 m/s.
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4.6 Conclusions

The work described here in this chapter, to our knowledge, is the first clinical evaluation

of a tiered classifier and regressor intent recognition system using embedded mechanical

sensors on various slope angles and speeds contained with a powered knee and ankle

prosthesis. Machine learning algorithms were utilized to take raw sensor information and

predict and estimate different terrain contexts under different walking conditions. On

average, the best result achieved in real-time mode classification was the IND model with

an error of 20.18±4.00%. For real-time slope results, the IND model was best with an

average RMSE of 1.0421±0.0555 deg. For real-time walking speed results, the SEMI and

DEP models were best and achieved similar results with an average RMSE of 0.1052 m/s.

These results serve as a baseline for real-time intent recognition systems to achieve in

order to make these devices more clinically viable.

Our first hypothesis was accepted as we saw in general that real-time errors were worse

than offline errors across tasks (more specifically in mode prediction and speed estimation).

Our second hypothesis was rejected. We found that the relative improvement was worse

for user DEP models compared to user IND models. Lastly, our third hypothesis was also

rejected (i.e. a good thing) since we did not find a statistical difference between user IND

and user DEP model’s performance. The practical findings from this study indicate that the

difference between errors from offline to real-time was smaller for IND compared to DEP

systems. The focus of future studies should look to improve upon user-independent intent

recognition systems as they will match closer to offline training results, due to its ability to

capture both intra and inter subject variability across many different users. This also means

that there does not need to be extra training sessions for each novel user to deploy these

models.

One limitation of our study is that it is still unknown how many subjects must be

pooled together to achieve generalizability. Although methods have been developed to
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augment the dataset, it still unclear how to make these machine learning algorithms robust

to differences and perturbations experienced in everyday walking. Trust and usage of a

active device takes time, which allows the user to explore and understand how the device

will help them. Although researchers need to create more intelligent controllers, they must

also keep in mind that utilizing the device must be simple and easy to understand for end

users to adopt this type of technology. By exploring and developing methods to overcome

these limitations, this is one step closer to making these systems generalizable to the

general population.
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CHAPTER 5

BIOMECHANICAL COMPARISON OF HEALTHY, PASSIVE, AND POWERED

PROSTHESIS GAIT

5.1 Background

In the current market, the most common prosthetic devices are passive or semi-active.

These devices cannot provide net positive work during locomotion. Some of the passive

devices apply a spring mechanism to store the energy at foot-ground impact and release

the energy at toe-off phase. However, such strategies are not efficient and provide only a

simple mechanism to support the load and achieve basic kinematic patterns [96]. The

larger issue is that these devices can not replicate the kinetic characteristics of the missing

limb. Simultaneously, the lack of knee-ankle joints increases the load of hip in walking

which in turn increases the metabolic cost of the person and fatigue of the user. This leads

to differences in gait parameters, asymmetry, and compensatory motions. One solution is

to utilize an active/powered prostheses which can render positive power in knee and ankle

joints. There is limited research in understanding how to use this power generation

optimally to improve clinical and gait outcomes.

Although powered prostheses can be simply implemented by actuators, different

controller strategies demonstrates different impact on the gait outcomes. Recent studies

show the robustness of impedance controller in human locomotion, specifically with those

wearing powered knee and ankle devices [13, 36, 25, 26, 76]. Impedance-based control

allows for torques to be specified by tunable parameters coupled with environmental

information (i.e. ankle angle). The controller can switch between these defined torque

laws to define the motion of the prosthetic device for a given task [26]. Typically these

change for different ambulation modes. Previous chapters were focused on determining
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the correct mode, where as the controller here is meant to map the desired gait to

programmable actions. This chapter provides results in discussion of how active

prostheses can be enhanced to improve biomechanical function to lead to better user

outcome measures which in the long term could improve quality of life. The analysis

presented in this chapter looks at adapting the impedance controller to level walking,

stairs, and ramps.

A full biomechanical analysis allows us to compare how the prosthesis affects the

lower-limb joints. This analysis looks at kinematic, kinetic, power, and energy profiles to

better understand the advantages of using active prostheses. Furthermore, this information

can let us understand current limitations and provide insights into potential areas of

improvement. The assessment of all the biomechanical profiles described above is scarce

in the literature especially for different prostheses, specifically active, and for both stair

and ramp ambulation [97, 98]. Most studies that compare biomechanics use passive

prostheses which have limited functionality in more dynamic tasks. In prior literature,

most studies have looked at commercially available devices to understand the kinematic

and kinetic changes experience on both the prosthetic and intact sides [92, 99, 100, 101,

102, 103, 7]. Morgenroth et. al and Wolf et. al were the only studies to look at using a

Power Knee to provide net positive work which showed results of reducing loading on the

intact side hip. Similarly, Kaufman et al. looked at gait asymmetry in level walking using

microprocessor-controlled prosthetic knees, noting that improvements in gait symmetry

may lead to improved long-term health outcomes [104]. In addition, Lawson et al.

observed kinematic joint profiles in stairs for a single subject with TFA [105]. Finally,

Ledoux et al. looked at stair ascent kinematics and kinetics for the prosthesis side only

[106, 107].

With this motivation, we studied the locomotion in level walking, stairs, and ramps to

compare the biomechanics for individuals with transfemoral amputation (TFA) using

commercial passive prostheses to a research-grade active prosthesis. The focus of this
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chapter was to investigate the analysis of kinematics, kinetics, mechanical energy for the

prosthetic side and the intact side. As it has been noted in previous literature, an active

prosthesis is expected to improve the patterns of kinematic response in the sense of

motion profiles that resemble those of individuals without amputation [100, 108, 109]. We

hypothesized that with an active prosthesis the intact side joint loads and energy

expenditure will be lower compared to passive prostheses. Secondly, we hypothesized that

with active prostheses, users would exhibit more symmetric locomotion comparable to

able-bodied individuals. Furthermore, we evaluated the biomechanical response at

different inclination angles while scaling assistance as a function of slope angle in ramp

ascent. Finally, by comparing this to data from healthy subjects from [94], this chapter

discusses the limitations of current active prostheses. Note the work on stair ambulation

and level walking presented in this chapter was led by my collaborator Dr. Jonathan

Camargo. Specifically, he was first author lead on the submitted manuscript for the stair

ambulation comparison between powered and passive prostheses.

5.2 Robotic Devices

Two devices were utilized to compare the biomechanical profiles of both the prosthetic

and intact sides. The first device (EPIC leg) is described in more detail in Chapter 2 and 3.

Specifically this device has 2 actuated joints in the sagittal plane and a passive

inversion/eversion degree of freedom. For details on the design and validation, the reader

can refer to [75, 76]. The second device is the Open Source Leg (OSL), designed by

University of Michigan. The device can provide active power in knee and ankle joints in

sagittal plane. For details on the design and validation, the reader can refer to [17, 18].

The EPIC leg was used in our stair ambulation study, while the OSL was used in our ramp

ambulation and level walking protocols. The main reasons for using a different device was

adaptability to user height, weight of the device, and ease of control.

