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SUMMARY 

It has "been stated in other works that the transient response of a 

linear servomechanism could "be improved "by altering the characterizing 

equation in a nonlinear fashion. Several control systems whose char­

acterizing equations are nonlinear have been proposed and examined. 

However, each such control system has been an isolated example, and no 

general statements have been made concerning their responses. The prob­

lem of improving the transient response of a linear system by inten­

tionally altering its characterizing equation in a nonlinear fashioil: is 

here attacked by examining a subclass of the class of second order dif­

ferential equations for their suitability as characterizing equations. 

The members of this subclass have the common feature that, when examined 

as a function of complex variable, their solutions have critical points 

(essential singularities) that are fixed (with respect to the constants 

of integration). 

Examining this subclass allows use to be made of the extensive work 

done by mathematicians between 1810 and 1926 in the field of complex 

differential equations. The mathematical problem concerns the existence 

of solutions with fixed critical points of the class of differential 

equations 

v" = F(z, W, W*) , (l) 

where F is rational in wT, algebraic in w and analytic in z. While it 
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has "been shown that there are fifty canonical forms of equation (l) 

admitting to such solutions, the elements of the subclass examined here 

are those differential equations which can "be expressed as 

w" « (Aw + B)wT + CwJ + Dw~ + Ew + F . (2) 

A set of necessary conditions for equation (l) to have such solutions 

is that it be reducible to equation (2) by a suitable transformation 

where A and G have the pairs of constant values 

(a) A « 0; C « 0 

(b) A *= Oj C « 2 

(c) A r - 2j C a 0 

(d) A « - 1; C * 1 

(e) A « - 3J C * 1 

A control system with the characterizing equation of the form of 

equation (2) is referred to as a Type II system and is subdivided into 

Cases (a) to (e), which designate the numerical values of A and C. A 

servomechanism was then synthesized to have a characterizing equation of 

the Type II system. This procedure gave rise to five characterizing 

equations which featured nonlinear damping, nonlinear restoring force or 

a combination of both. In each case the solution of the characterizing 

equation admits to fixed critical points in the complex plane. 

The question proposed in this thesis, wCan the transient response 

of a linear servomechanism be improved by altering its characterizing 

equation in a nonlinear fashion so that the solution has fixed critical 

points?" is answered with a qualified "yes»" Three of the servomeonanisms 
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synthesized^ those with characterizing equations of the Type II system, 

Cases (a); (c) and (e), have transient responses which are faster than 

that of the linear servomechanism. The characterizing equation of the 

Type II Case (a) system does not have a solution with fixed critical 

points for every value of F. The characterizing equation of the Type 

II system, Cases (c) and (e), have such solutions for all values of F. 

One disadvantage of these systems is their asymmetrical control action, 

i.e., the response for a positive F is not the same as for a negative F, 

None of these three characterizing equations have a stable response for 

every value of F. An analytical advantage of these nonlinear character­

izing equations over those cited in Chapter I is that they have solutions 

which are available in a closed form. 

From the viewpoint of simplicity and speed of response, the char­

acterizing equation of the Type II Case (c) system is the most promising 

developed here* The characterizing equation of the Type II Case (e) 

system is more complicated than Case (c)> and, since a theoretical study 

of its speed of response showed no significant advantage over Case (c), 

it was not realized. 

While the characterizing equation of the Type II Case (a) system 

did not admit to the proper solution for every value of F, its response 

was stable for positive values of F and hence was realized* Its response 

is sluggish for small inputs but relatively fast for large inputs. A 

servomechanism with this type of control action is referred to as a 

variable-gain servo" and is useful when the control system has small-

amplitude oscillations such as those caused 'by backlash in gears» This 
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type of control action has "been proposed in other papers, "but the char­

acterizing equations of the Type II system, Cases (c) and (e), are con­

tributions of this thesis, 

Although the five characterizing equations proposed in this work 

were synthesized, no general method of synthesization has "been developed. 

This is still a function of the ingenuity of the synthesizer. 



CHAPTER I 

INTRODUCTION 

Physical systems in general can be described or characterized "by 

either ordinary or partial differential, equations involving an input 

quantity such as force,, voltage or pressure, and an output quantity such 

as displacement, torque or flow. The output quantity does not react 

instantaneously to a change in the input quantity,. "but rather has a time 

delay. The fundamental task of a control engineer is to alter the "basic 

characterizing equation of a physical system so as to obtain a desired 

response to a given change in the input quantity. 

The theory of linear servomechanisms is concerned with improving 

the response of systems -which can 'be characterized by means of ordinary 

linear differential equations with constant coefficients» As an, example 

a first order linear system with an input variable 0. and an output 

•K-
variabla 0 has the characterizing equation 

o 

K0.(t) s B05(t) + 0 (t) . 
1 O O 

With the system in its quiescent state,, the characterizing equation, 

becomes 

KQ^s) = (Bs + l)0o(s) , 

The primes denote differentiation with respect to time. 
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where s is the Laplace transform variable. It is customary to represent 

this equations by means of the block diagram as shown in Fig. 1. This 

diagram is often referred to as the open loop or uncompensated system. 

It is this basic system that the control engineer wishes to alter. The 

response of the uncompensated system to an input change of the form 

9.(t) = I9.I ; t > 0 

0.(t) = 0 j t < 0 , 

which is referred to as a step function, is 

9 (t) = K|9.|(1 - e~t/B) . 
o • i' 

The response of this system can be improved by the addition of a 

linear controller and feedback, as shown in block diagram form in Fig. 2, 

The characterizing equation of this compensated system can be 

normalized and written as 

_ \-->j -• o p 

0. B[S + 2̂ 03 S + 03 ] 
I n n 

where 

£ = damping ratio, 

a) - undamped angular frequency, and 
n 

G *= gain of the controller* 

For 9.(t) a step function there are three types of responses, depending 

upon the value of £• These responses are as follows; 



e±(s) eo(s) 

Figure 1* HLock Diagram of Uncompensated System 

e±(s) 

fr ^ \ 
K 

Bs+1 
fr ^ \ 

K 
Bs+1 

K 
Bs+1 

K 
Bs+1 

eo(s) 

Figure 2. Block Diagram of Compensated System 
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(a) £ < 1, underdamped case 

s t 

KG|Q , - V 
e0(t) -=|—J: £ 

1~£ 0). 

CD 

n 

i - ? 2 t dt . 

(b) £ = 1> c r i t i c a l l y damped case 

9Q ( t ) . 

vj 

_ t 
KG i n 

-CD t 

n d t . 

(c) £ > 1, overdamped case 

8Q(t) -

t 

KGlQ I 

B - I g i l € 

-£a> t 
n 

u 

sinh 

V?-l co 
V n 

/ £2-l t dt. 

In general, the engineer adjusts the controller gain, G, to obtain the 

underdamped response. The. smaller the damping ratio, the faster the 

system response, but the higher the overshoot. Hence the engineer IHS'J 

compromise between speed of response and overshoot. It has 'beer, found 

that, in many cases, values of £ between *k and »6 give the best prac­

tical response. Tbus the speed of response of a linear system is limited, 

by the amount of overshoot permitted. 

As the need for faster responding systems arose, engineers turned 

their attention to the possibility of Improving system response "by alter­

ing the basic characterizing equation in a nonlinear fashion. In 195^> 

D. McDonald published a paper in which nonlinear control systems with 

the following characterizing equations were discussed; 
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2K 2 
y" + f- y« + a> y = 0 , 

1+a y 

2£o) 
yw + S y* + a£y « 0 , 

l+|y+b^| 

and 2 

CD 

y" + 2Sa)y« + |-y = 0 . 

Special attention was given to the use of the phase-plane plots as an 

aid in designing these systems. In this paper the author introduced the 

concept of a "dual mode" control system in which the response was linear 

for small errors and nonlinear for large errors. 

2 

In the same year J. B. Lewis investigated the possibility of im­

proving the transient response of a second order linear system "by intro­

ducing feedback which caused the damping ratio to vary during the period 

of the transient. This variation was achieved "by the multiplication of 

two variables in the feedback path* The characterizing equation was of 

the form 

y"• + ayf + by y? + cy = d . 

Although the two authors utilized the second order linear system as a 

basic system and altered either the undamped natural frequency or the 

damping ratio in a nonlinear fashion., they developed no general method 

of synthesizing a nonlinear control system as there is for a linear con­

trol system. 
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The ease with which linear control systems are designed stems 

directly from the properties of linear differential equations with con­

stant coefficients. One such property is that they satisfy the super­

position theorem, as a result of which, if C (t) is the response of the 

system to an excitation r (t) and C (t) is the response to r (t), then 

the response to r (t) 4- r (t) is C (t) + C (t). Hence certain test sig-
1 c. J- c. 

nals, such as a step function or sinusoidal functions of varying fre­

quency, can he used to measure the response of the control system. The 

question of stability is clearly defined in linear systems. The driving 

functions and initial conditions have no effect upon the stahility. 

Graphical techniques, such as the root locus or Nyquist plots, are used 

to design systems with prescrihed figures of merit, such as M (maximum 
ir 

overshoot), cô  (undamped angular frequencies) and £ (damping ratio). 

The statements in the preceding paragraph do not hold for a non­

linear control system. Al.though the solutions to all linear differential 

equations with constant coefficients are available, only a small number 

of nonlinear equations have been solved. The solution of a linear equa­

tion is a linear function of the constants of integration, but this is 

not true for nonlinear equations. For a second order nonlinear equation 

three conditions may arises 

(a) The solution is an algebraic or, in particular, a rational 

function of the constants of integration. 

(b) The general solution is a semi-transcendental function of 

the constants of integration, 

(c) Neither (a) nor (b) is true. The general solution is then 

said to be an essentially transcendental function of the 

constants of integration. 
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Because of these constants of integration, the response of a 

second order nonlinear system will not be faster than the linear system 

for all input signal amplitudes; however, there may be a range of ampli­

tudes for which the nonlinear system reacts faster than the linear 

system. 

The stability of the nonlinear system, depends upon both the form 

of the input signal and its amplitude. It is usual to consider the in­

put quantity as one of the following types of functionss 

(1) Step functions 

(2) Ramp functions 

(3) Sinusoidal functions 

(k) Random functions. 

In a linear system driven by a sinusoidal signal, there are no other 

frequencies present except that of the input quantity. However^ the 

output quantity of a nonlinear system driven by a sine wave contains 

frequencies other than those of the input sine wave. In this thesis, 

the input quantity will be taken to be a step function. 

There are two techniques available for the design of nonlinear 

systems. These are the describing-function technique, first developed 

3 
in this country by Kochenburger, and the phase-plane portrait^ sug-

k 

gested by L. A. MacColl. These procedures are not general and are only-

applicable to certain types of nonlinear!ties and forcing functions. 

