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SUMMARY

The purpose of this research is to investigate the underlying
algebraic structures of certain fixed-charge transportation problems.
Primary objectives are to determine inherent group theoretic properties
of fixed-charge transportation problems and to specify how these proper-
ties may be exploited advantageocusly.

The group problem is especially structured with predictable
interrelaticnships among the group variables. It is shown that the
order of the subgrouﬁs is bounded by max{min(Dj,Si)} ¥(i,j) where Dj is
the demand at destination j and Si is the supply available at source i.
When a fixed-charge transportation problem is solved as a linear pro-
gram, the number cof yij (0-1) variables represented in the optimal LP
basis is alsc the dimensicnality of the group problem constraint. The
components of the group elements are exclusively members of {0,1,-1},
but the group elements corresponding to yy are always null. The inter-
relationships among the variables will not permit strict interpretation
of the group theoretic (asymptotic) approach in some instances; spe-
cifically, additional procedural steps may be regquired to produce a
feasible (nonnegative) solution.

A group theoretic scolution procedure is devised which guarantees
an optimal, feasible solution to the fixed-charge transportation problem.
The procedure begins by solving the associated linear program, thereby

establishing an upper bound on the objective of the group problem and




providing information necessary for formulation of the group problem.
Upper bounds are established cn each group variable, and enumeration
proceeds by investigating certain subsets of the variables. Bounding
continues as the search progresses through the subgroups, and as a
better feasible solution is discovered for the group problem, feasibil-

ity is checked in the original problem.



CHAPTER I

INTRODUCTION

PurEose

The purpose of this research is to investigate the underlying
algebraic structures of certain fixed-charge transportation problems.
It is hoped that detailed knowledge of these structures will enable one
to determine inherent characteristics and properties of fixed-charge
transportation problems that can be exploited in solution procedures and
that may provide a more solid basis for choosing among algorithms. (We
will sometimes refer to the fixed-charge transportation prcblem as the

FCTP.)

Objectives
The primary cbjectives of this research are to determine inherent
group theoretic properties of fixed-charge transportation problems and
to specify how these properties may be exploited advantageously in
respect to algorithmic solution procedures. A secondary objective is to
gain experience in the application of group theory to linear decision
models. Fortunately, this secondary objective is satisfied as a natural

consequence of activities directed toward the primary objectives.

Formulation of the Problems

The problem investigated in this dissertation is a special case

of the mixed-integer linear programming problem. Hadley [40] demonstrates




how to convert the fixed-charge problem to an integer programming prob-
lem. The relationships among the fixed-charge transportation problem
and other fixed-charged problems are discussed by Ellwein [251.

The mixed integer problem has the following form:

Minimize clx + ch

(P1) subject to Ax + Ay 2Dh

1

x 2 0, vy 2 0 and integer

A, given matrices of appropri-

b are given vectors and Al, 2

where Cis Sy
ate dimension. Efficient algorithms are yet to be developed for handling
large mixed integer problems., In order to solve large fixed-charge prob-
lems and other special classes of problems, the structure of the specific
problem at hand must be exploited. Thus, we are motivated to focus on

the following problems.

The linear fixed-charge problem [42,65,66] may be stated as fol-

lows:
Minimize cx + fy
(P2) subject to Dx 2 b
-Ix+ My 20
Cy = e

x20,y=0o0rl,



where I is the identity and M a diagonal matrix of upper bounds mj on
the values xj, the compeonents of X. The constraint Cy £ e represents a
limitation on the number of resources (e.g., plants, machines). This
problem exists when a fixed charge is incurred for using an activity at
all; that is, the cost for using activity xj is ijj + fj if Xj > 0 and
is zero if xj = 0.

The fixed-charge transportation problem (FCTP) [4,51,56,64] is a
particular type of linear fixed-charge problem, In this case, we have
a transportation problem in which a fixed charge arises for every route
used, Thus, we have problem (P2) where Dx 2 b are taken to be the

crdinary transportation prcblem constraints and Cy € e is void:

Minimize Z Z o5 5%y5 ¥ 7y £i3V15

13 173
(P3) subject to Z X, . 2 D,, ¥j

ES ]

1 X.. <8, Vi

1]
d
X - g, V(ls])

<
i3 7 Mig¥ig o

"
v
o

v{i,])

0 orl , ¥(i,1)

«
i

where Dj is the demand at destination 7, Si is the supply available at
source i, m; s is the capacity of route (i,3j), j=1,...,n, and

i=1,...,m.




Importance of the Problem

Fixed-charge problems occur widely in business and industry; yet,
only recently have reasonably effective solution methods Leen developed
[19,20,22,25,37,49] to solve, often suboptimally, these problems. The
emphasis to date has been on developing better implicit enumeration
approaches for problems with fixed-charges. These approaches are closely
tied to computing machinery and can be evaluated only by the efficiency
of its application to numerical problems of significance [8]. Unfortu-
nately, research and development along the lines of implicit enumeration
has revealed either little or nothing about the structures of the prob-
lems.,

Problems of public facility location (e.g., hospitals, clinics,
schools), private facility location (e.g., plants, warehouses, banks,
retail outlets), routing with fixed-charges attached to the opening of
routes, product-mix, and other activities that incur set-up or expansion
costs are plentiful, Much work remains before effective, efficient
optimization methods can be developed and applied to these wvarious
fixed-charge problems.

As Spielberg [64] has said of the FCTP (P3): "While the state-
ment of the problem is simple, its practical solution 1s known to offer

great difficulties.”

Scope and Limitations

The research reported herein considers the group structure of the

fixed-charge transportation problem (I'CTP).




Linearity is assumed throughout this investigation except for the
obvious non-linearities created by the fixed charges. It 1s also
assumed that all parameter and coefficient values are known with cer-
tainty.

Recommendations are made for subsequent research based on these

findings.

Organization

Chapter Il presents a general survey of literature pertinent to
the fixed-charge transportation problem and highlights several important
works.

Chapter I1I discusses the basic concepts of group theoretic inte-
ger programming used in the research.

Chapter IV presents an analysis of the group structure of the
fixed-charpge transportation problem, develops several theorems based on
the group structure, and applies these theorems in a group theoretic
solution procedure.

Chapter V concludes the research with a summary of the results
and recommendations for further research.

A summary of the fundamentals of group theory 1s presented in

Appendix A, The remaining appendices report experimental results,




CHAPTER II

THE FIXED-CHARGE TRANSPORTATION PROBLEM

Introduction

The fixed-charge transportation problem (P3)} is a frequently
occurring special type of fixed-charge problem that may pertain in
various settings. The literature dealing directly with the FCTP is
relatively limited; however, a much wider range of publications has been
produced on the more general fixed-charge problem (P2). To develop a
perspective of the problem domain, let us briefly discuss the general
fixed-charge problem, and then focus on the fixed-charge transportation

problemn.