Custom OpenSim models were created for both active devices (Figure 5.3). OpenSim
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Figure 5.1: EPIC leg device originally designed from AMBER Lab from California
Institute of Technology. Open Source Leg (OSL) concept was designed by Neurobionics
lab from University of Michigan. Both of these devices were manufactured in house at the
mechanical engineering machine shop at Georgia Tech. Active knee and ankle prosthesis
device with 6 embedded sensors (2 encoders, 3 IMUs, and 1 6-DOF loadcell)

Figure 5.2: EPIC leg and OSL comparison of torque, range of motion, and device weight.
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Figure 5.3: OpenSim models created for the EPIC leg and OSL. Custom models were
generated to incorporate more accurate mass and inertial properties. Custom models were
made for both left and right sides for individuals with transfemoral amputation.

is an open-source biomechanics platform useful for computing inverse kinematics and

kinetics using motion capture and forceplate data. The rationale for creating custom

models were to better incorporate mass and inertial properties to generate more accurate

results compared to able-bodied skeletal models. An automated biomechanics pipeline

was designed and built to compute biomechanical information for each joint. The new

modified model can be used to render a full-body biomechanics analysis from motion

capture and ground reaction force (GRF) data. With a same fashion, a modified model for

passive prosthesis is utilized for passive full-body biomechanics analysis. Scaling, inverse

kinematics and inverse dynamics were computed using these models in OpenSim with

MoCapTools toolbox [110]. The biomechanical profiles were used to compute user

outcome metrics of symmetry, temporal parameters, and energy distribution across joints.

5.3 Comparisons of Active and Passive Prostheses: Stair Ascent Ambulation

5.3.1 Protocol Design

Individuals with unilateral transfemoral amputation (N=7 subjects, one female, six males,

age 49±14 years, height: 1.77±0.07m, mass: 87.3±16.5 kg) provided written, informed
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consent for this study under the Georgia Institute of Technology Institutional Review

Board. Subjects performed stair ascent tasks using an active knee-ankle prosthesis under

four different stair configurations within the range of the Americans with Disabilities Act

(ADA): 10.2 cm (4in), 12.7 cm (5in), 15.2 cm (6in), 17.8 cm (7in). The same subjects also

performed the task while using their clinically prescribed passive prostheses at the

nominal height configuration of 15.2 cm. We recorded motion capture data using infrared

markers (Vicon. Ltd., Oxford, UK) and ground reaction force using force plates (Bertec,

Ohio, USA), located on each step of the staircase. After a session of training and tuning of

the impedance parameters, supervised by a certified prosthetist, the subjects were

instructed to perform five repetitions of ascending and descending the stairs under each

prosthetic condition [26]. Users were instructed to minimize the use of handrails during

the ambulation tasks.

5.3.2 Statistical Analysis

A statistical comparison of passive and active results was conducted using a one-way

repeated-measures ANOVA for each symmetrical measure. The independent variables

were device type (active/passive prostheses) and the dependent variables were

spatiotemporal parameters (stance time/swing time). A Bonferroni post hoc analysis to

determine pairwise differences with a significance level of α = 0.05. For the analysis of

the energy profiles, paired t-tests were run comparing both the total energy of the active

and passive data to able-bodied individuals (α = 0.05). For the analysis of the knee

moment scaling, linear regression was performed to determine a relation with respect to

the stair height. The significance of the regression equations was tested with an F-test.

Furthermore, a Wilcoxon signed rank test was performed on the PEQ-MS results

comparing active and passive prostheses.
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Figure 5.4: Experimental protocol. Using an active prosthesis, subjects performed a stair
ascent for different configurations of stair height (10.2cm-17.8cm). Subjects performed
the same task using their regular passive prosthesis at the intermediate height (15.2cm).
Skeletal models of individual with passive prosthesis (left) and active prosthesis (right)
performing a stair ascent task. The stair consisted of 6 steps of adjustable height.
Subjects with active prosthesis performed step-over-step locomotion in ascent, with passive
prosthesis the locomotion is step-to-step. For stair descent locomotion is step-over step.
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5.3.3 Results

Biomechanical profiles of joint kinematics, kinetics, and power profiles were generated

for the passive and powered devices. While using the active prosthesis, the kinematic

profiles of the limb resemble that of the able-bodied subjects in both the prosthetic

(Figure 5.5) and intact sides (Figure 5.6). For the prosthetic side, the hip matches the

kinematic profile of able-bodied individuals with motion peaks at -6.2±3.4 deg and a

reduced flexion of 42.4±7.2 deg. The active knee allows for 46.4±7.4 degrees of knee

flexion angle at heel-contact, as well as producing clearance motion in the swing phase

with peak flexion of 63.0±9.1 degrees. The active ankle provides dorsiflexion of

14.2±3.0 deg during the stance phase and plantar flexion at the end of the stance with a

peak of 10.3±4.5 deg. Subjects with passive prosthesis could not perform step-over-step

gait in stair ascent without excessive effort or significant handrail usage. Thus, we

evaluated the step-to-step gait as a more representative locomotion pattern for everyday

situations with a passive prosthesis. In contrast to the active prosthesis, the passive

prostheses showed a reduced peak knee flexion angle of 8.2±5.1deg during the swing

phase and reduced hip motion in the range of 3.1±10.0 deg extension and -20.4±7.2 deg

flexion. The ankle showed some level of dorsiflexion of 8.4±3.0 deg during mid-stance

due to the elastic deformation of the foot as weight loading increases.

The powered prosthesis showed peak moments significantly lower than those of

able-bodied subjects. However, in comparison to the passive prosthesis, we observed a

significant assistive moment at the knee, producing a peak extension moment around

0.56±0.17 Nm/kg during the early stance phase. The ankle produced a peak

plantarflexion moment at push-off of 0.41±0.10 Nm/kg. These corresponded to 75%

(knee) and 34% (ankle) of the able-bodied peak moments, respectively.

In terms of symmetry and temporal characteristics (Figure 5.7), the velocity of the task

(ascended stair steps per minute) is significantly higher for the active condition (p<0.05)

compared to the passive condition but significantly lower than able-bodied subjects
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Figure 5.5: Average kinematic, kinetic, and mechanical power profiles of the hip, knee,
and ankle during stair ascent on the prosthetic side at different stair height configurations
for healthy subjects’ right side (black) and subjects with transfemoral amputation wearing
an active prosthesis (blue). The profile with passive prostheses in step-to-step gait at the
nominal height of 152mm is included as a reference of comparison (pink).
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Figure 5.6: Average kinematic, kinetic, and mechanical power profiles of the hip, knee, and
ankle during stair ascent on the intact side at different stair height configurations for healthy
subjects’ right side (black) and subjects with transfemoral amputation wearing an active
prosthesis (blue). The profile with passive prostheses in step-to-step gait at the nominal
height of 152mm is included as a reference of comparison (pink).
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Figure 5.7: Temporal characteristics of stair ascent wearing an active prosthesis, passive
prostheses, and reference data for able-bodied (AB) subjects. Stance times (dark color) and
swing times (light color) ± standard deviation is presented in sequence, showing alternating
support on the intact and prosthetic side. Note that with the passive prostheses, the subject
executes two strides to achieve the same progression as a single stride with the active.