Despite these difficulties, the demand for faster acting systems 

has forced attention to methods of improving system responses by the 

intentional addition of nonlinearities to a basic open loop linear system. 
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The basic purpose of this thesis is to investigate the possibility 

of improving the response of a second order linear system by the addition 

of certain nonlinear!ties.. The nonlinear!ties are chosen so that the 

characterizing equation of the system, when expressed as a function of a 

complex variable, satisfies a set of necessary conditions for the solution 

of the differential equation to have fixed critical points (essential 

singularities fixed with respect to the initial conditions), 



CHAPTER II 

PRELIMINARY CONSIDERATIONS 

General.—The general second-order linear control-system excited by a 

step-function input has the characterizing equation 

y" + By1 + Ey « F , 

where y(t) is the output quantity and F is the amplitude of the step 

function input. The term Ey is often referred to as the restoring force 

of the control system and By' as the damping force. 

The general second-order nonlinear control-system excited as 

above has the characterizing equation 

y" + QCySyJy* + P(ySy)y - F - (i) 

The term QCy'^yJy1 is the nonlinear damping force and the term P(y%y)y 

is the nonlinear restoring force. 

Although an analytic solution, of equation (l) is not available 

for all forms of Q, and P̂  it is logical to ask if anything can be said 

about the nature of the solution. The attempt to answer this question 

forms the basis of this thesis. Before continuing this discussion^ the 

mathematical background will be developed, 

Mathemati cal background*--The nonlinear complex differential equation 

'The primes denote differentiation with respect to the complex 
variable z, 
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[(W) 2 - W W"] 2 + 4W(W')3 *= 0 (2) 

has the solution 

Z'°2 

where C and C are constants of integration. This solution has an 

essential singularity which depends upon the constant of integration 

C • But the linear diffei-ential equation 

W" - WT + | « 0 , (3) 

which has the solution 

W « ( G 1 + G 2 z ) € 2 1 / 2 , 

has an essential singularity at infinity which is not a function of the 

constants of integration. 

Equations (2) and (3) are special cases of the general second 

order complex differential equation 

W" = F(z, W, W*) , (4) 

where F is rational in WT^ algebraic in W and analytic in z. Between 

1887 and 1926 mathematicians ' ' '' extensively studied the existence of 

solutions to equation (k) where critical points (essential singularities) 

were fixed with respect to the initial conditions. In ±Q9h G. Mittag-

9 
Leffler studied the differential equation 
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W" *= (AW + B) W* + CW3 + DW2 + EW + F . (5) 

In 1926 E. L. Ince showed that, for equation (k) to have a solu­

tion with fixed critical points, it is necessary that equation (k) "be of 

the form 

W" = [A(z)W + B(z)] W* + C(z)W3 + D(z)W2 + E(z)W + F(z), (6) 

and that this equation he reducihle hy suitahle transformations to equa­

tion (5) vhere A(z) and C(z) have one of the following pairs of constant 

values: 

(a) A « Oj C « 0 

(b) A « Oj C « 2 

(c) A = -2; C = 0 

(d) A « -lj C a 1 

(e) A - -3j C « -1 

The sufficient conditions were then determined fay integration or other­

wise. 

Summary.-- The question asked at the "beginning of this chapter is now 

partially answered. Given an ordinary differential equation 

y" - f(t,y,yT) , (7) 

one can replace the rea l variable t fay the complex variafale z, and the 

rea l function y ( t ) fay some new function W of the complex variafale z. 

Thus, equation (7) i s transformed into equation (4)» The solu­

t ion of the complex d i f f e ren t i a l equation can fae c lass i f ied as to the 

afasence or presence of fixed c r i t i c a l po in t s . This c lass i f i ca t ion was 

chosen to designate a subclass of the c lass of second-order d i f fe ren t i a l 
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equations to be examined for their suitability as characterizing equa­

tions of a control system. This subclass has the advantage that the 

solutions of its elements are available, 

An examination of "the nonlinear systems discussed in Chapter I 

shows that their characterizing equations expressed in the complex plane 

have solutions with movable critical points. The basic purpose of this 

thesis is to investigate the possibility of improving the transient 

response of a control system with a step function input signal by con­

straining the characterizing equation expressed in the complex plane 

to have fixed critical points« 

Procedure,—The basic unaltered control system to be utilized in this 

thesis is discussed in the Appendix and is characterized by a first order 

linear differential equation. Feedback and a nonlinear controller will 

be added to this system so that the characterizing equation of the altered 

system, when expressed as a complex differential equation, will have fixed 

critical points. 

The general control system whose characterizing equation is given 

by 

y" + [Ay + Ely1 + Cy3 + Dy2 + Ey + F 

will be referred to as a Type II system and will be subdivided into Cases 

(a) to (e) which will indicate the pair of constant values of A and G 

tabulated on page 11„ The procedure is as follows. 

(l) The response of the system will be examined in the complex 

plane and the location of the poles and essential singulari­

ties will be determined. 
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(2) The response of the system will then he examined as a func­

tion of time. Special attention will he given to the deter­

mination of the constants of integration. 

(3) The stability of the system will he examined. This will be 

correlated with the location of the poles of the solution 

in the complex plane. 

(k) A physical system utilizing the basic control system will 

then be synthesized to have the same characterizing equation 

as in step 2. 

(5) The response of this system will, be compared with the response 

of the linear system. 



CHAPTER III 

RESPONSE OF FIRST ORDER, FIRST DEGREE SYSTEMS 
WITH FIXED CRITICAL POINTS 

General.—While this thesis is not primarily concerned with first order 

characterizing equations, it seems proper to include a brief discussion 

of them in this chapter. It has "been shown that for a differential 

equation of the form 

W = f(W,z) , 

where f(W,z) is rational in W, to have a solution with fixed critical. 

points, it must he the generalized Riccati equation 

V - fx(z) + f2(z)W + f3(z)W
2 . 

Response in the complex domain.--When f , fp and f are constants, the 

Riccati equation becomes 

WT « DW2 + EW + F . 

By means of the substitutions 

1 V^ 
D V 

W *= - , 

its solution is obtained and may be written as 
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i / t "DF)Z - ( / f -DF )Z 

, CLae V ^ / + (3e ^ 
W - ^ , ( 8 ) D 

o i £ . f - - ) % £ V f - D F l z 

where 

« - ! + \ / £ - EF , 

and 

| V £ - DF 
2 k 

The po l e s of equa t ion (8) a re movable and occur a t va lues of z 

where 

z . , i, ln(_ !/C ) , 

a / f -DF 
1' 

and C is the constant of integration. 

Response in. the real domain.--As a function of a real variable y(^)? 

Riccati's equation can be written 

y1 = By2 + Ey + F ? 

and has the solution 
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y = | -i — — . (9) 

Vx- r + ro)t
 + e " ( \ / r ^ »* 

It should he noted that E and D have heen chosen negative to insure that 

the solution cannot hecome oscillatory for positive values of F. C can 

he obtained from the relationship 

G = . ?/D - y(°). 
1 -y(0) + a/i) 

If the denominator of equation (9) becomes zero, y(t) is not bounded. 

The unbounded response will occur for values of C where 

- 1 < C < 0 . (10) 

If inequality (10) occurs, equation (8) has a pole on the positive real. 

axis, 

Physical system with a Riccati char a c t e r i z i n g e quation. - -The physical. 

system of Fig. 3 has the equation of motion 

u - e - K co 
s I 

and 

u1 + K„aG2u2 + bu « be f s 

where the parameters are defined in Appendix A. 



Nonlinear 

Controller Linear System 

—J 

Figure 3* Physical System with Riccati sIype 

Characterizing Equation 



This is the Riccati characterizing equation with 

F = "be 

D « KaG 

and 

E « b. 

'The solution of equation (ll) is of the form of equation (9)* 

Comparison of linear and nonlinear systems*—The linear system 

characterizing equation 

u 
r + [KaG + "b]u « "be , 

JU S 

which has the s o l u t i o n 

TLIQ 

b -f K a G 
1 - 6 

~(b + K^G)t 

The steady state error and the time constant of the two 

form the "basis of comparison. 

(a) Steady state error«—•This is defined as 

lim u ~ u 
t, —> oo Si St 

and is 

be 

s.s. K Ga + 'b 
« o V linear system^ 



19 

or 

u 
•T^a-G" KfaG 

(h) lime constant»—This is defined as the reciprocal of the 

coefficient of t in the exponent of the exponential and is 

or 

T ss -—-—~—- . . . . linear system^ 
D + K_aU-

T = — • . . . nonlinear system. 

h2 ? £- + K abG e 

aK 
For a high gain system^ i«e», G » 1 and e > -r— > the nonlinear system 

S D 

has a smaller steady state error than the linear system. For values of 

input signal where 

(To + K a G ) 2 ..2 
. f b 

e > KpahG2 4K abG2 

the nonlinear system has a smaller time constant than the linear system. 

Howeverj while the linear system always has a finite value of out­

put for all values of input signal amplitude F, the nonlinear system will 

have an unbounded output if F approaches the value 

u »= - E/D . 



CHAPTER IV 

TYPE II CASE (a) SYSTEMS 

A = Q, C a 0 

Response in the complex domain.—The T̂ ype n Case (a) differential 

equation in the complex domain is 

2 
v" a Bw' + Dw + Ew + F . (12) 

12 
Following the example of Ince _, the following substitution is made in 

equation (12) 

w = W(z)\(z) + u(z) , 

and 

Z =-- 0(z) 

where 

¥-*• 

and 

X." B\* „ 
dDp. = - — w • ••' ' -̂  • 

A. A. 
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With these substitutions, equation (12) becomes 

W n «= 6W2 + S(Z) , (13) 

where 

S(Z) -
2500 D 

625E2 - 36B2 + F 

Vf 

0 & I e(B/5)Z 

6 2(B/5)z 

(1^) 

(15) 

and 

50 D 
6B + 25E (17) 

1 O 

But Ince has shown that for the solution of equation (13) to have fixed 

critical points, S(z) must he zero. This can happen in the following two 
cases, 

Case i. Bs=E=sF = 0 . Equation (12) has the solution 

W-|^(z -k, 0, h) , (18) 

Ik 
which is the Weierstrasse Pe-function and is doubly periodic, 'The 

parameters k and h are the constants of integration; 0 and h are the 

invariants of the function. 

Equation (l8) has the series expansion 

W 
D L (z -k) 

2 + c2(z - k r + C (z - k ) 2 X " 2 + 
A. , (19) 
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where 

\~h g » 0 

c 3 = 2 5 h 

and 

v=\-2 

c a „ j ( \ > 3) . 'x =" (2 \ + i ) ( x - 3) Z_J 
v=2 

(20) 

Hence it is seen that equation (19) has a double order pole at 

z = k 

and thus is movable with respect to the initial conditions. The essen­

tial singularity at infinity, however, is fixed. 

Case ii. For this case none of the parameters are zero and 

F = 1 
2^00 D 

625E2 - 36B2 

Substituting equations (l4) to (17) into equation (l8) leads to 

2B 

« - i - 5 'Ui 1}: k 1 ; o, h 50 D 
6?r + 25E . (21) 

Thus, from equation (19)» equation (2l) has the series expansion 

TT 6 2 

W = - u 
L (!>-*) 

j + ... C (|u -k) 2 X' 2+ ... 
50 D 

6B 2+25E 

(22) 
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where C. is as defined in equation (20) and 
A. 

