

ADMINISTRATIVE DATA

1) Sponsor Technical Contact:
OCA Contact Linda H. Bowman $\times 4820$

Dr. M. M. Hallum
2) Sponsor Admin/Contractual Matters: Systems Simulation \& Development Directorate

Mr. Thomas A. Bryant U. S. Army Missile Command ONR Resident Rep. GIT Attn: DRSMI-RDF 207 0'Keefe Bldg Redstone Arsenal, AL 35898 Atlanta, GA 30332 205-876-4141

Defense Priority Rating: DO-A2 under DMS Reg. 1
Security Classification: unclassified

RESTRICTIONS

See Attached government Supplemental Information Sheet for Additional Requirements.
Travel: Foreign travel must have prior approval - Contact OCA in each case. Domestic travel requires sponsor approval where total will exceed greater of $\$ 500$ or 125% of approved proposal budget category.
Equipment: Title vests with government; except that items costing less than $\$ 1,000$ vests with GIT if prior approval to purchase is obtained from the Contracting Officer.

COPIES TO:

Administrative Coordinator	Research Security Services	EES Public Relations (2)
Research Property Management	Reports Coordinator (OCA)	Computer Input
Accounting	Legal Services (OCA)	Project File
Procurement/EES Supply Services	Library	Other

SPONSORED PROJECT TERMINATION SHEET

Date $\quad 9 / 30 / 82$
Project Title: Radome Computer Analysis Methodology RDF-43
Project No: A-3195
Project Director: Dr. D. J. Rozakoff
Sponsor: US Army Missile Command; Redstone Arsenal, AL

Effective Termination Date: $\quad 9 / 30 / 82$
Clearance of Accounting Charges: $11 / 30 / 82$
Grant/Contract Closeout Actions Remaining:

Final Fiscal Report
x Final Report of Inventions
x Govt. Property Inventory \& Related Certificate
Classified Material Certificate
Other \qquad

Assigned to: \qquad (3EFYOBI/Laboratory)

COPIES TO:

Administrative Coordinator
Research Property Management
Accounting
Procurement/EES Supply Services

Research Security Services Reports Coordinator (OCA) Legal Services (OCA) Library

EES Public Relations (2)
Computer Input
Project File
Other \qquad

Technical Report \#1
and Cost and Performance Report \#1

Report Period
1 March 1982 through 31 March 1982

RADOME COMPUTER ANALYSIS METHODOLOGY
D. J. Kozakoff

Contract No. DAAH01-81-D-A003
Delivery Order 0042
EES Project A-3195

Effective Date: 3/12/82
Expiration Date: 9/30/82

Prepared for
U.S. Army Missile Command Redstone Arsenal, AL 35898

Attn: DRSMI-RDF

Prepared by
Engineering Experiment Station Georgia Institute of Technology Atlanta, GA 30332

WORK PERFORMED IN THIS REPORTING PERIOD
This project was initiated in this reporting period. The only work accomplished were telecons and planning sessions with the contract technical monitor.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD
None

WORK PLANNED FOR THE NEXT REPORTING PERIOD
A project kick-off meeting in Atlanta will be held to quantify the goals and plan of attack in accomplishing this study.

The following charges have been incurred against the contract during period 12 March through 31 March, 1982

	$\frac{\text { Expended }}{}$
Personal Services (PS)	$\$ 240.75$
Materials and Supplies	0
Travel	0
Overhead (@ 55% of PS)	147.76
Retirement (@ 11.59% of PS)	27.90
TOTAL	$\$ 416.41$

The breakdown of personal services is as follows:

Dollars

0	0
240.75	11
0	0
0	0
0	0
0	0
0	0
$\$ 240.75$	11

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$11,620.22	\$240.75	\$11,379.47
Materials and Supplies	600.00	0	600.00
Travel and Shipping	900.00	0	900.00
Computer	5,000.00	0	5,000.00
Overhead	10,706.90	147.76	10,559.14
Retirement	1,346.78	27.90	1,318.88
ExSumblyexeck	\$30,173.90	\$416.41	\$29,757.49

FUNDING
Based on present full funding, the funding and equivalent man hours are sufficient to complete the task. Approximately 1.4% of the proposed task has been completed.

Technical Report $\# 2$ and
Cost and Performance Report $\# 2$

Report Period

1 April through 31 July 1982

RADOME COMPUTER ANALYSIS METHODOLOGY
D. J. Kozakoff

Contract No. DAAHO1-81-D-A003
Delivery Order 0042
EES Project A-3195

Effective Date: $3 / 12 / 82$
Expiration Date: 9/30/82

Prepared for
U.S. Army Missile Command

Redstone Arsenal, AL 35898
Attn: DRSMI-RDF

Prepared by
Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

Complete radome modeling was accomplished to assess the affects of backwall and bulkhead reflections and antenna scattered energy. In addition, the flat panel wall transmission subroutine was scrutinized via comparison of measured and predicted data. The results show the predictions are larger insertion phase values than measured at MICOM.

Various trips were made to interface with the MICOM Technical Contract Monitor.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD
None.

WORK PLANNED FOR NEXT REPORTING PERIOD
The final written report should be completed and a rough draft will be delivered to MICOM for review.

The following charges have been incurred against the contract during period July 1 - July 31, 1982

	Expended	Encumbered
Personal Services (PS)	$1,077.09$	$-0-$
Materials and Supplies	4.50	$-0-$
Travel	202.10	$-0-$
Overhead (@ 73\% of PS)	757.87	$-0-$
Retirement (@ 11.11% of PS)	190.50	$-0-$
TOTAL	$2,232.06$	$-0-$

The breakdown of personal services is as follows:

Principal Research Scientists/Engineers
Senior Research Scientists/Engineers
882.75

Research Scientists II/Engineers II
Research Scientists I/Engineers I
Technicians/Draftsmen
Students
Secretarial/Clerical/Other
TOTAL
194.34

$$
1,077.09
$$

28

The current financial status of the contract is as follows:

	Budget As Proposed		Expended	Free Balance
Personal Services (PS)	$11,620.22$		$13,084.89$	$(1,464.67)$
Materials and Supplies	600.00		176.48	432.52
Travel and Shipping	900.00		514.03	385.97
Computer	$5,000.00$		267.54	$4,732.46$
Overhead	$10,706.90$		$8,344.50$	$2,367.40$
Fringe Benefits	$1,346.78$		$1,356.58$	(9.80)
Encumbered	$-0-$		$-0-$	$-0-$
FUNDING	$30,173.90$		$23,744.02$	$6,429.88$

Based on present full funding, the funding and equivalent man hours are sufficient to complete the task. Approximately 79% of the proposed task has been completed.

FINAL TECHNICAL REPORT

Project A-3195

RADOME COMPUTER ANALYSIS METHODOLOGY

September 1982
D. J. Kozakoff
and
D. Bagwell

Contract No. DAAH01-81-D-A003
Delivery Order 0042

Prepared for

U. S. ARMY MISSILE COMMAND
 Redstone Arsenal, AL 35898
 Attn: DRSMI-RDF

Prepared by

```
Engineering Experiment Station
Georgia Institute of Technology
    Atlanta, Georgia 30332
```

UNCLASSIFIED
SECURITY CLASSIF: (ATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) RADOME COMPUTER ANALYSIS METHODOLOGY	```5. TYPE OF REPORT & PERIOD COVERED Final Report 3/12-9/30/82```
7. AUTHOR(S) D. J. Kozakoff D. Bagwell	8. CONTRACT OR GRANT NUMBER(s) DAAH01-81-D-A003 Delivery Order 0042
9. PERFORMING ORGANIZATION NAME AND ADDRESS Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332	10. PROGRAM ELEMENT, PROJECT, TASK AREA \& WORK UNIT NUMEERS
11. CONTROLLING OFFICE NAME AND ADORESS U. S. Army Missile Command Redstone Arsenal, Alabama 35898 Project Monitor: K. Letson	12. REPORT DATE September 1982
	13. NUMEER OF PAGES
14. MONITORING AGENCY NAME A ADORESS(if diflerens from Controlling Office)	15. SECURITY CLASS. (Of this report) UNCLASSIFIED
	15a. DECLASSIFICATION: DOWNGRADING SCHEDULE
16. Distrigution statement (of this Report)	
17. DISTRI日UTION STATEMENT (of the ebstract entered in Block 20, if different from Roport)	
18. SUPPLEMENTARY NOTES The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U. S. Army Missile Command.	
19. KEY WOROS (Continue on reverse side if necessary and identity by block number) Radome Analysis, Computer Methodology, Boresight Errors.	
20 ABSTRACT (Continue on reverse side if necessary and identify by block number) This document contains an assessment of the accuracy of a three-dimensional backward ray trace computer code when various parameters are factored into the mathematics. This includes backwall and bulkhead reflections. Predictions are compared to measured data for a test case.	
D, FCRM 1473 EOITION OF INOV55is cesolete un unci	ASSIFIED

TABLE OF CONTENTS

1.0 INTRODUCTION

This document summarizes a study with an objective of quantifying prediction errors in various computerized radome analyses techniques. In an earlier study [l], the various analysis methods including forward and backward ray trace, surface integration and plane wave spectra were investigated. It was determined that for antennas greater than approximately five wavelengths in diameter, the three-dimensional backward ray trace offered potential for superior accuracy while maintaining reasonable operating cost relative to the surface integration or plane wave spectra approaches which could cost up to \$lo per data point in computer cost (i.e. one look angle and one frequency).

Of the computer code survey completed in the first study, the three most viable which were selected for study were the Georgia Tech threedimensional backward ray trace, and RADEP3 codes and the Auburn University code. All these are backward ray trace formulations; a comparative summary of modeling features are given in Table $1-1$. The tradeoffs in analysis method performance results appear in Table 1-2.

