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SUMMARY

It has been stated in other works that the transient response of a
linear servomechanism could be improved by altering the characterizing
equation in a nonlinear fashion. Several control systems whose char-
acterizing equations are nonlinear have been proposed and examined.
However, each such contrel system has been an isolated example, and no
general statements have been made concerning their responses. The prob-
lem of improving the transient response of a linear system by inten-
tionally altering its characterizing equation in a nonlinear fashion is
here attacked by examining a subclsass of the class of second order dif-
ferential equations for their sultability as characterizing equations.
The members of this subclass have the common feature that, when examined
as a function of complex variable, their solutions have critical points
(essential singularities) that are fixed (with respect to the constants
of integration).

Examining this subclass allows use to be made of the extensive work
done by mathematicians between 1810 and 1926 in the field of complex
differential equations. The mathematical problem concerns the existence
of solutions with fixed critical points of the class of differential

equations

w" = F(z, w, w') , (1)

where F is rational in w', algebraic in w and analytic in z. While it
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has been shown that there are fifty canonical forms of equation (1)
admitting to such solutions, the elements of the subclass examined here

are those differential equations which can be expressed as

w" = (Aw + B)w' + o + D + Be 4+ F . (2)

A set of necessary conditions for equation (1) to have such solutions
is that 1t be reducible to equation (2) by a suitable transformation
where A and C have the pairs of constant values

(a) A=0; C=0

(b) A=03 C=2

(¢c) A=-2;C=0

(d) A=-1;C=1

(e) A=-3;C=1

A control system with the characterizing equation of the form of
equation (2) is referred to as a Type II system and is subdivided into
Cases (a) to (e), which designate the numerical values of A and C. A
servomechanism was then synthesized to have a characterizing equation of
the Type II system. Thls procedure gave rise to five characterizing
equations which featured nonlinear damping, nonlinear restoring force or
a combination of both. In each case the solution of the characterizing
equation admits to fixed critical points in the complex plane.

The question proposed in this thesis, "Can the transient response
of a linear servomechanism be improved by altering i1ts characterizing
equation in a nonlinear fashion so that the solution has fixed critical

points?" is answered with a gqualified "yes." Three of the servomechanisms
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synthesized, those with characterizing equations of the Type IT system,
Cases (a), (c) and (e), have transient responses which are faster than
that of the linear servomechanism. The characterizing equation of the
Type IT Case (a) system does not have a solution with fixed critical
points for every value of F. The characterizing equation of the Type

1T system, Cases (c) and (e), have such solutions for all values of F.
One disedvantage of these systems is their asymmetrical control action,
i.e., the response for a posiftive F is not the seme as for a negative F.
None of these three charascterizing equatlions have a stable response for
every velue of F. An analytic&l-advantage of these nonlinear character-
izing equations over those cited in Chapter I is that they have solutions
which are availeble in a closed form.

From the viewpoint of simplicity and speed of resi::onse, the char-
acterizing equation of the Type II Case (c) system is the most promising
developed here. The characterizing equation of the Type II Case (e)
system is more complicated than Case (c), and, since a theoretical shtudy
of its speed of response showed no gignificant advantage over Case (c},
it was not realized.

While the characterizing equation of the Type II Case (a) system
did not admit to the proper solution for every value of F, its responss
was stable for positive values of F and hence was realized. Its responea
is sluggish for small inputs but relatively fast for large inputs. A
servomechanism with this type of contreol action is referred to as a
"variable-gain servo™ and is useful when the control system has small.

amplitude oscillations such as those caused by backlash in gears. This
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type of control action has been proposed in other papers, but the char-
acterizing equations of the Type II system, Cases (c) and (e), are con-
tributions of this thesis.

Although the five characterizing equations proposed in this work
were synthesized, no general method of synthesization has been developed.

This 1s still a function of the ingenuity of the synthesizer.



CHAPTER T
INTRODUCTION

Physical systems in general can be described or characterized by
either ordinary or partial differential equations involving an input
quantity such as force, voltage or pressure, and an output quartlty such
as displacement, torque or flow. The output quantity does not react
instanteneously to a change in the input quantity, but rather has a time
delay. The fundamental task of a control englneer 1s to alter the basle
characterizing equation of & physical system so as to obtaln a desired
regsponse to a given change in the input guantity.

The theory of linear servomecharisms is concerned with improving
the response of systems which can be characterized by means of ordirary
lirear differential equations with constant ccefficients. As ar <xampl=,

a first order linear system with an input variable Oi and an oufputh

*-
variablz GO has the characterizing squabtion

KGi(t') = Beé(t) + 90(-%_;) 5

With the system in ifs quiescent state, the characterizing equaiior

becomes

Ké“i(s) = (Bs + .1.)60(5) 5

*
The primes denote differentiation with respect to time.



where s is the Laplace transform varisble. It is customary to represent
this equations by means of the block diagram as shown in Fig. 1. This
diagram is often referrsd to as the open loop or uncompensated system.
It is this baslic system that the control engineer wishes to alter. The

response of the uncompensated system to an input change of the form

" lgi| s &P H

O
ct
R
it

L B
ct
g
il
o

3 E<0,
which is referred to as a step function, is
-t/B
Oo(t) ~K|Qi|(l o B ] s

The response of this system can be improved by the addition of a
linear controller and feedback, as shown in block diasgram form in Fig. 2.
The characterizing equation of thils compensated system can be

normalized and written as

whare

v
il

damping ratio,

oy
n

undamped angular frequency, and
G = gain of thes coniroller.

For Oi(t) a step function there are three types of responses, depending

upon the valne of . These responses are as follows:
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6, (s)

Be+l

Figure 1. Block Dlagram of Uncompensated System

5,(s)

Bs+l

Figure 2. Elock Diagram of Compensated System



(a) ¢ < 1, underdamped case

t
KG -yt
B9 ¢ 2
o(t) sin | @ 1-¢~ t | dt
l-§2 w
n

(b) ¢ =1, critically damped case
2

t
- t
KG n
Go(t) = E—lgi]te at.
o
(e¢) ¢ > 1, overdamped case

’ d
~bw %
%glgile E 2
Go(t) = sinh [ W §T-1 t J at.
(-1

In generai, the engineer adjusts the controller gain, G, to obtain the
underdamped response. The smaller the damping ratio, the faster the
system response, but the higher the overshoot. Hence the engineer must
compromise between speed of response and overshoot. 1% has ©teern found
that, in many cases, vaiues of { between .4 and .6 give the bes* rrac-
tical response. Thus the speed of response of a linear sysism is lLlmited
hy the amount of overshoot permitted.

Ag the need for faster responding systems srose, enginsers turneid
their attention to the possibility of improving system response by alber-
ing the basic characterizing equation in a nonlinear fashion. In 1950,
D. McDonaldl published a paper in which nonlinear con*rol systems with

the following characterizing equations were discussed:



vt — gyt taly =0,
l+a.[y‘
2tw
y' 4+ —2—yt+aly =0,

P

and 5
[44]
In

L+aL

dt

y" o+ 2§mny' + y=0.

Special attention was given to the use of the phase-plane plots as an
eld in designing these systems. In this paper the author introduced the
concept of & "dual mode" control system in which the response was linear
for smell errors and nonlinear for large errors.

In the same year J. B. Lew152 investigated the possibility of im-
proving the transient response of a second order linear system by intro-
ducing feedback which caused the damping ratio to vary during the period
of the transient. This variation was achieved by the multiplication of
two variables in the feedback path. The characterizing equation was of

the form
vy eyt + by yt ey =d .

Al though the two authors utilized the second order linear system as &
basic system and altered either the undamped natural frequency cr the
demping ratio in a nonlinear fashion, they developed no general method
of synthesizing a nonlinesr control system as there is for a linear con-

trol system.



The ease with which linear control systems are designed stems
directly from the properties of linear differential equations with con-
stant coefficients. One such property is that they satisfy the super-
position theorem, as a result of which, if Gl(t) is the response of the
system to an excitation rl(t) and Cz(t) is the response to re(t), then
the response to rl(t) + r2(t) is Cl(t) + Ce(t). Hence certain test sig-
nals, such as a step function or sinusoidel functions of varying fre-
quency, can be used to measure the response of the control system. The
question of stability is clearly defined in linear systems. The drlving
functions and initial conditions have no effect upon the stability.
Graphical techniques, such as the root locus or Nyquist plots, are used
to design systems with prescribed figures of merit, such as MP (maximum
overshoot), W (undemped angular frequencies) and ¢ (damping ratio).

The statements in the preceding paragraph do not hold for a non-
linear control system. Although the solutions to all linear differential
equations with constant ccefficients are available, only a small number
of nonlinear equations have been solved. The solution of a linear equa-
tion is a linear function of the constants of integration, but this is
not true for nonlinear eguations. For a second order nonlinear equation
three conditions may arise:

(&) The solution is an algebraic or, in particular, a rational

function of the constants of integration.

(b) The general solution is a semi-transcendental function of

the constants of integration.

(¢) Neither (&) nor (b) is true. The general solution is then

said to be an essentially transcendental function of the

constants of integration.



Because of these consfants of integretion, the response of a
second order nonlinear system will not be faster than the linear system
for all input signal amplitudes; however, there may be a range of ampli-
tudes for which the nonlinear system reacts faster than the linear
system.

The stability of the nonlinear system depends upon both the form
of the input signel and its emplitude. It is usuel to consider the in-
put quantity as one of the following types of functions:

(1) Step functions

(2) Ramp functions

(3) Sinusoidal functions

() Random functions.

In a linear system driven by & sinusoidal signsl, there are no other
frequencies present except tha®t of the input quantity. However, ths
output quantity of a nonlinesr system driven by a sine wave contalns
frequencies other than those of the inpu' sine wave. In this thesis,
the input quantity will be taken to be a step funchtion.