B 

The solution of equation (2l) has a fixed essential singularity 

at infinity but has an infinite number of second order movable poles at 

z - I ln(|k) . 

Response in the real domain»—Since the basic purpose of this thesis is 

to utilize the differential equations studies here as characterizing 

equations, their solutions must satisfy the following set of necessary 

conditions: 

(a) The solution f(t) must be bounded, i.e«> 

f(t) < Mj t > 0 

(b) The solution f(t) must have a finite limit, i.e., 

lim f(t) = B . 
t -» oo 

Systems described by characterizing equations whose solutions satisfy 

the conditions above will be called stable systems. If the complex 

function w(z) in equation (12) is replaced by a real function y(t)> 

case i and case ii can be examined in the real domain as follows. 

Case 1. Equation (l8) becomes 

y - D | o f ( t • • k ) ' ° > h (23) 
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The constant of integration h can "be found from the first derivative of 

equation (23) as 

(y-)2 = V 3 " h . 

Since equation (23) does not satisfy condition (a) or (b), it is not 

suitable for control purposes. 

Case ii. By the same type of substitutions as utilized in solv­

ing equation (12), the differential equation 

-" ~ TKrl y" « By1 + Dy + Ey + F (2k) 

can be expressed as 

hence, 

J'i - 6,1 ; 

f2 j 2 
yi = yi " 

The constant of integration h can be found from the initial condition by 

the relationship 

2B 

h ** k 
^ . u ] 3 ry'(o)*f (y(o)-u)l2 

- 6/D " ""̂ 575 

The parameters B, D and E have been chosen negative and 

F « - 1 
2500 E 

625E2 - 36B2 

Hence the solution to equation (2k) is 
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y =
 - D

 G 
6 • ~ t / r > , r - - ^ r*P [<§," r . k), „ , , 50 D 

25E - 6B2 
(25) 

If a system characterized by equation (25) is to be stable, the argument 

of the Weierstrasse Pe-function must never be zero* Thus if 

0 < k < 5/B , 

equation (25) is unstable, (it should be noted that this condition cor­

responds to a pole on the real axis for equation (22).) 

It should be emphasized that equation (25) is the solution to 

equation (2k) for only one value of F. Hence for any other value of P_, 

equation (2k) has a solution with movable critical points, 

Stability of Type II Case (a) systems,—Systems of the type designated by 

case i are not stable for all initial conditions. The unbounded response 

occurs at t = k, In the complex plane the solution has a second order 

pole at z = k. 

Systems of the form denoted by case ii are conditionally stable, 

depending upon the initial conditions. The unstable response occurs for 

0 < k < 5/B . 

In the complex plane the solution has an infinite number of second order 

poles at 

•p 
z * 5/B ln(^ k) * 

In both cases, the response is a semi-transcendental function of 

the constants of integration. 
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Since the response is not the same for a positive step function 

and a negative step function, this system has an asymmetrical charac­

terizing equation. 

But for the system with, the characterizing equation 

u" + Bu1 - Du2 + Eu = - F , (26) 

let 

u = - y . 

Then equation (26) "becomes 

y" + ByT + Dy2 + Ey « F * (27) 

Thus the response of equation (26) is the negative of equation (27). 

Type II Case (a) systems with movable critical points,—A differential 

equation of the form of equation (24) has movable critical points for 

F ^ + 
2500 D 

625E2 - 36B2 

For such an equation a solution is not available. As a function of time, 

the equation can be studied by a phase plane plot. It can be shown 

that this equation has two singular points, one at -7*; « y = 0 which is 

E 
a center, and one at y « - — which is a col. Thus the system is stable 

if the initial conditions are such that subsequently y > - F/D. If 

y < - E/D, instability occurs because of the nonlinear restoring force 

Ey + Dy2. 

Physical system with a Type II Case (a) characterizing equation.—The 

characterizing equation of a separately excited d.c. motor has been 
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developed . Consider now the control system as shown in "block diagram 

in Fig, 4* To obtain the characterizing equation of t h i s system, i t i s 

convenient to introduce the variable 

u 

u * | \ e g ~ Kfa)) dt , 

which is the integral of the error of the system* The equations of 

motion are 

and 

Hence, 

a G u + GKu 
_ 

<kx> . -u 

e - u* 
s 

^ "" K: f 

0 ) T = - u_ 
K, 

2 2 
u" + bu 1 + KaG u + KJCGau » be . (28) 

Now l e t 

B = - "b 

D *= - KfaG 

1 See Appendix A. 



Nonlinear Controller r 

u = J (es - kfo))dt 

dt 

Figure 4* Physical System with Type II Case (a) C h a r a c t g E 
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E •«• - KJCGa 
f*c 

and 

F « "be 
s 

and e q u a t i o n ( 2 8 ) "becomes 

uTI = B u t + D u + E U + F , (29) 

which, is a Type II Case (a) characterizing equation. If 

2500abKfG 
625(KfKaG)

2 - 3^62 

then equation (29) has a solution whose critical points in the complex 

plane are fixed. 

Theoretical comparison of linear and nonlinear systems.—For purposes of 

comparison the same values of parameters will "be utilized in "both the 

linear and nonlinear systems* These values are 

G * 10 

K « 10 

a 3A ̂ 3*6 

b « 4,07 

and 

K̂ , m ,01 . 

Hence for fixed critical points 

e * - 2.7 
s 
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With the system starting from rest, the initial conditions are 

u(o) « 0 (30) 

and 

u'(o). * - 2.7 • (31) 

The l inea r system has the characterizing equation 

u" + bu1 + KaGu « he , 
X S 

with the initial conditions as in equations (30) and (3l)« 

In Fig. 5 is shown the analogue computer setup for determining 

the response of the linear system. For the nonlinear system, the ana­

logue computer setup of Fig. 7 was used. In Fig* 6 is shown the theo­

retical response of the linear system for various values of e . 
s 

In Fig. 8 is shown the theoretical response of the nonlinear 

system with fixed critical points. It is seen that this is not a stable 

system. This response occurs because of the movable poles crossing the 

real axis. 
In Fig. 9 is shown the theoretical response of the nonlinear 

system for positive values of e . 
s 

Actual physical system.—The control system as shown in Fig. 4 was real­

ized "by utilizing an analogue computer as the nonlinear controller. The 

setup for the controller is shown in Fig. 10. To obtain operation in the 

linear region of the motor, it was necessary to change the values of the 

system parameters from those utilized in the theoretical case. The re­

sponse of the system as shown in Fig. 9 is for values of 
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K « 0 

Kf «= .0084 

b « 4.07 

a * 31.^ 

and 

G » 8.2 . 

Thus for signals above 0.5 volts the system is very oscillatory, having 

a maximum overshoot of 200$ at 0.5 volts input. 

Finally, it is of interest to note that the response of the system 

of Fig. 10 can be made symmetrical by altering the characterizing equa­

tion to 

u" + Bu1 + D|u|u « F . 

This response has movable critical points, however, and is not considered 

further in this thesis. 



38 

480 

kho 

4oo 

360 

I 
a 320 
•H 
rd 

<D 

I 280 

2^0 

200 

l60 

120 " 

80 

ko 

I \ 
/ \ 

/ \ 
I \ 

/ ' N 

\ 

I \ 
\ 

\ 

' V / / w 
1 ' x x 

' / 

/ / 

\ ^ ^ • 

/ 
/ e » 2.0 

\ / 

L / 1 / 
I 1 / 
1 1 / 

> ' ' ' 
Vd* —V i 1 

/ \ \ 

' \ 
/ \ 

V 
\ \ 

/ 
/ 

\ 
\ 

/ 

v y 
*». «-̂  

e s 1.0 
s 

e s = .5 

1 2 3 ^ 5 6 7 8 9 10 

Time -» Sec. 

Figure 11. Actual Response of a "Type II Class (a) System 



CHAPTER V 

TYPE II CASE (b) SYSTEMS 

A = 0, C « 2 

Response in the complex domain*—The form of the differential equation 

as a function of a complex variable w(z) is 

w" • Bw' + 2w3 + Dw + Ew + F . (32) 

There are two cases in which the solution of equation (32) has fixed 

critical points ' . They are examined individually below. 

Case i. B = 0. With the substitutions 

\ - 1 

6[i « - D 

and 

w = \w + \i, 

equation (32) becomes 

W" * 2W3 + RW + S (33) 

where 

R * E - D2/6 

and 

F + FD3/2l6 - f-
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The first integral of equation (33) is 

(W*)2 a W + RW2 + 2SW + h , (3^) 

where h is a constant of integration. Equation (3^) is in the standard 

19 form of a Jacobian Elliptic function . These functions have the follow-

ing properties : 

(1) The zeros of Sn(u) are ... 2MK + .23S0JC, 

(2) The zeros of Cn(u) are ... (2M-KL)K + 2N1K1, 

(3) The zeros of dn(u) are ... (2M+l)K + (.21H-l)iKL> 

(k) The poles of all three functions are ... 2MK + (2N+l)iIC". 

M and N are integers including zero> and K and KT are the real and imagi­

nary quarter period. The Jacobian Elliptic functions are also doubly 

periodic. The solution of equation (3^0 will be a semi-transcendental 

function of the constants of integration. 

Case ii« B ̂  0. To insure fixed critical points in the solution,, 

equation (32) must be in the form 

W" + 3aWT - 2W3 + 2a2W « 0 . (35) 

To solve this equation, let 

w(z) » W€az 

and 

1 -az 
Z « - - € 

a 

Equation (35) now becomes 
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W" B 2W3 * (36) 

The first integral of (36) is 

( W ) 2 « W4 - h . (37) 

With the substitutions 

2 W2 

S * - — > 
Vh~ 

, 2 = - 1 , 

and 

hl/2 

equation (3?) "becomes 

(s*)2 - [1 - s2][i ~k2s2] > (38) 

which has the solution 

S B Sn(u + K |m « - l) , 

Hence the solution to (35) is 

W « - jaK^e"8,7' Sn(KL€"
aZ + Kg|m « - l) , 

where 

h Hi 
a 
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By means of the identities 
21 

Sn(u| - 1) * -= sd (>/I U||) 
42 d 

and 

, 2 1 
dn ss 2 ' 

1 + msd u 

equation (38) may "be rewritten as 

W * - JaK^ -az 
1 - dn[ ̂ (Kj_€"az + K2)|l 

(dn[ N/id^e"-8"2 + K2)|]/2])
: 

1/2 

(39) 

Equation (39) has fixed c r i t i c a l points> "but the poles are movahle with 

respect to the constants of in tegra t ion . These poles occur a t -ralues of 

the argument where 

K^"8 , 2 + K2 = (2M + l)K + (2Kf + lJ iK 1 , 

where 

TT/2 

K 
d© 

o y i - 1/2 Sin2 0 

and 

T / 2 
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From equation (38) it is deduced that the solution of equation (35) 

is a semi-transcendental function of the constants of integration, 

Response in the real domain.—As a function of a real variable y(t), 

equation (35) (case ii) becomes 

y" + 3ay* - 2y3 + 2a2y - 0 . (40) 

To solve this equation the substitutions of case ii may be used. Equa­

tion (4o) then becomes 

(y[)2 - y* - n , (ta) 

where 

4at 
y-L = y £ 

and 

1 -at 
T « - ~e 

a 

There are three forms that the solution to equation (k-O) may take, de­

pending upon the value of the constant of integration h. The relation­

ship between the initial conditions and h is given by 

k • 2 

h * y (o) - [ay(o) + yT(°)l 

These three forms will now be examined individually* 

(a) h =? 0. The solution to equation (4o) can be expressed as 

-at 
ae 

K2 + e"** 
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This solution is unstable if the constant of integration is such that 

- 1 < Kg < 0 

(h) h > 0. This response can "be obtained from equation (39) and 

22 
the identities 

and 

dn(ju|m) = dc(u|m1) 

Cn (u\m) « -—-— 
dc u - m 

Hence the solution is 

-Viy 2£-at '«-{&• -at 
€ + K 2 | l / 2 ) • • A 

«.•{& -at 
€ + K2 | l /2) -1-1 

1/2 

(42) 

and this solution is always stable, 

(c) h < 0* Equation (4o) now has the solution 

y.-jV^^^nf-^^c-^ll/s} , 

and, since the response is imaginary, it is unstable. 