(p<0.05). The step-to-step nature of the gait for the passive prosthesis reduces the task

speed and increases the asymmetry. The stance time ASI was -35.6% for passive. Swing

time presented an ASI of 65.9%. This means that subjects spent more time on the intact

side for both types of prostheses.

Figure 5.8 presents the energy distribution of the stair ascent task where the pie-chart

size is scaled to the total positive energy. Both active and passive prostheses increased

the total positive energy compared to the able body (p<0.05). However, with the passive

prosthesis, the prosthetic side provides negligible net energy at the knee and ankle joints,

with most of the total energy provided by the knee and hips of the intact side. The energy

from the active prosthesis is concentrated at the knee with 12.4% of the total energy, a

similar ratio to 16% found in the able-bodied subjects. Passive prostheses showed an

increase (p<0.05) in the requirements of total positive mechanical energy with respect to

active.
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Figure 5.8: Average positive energy distribution for stair ascent comparing individuals with
transfemoral amputation with the active prosthesis compared to the passive prosthesis. The
distribution for passive prostheses is calculated for a step-to-step gait.

5.3.4 Stair Ascent: Modulation of Knee Torque as function of Stair Height

During stair ascent walking, the increase in the peak knee moment of the able-bodied

subjects during the stance phase is influenced by the increase in the stair height (p<0.05).

We suggest that future control solutions could use the effects of locomotion context found

in able-bodied individuals to incorporate into scaling priors in the impedance control

framework. Here we demonstrated this idea by using the able-bodied peak knee moment

to determine a linear regression model to the stair’s height and estimate the influence of

stair height on the changes in knee moment given by the slope of the regression equation

Figure 5.9. This slope could be used as a scaling factor for the stiffness in the impedance

control. Taking the nominal knee stiffness on early stance (k), which was tuned at the

nominal stair height (152 mm), we can affect the output moment at the knee by increasing

(or decreasing) the stiffness by a factor that is a function of the change in stair height

relative to the nominal tuning configuration and the constant scaling ratio (α) (see

Equation 5.1).

kscaled = knominal(1 + α · δh) (5.1)
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5.3.5 Qualitative Results: Stair Ascent

The PEQ-MS (prosthetic evaluation questionnaire - mobility scale) results showed

improved performance with the active prosthesis over the passive prosthesis in both stair

ascent (Active: 3.35 ± 0.61; Passive: 2.71 ± 1.10, scale: 1-5). Stair ascent was found to be

statistically significant (W = 48.0, (p<0.05)).

5.4 Comparisons of Active and Passive Prostheses: Ramp Ascent Ambulation

5.4.1 Protocol Design

The ramp experiment protocol consisted a total of nine individuals with transfemoral

amputation (TFA) subjects (2 females, 7 males) who provided written, informed consent

for this study under the Georgia Institute of Technology Institutional Review Board.

Subjects performed ramp ascent and descent tasks using the active knee-ankle prosthesis

and their owned clinically prescribed passive prostheses. For research grade active device

(OSL), subjects completed a training and tuning session to ensure comfort and fit

(Figure 5.10). Subjects were instructed to conduct five full trials of ramp ascent and

descent under four slope angle conditions. The experiment used an adjustable terrain park

with four different preset ramp angles: 7.8◦, 9.2◦, 10.8◦ to 12.4◦. Additionally, the

experiment utilized a motion capture system (Vicon. Ltd., Oxford, UK) and ground

reaction forceplates (Bertec, Ohio, USA) located at the center of the ramp. Users were

only asked to walk on their passive device for a nominal slope angle of 10.8◦. Users were

instructed to minimize the use of handrails during the ambulation tasks.

5.4.2 Ramp Ascent Scaling

Using a healthy biomechanics reference dataset as a baseline, we designed a scaling

equation (Equation 5.2) that would scale knee assistance in ramp ascent in the early stance

portion of the gait cycle as a function of inclination angle [94]. From the healthy profiles,
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Figure 5.9: Knee moment during stair ascent task for able-bodied subjects and individuals
with transfemoral amputation using a passive prosthesis and an active prosthesis. Able-
bodied subjects exhibit modulation of knee moment for a change in condition of the stair
height. Knee moment modulation for different conditions of stair height.
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Figure 5.10: Experimental protocol using Open Source Leg (OSL) on ramp ascent. The
powered device scales knee assistance as a function of slope angle throughout early stance.
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it can be seen that knee torque scales and hence allowing for this behavior, we

hypothesized that this would lead to more symmetric profiles of gait between the

prosthetic and intact sides.

τscaled = kscaled(θ̃ − θeq)− b ˜̇θ, with kscaled = knominal(1 + α · δslope) (5.2)

5.4.3 Statistical Analysis

A statistical comparison of passive and active results was conducted using a 2-way

repeated-measures ANOVA. The independent variables were device type (active or

passive prosthesis) and six lower limb joints (hip, knee, and ankle on both intact and

prosthesis side). The dependent variable was the mechanical energy. A Bonferroni post

hoc analysis was performed to compare pairwise comparisons with a significance level of

α = 0.05.

5.4.4 Outcome Metrics

We evaluated the temporal and symmetry metrics for ramp ascent locomotion. We found

that on average, users spent 58.9% in stance phase on the prosthesis compared to 70.6% in

stance phase on their intact side. For the passive device, we found that users spent 58.6%

in stance phase on their prosthesis side and 68.7% in stance phase on their intact side. This

implies that users regardless of prosthesis, spend more time on their intact side, but not

they do not differ between passive or active device. Furthermore, asymmetry index was

calculated to evaluate symmetry for scalar measurements [111]. Equation 5.3 maps 0%

as symmetric and ±100% as total asymmetry. The active stance ASI is -0.1488 ± 0.0660

and the active swing ASI is 0.3773 ± 0.1311. The passive stance ASI is -0.0513 ± 0.0199

and passive swing ASI is 0.3786 ± 0.1113. Although statistical tests were not performed,

these results indicate that subjects still spend more time on the intact side for both types of

prostheses.
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Figure 5.11: Healthy dataset of the knee joint across kinematic, kinetic, and power plots.
Knee shows scaling of extension moment in early stance of the gait cycle. Hence a scaling
equation was designed to provide a similar torque assistance pattern compared to the
biological signal.
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Figure 5.12: Average positive energy distribution for ramp ascent comparing individuals
with transfemoral amputation with the active prosthesis compared to the passive prosthesis.

