

DEEP IMPACT COMET ENCOUNTER

Design, Development, and Operations of the Big Event at Tempel 1

Steven Wissler, Jennifer Rocca, and Daniel Kubitschek Deep Impact Encounter Flight Team Jet Propulsion Laboratory California Institute of Technology

Space Systems Engineering Conference November 2005

Topics

Deep Impact Mission Overview

Comet Encounter Design

Encounter Test Program

Execution at Tempel 1

Questions

Space Systems Engineering Conference November 2005

Deep Impact Mission

- Primary Scientific Themes
 - Understand the differences between interior and surface
 - Determine basic cometary properties
 - Search for pristine material below surface

- Deep Impact: First Look Inside a Comet
 - An artificial meteorite impact
 - 370 kg at 10.2 km/s

Page 3

- Are there pristine ices at depth?
 - What are the surface material properties?
 - Secondary Scientific Theme
 - Distinguish extinction from dormancy
 - Additional Science Addressed
 - Address terrestrial hazard from cometary impacts
 - Search for heterogeneity at scale of cometesimals
 - Calibration of cratering record

Space Systems Engineering Conference November 2005

Mission Overview

- 2 spacecraft Smart Impactor + Flyby
 - Fly together until 1 day before impact
 - 6-month Earth-to-comet trajectory
 - Smart Impactor
 - Impactor Targeting Sensor (ITS)
 - Scale 10 µ-rad/pixel
 - Used for active navigation to target site
 - Images relayed via flyby to Earth for analysis
 - Cratering mass (~360 kg at 10.2 km/s)
 - Excavates ~100m crater in few*100 sec
 - Baseline prediction other outcomes are possible
- Flyby Spacecraft
 - Diverts to miss by 500 km
 - Slows down to observe for 800 sec
 - Instruments body-mounted spacecraft rotates to follow comet during flyby

Space Systems Engineering Conference November 2005

- Instruments on Flyby Spacecraft
 - High Resolution Imager (HRI)
 - CCD imaging at 2 µ-rad/pixel (0.4 arcsec/pixel)
 - 1-5 micron long-slit spectroscopy (R>200, 10 μ-rad/pix)
 - Medium Resolution Imager (MRI)
 - CCD imaging at 10 µ-rad/pixel
 - Identical to ITS but with filter wheel added
- Major Earth-Based Observing Campaign

Mission Timeline

Comet Encounter Overview

Design Envelope

- Live for the moment science return
- High resolution crater imaging
- 30km Impactor release accuracy
- On-board autonomous fault protection and critical sequence resumption
- De-scope Accommodation:
 - NVM Storage Reduction
 - Flight Computer-to-Flight Computer Communication Link Elimination
 - Downlink Data Rate Reduction

Space Systems Engineering Conference November 2005

Encounter Timeline

Flyby Encounter

Impactor Release

- Release Impactor within 30 Km (B-Plane) and 180 Seconds Time of Flight
- Alter Flyby trajectory to allow for ~800 second imaging of impact and crater formation and a closest approach of 500 Km
- Comet Encounter
 - Periodic Science and OP-Nav imaging of the comet
 - High rate imaging of impact event
 - High resolution imaging of impact crater
 - Return prime science images and engineering telemetry in real-time
 - Protect Flyby spacecraft during closest approach
- Post-Encounter
 - Return all stored images and near-encounter engineering telemetry
 - Periodic images looking back at the comet

Space Systems Engineering Conference November 2005

Autonomous Navigation

- Closed-loop AutoNav/ADCS control used to point MRI & HRI instruments starting 2 hrs before nominal time-of-impact (TOI)
- AutoNav consists of image processing to form the observations & trajectory determination to estimate comet-relative position & velocity
- Attitude Determination & Control System (ADCS) uses AutoNav relative position information and pointing offsets to compute desired attitude
 - Pointing offset allows ADCS to point instruments at predicted impact site and is computed using parallel Scene Analysis
 - Pointing offset requested & applied 4 min before nominal TOI and maintained through remainder of encounter
- AutoNav responsible for computing updated TOI and updated time-of-final-imaging (TOFI)
 - Time-shifts requested via sequence command and applied to optimize the start time of the appropriate science imaging sequences

Page 11

Space Systems Engineering Conference November 2005

Robustness

Sequence Design

- Mark/Rollback: Fault Tolerant Sequencing Capability
- Critical Sequencing: Autonomous Re-Start of Encounter Activity •
- Mark Point Selection: Ensures Critical Activity Completion Prior to Roll Forward •

Fault Protection Enabling Strategy

- Encounter Approach: Cruise FP plus Instrument FP
- Critical Sequence Start: Cruise FP plus Instrument FP, Point State FP, HGA FP •
- E-2 Hours: Only System Responses, System Safing Disabled •
- E-7.5 Minutes: All System Responses Disabled, Only Basic Hardware Protection •