In this study, the preferred Georgia Tech code was modified in detail to model additional error contributors which were believed to be the major error sources between theoretical predictions and actual results. In addition, the wall transmissions subroutine was exercised for an example and compared with actual measurements (performed as part of this program) to determine the validity of the theory. Finally, the program was exercised for a particular radome problem and the results compared to actual measurements to determine if prediction improvement could be obtained with the modeling modifications.

Table 1-1
COMPARISON OF SELECTED COMPUTER CODES

Program	Bulkhead Reflections	Backwa11 Reflections	Radome Tip Modeling	Radome Wal1 Taper	Arbitrary Circular Polarization	Circumferential Wall Variations	Antenna Scattering	Multilayer Walls
Georgia Tech	No	No	Yes	Yes	Yes	Yes	No	Yes
Auburn University	No	Yes	Yes	No	No	No	No	Yes
RADEP3	No	No	Yes	Yes	No	No	No	Yes

Table 1-2

TRADEOFF OF ANALYSIS METHODS

Ray Trace Transmit	LowOperating Cost	BSE Accuracy	Sidelobe Predictor Accuracy	Machine Size Required
Ray Trace Receive	Low	Good	Poor	Small
PWS	Good	Good	Small	
Surface Integration	Extremely High	Excellent	Good	Large

2.0 OVERVIEW OF SELECTED RADOME ANALYSIS METHOD

A flow chart of the ray trace program used herein is shown in Figure 2-1. The program interactively asks the user to input the necessary parameters to describe the (tangent ogive) radome, the antenna, and the incoming wave polarization. The program is currently preselected to the principal planes (El $=0$ and $A Z=0$) from 0 to 30 degrees in increments of 1 degrees. The antenna sample spacing is selected by the user. A ray is then traced outward from each sample point in the direction of the incoming wavefront. The intersection of each ray with the radome is then found by modified regula falsi root solving method. The normal to the tangent ogive at the intersection is found and used along with the direction of propagation to define the plane of incidence. The electric field is then broken into components perpendicular and parallel to the plane of incidence. The transmission and IPD are then calculated for both of the above cases, the radome wall being assumed to be locally flat at the intercept point. The subroutine that calculates the affect of the wall takes into account multi-layer sandwiches and multiple reflections within the radome wall (see Section 5).

The electric field is then reflected in terms of the original azimuth and elevation directions for numerical integration (summation) at the antenna aperture. Monopulse sum and difference illuminations are used in sequence to allow computation of standard monopulse error voltages and to thus derive a measure of boresight ercor in both the elevation and azimuth channels. The ray trace technique is illustrated in Figure 2-2.

The specific subroutines that compute the affects of bulkhead, backwall and internal antenna reflections are described in detail in subsequent sections of this report.

Figure 2-1. Program Flow Chart

Figure 2-2. Backward Ray Trace Method.

3.0 DISCUSSION OF ANALYSIS ERRORS

3.1 General

The extent that the sidewall and bulkhead reflections and antenna scattered energy can affect boresight error calculations is highly dependent upon the properties of the radome and the antenna that it encloses. A radome can be theoretically designed so that reflections have negligible affects on the boresight error, but in practice, the reflections usually are large enough to influence the boresight errors.

The effect of bulkhead reflections depend mainly on the backlobe properties of the antenna. The magnitude of rays reflecting off the rear bulkhead plate are approximately the same as those directly striking the antenna. If the antenna is located close to the bulkhead then the area on the bulkhead for rays to reflect and strike the antenna is restricted and the extent of bulkhead reflections decrease.

Generally, bulkhead reflections will not have much affect until the angle of incidence of the incoming rays (with respect to the radome axis) become larger. Our antenna model assumes that the rear pattern is a mirror image of the forward pattern, decreased in magnitude by a user specified number of decibels (generally 20 dB). This should reasonably be a good model for a variety of antennas. In actual applications, positioners and electronic gear may block some of the reflections from reaching the antenna. As the incidence angle of the incoming rays gets much greater than 45 degrees, the bulkhead reflections cannot hit the antenna since they become parallel to the plane of the antenna.

The reflections off the radome side walls is another parameter that can affect boresight errors. The reflectance of a design wall may only be one percent for the electric field (. 01% for the power) for a welldesigned radome. In practice, erosion and ablation may change the thickness and heating may change the electrical properties of the wall. Reflectances may then get very large, potentially even being larger than fifty percent. The sidewall reflections strike only a small segment of the antenna. As radome wall reflectances become large, the boresight errors may become very large as a result of this concentration of reflected energy. The size and position of the antenna also has an effect on sidewall reflections.

A limiting incidence angle exists, below which no sidewall reflections can occur (see Section 3.2). As the size of the antenna approaches that of the radome immediately surrounding it, this limiting angle goes to 0 . As the size of an antenna increases, the effects of sidewall reflections will increase regardless of incidence angle (as long as the incidence angle is larger than the limiting angle).

The fineness ratio of the radome also has an effect on sidewall reflections, since the position and angle of the radome wall at the reflection point determines where the reflected rays can strike the antenna. A large fineness ratio should lead to increased sidewall reflections, as should moving the antenna towards the base of the radome. Sidewall affects would be expected to increase if the antenna were not perpendicular to the incident radiation.

The effects of antenna scattered energy on boresight error calculations are highly dependent upon the reflectance of the radome walls. Some of these rays may reflect off the radome wall twice before striking the antenna, enhancing the need for high reflectance to get measureable effects. The properties of the antenna control how much of the scattered energy is absorbed. A large antenna increases the probability that a reflecting ray can hit the antenna. The antenna's illumination function determines how much of the incident rays energy is scattered and the distribution of this scattered energy. A low fineness ratio for the radome should allow more rays to hit the antenna with fewer sidewall reflections. Antenna scattered energy should not be as important in typical radomes as the other types of reflections, because the reflected energy is distributed fairly evenly over the antenna aperture, reducing its affect on boresight error calculations.

3.2 Sidewall Reflections

Part of the energy incident on an antenna enclosed in a radome consists of rays that transmit through the radome, hits another position of the radome where some of the energy is reflected back into the antenna (or misses the antenna and is reflected again). The rays that reflect off the radome wall only once before striking the antenna are the only ones that are considered herein. Higher order reflections can be ignored for typical radomes since the amount of energy reflected at each contact with the radome wall becomes insignificant.

The amount of energy that is reflected off a radome wall is dependent on the angle of the incoming rays. To develop the analyses we define the antenna reference plane to be the plane of the antenna when the antenna is looking down the axis of the radome illustrated in Figure 3-1. At some incidence angle part of the incident wave that would normally hit the antenna reference plane outside of the radome is unable to hit this plane because it has already been reflected by the radome. The radome casts a "shadow" on the antenna reference plane.

The energy absent from this shadow region is that which will be reflected off the radome wall. A limiting angle of incidence with respect to the radome axis exists, below this limit no shadow will be cast and no energy can be reflected. This angle is found to be

$$
\begin{equation*}
\theta_{\lim }=\tan ^{-1}\left(\frac{\mathrm{D}^{\prime} / 2}{\mathrm{~L}-\Delta}\right) \tag{3-1}
\end{equation*}
$$

An array of sample points is set up inside any shadow that is cast. The sample point spacing is selected according to the sample point spacing used on the antenna in the standard ray-tracing method.

A ray incident on the shadow intercepts the radome in two locations. These locations are found numerically using the same techniques as the standard ray-trace. The energy striking the antenna must be transmitted at the first intercept and reflected at the second. The effects on the magnitude and phase of the incoming ray by the transmission and reflection are calculated using the model described in

Figure 3-1. Sidewall Reflection Component Added to Ray Trace.

Section 5. The direction vector C of the reflected ray is:

$$
\begin{equation*}
U=K-(K-N) N \tag{3-2}
\end{equation*}
$$

The coordinates of the point where the reflected ray intersects the antenna aperture must be found for all reflected rays that will hit the antenna. The equation for the rotated antenna's aperture plane is obtained by inverting the rotation matrix that rotated the antenna to its position and solving for the points $X^{\prime}=0$ which are contained in the aperture plane. (See Appendix C for details). The intersection point can now be found by solving the equations for the antenna plane with those describing the vector C.

A phase shift is added to the electric field at the antenna due to the longer path that the reflected ray must take with respect to a reference ray coming directly in. The magnitude of the electric field absorbed by the antenna is decreased for fields not in the plane (direction vector normal to the plane) of the antenna. After these two effects on the electric field are accounted for, the electric field is added to the computer model of the monopulse network in the same method as direct incidence rays.

Many missiles have a bulkhead plate between the radome of the missile body. If the bulkhead is not absorber treated, then incoming electromagnetic rays can reflect off this plate and strike the backside of the antenna; these rays are capable of causing boresight errors.

The analysis treats the reflections off the bulkhead plate as if it were flat, perfectly conducting, and located at the origin of the radome coordinates. This should be a fairly accurate model for many missiles.

The antenna is modeled the same as in the standard ray-trace, i.e., the same samples point definitions are used. However, the rays incident on the back of the antenna are reduced in gain. The user corrects for this in the program by inputing the rear antenna gain factor. This factor can also include any losses which come from imperfect reflection off of the bulkhead.

Mathematics
The rays are traced from the antenna sample points to the plane of the bulkhead separation plate along the vector ($-\mathrm{K}_{\mathrm{x}}, \mathrm{K}_{\mathrm{y}}, \mathrm{K}_{\mathrm{z}}$) illustrated in Figure 3-2. (Direction vector for incident rays is K_{x}, K_{y}, K_{z}. The vector ($-K_{x}, K_{y}, K_{z}$) was chosen because it will become the direction vector \bar{K} after reflection off of the plate. Any rays that pierce the side of the radome before hitting the bulkhead plate are discarded since they are not reflected by the bulkhead. The rays are then traced along the direction vector \bar{K} to the plane of the antenna. The intersection between the plane and ray is found by inverting the rotation matrix as described in Section 3.2. If this ray hits the antenna itself then it is discarded because rays directly incident on the antenna have already been treated in the standard ray-trace. The rays are then ray traced from the antenna plane through the radome wall along the direction \bar{K} in the same manner as the standard ray-trace.