Fixed-Charge Problems

Hirsch and Dantzig presented a fundamental exposition of the
fixed-charge problem in a Rand paper in 1954; this definitive work was
republished as [4#2] in 1968. One of the prominent results reported by
Hirsch and Dantzig is that the fixed-charge cbjective function is con-
cave and that the minimization of a concave functional, defined over a
convex polyhedron, takes on its minimum at an extreme peint, Thus, all
of the metheds developed to solve (P2) are so-called extreme point
methods.

Hadley [40] indicated in 1964 how the fixed-charge problem (P2)

can be written as a mixed-integer program (Pl). The implication was




that any mixed-integer algorithm could be used to solve the problem
exactly, Unfortunately, available mixed integer algorithms are compu-
tationally feasible only for small problems. Hadley's formulation was
followed by a series of attempts by other researchers to obtain exact
solutions to the fixed-charge problem. Most notable among these
activities are the works of Gray [37], Steinberg [65,66], Murty [55],
and Jones and Soland [49].

Gray [37] developed a decomposition algorithm similar to Benders'
algorithm. There are two major differences between Gray's method and
Benders' methed:

1. The Benders algorithm requires the solution of a series of
integer programs whereas Gray's algorithm involves only one integer
program.

2. The Benders algorithm, being a general algorithm, does not
make use of the specific structure of the problem. Gray's algorithm

makes use of the relations of the integer and continuous variables.

Gray reports that his method requires an average of 16 minutes to solve
a 5x7 fixed-charge transportation problem and as much as 22 minutes to
solve a 30-site warehouse location problem.

Steinberg [65,66] presents a branch and bound algorithm and com-
pares the algorithm's computational speed with that of several heuristic
algorithms. The heuristics, which almost always provide very good, if
not optimal, scluticns, are several orders of magnitude faster than
Steinberg's method which requires as much as 47 minutes on an IBM

360/50 to solve a 15x30 problem.




Murty [55] uses the result of Hirsch and Dantzig [42]; i.e., that
the minimum of the fixed-charge problem will occur at an extreme point
of the constraint set. He presents an algorithm for finding the adjacent
extreme points and for searching systematically among these extreme
points for the minimum total cost. Computational results are reported
for Murty's algorithm by Gray [38].

Jones and Soland [49] report a branch and bound algorithm for the
fixed-charge problem with piecewise linear costs. Essentially this is
the problem of incurring fixed-charges at several staggs or levels of
production. The additional fixed charges occur for such things as plant
expansion. Jones and Soland indicate reasonably favorable computational
experience with their method.

A considerable amount of effort has been devoted to developing
computational schemes to generate good, if not optimal, solutiocns to
fixed-charge problems. Cooper and Drebes [19]1, Cooper and Olson [20],
Steinberg [65]1, Walker [69], and Denzler [22] all report good computa-
tional results with their approximate sclution methods.

Cooper and Drebes' [19] approximate method uses adjacent extreme
point methodology. Their computational experience indicates that the
method will yield the optimal solution a high percentage of the time
and, when not optimal, it provides a good approximaticn., There are two
particularly interesting features of the Cooper-Drebes methed:

1. Objective function costs are recalculated at certain stages

in their algorithm as




2., At certain times in the calculation, a vector is chosen to
enter the basis with the least fixed charge of the non-basic variables.
At other times, a vector is chosen to leave with the highest fixed charge
in the basic set and a vector then enters according to simplex rules.

Cooper and Olson [20] build on the work of Cooper and Drebes in
an attempt to improve the approximate methods using basic perturbation
techniques. The Cooper-0Olson perturbation approach is significantly
more effective than the earlier heuristics of Cooper and Drebes accord-
ing to the computational experience reported in [20]. The same test
problems are used in both [19] and [20].

Steinberg [65] and Walker [69] both use the linear progrémming
criterion for a vector to enter the basis. Walker's computational
experience is especially encouraging. Cooper and Drebes [19] randomly
generated 280 - (5x10) fixed charge problems to test their method.
Steinberg presents these problems and their solutions in his thesis
[65]. Walker and Steinberg both use the Cooper-Drebes problems to test
their algorithms (as did Cooper and Olson), and it is on the basis of
experience with this commenly-used problem set that Walker's methods
may be judged superior. In fact, Walker's method determined the optimal
solution to all test problems in relatively fewer iterations than the
other approximate methods. Walker presents a counter-example for his

methods.
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The Fixed-Charge Transportation Problem

Since the fixed-charge transportation problem is a particular
case of the general fixed-charge problem, the approaches discussed above
apply to the FCTP. Additicnally, Kuhn and Baumol [51], Balinski [41,
Spielberg [64], Iwyer (24], and Robers and Cogper [56] have specifically
investigated the FCTP. Kuhn and Baumol [51] deal with the FCTP in
terms of the Navy's periodic redistribution of inventories for over
7,000 different stock items. They present a computationally simple
"forced degeneracy” method that makes small adjustments in the right-
hand side of (P3). Unfortunately, the test problem results reported by
Kuhn and Baumcl indicate that their method may produce a terminal
cbjective function value that is as much as 29 per cent greater than
the true minimum.

Balinski [4] replaces the non-linear fixed-charge cbjective func-
tion with an approximate linear objective function, and solves the re-
sulting problem using the standard transportation algorithm. He also
finds bounds on the optimal exact sclution. Robers and Cooper [56]
refine Balinski's method and preoduce significantly more accurate solu-
tions on test problems reported in [56]; in fact, the Robers-Cooper
method yielded optimal solutions for nearly all problems tested.

Spielberg [64] applies Benders' partitioning procedure to the
fixed-charge transportation problem to cbtain an exact solution, He
reperts that his method, which employs the stopped simplex method and
a branch and bound scheme, 1s effective for problems with less than 150
fixed charges; however, for large problems computational results are

discouraging.,




Dwyer [24] applies his method of completely reduced matrices to
the FCTP. He presents exact and approximate methods for finding the
most degenerate solution for the case of equal fixed charges which are
large compared to variable costs; this most degenerate solution is shown
to be optimal. Dwyer alsc discusses approximate solutions for the case
of unegual fixed charges.

We briefly investigate the work of Balinski [41, Robers and
Cooper [56], Gray [37], and Murty [55] pertinent to the FCTP in the fol-
lowing sections.

Balinski's Approximation Method

Balingki [4] presents an approximation procedure for the fixed-

charge transportation problem based on the following theorems,

Theorem 2.1. Let (F3) be the program (P3) with integer con-

straints ignored. {x..,y..} is a solution to (P3) only if x,, = m,.¥,..
i§°714 ij i3713

The proof of Theorem 2.1 as offered by Balinski proceeds as fol-

lows: Consider (F3). If y.. = 0 then X.. = 0, and thus X,. = m,.y...
ij iy i ij7i]
i v ".< AT V.
Otherwise, suppose yij > 0 and xij mljyi] Then ylj can be decreased

without violating the constraints of (P3) but with a decrease in the
value of the objective function. Thus iij = mij§ij for any solutlon
ﬁij’ §ij to (F3).

Theorem 2.2. There exist solutions {xzj,yzj} to (P3) such that

the xzj are integers.