Contingency Plans

- **Unexpected Comet Albedo: Alternate Imaging Sequences**
- Late Release: Release at E-10hr instead of E-24hr
- Flight System Impact: Entire Flight System on Impact Trajectory

Space Systems Engineering Conference November 2005

Test Program

Objectives

- Ensure normal encounter operation does not trigger Fault Protection
- Ensure system is robust under all expected encounter conditions
- Ensure system responses are predictable, and the results are acceptable
- Ensure system operates in off-nominal (within-specification) conditions
- Push boundary conditions of the system to investigate the ability to operate outside of specification, and understand when overstress occurs and how it is handled

Architecture

TEST TYPE	NUMBER OF CASES	TOTAL # EXECUTED	# ON ITL	TOTAL HOURS
MSTs	3	279	3	5160
Faulted MSTs	16	25	8	300
Robustness Tests	11	35	11	288
ORTs	7	7	5	400
Totals	37	346	27	6148

Space Systems Engineering Conference November 2005

Encounter Approach Predictions

Encounter Predictions

Encounter Approach Performance

- MRI Images from the last week on right, flight system was 2,446,529 km, > 3 days out
- Imaging Campaign
 - Total Images Taken: 4839, Total Impactor Files Downlinked: 31,903
 - Images Lost Prior to Downlink: 127, deleted prior to downlink due to single telemetry over-subscription
- Mini Calibrations
 - Point Spread Function 100% Successful, all images captured, targets acquired
 - Infrared 100% Successful, all images captured, targets acquired
 - Rapid turn-around allowed high resolution images using de-convolution soon after impact
- TCM 5 within 2% of desired, Flight System within 2 km of impact trajectory at end of phase
- NVM Clean-Up successful, all drives contain only critical encounter products at end of phase
- All performance metrics for each subsystem, flight team, and science team were met/exceeded

Space Systems Engineering Conference November 2005

Encounter

Impactor Release

- Impactor released within 2 Km (B-Plane) and 2 Seconds Time of Flight
- Divert maneuver placed Flyby within 2 seconds time of flight and within 2 Km of the targeted 500 Km miss distance

Comet Encounter

- All of the highest priority science and navigation images were collected and returned, minor loss of early encounter imaging due to Deep Space Network transmitter problem.
- Flyby Spacecraft survived closest approach without any detectable damage

Space Systems Engineering Conference November 2005

Autonomous Navigation

MASNUAND

Space Systems Engineering Conference November 2005

Autonomous Navigation

- HRI image capture at the moment of impact
- Saturated pixels are located within 31 pixels of the center of the HRI FOV
- Each HRI pixel is 2 microradians and therefore indicates that the total of all error sources was less than 62 microradians at TOI
- This includes the following error sources:
 - AutoNav estimation

Page 21

- ADCS attitude estimation
- HRI camera alignment errors
- Independent Scene Analysis induced errors
- Errors associated with updated estimates of TOI
- Full-frame MRI image of the impact site just 7 sec before shield attitude entry
- 3 Picture mosaic (scan), added to improve probability of capturing crater, gave Science Team opportunity to quantify crater size

Encounter Data Return

Impact Imaging

- HRI Image Taken 67 seconds Post Impact
- Scattered light from the collision saturated the camera's detector, creating the bright splash
- Linear spokes of light radiate away from the impact site, while reflected sunlight illuminates most of the comet surface
- Images revealed topographic features, including ridges, scalloped edges and possibly impact craters formed long ago

Space Systems Engineering Conference November 2005

Deep Space Systems GT-SSEC.C.2 Wissler, Rocca, Kubitschek

Look Back Imaging

- HRI Images Taken 50 minutes Post Impact
- Impact Site on Far Side of Comet
- False colors represent brightness, with white indicating the brightest materials and black showing the faintest materials
- Comet nucleus is silhouetted against the light reflected from surrounding dust
- Large plume of dust kicked up upon impact can be seen as the colorful, drop-shaped object
- This plume was very bright, indicating that the comet's surface material must be very fine, like talcum powder

Space Systems Engineering Conference November 2005

Tempel 1 Environment

- Tempel 1 Outbursts
 - Several Outbursts Seen During Approach
 - None During Critical Encounter Period
- Comet Albedo
 - Within Nominal Brightness Range for Science and Navigation
- Dust Environment
 - Flyby Spacecraft Shielding Adequate for Environment
 - No Damage to Spacecraft During Closest Approach & Flyby
 - Spacecraft Attitude Impacts Due to Dust were Negligible

Space Systems Engineering Conference November 2005

Summary

The Pictures Worth One Thousand Words

We Did It!

Space Systems Engineering Conference November 2005

Page 26