The remaining rays may be thought of as being incident at the radome, reflecting off the bulkhead, then striking the antenna. The magnitude of the electric field is adjusted to account for non-normal incidence on the antenna as described in Section 3.2. The phase of the

Figure 3-2. Bulkhead Reflection Added to Backward Ray Trace.
electric field is adjusted to allow for the additional path from the antenna to the bulkhead to the antenna plane. The electric field is then summed to the monopulse model at the sample point on the antenna.

3.4 Antenna Scattered Energy

Not all of the energy striking an antenna is absorbed by the antenna. The energy absorbed by an antenna is dependent on the antenna's illumination function. An approximation to the energy reflected by the antenna is the inverse of the illumination functions.

The antenna scattered energy can bounce off the radome wall one or more times before striking the antenna. At each reflection most of the energy is transmitted through the radome wall if the radome is well designed. Our model takes into account one and two reflections off the radome, ignoring rays that miss the antenna after 2 radome wall reflections.

Mathematics
The standard ray-tracing method is used to trace the rays through the radome wall to the antenna, including use of the same sample points. At the antenna the rays are multiplied by the illumination function inverse being evaluated at the sample point. The antenna is assumed to be flat, because of this the rays reflecting off the antenna will intersect the radome wall at the same place that the ray initially entered the radome (see Figure 3-3). At the reflection point the direction of the ray is changed and the magnitude and phase of the electric field are changed using the same techniques as the sidewall reflections described in Section 3.2. The ray is then tested to see if it will intersect the antenna, go through the base of the radome, or strike the radome wall in another location.

If the ray intersects the antenna the intersection point is found, the electric fields magnitude and phase are adjusted, and the electric field is summed to the monopulse model, all of these being done in the same manner as the sidewall reflections of Section 3.2. If the ray passes through the base of the radome without intersecting the antenna

Figure 3-3. Antenna Scattered Energy Added to Backward Ray Trace.
then the ray is discarded. If the ray strikes the radome wall the intersection point is found using numerical techniques and the new direction of the ray and effects of reflection on the ray are calculated as above. The ray is then tested to see if it strikes the antenna. If it does strike the antenna it is summed, if not the ray is dropped.
4.0 COMPARISON OF THEORETICAL AND MEASURED RADOME DATA
4.1 Radome Description

The radome posed for theoretical analysis was a tangent ogive having the basic geometry defined in Figure 4-1; for this geometry the values of the various wall parameters are:

$$
\begin{aligned}
\mathrm{D} & =13.46 \mathrm{in} . \\
\mathrm{L} & =48.47 \mathrm{in} . \\
\Delta & =10.75 \mathrm{in} . \\
\delta & =0 \mathrm{in} . \\
\mathrm{d} & =10.7 \mathrm{in} .
\end{aligned}
$$

In addition, the monolithic wall was specified to have a dielectric constant of 5.0 and loss tangent of 0.005 .

The wall thickness specified for the test radome was a sophisticated prescription summarized in Table 4-1. To model this in the program, a closed form expression for radome wall thickness was derived as:

$$
\begin{align*}
& \text { THK }(\text { inches })=\left(0.282+0.0064 \theta^{2}\right) \\
& \cdot \cos \left(\frac{(\text { DIST }-34-4 \theta)}{34-4 \theta}\right)(0.5+0.108 \text { abs }(\theta-0.628) \tag{4-1}
\end{align*}
$$

Where

$$
\begin{aligned}
\text { DIST }= & \text { Station referenced to radome tip (inches) } \\
\theta= & \text { Radome circumferential angle from vertical } \\
& \text { (radians) }
\end{aligned}
$$

The radome roll angle reference, antenna geometry and polarization are depicted in Figure 4-2. The theoretical radome thickness resulting from the use of equation (4-1) is tabulated in Table 4-2.

Figure 4-1. Geometry for Tangent Ogive Radome Performance Calculations.

Figure 4-2. Antenna Orientation for Thickness Taper Prescription

TABLE 4-1
WALL THICKNESS VERSUS DISTANCE FROM BASE (DIST)

THETA

DIST	0	22.5	45	67.5	9
0	.238	.246	.250	.249	.248
2	.238	.246	.250	.249	.248
4	.247	.253	.273	.278	.279
6	.251	.259	.276	.281	.284
8	.255	.260	.277	.282	.285
10	.259	.270	.267	.282	.284
12	.258	.267	.259	.285	.287
14	.267	.259	.259	.262	.288
16	.271	.283	.261	.290	.276
18	.273	.273	.270	.291	.280
20	.274	.267	.280	.285	.290
22	.269	.269	.275	.291	.268
24	.265	.281	.263	.274	.274
26	.278	.271	.288	.266	.295
28	.283	.274	.281	.300	.297
30	.285	.281	.275	.281	.297
32	.281	.280	.278	.280	.291
34	.281	.276	.282	.281	.290
36	.281	.282	.279	.283	.283
38	.281	.281	.280	.284	.283
40	.281	.277	.280	.278	.279
42	.275	.275	.279	.276	.275
44	.272	.271	.279	.276	.275
46	.271	.267	.271	.284	.274

THETA (deg)

0	22.5	45	67.5	90

Table 4-2. Theoretical Wall Thickness Model.

4.2 Comparison of Measured and Predicted Data

The boresight errors for the azimuth and elevation principal plane scans are shown in Figures $4-3$ and 4-4. Here the same general features are found in both the measured and the calculated curves; for both plus and minus azimuth values the boresight error curve approximates a sine curve for one half of a cycle. The azimuth BSE, curves differ by about 3 milliradians between the calculated and measured while the calculated and measured curves for the elevation scans agree within 2 milliradians over most of the scan.

Similar data, but with added -20 dB rear bulkhead reflections, appear in Figures $4-5$ and $4-6$. The affects of -15 dB rear bulkhead reflections appear in Figures 4-7 and 4-8.

These bulkhead reflection components noticeably made the computed curves approach the measured curve, especially in the elevation scan. The affects of antenna backwall reflections were then investigated in Figures 4-9 and 4-10. The computed curves come more closely to the measured curves, but the affect due to sidewall reflections in this case was at most .3 milliradians.

The errors including antenna scattered energy were also calculated but not plotted here since the maximum affect of the energy was about 0.1 milliradians.

Figure 4-3. Azimuth Scan BSE (no Added Reflections)

Figure 4-4. Elevation Scan BSE (no Added Reflections)

Figure 4-5. Azimuth Scan BSE with Bulkhead Reflection of -20 dB

Figure 4-6. Elevation Scan BSE with Bulkhead Reflection of -20 dB

Figure 4-7. Azimuth Scan BSE with Bulkhead Reflection of -15 dB

Figure 4-8. Elevation Scan BSE with Bulkhead Reflection of -15 dB

Figure 4-9. Azimuth Scan BSE with Sidewall Reḟlection Included

Figure 4-10. Elevation Scan BSE with Sidewall Reflection Included

5.1 General

An evaluation of possible sources of computational errors suggested that the wall transmission subroutine used in the computer analysis be considered. Here, the theoretical approach is a matrix solution developed by Collin [1] who formulated expressions based on reflection and transmission components at each boundary of a multilayer dielectric media.

In the domain of geometrical optics, radome walls are approximated as being locally flat and infinite in extent. The method is based on this approximation, and is not valid for thick, highly curved walls. An incident electromagnetic wave is decomposed into components with the electric field vector perpendicular and parallel to the plane of incidence, that plane being defined as containing both the local normal to the surface and the direction vector of propagation. Arbitrary incidence angles, electrical properties, layer thickness, and number of layers can be handled. The method assumes that the dielectric and magnetic properties must be homogeneous and isotropic within individual layers.

A modification can be made for anisotropic materials [4], but added computer time cannot be justified when the anistropy is not large. Multiple reflections between the layer boundaries are analyzed by complex matrix multiplications, one matrix being needed for each boundary. The mathematics for setting up the matrices is based on solving a boundary value problem at each interface.

Applicable Equations

In terms of the layer geometry, and following the development in references [1] and [2], the applicable matrix solution is:
where $N=$ number of layers,

$$
\begin{align*}
& d_{i}=i \text { th layer thickness (inches) } T_{i}=1-R_{i} \text {, and } \\
& \Phi_{i}=k_{o}\left(\varepsilon_{i}^{\prime}-\sin ^{2} \theta\right)^{1 / 2} \tag{2}\\
& R_{i}=\frac{Z_{i}-Z_{i-1}}{Z_{i}+Z_{i-1}} \tag{3}
\end{align*}
$$

Note: $\quad Z_{0}=Z_{N+1}=1$

$$
\begin{align*}
Z_{i} & =\frac{\cos \theta}{\left(\varepsilon_{i}-\sin ^{2} \theta\right)^{1 / 2}} \quad \text { (TE or perpendicular polarization) } \tag{4}\\
& =\frac{\left(\varepsilon_{i}-\sin ^{2} \theta\right)^{1 / 2}}{\varepsilon_{i} \cos \theta} \quad \text { (TM or parallel polarization) }
\end{align*}
$$