This theorem follows from the unimodular property of the sub-
matrix of constraint coefficients corresponding to the column vectors
associated with the Xij’ v(i,j).

The approximation procedure is a sequence of three basic steps.

Step 1. Given (P3) derive a problem (P3%) by letting

i
cl, = c.. + = .
ij ij mln(Dj,Si)
Cor s '
Minimize A(PB*) z z cljxlj
11
(P3%) subject to Y x.. <8., Vi
e 1] i
]
I Xi' zD,, V]
A =
x.. 20
1]

Step 2. Find an integer sclution {xij} to (P3%) and its value
APS* by using some transportation problem algorithm.
Step 3. Determine a feasible solution {xﬁj,yﬁj} to (P3) by let-

ting

x%, = x!, and y¥%, =1 1if x!, > O.
1] 1] 1] 1]

Denote the value of the objective funection in (P3) in this case

by K(x%'u’ ,y*) .
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Balinski shows that APS* is a lower bound on the optimal value
for (P3); Aa(x¥*,y*) is an upper bound on the optimal value for (P3).

Robers and Cooper [56] make two relevant observations about
Balinski's method. First, it would seem that the approximation should
be more accurate when there are many more destinations than sources.
Second, it seems that the approximation should become more accurate as
the fixed charges become smaller.

To evaluate Balinski's method, Robers and Cooper used three sta-
tistics: the location index, the error percentage, and the interval
width percentage. Where the exact optimal solution value for (P3) is
denoted by Z¥*, the three statistics of Robers and Ccoper are defined as
follows:

1. The location index (L.I.)

LI = (B%-hg0,)/ (AOxk,y#)-n, )

L.I. measures where Z* falls in the interval [kP Ax#,y®) ],

a%?

2. The error percentage (E.P.)

E.P., = 100 (A(x¥,y%)-2#%) /2%

3. The interval width percentage (I.W.P.)

I.W.P. = 100 (A(x®,y%)-A, ) /2%

P3*

This statistic measures the width of the interval

Ci{x*,y%) A 0 ]s

Pk
The results of the evaluation of Balinski's method by Robers and

Cooper are summarized in the remaining paragraphs of this section.
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The lower bound A is generally well below the value Z* of the

P3%
true solution.

All three statistics tend to increase as fixed charges are made
larger,

The error percentage and interval width percentage both tend to
increase as the problem size increases; fortunately, the statistics do
not increase very rapidly as the problem size increases,

The approximation tends to improve as the ratic of the number of
destinations to the number of sources increases. This is true regard-

less of the magnitude of the fixed charges.

Robers and Cooper Approximation Method

Robers and Cooper [56] extend the method of Balinski by searching
adjacent extreme points of the convex set of feasible sclutions to (P3)
beginning with the solution produced by Balinski's method. This proce-
dure is based on a theorem by Balinski which, in turn, is a special
case of a theorem due tc Hirsch and Dantzig [42]., The thecrem stated

by Balinski is now given,

Theorem 2.3. Any sclution {xgj’y?j} to (P3) is a vertex of the
polyhedral convex constraint set of (P3) {the program (P3) with integer

constraints ignored).

The method of Robers and Cooper may be summarized as the follow-
ing step-wise procedure.
Step 1. Find the solution {xij} by Balinski's approximation

methed, Call this the current solution.
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Step Z. Calculate all of the zij—cij for the current soluticn.

Step 3. Consider individually the variables not presently in

the basis and find the change in cost if each is allowed to become pos-

itive. This is accomplished as follows:

a.

Determine the basic loop involving each non-basic variable
1

LS

Find the smallest element x&v in the loop which decreases

as xét increases. If more than one vector satisfies this

condition, go to e.

Compute

) -f + £

- . - 1
A (z xuv uv st

st st Cst
where Ast is the increase (decrease if negative) in the

value of the objective function which would result if x&v

were replaced by Xét'

Determine

Amin = mln{ast}

over all AS calculated for the non-basic variables. If

t
A ., < 0, the variable x__ which yielded A_ . is allowed to
min st min
enter the basis to produce a new current solution which we
again denote {x!.}; return to 2, If 4_, 2 0, terminate
1j min

with the current solution {xij} being the best solution

available by means of this algoprithm.

If a tie exists among k variables (which we can, for con-

venience, denote by xﬁq,x&v,...) we would compute
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e ' ~-f - Ff - ...+ F

i = - -
(zst st’ uv Pq uv st

st
where we subtract the k fixed costs associated with the

k basic variables which are tied. Go to d.

Computational experience reported by Robers and Cooper is
encouraging for two reasons. TFirst, all but two of the 280 experimental
problems designed by Robers and Cooper were optimized by their method;
second, their experience seems to indicate that fixed-charge transpor-
tation problems are well behaved at least in the neighborhood of the
optimal solution.

According to Robers and Cooper the average computation time for
the 280 experimental problems was one minute per problem on the IBM

7072. These 280 problems were of the following sizes:

14 8 6 5
14 24 30 35

Number of Sources
Number of Destinations

Number of Problems Solved
Numbexr of Optimal Sclutions

40 180 4O 40
39 160 4o 39

It is interesting that, while Robers and Cooper had solved 11
28x28 problems and 5 48x48 problems by Balinski's method, they indicate
they did not solve the larger problems by their method '"because the
computation time would have been excessive,"

Gray's Exact Solution Method

Gray [37] presents an algorithm that searches systematically

among the extreme points defined by the fixed charges and iteratively
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decreases the maximum allowable fixed cost. Gray's algorithm may be
summnarized as follows:

Step 1. Solve problem (P3) by Balinski's approximation method to
determine A(x¥*,y*), the upper bound on the solution value as defined
earlier. Solve the assoclated transportation problem [(PB) ignoring
fixed costs and setting all yij=l] to determine what Gray calls CX s the
minimum variable cost., An upper bound on the total fixed charge may now
be obtained as FMAX = M(x¥,y*) - cx_, i.e., FMAX = z Z £5yy45 and this
relation is used as a constraint in the problem. "

Step 2. Generate y vectors (0,1 elements) that satisfy the con-

ijyij as well as the following conditions:

dition FMAX 2 ) ) f
i]
a. At least n and at most mtn-1 of the fixed-charge variables
(y) are equal to 1, and the others are equal to zero {(where

number of destinations). We

m = number of sources, n

might write this as

1A

n s Z Z yggsmtn- L,
J

yij =0 orl, ¥Yi,j. Further, we may write

to assure at least one route being open to each destination.

m
b. } S.y..=2D,, Vj where S, denotes currently available
12, 1743 3 i
supplies at source i; i.e., available supply through open

routes must be greater than or equal to demand at the

respective destinations.
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Step 3. Solve the transportation problem with unit costs for
closed routes set equal to M (some very large number). If total cost
is better than any found so far, store the result and return to 1 to
compute a new upper bound FMAX; otherwise, return to 2,

The algorithm terminates when no new 0-1 vectors can be found in
Step 2., The optimal solution is the lowest total cost solution found
during the computations.