ASI = 2 ∗ (x prosthesis− x intact)

(x prosthesis+ x intact)
(5.3)

Figure 5.12 shows the energy distribution of the ramp ascent task where the area of

the circle is scaled to total amount of energy. Passive prostheses show an increase in total

mechanical energy required compared to the active device. However, our active prosthesis

still does not match when compared to healthy subjects [94]. With the active prosthesis,

it can be seen that hip joint energy on the intact side is reduced compared to the passive

device but no statistical difference was found. Furthermore, the majority of total energy is

provided by the knee and hip intact side during ramp ascent ambulation. Although minimal

handrail usage was instructed for users wearing the active device, we still noticed users

utilizing for balance and support purposes. We quantified on average that for ramp ascent,

users utilized the handrail to support 9.40% of their body weight, while in ramp descents,

handrail usage was 10.27%.
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Figure 5.13: Average ankle moment at each condition of walking speed across three
subjects. The baseline control (Unscaled) is not aware of the walking speed. The scaled
control uses the walking speed information to modulate the ankle stiffness, resulting in
scaled plantarflexion moment.

5.5 Comparisons of Active and Passive Prostheses: Level Walking Ambulation

5.5.1 Protocol Design

The preliminary experiment consisted of N=3 healthy male adults, ages (45 yr, 53 yr, 69

yr), height (1.84 m,1.76 m,1.98 m), mass (65.6 kg, 86.5 kg, 104.0 kg). Subjects were

instrumented with 46 motion capture markers (Vicon. Ltd., Oxford, UK) using the OSL

markerset (Figure 5.3). Ground reaction forces were recorded using force plates (Bertec,

Ohio, USA) located in the instrumented treadmill. All the subjects provided informed

consent, and the study was approved by the Georgia Institute of Technology IRB. Subjects

walked at 0.3-0.8 m/s, with increments of 0.1 m/s during one minute per each speed.

5.5.2 Statistical Analysis

No statistical tests were evaluated for this walking speed comparison due to the small

number of subject samples (N=3).

5.5.3 Scaled vs Unscaled Assistance

Ankle stiffness was scaled as a function of walking speed. The difference between the

scaled and unscaled controllers was evident for the lower speeds (0.3 m/s and 0.4m/s).

Using the context information of the walking speed provides a consistent modulation of the
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Figure 5.14: Peak ankle moment at each condition of walking speed across three subjects.
A regression line is fit to display trend of scaled vs unscaled assistance.

ankle plantarflexion torque that gradually reduces the push-off torque for slower walking.

This phenomenon can be seen in the scattered plot of the peak ankle moment as a function

of walking speed (Figure 5.14). The effect of this change in ankle moment translated to

an improved timing of ankle plantarflexion within the gait cycle. Figure 5.13 presents the

ankle kinematics of the prosthesis. For the unscaled case, an unnecessarily high ankle

stiffness in the stance phase produces a higher impedance at the ankle, producing a slower

dorsiflexion process and delaying the transition to the swing phase. The scaled controller

can reduce the ankle moment, achieving a lower ankle impedance and correcting the timing

of the plantarflexion event. Furthermore, we found an average reduction of 24.9% in the

asymmetry index (Equation 5.3) when applying the scaled control in the lower speed (0.3

m/s).
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5.6 Conclusions

We presented the bilateral biomechanics of the user, energetic distribution plots, and

asymmetry measures with a powered knee and ankle prosthesis. We also showed scaling

equations that were developed across contexts. We found that the active prosthesis

significantly improves the symmetry of the kinematic profiles for all the joints and the

symmetry of the knee kinetics (p<0.05) for stair ascent. With the active leg, the results

show the reduction of energetic contribution from the intact side (p<0.05). A similar

result was also see in the energetic comparison between active and passive devices for

ramp ascent. However, a fundamental difference in the kinetics of the active prosthesis

with respect to able-bodied subjects was the scaling of the knee moment during the stair

ascent task. With peak moment increasing 8.5% for a 1 cm increase in stair height,

able-bodied subjects adapt better to a more challenging task, whereas the active leg

maintains a nominal torque. To show proof of concept, we implemented the modulation

with respect to a context variable. We observed that adjusting the ankle stiffness as a

function of the walking speed could drive the resulting biomechanics closer to healthy

subjects. By correcting the timing and intensity of ankle plantarflexion for the range of

lower speeds, the scaled strategy provides a more consistent response in the walking with

better waveform and asymmetry indices. This modulation type could further smooth the

response and provide a biological adaptation to the terrain context. Using this information,

controllers could scale according to the terrain characteristics, which may lead to a better

symmetry between the intact and the prosthetic side.

However, there is still a gap to be addressed for future controllers to make these devices

comparable to able-bodied subjects. Although we applied scaling assistance at both the

knee and ankle joints, there are still some limitations to be addressed for future studies.

Anecdotally, subjects have a hard time adjusting to changes in gait patterns that they have

been accustomed to when using a passive device (ex. early stance knee flexion). There
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is also a need to allow for users to trust the device and learn how to appropriately use

the device to get maximal benefit. The modulation of parameters is key to provide smooth

response and provide adaptation to different terrain contexts. By optimally figuring out how

to provide scaling at key locations in the gait cycle, this could improve common clinical

and gait metrics, which in turn could improve user’s ability to walk and function at more

dynamic tasks.
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CHAPTER 6

CONCLUSIONS

The overall objective of this dissertation was to develop intent recognition systems that

could be deployed in real-time to assist and enhance user’s locomotion compared to

current state-of-the-art devices. Furthermore, this work generated a reproducible pipeline

that could be replicated for different wearable robotics, not just powered prostheses.

Throughout this dissertation, we were able to make several research contributions to the

field in adding intelligence to powered prostheses. First, we used a novel machine learning

algorithm that could detect the user’s intent based on the embedded sensors in a powered

prosthesis. The novelty of this approach was its ability to generalize across unseen terrain

configurations (i.e. mode classification could operate on a range of different stair height

and slope angles) for both user-dependent and user-independent settings (Chapter 2).

Secondly, we developed an offline pipeline that could continuously estimate

environmental parameters such as walking speed or slope angle compared to

once-per-gait-cycle updates (Chapter 3). We were able to show that these algorithms were

robust to different ranges of walking speed but also that they could track dynamic profiles

to emulate more real-world behaviors. The main takeaway from this dissertation was the

ability to deploy these intent recognition systems in real-time for different users. This

work took previous offline studies and combined to allow for direct modulation of

assistance during different terrain contexts. Two main points resulted from this in which,

1) user-independent systems do not have a significant reduction of error between offline

and real-time implementation compared to user-dependent systems, and 2) real-time intent

recognition systems can be embedded onto a powered device making it one step closer to

clinical acceptance (Chapter 4). Lastly, we quantified the biomechanical effects of active

prostheses compared to passive devices (Chapter 5). Understanding how these devices,
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and in general wearable robotics, impact the user is key in order to allow this research to

improve the quality of lives for individuals with gait impairment.