Further refinement is made via equation (2) modification:

$$
\left.\begin{array}{l}
\Phi_{i}^{\prime}=k_{0} \sqrt{\varepsilon_{i}-\sin ^{2} \theta} \\
\Phi_{i}^{\prime}=k_{o} \sqrt{\left(\varepsilon_{i}^{\prime}-\sin ^{2} \theta\right)-j\left(\varepsilon_{i}^{\prime \prime}\right)}= \\
=k_{o} \sqrt{\varepsilon_{i}^{\prime}-\sin ^{2} \theta}\left\{1-\frac{j \varepsilon_{i}^{\prime} \tan \delta_{i}}{\left(\varepsilon_{i}^{\prime}-\sin ^{2} \theta\right)}\right\} \\
\Phi_{i}^{\prime} \approx k_{o} \sqrt{\varepsilon_{i}^{\prime}-\sin ^{2} \theta}\left\{1-\frac{j \varepsilon_{i}^{\prime} \tan \delta_{i}}{2\left(\varepsilon_{i}^{\prime}-\sin ^{2} \theta\right)}\right. \tag{8}
\end{array}\right\}
$$

Where in terms of the relative dielectric constant and loss tangent:

$$
\begin{align*}
& \varepsilon_{i}=\varepsilon_{i}^{\prime}-j \varepsilon_{i}^{\prime \prime}=\varepsilon_{i}^{\prime}\left(1-j \tan \delta_{i}\right) \tag{9}\\
& \text { Defining, } \alpha_{i}=\frac{k_{o} \varepsilon_{i}^{\prime} \tan \delta_{i}}{2\left(\varepsilon_{i}^{\prime}-\sin ^{2} \theta\right)^{1 / 2}}=\frac{k_{o}^{2} \tan \delta i}{2 \Phi_{i}} \tag{10}
\end{align*}
$$

Then (7) becomes,

$$
\begin{align*}
\Phi_{i}^{\prime} & =k_{o} \sqrt{\varepsilon_{i}^{\prime}-\sin ^{2} \theta}-j \alpha_{i} \\
& =\Phi_{i}-j \alpha_{i} \tag{11}
\end{align*}
$$

From which (1) can be expressed:

$\left|\begin{array}{ll}1 & R_{5} \\ R_{5} & 1\end{array}\right| \quad\left[\begin{array}{l}c_{6} \\ \\ b_{6}\end{array}\right]$
or,

$$
\left[\begin{array}{l}
c_{1} \tag{13}\\
b_{1}
\end{array}\right]=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right] \quad\left[\begin{array}{l}
c_{N+2} \\
b_{N+2}
\end{array}\right]
$$

The voltage transmission coefficient is

$$
\begin{equation*}
|T|=20 \log \left(c_{6} / c_{1}\right)=-20 \log \left|A_{11}\right| \tag{.14}
\end{equation*}
$$

The voltage reflection coefficient is

$$
\begin{equation*}
|R|=20 \log \left(b_{1} / c_{1}\right)=20 \log \left|A_{21} / A_{11}\right| \tag{.15}
\end{equation*}
$$

The insertion phase is defined as the difference in electrical thickness between the panel and that of free space over the same thickness as the panel [3].

$$
C_{1} \text { is incident on the wall and } C_{N+2} \text { is transmitted }
$$ then

$$
\begin{align*}
& C_{\text {INC }}=A_{11} C_{\text {TRAN }} \tag{16}\\
& C_{\text {TRAN }}=\frac{C_{\text {INC }}}{A_{11}} \tag{17}
\end{align*}
$$

angle $\left(C_{\text {TRAN }}\right)=$ angle $\left(C_{\text {INC }}\right)-\operatorname{angle}\left(A_{11}\right)$
$I P D=-\operatorname{angle}\left(A_{11}\right)-\frac{360 d(\operatorname{total})}{\lambda} \cos \theta$ (degrees)

A phase delay also is incurred on the reflecting ray, b_{1}.

$$
\begin{align*}
& \mathrm{B}_{\text {refl }}=\mathrm{A}_{21} \mathrm{C}_{\text {TRAN }} \\
&=\frac{A_{21}}{A_{11}} C_{\text {INC }} \tag{20}\\
& \text { angle }\left(\mathrm{B}_{\text {refl }}\right)= \operatorname{angle}\left(\mathrm{C}_{\text {INC }}\right)+\text { Angle }\left(\mathrm{A}_{21}\right)-\text { Angle }\left(\mathrm{A}_{11}\right) \tag{21}\\
& \text { Limitations }
\end{align*}
$$

This method computes the transmission coefficient and insertion phase dealy for a plane wave incident at angle θ on a N-layer dielectric sheet with free space on either side; relative permeability of all layers is assumed unity.

There are no restrictions on the range of any of the variables except loss tangent. Here, the approximation made is seen in equation (7). This approximation generally restricts accuracy for loss tangents greater than about 0.10 .
5.2 Comparison of Measured and Predicted Data

To assess program accuracy, a sheet of 0.375 -inch plexiglass (polymethyl methacrylate) was evaluated The dielectric properties at Xband published in the technical literature indicate a value of $\varepsilon=2.59$ and $\tan \delta=0.0067$. These values were input to the wall program to compute the parallel and perpendicular transmission coefficient and insertion phase delay (IPD).

Utilizing the measurements facility at MICOM in conjunction with the Georgia Tech radome measurements instrumentation system, actual data were obtained on a sheet approximately four-feet square. The range of incidence angles measured was limited by the radome positioner to angles less than 60 degrees.

The measured date did not include any reference measurements for the free space or "no sheet" case. The measured transmission was set to 1 and the measured IPD was set to 0 for an incidence angle of 0 degrees. The computed IPD was also set to 0 for 0° incidence angle for comparison
with the measured. (These offsets are not important for radome analysis since they effect all rays entering the radome equally.)

The measured and computed values for the transmission and IPD are shown in Figures 5-1 and 5-2. The parallel polarization case had the most difference between measured and computed values for both transmission and IPD coefficients. At 60° the measured IPD differs from the computed by approximately 2 degrees (or 15%) and the measured transmission differs from the computed by approximately -0.05 (or 6\%).

The measured data was actually an average of three trials. The IPD and transmission coefficients did vary from trial to trial, but the average would seem to have a low standard deviation as evidenced by the smoothness of the measured curves. The computed curves depend on the thickness and electrical properties of the plexiglass, both of which may have moderate tolerances in the comercial sheet used.

The deviation between measured and computed coefficients is large enough to effect radome boresight errors, particularly for large angles of incident (high fineness ratio radomes). It is the opinion of the authors that some of the descrepancy between measured and computed data is due to measurement errors. While it is difficult to quantify the measurement error component magnitude, it does suggest that if computed radome data is to be compared with actual radome data measured in the same facility, one should factor the measurement data into the data evaluation. Secondly, the measured data herein suggests a theoretical descrepancy of the mathematical model for large angles-of-incidence which can only be resolved via a more exhaustive perfection of the WALL transmission formulation.

Figure 5-1 Comparison of Measured to Calculated Transmission and IPD Values

Figure 5-2 Close Up of Comparison of Measured to Calculated Transmission and IPD Values

6.0 REFERENCES

1. R. E. Collin, "Field Theory of Guided Waves," McGraw-Hill Book Company, New York, 1960.
2. C. H. Krueger, Jr., "A Computer Program for Determining the Reflection and Transmission Properties of Plane Impedance Boundaries," Report AFATL-TR-67-191, Research and Technology Division, Wright-Patterson AFB, Ohio, September, 1967.
3. H. Jasik, "Antenna Engineering Handbook," McGraw Hill Book Company, New York, 1961.
4. D. J. White and D. J. Banks, "Plane Wave Transmission and Reflection for Anisotropic Sheets of Radome Materials," Proceedings of the Sixteenth Symposium on Electromagnetic Windows, Atlanta, Georgia, June 9-11, 1982.
5. D. J. Kozakoff, G. K. Huddleston and M. West, "Missile Radome Performance Assessment", Final Report on Project A-2939, prepared for U. S. Army Missile Command under Contract DAAHO1-81-D-A003, Delivery Order 0015, Georgia Tech, Atlanta, Georgia, December 1981.