Gray indicates on page 86 of [37] that his algorithm works well
for problems of size up to 6x8.

Murty's Exact Solution Method

Murty [55] describes a method that searches systematically among
the extreme points of the transportation subproblems and iteratively
decreases the maximum allowable variable cost. Essentially, Murty uses
an adjacent extreme point method (that initializes at the solution with
value cx, as defined in conjunction with Gray's Method) to generate
extreme points of the convex constraint set for the transportation prob-
lem in "rank order"; i.e., in increasing order of Z Z cijxij'

As the rth extreme point is generated, the iaiiable cost Zr and

the fixed cost Dr are calculated and used to calculate the following

quantities:

§ = min {Zk—Zl+Dk-DO}
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where D = min D .
o k
k
Optimality is recognized when

and the best current sclution must be optimal.

Gray [37] indicates that his algorithm seems to be particularly
suitable when the fixed costs are larger compared to the variable costs,
whereas the Murty algorithm seems to be more suitable for large variable

and small fixed costs.

Concluding Remarks

Gray (37,38], Murty [55], and Spielberg [64] have presented exact
solution methods for the fixed-charge transportation problem. Gray
reports satisfactory experience with his algorithm for problems up to
6x8 in size. Murty's method appears to be similarly limited according
to the results reported in [38]. According to [8, page 261 Spielberg's
experience with Benders' method indicated that particular approach is
not effective for more than, say, 150 fixed charges (routes).

No one has specifically used group theory in his analysis of
the fixed-charge transportation problem. The regularity of the problem
structure has been exploited, but the underlying group structures have
never been thoroughly investigated, as far as is known. Perhaps the
reason for this will be made clear in Chapter IV when we see that cne
of the primary '"measures of attractiveness" for a problem in respect

to group theory is, in some cases, misleading; that is, the order of the




group is usually quite large. It is conjectured that this fact has
deterred researchers from using a group theoretic approach to explore

the FCTP and other fixed-charge problems,
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CHAPTER III

GROUP THEORETIC INTEGER PROGRAMMING

Introduction

The purpose of this chapter is to present some of the defini-
tions, concepts, and theorems from group theoretic integer programming
relevant to this research. A summary of the fundamentals of group
theory is presented in Appendix A, Most of the material presented in
this chapter is based on Gomory's asymptotic theory [33,34,35].

Balinski and Spielberg [8] partition integer programming methods
into three main areas; these three areas are identified as algebraic,
combinatorial, and implicitly enumerative, We might add approximative
or heuristic methods as a fourth area. Group thecretic integer program-
ming metheds generally are classified as algebraic and have their origin
in Gomory's cutting-plane work during the late 1950's. A thorough re-
view of the evolution of algebraic (and other) approaches to integer
programming is given by Balinski {6,7] and Balinski and Spielberg [8].
Paralleling [8], Eu places particular emphasis on group theoretic
methods in his textbook [46]. We shall now discuss Gomory's concept of
applying group theory to the integer programming problem.

Fundamental Methodologl

Consider the linear integer program
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Maximize =z = ¢x

I
o

(Pu) subject to Ax

X z 0, inteper

We proceed to solve (P4) by first solving the linear program
associated with (P4); that is, we ignore the integrality constraint.
The optimal L.P. solution is found to be x, = B™1p, x¢ = 0, with basis
matrix B, non-basis matrix N, and value z = Cg¥p If Xy is not integer,
we see that Xy must be increased to some nonnegative integer vector
x§ so that x% = B_lb - B_le§ also is integer and nonnegative,

Suppose rank A = m. Let A = [B,N] where B is mxm of rank m and

N is mxn. Let ¢ = (CB,cN) and x = (XB,XN). Then (P4) becomes

Maximize CBXB + CNXN
subject to BxB + NxN =b

Xg o ¥y 2 0, integers.

Let M(I) be the module of all integer m-vectors and M(B) be the
module of integer multiples of the columns of B. Let G be a factor
group such that G = M(I)/M(B),

Let ¢ be the natural homomorphism of M(I) -+ M(I)/M(B). Since

. -1
Ax = b or [B,N]Jx = b, it follows that BxB + NxN = b and Xy + B NxN =

B_lb where Xy 1s now restricted to be integer-valued. Since ¢ is a
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homemorphism, it follows that ¢(BxB) + ¢(NxN) = ¢(b). BxB € Ker ¢ so

$(x ) = ¢(b). Let N = [aj,...,a J. Then $(Loy,en s Ix) = ¢(§ ajxj) =
z ¢(aj)xj = ¢(b). Let ¢(uj) = gj; ¢p{b) = g, Then the condition Ax = b

]
is equivalent to

= . 1
Lo e, w

It is possible that some of the g's are equal; i.e., ¢(ai) =

¢(aj) (i#j). Let the set of images of all non-basic column vectors be

1A

the set n. Let n' = [n] | det B‘. If gen let t{g) = z xj where

jed
= {j]¢(aj)=g}. Let t be the vector whose coordinates are the t(g).

Then (1) is equivalent to

E t{gl+g = g, -
gen

Since Bx + NxN = b, it follows that x + B"leN = B-lb, and that

_ B P
cp¥p t ooy = o B lb (c N e )xN Hence, maximizing CpXp T CyXy is
~1

. LU U . % %= -
equivalent to minimizing CHXy where S CBB N oy

Let c*(g) = min c%, Vj3¢(aj) = g. Then it follows that minimiz-

]
ing CﬁxN subject to B:u:.B + NxN = b, Xy 2 0, integer, is equivalent to
Minimize )} c%(g)t(g)
gen
(P5) subject to ) t(g)eg = g,
gen

t(g) 2 0, integers




EXAMPLE: Consider the problem

.. +
Maximize xl 5x2

subject to Mxl + X, < 2

5xl + le2 <9

X z 0, integers,

which we put in the form of problem (P4) as follows:

Maximize X, + 5%

1 2
(1) subject to Hxl %, t s =2
5xl + 15x2 + S, = 9

x z 0, integers,

Solving the assoclated L.P. of (I) we find

8 7/5 1 1 4
X = H o= B_lb = sy B = sy N =
X, 3/5 o 15 5
[ -anf 55/15 -1/13
Bt = , BN =

0 1/15 5/15 1/15

24




10/15 14/15 6/1
¢B'1N = , ¢B lb = ,
5/15 1/15 9/15
o -1 - =
= cpB N ey = [10/15 5/151,

D = |det B| = 15,

We now have the group problem

Minimize 10/15 tl + 5/15 t2

10/15 14/15 6/15
(II) subject to t. + . =

sis) Y Laas] 2 esis

t =z 0, integers,

10/15
Thus, g, = » d, = order of g. = 3,
1 5/15 1 1
14/15
g, = » d, = order of g, = 15,
2 1/15 2 2
8/15
g, = s do = order of g, = 5.

9/15
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As we will see, there are only two irreducible feasible solutions

to (II); they are

and

where the latter is optimal.

