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Abstract

Gentrification is an impactful trend in American cities, yet our ability to measure and
predict this process remains weak. This thesis explores the use of machine learning to predict
gentrification in Atlanta, Georgia. We use a dataset of land parcels collected by Fulton County
Tax Assessors and set out to forecast changes in local land value. Inspired by progress in
natural language processing, we apply a machine learning model called a transformer to forecast
gentrification. We find our model outperforms typical methods for time-series forecasting of
gentrification, and we discuss the implications of our findings for future research.

1 Introduction

As America’s housing affordability crisis persists, contentious debates about gentrification have
taken over local discourse. This process of neighborhood change is often associated with the dis-
placement of lower-income tenants. Indeed, the nation has a long history of excluding marginalized
groups from the prosperity generated by cities. Residential displacement is highly destabilizing for
those affected, and a myriad of policies have been developed in response. Unfortunately, the area
is difficult to study, leaving researchers with an incomplete picture of both the causes, effects, and
efficacy of responses to gentrification.

The primary challenge is that gentrification is difficult to measure. An ideal dataset would
include granular information on highly localized areas over long periods of time. This data is rarely
available, forcing researchers to make the most of what they can collect.

We start with yearly tax assessor data from Fulton County, Georgia which comprises the vast
majority of the city of Atlanta, detailing the location, size, and value of each land parcel. This data
is typically collected annually by nearly every municipality in the United States. We use the key
metric of land value to measure gentrification.

Inspired by advances in natural language processing, we use a machine learning model known as
a transformer tasked with multivariate forecasting of land value for multiple time-series. Specifically,
we leverage a variant of this model, the Temporal Fusion Transformer (Lim et al. 2021) which has
been modified to produce interpretable forecasts. This model is trained on a dataset composed
of 3.8 million observations from 2011 to 2021. We implement simple spatial analysis by creating
features representing averages of surrounding areas.

We find this model outperforms a variety of typical forecasting methods, including a baseline
model that uses only the previous year’s value. We demonstrate the capability of the transformer
for ordinary data science tasks, and illustrate the promise of this model for forecasting urban
development.

2 Literature Review

The trend of gentrification, a process of change in which historically low-income neighborhoods
experience economic ascent, investment inflow, and demographic change, has steadily increased
over the past few decades in the United States. A reductive but pragmatic metric of gentrification
is housing prices. In Atlanta, nearly half of neighborhoods from 2000 to 2017 have seen the cost of
housing exceed the regional median, sparking a contentious discussion about gentrification in the
city (Thomas, Driscoll, and Aguilar 2020).

The history of this story is important, bringing us back over a century. From the 1930s to
the late 1960s, banks, following guidelines from the federal government, classified neighborhoods
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predominantly home to people of color as risky. Cutting off credit from these communities, the
policies triggered continual disinvestment. Around the same time, “white flight” began to take
off. As urban cores decayed, higher-income white residents moved to the suburbs (Landis 2016).
Through explicit segregation ordinances, denial of mortgages, and other policies, these suburban
neighborhoods became highly exclusive. Within cities, urban renewal projects further enforced
these trends. The development of the Interstate highway system was often used to destroy black
neighborhoods and separate them from the rest of the city (Zuk et al. 2018). In Atlanta, Interstate
20 divides the poorer, predominantly black south side of the from the central business district and
suburbs. As stated by then Mayer Bill Hartsfield, the highway defines “the boundary between the
white and Negro communities” (Kruse 2019).

The racial and economic segregation of cities like Atlanta set the stage for today’s patterns of
gentrification. Nationwide, supply-restraints on housing are driving a housing affordability crisis.
Predominantly, restrictive zoning that limits density has led to skyrocketing rents and home prices
(Uhler and Sisney 2016). Control over community development has been largely handed over to
localities which are resistant to neighborhood change. Thus, developers often face fierce opposition
to new projects. Again, the housing landscape in Atlanta is largely divided between neighborhoods
that are mostly lower-income and black, and those that are higher-income and white. In recent
decades, real estate investors have come to understand they stand the best chance targeting low-
income neighborhoods with low political capital and economic vulnerability exacerbated by the 2008
housing crisis (Dougherty 2020). In contrast to the ongoing discourse in many cities, gentrification
cannot be simplistically labeled as a force for good or bad. Gentrified neighborhoods typically bring
more jobs, nicer amenities, higher quality housing, reduced crime, and better schools. However,
this change is often exclusionary. As the neighborhood gentrifies, vulnerable low-income residents
may be forced out in a process called displacement, either by high prices, evictions, or deteriorating
living conditions. As old residents leave, landlords are able to rent to new, higher-income residents
at higher prices.