APPENDIX A

PROGRAM LISTING

```
PROGRAM RAII(INPUT, OUTPUT,TAPES=INPUT,TAPEG=OUTPUT,TAPET)
```

PROGRAM RAII(INPUT, OUTPUT,TAPES=INPUT,TAPEG=OUTPUT,TAPET)
REAL L,LTAN(5),IPDO,IPD1,THK(5),ER(5)
REAL L,LTAN(5),IPDO,IPD1,THK(5),ER(5)
COMMON/A1/NLAY,ER,LTAN
COMMON/A1/NLAY,ER,LTAN
COMMON/A2/APAZ,APEL.ILLUM,FREQ,THETA,IPDO,IPLL,RPDO,RFW1
COMMON/A2/APAZ,APEL.ILLUM,FREQ,THETA,IPDO,IPLL,RPDO,RFW1
COMMON/AA2/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
COMMON/AA2/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
CDMMON/A3/NRCT1,NARA1,NBLKI,NSAR,USUK,UDAZ, UIEL
CDMMON/A3/NRCT1,NARA1,NBLKI,NSAR,USUK,UDAZ, UIEL
COMMON/A4/AZS,ELS,AZ,EL,PI,CONV,RSQ,B,THAZ,THEL,EEL,EAZ,L,TIFL
COMMON/A4/AZS,ELS,AZ,EL,PI,CONV,RSQ,B,THAZ,THEL,EEL,EAZ,L,TIFL
COMMON/AS/NF,NFIR,D2,ARAD,ADIS,NFEF,NARA,NRCT,NANT ,NBLK, IBLK
COMMON/AS/NF,NFIR,D2,ARAD,ADIS,NFEF,NARA,NRCT,NANT ,NBLK, IBLK
COMMON/AA5/PY,PZ,DEL
COMMON/AA5/PY,PZ,DEL
PI=3.1415927
PI=3.1415927
CONU=PI/180.
CONU=PI/180.
AZS=0.
AZS=0.
ELS=0.
ELS=0.
NANT=0
NANT=0
PRINT*,"RAY(1) OR ANTENNA PATTERN(2)"
PRINT*,"RAY(1) OR ANTENNA PATTERN(2)"
READ(5,京)NF
READ(5,京)NF
PRINTH,"ENTER:LENGTH AND DIAMETER OF RADOME(IN.):
PRINTH,"ENTER:LENGTH AND DIAMETER OF RADOME(IN.):
READ(5,*)L,D
READ(5,*)L,D
D2xD/2.
D2xD/2.
R=(L*L-D2*D2)/D
R=(L*L-D2*D2)/D
R=B+D2
R=B+D2
RSQ=R*K
RSQ=R*K
PRINT*,"ENTER ANTENNA DIAMETER"
PRINT*,"ENTER ANTENNA DIAMETER"
FEAI(5;*)AMIA
FEAI(5;*)AMIA
ARAD=ALIA/2.
ARAD=ALIA/2.
PRINT*;"ENTER:AFERTURE ILLUMINATION FUNCTION"
PRINT*;"ENTER:AFERTURE ILLUMINATION FUNCTION"
PRINT*": 1 xUNIFORM ILLUMINATION "
PRINT*": 1 xUNIFORM ILLUMINATION "
PRINT*": 2=COSINE ILLUMINATION *
PRINT*": 2=COSINE ILLUMINATION *
PRINT*;" 3=TARLE *
PRINT*;" 3=TARLE *
READ(5,*)ILLUM
READ(5,*)ILLUM
PRINT*,"ANTENNA NPOL. AZ,EL"
PRINT*,"ANTENNA NPOL. AZ,EL"
READ(5,%)AFAZ,APEL
READ(5,%)AFAZ,APEL
FRRINT*,"ENTER:RAIOME TIF' IIAMETER"
FRRINT*,"ENTER:RAIOME TIF' IIAMETER"
REAII(5,*)TIFI
REAII(5,*)TIFI
TIFL=L-SQRT(RSQ-(B+TIPU/2.)*(E+TIFI/2.))
TIFL=L-SQRT(RSQ-(B+TIPU/2.)*(E+TIFI/2.))
PRINT*, "ENTER © OF PTS PER SILE (EUEN)"
PRINT*, "ENTER © OF PTS PER SILE (EUEN)"
REAII(5,*)NSAR
REAII(5,*)NSAR
IF(ILLUM.EO.1) GO TO 78
IF(ILLUM.EO.1) GO TO 78
FRINT*, "INCLUDE A-R-A REFL. Y(1) N(0)?"
FRINT*, "INCLUDE A-R-A REFL. Y(1) N(0)?"
REAI(5,*)NAKA
REAI(5,*)NAKA
NAKA1 =NARA
NAKA1 =NARA
PRINT*,"INCLUDE WALL REFL. Y(1) N(0)?"
PRINT*,"INCLUDE WALL REFL. Y(1) N(0)?"
REAI(5,*)NFCT
REAI(5,*)NFCT
NRCT1=NRCT
NRCT1=NRCT
PRINT*,"INCLUHE BLKHEAII REFL. Y(1) N(O)?*
PRINT*,"INCLUHE BLKHEAII REFL. Y(1) N(O)?*
READ(5,*)NELK
READ(5,*)NELK
NBLK1=NBLK
NBLK1=NBLK
IF(NFLKN.EO.O) GO TD 8O
IF(NFLKN.EO.O) GO TD 8O
PRINT*,"DE'S HOWN FOR RLKHEAI"
PRINT*,"DE'S HOWN FOR RLKHEAI"
READ(5,*)BKDR
READ(5,*)BKDR
BKIE=10.**(BKDB/20.)
BKIE=10.**(BKDB/20.)
80
PRINT*;"DISTANCE TO ANTENNA*
PRINT*;"DISTANCE TO ANTENNA*
READ(5,京)DEL
READ(5,京)DEL
PRINT*,"EAZ,EEL"
PRINT*,"EAZ,EEL"
READ(5,*)EAZ,EEL
READ(5,*)EAZ,EEL
PRINT*,"THAZ,THEL"
PRINT*,"THAZ,THEL"
REAI(5,*)THAZ,THEL
REAI(5,*)THAZ,THEL
THAZ =THAZ*CONU
THAZ =THAZ*CONU
THEL=THEL*CONU

```
THEL=THEL*CONU
```

```
    PRINT*,"ENTER FREQ (BHZ)"
    READ(5;*)FREO
    NLAY=1
    FRINT*,"ENTER:DIELECTRIC CONST.: LOSS TANGENT"
    READ(5,*)ER(1),LTAN(1)
    IF(NF.EO.2)GO TO 109
    NREF=1
    AZS=1.
    ELS=0.
    CALL ARRAY
    VAZ=UDAZ/USUM
    AZS=0.
    ELS=1.
    CALL ARRAY
    UEL=UNEL/USUM
    NREF=0
    ELS=0.
    EL SCANNER
    AZ=0.
    nO 24 I=1.30
    EL=1.*I
    PRINT*,"EL",EL
    CALL ARRAY
    UT=17.45* (UIIEL/USUM)/VEL
    FRINT*,"ESE*.VT
    CONTINUE
    FRINT*,' '
    EL=0.
    10 25 I=1,30
    AZ=1.*I
    PRINT*,"AZ",AZ
    CALL ARFAY
    UT=17.45*(UDAZ/USUM)/UAZ
    FRINT*,"BSE*,UT
    CDNTINUE
    STOF'
C ANTENNA PATTERNS
109 FKINT*,"ENTER DIR LOOKED AZ,EL"
    REALI(5,*)AZ,EL
    FRINT*,"ENTER LOWER LIMIT,UPFER LIMIT,INC"
    PRINT*,"FOR AZ SCAN'
    FEAD(5,*)LLAZ,LUAZ , IAZ
    FRINT*,"FOK EL SCAN*
    READ(5,*)LLEL,LUEL,IEL
    NREF=0
    CALL ARRAY
    RSUM=USUM
    NANT=1
    II=LUAZ+IAZ-LLAZ
    I2=LUEL+IEL-LLEL
    DO 106 I=I,II,IAZ
    AZS=(I-1+LLAZ)*1.
    DO 106 IE=1,I2,IEL
    ELS=(IE-1+LLEL)*)
    CALL ARRAY
    H3=20.*ALOG10(USUM/RSUM)
    H1=AZ+AZS
    H2=EL+ELS
    PRINT*,H1,H2,H3
    STOP
```

120	END
121	SUBROUTINE ARRAY
122	COMMON/A2/APAZ, APEL, ILLUM,FREQ, THETA,IPDO, IPD1,RFDO,RFD1
123	COMMON/AA2/TRANO,TKAN1, BKDB,CPHI,SPHI,THK (5)
124	COMMON/A3/NRCT1,NARA1,NBLK1,NSAR, USUM, UDAZ, UIIEL
125	COMMON/A4/AZS, ELS, AZ,EL, PI, CONU,RSQ,E,THAZ,THEL,EEL, EAZ,L,TIFL
126	COMMON/AS/NF, NF IR, D2, ARAD, ADIS, NREF,NARA, NRCT, NANT, NBLK, DBLK
127	COMMON/AAS/PY,PZ,DEL
128	COMMON/AG/URSUM, UI SUM, URDEL, UIDEL, URDAZ,VIDAZ, BKPS
129	COMMON/C1/POS(3),K(3),CAN,SAN,RM,PSN(3),S,C(3),NSKP
130	COMMON/C2/CAZ, SAZ, CEL, SEL
131	CEMMOM/AR/RAZ, IAZ, REL, IEL-E91,P91,E92,P92,Nt3),P7
132	COMMON/F1/T, COSF
133	FEAL IAZ,IEL,II,I2,N(3),K.L
134	$N R C T=0$
135	URSUM=0.
136	UISUM=0.
137	URDEL $=0$.
138	UIDEL $=0$.
139	$U F I A R=0$.
140	$U I I I A Z=0$.
141	NFIR=1
142	1026 N1=1,NSAR
143	IO 26 N2=1,NSAR
144	NARA $=0$
145	NELK $=0$
146	NSKP=0
147	FY= (ARAI/NSAK)* (2*N2-NSAF-1)
148	$P Z=(A R A I / N S A R) *(2 * N 1-N S A R-1)$
149	AIIIS = SQRT (FY*F'Y+FZ*FZ)
150	IF (ALIS.GT.ARAII) GO TO 26
151	CALL RAY
152	IF (NREF.EQ.1) GO TO 26
153	IF (FOS (2)**2+POS (3)**2.LT. II2*D2*.01) GO TO 107
154	IF (NAFA1.EQ.0) GO TO 107
155	NARA=NARA1
156	F'Y1=PY
157	$F \cdot \mathrm{C}=\mathrm{F} \cdot \mathrm{Z}$
158	E91-E91*(1.-TRANO)* (1.-COSF)
159	F'91-F'91+RFDO
160	E92=E92* (1.-TRAN1)* (1.-COSF)
161	F.92=F.92+RFM1
162	$\mathrm{F} 1=\operatorname{COS}(\mathrm{F} 91)$ *E91
163	I $1=$ SIN(F91)*E91
164	R2=COS (P92)*E92
165	I2=SIN(F92)*E92
166	F'AZ $=$ CFHI*R1 + SF'HI*R2
167	I AZ $=$ CFHI*I $1+$ SPHI*I2
. 168	REL = CFHI*R2-SPHI*R1
169	IEL=CFHI*I2-SPHI*I
170	F7=T*.531976*FREQ
171	CALL BNC (K,N)
172	T=-FOOS(1)/C(1)
173	T=(POS (2) +T*C(2))**2+(POS(3) + T*
174	IF (T,LT, D2*LI2) GO TO 107
175	CALL MRF (.01*D2,2.*D2,C)
176	P7=P7+T*.531976*FREQ
177	Z11玉K(1)
178	Z12=K(2)
179	Z13=K(3)

```
    K(1)=C(1)
    K(2)=C(2)
    K(3)=C(3)
    CALL RAY
    K(1)=Z11
    K(2)=Z12
    K(3)=Z13
    PY=PY1
    PZ=PZ1
    NARA=0
107 NBLK=NBLK1
    IF(NELK.EQ,O.OR.K(1),EQ.1.) GO TO 26
    POS(1)=-CAZ*SEL*FYYSAZ*PZ+DEL
    POS(2)=CEL*PY
    PQS(Z)=SEL*SAZ*PY+CAZ*PZ
    S1=POS(1)/K(1)
    FOS(1)=0.
    FOS(2)=POS(2)+51*K(2)
    POS(3)=POS(3)+51%K(3)
    IF(SQRT(FOS(2)*FOS(2)+POS(3)*FOS(3)).GT.D2) GO TO 26
    C(1)=K(1)
    C(2)=K(2)
    C(3)=K(3)
    NSKF=2
    CALL RAY
    DRLK=SGFT((FSSN(1)-DEL)*(PSN(1)-DEL)+PSN(2)*FSN(2)+PSN(3)*FSN(3))
    IF(DRLK.LT.ARAD)GO TO 26
    BKPS=(S1+5)*FFEQ*.531976
    NSK'P=0
    CALL RAY
    CONTINUE
    NSKP=0
    NELK=0
    NFCT=NRCT1
    IF(NRCT.EG.O.OR.NREF.EQ.1) GO TO 40
    RM=K(1)/SQRT(K(3)*K(3)+K(2)*K(2))
    TEMF=(L-DEL)/D2
    IF(RM.GT.TEMP) GO TO 40
    RADM=(L-DEL)/RM
    ANG=SIGN(PI/2.,-K(2))
    IF(K(3),NE,0.) ANG=ATAN2(-K(2),-K(3))
    NY=INT(D2*NSAR/(2.*ARAD)+.25)*2
    NZ=INT (RAIIM*NSAR/(4.*ARAD)+.25)*2
    IF(NZ.ER.O) GO TO 40
    IF(NY,LT.2) NY=2
    IF(NZ.LT.2) NZ=2
    IO 30 N1=1,NY
    DO 30 N2=1,NZ
    NRCT=1
    PY=(2*N1-NY-1)*D2/NY
    FZ=(2*N2-1)*FAIMM/(2.*NZ)
    AIIIS=SGKT (PY*PY+PZ*PZ)
    IF(AIIS.LT.D2) GO TO 30
    IIS=(RADM-PZ)*RM
    IF(ARS(PY),GT + SQRT(FSSG-(L-DIS)*(L-DIS))-B) GO TO 30
    CAN=COS(ANG)
    SAN=SIN(ANG)
    POS(1)=DEL
    POS(3)=CAN*PZ-SAN*FY
    POS(2)=SAN&FZ +CAN*PY
```