There are several topics that have resulted from these studies that must be considered

which range from limitations on current intent recognition systems, cognitive loads,

biomechanical effects, and adoption to real-world settings. Future directions can be split

into two categories: technical and qualitative feedback. From a technical perspective,

there is still a need to develop algorithms that can be robust to user variability across

various days of walking, different gait patterns, and more unstructured movements (i.e.

shuffling of feet, navigating through obstacles, etc.). The accuracy of these systems need

to be much higher in order to avoid fall risk with a powered device. Although the

developed intent recognition systems in this dissertation show improved results, there are

still limitations to generalizability. A need for having a large dataset is a must in order to

capture preferences of walking across individuals with transfemoral amputation.

Furthermore, making intent recognition systems more robust to walking patterns and

perturbations is a critical need. Although we can show methods of improvement of

predicting and estimating tasks, this is still not near functional. There must be virtually no

errors especially in mode classification in order for these devices to be used in real-world

settings. Future studies should look into exploring deep learning techniques, building

adaptive machine learning frameworks that can combine new user data coupled with

pre-trained models, and looking into methods of improving/maximizing the learnability of

the data set. One limitation of machine learning techniques is that the prediction or

estimation is only as good as the data it was trained upon. Other methods that do not

require ground truth labels could be explored to approach detecting user intent from a

different perspective. Lastly, regardless of how well offline results perform, there must be

real-time testing performed to truly understand how to improve the interaction between

the user and robotic device. From a qualitative view, the need to properly tune and train

users to use the powered prosthesis is critical for the performance of the device. Trust of
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the device is one of the harder challenges to overcome. Future research directions need to

improve control of these wearable devices to handle variable gait patterns that are present

in common everyday tasks.

From the biomechanical results presented in this dissertation, there are trends towards

more symmetric gait and energy distributions. From a user’s perspective, having a device

that can reduce the load on their intact side can improve overall functionality to do more

tasks and not exert large amounts of energy. Translational research from able-bodied gait

is an important aspect of wearable robotics in general to improve gait mobility. The

cognitive load of individuals must also be reduced to not have to consciously think about

how they are walking across a variety of tasks. Future studies should explore quantifying

this variable on users while using a robotic device. If users have to spend too much time or

effort to get the intended functionality of the device, this can reduce motivation and

potentially lead to abandonment of this technology. It is imperative that researchers, not

only develop the technical aspects of designing and controlling these devices, but create a

better user interface to promote human-robot symbiosis. From qualitative feedback that

we have received from subjects, the device when functional feels very similar to their

intact side. In order for individuals to use these devices, embodiment and understanding of

how the device works is key in order to provide seamless assistance.

Lastly, for these devices to be used in the community setting, there are three main

thrusts of research that must be made: hardware, control, and biomechanical validation.

The overall goal is to identify user intent, adjust control strategies for assisting the user

during real-world community ambulation. From a user’s perspective, the device must be

easy-to-use, robust to different movements, and durable. By incorporating the information

learned from this dissertation and future research directions, intelligent prostheses can help

enhance mobility to various locomotion tasks compared to currently available devices.

The body of work described in this dissertation has meaningful impact to the clinical

populations and in general the advancement of powered prosthetic technology.
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Specifically in clinical settings, the intent recognition systems developed through this

dissertation should generalizability to multiple walking modes and within context changes

(i.e. multiple stair heights and inclination angles.) Another impact of this work is to show

that user-independent models can be useful and deployed in real-time. This methodology

results in a reduction of many hours of training required for each new user wanting to

wear a smart device. Biomechanical advantages of using powered prostheses, can

alleviate the burden on users’ intact joints resulting in increased ability to walk more,

reduce the cognitive load from the user due to the nature of automatic detection of user

intent, and even improving overall quality of life. In the context of prosthetic technology,

the controllers developed here are shown to allow for these systems to adapt to the

environment. As current hardware continues to improve in terms of providing high

torques coupled with a low profile weight, intuitive functionality of the device must also

be developed. The work described here showed methods of adapting these devices to

dynamic changes and making them one step closer to clinical acceptance. The benefit of

developing intelligent controllers goes beyond just powered prostheses and in general can

be applied to wearable robotics. Research in these fields can be life-changing for

individuals with gait impairments. This dissertation here serves as a stepping stone to

further enhance intelligent controllers to be able to decipher user intent and ultimately

restore functionality as close as possible to the biological limb.

93



REFERENCES

[1] K. Ziegler-Graham, E. J. MacKenzie, P. L. Ephraim, T. G. Travison, and
R. Brookmeyer, “Estimating the Prevalence of Limb Loss in the United States:
2005 to 2050,” Archives of Physical Medicine and Rehabilitation, vol. 89, no. 3,
pp. 422–429, Mar. 2008.

[2] S. K. Au, J. Weber, and H. Herr, “Powered Ankle–Foot Prosthesis Improves
Walking Metabolic Economy,” IEEE Transactions on Robotics, vol. 25, no. 1,
pp. 51–66, Feb. 2009.

[3] K. A. Ingraham, N. P. Fey, A. M. Simon, and L. J. Hargrove, “Assessing the
relative contributions of active ankle and knee assistance to the walking mechanics
of transfemoral amputees using a powered prosthesis,” PLOS ONE, vol. 11, no. 1,
p. 0 147 661, Jan. 2016.

[4] M. J. Highsmith et al., “Low back pain in persons with lower extremity
amputation: A systematic review of the literature,” The Spine Journal, vol. 19,
no. 3, pp. 552–563, Mar. 2019.

[5] L. Nolan and A. Lees, “The functional demands on the intact limb during walking
for active trans-femoral and trans-tibial amputees,” Prosthetics and Orthotics
International, vol. 24, no. 2, pp. 117–125, Aug. 2000.

[6] R. Gailey, K. Allen, J. Castles, J. Kucharik, and M. Roeder, “Review of secondary
physical conditions associated with lower-limb amputation and long-term
prosthesis use,” vol. 45, no. 1, 2008.

[7] D. C. Morgenroth, M. Roland, A. L. Pruziner, and J. M. Czerniecki, “Transfemoral
amputee intact limb loading and compensatory gait mechanics during down slope
ambulation and the effect of prosthetic knee mechanisms,” Clinical Biomechanics,
vol. 55, pp. 65–72, Jun. 2018.

[8] P. F. Pasquina et al., “Special Considerations for Multiple Limb Amputation,”
Current Physical Medicine and Rehabilitation Reports, vol. 2, no. 4, pp. 273–289,
2014.

[9] M. R. Tucker et al., Control strategies for active lower extremity prosthetics and
orthotics: A review, Jan. 2015.

[10] J. L. Johansson, D. M. Sherrill, P. O. Riley, P. Bonato, and H. Herr, “A Clinical
Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee
Devices,” American Journal of Physical Medicine & Rehabilitation, vol. 84, no. 8,
pp. 563–575, Aug. 2005.

94



[11] J. A. Kent, K. Z. Takahashi, and N. Stergiou, “Uneven terrain exacerbates the
deficits of a passive prosthesis in the regulation of whole body angular momentum
in individuals with a unilateral transtibial amputation,” Journal of
Neuroengineering and Rehabilitation, vol. 16, no. 1, p. 25, Feb. 2019.