Stability of Type II Case (h) systems*—Systems characterized by case i 

have no damping and hence their response is periodic. Their motion can 

be described by means of the Jacobian elliptic function. 

Systems characterized by case ii have positive damping but a 

nonlinear restoring force* From the solution to the characterizing 
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equation, it is seen that the stability of this system is severely re< 

stricted by the initial conditions. The stable response occurs only 

when 

y (o) = ay(o) + yT(o) 

The r e s t r i c t i o n on the stable response severely l imi t s the use of a 

Ttype I I Class (b) characterizing equation. 

Physical system with a type I I Case (b) characterizing equation.—In 

Fig. 12 i s shown a control system which has a Type I I Case (b) char­

ac ter iz ing equation. By u t i l i z i n g the variable 

u 

Li 

= J (eg - Kfco)dt > 

the equations of motion are 

- XjU + x 2 u W-* + b<jo (^3) 

But, 

CD = 

e - u ' 
s  
K„ 

and 

coT = - u_ 
K, 

Hence equation (^3) may be expressed as 
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Q 

uM + "bu* + Kja.x0u - aK_x_uJ « "be . (kk) 
f 2 f 1 s 

With 

2 
x 1 " aKf * 

2b2 

X 2 9aXf > 

and 

e = 0 

equat ion (k-k) "becomes the Type I I Case ("b) c h a r a c t e r i z i n g equat ion 

2 
?b 9 

u" + bu r + ~ - u - 2u J Ft 0 

The s t a b l e response occurs i f 

2 
u \ o ) < au (o) + u t ( o ) 

It should "be emphasized that a solution is available to the char­

acterizing equation of Fig. 12 only if the input signal is zero. For a 

value of input voltage^ a solution is not available, and furthermore the 

solution has movable critical points in the complex domain. 

Summary of Type II Case (b) characteri zing equations.--Like the Case (a) 

system, the Type II Case (b) characterizing equation has fixed critical 

points for only one value of input amplitude, i.e., zero. Hence it is 
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not suitable for purposes of this thesis, A further disadvantage is 

its limited stability, which is due to the nature of the nonlinear 

2 2 
restoring force -2y + 2a y . Unlike the Type II Case (a) system> it 

has an unstable response because the solution of the characterizing 

equation is imaginary. 



CHAPTER VI 

TYPE II CASE (c) SYSTEM 

A = - 2; C <= 0 

Response in the complex domain.—The form of the Type II Case (c) system 

in the complex domain is 

W" « (-2W + B)W + DW2 + EW + F . (h$) 

For equation (4^) to have a solution with fixed critical points, it has 

23 
been shown that it must be in the form 

W" + (2W '+ P)W + PW2 * F . (46) 

The first integral of equation (46) is 

W + W2 « u , (47) 

where 

u' = - Pu + F . (48) 

For P and F constant, the solution to equation (48) is 

u = — + KL e 
P 

Kj_r" , (49) 

where K_ is the constant of integration. 

Equation (47) is then 

Wr + W2 = I + Ke" P z . (50) 
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Equation (50) is Ricatti 's differential equation and can be solved by the 

substitution 

W = v . 

With this substitution, equation (50) becomes 

V'1 
F 
P + K I £ 

-Pz 
V . (51) 

With the substitution 

Z e + 
2N/"K1 -(P/2)Z 
~"P € 

equation (51) becomes 

z2v" + zv + [z2 - K / ^ | )2]v « 0 , 
V p^ 

2^ 
which is Bessel's equation of order V « kF 

—r- > and has the solution 

V = A ^ Z ) + B Yv(Z) 

Hence the solution to equation (46) is 

W = ̂ N/-K € h 
P 

" 2Z 

P 
- —z P 

Vv<§^ s 2) + ^ ( f ^ 2) 
?-z -z 

A ^ i ^ ^ + y f ^ " 2 ) 

, (52) 
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where 

r ,1 xV+2r - ( - i r (^u) 
J v (u) = ) § 

v ^~i r i l t v + r + 1 

and 

Tiv + r + 1) 

J (u) cos VF - J (u) 
Y ( u ) = - ^ —: ^ 

V s in V7T 

V u 

VY (u) + uYv (u) 
Y.(U) „ ... _ v _ J ! i _ 

Equation (52) has fixed c r i t i c a l poin ts , hut the poles which are 

determined by V, sl-JL and A_ are movable, These poles occur for values 

of argument and order where 

P P 
- TTZ « _ - TTZ Vvl^£ 2 > - - V f ^ £ 2 > > ( ^ 

provided the numerator of equation (52) does not have common factors 

with equation (53)« 

Response in the real domain.—Equation (46) can he expressed as a function 

of a real variable y(t) in the form 

y" + (2y + P)y< + Py2 = F . (5*0 

From equation (52) the solution to equation ($k) is 
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.-J- h 
-h -¥ -¥ 

P P 

A 1J V(|>/^ €
 2 ) + Y v ( | ^ € 2 ) 

(55) 

The constant of integration K_ can "be obtained from the initial con­

ditions "by the relationship 

y*(o) + y 2 ( o ) - F / P « i ^ . 

There a r e t h r e e cases of equat ion (55) "to he considered^ depending upon 

the va lue of KL • These cases w i l l now "be examined i n d i v i d u a l l y . 

(a) K_ a 0 . From equat ion (50) 

y f + y « F/P (56) 

and hence, 

V/F/P 
N/F7P t 2 - N/F/P t 

N/FTP t + Q2 6 - J¥/F t 
(57) 

C i s the cons tan t of i n t e g r a t i o n and i s ob ta ined from the r e l a t i o n s h i p 

c2 ^ - ^ o j i j W g p 

y(o) +N/F7P 

For negative values of F, equation (56) is unstable. For F = 0, the 

solution to equation (56) is 
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y ~ ( t + k) > 

and i s stable i f 

y(o) > 0 . 

For 

y(o) <4¥/V , 

C is positive and the denominator of equation (57) is never zero and 

hence the system is stable. But, for 

y(o) >N/F7P > 

the denominator of equation (57) can be zero and hence the system can 

become unstable. However, by analogy with the linear system, it is 

seen that the nonlinear system is stable if the input signal allows 

the response to reach a steady state value without becoming negative. 

Case (b). K_ negative. From equation (55)j the response for 

Case (b) is 

y - - ^ 6 

P. 
" 2 * 

AJ^(u) + Y^(u) 

AJv(u) + Yv(u) 
(58) 

where 

u - + §^« 
-Et 
2 
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and 

V = ->/i7P 

I f the order of equa t ion (58) i s a non i n t e g e r when F > 0, i t may "be r e ­

w r i t t e n 

y - ^ 
A ^ v ( u ) A u U ^ C u ) v ( J v ( u ) Cos VTT - J v ( u ) ) 

u u 

J v - 1 ( u ) C0S(V-1)7T - J v + 1 ( u ) 

u Sin (V- I )TT 

u Sin VTT 

J (u) Cos V7T - J (u) 

^ ^ u ) + J ! S i n W > ( 5 9 ) 

where 

- 2 t 
U « + § ^ € 2 . 

The s teady s t a t e va lue of equat ion (59) can 'be found from the r e l a t i o n ­

ships 

l im y(u) = l im y ( t ) , 
u —> 0 t -» «° 

lim 
u -» 0 

<Vu) . (1 /2 u ) V 

" T ( v + l ) ' 

l im 
u ->0 

Jv-n W 
( l / 2 u ) 

rTv7 

v - i 

l im 
u -»0 

J . v ( u ) 
(1 /2 u ) " V 

r(-v+i) ' 

and 
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lim 
u -> 0 

J-v*<u> 
-V+l (1/2 u) 

r(-v+2) 

Hence, 

y = lim y(t) « S/F/P , 
t -» <» 

and equation (59) has a finite, real, steady state value for all non 

integral values of v. A similar procedure for integral values of V shows 

the same result as equation (6o). For F < 0, equation (6o) is imaginary, 

and hence equation (5̂ -) is "the characterizing equation of an unstable 

system. 

However, equation (58) is not necessarily bounded for all values 

of t, the unstable response occurring for values of t where 

P P 
A J ,(§̂ € 2 ) = - Yv (f^e

 2 ) . (61) 

This condition is analogous to a pole of equation (52) occurring on the 

real axis. By analogy with the linear system, it is seen that, if the 

input signal F in equation (58) is such as to cause y to become more posi­

tive, the system will always be stable since the damping coefficient 

(2y + P) and the restoring force Py are always positive. Conversely, if 

the signal F is decreased, the system will become unstable if y becomes 

negative. This is due to the inability of the restoring force to reverse. 

The time of the instability can be determined from equation (6l). 
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Case (c). K. positive. It is desirable to present the solution 

to equation (5^) in real instead of imaginary form, and hence the modi­

fied Bessel functions must be used. Thus, its solution is 

y = - ^ 
-it A i'C§^«" •h + K ' ( | ^ € •*,1 

A V§^~ • ' * , 

+ V§^ € 
• * > 

(62) 

where 

and 

«> /I NV+2r 

V u ) =::A rir(v+r+i7> 

r=0 

T (u) - I (u) 

V u > - 2 Tr Sin w — 

The recurrence formulae of Bessel ' s function of the f i r s t kind also hold 

true for the modified Bessel functions. 

I t a system whose characterizing equation i s of the Type I I Case 

(c) form has reached equilibrium a t the value 

y8.B. "W*. 

and if the input amplitude F is suddenly changed to zero, its response 

will be given by equation (62) with 

V == 0 . 
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Hence, 

= >/K^ -¥ ¥ -¥ •*Vf^> 2 ) + v l ^ e ) 
A I 0 ( | ^ € -t ) + K o ( | ^ e " ? t ) 

(63) 

where 

A -V§VV + KO(§S /VVV' 

V - £ - I ' 
^ P 0 

( | ^ ) H - I l ( | ^ ) 

For 

- A I o ( F ^ ) > K o ( p ^ ) , 

equation (63) is unbounded and. hence Case (c) is unstable. 