240		CALL RAY
241	30	CONTINUE
242	40	CONTINUE
243	C	BSE FINDER
244		USUM=SQRT (URSUM*URSUMTUISUM*UISUM)
245		IF (NF.EQ.2) RETURN
246		IF (NREF.EQ.1) GO TO 27
247		ANSUM = ATAN2(UISUM, URSUM)
248		ANDAZ = ATAN2 (UIDAZ, URDAZ)
249		ANDEL=ATAN2 (UIDEL, URDEL)
250	27	UDAZ $=$ SQRT (URDAZ*URDAZ+UIDAZ*UIDAZ)*SIGN(1..SIN(ANDAZ-ANSUM))
251		UDEL=SURT (URDEL*URDEL+UIDEL*UIDEL)*SIGN(1.,SIN(ANDEL-ANSUM))
252		RETUR'N
253		END
254		SUBROUTINE RAY
255		REAL $\mathrm{K}(3), \mathrm{N}(3), \mathrm{T} 2(3), \mathrm{IA}, \mathrm{IEL}, \mathrm{I} 1,12,13, I P D O, I P D 1, L, P I N T(3)$
256		COMMON/A2/APAZ,APEL,ILLUM,FREQ,THETA,IPDO,IPD1,RPDO,RPD1
257		COMMON/A4/AZS,ELS,AZ,EL,PI,CONU,RSQ,B,THAZ,THEL, EEL, EAZ,L,TIPL
258		COMMON/AA2/TKANO, TRAN1, BKDB, CPHI,SPHI, THK (5)
259		COMMON/A5/NF, NFIR,D2, ARAD, ADI 5 , NREF, NARA, NRCT, NANT, NBLK, DBLK
260		COMMON/AAS/PY,PZ,DEL
261		COMMON/AG/URSUM, UISUM,URDEL, UIDEL, URDAZ, UIDAZ, BKFS
262		COMMON/B1/NLST, AR (4), AI (4), BR(4), BI (4), CR(4), CI (4)
263		COMMON/C1/POS(3),K(3),CAN,SAN,RM-PSN(3),5,C(3)-NSKP
264		COMMON/C2/CAZ,SAZ,CEL,SEL
265		COMMON/AR/RAZ,IAZ,REL,IEL,E91,P91,E92,F92,N(3),F7
266		COMMON/F1/T, COSF
267		IF (NARA, EQ.0) P7=0,
268		IF (NSKF.EQ.2) GO TO 990
269		IF(NARA.EQ.1) GO 7063
270		IF (NBLK.EQ.1) P7=F7+BKPS
271		IF (NFCT.EQ.1.OR.NBLK.EQ.1) GO TO 59
272		IF (NF.NE.2.ANI.NREF.EQ.O) GO TO 18
273		CAZS=COS(AZS*CONU)
274		SAZS=SIN(AZS*CONU)
275		CELS $=$ COS (ELS*CONU)
276		SELS=SIN(ELS*CONU)
277		FSH1=SAZS*FZ-CAZS*SELS*FY
278		PSH2=CELS*FY
279		PSH3=SELS*SAZ*FY+CAZS*F'Z
280		ALF' $=$ ACOS ($($ ARS (FSH2*PY+FSH3*F'Z) /(ADIS*ADIS)-1E-B))
281		F7=SIGN(SIN(ALF)*ALIS*FREQ*.531976,PSH1)
282	18	IF (NREF.EQ.1) GO TO 1000
283		IF(NFIR.EQ.O) GO TO 19
284		NFIR=0
285		$H=(A Z+A Z S) * C O N U$
286		$C A Z=\operatorname{COS}(\mathrm{H})$
287		SAZ=SIN(H)
288		H1=(EL+ELS)*CONU
289		CEL=COS(H1)
290		SEL=SIN(H1)
291		IF (NANT, EQ, 1) GO TO 19
292		K(1)=CAZ*CEL
293		$K(2)=5 E L$
294		K(3) $=-$ SAZ*CEL
295	19	POS(1) =-CAZ*SEL*F'Y+SAZ*F'Z+DEL
296		POS(2) $=$ CEL*FY
297		POS (3) $=$ SEL*SAZ*FY+CAZ*PZ
298	C	MOD REGULA FALSI
299	59	IF (NRCT.EQ.1) GO TO 62

```
    CALL MRF(O.,L+ARAD,K)
```