Thus,

and it follows that

This is a 'non-asymptotic'" problem as defined by Gomory [33]; that is,
xg $ 0. In such a case, we must search back through the set of feasible
solutions, beginning with the "next best" solution. Ohvicusly in our
present example, there is only one other feasible solution; that is,

Xy = Eﬂ which produces xﬁ = Eﬂ which is feasible and, therefore, the

optimal solutien to problem (I) is x; = 0, x, = 0.
Gomory has given a sufficient condition for the asymptotic case
to prevail; that is, for x% =2 0. This condition 1s stated as Theorem

3.1,
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Theorem 3.1. Let K; = {le_ly 2 0}, and let KB(d) be the cone
of peints in Ky at a euclidean distance of d or more from the frontier
of KB. Further, let D = [det B| and let Rmax be the (euclidean} length
of the longest nonbasic column of A. If be KB[RmaX(D—l)], then any

optimal solution to (P5) is a feasible (hence optimal) solution to (Pu4).

This condition is not necessary for an asymptotic solution to

occur; since it is not a particularly tight condition, we would expect

an optimal solution to (P5) to solve (P4) often, even for right-hand
sides that dc not satisfy the condition. In a recent paper [1], Balas
has dealt with the applicability of Theorem 3.1 to the (-1 integer
program. His conclusion is somewhat startling: Not only can the right-
hand side vector of a2 0-1 problem never belong to the cone
KB[RmaX(D-l)], but it cannot even belong to a cone obtained from the
latter by replacing Emax(D-l), a number larger than the determinant of
B, by any number greater than 1. Balas' conclusion is stated as

Theorem 3.2.
Theorem 3.2, If (P4) is a 0-1 program, b 4 K(d) whenever d > 1.

Balas presents a proof of Theorem 3.2 in [1]. He makes clear
that Theorem 3.2 does not mean that group theory is irrelevant for the
0-1 case for, in spite of the theorem, an optimal solution to (P5) may
still turn out to be feasible for the initial 0~1 program.

Let us now identify G and n in problem (I). Referring to our

1/15
4/1

notation in Appendix A, we see that G = gp(gz) = gp [?4/1?] ; i.e., G
5 .
l/l; . We may write G as

is a cyclic group generated by 8y = [?
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14/15 13/15 12/15 0
G = (2,528,538, 0+,158,) = s senvs .
2 2 2 2 1/15 2/15 3/15 0

_ 10/1 14/1 .
On the other hand, n = |:5/l:l l:l/lS:' with n lnl

The convex hull of integer solutions to (P4) is denoted PX; the
convex hull of integer solutions to (P5) is denoted by Pn. Pn is a
convex cone in n'-space. There is a point t of Pn associated with any
point (xB,xN) of Px such that the following conditions hold:

1. (XB,XN) is a vertex of Px¢=9 the corresponding t is a

vertex of Pn;

2. ) ;jxj 2 Eo is an (n-1)-dimensional face (hyperplane) of
j=1
Px<=$ z m(git(g) = s is an (n'-l})-dimensional face of Pﬂ’ where
gen

m(g) = §j for g = ¢aj;
3. if t% is a vertex of Pn minimizing ) <*(g)t(g), then the
corresponding vertex x® = (xﬁ,xﬁ) of Px solvesgigu) (except possibly
xﬁ % 0) vwhere xﬁ is defined as follows: xﬁ = t(g)* for exactly one k
satisfying & = min{cj|¢dj=g}, x? = 0 otherwise; and XB B_lb - B_leﬁ.
Thus, we realize that we may confine our investigation to Pn and
minimization over Pn. The conditions listed above tell us that the
extreme points or vertices of Pn constitute the set of possible solu-
tions to (P4) and that the faces of P s given by I m(g)t(g) 2 T s Pro-
vide valid inequalities or cuts for (P4). We maygiglte the following
theorem.
Theorem 3.3, z m(gl)t{g) 21 > 0 is a face of P_ <= g =
- gen o n

[ﬂ(gl),...,n(gn‘)) is a basic feasible solution to E m(glt(g) 2 ﬂo
gen
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for all teT where T = {tl Z gtlg) = g, t(g) 2 0, integer , i.e., T is
the set of all nonnegatinggntEger solutions to (P5).
Theorem 3.3 is proved in [35]. Note that T contains an infinite
nunmber of points; this may seem to diminish the worth of Theorem 3.3.
However, let us proceed to the following definition and theorems.
Definition. An integer point t of Pn is Zrreducible if for any
set of integers s{g) and r(g) the conditions 0 =< s(g) s t(g),

s(g) for all

1

05 r(g) < tlg), and Y s(g)rg= ] r(g)eg imply r(g)
gen 2en
gen.

Theorem 3,4. Every vertex of Pn is irreducible.

Theorem 3.5. If t 2 0 is irreducible, then 1 (1+t(g)) s D
geN ‘
where D is the order of the group G.

Corellary 3.1. If t is an irreducible point of Pn, then

Y t(g) s D - 1.
gen

Theorems 3.4 and 3.5 and Corollary 3.1 are proved in [35]. These
theorems place an upper bound on the number of meaningful components of
T defined in Theorem 3.3; that is, there are only a finite number of
elements of T that are irreducible, and all other elements of T are
superflucus in the sense of Theorem 3.5 and Corollary 3.1. We may note
one other fact in this regard. ZEach component t(g) has an upper bound

lg] - 1, where Ig] denotes the order of the group element g.

Theorem 3.6. t(g) < |g| for all gen.




*g = 0, where 0 is the identity of G.

Proof. We know that |g
Any t(g) = |g] is equivalent to some t(g) < |g| in respect to the group
relation Z tig)-g = g, and in respect to the inequality z m(gltlg) 2

EEN gen
wo. That is, t(g)+g = [t(g)+‘g|]'g mod|g|.
The group G has been defined as G = M(I)/M(B) and is isomorphic

to the direct sum of cyclic subgroups Gl""’Gr such that

G = M(I)/M(B) = G.® ... 8G_ = zq & ... ezq .
1 r
Gomory [35] uses this isomorphic relationship in conjunction with
a result produced over 100 years ago (in 1861) by Smith [63]; Smith's

result is given as follows:

Theorem 3.7. Given a nonsingular nxn integer matrix B, there

exist nxn unimodular matrices R and C such that § = RBC is a diagonal

e

matrix with positive diagonal elements such that qll|q22

Gomory shows that the diagonal elements qll’q22""’qnn of the
matrix 8 (called the "Smith Normal Matrix") corresponding to the optimal
basis B are the orders of the corresponding cyclic subgroups Gl""’Gn'
This result is developed in [35] and [46] and is one of the primary com-
ponents of the foundation of group theoretic integer programming.