Where displaced residents end up depends on local geography, but one thing that is certain
is that displacement is destabilizing for tenants. Some experience homelessness, and the process
can be highly stressful and traumatic, especially for children. Most who must find a new home
not only lose out to improvements to their old neighborhood, but also have to deal with longer
commutes, reduced economic opportunity, substandard housing, and the anxiety associated with
the disruption (Marcus and Zuk 2017). Policymakers responded with a wide variety of policies.
Rent control, subsidies, tenant’s rights, stronger zoning, and weaker zoning have all been applied,
but our understanding of the results and the underlying process remains weak (Zuk et al. 2018).

Data on gentrification is hard to collect. The first issue is the locality of data. Gentrification
happens at the neighborhood level, and driven by specific developments. Thus, we are limited
to data providers deeply interested in the Atlanta community. Second is the temporal aspect.
Neighborhood change is a long process that also may progress in rapid intervals, so we are limited
to data providers who are committed to collecting information at most yearly, indefinitely (Easton
et al. 2020). The third issue is data confidentiality. For a neighborhood’s residents, we are interested
in not only their socio-economic profile, but also their residential history. There are few providers
able to access such personal details (Cohen and Pettit 2019).

In sum, these constraints are quite difficult to overcome. Thus, there is sparse quantitative
literature for such a hot topic. Indeed, much of the advancements in the literature come from unique
datasets. For example, the Federal Reserve has used their Consumer Credit Panel/Equifax dataset
of individual credit records including census geography identifiers (Ding and Divringi 2015). Other
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researchers have secured data from online services like Yelp, detailing neighborhood amenities and
businesses (Glaeser, Luca, and Moszkowski 2020). Data scraping methods have also been employed,
such as using web scraping to track eviction filings in court databases (Raymond, Stein, and Haley
2021). There is promise in the growing availability of data, especially as the concept of high-tech
smart cities progresses. However, the necessary data remains difficult to collect, requiring effort,
expense, or connections.

Furthermore, unique datasets will not give us a broad understanding of the topic. Researchers
typically note in their discussion that their results cannot be generalized due to differences in cities’
housing policies (Dragan, Ellen, and Glied 2019). Thus, these studies lacking descriptive power will
certainly lack predictive power when applied to different areas. While these results are informative,
there is a clear need for stronger methodology for gentrification forecasting.

The growing use of geographic information system (GIS) technology was vital for field of ur-
ban informatics. Large datasets composed of small geographical units require complex methods
for spatial analysis. Paired with machine learning, GIS has empowered many researchers to take
advantage of such data. Many researchers and policymakers have collected census, tax, and other
readily available data to create predictive models for different cities (Reades, De Souza, and Hub-
bard 2019). Employing spatial analysis, these models look at neighborhoods in whole, rather than
individual phenomena. This approach captures neighborhood character in a way that was pre-
viously impossible. Machine learning has further advanced this analysis, bringing forecasting and
classification models to our tasks of identifying gentrification trends (Steif 2020; Graff 2020). Rather
than simply describing the data or fitting curves to time-series, these models can identify predictors
of key outcomes and forecast future trends.

In the field of natural language process, the transformer has demonstrated a impressive ability
to model sequential data (Vaswani et al. 2017). Beyond language, the transformer architecture has
been applied to a wide variety of domains, including numerical time-series forecasting. This model
implements the concept of attention. Attention is a mechanism that allows the model to focus
on specific parts of the input data. This is especially useful for time-series forecasting, where the
model must learn to predict the future based on the past. Key examples include the forecasting of
seasonal influenza, city traffic, and weather (Wu et al. 2020; Zhou et al. 2021). These models have
been shown to outperform traditional time-series models, such as ARIMA, and have been applied
to a wide variety of tasks.

However, like many machine learning approaches, transformers are difficult to interpret. This is
a problem for forecasting, as we are often interested in the underlying factors that drive the model’s
predictions. Most methods for interpretability in machine learning do not work well for time-series
models as they do not model the temporal relationships between features. In response, Lim et al.
2021 developed the Temporal Fusion Transformer which implements several improvements to the
transformer for time-series forecasting that enable the explanation of how model features are used
to make predictions.

3 Data

We accessed the Fulton County GIS Data Portal to collect tax assessors data for each year
from 2011 to 2021 (Fulton County GIS Portal 2022). Each file comprises about 350,000 parcels
for a total of about 3,850,000 parcels in the dataset. Land parcels are the units by which land is
bought and sold. Each parcel is the basis for property taxes, which is why nearly all American
local governments regularly collect this data. Each data point includes the appraisal value of the

4



property, appraisal value of the land, appraisal value of the improvements, assessment value of the
property, the assessment value of the land, assessment value of the improvements, land acreage,
owner information, zoning code, and land use code of the land. This data is formatted as a shapefile
allowing for processing using GIS software.