Stability of Type II Case (c) systerns»~-The Type II Case (c) system is 

the first system that has been examined in this thesis whose solution has 

fixed critical points for all values of amplitude F of the input signal. 

It is also stable for a rather large range of operating conditions, re­

stricted only by the necessity of y never becoming zero. Hence it shows 

promise for use as a characterizing equation of a physical system and 

will be examined further. 

Synthesis of a Type II Case (c) characterizing equation.—-In Fig. 3 is 

shown the block diagram of a speed, control system utilizing a nonlinear 

controller. In terms of the variable 



" / ( e s - k f » ) d t 

P = y[G 

d t 

Figure 13. Physical System with a Tyj>e I I Case (c) Characterizing 
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u = J (eg - kfcD)dt, 

the characterizing equation of the system is 

u" + [akJTGu + b]u' + ak YG2y2 * "be . (6k-) 
i i s 

With the substitutions 

u « xy , 

x = 2/akfYG , 

G - b/2 , 

P « b, 

and 

abk-YGe 
F = — 4 *-

equation (64) becomes the lype II Case (c) characterizing equation 

y" + [2y + P]y' + Py2 « F . (65) 

For the system s t a r t ing from r e s t , the i n i t i a l conditions are 

j(0) « 0 

and 

abk^Ye 

y.(0) - — f " 5 
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The cons tan t of i n t e g r a t i o n K. i s 

abk^,Ye abkjfe 
if =

 f s _ . f s _ n 

Thus the response of the system i s given by 

[abk Ye / |abk fYe 
- j j — - t a n h f ^ W J J — - t ] 

If this system settles out at the value given above and another signal 

e is applied, the initial conditions are 
sa ' 

•i 
abkjfe 

y(o) 

and 

abk Y 
y * ( 0 ) = - ^ ( % a - e s ) • 

Thus the constant of integration K_ is 

abk_Y abk.Ye abk„Ye 
__ i / \ i s i sa .̂ 

^ - - 5 — (e
Sa"e

s)
 + ~ T 5 ° -

2 
From Case (a) of equation (5^0 "the other constant of integration C is 

o N / ^ - - s/"e~ 
n2 s sa 
C ss - 3 > 

»/e~" + tJ~e~ s sa 

and the response i s 
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s/iyp t 2 - ^iyp t 

e VF/P t + c 2 r ^ t 

where 

(abk.Ye 

The control system that has "been synthesized in this chapter is 

very misleading. While the characterizing equation seems to be second 

order, the initial conditions are such that the equation is truly first 

order. Specifically, it is the Ricatti characterizing equation discussed 

in Chapter III. The real difficulty lies in the relationship between the 

initial conditions and the constant of integration K_ . Hence, to utilize 

this characterizing equation,. it is necessary to alter the initial con­

ditions. 

With this in mind, the control system shown in Fig. ik is devel­

oped. The equations of motion are 

t 

u =./ (eg - k ^ d t 

and 

u" + [akYGu + b ] u ' + aYk^G2u2 = be + k^aYAe . (67) 
f f s f s 

With 

U = a k ^ G y > 



o 

u « / (eg 

Figure 1^. Physical System with a Htype II Case (c) Characterizin 

-— 
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and 

G « t>/2 , 

P ** b , 

A « b/aY , 

ab k Ye 
T l f S 

F « _ _ > 

equation (67) becomes the Type II Case (c) characterizing equation 

y" + [2y + P]y* + Py » F . 

For the system starting from rest, the initial conditions are 

y(0) *= 0 

and 

y'(o) 
abkJTe 

f s 

The constant of integration K_ is 

\-—s 
abkjfe abk„Ye 

f s f s a"bkJfe f s 
5 

The response for the system of F i g . 14 i s then 

u* - V -bt 
abkjfe 

f s 

A J ; ( T ) + Y»(T) 

A J V (T) + YV(T) (68) 
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where 

fafrk Ye 
T = + 2^| 5 £ ' 

and 

The system of equation (67)>after the transient has passed and a 

signal e has been applied, has the initial conditions sa 

y(0) « *YabkfYG/2 

and 

abk Y 
y*(0) * - ^ ( e ^ - es) . 

Hence, 

abk Y 

h V- K a " %] • 

For 

e > e , sa s 7 

the response is of the same form as equation (68)» However, for 

e < e 
sa s 
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the response is of the form of equation (62), i.e.., 

•=*JK^ ¥ 
t>4. K -t -t 

(69) 

where 

v = 

2ak Ye 
f sa 

Because of the nonlinear restoring force> the Type II Case (c) 

characterizing equation synthesized here can. lead to an unstable system 

if pie input signal is decreased. This condition is, of course^ unde­

sirable and for this reason the control system of Fig. 15 is synthesized, 

With the variable 

u *» / (e - k jU))dt . 
J s f 

the c h a r a c t e r i z i n g equa t ion i s 

2 2 
u" + [k aYGu + b]u* + AaYk Gu + ak YG u « be 

1 l i s 
(70) 

For 

u = 2/kfaYG y , 

equat ion (70) becomes 



n2 2 
G u 

U * J ^es ~ k f^) d t 

P «* Y AGu + GuuT + G2 

a P s d t + t 

Figure 15« Phys ica l System wi th a Type I I Case (c ) C h a r a c t e r i z i 

Having a S tab le I s o l a t e d S i n g u l a r i t y 
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y" + [2y + b ] y r + AaYkfGy + 2Gy 
n k„aYGbe 
d T S (71) 

When the square of t he res tor ' Jhg force AaYk Gy + 2Gy i s completed, 

equat ion (70) becomes 

AaYk (AaYk ) 
y" + [2y + b]y* + 2G ( y + — - ~ 7 + ^ — ) 

For 

k_aYGbe (AaYkJ G 
2 + g — 

(72) 

x « y + 
AaYk 

: 

equation (72) becomes 

x" + 
AaYk 

2x cr-i- + b 
p k aYGbe (AaYk ) G 

x l + 2Gx *= - i - ^ + gi (73) 

For equat ion (73) to be a Itype I I Case (c ) system i t i s necessary t h a t 

AaYk 
b r—- « 2G • (7̂ ) 

Hence, when 

G « b/4 , (75) 

and with 

aYkf > 
(76) 
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equat ion (73) "becomes the Type I I Case (c) c h a r a c t e r i z i n g equat ion 

,ah2Y( k ah Ye^ 3 
x + L2x + -Jx* + 75X = g + 32 • (77) 

For the system starting from rest, the initial conditions are 

x(0) = \>/k, 

and 

k ahYe 
x ' ( 0 ) = " ^ -

Thus 

k.abYe 

and the response of equation (70) is 

u = - kfahY 
^K± e 

I* 
- \ 

A J ^ V ^ e 5') + Y ^ / - K l € " ) 

A J v(^-K l G *') + Y v ( ^ " K i e * 

H • (78) 

If the system has settled to the steady state value of equation (78) 

and a signal e is then applied, the initial conditions are sa 

p k.ahYe^ 2 
x2(0) = -^-^ + l 

T 15 

and 
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X (0) = 
k abY 

[e - e ] . 
s sa 

Thus 

K i - § f f a W ( e
8 - e

s a > > 

and the response of equation (jQ) is 

u 
8 

kfabY 

• 4 -h 
N/K^ ̂ f S ^ ' 4>+V^« 

-£t 
_AXv(^e M + % ( i ^ 

(79) 

The question of the stability of the system for F = 0 can he arn-

svered hy examining equation (72) with the substitutions of equation (74) 

to (76), 

^ b2 k ab Ye 
y" + [2y + b]y< + ̂ y + <g-y » g 

With the system unexcited "but with the initial conditions 

y(o)« y , , 
0 » D « 

and 

yT(o) - kfaYG/2 eg , 

it can he expressed as 

^ y - hp 4- Qfp,y) 

dy " p 
(80) 
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where 

y d t 

and 

2 
Q(p>y) c - V 2 y - 2yp • 

Equation (80) has a point of equilibrium at 

y *= 0 

and 

p » 0 . 

The nature of the equilibrium point is determined by first finding the 

characteristic equation. This is 

b 2 

S + (b)S + JTS « 0 . 

The roots are then 

v s2 - - */2 ± y ^ - ̂  
25 

and are negative real. Thus the equilibrium point of (8o) is a stable 

node, and equation (79) i s stable when 

e = 0 
sa 
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The characterizing equations of Fig. 13 and 14 do not have iso­

lated singularities, and hence the nature of their singularities are 

not known. 

Theoretical compari son of linear and nonlinear system.—Three nonlinear 

systems whose characterizing equations are of the Ttype II Case (c) form 

have been synthesized in this chapter. They are 

abk Y ah s. p 

U* + ( 7f— U + b ) u t + r-±- Y U te k 
s 2. ' 4 s 

2 
u" + ( ~ kfYu + b)u» + ^ - k fYu2 m 2beg 

and 

V * b 2 a b 2 2 
u" + ( - i r - Yu + b)u* + f- u + £ 5 - k Yu * be K k 4 16 f ! 

With the parameter v a l u e s of 

Y « 1.0 

k f - -01 

a 43 .6 

and 

b = 4 .07 , 

these equa t ions became 

u" + (8.85u + 4.07)u* + I 8 u 2 m 4 .07e ( 8 l ) 
S 
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u" + (8.8511 + 4.07 V + l8u 2 « 8.l4e (82) 
S 

and 

u" + (4.425u + 4.07)u !n-:4;l5u + h.$ku2 « 4.07e (83) 

and the l inear system has the characterizing equation 

un + 4.07u* + V.3611 * k.OJe . 

The solutions to these four equations are available, but it is 

more convenient to obstain their response by means of an analogue com­

puter. In Fig, 16 is shown the computer arrangement for obtaining these 

responsesj which are shown in Figs. 17 to 20. (The response to equation 

(8l) was not obtained since it is not truly a second order differential 

equation.) In Fig* 21 is shown a comparison between the two nonlinear 

systems and the linear system. This shows that, for the value of input 

signal indicated, the Type II Case (c) characterizing equation with a 

stable isolated singularity has a faster response than the linear system 

by a factor of 2 to 1. The Type II Case (c) characterizing equation with 

a bias signal has a response that is not significantly better than the 

linear system for the indicated input signal. 

In an actual control system it would not be desirable to utilize 

the Type II Case (c) characterizing equation with the bias signal because 

of the inability of the restoring force to change sign. If the controller 

should have a d.c. drift in the wrong direction, the system would be un­

able to correct for this and would become unstable. The Type II Case (c) 
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system with a stable isolated singularity can only correct for a limited 

amount of drift, "but it would still have more control than the system 

with a bias signal. It should also be emphasized that the nonlinear 

system does not react faster than the linear system for all values of 

input signal, since its response is a semi-transcendental function of 

the constants of integration. Also, the nonlinear system is asymmetri­

cal and can only control for values of input signal where 

F > 0" . 