One of the immediate consequences of the above result is that
(P5) may be rewritten as follows:

Beginning with the problem in the form
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. s - -1
Maximize cBB lh + (cN-cBB N)xN
subject to B:v:B + NxN =b

Ko Xy 2z 0 and integer,

the Smith Nermal Matrix, S, is calculated according to Theorem 3.7 such

that S = RB(C;

quQ
O 4

where q; > 0, Vi, and qllqzl...|qm. Dropping the nonnegativity con-

straint on g (as we did earlier) and premultiplying the constraint by

the matrix R the problem becomes

. . - '..
Maximize cBB lb - cﬁxN
subject to RBxB + RNxN = Rb

X

B integer, Xy 2 0 and integer

-1
% = -
where cN cBB N ey as before.

Dropping the constant term ¢ B-lb, we may write

B
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Minimize cﬁxN
{P5) subject to (RN mod S.l}xN = {Rb mod S.1l}mod S.1
2y 2 0 and integer,

where

and {mod S.1} implies that the ith row is taken modulo q; and where we

have recognized that

(RBxB)mod S.1 (RBCyB)mod S.1

(SyB)mod S.1

.where Vg ¥ C Xp
We write (P6) in terms of t(g) = } Xy where J = {le(uj)mod S.1=
jed
g}y the result is problem (P5) (as stated earlier):
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(P5) Minimize Z c(g)tlg)
gen

subject to § tlglg =g
gen

Q

t{g) =2 0, integers.

EXAMPLE: 1In our earlier example we found B = E; lg]' The equivalent
. s s . 1 0 1 0
Smith Normal Matrix is simply S = 0 15 where R = a1 and

_ 11 -1 - ~ v s s
C = [; ;]. Thus, G = GlQG15 = ZIQZlS, and we have the group minimi

zatiocn problem,

Minimize lO/lStl + S/lSt2

. 4 0 N
subject to [:SJtl + [l]tQ = E)j
tl,t2 > 0, integer

or equivalently,

Minimize 10/151:l + 5/15¢
subject to 5t. + lt, = 9

1 2

tl,t2 2 0, integer.

Group Minimization Algorithms

Several algorithms have been presented in the literature for
solving the group minimization problem (P5). Gomory developed a dynamic

programming algorithm in [35] that is discussed by Balinski and
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Spielberg [ 8], Kortanek and Jeroslow [50], and Hu [H6]; Gomory's basic
method is extended by White in [70]. Hu presents ancther algorithm in
[45] and indicates that, whereas Gomory's algorithm entails 2D2 to 4D2
operations, Hu's methcd never requires more than 2D2 operations. Fewer
memory locations are needed for Hu's method than for Gomory's method,
and it i1s sometimes pessible to truncate computation early in Hu's
algorithm. An interesting feature of both algorithms is that (P5) is
solved for all possible right-hand sides.

As i1llustrated earlier in this chapter, the optimal solution to
the group minimization problem will not always produce a feasible solu-
tion to the original problem; i.e., for some xﬁ,xg 3 0. White's algo-
rithm is motivated by this fact. His algorithm not only produces
optimal solutions for the group minimization problem, but second, third,
and in general "rth best' solutions. The first of these solutions that
is feasible for the general problem is optimal. This feature proves to
be particularly necessary for some fixed-charge transportation prcblems.

Shapiro has presented several methods for solving the group prob-
lem. The algorithms presented in [59] and [60] proceed along the lines
of dynamic programming until an optimal solution occurs for the group
procblem (P5). If this optimal solution yields an infeasible integer
solution to (Pl), a search procedure is used to find a feasible optimal
solution.

Three of Shapirc's advisees at M.I.T. have written theses on
group-theory related topics. Baxter [9] attempted to combine group

theoretic methods with the branch and bound algerithm of Little,
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et al. [52] for the traveling salesman problem. Thiriez [67] takes
advantage of small-ordered groups in the set-covering problem in an
application of group theory to the airline crew scheduling problem.
Wolsey [8] develops a method for mixed integer programs.

Shapire shows in [61] that the generalized linear programming
approach of Brooks and Geoffrion [17] for estimating generalized
LaGrange multipliers is almost algorithmically equivalent to Gomory's
cutting-plane method., These two methods can be combined to produce a
single cut which can be shown to be stronger in a cost sense than the
combination of all the cuts suggested by Gomory in [35]. A primary
feature of Shapiro's algorithmic procedures based on generalized
LaGrange multipliers is that the faces of the integer polyhedron Px are
implicitly considered as constraints. As such the multipliers are an
improvement over the generalized LaGrange multiplier methods based
strictly on linear programming solutions of (Pl). Unfortunately, this
particular method does not guarantee an optimal solution will be found
and identified.

Gorry and Shapiro [36] exploit two main ideas: (1) that a wide
variety of existing metheds for integer programming can be analyzed and
compared from the common viewpoint of group theory, and (2) that an
adaptive integer programming algorithm should be controlled by a super-
visor which performs four main functions: set-up, directed search, sub-~
problem analysis, and prognesis. The set-up function of the supervisor
attempts to structure a given problem during the early stages of compu-

tation that the methods to be applied will be more effective. These
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methods include group optimization, cutting plane, surrogate constralint,
LaGrangian, and search metheds. If some type of enumeration is re-
quired, then the directed search function guides the search and, at each
computational stage, selects the most promising subproblem to be ana-
lyzed. The subproblem analysis function selects a sequence of analytic
methods to be applied to a selected subpreblem. Finally, the prognosis
function maintains upper and lower bounds on the cost of an optimal
solution and recommends termination when the predicted change in the
cbjective function as a result of additional computation is marginal.
The supervisor of the adaptive algorithm makes decisions primarily on
the basis of structural insights derived from the group theoretic
approach. Encouraging computational experience 1s reported by Gorry
and Shapiro,

Gorry and Shapiro recognize in [36] at least part of a fundamental
idea that appears to promise significant gains in integer programming
methodology: that there is an equivalence among many seemingly differ-
ent integer programming problems and methods. Shapiro devotes reference
[62] to what he calls cost-equivalent group problems; he discusses
Gomory's fundamental concept that for a certain class of integer program-
ming problems, the original integer problem has at least one optimal
solution in common with a group problem. Gomery refers to these integer
problems as asymptotic integer programs; Shapiro prefers to call them
steady-state integer programs. The original integer programming problem
is said to be cost-equivalent to the group problem. Shapiro shows that
there are cost equivalent group prcblems for all integer programming

problems,




37

Bradley makes considerable inroads into the idea of equivalence
in [[11] and [12]. He shows that every integer programming problem is
equivalent to infinitely many other integer programming problems. The
solution to any one problem in this equivalence class is sufficient to
determine the solution tec every other problem in the class; every prob-
lem in the class may be constructed from the original problem. Given
any integer programming problem, Bradley shows that it is always possible
to construct an equivalent problem that will be, in general, easier to
solve than the original problem,

Glover [29] presents an implicit enumeration algorithm for solv-
ing (P5)}. Computational experience reported by Glover 1s encouraging.
Glover and Litzler [30] develop an extension of Glover's algorithm for
the general all-integer programming problem.

Glover and Devine [23] extend the work of Gomory [34] by develop-
ing a method for generating a subclass of the faces of the polyhedron
Pn; faces in this subelass are called nested faces.