There are two techniques available for the design of nonlinesar
systeus. These are the describing-function technique, first devr=ioped
in this country by Kochenburger,3 ard the phase-plane portrait, sug-
gested by L. A. MacGoll..LL These procedures are not general and are only
aprplicable to certain types of nonlinearities and forecing funchion<.

Despite these difficulties, the demand for faster acting systems
has forced attention to methods of improving system responges by *hs

intentional addition of nonlinearities to & basic open loop lirsar sysiem.



The basic purpose of this thesis is to investigate the possibility
of improving the response of a second order linear system by the addition
of certain nonlinearities. The nonlinearities are chosen so that the
characterizing equation of the system, when expressed as a function of a
complex variable, satisfles a set of necessary conditions for the solution
of the differential equation to have fixed critical points (aessential

singularities fixed with respect to the initial conditions).



CHAPTER IT
PRELIMINARY CONSIDERATTONS

General.--The general second-order linear control-system excited by a

step=-function input has the characterizing equation

y'+By'+EBy=F,

where y(t) is the output quantity and F is the amplitude of the step
function input. The term By is often referred to as the restoring force
of the control system and By' as the damping force.

The general second-order nonlinear control-system excited as

above has the characterizing equation

v+ AyLy)yt + P(yLyly = F (1)

The term Q(y',y)y' is the nonlinear damping force and the term P(y',y)y
1g the nonlinear restoring force.

Al though an analytic solution of equation (1) is not availabie
for all forms of Q and P, 1%t is loglcal to ask if anything car be =said
about the nature of the sclution. The attempt to answer this guesiics
forms the basis of this thesis. Before continuing this discussiorn, *h=
mathematical background will be developed.

,.k'.
Mathematical background.--The nonlinear complex differential egquatlon

*
The primes denote differentiation with respect to the complex
variable z.
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[(w')2 -W w“]2 + hw(w')3 = O (2)
has the solution
1
z-C
2
W= Cle ’

where Cl and 02 are constants of integration. This solution has an
egsential singularity which depends upon the constant of Integration

02. But the linear differential equation

AL & QS % =0, (3)
which has the solution
a/2
W= (cl o+ ng)e y

has an essential singularity at infinity which is not a function of the
constants of integratilion.
Equations (2) and (3) are special casss of the general second

order complex differential equation
W" = F(z, W, W) , (4)

where F is rational in W', algebraic in W and enalytic in z. Between

5565758

1887 and 1926 mathematicians extensively studied the exis*ence of

solutions to equation (4) where critical points (essential singularities)

were fixed with respect to the initial conditions. In 1894 @. Mittag-

Leffler9 studied the differential equation



i il

3

W" = (AW + B) W! + CW° + DW° + EW + F . (5)

In 1926 E. L. Incelo showed that, for equation (4) to have a solu-
tion with fixed critical points, it is necessary that equation (4) be of

the form
W = [A(Z)W + B(2)] W' + C(2)W + D(z)W + E(z)W + F(z), (6)

and that this equation be reducible by suitable transformations to equa-

tion (5) where A(z) and C(z) have one of the following pairs of constant

values:
(a) A=0; C=0
(b) AmO; Cm2
(¢) A=-2; C=0
(d) A=-1; C=1
(e) A=-3; C= -1

The sufficient conditions were then determined by integration or other-
wlse.
Summary.--The question asked at the beginning of this chapter is now

partlally answered. Given an ordinary differential equation

Ay

v’ o= f(t,y,y') » (T)

one can replace the real varisble t by the complex variable z, and the
real function y(t) by some new function W of the complex variable z.
Thus, equation (7) is transformed into equation (4). The solu-
tion of the complex differential equation can be classified as to the
absence or presence of fixed critical points. This classification was

chosen to designate a subclass of the class of second-order differential



equations to be examined for their suitabllity as characterizing equa-
tions of a control system. This subclass has the advantage that the
solutions of its elements are gvailable.

An exsmingtion of the nonlinear systems discussed in Chapter I
shows that thelr characterizing equations expressed in the complex plane
have solutions with movable critical polnts. The basic purpose of this
thesls is to investigate the possibility of improving the transient
regsponse of a control system with a step function input signal by con-
straining the characterizing equation expressed in the complex plane
to heve fixed critical points.

Procedure.--The basic unaltered control system to be utilized in thie
thesls is discussed in the Appendix and is characterized by a first order
linear differential equation. TFeedback and a nonlinear controller will

be added to this system so that the characterizing equation of the altered
system, when expressed as a complex differential equation, will have fix=d
eritical points.

The general control system whose characterizing equation is given

3

v" + [Ay + Bly*' + Cy +Dy2+Ey+F

o

will be referred to as a Type II system and will be subdivided irto Cases
(a) to (e) which will indicate the pair of constant values of A ard C
tabulated on page 1ll., The procedure is as follows.
(1) The response of the system will be examined in the complex
plane and the location of the poles and essential singulari-

ties will be determined.



(2) The response of the system will then be examined as a func-
tion of time. Special attention will be given to the deter-
mingtion of the constants of integration.

(3) The stability of the system will be examined. This will be
correlated with the location of the poles of the solution
in the complex plane.

(4) A physical system utilizing the basic control system will
then be synthesized to have the same characterizing equation
as in step 2.

(5) The response of this system will be compared with the response

of the linear system.



CHAPTER IIT

RESPONSE OF FIRST ORDER, FIRST DEGREE SYSTEMS
WITH FIXED CRITICAL POINTS

General.--While this thesis 18 not primerily concerned with first order
characterizing equations, it seems proper to include a brief discussion
of them in this chapter. It has been shownll that for a differential

equation of the form
W' = £f(W,2) ,

where f£(W,z) is rationsl in W, to have a solution with fixed critical

points, it must be the generalized Riccati equation

W' = f.’l(z) + fe(z)w + f3(z)W2 F

Response in the complex domain.--When fl’ f2 and f3 are constants, the

Riccati equation becomes
W' = DW2 + EW + F o

By means of the substitutions

=

"

1
(il
4[3

»

its solution is obtained and may be written as



15

2 2
Fow)e, V)
DF Z DF Z
Clcte< B + Be 3
2 2 ’
fmy, (o)
- DR 7 - - DF Z
Cle L + ¢ B

(8)

W= -

w il

where
amgh/h—g - DF
and
SNV
The poles of equation (8) are movable and occur at values of z
where

L

1n(- 1/C,) ,
2 /l

2 s DF

=

and Cl is the constant of integration.

Response in the real domain.--As a function of a real variable v(t),

Riceati's equation can be written
; 2
y'=Dy +Ey+F,

and has the solution
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o) )
(Em)e, (fEem):

It should be noted that E and D have been chosen negative to insure that

(9)

e
]
Y-

ClE

the solution cannot become oscillatory for positive values of F. Cl can

be obtained from the reletionship

C=-BD_ 0 =

-y(0) + a/D

If the denominator of equation (9) becomes zero, y(t) is not bounded.

The unbounded response will occur for values of Cl where

~1<¢ <0 (10)

If inequality (10) occurs, equation (8) has a pole on the positive real
axis,

Physical system with a Riccati characterizing equation.--The physical

system of Fig. 3 Las the equation of motion

U = es - Kﬁu

and

u'! + KfaGEug + bu = bes » (l&}

where the parameters are defined in Appendix A.
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This is the Riceati characterizing equation with

F = be
s
2
D= KfaG
and
E"‘-ba

The solution of equation (11) is of the form of equation (9).

Comparison of linear and ncnlinear systems.--The linear system has the

characterizing equation

ut + [KfaG + blu = bes "

which has the solution

u

hes [ -(o + KfaG)t J
1, == e

b + KfaG

Tre steady state errcr and the time constant of the two syzhars
form the basis of comparison.

(a) Steady stale error.--This is defined as

limu =u 3
+ 2

and is
be
e

S:5o KfGa + b

u « + s o o linear syetem,

18



or

s
u +
SeSe K2 24 G2

+ o« & s » nonlinear system.

(b) Time constant.--This is defined as the reciprocal of the

coefficient of t 1n the exponent of the exponential and is
« « linear system,

Tl!'..'_"‘"_'_'_'_‘_ L
b+ KfaG

or

e ¢« « o« nonlinesr system.

1
T =
2
b 2
+
\/4_ K abGe
ak

For a high gain system, i.e., G >> 1 and L > —Ei s the nonlinear system

has a smaller steady state error than the linear system. For values of

input signal where

(b + K aG)2 L2

f b

es > 2 - A
K abG hKfabG

the nonlinear system has a smaller time constant than the linear systenm.
However, while the linear system always has a finite value of ouh-
put for all values of input signal amplitude ¥, the nonlinear system will

kave an unbounded output if F approaches the value

u=~ED .



CHAPTER IV

TYPE II CASE (=) SYSTEMS

A=0, C=0

Response 1n the complex domaln.--The Type II Case (a) differentisl

equation in the complex domein is
. 2 .
w' = Bw' +Dwv + EBw + F . (12)

Following the example of Incelg, the following substitution is made in

equation (12):

w o= W(Z)A(z) + p(z) ,

and
z = §(z)
where
DA = 6877
and
2Dy = &i - Eﬁl - B,

A A
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With these substitutions, equation (12) becomes

W' = 60 + 8(2) , (13)
where
“'55%6'3 [ 625E° - 36B° ] + F
s(z) = e . (1%)
g =2 (B0 (15)
awl 2(B/5)z
and
BJL:__E’-C,‘—I—D-[6132+25EJ . (17)
But Tnce'> has shown that for the solution of equation (13) to have fixed

critical points, S(Z) must be zero. This can happen in the following two

cases.