 CALL MRF(O.,L+ARAD,K)
 GO TO 63
 GO TO 63
 62 CDIS=SQRT(PZ*PZ +RM*RM*PZ*FZZ)
62 CDIS=SQRT(PZ*PZ +RM*RM*PZ*FZZ)
CALL MRF(CDIS,2.*CDIS,K)
CALL MRF(CDIS,2.*CDIS,K)
POS(1)=POS(1)+T*K(1)
POS(1)=POS(1)+T*K(1)
IF(POS(1).GT.L-TIPL) RETURN
IF(POS(1).GT.L-TIPL) RETURN
POS(2)=POS(2)+T*K(2)
POS(2)=POS(2)+T*K(2)
POS(3)=POS(3)+T*K(3)
POS(3)=POS(3)+T*K(3)
N(1)=POS(1)/SQRT(RSQ-PQS(1)*POS(1))
N(1)=POS(1)/SQRT(RSQ-PQS(1)*POS(1))
U=SQRT(1+N(1)*N(1))
U=SQRT(1+N(1)*N(1))
N(1)=N(1)/U
N(1)=N(1)/U
U=U*SQRT(POS(2)*POS(2)+POS(3)*POS(3))
U=U*SQRT(POS(2)*POS(2)+POS(3)*POS(3))
N(2)=POS(2)/U
N(2)=POS(2)/U
N(3)=POS(3)/U
N(3)=POS(3)/U
T2(1)=K(2)*N(3)-K(3)*N(2)
T2(1)=K(2)*N(3)-K(3)*N(2)
T2(2)=K(3)*N(1)-K(1)*N(3)
T2(2)=K(3)*N(1)-K(1)*N(3)
T2(3)=K(1)*N(2)-K(2)*N(1)
T2(3)=K(1)*N(2)-K(2)*N(1)
U=SQRT(T2(1)*T2(1)+T2(2)*T2(2)+T2(3)*T2(3))
U=SQRT(T2(1)*T2(1)+T2(2)*T2(2)+T2(3)*T2(3))
T2(1)=T2(1)/U
T2(1)=T2(1)/U
T2(2)=T2(2)/U
T2(2)=T2(2)/U
T2(3)=T2(3)/U
T2(3)=T2(3)/U
THETA=ASIN(AHS(U))
THETA=ASIN(AHS(U))
PHI=SIGN(ACOS(T2(1)*SAZ+T2(3)*CAZ),T2(2))
PHI=SIGN(ACOS(T2(1)*SAZ+T2(3)*CAZ),T2(2))
CFHI=COS(PHI)
CFHI=COS(PHI)
SFHI=SIN(PHI)
SFHI=SIN(PHI)
IF(NRCT.EQ.2.OR.NARA.EQ.1) GO TO 23
IF(NRCT.EQ.2.OR.NARA.EQ.1) GO TO 23
RAZ=COS(THAZ)*EAZ
RAZ=COS(THAZ)*EAZ
IAZ=SIN(THAZ)*EAZ
IAZ=SIN(THAZ)*EAZ
REL=COS(THEL)*EEL
REL=COS(THEL)*EEL
IEL=SIN(THEL)*EEL
IEL=SIN(THEL)*EEL
23 F'3=CF'HI*RAZ+SF.HI*REL
23 F'3=CF'HI*RAZ+SF.HI*REL
I 3=CFHI*IAZ+SFHI*IEL
I 3=CFHI*IAZ+SFHI*IEL
E91=SaKT(F3*R3+I3*I3)
E91=SaKT(F3*R3+I3*I3)
F91=ATAN2(I3-R3)
F91=ATAN2(I3-R3)
FJ=CFHI*REL-SFHI*RAZ
FJ=CFHI*REL-SFHI*RAZ
I3=CFHI*IEL-SFHI*IAZ
I3=CFHI*IEL-SFHI*IAZ
E92=SQRT(R3*R3+I3*I3)
E92=SQRT(R3*R3+I3*I3)
F'92=ATAN2(I3,R3)
F'92=ATAN2(I3,R3)
AIID EFFECTS OF RADOME
AIID EFFECTS OF RADOME
IF(NRCT.NE.2.AND.NARA.NE.1) GO TO }99
IF(NRCT.NE.2.AND.NARA.NE.1) GO TO }99
CALL THIC(FOS,THK)
CALL THIC(FOS,THK)
CALL WALL
CALL WALL
E91=E91*(1.-TRANO)/K(1)
E91=E91*(1.-TRANO)/K(1)
F'91=P91 +RP10
F'91=P91 +RP10
E92=E92*(1.-TRAN1)/K(1)
E92=E92*(1.-TRAN1)/K(1)
P92=F:92+RFD1
P92=F:92+RFD1
CALL BNC(K,N)
CALL BNC(K,N)
YM=SEL/(CEL*CAZ)
YM=SEL/(CEL*CAZ)
ZM=SAZ/CAZ
ZM=SAZ/CAZ
S=MEL+FOS(3)*ZM-POS(2)*YM-POS(1)
S=MEL+FOS(3)*ZM-POS(2)*YM-POS(1)
S=S/(C(1)+C(2)*YM-C(3)*ZM)
S=S/(C(1)+C(2)*YM-C(3)*ZM)
FSN(1)=FOS(1)+S*C(1)
FSN(1)=FOS(1)+S*C(1)
FSN(2)=POS(2)+S*C(2)
FSN(2)=POS(2)+S*C(2)
FSN(3)=FOS(3)+S*C(3)
FSN(3)=FOS(3)+S*C(3)
IF(NSKF.EQ,2) RETURN
IF(NSKF.EQ,2) RETURN
IF(NARA.EQ.1) GO TO 996
IF(NARA.EQ.1) GO TO 996
M1=FINT(1)-POS(1)
M1=FINT(1)-POS(1)
I4=PINT(2)-POS(2)
I4=PINT(2)-POS(2)
D3=PINT(3)-POS(3)
D3=PINT(3)-POS(3)
PHA=SQRT(D1*II1+D4*D4+D3*D3)+5

```
    PHA=SQRT(D1*II1+D4*D4+D3*D3)+5
```

```
996 PY=SEL*SAZ*PSN(3)+CEL*PSN(2)-SEL*CAZ*(PSN(1)-DEL)
    PZ=SAZ*(PSN(1)-DEL)+CAZ*PSN(3)
        ADIS=SQRT(PY*PY+PZ*FZ)
        IF(AIIS.GT.ARAD) RETURN
        IF(NARA.EQ. 1) GO TO }99
        DIS=ABS((PINT(1)-PSN(1))*K(1)+(PINT(2)-FSN(2))*K(2)
    $+(FINT(3)-PSN(3))*K(3))
        PHA=(PHA-DIS)*.531976*FREQ
        P7=P7+PHA
        GO TO 998
997 P7=P7+S
    GO TO 998
999 CALL THIC(POS,THK)
    CALL WALL
    E91=E91*TRANO
    P91=P91+IPDO
    E92=E92*TRAN1
    P92=F92+IFII
998 SPHI=-SPHI
    R1=C0S(F91+P7)*E91
    I1=SIN(P91+F7)*E91
    R2=COS(P92+F'7)*E92
    I2ᄑSIN(F'92+P7)*E92
    IF(NRCT.NE.1) GO TO 1000
    RAZ=CFHI*R1+SFHI*R2
    IAZ=CPHI*I1+SPHI*I2
    REL=CPHI*R2-SFHI*R1
    IEL=CPHI*I2-SFHI*II
    NRCT=2
    - FIINT(1)=FOS(1)
        PINT(2)=POS(2)
        PINT(3)=FOS(3)
        FOS(1)=DEL
        POS(2)=SAN*FZ+CAN*FY
        POS(3)=CAN*F\cdotZ-SAN*PY
        CALL MRF(O.,EDIS,K)
        GO TO 63
        COSF=1.
        IF(NHLK.EQ.1) COSF=COSF*RKIIE
        SINFEL=SIGN(1.,PY)
        SINFAZ=SIGN(1.,FRZ)
        IF(ILLUM.NE.2) GO TO 50
        COSF=COS(1.24507*AIIS/AFAII)*COSF
        SINFAZ=SIN(FI*FZ/ARAD)
        SINFEL=SIN(FII*FY/ARAI)
50 AAZ=1.
        AEL=1.
        IF(NRCT.EQ.O.AND.NARA.EQ.O) GO TO 51
        ZM=SQRT (C(1)*C(1)+C(3)*C(3))*SQRT(1-K(2)*K(2))
        YM=SQRT(C(1)*C(1)+C(2)*C(2))*SQRT(1-K(3)*K(3))
        AAZ=(C(1) *K(1)+C(3)*K(3))/ZM
        AEL=(C(1)*K(1)+C(2)*K(2))/YM
51 IF(NELK.EQ.O) GO TO 55
    AAZ=COS(2.*ACOS(K(1)/SQRT(1.-K(2)*K(2))))
    AEL=COS(2.*ACOS(K(1)/SQRT(1.-K(3)*K(3))))
55 IF(NF.NE.2) GO TO 56
    AAZ=AAZ*CAZS*CAZS*CELS*CELS/SQRT(1.-SELS*SELS)
    AEL=AEL*CAZS*CAZS*CELS*CELS/SQRT(1.-SAZS*SAZS*CELS*CELS)
56 APAZ1 = APAZ*AAZ
    APEL1=APEL*AEL
```

```
420
421
4 2 2
4 2 3
4 2 4
425
426
427
42B
4 2 9
430
4 3 1
4 3 2
4 3 3
4 3 4
4 3 5
4 3 6
4 3 7
43B
4 3 9
440
441
442
443
444
445
446
447
448
4 4 9
450
4 5 1
4 5 2
453
4 5 4
455
456
4 5 7
458
459
460
4 6 1
4 6 2
4 6 3
4 6 4
465
466
4 6 7
4 6 8
IF (NREF,EQ.O) GO TO 52
RSS= (EAZ*COS (THAZ+P7) *APAZ1+EEL*COS (THEL+P7)*APEL1)*COSF ESS=(EAZ*SIN(THAZ+P7)*APAZ1+EEL*SIN(THEL+P7)*APEL1)*COSF GO TO 54
52 RSSm ((CPHI*R1+SPHI*R2) *APAZ1+(CPHI*R2-SPHI*R1) *APEL1) कCOSF ESS= ( (CPHI*I1 + SPHI*I2) *APAZ1 + (CPHI*I2-SPHI*I1) *APEL1) *COSF URSUM \(=\) URSUM + RSS
UISUM=UISUM+ESS
URDEL \(=\) URDEL +RSS*SINFEL
VIDEL =UIDEL +ESS*SINFEL
URDAZ \(=U R D A Z+R S S * S\) INFAZ
UIDAZ = UIDAZ +ESS*SINFAZ
RETURN
ENI
SUBROUTINE MRF (A,B1,K2)
REAL K1(3),K2(3)
COMMON/F1/T,COSF
COMMDN/F2/K1
K1 (3) \(=K 2(3)\)
\(K 1(2)=K 2(2)\)
\(K 1(1)=K 2(1)\)
\(F=F H(A)\)
\(G=F H(E 1)\)
\(\mathrm{H}=\mathrm{A}\)
F2 \(=F\)
H0 \(20 \mathrm{NB}=1,5\)
\(W 1=(G * A-F * B 1) /(G-F)\)
FO=F2
F2=FH(W1)
F1: \(=\mathrm{F}_{2}\)
IF (A,NE,W1) F1=FH(A)
IF (SIGN(1,FF2).EQ.SIGN(1.,F1)) GO TD 21
B1 \(=\boldsymbol{W} 1\)
G=F2
IF(SIGN(1.,F2).EQ.SIGN(1.,FO)) \(F=F / 2\).
GO TO 20
\(A=W 1\)
\(F=F 2\)
IF (SIGN(1.,F2).EQ,SIGN(1, FO)) G=G/2.
\(W=W 1\)
\(r=(G * A-F * E 1) /(G-F)\)
RETURN
ENI
FUNCTION FH(T1)
REAL K.K1 (3), L
COMMON/A4/AZS,ELS,AZ,EL,PI,CONV,RSQ,B,THAZ,THEL,EEL,EAZ,L,TIFL
COMMON/C1/POS(3),K(3),CAN,SAN,RM,PSN(3),S,C(3),NSNP
COMMON/F2/K1
\(X=\operatorname{POS}(1)+T 1\) *K1 (1)
\(Y=P O S(2)+T 1\) *K1 (2)
\(\mathrm{Z}=\mathrm{POS}(3)+\mathrm{T} 1\) *K1 (3)
FH=SQRT(RSQ-X*X)-B-SQRT (Y*Y+Z*Z)
RETURN
END
SUBROUTINE BNC(UK,UN)
DIMENSION UK(3), UN(3)
COMMON/C1/POS (3),K(3),CAN,SAN,RM,PSN(3),S,C(3),NSKF
DOT=2.*(UN(1) \#UK(1)+UN(2)*VK(2)+UN(3)*UK(3))
\(C(1)=V K(1)-D O T ⿻\) (1) (1)
\(C(2)=\) VK (2)-DOT*VN(2)
```

```
4 8 0
4 8 1
4 8 2
483
4 8 4
485
486
4 8 7
488
4 8 9
4 9 0
4 9 1
4 9 2
4 9 3
4 9 4
4 9 5
4 9 6
4 9 7
4 9 8
4 9 9
500
5 0 1
502
503
504
5 0 5
506
507
508
509
510
5 1 1
512
513
514
515
516
517 10
518
519
520
521
522
523
524
525
526
5 2 7
528
529
530
531
532
533
534
53
535
536
537 14
53840
539
```

```
    C(3)=UK(3)-DOT*UN(3)
```