The most recent work of Johnson and Gomory [48] extends the
asymptotic theory, advanced in [35] for all-integer problems, to mixed-
integer programming problems. This should prove particularly helpful
for fixed-charge problems (other than the fixed-charge transportation

problem which is essentially all-integer).

Concludigs_Remarks

We have seen that an all-integer problem (P4) can be solved by
Gomory's group theoretic (asymptotic) method using any one of several

algorithms currently available or by one of the extensions of Gomory's
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methed. We note that non-prime ordered groups may be decomposed into
the direct sum of r cyclic subgroups, and the resulting r subproblems
solved to find the sclution to the original problem. The construction
of the Smith Normal Matrix corresponding to the optimum L.P., basis will
give the orders of the subgroups and may be used to establish problem
(P5).

No one has specifically applied group theoretic approaches to
fixed-charge problems, although we note that Wolsey [72] incidentally
indicates the subgroup structure for two fixed-charge problems., The
mixed-integer structures of fixed-charge problems in general should
make them prime applications for the recently developed theory of
Gomory and Johnson [261. The inherent all-integer structurg of the
fizxed-charge transportaticn problem makes it amenable to most of the

general theory of group theoretic integer programming.
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CHAPTER IV

GROUP THEORETIC STRUCTURES IN THE

FIXED-CHARGE TRANSPORTATICN PROBLEM

Introduction

In this chapter, we investigate the structures of the coefficient
matrix of the FCTP and the corresponding group minimization problem. It
is shown that the route capacities may be set such that the order of the
subgroups is bounded from above by max{min(Dj,Si)}, ¥(i,j), where Dj is
the demand at destination j and Siis the supply available from source i.
Components of the group elements are restricted to certain values (0,1,-1),
interrelationships among the FCTP variables are preserved in the group
problem, and group equivalence and dominance properties are discovered.
It is found that the yij(O—l)variables are never represented explicitly
in the group problem. A group theoretic solution procedure is pre-
sented. Applying group theory to the integer subprcblem in Benders Par-
titioning Procedure is investigated; the unpartitioned problem proves to
be more susceptible to the group theoretic approach than does the

Benders problem.

Matrix Structures

We investigate the structures of the coefficient matrices of the
FCTP when solved as an unpartitioned problem and when solved by Bender's
partitioning procedure. The fundamental characteristics of the related

group problems are reported.
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The Unpartitioned Problem

We rearrange (P3) slightly to conform with the formulation used

in the experiments that follow.

Minimize z Z C,.X,., * Z E f,.y..
s 1] 13 13 13

ij
subject to Z K., 2D,, Vj
;1] ]
i
' <
(P3") Z %, <., Vi
J
- = i
i + mijyij z 0, V(i,j)

X.os¥V.. 2 0, y.j =0 or 1, ¥(i,i)

Subtracting surplus and adding slack variables, we may write the

coefficient matrix of (P3') as follows:

nXn | " nxn | | “nxn | | nxn | nXmI
1xn 1xn 1xn | | | |
O1xn | Eixn | "77 | T1ixn : 0(n+m)><mn : Omxn : L oxm : 0(m+n)xmn
~T_T—f_hf—hf_l [ | I
: I: : n' Lo | i !
"“%““ﬁ“%““" | | |
aae I |
len | len | | Elxn| | I i
R E N B B . IO N SR
j TM T I
mILXmn | “mnxmn [ mnx{n+m) | ~“mnxmn
L i | | -

where n = the number of destinations, m = the number of sources,
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E denotes a matrix of 1l's, and M is a diagonal matrix whose diagonal
elements are the route capacities (mij).

This is obviously a very sparse, block-angular matrix containing
p elements, where p = (mnt+m+n)(3mn+m+n), only mn of which are not 0, 1,
or -1. These mn elements are the diagonzl elements mij of the submatrix
anxmn' The number ¢f non-zeroc elements in the coefficient matrix of
{P3') is ¢ = 5un + m + n. We may calculate the density of the matrix as

q/p. Figure 1 illustrates a coefficient matrix for the FCTP where there

are two sources and three destinations.
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Figure 1. Coefficient Matrix for a 2x3 FCTP

Let us partition this matrix (which we denote as A) as A = [Al,AQ,ASJ

where

| [ I
I xn I Inxn | ot | Inxn
IR B e I
£ XTi ! len o0 len
- - -
- 0 X1 | Ean Lttt Oan
Al - - T--"—"=|-"——|=-—-
P e
—_— A s
I l L I
R I L B e
L - mnxmn _




L2

_ = | | —
O(n+m)><mn _Ian i OnXm |
A7 |—— —— — — and A,z |l-——d—— — - —

2 ? 3 o I O(m+n)><mn

MnXmn mxn o Tmxm |

_________ ]_:*____._.__

mnx{n+m) 1 mnxmn
— f —_

Suppose {P3') were solved as a linear programming problem where
the integer restrictions on yij ¥(i,j) has been removed.l The basic var-
iables, Yy» are not necessarily integers. We know that at least n of

are positive since at least one route must be open to each

the yijeyB

destination. Further, we may have some slack or surplus variables in
the optimal LP basis; we will denote these basic slack and surplus vari-

ables as Sp SO that the basis is composed of column vectors correspond-

ing to [x SB}.Q Figure 2 illustrates a basis for the coefficient

B’yB!

matrix that was given in Figure 1,

1_ 0 0 _0_0 0 qa_ 0 o 0o 0|
0 0 ¢ 0 0 0 0 ] 0 1 0
60 1 0 0 0 n ] 0 0 N
L | R’ RS S E-A
1l 0o 1 0 0 0 o O o 1 O
0 0.0 0 e 32 h 0 o o0 A4
9 6 0 0 O 0 27 0 0 0 0
0 25 0 0 0 0 n "X 0 0 1]
=l 6 o0 0 0 0 g 0 92 0 O
00 0 0 27T 0 a0 4§ oL
0 0 <1 0 0 0 o 0.0 0 25

Figure 2. A Basis Matrix for a 2x3 FCTP

lOne can easily show that y;; < 1, ¥(i,j), in the LP solution,
See, for example, Theorem 2.1 on page 1l of this thesis.

2Note that vectors corresponding to artificial variables in the
basis at the zerc level may be removed from the optimal LF basis by
interchanging those vectors with the vectors associated with the appro-
priate slack or surplus variables.
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Thus we see that the elements of B will belong exclusively to the
set {O,l,—l,mij} where, in fact, the mij are exclusively elements of the
columns corresrvonding to Vg The determinant of B, therefore, gains
magnitude predominantly due to the mijeB. When we consider the related
group prcblem in terms of its group G, we recall from Chapter III that
the order of the group, D = [G], is equal to the absolute value of the

determinant of Bj i.e., D = |det B|.

Theorem 4.1. In the FCTP with optimal LP basis B, ldet B| =

Proof. By structure of the coefficient matrix A, the mijeB are

located independently; i.e., in different columns and rows,

{m

P = .. z z . - -
pg’mrs’ ’mvw} {mljeB} where pzr =z v, q # s # w, etc. Conse

quently, cofactor expansion of B will not eliminate any mijeB from

consideration.