Case i, B=E =F =0 . Equation (12) has the solution
6 18
W=z (z-k 0,n), (18)

which is the Weierstrasselh Pe-function and is doubly periodic. The
raraemeters k and h are the constants of integration; O and h are the
invariants of the function.

15

Equation (18) has the series expansion

D9 o
wmg[___l___.e_J, Ce(z-k)2+....- ch(z-k)?‘zﬁa ..J, (19)
(z - k)



22

where
, _L 2
Co=2p 8 =0
L
C'3 -—'é'gh
and
v=A=2
= 3 ) .
AT EmTLR=3) 2 €0y 5 (AN>3) . (20)
=2

Hence it is seen that equation (19) has & double order pole at
z =Xk

eand thus 1s movable with respect to the initial conditions. The essen-
tial singularity at infinity, however, is fixed.

Case ii. For this case none of the parameters are zero and

1. 2 2
F=§-5_6O_5[625E -363:] .

Substituting equations (14) to (17) into equation (18) leads to

.2, B, |
W=ﬁe'5' ‘@[(%é —k);o,h}+»§-6-3=5|:6B2+25EJ.(21)

Thus, from equation (19), equation (21) has the series expansion

1. 5 2n-2 , 1 2
—— -wan C('_'U.-k) +.ot]"‘5—6"ﬁ[6B +25EJ

(22)
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where CK is as defined in equation (20) and

The solution of equation (21) has a fixed essential singularity

at infinity but has an infinite number of second order moveble poles at

VA

td I\

ln(%k) .

Response in the real domain.--Since the basic purpose of this thesis is

to utilize the differential equations studles here as characterizing
equations, thelr solutions must satisfy the following set of necessary
conditions:

(a) The solution f(t) must be bounded, i.e.,
£(t) <My £ >0
(b) The solution £(t) must have a finite limit, i.e.,

lim f(t) = B .

t 2
Systems described by characterizing equations whose solutions satisfy
the conditions above will be called stable systems. If the complex
function w(z) in equation (12) is replaced by a real function y(t),
case 1 and case 11 can be examined in the real domain as follows.

Case 1. Equation (18) becomes

=—§-<6)[:(t-k);o,h:’. (23)
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The constant of integration h can be found from the first derivative of

equation (23) as
e
(y)° =4 -n.

Since equation (23) does not satisfy condition (a) or (b), it is not
suitable for control purposes.
Case ii. By the same type of substitutions as utilized in solv-

ing equation (12), the differentlial equation

y" = By' + Dy° + Ey + F (24)
can be expressed as
¥1 = 6y 3
hence,
yie = hyi =W

The constant of integration h can be found from the initial condition by

the relationship

h-h[' o)51;J3_[Y'(0)+5;'—z/]gy(o)-u)}2.

The parameters B, D and E have been chosen negative and

1 2 2
F o= - 5560 D [ 625E~ - 36B ] .

Hence the solution to equation (24) is
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2B B
o R - i .
vy o= - é > 46]‘ (% € 7 k)i 0, 1 :| i 5_0-1_D [25E - 632:]- (25)

o

If a system characterized by equatiocn (25) is to Dbe stable, the argument

of the Weierstrasse Pe-function must never be zero. Thus if
0<k<5/B,

equation (25) is unstable. (It should be noted that this condition cor-
responds to a pole on the real axis for equation (22).)

It should be emphasized that equation (25) is the solution to
equation (24) for only one value of F. Hence for any other value of F,
equation.(2h) has a solution with movable critical points.

Stebility of Type II Case (a) systems.--Systems of the type designated by

case 1 are not stable for all initial conditions. The unbounded response
occurs at t = k, In the complex plane the solution has a second order
pole at z = k.

Systems of the form denoted by case il are conditionally stable,

depending upon the initial conditions. The unstable response occurs for
0<k<5/B.

In the complex plane the solution has an infinite number of second order

poles at
z = 5/B :Ln(;i k) .

In both cases, the response 1s a semi-transcendental function of

the constants of integration.
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Since the response is not the same for a positive step function
and a negative step function, this system has an asymmetrical charac-
terizing equation.

But for the system with the characterizing equation
" +Bu' -DuwC 4+ Eu=-F, (26)

let

Then equation (26) becomes
2
y'"+By'+ Dy +EBy=F. (27)

Thus the response of equation (26) is the negative of equation (27).

Type II Case (a) systems with movable critlcal polnts.--A differential

equation of the form of equation (24) has moveble critical points for

F#+ ééféiﬁi [ 625E2 = 3632 } §

For such an equation a solution is not aveilable. As & function of time,
the equation can be studied by a phase plane plot. It can be shown16
that this equation has two singuler points, one at %% =y = 0 which is

s center, and one at y = - % which is a col. Thus the system is stable
1f the initiael conditions are such that subsequently y > - F/D. TP

y< = E/D, instabllity occurs becsuse of the nonlinear restoring force
Ey + Dya.

Physical system with a Type II Case (a) characterizing equation.--The

characterizing equation of a separetely exclted d.c. motor has been
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dEVEIOPedl. Consider now the control system as shown in block diagram
in Fig. 4. To obtain the characterizing equation of this system, it is

convenlent to introduce the varisble

u::f(es—Kfu))dt,

which is the integral of the error of the system. The equations of

motion are

dw
a [ Gu + CGKu } = = + bw ,
e =-u!
3
W = N
Kf
and
u!f
ﬂ}'ﬂ"*"—t
Kf
Hence,
2" + bu' + K.aGu- + K.KGau = be_ (28)
£? K 5
Wow let
B=-~-D
D=—KfaG2

lSee Appendix A.
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B o= - KfKGa
and
F o= be8
and equation (28) becomes
u" = Ba' # Dus € Bu + F s (29)

which is a Type II Case (a) characterizing equation. If

e, = - —wl———é[ 625(K KaG)" = 366 J ,
25008bK .
then equation (29) has a solution whose critical points in the complex

plane are fixed.

Theoretical comparison of linear and nonlinear systems.--For purposes of

comparison, the same values of parsmeters will be utilized in both the

linear and nonlinear systems. These values are

G =10

K =10

a = 43,6

b = 4,07
and

K = oOl -
Hence for fixed critical polnts

esﬁ—E-T ]
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With the system starting from rest, the initial conditions are

u(o) =0 (30)

and

u'(o) = - 2.7 . (31)
The linear system has the characterizing equation

U | | ] i
u’ 4+ bu! + KfaGu beS 3

with the initial conditions as in equations (30) and (31).

In Fig. 5 1s shown the analogue computer setup for determining
the response of the linear system, For the nonlinear system, the ana-
logue computer setup of Fig. 7 was used. In Fige. 6 is shown the theo-
retical response of the linear system for various values of es.

In Fig. 8 is shown the theoretical response of the nonlinear
system with fixed criticael points. It is seen that this is not a stable
system. This response occurs because of the movable poles crossing the
real axis.

In Fig. 9 is shown the theoretical response of the nonlinear
system for positive values of eS.

Actuel physical system.--The control system as shown in Fig. 4 was real-

ized by utilizing an analogue computer as the nonlinear controller. The
setup for the controller is shown in Fig. 10. To obtain operation in the
linear region of the motor, it was necessary to change the values of the
system parameters from those utilized in the theoretical case. The re-

sponse of the system as shown in Fig. 9 is for values of
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G =10
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b = 4.07
Time — Sec k, = 0.01
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Figure 8. Theoretical Response of Nonlinear System with Fixed

Critical Points
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K=20

Kf = 0084

b = 4.07

a = 3l.k4

G=8.’2 .

Thus for signals above 0.5 volts the system 1s very oscillatory, having
a meximum overshoot of 200% at 0.5 volts input.

Finally, it is of interest to note that the response of the system
of Flg. 10 can be made symmetrical by altering the characterizing equa-

tion to
u" + Bu' + D|uju =F .

This response has movable critical points, however, and is not considered

further in this thesise.
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CHAPTER V

TYPE II CASE (b) SYSTEMS

A=0, C=2

Response in the complex domain.--The form of the differential equation

as a function of & complex variable w(z) is
n 1 3 2
w' =Bw'+ 2w +Dv +Ev+F. (32)

There are two cases in which the solution of equation (32) has fixed

8
critical pointslT’l . They are examined individually below.

Case i. B = 0. With the substitutions

A=1

bu = -D
and

wo= AN+,
equation (32) becomes

W' % 20O + RW + S (33)
where
R=E - D2/6

and

S=F+ FD3/216 - gg .
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The first integral of equation (33) is

(W2 = W + RW® + 2W + h s (34)

wvhere h 1s a constant of integration. Egquation (3&) is in the standard
form of & Jaccbian Elliptic functionlg. These functions have the follow=-
ing propertieseoz

(1) The zeros of Sn(u) are ... 2MK + ENiK},

(2) The zeros of Cn(u) are ... (2M+1)K + 2NiKl,

(3) The zeros of dn(u) are ... (2M+1)K + (2N+1)1K;,

(4) The poles of all three functions are ... 2MK + (2N+l)iK;.
M and N are integers including zero, and K and Kl are the real and imagi-
nary quarter period. The Jacoblan Elliptie functions are alsoc doubly
periodic. The solution of equation (34) will be & semi-transcendental
function of the constants of integration.