Land parcels often change shape, and thus we created a 100×100 mesh grid which we interpolated
our parcel data onto. Each grid cell contains the average of the values of the parcels that intersect
it, producing dataset that is uniform in size and shape. For each cell in our grid, we computed
spatial features by averaging the features of the surrounding 9 × 9 grid, centered on the cell. For
non-numerical features such as class code, we used the most common value in the surrounding cells.

Our data spans many years and thus intersects with many significant trends such as COVID-19
and the aftermath of the Great Recession. To account for such phenomena, we standardize our
data by each year by substracting means and dividing by standard deviation. Thus, our features
should be understood as relative to other land in Fulton County.

4 Methods

4.1 Forecasting Task

We are interested in forecasting land value across metro Atlanta as a measurement for urban
gentrification. This is a spatiotemporal multivariate multiple time-series forecasting task. For
input parcel data over n years [~xt−n+1, . . . , ~xt], we predict future parcel land-value over an m year
horizon [yt+1, . . . , yt+m]. Note that input parcel data points ~xi are vectors containing multiple
features, including our target variable land value. Future target values are masked to prevent the
model from using them as input.

We train our model on a 5 year input window from 2011 to 2015 and predict a 5 year horizon
from 2016 to 2020. We also generate a 5 year forecast with input window from 2016 to 2020 and
predict a 5 year horizon from 2021 to 2025.

4.2 Model Architecture

The model we use is based on the transformer architecture (Vaswani et al. 2017). The trans-
former is a sequence-to-sequence model that models the relationship between input and output using
a concept called attention. Similar to how humans focus on specific stimuli, attention mechanisms
allow models to automatically learn which parts of the input are most important for generating
the output. The model is composed of two components, an encoder and decoder. The encoder
takes in a sequence of input data and produces a sequence of hidden states. This hidden state is
a fixed-length vector that represents the entire input sequence. The decoder takes in the hidden
states and produces a sequence of output data. Because the transformer is an autoregressive model,
the decoder is designed to iteratively predict the next element in the sequence.

We employ the Temporal Fusion Transformer (TFT) (Lim et al. 2021), a modification of the
transformer that is designed for time-series forecasting through the implementation of several mech-
anisms throughout the architecture. The TFT accepts both static and time-varying inputs from
past and future time steps. While neural networks provide the advantage of being able to learn
non-linear relationships, we do not know with this task whether we need to model such interactions
between inputs and outputs. To favor parsimony, the TFT employs gating mechanisms in the form
of a Gated Residual Netowrk (GRN) to determine which features to apply non-linear processing to.
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We will make reference to these gates throughout the model description. Our inputs are subject
to a variable selection mechanism to remove features contributing noise. This paper provides an
overview of the relevant components of the TFT, but we refer the reader to the original paper for
a more detailed description.

4.2.1 Encoder

After variable selection, our time-series features are fed into Long Short-Term Memory (LSTM)
encoders. LSTMs are a type of recurrent neural network (RNN) that process input sequences of
any length, maintaining memory that captures dependencies between elements in the series. The
outputs of the LSTMs are fed through GRN components before being concatenated and fed into
the decoder as the hidden state.

4.2.2 Decoder

The TFT applies a self attention mechanism, allowing it to focus on specific parts of the series.
This model uses multi-headed attention, where the self-attention is applied multiple times in par-
allel. To enable interpretation of the model’s attention to each feature across attention heads, the
TFT ensures that the value weights are shared for each head. This results in a single attention
weight for each feature. This attention layer is also modified to handle temporal data, masking the
target outputs in the input data. After, the data is fed through an additional feed-forward network
making use of the weights from the earlier GRN which are shared across the decoder component.
The output of the decoder is are 7-quantile forecasts, specifying the probability that the true value
lies within a given range.

4.3 Training

Our model is trained on 80% of our data, predicting 5 time steps our from 5 years of input. The
encoder LSTMs have a hidden size of 128 and a dropout rate of 0.2. We use 2 attention heads for
the decoder. Following our outputs, we use quantile loss to train our network. We use a learning
rate of 1e− 3 with the Adam optimizer and train for 10 epochs. We use a batch size of 32.

4.4 Evaluation

To account for city wide trends in our data, we standardize our data by subtracting the mean
and dividing by the standard deviation for each year. This helps account for wide scale economic
trends like COVID-19. Our outputs are thus reported as differences in normalized values.

We evaluate our model using the remaining 20% of our data with the mean absolute error
(MAE), the root mean squared error (RMSE), mean absolute percentage error (MAPE), and the
median absolute percentage error (MdAPE).

We compare our transformer model to a variety of typical time series forecasting methods. Most
previous approaches to the gentrification task leverage econometrics models, although new interest
in machine learning has furthered the field.