Begin cofactor expansion about the columns corresponding to Vg3

O(n+m)><mn

i.e., about the cclumns in submatrix A2 = | . A typical
M XD
column of A2 is of the form
0
0
m < (i+m+n)th row

O e O e




Ly

where mij is the (i+m+n)th element, and the remaining elements of the
column are zeroes.

Consider what happens as we initiate the cofactor expansion about
the column corresponding to some yijey

B:

i+m+n+]
] m '

det B ..B]! .
ij i+m+n,]

1
<

+ ...+ 0+ (-1)

i+mtn+) )
ii7i+m+n,3’

(-1)

where Biﬂ dencotes the minor found by deleting row k and column & of B.
Let the minor that remains (after expanding about the p cclumns
of A2 in B) be denoted as BP. We know that BP # 0 since B is, by defi-

nition, nonsingular. Further, we see that the columns of the matrix

associated with gP are members of either A, or of A, and A

1 1 35 thus,

bEje{O,l,-l} where b?j denotes an element of the matrix associated with
the minor BP. We now need to show that the absclute value of BP is one,

and Theorem 4.1 will be proved since we have |det BI = I mi.BP.

m,.eB
1]
There are two fundamental cases that might exist at this peint;

Wwe enumerate them as follows:

Case I. The matrix associated with BP contains only rows corre-
sponding tc the transportation problem portion of the FCTP; i.e. the
remaining matrix contains only rows corresponding to the constraints

E xij 2 Dj’ ¥j, and z xij < Si’ ¥i. It is well known that this matrix
i i
is unimecdular and nonsingular; therefore, |BP| = 1.
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Case II. The matrix associated with BY contains rows described
in Case I plus a portion of one or more rows from rows mtnt+l through
m+n+mn of the basis; i.e., we have rows pertaining to the "transporta-
tion problem portion" of the basis and a portion of one or more rows

from the submatrix

mnxmn mnxXmn

where the portion of the M submatrix in B was removed by the cofactor

OmnX(n+m)

expansion. It is likely that some of the -1 elements in the above sub-
matrix were removed by the cofactor expansion about the mijeB. We now
show that cofactor expansien about certain of the remaining -1 elements
in the matrix associated with BP will reduce this case to Case I; i.e.,
Wwe can reduce the matrix of Case II to the matrix pertaining to the
transportation problem portion of the basis.

The two submatrices of interest are both derived from the sub-
matrices of the form -Imnan' There are three possibilities at this
point; all three or a subset could occur simultaneously:

(i) the only nonzerc element is a -1 from the right-hand -I
submatrix;

(ii) the only nonzero element is a -1 from the left-hand -I
submatrix;
(iii) there are two -1 elements in a particular row, one -1 from

each of the -I submatrices. In case (iii), we expand about the column

containing the right-hand -1 element since the only nonzeroc element in
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this column is the -1 (by construction of the coefficient matrix). This
leaves the single -1 element in the row of interest, and we handle this
as described earlier in this paragraph. Thus, Case II reduces to Case
I, and |BP| = 1; therefore, Theorem %#.,1 is true.

The effect of Theorem 4.1 would appear devastating to any attempt
to use group theoretic integer programming for the FCTP in most cases.
The corresponding group problem (P5), where components of the group
elements are of the form n/D, will probably be computationally infeasible
since the methods for solving (P5) typically reguire from 2D2 operations
(in the case of Hu's algorithm [45]) to 4D operations (in case of
Gomory's algorithm [35]). The decomposed group prcblem (P5) will often
be computationally unattractive because the largest-ordered subgroup
will exhibit very large order. This is illustrated by some experimental
results for the (very small) FCTP with two sources and three destina-

tions with supplies and demands as shown in Table 1. The orders of the
subgroups as well as the order of the complete group would seem to pre-

clude direct application of group thecretic methods. We will return to

this peint in subsequent sections.

Table 1. Representative Subgroup and Group Orders

Demands

Supplies at Sgﬁg:ﬁ:p Group
Problem at Source Destination > Order
Number T 2 T 2 3 %4 D
60 B0 32 27 25 21600 21600

95 75 50 33 28 66,23100 1524600
150 200 103 122 35 103,439810 45300430
150 175 15 122 71 129930 129930
200 175 155 122 71 155,1342610 208104550
150 125 55 " 22 71 11,7810 85910

MU E W R
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Motivated by the evidence of experimental results shown in Table
1 and by Thecrem 4.1, we turn to Bender's Partitioning Procedure with
the clear hope that the partitioned problem structure may be more
amenable to the group theoretic appreach.

Bender's Partitioned Prcblem

We noted in the previcus section that the unpartitioned FCTP has
a very simple coefficient matrix structure; in fact, the only elements
of the coefficient matrix that are not 0, 1, or -1 are the mij's. We
have a considerably different situation in the case of the problem par-

titioned by Bender's method. In Bender's procedure we have the integer

subproblem

Minimize =2

(P7) subject to z = fy + ﬁl(b—Azy)

z 2z fy + ﬁk(b-AQY)

vi,

~1
]
.
"
l_J

as described in [10], [64] and Appendix C of this thesis, where f is the

vector of fixed charges, A, is the matrix of cocefficients for y in (P3');

i.e.,
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O(n+m)xmn

ﬁi is a vector of dual variables corresponding to the transportation
problem that results from opening a certain (2th) subset of the routes
and ignoring all fixed charges, and z yij > 1, Vj, implies that at least
cne route must De open to each destination.

We see that E(b—Azy) has the following form:

u(b—Azy) - [ul’uQ""’utrH—n-i»mn:| )
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- - i S,m..-
(u)Dy+u Dotewetu Domuy 181780005, Urmtm? *

L & =
un+m+lmllyll un+m+mnmmnymn

K+L5mwﬂﬁﬂil+"'+ummﬂm%m%m’

where K is the sum of the constant terms contained in the parentheses.

Thus, we can rewrite (P7) as (P7'):

Minimize =z

1 1

t 1 - - - - - >
(P7')  subject to 3152 (fll mllum+n+l)yll Tt (fmn mmnurnd-n+rrm)ymn_1<
2 2 : 2

222 T (fll'mllum+n+l)yll.-"' -(fmn-mmnum+n+mn)ymn2K
[} 2 2

- - - - >

2947 (fll mllum+n+l)yll v (fmn mmnum+n+mn)ymn K

m
.Z yij z 1, ¥3, 0 = yij £ 1, integer, V¥i,Jj,
i=1

where a 2 is a scalar by which row p has been multiplied to remove all

fractional coefficients.

The coefficient matrix of (P7') may be written as
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[ |
Alxl | & *xmn
S Hi i i St el
Pl X }
nxn | nxn | nxn
:___L ______ L__
Q 1
{(n+mn)x1 | mnxmn
L |

where the submatrix F contains the elements (f..—m..uk A TN
£Xmn 1§ Tij mtnt+(i-])
When we add slack variables tec (P7') a