Case ii. B ﬁ 0. To insure fixed criticel points in the solution,

equation (32) must be in the form

W+ 3aW' - oWS + 28°W = 0 . (35)

To solve this equation, let

and

Equation (35) now becomes
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W= oW . (36)
The first integral of (36) is
W2 =W -n . (37)
With the substitutions
2.
Jh o
G
and
o i 4 = L1/ ,
equation (37) becomes
(52 = [1 - 1 - 65677, (38)

which has the solution

S = Sn(u + Ké|m =<1) .
Hence the solution to (35) is
Ve - jaKle_az Sn(Kie-aZ +Kplm = - 1),

where
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By means of the identitiesgl

Sn(u| - 1) HJ—% sd (W2 ul%‘)

dn2 - 1 ,

1+ msd?u

equation (38) may be rewritten as
—-L/2
1 - an[ V2(K ™ + k) [1/2)

. (39)
@nl JE(Kle*e“'" + z~:2)|1/2])2

W= - JaK e

Equation (39) has fixed critical pecints, but the poles are movable with
respect to the constants of integration. These poles occur at values of

the argument where

Kle—az + K2 = (2M + 1)K + (2N + l)iKl )

where

T/2

K"f ae

o"l/l - 1/2 8in® @

and

. V/Ir/e de
~c:\/l -1/2 sin® ©




43

From equation (38) it is deduced that the solution of equation (35)
1s a seml-transcendental function of the constants of integration.

Response in the real domain.--As a function of a real variable y(t),

equation (35) (case 11) becomes

y" + 3ay' - 2y3 + 2a2y =0 . (40)

To solve this equation the substitutions of case 1i may be used. Equa-

tion (40) then becomes

2 4
t = .
(¥})" =y, -1, (41)
where
= yetat
and
T = - 'J;E-&t -
a

There are three forms that the solution to equation (40) may take, de-
prending upon the wvalue of the constant of integration h. The relation-

ship between the initial conditions and h is given by

b ot o) = lagle) & w/Ca1® .

These three forms will now be examined individually.

(a) h = 0. The solution to equation (40) can be expressed as
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This solution is unstable if the constant of integration 1s such that

(b) h >0, This response can be obtalned from equation (39) and

the identitie522

dn(ju|m) = dc(ulml)

and

Cne(u|m) =
deu-m

Hence the solution is

B 7 7 1/2

-gt
Cn
5 “_J hl/ae-a:t

n

~e— Tt K 1/2) -2

1/2 d
cﬁe(_@ R K2|l/2) +1

and this solution is always stable.

(k2)

(¢) h < 0. Equation (40) now has the solution

2

y = - 37\ /2 Bt g { -@ e‘atﬂ(z\l/e}

and, since the response is imaginary, 1t is unstable.

Stability of Type II Case (b) systems.--Systems characterized by case i

have no damping and hence their résponse is periodic. Theilr motion can
be described by means of the Jacoblan elliptic function.
Systems characterized by case ii have positive damping but a

nonlinear restoring force. From the solution to the characterizing
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equation, it is seen that the stability of thls system is severely re-
stricted by the initial conditions. The stable response occurs only

when

2
7o) :[ ay(o) + y'(o) J .

The restriction on the stable response severely limits the use of a
Type II Class (b) characterizing equation.

Physical system with a Type II Case (b) characterizing equation.--In

Fig. 12 is shown a control system which has a Type II Case (b) char-

acterlzing equation. By utilizing the variable

t
u .--f (es - wa)dt »
o

the equations of motion are

a[_xus-l-xu:an"l'bm- (LI’3)

But,

Hence equation (43) may be expressed as
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" t - 3
u” + bu' + Kax,u - aKx u” = be_ . (4h)
With
2
= —
gl Bk,
X 2b2
= s
2 9&Kf
and

equation (44) becomes the Type II Case (b) characterizing equation

2
u” + put + gg— u - 2u3 =0 .

The stable response occurs if

we) = | wnle) * wio) ] ©.

It should be emphasized that a solution is available to the char-
acterizing equation of Fig. 12 only if the input signal is zero. For a
value of input voltage, a solution is not available, and furthermore the
solution has movable critical points in the complex domain.

Summary of Type II Case (b) characterizing equations.--Like the Case (a)

system, the Type II Case (b) characterizing equation has fixed critical

points for only one value of input amplitude, i.e., zero. Hence it is
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not sultable for purposes of this thesis. A further disadvantage is
its limited stability, which is due to the nature of the nonlinear

2
restoring force -2y + 2a2y . Unlike the Type II Case (a) system, it

has an unstable response because the solution of the characterizing

equation is imaginary.



CHAPTER VI

TYPE II CASE (c) SYSTEM

A=-2;C=0

Response in the complex domain.--The form of the Type II Case (c) system

in the complex domain is
W' = (-2W + B)W' + DW> + EW + F . (45)

For equation (h5) to have a solution with fixed critical points, it has

23

been shown ~ that it must be in the form
W" + (oW + P)W' + B =T . (46)
The first integral of equation (46) is
W' W =, (47)
where
u' = - Pu+F . (48)

For P and F constant, the solution to equation (L48) is
i ~-Pz
u:-§+KlE 3 (L"g)

where K1 is the constant of integration.

Bquation (47) is then

W4 W = % e L (50)
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Equation (50) is Ricatti's differential equation and can be solved by the

substitution

With this substitution, equation (50) becomes

F -Pz
v"=[-§+1<le Jv. (51)
With the substitution
244-K
P 1 ~(B/2)z
ISR P € »

equation (51) becomes
Z2V" + ZV' + [Z2 - (r\/’l';; )2]\? e 0,
: ; 2k LE 5
which is Bessel's equation  of order V = ;§ s and has the solution

V= AlJ\i(Z) + Ble(Z)

Hence the solution to equation (46) is

i P P

SR anBVE e Ty BIK € 2
W=+\/:§€ 2z | A9V K _P)'*YP 5 P) , (52)

4 AT (VK e )+Yv(§@e 2)_




51,

where
= ()T G
J,(u) =Z 2®
e 3 I‘(v+r+l)
J (u) cos vr - J _(u)
- -V
Yv(u) =~ sin v
wo(u) +ur, o (w)
Ji(u) = - v g L.
and
vY (u) + uy _l(u}
Y;(u) = - — = Y .

Equation (52) has fixed critical points, but the poles which are
determined by Vv, J—Ki and Al are movable. These poles occur for values

of argument and order where

=z -

):--Yv(%qe

P
2

I\)[th

ey ) (53)

provided the numerator of equation (52) does not have common factors
with equation (53).

Response in the real domain.--Equation (46) can be expressed as a function

of a real variable y(t) in the form
2
¥ (By o+ Bly' & By =¥ (54)

From equation (52) the solution to equation {54) is
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_ N e
-3t (AEYE e P exesVE <« By |

P
- §t

CL"U

AlJv(%JE € 2 ) +Yv(%~f¥ € )

—

The constant of integration Ki can be obtained from the initial con-

ditions by the relationship

y'(o) + y°(0) - ¥/p =X .

There are three cases of equation (55) to be considered, depending upon

the value of Kl' These cases will now be examined individually.

(a) K = 0. From equation (50)

y' 4y = F/P (56)
and hence,

JE/P ¢ -NF/P t
y =VF/P | £ el ; (57)
F/P t + NF/P t

C is the constant of integration and is obtained from the relationship

02 2 o) + Jfrf .
y(o) +NF/P

For negative values of F, equation (56) is unstable. For F = 0, the

solution to equation (56) is



and is stable if
y(o) >0 .

For
y(o) <NF/P ,

2
C~ is positive and the denominator of equation (57) is never zero and

hence the system is stable. But, for
y(o) >~NF/P ,

the denominator of equation (57) can be zero and hence the system can
become unstable. However, by analogy with the linear system, it is
seen that the nonlinear system is stable if the input signal allows
the response to reach a steady state value without becoming negative.
Case (b). K, negative. From equation (55), the response for

Case (b) is

- gt AJ\;(u) + Y\;(u)

23

yz—\jﬁe 2 (58)

AJv(u) + Yv(u)

where
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and

<
n
gl
3
fae ]
L]

If the order of equation (58) is & non integer when F > 0, 1t may be re-

written

[_ Av.]'v(u) \ Aqu_l(u) ] v(Jv(u) Cos VT - J‘v(u)) ,
u u u Sin v

J_ . (u) Cos(v-1)m - J (u)_] J. (u) Cos vr = J _(u)
=1 1 \J -
. W Sin (v-1)7 = J £ M (u) 4 Sin vr :

»(59)

where

- E
e [ 2
u = + P Kl € .
The steady state value of equation (59) can be found from the relation-
ships

lim y(u) = lim y(t) ,
u =0 + — 00

1lim [ 3, () } _(1/20)

u—0 vil) 7

and
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1/2 u)-v+l
lim { J_V+l(u) J = L”%T:5:§7__ .

u-—=0

Hence,

v, o = lim y(t) =vF/P,
t 5o
and equation (59) has & finite, real, steady state value for all non
integral values of v. A similar procedure for integral values of V shows
the same result as equation (60). For F < 0, equation (60) is imaginary,
and hence equation (54) is the characterizing equation of an unstable
system.
However, equation (58) is not necessarily bounded for all values

of t, the unstable response occurring for values of t where

- =t

)=-x, GVK € 7). (61)

P P
AJg (g'J—— € 2"
W Ve
This condition is analogous to a pole of equation (52) ocecurring on the
real axis. By analogy with the linear system, it is seen that, if the
input signal F in equation (58) is such as to cause y to become more posi-
tive, the system will always be stable since the damping coefficient
(2y + P) and the restoring force Py2 are always positive. Conversely, if
the signal F is decreased, the system will become unstable if y becomes
negative. This 1s due to the inability of the restoring force to reverse.

The time of the instability can be determined from equation (61).
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Case (c). K1 positive., It is desirable to present the solution
to equation (54) in real instead of imaginary form, and hence the modi~

fied Bessel functions must be used. Thus, its solution is

P 2 'gt 2 “g't
-2t |ATMENK ) + KNEVK )
# ol 2 vPK.LeP +vPK.L€P (&)
. ==t w 2
_A Iv(%JK_Le 2)+Kv(%~f§e 2)
where
el (lu)v-b&r'
2
I, (u) “Z I yirtl) ?
r=0
and

The recurrence formulae of Bessel's function of the first kind also hold
true for the modified Bessel functions.
It a system whose characterizing equation is of the Type II Case

(c) form has reached equilibrium at the value

and if the input amplitude F is suddenly changed to zero, its response

will be given by equation (62) with

v=0.