Realization of/a Type II Case (c) character!zing equation with a stable 

isolated singularity*—To realize a Type II Case (c) system with a stable 

isolated singularity, the linear first order system of Fig, A-6 was uti­

lized with: an analogue computer serving as the nonlinear controller. The 

nonlinear controller arrangement is shown in Fig. 22, When the actual 

system was tested, it was found that signals smaller than one volt were 

not sufficient to run the motor because of the quiescent frictional force 

of the brushes. In Fig. 23 is shown the theoretical response of the sys­

tem for signals larger than one volt. Fig. 2k shows the actual response 

of the system. In Figs. 2^ and 25 are shown the speed responses of the 

linear and nonlinear system. 

The most serious practical difficulty was due to drift in the 

electronic multiplier that produced the squared term of equation (83). 

To the system this drift was the same as an initial condition. The other 

difficulty was the limited range of input signal over which the linear 

system was truly linear. This region was restricted to a fairly narrow 

range of one to five volts. One distinct advantage of the nonlinear 
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system is the high initial force which breaks the brush friction much 

faster than does the linear system. This is due to the damping term 

Guu*. 

The linear term cannot he increased indefinitely, for from equa­

tion (74) it is seen that 

A - ( b - 2 G ) s s 7 • 

This equation also places the restriction on G of 

G < b/2 . 

In the system tested it was found that the optimum system response 

occurred for parameters other than those necessary for a Type II Case 

(c) system, 

For control purposes, the chief disadvantage of this system is 

that it is asymmetrical and is good for only one polarity of an input 

signal. If the signal goes negative and the polarity of the squared 

term is reversed, the characterizing equation is then 

y" + [-26 + Ply1 - Py2 « F 

and will "be stable. However, the damping will decrease with an increase 

in y. A better procedure would be to alter the equation to 

yM + [2|y| + P]y* + p|y|y * F . (84) 

Equation (84) is no longer a Type II Case (c) system now, however, but 

it is symmetrical. 



CHAPTER VII 

TYPE II CASE (d) SYSTEMS 

A = - lj C « 1 

Response,in the complex domain,—The form of the Type II Case (d) dif­

ferential equation is ' 

WM m [-w -f B]w' + w° + Dw + Ew + F . (85) 

By a linear substitution of the form 

w(z) « W(z) + u(z) y 

equation (85) can he expressed as 

W" « - W W* + W3'+ a[3Wr + W2] + M + S , (86) 

where 

3|i + D »' a 

-p. + B ** 3a 

2 
R =•-. 3^ + 2Du + E 

and 

3 2 
S * p + Dp + Ep • + F . 

It has been shown that there are three cases of equation (86) which admit 

to a solution with fixed critical points. These three cases will now be 

examined individually. 
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case 1 . a s = R s 3 S * = 0 . Equation (86) now "becomes 

W" + W Wr - W3 * 0 , (87) 

and has the s o l u t i o n 

<P(z + C ; 0, C ) 
W - £ L 1 * (88) 

^ ( z + Cx; 0 , C2) 

where C and C are constants of integration. This is a doubly periodic 

function with fixed critical points "but with moyable poles. The poles 

occur at values of the argument where 

z - - c i • 

case 2 . R ^ 0 , a « S == 0 . Equation (86) now "becomes 

W* + W W1 - RW - W3 * 0 , (89) 

which has the solution 

»/ 

1 /—7- D ( u ; 1 2 ' c i } 

y(uj 12, C ) - 1 
(90) 

where 

u = |N/^E73 + C2 , 



87 

and C and C are constants of integration. This is a doubly periodic 

function with fixed critical points but with movable poles. The poles 

occur at values of the argument where 

z m - 2 C >/-3 R 

or 

^ ( u j 12, Cx) * 1 , (91) 

provided equation (9l) has no common factors with the numeration of 

equation (90). 

2 
Case 3« » S « 0 , R *= - 2a . Equation (86) now becomes 

W* + (W + 3a) - W3 + 2ai2W « 0 (92) 

and has the solution 

-az ̂  (uj °' 1 ) 
W ~ C_ e ^ r , (93) 

1 ^ ( u ; 0, 1) 

where 

-az 
u = C^ae + C2 , 

and C and C are constants of integration. This is again a doubly per­

iodic function with fixed critical points but with movable poles. There 

are an infinite number of simple poles at values of the argument where 

z = " I ln (" c£ aJ • 
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Response in the real domain*—As a function of a real variable y(t)^ 

equation (85) "becomes 

y" = (-y + B)y» + y3 + Dy2 + Fy + F . (9*0 

Unfortunately, from the standpoint of the purpose of this thesis, the 

three cases of equation (9*0 which have solutions with fixed critical 

points in the complex plane do not have a constant term. Thus this 

system is not suitable for the characterizing equation of a physical 

system. Furthermore, cases 1 and 2 give rise to solutions which are 

doubly periodic and hence unstable. 

For case 3> equation (9*0 ca^ "be expressed as 

•" + (y + a)yt - y3 + ay2 + 2a2y « 0 , (95) 

which has the solution 

-at<0(uj 0, 1) 

y * CL i — J i , (96) 
#(u; 0, 1) " 

where 

C. 1 -at 
u =•- — e + C 0 . 

a d 

The constants of integration C and C can "be determined from the relation­

ships 

W& + a, 0 ,1) 
y(0) = CjV-•% § 

tfi-T+%i 0, 1) 
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and 

yf(0) - - ay(0) - C^ 

>/ Q 

ff(5T+C2'°>l) y2(0) 

(^ + c2J o, i) 
a 

This system becomes unstable if 

1 p"at - n 
a" ~ " °2 * 

As an alternate approach to the question of stability, consider 

equation (95) in "t̂ e phase plane with the characterizing equation 

where 

and 

'j 

£E « - 2a y - ap + Q(p,y) 
ay P 

dy 
p dt 

Q(p>y) « y~ - ay" - yp • 

The characteristic equation is 

S + aS + 2a * 0 9 

and hence the roots which are 

\> s2K - i±A 
a 0 2 
r - 2a 
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are negative imaginary, and the equilibrium point at the origin of the 

phase plane is a stable spiral., point* The response of equation (95) is 

thus stable, provided the initial conditions are such that 

y(t) > - a 

for all values of t. 

The characterizing equation 

y" + (y + a)yt - y3 + ay2 + 2a2y = F (97) 

satisfies only the necessary conditions for the solution to have fixed 

critical points in the complex plane, and no solution is available. The 

3 2 2 
nonlinear restoring force -y" + ay + 2a y causes the system to become 

unstable if the amplitude F of the input signal is such that y(t) > a. 

This system is then stable for small displacements and is also*an asym­

metrical control system. When F = 0, the solution has fixed critical 

points in the complex plane, and the system is stable if the initial con­

ditions are such that 

y(t) > - a. 

Physical system with si Type II Case (d) characterizing equation.—In 

Fig. 26 is shown a physical system with a Type II Case (d) characterizing 

equation. The equations of motion may be expressed as 

t 

o 

= / (eg - k ^ d t 

and 



u 

U fe / ^ e s " ^ 

P * Y[Gu'u + G 

aP * —- + Txo 
d t 

Figure 26 . Phys ica l System -with Type I I Case (d) C h a r a c t e r i z i n g E 
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k„ay [Gu'u + AG2u2 - BG3u3 + CGu] * - u" + h [ e ~ u ' ] . (98) 
i s 

With the s u b s t i t u t i o n s 

u = \ y , 

A. = 1 Y/KfaG y 

B = k a Y/G , 

A « h/G , 

C « 2h2 /K aYG , 

and 

e « 0 . 
s 

equat ion (98) "becomes the Type I I Case (d) cJaaracter iz ing equat ion 

y" + y f [ y + *b] - y 3 + "by2 + 2"b2y « 0 . (99) 

The i n i t i a l cond i t ions a re 

y*(0) « kfaGY e ^ 

and 

y(0) « T 

where T is the smallest positive root of 
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-^ + bT2 + 2b2T * Kb e , . 
sb ' 

and e . is the value of input signal before the transient response starts, 
sb 

The solution to equation (99) is given by equation (96). 

Since this system is unsuitable for control purposes, it will not 

be realized or studied further in this thesis, 



CHAPTER VIII 

TYPE II CASE (e) SYSTEMS 

A « - 3; C « - 1 

Response in the complex domain.—The general form of the Type II Case 

(e) system is 

w" + (-3v + B)V - W ^ + D W + Ew + F . (100) 

It has "been shown that for equation (lOO) to have a solution with fixed 

critical points, it must he in the form 

wM + 3 " ' + v « B[w' + w2] + Ew + F . (101) 

Equation (lOl) has the solution 

u' 
w « — , 

u 

where us is the solution of the linear differential equation 

u*1' * Bu" + Eu* + Fu . (102) 

If p y p y p are the roots of the characteristic equation of equation 

(102) 

p3 - Bp2 - Ep - F *= 0 , (103) 

then the solution to equation (lOl) is 
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P-Lz P 2 z p z 
GnPn€ • + C p 6 + p _ e J 

P-.Z PpZ PnZ 
C € + C 6 + € ^ 

The response is then a semi-transcendental function of the constants of 

integration C and CL. (it is assumed that there are no multiple roots 

of equation (104). 

For multiple roots,, equation (104) "becomes 

Pn z P P
Z 

w~ P£5 5̂ 5 (105) 

(̂  + C2z)6
 x + e 

or 

C + PnC + z(C p + 2) + pz * = -^ 1 ^ 2 ^ ( I Q 6 ) 

C + C2z + z'" 

Equations (104) and (105) are semi-transcendental functions of the 

constants of integration, whereas equation (106) is an algebraic function 

of its constants. Each of the three equations has critical points -which 

are fixed "but poles which are movable. If the numerator has no common 

factors with the denominator, these poles occur at values of the argument 

such that 

(P.-PJ2 (PP~ P J
Z 

Q e ^ + C2€ ^ + 1 = 0 (107) 

(pn~Pp)z 
(Cl + C 2 Z ^ € + 1 « 0 (108) 
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°1 + C2 Z + ̂  " ° ' ^109^ 

In equation (l09)> these poles occur at 

c c2 

provided 

PO, + C0 C C2 If 1 2 / 2 ,U 2 „ 
" c2 + 2 ^ - 2~ ± ! IT " c i * 

I t i s seen tha t a pole can occur a t a posi t ive rea l value of z> depending 

upon the value of C_ and C?« 

In equations (107) and (108), a suff ic ient condition for the ab­

sence of posi t ive rea l poles i s 

C > 0 

and 

c 2 > o . 

Response in the real domain*--As a function of a real variable y(t), 

equation (lOl) becomes 

y* + [3y + B]yf + y3 + By2 + Ey « F . (llO) 

The presence of fixed critical points does not depend upon the sign of 

the parameters B and E; but, since this equation is ultimately to be used 

as the characterizing equation of a physical system, B and E have been 
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chosen negative. F vill "be positive or negative,. depending upon the direc­

tion of the input signal. The solutions to equation (110) are given by 

equations (1C4') to (106) with co replaced by y and z replaced by t. 