[12] M. K. Shepherd and E. J. Rouse, “The VSPA Foot: A Quasi-Passive Ankle-Foot
Prosthesis With Continuously Variable Stiffness,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 25, no. 12, pp. 2375–2386, Dec.
2017.

[13] F. Sup, A. Bohara, and M. Goldfarb, “Design and control of a powered
transfemoral prosthesis,” International Journal of Robotics Research, vol. 27,
no. 2, pp. 263–273, Feb. 2008, From Duplicate 3 (Design and control of a
powered transfemoral prosthesis - Sup, F; Bohara, A; Goldfarb, M) 0278-3649.

[14] B. E. Lawson, J. Mitchell, D. Truex, A. Shultz, E. Ledoux, and M. Goldfarb, “A
robotic leg prosthesis: Design, control, and implementation,” IEEE Robotics and
Automation Magazine, vol. 21, no. 4, pp. 70–81, Dec. 2014.

[15] T. Elery, S. Rezazadeh, C. Nesler, J. Doan, H. Zhu, and R. Gregg, “Design and
benchtop validation of a powered knee-ankle prosthesis with high-torque,
low-impedance actuators,” IEEE Int. Conf. Robot. Automat., pp. 2788–2795, 2018.

[16] A. M. El-Sayed, N. A. Hamzaid, and N. A. Abu Osman, “Technology efficacy
in active prosthetic knees for transfemoral amputees: A quantitative evaluation,”
TheScientificWorldJournal, vol. 2014, p. 297 431, 2014.

[17] A. F. Azocar, S. Member, L. M. Mooney, L. J. Hargrove, and E. J. Rouse, “Design
and characterization of an open-source robotic leg prosthesis,” in 2018 7th IEEE
International Conference on Biomedical Robotics and Biomechatronics (Biorob),
2018, pp. 111–118, ISBN: 978-1-5386-8182-4.

[18] A. F. Azocar, L. M. Mooney, J. F. Duval, A. M. Simon, L. J. Hargrove, and E. J.
Rouse, “Design and clinical implementation of an open-source bionic leg,” Nature
Biomedical Engineering, vol. 4, no. 10, pp. 941–953, Oct. 2020.

[19] M. E. Carney, T. Shu, R. Stolyarov, J.-F. Duval, and H. M. Herr, “Design and
Preliminary Results of a Reaction Force Series Elastic Actuator for Bionic Knee
and Ankle Prostheses,” IEEE Transactions on Medical Robotics and Bionics, vol. 3,
no. 3, pp. 542–553, Aug. 2021.

[20] H. Zhao, E. Ambrose, and A. D. Ames, “Preliminary results on energy efficient
3D prosthetic walking with a powered compliant transfemoral prosthesis,” in 2017
IEEE International Conference on Robotics and Automation (ICRA), 2017,
pp. 1140–1147, ISBN: 978-1-5090-4633-1.

95



[21] J. M. Caputo and S. H. Collins, “An experimental robotic testbed for accelerated
development of ankle prostheses,” Proceedings - IEEE International Conference
on Robotics and Automation, pp. 2645–2650, 2013.

[22] C. D. Hoover, G. D. Fulk, and K. B. Fite, “The design and initial experimental
validation of an active myoelectric transfemoral prosthesis,” Journal of Medical
Devices, vol. 6, no. 1, p. 011 005, 2012.

[23] E. C. Martinez-Villalpando, L. Mooney, G. Elliott, and H. Herr, “Antagonistic
active knee prosthesis. A metabolic cost of walking comparison with a
variable-damping prosthetic knee,” Annual International Conference of the IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and
Biology Society. Annual International Conference, vol. 2011, pp. 8519–8522,
2011.

[24] S. Rezazadeh, D. Quintero, N. Divekar, and R. D. Gregg, “A phase variable
approach to volitional control of powered knee-ankle prostheses,” 2018,
pp. 2292–2298.

[25] N. Hogan, “Impedance control: An approach to manipulation: Part
III-applications,” Journal of Dynamic Systems, Measurement and Control,
Transactions of the ASME, vol. 107, no. 1, pp. 17–24, 1985.

[26] A. M. Simon et al., “Configuring a powered knee and ankle prosthesis for
transfemoral amputees within five specific ambulation modes,” PLoS ONE, vol. 9,
no. 6, e99387, 2014.

[27] M. Liu, F. Zhang, P. Datseris, and H. H. Huang, “Improving finite state impedance
control of active-transfemoral prosthesis using dempster-shafer based state
transition rules,” Journal of Intelligent and Robotic Systems: Theory and
Applications, vol. 76, no. 3-4, pp. 461–474, Dec. 2014.

[28] M. F. Eilenberg, H Geyer, and H Herr, “Control of a powered ankle-foot
prosthesis based on a neuromuscular model,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 18, no. 2, pp. 164–173, 2010.

[29] D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp, and R. D. Gregg,
“Continuous-phase control of a powered knee-ankle prosthesis: Amputee
experiments across speeds and inclines,” IEEE Transactions on Robotics,
pp. 1–16, 2018.

[30] V. Azimi, T. Shu, H. Zhao, E. Ambrose, A. D. Ames, and D. Simon, “Robust
control of a powered transfemoral prosthesis device with experimental
verification,” Proceedings of the American Control Conference, pp. 517–522,
2017.

96



[31] N Aghasadeghi, Z Huihua, L Hargrove, A Ames, E Perreault, and T Bretl,
“Learning impedance controller parameters for lower-limb prostheses,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems, Tokyo,
Japan, 2013.

[32] S.-K. Wu, G. Waycaster, and X. Shen, “Electromyography-based control of active
above-knee prostheses,” Control Engineering Practice, vol. 19, no. 8, pp. 875–882,
Aug. 2011.

[33] H. Huang, F. Zhang, L. J. Hargrove, Z. Dou, D. R. Rogers, and K. B. Englehart,
“Continuous locomotion-mode identification for prosthetic legs based on
neuromuscular - Mechanical fusion,” IEEE Transactions on Biomedical
Engineering, vol. 58, no. 10 PART 1, pp. 2867–2875, Oct. 2011.

[34] A. J. Young, A. M. Simon, N. P. Fey, and L. J. Hargrove, “Intent recognition in
apowered lower limb prosthesis using time history information,” Annals of
Biomedical Engineering, vol. 42, no. 3, pp. 631–641, Mar. 2013.

[35] A Young, A Simon, and L Hargrove, “A training method for locomotion mode
prediction using powered lower limb prostheses,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 671–677, 2014.

[36] H. A. Varol, F. Sup, and M. Goldfarb, “Multiclass real-time intent recognition of
a powered lower limb prosthesis,” IEEE Transactions on Biomedical Engineering,
vol. 57, no. 3, pp. 542–551, Mar. 2010.

[37] J. A. Spanias, A. M. Simon, S. B. Finucane, E. J. Perreault, and L. J. Hargrove,
“Online adaptive neural control of a robotic lower limb prosthesis,” Journal of
Neural Engineering, vol. 15, no. 1, p. 016 015, Feb. 2018.