Baseline We model a naive forecaster that returns the latest target value for the entire forecasting
horizon.
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VARMAX We use a multivariate VARMAX model with only our continuous data labels.

LSTM We built a simple LSTM forecasting model. This model has a embedding layer of size 128,
2 stacked bidirectional LSTM layers of size 128, and a linear layer for output. We use a learning
rate of 1e− 2 with the Adam optimizer and train for 8 epochs.

5 Results

5.1 Performance

MAE RMSE MAPE MdAPE

TFT 0.182 0.453 0.552 0.174
Baseline 0.641 1.015 0.944 0.917
VARMAX 0.631 1.001 0.893 0.843
LSTM 0.334 0.601 0.652 0.435

Table 1: Forecasting evaluation across models

In Table 1, we can see that our transformer-based architecture performs well in our prediction
task. Notably, its median absolute percent error is much lower than the other models. This is a good
indicator that the transformer is a significant improvement over other methods when forecasting
typical values. As expected our simple econometric models perform worse than our machine learning
approaches. Furthermore, our transformer sees a significant improvement over our LSTM model.
Across all metrics, our transformer outperforms the comparison models.

5.2 Analysis

Due to the limitation of the medium of this paper, we are unable to provide a full analysis of our
model. We will focus on the model’s performance and give a brief overview of its spatial forecasts.
Because our outputs are normalized, we will emphasis the direction and relative intensity of our
predictions rather than specific values.
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5.2.1 Feature Importance

Figure 1: Relative importance of features used by the transformer model

In Figure 1, we can see the importance of features in our transformer model. These are the
weights of the attention mechanism, which are used to determine which features are most important
for the model to make predictions. As expected, the most relevant feature is past values for our
target, land appraisal per square foot. This is followed by the total appraisal per square foot, the
land value of neighboring cells, the time index within the forecasting window, and the zoning code
of the property.
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5.2.2 Error Clustering

Figure 2: Clustering of errors from transformer model

In Figure 2, we can see the distribution of errors for our model. Note that these errors have
been squared to make the distribution more uniform. We can see that the majority of errors are
small, with a few large errors. This is a good sign that our model is able to predict the majority of
values well, but struggles with a few outliers.

It appears our model is least accurate in forecasting in Alpharetta and the neighborhoods
surrounding the urban core of Atlanta. This is likely due to the fact that these areas are rapidly
developing and markets have yet to settle on prices. Unfortunately, this significantly intersects with
areas experiencing gentrification, which is our model’s primary forecasting goal.
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5.3 Forecasts

(a) 2022 (b) 2023 (c) 2024

Figure 3: Forecasts for changes in land value from 2021

In Figure 3, we can see the forecasts of our model for the 3 years following our dataset. Here,
we plot the expected changes in land value relative to 2021. We can see that our model predicts
a significant increase in land value in the urban core of Atlanta, as well as in the neighborhoods
surrounding it such as Forest Park. There are few isolated cells where our model predicts a decrease
in land value.

6 Discussion

We set out to answer the question of whether machine learning can improve on existing meth-
ods for forecasting gentrification. Given the data’s poor location specificity, infrequent collection
intervals, and inconsistent formatting, the task of modeling urban development is a challenge for
existing models (Zuk et al. 2018). As demonstrated by recent advances in Natural Language Pro-
cessing, the transformers architecture shows promise in modeling sequential data. We found that
our transformer model outperformed our econometric models and our LSTM model. While other
work has approached gentrification prediction as a classification task (Chapple and Zuk 2016), cre-
ating taxonomies of urban development, our model provides a unique insight through its regression
outputs. We also found that our model was able to capture the spatial and temporal patterns of
gentrification in Atlanta. Whether this model can be generalized to other cities remains to be seen.
Cities may differ due to economic growth, development restrictions, and socioeconomic characteris-
tics. However, we believe that our model can be used as a baseline for future work in this area. We
aim to provide an example of the usefulness of this data science tool which should be understood
in the context of other work in this area.

We also believe that our model can be used to forecast other urban development patterns.
For example, our model can be used to forecast the development of affordable housing, business
development, and capital investment. However, each approach will require careful consideration of
the features needed, the data available, and the model architecture. We hope that our work will
serve as a starting point for future work in this area.
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Our findings provide valuable insight for policymakers. Cities face significant resource con-
straints necessitating prioritization of many priorities. To identify which neighborhoods are seeing
the most disruptive development trends, models like ours can provide a quantitative measure that
serve as the basis for further investigation. We do not encourage the use of such models as the sole
basis for evaluating gentrification. Rather, we hope that our model can be used as a tool to inform
the decision-making process of policymakers.
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