For a stable physical system, the roots of the characteristic equa­

tion (104) must not be pure imaginary. The characteristic equation (104) 

becomes 

p3 + Bp2 + Ep - F == 0 (ill) 

and cannot have a pure imaginary factor. The discriminant of (ill) is 

A * - 18 BEF + 4B3F + B S 2 - 4E3 - 27F2 , 

and thus the locations of the roots vary with F* For F large there will 

be two conjugate imaginary-roots and a single real-root. For F small 

the location of the roots will be essentially determined by E [B - ̂ -E] « 

For one value of F, there will be three real-roots. Hence, if B > 4E, 

the response will be analogous to that of the linear system, in that there 

are three types of responses depending upon the value of F, i*e*, 

(1) Overdamped (F small). 

(2) Critical damped (A « o). 

(3) Underdamped (F large). 

For unequal roots and the system starting from rest, the initial condi­

tions are related to the constants of integration by 

0 - clPl + C 2p 2 + p 
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and 

2 2 2 
C p* + Ĉ p +p 

y V ; C + C + 1 

By analogy with the linear system, the Type II Case (e) system has a non­

linear damping coefficient (3y + B) and a nonlinear restoring force 

y~̂  + By + Ey and hence will "be stable for positive values of displace­

ment y. However, if y goes negative the system can "become unstable. The 

origin of the phase plane is a stable point of equilibrium, but, if the 

displacement is such that 

y(t) -»T , 

where T is the solution of 

-T3 + BT^ - ET « 0 , 

the system will become unstable. Thus the Type II Case (e) system is 

asymmetrical. 

The Type II Case (e) system is the second system examined in this 

thesis whose solution has fixed critical points in the complex plane for 

all values of input amplitude F. Hence it shows promise for use as the 

characterizing equation of a physical system* However, it has the dis­

advantage that it is not stable for all negative values of F and is an 

asymmetrical control system. It will now be studied further by synthe­

sizing a physical system to have such a response. 



99 

Physical system with a Ifype II Case (e.) characterizing equation*—The equa­

tion of motion of the system shown in "block diagram form in Fig. 27 may 

be expressed as 

t 

o 

F (eg - kfa))dt 

and 

+ * aY[AGu + GuTu + — u 2 + -—G2u3] « u" + b[e - u«] . (112) 
f 3 9 s 

With the substitutions 

u « \y , 

YAGakf «= E , 

\ = 3/aGYkf , 

B = b , 

and 

F « YabGkfes/3 , 

equation (112) becomes the Î pe II Case (e) characterizing equation 

y" + [3y + b] + y3 + by + Ey ~ F . 

(it is not necessary to have a linear term for this to be a Î pe II Case 

(e) system, but drift in the multiplier can. cause the system to become 

unstable without this term.) 



/ 
J 

« -a 

Figure 27« Phys i ca l System -with Ttype I I Case (e) C h a r a g E 
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For the system starting from rest, the initial conditions are 

y(0) = 0 

and 

y (o) = 
aG V 

The solution is 

u s= 
aG' \ 

l P l e + C 2 p 2 e + P 3 € 

P2* P3t 

P-, t Ppt P ?t 
C^e + G2€ + e ̂  

where p , p and p are roots of 

3 2 
pJ + Bp + Ep - F ~ 0 , 

and it is assumed there are no multiple roots. 

If the system is at a steady State value y ^ and the input si| 
s • s o 

nal is suddenly taken to zero, the initial conditions are 

y(o) = y 
s.s. 

and 

y'Co) = 
aG3 , 

~ e —T— k , 
s 3 f 

where e is the signal "before the upset. The roots of the characteristic 

equation are now obtained from 
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and are 

and 

3 2 
pJ + Bp + Ep « 0 

P l a 0 

P2> P3 
F 

- - B / 2 W r - E 

the response of the system will he of the form 

= — 2 — 
aG k, 

3 . - B/2 t 
„ p ^ ( ^ 2

A - E ) t + - C ^ A ^ -
;2P2€> Y ' ' * p 3 € 

+ c e(-)(B
2A-E)t + -C^A-sjt 

1 2 

(113) 

For 

B <ta, 

equation (113) may he rewritten as 

u « 
3€ 

- B / 2 t 

aG k 

C2P2€ t (^/E-B2A)t -j(YE-B2A)t 
P 3 € 

C l * C 2 € 
_j(^E-B2A)t + €-j(^E-B2A)t 

J 

where 

P 3 
C 2 = ^ 

y * ( 0 ) + y ( 0 ) - p 3 y ( 0 ) 

y'(o) + y (o) - p2y(o) 
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and 

*1 
1 P2 

y*(0) + y (0) - p^y(G) 

yT(o) + j(o) - P2y(o) 

P2 - y(o) 

y(o) 

P 3 - y(o) 

y(o) 

Comparison of linear and nonlinear systems^ '--With the system parameters 

adjusted to 

kf J« .01 s 

b « 4,07 ̂  

a « 43.6 , 

G « 10 s 

Y «* 1 . 

and 

A * 1 

the Type I I Case (e) characterizing equation "becomes 

u" + [4.3611 + 4.07]u f + 2. l2u3 + 5.91u2 + 4.36u « 4.07e . ( l l4 ) 
s 

With 

v, « ,686 y > 

equation ( l l 4 ) "becomes 

y" + C3y + k.Ql]y' + y3 + ^.07y2 + 4 . 3 % « 5-92eo . 
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The linear system has the characterizing equation 

u" -f k-.O^fu1 + k»36u ** 4.07e . 

The analogue arrangement necessary to obtain the nonlinear response 

is shown in Fig* 31, The theoretical response of this system is shown In 

Figs. 32 to 37, 

The solution to the Type II Case (e) system is in a form that is 

easier to utilize than the Type II Case (c) system; however, the response 

of this system is not significantly faster than the Case (e) system. 

Furthermore, since there Is a cubic term present in the differential equa­

tion, it will be more difficult to realize. For this reason, the Type II 

Case (e) system was not real.ized> and attention was focused on realizing 

the Type II Case (c) system, 
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CHAPTER IX 

DISCUSSION AND RELATED PROBLEMS 

Equally as important as the characterizing equations developed 

here is the insight gained into the fundamental reasons for the dif­

ference in response "between linear and nonlinear servomeonanisms. The 

subclass of differential equations examined contains the linear differ­

ential equation which is a special example of the Type II Case (a) 

system with 

D s O . 

It is the only member of this subclass whose response is a linear func­

tion of the constants of integration. Other members of the Type II 

system, as summarized in Tables 1 and 2, have responses which are semi-

transcendental functions of the constants of integration and hence have 

poles whose locations are functions of these constants. Since all mem­

bers of the 'rype II system have fixed critical points, it is the presence 

of these poles which are summarized in Table 3 that allows the response 

of systems with nonlinear characterizing equations to be faster (in some 

cases) than those systems characterized by linear equations. However, if 

these poles ever cross the positive real axis of the complex plane, the 

response of the characterizing equation becomes unstable. Unfortunately, 

the transcendental functions which enter into the solutions of the Type 

II system are such that asymmetrical control action is produced. 
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It is not to he inferred that movable critical points are detri­

mental to speed of response, The characterizing equation of Lewis* 

nonlinear servomechanism^ 

y* + y'tAy + b] + Ey * F , (115) 

satisfies the necessary conditions for a Type II Case (c) system, "but 

not the sufficient conditions and hence has movable critical, points. It 

can "be shown that a critical point is due to a logarithmic term in the 

solution. Since the restoring force is linear., equation (115) will have 

symmetrical restoring action, hut asymmetrical damping. 

The type of instability encountered in the nonlinear servomechan-

isms synthesized in this paper is quite different from that experienced 

in linear servomechanisms* A second order linear servomechanism excited 

by a step function has a solution of the fo.rto 

P-it P?t 
y *t c € + c2«s •+ A . 

If p or p has a positive real component, the response becomes unbounded 

and hence unstable. This type of instability is due to the presence of 

an essential singularity in the complex plane* Consider now the char­

acterizing equation of the Type II Case (a) system which has a response 

of the form 

y « Ae** ̂ [ B ^ +3^, 0, k^ - G . 

If p has a positive real, component, this response is unstable for the 

same reason as the linear response. However̂ , If 
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Bspt + k s 0 , 

the response will then "become unstable because of the pole crossing the 

positive real axis of the complex plane* Some idea now emerges as to a 

stability criterion for nonlinear servome onanisms. Such a criterion 

should insure that the solution of tile characterizing equation nave the 

following features in the complex planes 

(1) The critical points are such, that the solution approaches 

zero along the positive real, axis-

(2) The poles do net cross the positive axis. 

(3) The solution has a real value along the positive real axis. 

This thesis has shown that characterizing equations of the Type II sys­

tem, excluding the linear equation^ do net have these properties for 

every value of input signal amplitude* However, such a character1!zing 

equation is physically realizable,, for consider the equation 

u* + u * [ ~ ; + h] * Cu *. CF . 
II—r 

With the substitutions 

y e u - F 

and 

1 

m
1 + a 

y « T , 

the solution can he obtained* and is 
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„ k t _ 1 _ 

u « F !+ [Ae 2 Sin(o) t + • ) ] 1 + a ( l l 6 ) 

where 

r—~~ 
% = v ^a+1^c ~ IT ' 

and A and $ are constants of integration,, This is a symmetrical control 

system and if — - is an odd integer, and if - 1 < a < 0, it reacts faster 

than the linear system for small upsets, "but is quite oscillatory for 

large upsets. In the complex plane.? equation (ll6) has fixed critical 

points and no poles and satisfies the criteria stated above. 

While the characterizing equations examined here are not stable 

for all signal amplitudes, some show promise for use as characterizing 

equations on nonlinear servomechanisms, Furthermore, the method of in­

vestigation has illustrated some fundamental differences between the re­

sponse of linear and nonlinear servomechanisms* Other subclasses of the 

Type II system might be examined for their applicability as characterizing 

equations. 

Related problems.—It has been shown that there are fifty canonical forms 

of equation (l) admitting to a solution with fixed critical points. One 

subclass has been examined here and the results have been promising* She 

members of the remaining subclasses should be examined for suitability as 

characterizing equations. 

The acceptance of the response of a servomechanism to a unit step 

function as a valid criteria of its transient response has been questioned, 

and it has been proposed that the response to a ramp function contains 
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more useful information. The control systems synthesized here can he 

examined for a ramp input and a comparison should he made "between the 

information gained "by "both inputs concerning the transient response of 

a nonlinear servomeonanism. 

The effect of a movable critical point upon the transient response 

of a nonlinear servomechards;m. has not been discussed here. However,, it 

plays an important "but obscure role. The obscurity stems from the com­

plexity of the transcendental function which constitutes the solution of 

such a characterizing equation. Only a few characterizing equations 

with such solutions have been solved., but the characterizing equation of 

Lewis' nonlinear servomeonanism seems to lend itself to a series solu­

tion which has been outlined by E. L. luce. Examination of this solu­

tion might shed some light upon this effect. 