Hence,

where

For

nojHd
ct

A

B B B
-AIl(%J-KIe 2)+1<_l(§~/'1€le L3

_Et -Et
AIO(%JQe 2)+KO(%'J§€ =3

: ¥
KGR X GROVER
£F LEVR) + LGV

P

e

G £ G

equation (63) is unbounded and hence Case (c¢) is unstable.
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» (63)

Stability of Type II Case (c) systems.--The Type II Case (c) system is

the first system that has been examined in this thesis whose solution has

fixed critlical points for all values of amplitude F of the input signal.

It is also stable for a rather large range of operating conditions, re-

stricted only by the necessity of y never becoming zero.

Hence 1t shows

promise for use as a characterizing equation of a physical system and

will be examined further.

Synthesis of a Type IT Case (c) characterizing equation.--In Fig. 3 is

shown the block diagram of a speed control system utilizing a nonlinear

controller.

In terms of the variable



HHE o=
3

N
d

s+b

P = Y[Guu' + Gu]

dw
&P=E'E+'ba)

M
U
L 22
T Gu
Tach.
t kf
u -——-f (es - kfm)dt
O
Figure 13. Physical System with a Type II Case (c) Characterizing Equation

o149



t

u ""f(es - k.ffl})d.t,

o]

the characterizing equation of the system is

u" + [akaGu + blu' + akf B A

With the substitutions

u = Xy ,

X = 2/akaG »

G =Db/2,

and

Y =
Gy bes

29

. (6k)

equation (64) becomes the Type II Case (c) characterizing equation

y" + [2y + Ply" + Pye =F ,

(65)

For the system starting from rest, the initial conditions are

y(0) = 0

and

abkaeS
FHOY = —5— 5



The constant of integration l’j is

abk Ye abk Ye
- f""s _ f s _ 0
% n e :

Thus the response of the system is given by

abkae abkae
y = '—E—"‘S tanh —T—st :

If this system settles out at the value given above and another signal

e is applied, the initial conditions are

abkae

y(0) = —E—E
and

abka
y'(0) = —— (e -e) -

Thus the constant of integration Ki is

abk Y abk .Ye abk Ye
= 4 (e -e) + EBe i
Ki N sa s N 4

From Case (a) of equation (54) the other constant of integration CE is

02 § \jes - w esa
»
e + We
S5 sa

and the response is



NF/Pt 2 -NF/Pt
_— rg?; € e w G € ;
NE/PE 2 ~NF/P
where
abk .Ye
58

The control system that has been synthesized in this chapter is
very misleading. While the characterizing equation seems to be second
order, the initial conditions are such that the equation is truly first
order. Specifically, it is the Ricatti characterizing equation discussed
in Chapter III. The real difficulty lies in the relationship between the
initial conditions and the constant of integration Kl' Hence, to utilize
this characterizing equation, it 1s necessary to alter the initial con-
ditions.

With this in mind, the control system shown in Fig. 14 is devel-

oped. The equations of motion are

t
u =f M k w)dt
o]
and
u" + [ak_YGu + blu' + a¥Yk G2u2 = be + k_aYAe . (67)
f T s 5 s
With
.
= ax._vyc 7 ?



u =f (es - ]ifu))d'b

Tach-

e

i O
M
U 1
L <
T
B P
Gu a
L)
+
M
U G2u2
i;
T

Figure 14%. Physical System with a Type II Case (c) Characterizing Equation

5 #o

29
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and

equation (67) becomes the Type II Case (c) characterizing equation

y" + 27 +Ply' + BY° = F .
For the system starting from rest, the initial conditions are

y(0) =0

abkaeS

y‘(O) = —T—‘—‘ -
The constand of integration Kl is

abkaes abkaeS abkaeS

B W 5= B S S

The response for the system of Fig. 1k is then

n ot |A J{,(T) + Y,;(T;’
v g, ¢ KR mELm| (68)




where

. 2 ﬁikfXES
b 2 *

The system of equation (67),after the transient has passed and a

signal eSa has been applied, has the initial conditions

y(0) = ‘\zabkfye 2

and
abka
? - -
y*(0) ﬂ"jr—'(esa es)
Hence,
abka
B e (esa - es) -
For

the response is of the same form as equation (68). However, for
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the response is of the form of equation (62), i.e.,

b ! 2 - gt 2 - gt-w
-2t |a IHENK ) + KI(ENK e
y’--‘“\ﬁq ¢ 2 V'b Kl s bt * V(b Kl bt) " (69)
ATV ¢ 2) 4k (VK ¢ )

where

Because of the nonlinear restoring force, the Type II Case (c)
characterizing equation synthesized here can lead to an unstable system
if the input signal is decreased. This condition i1s, of course, unde-

sirable and for this reason the control system of Fig. 15 is synthesized.

With the veariable

t
u uf(es - kfw)dt 5

o]

the characterizing equation is

22

u" + [kfaYGu + blut + AaYk Gu + ak YGu~ = be_ . (70)

For

u = E/kfaYG ¥

equation (70) becomes



HHO=
g

Gu
u' AGu a
G A S4b
&
u u.f (es - kfm)dt
o]
M
U eu? P =Y AGu + Guu® + G
L
4
T aP = it + Db
Tach.
ke

Figure 15. Physical System with a Type II Case (c) Characterizing Equation

Having a Stable Isolated Singularity

99
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5 kfaYGbeS
Gy + 26y = ————F | (71)

y" + [2y + bly' + AaYk >

f

When the square of the restoring force-AakaGy + QGye is completed,

equation (TO) becomes

5 haYk, (A&ka)e
" t i
y"+[2y +bly'+26 (y + =4 % ) =
(72)
k_aYGbe (AaYk )2G
£ 5 4 £
2 8 '
For
AaYk
X=y + ——E"z ’
equation (72) becomes
AaYk o kaYGbe (Aaka)eG
x" + [QX & Bk b}x‘ + 2Gx = 5 + B . (73)

For equation (73) to be a Type II Case (c) system it 1s necessary that

Aaka
b - -——--|—2 = 2G o (Tll')
Hence, when
G =Db/k, (75)
and with
b
Am——, (76)
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equation (73) becomes the Type II Case (c) characterizing equation

P k ange 3
x" + [2x 4 gﬂx' + gxd = —E;g———i # %E 2 (77)

For the system starting from rest, the initial conditions are

x(0) = b/k,
and
k. .abYe
y £ 8
X (O) =—5 -
Thus
k_abYe
- K, =+ £ 5
18 8

and the response of equation (70) is

: = Et L = Et
L. _8 e —%o AJ;J(%J_Kle ) +Y{,(E\/-Kle ) D
T T kgant | Y T, T, L
AV e T e e 1)

. (78)

If the system has settled to the steady state value of equation (78)

and a signal €q is then applied, the initisl conditions are

5 kfabYeS b2
x W =g



kfabY

[e -e 1.

x*(0) sa,

if
o
m

Thus

) »

3 ffe.b}:‘(es - e

A
"
0]

B8,

and the response of equation (78) is

b b
b - NS “ 5" L I “ 5"
8 -pr[AL(pVK e T ) +K(gNKe T ) [y
T o= k 8bY g — 1, 3, +5|- (19)
Ve B) s x @EVe F)

The question of the stability of the system for F = O can be an~

swered by examining equation (72) with the substitutions of eguation (Th)

to (76),
2 k ange
b 2 b f s
n < 1 - .
v" + [2y + bly Y gy W ey

With the system unexcited but with the initial conditions

y(O) = ys.é 3

and

1 =
y'(0) kfaYG/E e,

it can be expressed as

hP oL b ( . )
- op + Qlp,¥y;
_ BV PP by , (80)

&k
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where

ps:

ap,y) = -b/2 ¥ - 2
Equation (80) has s point of equilibrium at
y =0
and
p=0.

The nature of the equilibrium point is determined by first finding the

characteristic équation. This is

b2
S‘l‘(b)s*"S—SF:Oa

The roots are then

B

S = ~Db/2 + -
s By /2 + LI 8

2
and are negative real. Thus the equilibrium point ? of (80) is a stable

node, and equation (79) is stable when

a =Ol
88
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The characterizing equations of Fig. 13 and 14 do not have iso-
lated singularities, and hence the nature of their singularities are

not knowne.

Theoretical comparison of linear and nonlinear system.--Three nonlinear

systems whose characterizing equations are of the Type II Case (c) form

have been syntheslzed in this chepter. They are

abka ab2k, o
" t
u’ + ( 5 U + b)u + T Yu = beS
ab ab2 2
" 1
u" + (—2 k Yo + blut + kY = 2be_

and

k _ab 2 2
n f % b ab 2 -
u" + (T Yu + blu + v +—'_l_6 k Yu bes i

With the parameter values of

Y =10

k_ = 0L

a = 43.6
and
b = L.07 ,
these equations became

u" 4 (8.85u + h.0T)u' + 18u° = h.0Te, (81)



T2

a® + (8.85u + L.07)u? + 18u° = 8.1ke_ (82)

and

u" + (44250 + LoOoT)u'+i4,15u + h.5hu2 = h.OTeE (83)

and the linear system has the characterizing equation

u” + L.o7ut + W 36u = h.oTeS g

The solutions to these four equatlons are avallable, but it is
more convenient to obstaln their response by means of an analogue com-

puter. In Fig. 16 is shown the computer arrangement for obtaining these
responses, which are shown in Figs. 17 to 20. (The response to equation
(8L) was not obtained since it is not truly a second order differential
equation.) In Figs 21 ie shown a comparison between the two nonlinear
systems and the linear system. This shows that, for the value of input
signal indicated, the Type II Case (c) characterizing equation with a
stable 1solated singularity has a faster response than the linear system
by a factor of 2 to 1. The Type IT Case (c) characterizing equation with
a8 bias signal has a response that is not significantly better than the
linear system for the indicated input '‘signal.