[38] L. J. Hargrove et al., “Intuitive control of a powered prosthetic leg during
ambulation: A randomized clinical trial,” JAMA : the journal of the American
Medical Association, vol. 313, no. 22, pp. 2244–2252, 2015.

[39] A. J. Young and L. J. Hargrove, “A classification method for user-independent
intent recognition for transfemoral amputees using powered lower limb
prostheses,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 24, no. 2, pp. 217–225, Feb. 2016.

[40] Y. Ding, I. Galiana, C. Siviy, F. A. Panizzolo, and C. Walsh, IMU-based Iterative
Control for Hip Extension Assistance with a Soft Exosuit, Stockholm, Sweden,
2016.

97



[41] A. M. Sabatini, “Kalman-filter-based orientation determination using
inertial/magnetic sensors: Observability analysis and performance evaluation,”
Sensors (Basel, Switzerland), vol. 11, no. 10, pp. 9182–9206, 2011.

[42] H. Huang, T. A. Kuiken, and R. D. Lipschutz, “A Strategy for Identifying
Locomotion Modes Using Surface Electromyography,” IEEE Transactions on
Biomedical Engineering, vol. 56, no. 1, pp. 65–73, Jan. 2009.

[43] A. J. Young, A. M. Simon, and L. J. Hargrove, “A training method for locomotion
mode prediction using powered lower limb prostheses,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 22, no. 3, pp. 671–677, 2014.

[44] A. M. Simon et al., “Delaying ambulation mode transition decisions improves
accuracy of a flexible control system for powered knee-ankle prosthesis,” IEEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 25, no. 8,
pp. 1164–1171, 2017.

[45] A. J. Young, L. H. Smith, E. J. Rouse, and L. J. Hargrove, “A comparison of the
real-time controllability of pattern recognition to conventional myoelectric control
for discrete and simultaneous movements,” Journal of Neuroengineering and
Rehabilitation, vol. 11, 2014, Times Cited: 0.

[46] J. A. Brantley, T. P. Luu, S. Nakagome, and J. L. Contreras-Vidal, “Towards the
development of a hybrid neural-machine interface for volitional control of a
powered lower limb prosthesis,” in 2017 International Symposium on Wearable
Robotics and Rehabilitation (WeRob), IEEE, Nov. 2017, pp. 1–1, ISBN:
978-1-5386-4377-8.

[47] J. M. Canino and K. B. Fite, “Haptic feedback in lower-limb prosthesis: Combined
haptic feedback and EMG control of a powered prosthesis,” 2016 IEEE EMBS
International Student Conference: Expanding the Boundaries of Biomedical
Engineering and Healthcare, ISC 2016 - Proceedings, pp. 1–4, May 2016.

[48] K. H. Ha, H. A. Varol, and M. Goldfarb, “Volitional control of a prosthetic knee
using surface electromyography,” IEEE transactions on bio-medical engineering,
vol. 58, no. 1, pp. 144–151, Jan. 2011.

[49] F. Zhang, M. Liu, and H. Huang, “Effects of locomotion mode recognition errors
on volitional control of powered above-knee prostheses,” IEEE Transactions on
Neural Systems and Rehabilitation Engineering, vol. 23, no. 1, pp. 64–72, Jan.
2015.

[50] A. Sabatini, C. Martelloni, S. Scapellato, and F. Cavallo, “Assessment of walking
features from foot inertial sensing,” IEEE Transactions on Biomedical Engineering,
vol. 52, no. 3, pp. 486–494, Mar. 2005.

98



[51] F. Sup, H. A. Varol, and M. Goldfarb, “Upslope Walking With a Powered Knee and
Ankle Prosthesis: Initial Results With an Amputee Subject,” IEEE Transactions
on Neural Systems and Rehabilitation Engineering, vol. 19, no. 1, pp. 71–78, Feb.
2011.

[52] J.-S. Hu, K.-C. Sun, and C.-Y. Cheng, “A Kinematic Human-Walking Model for
the Normal-Gait-Speed Estimation Using Tri-Axial Acceleration Signals at Waist
Location,” IEEE Transactions on Biomedical Engineering, vol. 60, no. 8,
pp. 2271–2279, Aug. 2013.

[53] I. Kang, P. Kunapuli, H. Hsu, and A. J. Young, “Electromyography (EMG) Signal
Contributions in Speed and Slope Estimation Using Robotic Exoskeletons,” IEEE
... International Conference on Rehabilitation Robotics: [proceedings], vol. 2019,
pp. 548–553, Jun. 2019.

[54] B. Dauriac, X. Bonnet, H. Pillet, and F. Lavaste, Estimation of the walking speed
of individuals with transfemoral amputation from a single prosthetic
shank-mounted IMU - Boris Dauriac, Xavier Bonnet, Helene Pillet, Francois
Lavaste, 2019, https://journals.sagepub.com/doi/full/10.1177/0954411919858468.

[55] J. M. Czerniecki and D. C. Morgenroth, “Metabolic energy expenditure of
ambulation in lower extremity amputees: What have we learned and what are the
next steps?” Disability and Rehabilitation, pp. 1–9, 2015.

[56] E. J. Rouse, L. M. Mooney, E. C. Martinez-villalpando, H. M. Herr, and M. Ieee,
“Clutchable series-elastic actuator : Design of a robotic knee prosthesis for
minimum energy consumption,” 2013 IEEE International Conference on
Rehabilitation Robotics, no. 1122374, 2013.

[57] A. M. Simon, N. P. Fey, K. A. Ingraham, S. B. Finucane, E. G. Halsne, and L. J.
Hargrove, “Improved weight-bearing symmetry for transfemoral amputees during
standing up and sitting down with a powered knee-ankle prosthesis,” Archives of
Physical Medicine and Rehabilitation, vol. 97, no. 7, pp. 1100–1106, Jul. 2016.

[58] H. M. Herr and A. M. Grabowski, “Bionic ankle–foot prosthesis normalizes
walking gait for persons with leg amputation,” Proceedings of the Royal Society
B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, Feb. 2012.

[59] E. Russell Esposito, J. M. Aldridge Whitehead, and J. M. Wilken, “Step-to-step
transition work during level and inclined walking using passive and powered
ankle–foot prostheses,” Prosthetics and Orthotics International, vol. 40, no. 3,
pp. 311–319, Jun. 2016.

[60] B. Y. Su, J. Wang, S. Q. Liu, M. Sheng, J. Jiang, and K. Xiang, “A cnn-based
method for intent recognition using inertial measurement units and intelligent

99



lower limb prosthesis,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 27, no. 5, pp. 1032–1042, May 2019.

[61] R. B. Woodward, J. A. Spanias, and L. J. Hargrove, “User intent prediction with a
scaled conjugate gradient trained artificial neural network for lower limb amputees
using a powered prosthesis,” in Proceedings of the Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, EMBS,
vol. 2016-Octob, Institute of Electrical and Electronics Engineers Inc., Oct. 2016,
pp. 6405–6408, ISBN: 978-1-4577-0220-4.