Table 1 

Summary of the (Characterizing Equations of the Otype n System y" + [Ay + B]y* 

Case 

!Iype of C 
Damping 
Force 

Jontrol 
Restoring 
Force 

Value 
of 
F 

Role of Constants 
of 

Integration 

Suita 
f 

Control 

a By' 
2 

Ey+Dy 
36B2~625E2 

Semi ̂ transcendental Som a By' 
2 

Ey+Dy 2500D Semi ̂ transcendental Som 

b 3ayT -Sy3 + 2a2y 0 Semi-transcendental Hon 

c (2y+F)y* ^ Any Semi-tran s cendental '• Excell 

d (y+3a)yT 
^ 2 V + 2a y 0 Semi-transcendental Non 

e (3y+B)yT y^+By +Ey Any Semi-transcendental Excell 



Tahle 2 

So lu t ions of the Charac te r i z ing Equat ions of the Type I I System y" + [Ay + B y T , 

Case 

b 

d 

So lu t ions 
2B 

[(i£ -¥ - k ) j o , l : i 
50D 

25E - 6B' 

"a-'t ~ 
•- j k , € S n 

- a t . . i . 2 
u2 

1L e ~ " + k j k « - l 

^ c 

. 1 
| t [ ATv(u) 4- Yv(u) 

AJ v(u) + Yv(u) 
; U - _ si _k € 

P 1 
"I* 4F 

,3 

#^°.3 U = € 
- a t 

u y =z — I u , T < + Buw + EuT - Fu = 0 
u 



Pole 

Tahle 3 

Locat ion of the So lu t ions of t he Cha rac t e r i z ing Equation e Ify 

w" « [Aw + B]wT + Cw + Dw + Ew + F 

Case Condi t ions Location 

a 
B * E « F *= 0 

B, E. F , ^ 0 

z ^ k 

z - | m ( | k) 

"b 
B « 0 

B ^ 0 

2MK -1- i (2N + I J K S M, N i n t e g e r 

K, e***2 + K^ « (2M + l)K + i(2N 

c 

P 

d 

a « R & S *= 0 

R ^ O ^ a « S ^ O 

S - 0 , R « - 2a 2 

z ~ - c l 

d 

a « R & S *= 0 

R ^ O ^ a « S ^ O 

S - 0 , R « - 2a 2 

z - - 2CX <v/- 3/R , (uj 12, G 

z « - i l n [- C 1 /C 2 (a)] 

e u t ! t ( z ) - Bu"(z) - Eu*(z) - Fu( 
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Characterizing equation of a separately excited d.c. motor with viscous 

friction and inertia.—-The schematic diagram of a separately excited d.c. 

motor with viscous friction and inertia is shown in Fig. A-l. With the 

assumptions listed in this figure, the equations of motion of the system 

can he expressed as 

T = electrical torque =* k + 1 , (A-l) 
e a ' 

T = mechanical torque = Jco' 4- fco 9 (A-2) 

and 

e, - 1 R « k to » (genera ted v o l t a g e ) . (A~3) 
t a a m 

Substituting equations (A-3) and (A-l) into (A-3) leads to 

ktet f ktkm 
^ — «= 0)f + (~ + T R ~ ) ^ • (AJ4) 
a a 

With the s u b s t i t u t i o n s 

k t 
a" JiT 

a 

and 

(A-5) 

-p k k 
t . f + 5|i (A-6) 

a 
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R 

-—vvv 
a ~~~~~ 

e T L ' f 

Parameters 

2 
J e Polar moment of inertia; slug-ft 

f = Friction coefficient; ft-lb/rad./sec. 

k - Torque constant; ft*-lb/amp. 

k.. = Generated voltage constant; volt/rad./sec, 

R « Armature resistance; ohms 

e « Terminal vo l t age 

L = Armature current 
a 

CO - Angular velocity; rad./sec, 

Assumptions 

(1) Negligible armature inductance 

(2) Linear armature resistance 

(3) No magnetic saturation 

Figure A-l. Separately Excited d.c. Motor with Intertia 

and Viscous Friction 
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equation (A-4) "becomes the characterizing equation 

ae « a)1 + ho) » (A-T) 
u 

It is customary to show this equation in "block diagram form in Fig* A~2 

where s is the symbol for the Laplace transform. This is the "block dia­

gram of the unaltered or open loop system. For e a step function^ the 

response of equation (A-7) "becomes 

ae , . 
a) - ̂  [1 - e ] . (A-8) 

In order to improve the response of this system^ it is necessary 

to alter the characterizing equation (A-7) of the system. This can he 

accomplished as in Fig. A-3 "by means of a linear controller which inte­

grates the error of the system. If the error of the system is defined as 

e «= e„ - k ^ , (A-9) 
s 

then the output of the control ler i s 

i = / ( e - k oj)dt . (A-IO) 

In terms of the variahle u^ the characterizing equation of the compensated 

system he comes 

u" + hu1 + k aGu * he > (A-ll) 
X S 
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'T 
<D 

a •* 

Kr 

JR" 

» f / A ID B — + 
J JR 

a 

Figure A-2 . Block Diagram of Open Loop System 

Power Amplif ier 
and C o n t r o l l e r 

Motor 

k m r a d . / s e c . 

Figure A-3* Block Diagram of Compensated System 



125 

where 

uf « e - k JCO . (A-12) 
s i 

The addition of the linear controller has altered the characterizing 

equation to a second order linear differential equation. The solution 

to equation (A-ll) is 

"be 
u - [Cj/* + C ^ V 1 * + ̂  , (A-13) 

where C, and Cp are constants of integration and 

P s ± 7 ^ " " kf a G * (A"1^) 

Since the response of u is a linear function of the constants of inte-

gration^ they will not change the form of the differential equation as 

they are changed "by the initial conditions. 

It is customary to choose the controller gain G such that 

,2 
kfaG > £- . (A-15) 

Equation (A-13) can then he expressed as 

-%b be 
u m As d Sin(pt + •) + rr^ , (A-l6) 

where A and $ are constants of integration which are related to the 

initial conditions hy 
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be 
s 

ulf=0 = A S i n * + k iG> (A"1T) 

and 

u*1 « A p Ctos 4> - ! A Sin * . (A~l8) 

Equation (A-l6) is the underdamped or oscillatory response. 

Physical system utilized*—-In Fig. A-k are shown the physical systems 

utilized in this thesis* The power amplifier consists of a push-pull 

d.c. amplifier and an amplidyne. The viscous friction and inertia load 

were simulated by means of a d.c. generator with a resistive load* By 

adjusting the load resistance of the generator, the effective viscous 

friction could be altered. It was assumed that the time constants of 

the amplidyne were negligible compared to the d»c* motor and its load. 

Figs. A-5 "to A-8 show that the assumptions of linearity are within rea­

son. The armature resistance of the motor can be considered a constant 

only over a limited range of speed. For this reason the change in speed 

was kept to 300 rpm or less. An analogue computer was used to obtain 

the integration and the error of the system. The responses of the sys­

tems utilized in this thesis were portrayed on the x-y recorder of the 

analogue computer. 

Evaluation of motor time constants.—The characterizing equation of the 

physical system has the steady state solution 

co « : e , . (A-19) 
s.s. b t 
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If the system is operating at some steady state speed a) and the 
s»s« 

excitation is removed, the resulting decay of speed is given by 

CD *= CD €~ . (A-20) 

s.s. v 

Taking the logarithm to the base 10 of both sides of equation (A-20) 

leads to 

Xo&io(crt-) - -bt l o g ( i o ) e > (A-21) 

which plots as a straight line. The slope of this line is 

- b l 0 % > € 

from which b may be calculated. Once b is known, equation (A-19) can be 

utilized to obtain a. In Fig* A-9 is shown a typical decay curve of this 

system and in Fig. A-10 is a plot of equation (A-2l). Since the slope of 

this curve is 1.77> 

b « I4-3.6 

and 

a « 43*6 . 

Response of physi cal system.—lypi cal values utilized in this thesis are 

G = 10 

Kf - .01 
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and 

e «= 1 volt. 
s 

Hence 

p c ,6 

and 

"b/2 s 2.035 • 

For the system starting from rest^ the initial conditions are 

u(0) « 0 

ur(0) « 1 

and hence 

A » 1.6l 

and 

4» m - 35*4° • 

Thus the response of this system to a 1 volt step function is 

u « i«6le~2*°35t Sin(.6t - 35.4°) + *931 • 



BIBLIOGRAPHY 

1. McDonald, D. C , "Non-Linear Techniques for Improving Servo 
Performance," Proceedings, National Electronics Conference, Vol. 
6, 1950, pp. 400-421. 

2. Lewis, I. B., "The Use of Nonlinear Feedback to Improve the 
Transient Response of a Servomechani.sm," Transactions of the 
American Institute of Electrical Engineers, Vol. 71, Part II, 
1952, pp. 449-53. 

3. Kochenburger, R. Jttj> "A Frequency Response Method for Analyzing 
and Synthesizing Contactor Servomechanisms," Transactions of the 
American Institute of Electrical Engineers, Vol. 69, Part I, 
1950, pp. 270-284. 

4. MacColl, L. A., Fundamental Theory of Servomechanisms, D. Van 
Nostrand Company, Inc., New York, 19^5 > Appendix. 

5. Mittag-Leffler, G., "Sur 1'integration de 1'equation dlfferentale 

'y" r= Ay 3 + By + Cy + D •+• (Ey + F)y V Acta Mathematical, Vol. 
XVTI-XVIII, 1893-94, pp. 233-245. 

6. Picard, E., "Remarques sur les equations differentielles," Acta 
Mathematical Vol. XVII-XVIII, 1893-94, pp. 297-300. 

7. Painleve, P., "Sur les equations differentielles du second ordre 
et dtordre superieur, dont l'integrale generale est uniforme," 
Acta Mathematical Vol. XXVT, 1902, pp. 1-86. 

8. Ince, Eo L., Ordinary Differential Equations^ Dover Publications, 
Inc., New York, I926, pp. 317-355. 

9. Mi.ttag-Leffler, G., Qp_. Cit., pp. 233-245. 

10. Ince, E. L., 0p_. Cit., pp. 326-328. 

11. Ince, E. L., Op. Cit.,p. 294. 

12. Ince, E. L., 0p_. Cit_., p. 328. 

13. Ince, E. L., 0p_. Cit., pp. 328-330. 

14. Hancock, H., Theory of Elliptic Functions, John Wiley and Sons, Inc., 
New York, 1910, p. 309. 



137 

15. Hancock, H., Ibid., p. 327. 

16. McLachlan, N. W., "Engineering Applications of Nonlinear Theory,n 

Symposium on Nonlinear Circuit Analysis, Polytechnic Institute of 
Brooklyn, April 25-27, I.956, 

17. Mittag-Leffler, G., 0p_. Cit., p. 241. 

18. Painleve, P., 0p_. Cit., p. 53. 

19 . Byrd, P. F . and M. D. Friedman, Handbook of E l l i p t i c Funct ions fo r 
Engineers and Phys ic i s t s , , Spr inger -Ver lag , B e r l i n , 195 ĵ> P« 9D» 
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