In an actusl control system it would not be desirable to utilize
the Type II Case (c) characterizing equation with the bias signal because
of the inability of the restoring force to change sign. If the controller
should have a d.c. drift in the wrong direction, the system would be un-

able to correct for this and would become unstable. The Type II Case (c)
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Figure 17. Type II Case (c) System with Stable Singularity
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Figure 18. Response of Type II Case (c) System with Bias Signal
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gystem with a stable isoclated singularity can only cortect for a limited
amount of drift, but it would still have meore control than the system
with a bias signal. It should also be emphasized that thé nonlinear
system does not react faster than the linear system for all values of
input signal, since its response is a semi-transcendental function of
the constants of integration. Also, the nonlinear system is asymmetri-

cal and can only control for valﬁes of input signal where
F>0.

Realization of 'a Type II Case (c) characterizing equation with a stable

1solated singularity.--To realize a Type II Case (c) system with a stable

isolated singularity, the linear first order system of Fig. A-6 was uti-
lized with: an analogue computer serving as the nonlinear controller. The
nonlinear controller arrangement i1s shown in Fig. 22. When the actual
system was tested, it was found thaﬁ signels smaller than one volt were
not sufficient to run the motor because of the quiescent frictional force
of the brushes. In Fig. 23 is shown the theoretical response of the sys-
tem for signals larger than one volt. Fig. 24 shows the actual response
of the system. In Figs. 24 and 25 are shown the speed responses of the
linear and nonlinear system.

The most serious practical difficulty was due to drift in the
electronic multiplier that produced the squared.term-of equation (83).
To the system this drift was the same as an initial condition. The other
difficulty was the limited range of input signal over which the linear
system was truly linear. This region was restricted to a fairly narrow

range of one to five volts. One distinct adventage of the nonlinear



A=

To Push-Pull
Amplifier

N
e

.|

HEHa =
H

From Techometer

Figure 22, Nonlinear Controller for Type II Case (c) System with Stable Isolated Singularity
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system is the high initial force which breaks the brush friction much
faster than does the linear system. This is due to the damping term
Guu’'.

The linear term cannct be increased indefinitely, for from equa-

tion (74) it is seen that

2

aka

A= (b -2G)

This equation also places the restriction on G of
G <b/2 .

In the system tested it was found that the optimum system response
occurred for parameters other than those necessary for a Type II Case
(ec) system.

For control purposes, the chief disadvantage of this system is
that it is asymmetricel and is good for only one polarity of an input
signal. If the signal goes negative and the polarity of the squared

term is reversed, the characterizing equation is then

y" 4+ [-26 + Ply' - Py° = F

and will be stable. However, the damping will decrease with an increase

in y. A better procedure would be to alter the equation to
y" o+ [EIy] + Plyt' + P‘yly = F (84)

Fquation (84) is no longer a Type II Case (c¢) system now, however, but

it is symmetrical.



CHAPTER VII

TYPE II CASE (d) SYSTEMS

A=-1;3 C=1

Response, in the complex domain.--The form of the Type II Case (d) dif-
26,27

ferential equation is
L 1 3 2
w' = [-w+Blw' +w +Dv +Ew+F. (85)
By a linear substitution of the form
w(z) = W(z) + pu(z) ,

equation (85) can be expressed as

W' =« W' 4+ WO + algW' + W] +BW + S, (86)
where
3L + D =g
-4+ B = 3a
2
R =3y +2Du+E
and

S = p3 + Dpe +EBu +F .

It has been shown that there are three cases of equation (86) which admit
to a solution with fixed critical points. These three cases will now be

examined individuslly.
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case 1. a =R =8 = 0. Equation (86) now becomes
WA W W -W =0, (871)

and has the solution

f(z-;-cl, 0, c) -

‘f(z+cl, 0, c)

where Cl and C2 are constants of integration. This is a doubly periodic

function with fixed critical points but with movable poles. The poles

occur at values of the argument where

case 2. R # 0, a = S = 0. Equation (86) now becomes

3

W'+ WW'-RW -W =0, (89)

which has the solution

W= =V R/3 Lg(u’ s , (90)
“6:’(11, 12, ¢) -1

where

u=% _R/3 + C
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and Cl and 02 are constants of integration. This is a doubly periodic
function with fixed criticel points but with movable poles. The poles

occur at values of the argument where

zZ = =2 Cl v-3 R

Bws 12, ¢) =1, (o)

provided equation (91) nas no common factors with the numeration of
equation (90).

Case 3. + S =0, R= - o8, Equation (86) now becomes
W+ (W + 3a) - W+ 28°W = 0 (92)

and has the solution

/

(u; 0, 1)
Wl e ﬁé’ ' (93)

= "63(11; 0, 1)

where

-az
u = Clae + 02 »

and Cl and 02 are constants of integration. This is again a doubly per-

iodic function with fixed critical points but with movable poles. There

are an infinite number of simple poles at values of the argument where
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Responge in the real domain.--As a function of a real variable y(t),

equation (85) becomes

Y= (-y +B)y' + Y 4Dy 4+ Fy + F . (9k)

Unfortunetely, from the standpoint of the purpose of this thesis, the
three cases of equation (9&) which have solutions with fixed critical
polnts in the complex plane do not have a constant term. Thus this
system is not suitable for the characterizing equation of a physical
system. Furthermore, cases 1 and 2 give rise to solutions which are
doubly periodic and hence unstable.

For case 3, equation (94) can be expressed as

2 2
"+ (y+a)y' -y + ey +2a8y=0, (95)

which has the solution

’
—s.t'*éb(u; 0, 1)
€
y=C

s 6
L B so, ) ‘&

where

c
Lot oo .

11=g'— o)

The constants of integration Cl and 02 can be determined from the relation-

ships

n

4
ﬁg)(éi * Cd Oy l)
a 2
€ C

y(0) = ¢
Tk +cyso, 1)
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and
s o .-
5 (= + C5 0, 1) 2(0)
y'(0) = - ay(0) ~ C - L .
L Cl c2
(-E-L_ + 023 0, l) 1
2 .
This system becomes unstable if
C
1l =-at
—_ = - -
& 02

As an alternate approach to the question of stability, consider

equation (95) in the phase plane with the characterizing equation

ap _ _ 22y - ap + Q(p,y)
dy P ’
where
and

QAp,y) = ¥ - ay" -y .

The characteristic equation is

82+aS+2a2mO,

and hence the roots which are

a
Sl,sgﬁ—-é'i Ir—-2a
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are negative imaginary, and the equilibrium point at the origin of the
phase plane is a stable spiral point. The response of equation (95) is

thus stable, provided the initiasl conditions are such that
y(t) > - =

. for sll values of t.

The characterizing equation

YAy talyt -y vay” 42y = F (97)

satisfies only the necessary conditions for the solution to have flxed
critical points in the complex plane, and no solution is available. The
nonlinear restoring force -y3 + ay2 + 2&2y causes the system to become
unstable if the amplitude F of the input signal is such that y(t) > a.
This system is then stable for small displacements and is also.an asym-
metrical control system. When F = O, the solution has fixed critical
points in the complex plane, and the system is stable if the initial con-

ditions are such that
y(t) > - a.

Physical system with a Type IT Case (d) characterizing equation.--In

Fig. 26 is shown & physical system with a Type II Case (d) characterizing

equation. The equations of motion may be expressed as

t
u = (eS - kfb)dt
J

and



t

u =L/ﬁ (es - kfm)dt

O

P=YGu'u + GCGu + B3Gu3]

dw
U Gu'tu < OO0
L aF = Se T R0
Fl'l
h:;\\
/ 4
M +
G U ¢ u” A Y 2 =
1, n s+b
T
G

Tach.,

Figure 26.

Physical System with Type II Case (d] Characterizing Equation

16



g2

~
k 8y [Gu'u + W BG3u3 + CCGu] = - u" + b[es = w¥T 5 (98)

With the substitutions

u = Ay »

>
it

1 Y/KfaG 5

jos!
n

ka Y/G ,

A=1/G,

C = Ebe/Kf a¥G ,

e =0
s ;]

equation (98) becomes the Type II Case (d) characterizing equation

2
y" + y'y +Db] - ¥ + byF + Sy =0 . (99)
The initial conditions are

1/ =
y1(0) = kfaGY €

y(0) = T

where T is the smallest positive root of
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-T? + ng + 2b2T = )\b e
sb ’

and is the value of input signal before the translent response starts.
The solution to equation (99) is given by equation (96).
Since this system is unsuitable for control purposes, it will not

be realized or studled further in this thesis.



CHAPTER VIII

TYPE II CASE (e) SYSTEMS

A=~-3; C=-1

Response in the complex domsin.--The general form of the Type II Case

(e) system 1528
w" 4+ (-3w + B)w' - W o+ DvC 4+ Ev + F . (100)

It has been shown that for equation (100) to have a solution with fixed

critical points, it must be in the form
w"+3ww‘+w3=B[w'+w2]+Ew+F. (101)

Equation (101) has the solution

ﬁlC

where us is the solution of the linear differential equation
ut*' = Bu" + Eu' + Fu . (102)

IF Pys Pps p3 are the roots of the characteristic equation of equation

(102)

2
0 -B ~Ep-F=0, (103)

then the solution to equation (101) is
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s o' ) (10k)

The response 1ls then a semi-transcendental function of the constants of

integration Cl and 02.

of equation (104).