[62] L. J. Hargrove, K. Englehart, and B. Hudgins, “A comparison of surface and
intramuscular myoelectric signal classification,” IEEE Transactions on
Biomedical Engineering, vol. 54, no. 5, pp. 847–853, May 2007.

[63] D. Nielsen, “Tree boosting with XGBoost why does XGBoost win ”Every”
machine learning competition?” NTNU, Tech. Rep., 2016.

[64] B. Semiz, S. Hersek, D. C. Whittingslow, L. A. Ponder, S. Prahalad, and O. T.
Inan, “Using knee acoustical emissions for sensing joint health in patients with
juvenile idiopathic arthritis: A pilot study,” IEEE Sensors Journal, vol. 18, no. 22,
pp. 9128–9136, 2018.

[65] H. Lu, M. Pinaroc, M. Lv, S. Sun, H. Han, and R. C. Shah, “Locomotion
recognition using XGboost and neural network ensemble,” in UbiComp/ISWC
2019- - Adjunct Proceedings of the 2019 ACM International Joint Conference on
Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM
International Symposium on Wearable Computers, Association for Computing
Machinery, Inc, Sep. 2019, pp. 757–760, ISBN: 978-1-4503-6869-8.

[66] Y. Ye, C. Liu, N. Zemiti, and C. Yang, “Optimal feature selection for EMG-Based
finger force estimation using LightGBM model,” in 2019 28th IEEE International
Conference on Robot and Human Interactive Communication, RO-MAN 2019,
Institute of Electrical and Electronics Engineers Inc., Oct. 2019, ISBN:
978-1-72812-622-7.

[67] A. Kadrolkar and F. C. Sup, “Intent recognition of torso motion using wavelet
transform feature extraction and linear discriminant analysis ensemble
classification,” Biomedical Signal Processing and Control, vol. 38, pp. 250–264,
Sep. 2017.

[68] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in
Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, vol. 13-17-Augu, Association for Computing
Machinery, Aug. 2016, pp. 785–794, ISBN: 978-1-4503-4232-2. arXiv:
1603.02754.

100

https://arxiv.org/abs/1603.02754


[69] S. Ben Taieb and R. J. Hyndman, “A gradient boosting approach to the Kaggle
load forecasting competition,” International Journal of Forecasting, vol. 30, no. 2,
pp. 382–394, Apr. 2014.

[70] R. Mitchell and E. Frank, “Accelerating the XGBoost algorithm using GPU
computing,” PeerJ Computer Science, vol. 2017, no. 7, e127, Jul. 2017.

[71] N. Shawen et al., “Fall detection in individuals with lower limb amputations using
mobile phones: Machine learning enhances robustness for real-world applications,”
JMIR mHealth and uHealth, vol. 5, no. 10, e151, Oct. 2017.

[72] C. Wang, X. Wu, Y. Ma, G. Wu, and Y. Luo, “A flexible lower extremity
exoskeleton robot with deep locomotion mode identification,” Hindawi, p. 9,
2018.

[73] F. Peng, W. Peng, and C. Zhang, “Evaluation of sEMG-Based feature extraction
and effective classification method for gait phase detection,” in Communications
in Computer and Information Science, vol. 1006, Springer Verlag, Nov. 2019,
pp. 138–149, ISBN: 9789811379857.

[74] S. Nakagome, T. P. Luu, Y. He, A. S. Ravindran, and J. L. Contreras-Vidal, “An
empirical comparison of neural networks and machine learning algorithms for EEG
gait decoding,” Scientific Reports, vol. 10, no. 1, pp. 1–17, Dec. 2020.

[75] K. Bhakta, J. Camargo, and A. J. Young, “Control and experimental validation of
a powered knee and ankle prosthetic device,” in ASME 2018 Dynamic Systems
and Control Conference, DSCC 2018, vol. 1, American Society of Mechanical
Engineers (ASME), Nov. 2018, ISBN: 978-0-7918-5189-0.

[76] K. Bhakta, J. Camargo, P. Kunapuli, L. Childers, and A. Young, “Impedance
control strategies for enhancing sloped and level walking capabilities for
individuals with transfemoral amputation using a powered multi-joint prosthesis,”
Military Medicine, vol. 185, no. Supplement 1, pp. 490–499, Jan. 2020.

[77] K. Englehart and B. Hudgins, “A robust, real-time control scheme for multifunction
myoelectric control,” IEEE Transactions on Biomedical Engineering, vol. 50, no. 7,
pp. 848–854, 2003.

[78] S Martin and D Macisaac, “Innervation zone shift with changes in joint angle in
the brachial biceps,” vol. 16, pp. 144–148, 2006.

[79] R. L. Waters and S. Mulroy, “The energy expenditure of normal and pathologic
gait,” Gait & Posture, vol. 9, no. 3, pp. 207–231, Jul. 1999.

101



[80] Q. Li, M. Young, V. Naing, and J. M. Donelan, “Walking speed estimation using a
shank-mounted inertial measurement unit,” Journal of Biomechanics, vol. 43, no. 8,
pp. 1640–1643, 2010.

[81] B. Mariani, C. Hoskovec, S. Rochat, C. Büla, J. Penders, and K. Aminian, “3D gait
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“Adjustments in gait symmetry with walking speed in trans-femoral and
trans-tibial amputees,” Gait & Posture, vol. 17, no. 2, pp. 142–151, Apr. 2003.

105



VITA

Krishan Bhakta was born November 21, 1996 and is from Santa Fe, New Mexico. He did

his bachelor’s in mechanical engineering at New Mexico Tech and joined the PhD program

in mechanical engineering at Georgia Tech as a graduate research assistant. He joined the

EPIC lab to develop wearable robots that could help people. He loves to learn and is always

excited to talk with people about different ideas/projects. Outside of his professional career,

he is an avid sports fan. He plays basketball in his spare time and will always have time for

a game of pick-up.

106


	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Summary
	1 | Introduction
	Motivation
	Objectives
	Innovation
	Dissertation Outline

	2 | Offline Mode Classification of User Independent & Dependent Intent Recognition Systems
	Background
	Experimental Methods
	Results
	Conclusions

	3 | Offline Evaluation of Continuous Walking Speed Determination Algorithms utilizing Embedded Sensors
	Background
	Experimental Methods
	Algorithm Optimization
	Results
	Conclusions

	4 | Multi-Context Real-Time Intent Recognition for Powered Lower-Limb Prostheses
	Background
	Methods
	Data Preparation
	Statistical Analysis
	Results
	Conclusions

	5 | Biomechanical Comparison of Healthy, Passive, and Powered Prosthesis Gait
	Background
	Robotic Devices
	Comparisons of Active and Passive Prostheses: Stair Ascent Ambulation
	Comparisons of Active and Passive Prostheses: Ramp Ascent Ambulation
	Comparisons of Active and Passive Prostheses: Level Walking Ambulation
	Conclusions

	6 | Conclusions
	References
	Vita