(It is assumed that there are no multiple roots

For multiple roots, equation (104) becomes

€ (Clpl + 02+£i02z) + Pée

oot A (105)
P:LZ pEZ

(cl + Cez)s + €

or

2
C.+p.C +z(Cp+2)+0pz
ot vt & . (106)

2
Cl+022+z

Equations (104) and (105) are semi-trenscendental functions of the
constents of integration, whereas equation (106) is an algebraic function
of its constants. Each of the three equations has critical points which
are fixed but poles which are movable. If the numerstor has no common
factors with the denominator, these poles occur at values of the argument
such that

(p,-p,)z (P~ 1)z
o e L7370 Cpe I T . (107)

(p,-p,)z
(¢, + C,z)e +1=0 (108)
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2
C,+Cz+2z =0. (109)

In equation (109), these poles occur at

c @
z = - o - c
B R
provided
2
_Pcl+ce’é_fg+ 02_0.
t,+2 2 =} 1

It is seen that a pole can occur at a positive real value of z, depending

upon the wvalue of Cl and 02.

In equations (107) and (108), a sufficient condition for the ab-

sence of positive real poles is

and

C.>0 .

Response in the real domain.--As a function of a real variable y(t),

equation (101) becomes

y" + [3y + Bly' + y3 + Bye + By =F . (110)

The presence of fixed critical points does not depend upon the sign of
the parameters B and E; but, since this equation is ultinmately to be used

as the characterizing equation of a physical system, B and E have been
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chosen negative. F will be positive or negative, depending upon the direc=-
tion of the input signael. The solutions to equation (110) are glven by
equations (104) to (106) with w replaced by y and z replaced by t.

For a stable physical system, the roots of the characteristic equa-
tion (104) must not be pure imaginary. The characteristic equation (10O4)

becomes

p3+Bp2+Ep-F=O (1131)

and cannot have a pure lmaginary factor. The discriminant of (lll) is

A = - 18 BEF + 4B°F + BE- - LES - 27F° ,

and thus the locatlions of the roots vary with F. For F large there will
be two conjugate imaginary-roots and a single real-root. For F small

the location of the roots will be essentially determined by EE[B -~ LE].
For one value of F, there will be three real-roots. Hence, if B > 4B,

the response will be analogous to that of the linear system, in that there

are three types of responses depending upon the velue of F, 1,e.,

(1) Overdamped (F small).
(2) Criticel damped (A = 0).
(3) Underdamped (F large).

For unequal roots and the system starting from rest, the initial condi-

tions are related to the constants of integration by

0 = Clpl + 02p2 + p3
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and

2 2 2
+

740} = ClPy + Coby + 2y ‘
G, +C, + 1

By analogy with the linear system, the Type II Case (e) system has & non-
linear damping coefficient (3y + B) and a nonlinear restoring force

y3 + By2 + Ey and hence will be stable for positive values of displace-
ment y. However, 1f y goes negatlive the system can become unstable. The
origin of the phase plane is & stable polnt of equilibrium, but, if the

displacement 1s such that
Y(t) -7,
where T is the solution of

-'I'3+B'I'2—ET=O,

the system wlll become unstable. Thus the Type II Case (e) system is
asymmetrical.

The Type II Case (e) system is the second system examined in this
thesis whose solution has fixed critical points in the complex plane for
all values of input amplitude F. Hence it shows promise for use as the
characterizing equation of a physical system. However, it has the dis-
advantage that it is not stable for gll negative values of F and is an
asymmetrical control system. It will now be studied further by synthe-

slzing a physical system to have such a response.
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Physical system with a Type II Case (e) characterizing equation.--The equa-

tion of motion of the system shown in block diagram form in Fig. 27 may

be expressed as

+ kfaY[AGu + Gu'u + 3 + —Gu

With the substitutions

and

F = Yakafes/B s
equation (112) becomes the Type II Case (e} ckharacterizing equation

2
v" + [3y + bl + y3 +by +EBy=F .

(It is not necessary to have a linear term for this to be a Type II Case
(e) system, but drift in the multiplier car cause the system to become

unstable without this term.)
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For the system starting from rest, the initial conditions are

y(0) =0

and

The solution is

I Pt Pyt Pyt
C,p. e + C.p,€ + p_E
e ll.Pt epept _p3t ’
8% £ Cle L + 026 = + € 3 '
L. -

where pl, Dy and p3 are roots of

p> + Bp” +Ep - F=0,

and it is assumed there are no multiple roots.

If the system is alt a steady state value Vg and the input sig-

e Bo

nal is suddenly teken to zero, the initial coanditions are

and

where e is the signal before the upset. The roots of the characteristic

equation are now obtained from
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p> + Bp” + Ep = 0

and are

and

B
pg,p3=—B/2i II-———E°

the response of the system will be of the form

( EXM-E)t -(\fB? L-E)t
3 -Bf2t CepeeﬁdB + o€ ’
u = ak € = = . (113)
aG
f 5 e E( B™/4-B)t + B J4-E)t
! 2 |
For
B° < LE >

equation (113) may be rewritten as

o TL
2 2
g JOYE-B7/U)t -3JE-B"/4)
- 3e B/2 ¢ 021)25: : + p35
2

2
Gk , 2 .({ 2
X Bp o, + Ceeg( E-B/b)t , ~J(\E-B7/k)t

where

y*(0) + ¥°(0) - p,(0)

y'(0) + y°(0) - p,¥(0)

i J




and

R LA Ok ¥ (0) - py(e)| |py, - ¥(0) L Py VO

L P2 y1(0) + y7(0) - py(0) ¥(0) ¥(0)

F as F .

Comperison of linear and ronlinear systemge--With the system parameters

adjusted to

and

the Type II Case (e) characterizing equation becomes
u" + [4.36u + 4.07]ut + 2,125 + 5.91112 + 4.36u = l+.07es s (1)

With
w686y,
equation (114) becomes

y" + [3y + 40Tyt + y3 + h.OTye + 436y = 5.92e .
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The linear system has the characterizing equation

a" 4+ 4.o7ut + L.36u = 1\L..O‘T#e:s g

The analogue arrangemernt necessary fto obialn the nonlinear response
is shown in Fig. 31« The theoretlcal response.bf this system is shown 1in
Figs. 32 to 37.

The solution to %he Type II Case (e) system is in a form that is
easier to utilize than the Type II Case (c) sys*tem; however, the response
of this system is not significantly faster than the Case (e) system.
Furthermore, since there is a cubic term present in the differential equa-
tion, it will be more difficult to realize. For this reason, the Type II
Case (e) system was not realized, and atiention was focused on realizing

the Type II Case (c) mystem.
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CHAPTER IX
DISCUSSION AND RELATED PROBLEMS

‘Equally as important as the characterizing equations developed
here is the insight'gained into the fundamental reasons for the dif-
ference in response between linear and nonlinear servomechanlsme. The
subclass of differentisl squations examined containg the linear differ-
ential equation which is a special example of the Type II Case (a)

system with
DmOo

It is the only member of this subclass whose response 1s a linear func=-
tion of the constants of integration. Other members of the Type II
system, as summarized in Tables 1 and 2, have responses which are semi-
transcendental functions of the constants of integration and hence have
poles whose locatlions sre functions of these constants. Since s8ll mem-
bers of the Type IT system have fixed critical points, it is the presence
of these poles which are sgummsrized in Table 3 that allows the response
of systems with nonlinear characterizing equations to be faster (in some
cases) then those systems characterized by linear equations. However, 1if
these poles ever cross the positive real axis of the complex plane, the
response of the characterizing equation becomes unstable. Unfortunstely,
the transcendental functions which enter into the solutions of the Type

IT system are such that asymmetrical control action is produced.
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It is not to be inferred that mcvable critical points are detri-
mental to speed of response., The characterizing equation of Lewls'

nonlinear servomechanism,

v" + y' Ay +b] +Ey=F, (115)

satlsfles the necessary conditions for a Type II Case (c) system, but
not the sufficient condi*ions and hernce tas movable critical points. It
can be shown that a ecritical point is due to a logarithmic term in the
solution. Since the restoring force is linear, equation (115) will have
symnetrical restoring action, but asymmetrical damping.

The type of instabllity encountered in the nonlinear servomechan-
isms synthesized in *this paper is quite different from that experisnced
in linear servomechanisms. A seccrnd ordsr lirear servomechanism excited

by a step function has & solutlon of the form

pyt p.t
y"tclﬁl‘ﬂ“c?'ﬁg 4+ A .

Iif pl or p2 has a positive resl ccmponsert, the response hecomes unbourded
and hence unstable. This type of instabllity is due to the prezencze of
an essential singularity in the complex piane. Conslder now tie char-
acterizing equation of the Type II Cage (&) system which has a rz:ponse

of the form

4
Yy o= A€pd L@[Bgt + k]_, O', ng - C &

If p has a positive real component, *hils respcnse ls unstable for the

same reason as the linear resporse. However, 1f



B  +k =0,

the response will then become unstgble because of the pole crossing the
positive real axis of the complex plane. ©Scme idea now emerges as to a
stability criterion for nonlinear servomechanisms. Such a criterion
should insure that the solution of *the characterizing eguation have ths
following features in the complex plars:

(l) The critical peolints are such that the solution spproactes
zero along the positive real axlie.

(2) The poles do nct cross the positive axis.

(3) The solution has & real valus along the positive real axis.
This thesis has shown thati characterizing equations of the Type II sys-
tem, excluding the linear equation, do nct have these properties fcr
every value of input signal amplitude. However, such a charactarizing

equation 1s physically realizable, for consglder the equation

u o+ uf

4 1
=+ bl 4 Cu = CF .

With the substitutions

and

the solution can be obtained, and is
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1
u=TF+ [Ac Sin(wpt T N i (116)

nojo’
iz o

where

2
b
{un mV{:aﬁl)c - E— »

and A and ¢ are constants of irtegratlion. This is a symmetrical contrecl
system and if I%;'is an odd irteger, and if = 1 < a <0, it reachks faster
than the linear system for small upsets, but is quite oscillatory for
large upsets. In the compiex plane, egquation (116) has fixed critical
points and no poles and sa*isfies the criteris stahted sbove.

While the characherizing equations exammined here are not shable
for all signal amplitudes, some show promige for use as characterizing
equations on nonlinear sgsrvomechanisms. Furibermore, the method of in-
vestigation has illustratei some fundemental differences hetween the re-
sponse of linear and nonlinesar ssrvomechsnisms. Other subclasszs of the
Type II system might be examined for their applicability as characterizing

equations.

Related problems.--It has been shown that thers are fifty carnonical forms

of equation (1) admitting =0 a solution with fixed critical poirts. One
sublclass has been examined here and *the results have been promising. The
members of the remsining subclasses should be examined for sultability as
characterlzing equations.

The acceptance of the response of a servomechanlsm to a unit step
function as a valid criteria of its transient response has been queshioned,

and 1t has been propcsed that the response to a ramp function contains
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more useful information. The contrcl systems synthesized here can be

examined for a ramp input and a comparison should be made between the

a nonlinear servomechanism.

The effect of a movable critical point upon the transient response
of a nonlinear servomecharism has not besen discussed here. However, it
plays an important but okscure role. The cbscurity stems from the com-
plexity of the transcendentel function which consghitutes the solution of
such a characterizing equa®ion. Only a few characterizing equations
with such solutions have heen solved, but the characterizing equation of
Lewis' nonlinear servomechanism seems to lend ltself to a series solu-
tion which has been outlired by E. L. Ince. Examination of this solu-

tion might shed some light upon this effect.



Table 1
Summary of the Characterizing Equations of the Type IT System y" + [Ay + Bly' + Cy3+Dy2+Ey.~;F

Type of Control Value Role of Constants Suitability
Damping Restoring of of for
Case | Force Force F Integration Control Systems
> B6Be-6258°
a By! Ey+Dy [ 25000 Semi-transcendental Some
' 2> + 28y - i
b 38y “2y° + 28y 0] Semi-transcendental None
} %
c (2y+P)y?* Py Any Semi-transcendental - Excellent
3 2

d (y+3a)y? -y’ + 23"y 0 Semi~transcendental None
e (3y+B)y* y3 +By2+Ey Any Semi-transcendental Excellent

F AN




Table 2

Solutions of the Characterizing Equations of the Type II System y" + [Ay + B]y’\_+Cy3+Dy2+Ey==F

Case Solutions
¢ _ 2B _ B
6 5 A 5 el = Bp°
a ym e L@_[(Be ..k)_;O,le SOD[EEE 6B
T gl
b - k€ Sn[kle-a +k2k2=--1J
P i Yy D,
- =t | AT (u) + Y,(u) - =%
)
c -\J"!-kl € L 4 ] g.ng'_kl c 2 3 - i%
AT (u) + Y. (u) P D
8% 14
6[———-4—1{,0,1
d k ¢ ;uzehat
klu
B2+ 5y 0, 1)
1
e yz%—;u"‘+Bu“+Eu'-Fu==O

gTT



Table 3

Pole Location of the Solutions of the Characterizing Equations of the Type II System

w" = [Aw + Blw' + o + Dw2 +Ew + F
Case Conditions Lecation
B=E=Fx=0 Z =k
&
B -
By, BE. F, # 0 Z H%ln(g k)
|
B=0 2MK + i(2N + 1)K 3 M, N integers
b
~82 1
B¥0 Ke +K2=(2M+1)K+i(2N+l)K‘
5 -5
QD e B g &= 2
¢ ATURVE, & © 1= - T (pNK e
a=R=8=0 Z=-cl
a R#0, a=8=0

S=0, R =~ 2&2

z = - 2C - 3/R , (u; 12, Gl)sl

zZ = - § ln [~ cl/cg(a)]

utt'(z) - Bu"(z) - Bu(z) ~ Fu(z) =0

6TT






APPENDIX

Charascterizing equation of a separately excited d.c. motor with viscous

friction and inertia.--Thz schematic diagram of a separately excited d.c.

motor with viscous frietion ard inertis ig shown in Fig. A-l. With the
assumptions listed in this figure, th= squabtions of motion of the system

can be expressed as

T = electrical torque =k +1_, (A-1)
T = mechanical torque = Jw' + fw , (A-2)

and
e, - laRa =k o, ( generated voltage) . (A-3)

Substituting equations (A=3) and (A-1) into (A-3) leads to

k.e k k
t 1 ¢ f ., "tm )
a a
With the substitutions
k
t
&=JR—— (A'B)
a
and
k k
T tm
= T o -
L (A-6)
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R
a
A A\ A iz
L' -
a
1
e L £ — —_ i
f
Parameters
J = Polar moment of inertia; slug-ft2
f = Friction coefficient; ft-1b/rad./sec.
kq, = Torque constant; ft-1b/amp.

Generated voltage constant; volt/rad./sec.

=

R = Armature resistance; ohms

1]
1

Terminal voltage
L = Armature current
w = Angular veloclty; rad./sec.
Assumptions
(l) Negligible armature induchtance

(2) Linear armature resistance

(3) No magnetic saturation

Figure A~l. BSeparately Excited d.c. Motor with Intertia

and Viscous Friction
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equation (A-4) becomes the characterizing equation

se, = ' +bw . (A-T7)

It is customary to show this equation in block diagram form in Fig. A-2
where s is the symbol for the Laplace transform. This is the block dia-
gram of the ungltered or open loop sysiem. For e_t a step function, the

response of equation (AFT) becomes

ae
W = __E [T v

- o o (A-8)

In order to improve the response of this system, it is necessary
to alter the characterizing equation (A-7) of the system. This can be
accomplished as in Fig. A-3 by means of a linesr controller which inte-

grates the error of the system. If the error of the system is defined as

€ = es - kfm 3 (A“9)

then the output of the controller is
t
1 —j (eS - kfm)dt s (A-10)
o

In terms of the variable u, the characterizing equation of the compensated

system becomes

u” + bu! + kfaGu = beS 3 (A-11)
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s+b

Figure A-2. Block Diagram of Open Loop System

Power Amplifier
and Controller

Motor

of(f e plan e -

Tach.

Kf = rad./sec.

Flgure A-3. Block Diagram of Compensated System
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where

1o - T . ¥
u e, - ko (A-12)

The addition of the linear controller has altered the characterizing
equation to a second order linear differential equation. The solution

to equation (A-11) is

be
Bt -Bt, -bt S
= _ A=
u [Cle + Cre e + e ’ (A-13)
where Cl and 02 are constants of integration and

b2
B = i,v ol kfaG : (A-1L)

Since the response of u is a linear furnction of the constants of inte-
gration, they will not change the form of the differential equatlion as
they are changed by the initial conditions.

It is customary to choose the controller gain G such that

b2
kfa(} -4 E— . (A"'l5)

Equation (A-13) can then be expressed as

be
8
u = Ag Sin(Bt + ¢) + EF@ 5 (A-16)

mr]'_a‘

where A and ¢ are constants of integration which are related to the

initial conditions by
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be
y =1
ul o =4 Sin ¢ + Ef"é.f}' 5 (A-17)
and
u? = ApB Cos ¢ - b, A Sin ¢ . (A-18)
t=0 2

Equaticon (A-16) is the underdamped or oscillatory response.

Physical system utilized.--In Fig., A-4 are shown the physical systems

utilized in this thesis. The power amplifier consists of a push-pull
d.c. amplifier and an amplidyne. The viscous frictlion and inertlas load
were simulated by means of & d.c. generator with a resistive load. By
adjusting the load resistance of the genermtor, the effective viscous
friction could be altered. It was assumed that the time constants of
the amplidyne were negligible compared to the d.c., motor and its load.
Figs. A-5 to A-8 show that the assumptions of linearity are within rea-
son. The armature resistance of the motor can be considered a constant
only over a limited renge of speed. For thig reascn the change in speed
was kept to 300 rpm or less. An analogue computer was used to obtaln
the integration and the error of the system. The responses of the sys-
tems utlilized in this thesls were portrayed on the x-y recorder of the
enalogue computer.

Evaluation of motor time constants.--The characterizing equation of the

physlical system has the steady state solution

w = % e, « (A-19)



Motor, Generator and Tachometer

are Separately BExcited
Push-
Computer Pall Fclgzizol
Input Amplifier |
Amplydyne

Figure A-k. Schematic Diagram of the Physical System
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If the system is operating at some steady state speed o and the

excitation is removed, the resulting decay of speed is given by

W= W e_bt . (A-20)
SeSu

Teking the logarithm to the base 10 of both sides of equation (A-20)

leads to

logio(a;%gj) = - bt log(lo)e P (A-21)

which plots as a straight line. The slope of this line 1is

-b logloe

from which b may be calculated. Once b is known, equation (A-19) can be
utilized to obtain a. In Fige A-9 is shown a typical decay curve of this
system and in Fig. A-10 is & plot of equation (A-21). Since the slope of

this curve is 1.77,

b = 43.6
and

a = 43.6 .

Response of physical system.--Typical values utilized in this thesis are
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e = 28 volts
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Figure A-9. Decay of Speed
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and
5, = 1 volt,.
Hence
B = 6
and

b2 & 2.035 »

For the system starting from rest, the initial conditions are

u(0) =0
u'(0) = 1
and hence
A= 1,61
and
b= 3507 &

Thus the response of this system to a 1 volt step function is

=2.035%

u = l.6le sin( .6t - 35.4°) + .931 .
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