 C(3)=UK(3)-DOT*UN(3)
 RETURN
 RETURN
 END
 END
 SUBROUTINE THIC(POS,THK)
 SUBROUTINE THIC(POS,THK)
 DIMENSION POS(3),THK(5)
 DIMENSION POS(3),THK(5)
 THE=ABS(ATAN(POS(3)/POS(2)))
 THE=ABS(ATAN(POS(3)/POS(2)))
 THK(1)=34,-4,*THE
 THK(1)=34,-4,*THE
 THK(1)=(POS(1)-THK(1))/THK(1)
 THK(1)=(POS(1)-THK(1))/THK(1)
 THK(1)=COS(THK(1)*(.5+ABS((THE-.62B)*.108)))
 THK(1)=COS(THK(1)*(.5+ABS((THE-.62B)*.108)))
 THK(1)=THK(1)*(.282+.010*THE)*2.54
 THK(1)=THK(1)*(.282+.010*THE)*2.54
 RETURN
 RETURN
 END
 END
 SUBROUTINE WALL
 SUBROUTINE WALL
 REAL IPD,IPLO,IPD1,KO,LTAN(5),Z(5),U1(5),U2(5),R(5)
 REAL IPD,IPLO,IPD1,KO,LTAN(5),Z(5),U1(5),U2(5),R(5)
 COMMON/B1/NLST,AR(4),AI(4),BR(4),BI(4),CR(4),CI(4)
 COMMON/B1/NLST,AR(4),AI(4),BR(4),BI(4),CR(4),CI(4)
 COMMON/A1/NLAY,ER(5),LTAN(5)
 COMMON/A1/NLAY,ER(5),LTAN(5)
 COMMON/A2/APAZ,APEL,ILLUM,FREQ,THETA,IPDO,IPD1,RPDO,RFD1
 COMMON/A2/APAZ,APEL,ILLUM,FREQ,THETA,IPDO,IPD1,RPDO,RFD1
 COMMON/AAZ/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
 COMMON/AAZ/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
 NPOL=O
 NPOL=O
 CTH=COS(THETA)
 CTH=COS(THETA)
 STH=SIN(THETA)**2
 STH=SIN(THETA)**2
 KO=0.2094395*FREQ
 KO=0.2094395*FREQ
 MLAY=NLAY+1
 MLAY=NLAY+1
 11
 11
 NLST=0
 NLST=0
 DO 10 I=1,MLAY
 DO 10 I=1,MLAY
 IF(I.NE.(MLAY)) GO TO 12
 IF(I.NE.(MLAY)) GO TO 12
 Z(I)=1.
 Z(I)=1.
 GO TO 13
 GO TO 13
 12-U1(I)=SaRT(ER(I)-STH)
 12-U1(I)=SaRT(ER(I)-STH)
 Z(I)=CTH/U1(I)
 Z(I)=CTH/U1(I)
 U2(I)=THK(I)*KO*LTAN(I)/(2.*U1(I))
 U2(I)=THK(I)*KO*LTAN(I)/(2.*U1(I))
 U1(I)=UI(I)*KO
 U1(I)=UI(I)*KO
 IF(NFOL,EQ,1) Z(I)=1,/(ER(I)*Z(I))
 IF(NFOL,EQ,1) Z(I)=1,/(ER(I)*Z(I))
 IF(I.NE.1) GO TO 13
 IF(I.NE.1) GO TO 13
 R(1)=(Z(1)-1.)/(Z(1)+1.)
 R(1)=(Z(1)-1.)/(Z(1)+1.)
 GO TO 10
 GO TO 10
 K(I)=(Z(I)-Z(I-1))/(Z(I)+Z(I-1))
 K(I)=(Z(I)-Z(I-1))/(Z(I)+Z(I-1))
 CONTINUE
 CONTINUE
 AR(1)=EXP(U2(1))
 AR(1)=EXP(U2(1))
 AR(4)=1,/AR(1)
 AR(4)=1,/AR(1)
 AR(2)=R(1)*AR(4)
 AR(2)=R(1)*AR(4)
 AF(3)=R(1)*AR(1)
 AF(3)=R(1)*AR(1)
 AI(1)=U1(1)*THK(1)
 AI(1)=U1(1)*THK(1)
 AI(2)=-AI(1)
 AI(2)=-AI(1)
 AI(3)=AI(1)
 AI(3)=AI(1)
 AI(4)=AI(2)
 AI(4)=AI(2)
 DO 14 J=2,NLAY
 DO 14 J=2,NLAY
 IF(NLAY,EQ.1) GO TO 40
 IF(NLAY,EQ.1) GO TO 40
 BR(1)=EXP(U2(J))
 BR(1)=EXP(U2(J))
 BR(4)=1./BR(1)
 BR(4)=1./BR(1)
 BR(2)=R(J)*ER(4)
 BR(2)=R(J)*ER(4)
 BR(3)=R(J)*BR(1)
 BR(3)=R(J)*BR(1)
 BI(1)=U1(J)*THK(J)
 BI(1)=U1(J)*THK(J)
 BI(2)=-BI(1)
 BI(2)=-BI(1)
 BI(3)=BI(1)
 BI(3)=BI(1)
 BI(4)=BI(2)
 BI(4)=BI(2)
 CALL MULT
 CALL MULT
 CONTINUE
 CONTINUE
 CONTINUE
 CONTINUE
 BR(1)=1.
    ```
    BR(1)=1.
```

```
540
5 4 1
542
543
544
545
546
5 4 7
548
549
5 5 0
5 5 1
552
553
554
555
556
557
558
559
560
561
562
563
564
565
56
5 6 7
568
569
5 7 0
5 7 1
572
573
574
575
576
577
578
579
580
581
582
583
584
585 33
586
587
```

```
    BR(4)=1.
```

 BR(4)=1.
 BR(2)=R(MLAY)
 BR(2)=R(MLAY)
 BR(3)=BR(2)
 BR(3)=BR(2)
 BI(1)=0.
 BI(1)=0.
 BI(2)=0.
 BI(2)=0.
 BI(3)=0.
 BI(3)=0.
 BI(4)=0.
 BI(4)=0.
 NLST=1
 NLST=1
 CALL MULT
 CALL MULT
 TRAN=1.
 TRAN=1.
 DO 15 K=1,MLAY
 DO 15 K=1,MLAY
 TRAN=TRAN*(1.-R(K))
 TRAN=TRAN*(1.-R(K))
 TRAN=TRAN/CR(1)
 TRAN=TRAN/CR(1)
 SUM=0.
 SUM=0.
 DO 16 L=1,NLAY
 DO 16 L=1,NLAY
 SUM=SUM+THK(L)
 SUM=SUM+THK(L)
 IPD=CI(1)-CTH*KO*SUM
 IPD=CI(1)-CTH*KO*SUM
 IF(NFOL.EQ.O) GO TO 17
 IF(NFOL.EQ.O) GO TO 17
 TRAN1=TRAN
 TRAN1=TRAN
 IPD1=IPD
 IPD1=IPD
 RPD1=CI(1)-CI(3)
 RPD1=CI(1)-CI(3)
 RETURN
 RETURN
 TRANO=TRAN
 TRANO=TRAN
 IPDO=IPD
 IPDO=IPD
 RPDO=CI(1)-CI(3)
 RPDO=CI(1)-CI(3)
 NPOL=1
 NPOL=1
 GO TO 11
 GO TO 11
 END
 END
 - SURROUTINE MULT
 - SURROUTINE MULT
 COMMON/B1/NLST,AR(4),AI(4),BR(4),BI(4),CR(4),CI(4)
 COMMON/B1/NLST,AR(4),AI(4),BR(4),BI(4),CR(4),CI(4)
 COMFLEX MATKIX MULTIPLICATION
 COMFLEX MATKIX MULTIPLICATION
 -DO 32 N1=1,3,2
 -DO 32 N1=1,3,2
 mo 32 N2=1,2
 mo 32 N2=1,2
 IF(NLST.EQ.1.AND.N1-N2.EQ.1) RETURN
 IF(NLST.EQ.1.AND.N1-N2.EQ.1) RETURN
 R1=AR(N1)&BR(N2)
 R1=AR(N1)&BR(N2)
 R2=AR(N1+1)*ER(N2+2)
 R2=AR(N1+1)*ER(N2+2)
 E1=AI(N1)+BI(N2)
 E1=AI(N1)+BI(N2)
 E2=AI(N1+1)+BI(N2+2)
 E2=AI(N1+1)+BI(N2+2)
 R3=R1*COS(E1)+R2*COS(E2)
 R3=R1*COS(E1)+R2*COS(E2)
 E3=R1*SIN(E1)+R2*SIN(E2)
 E3=R1*SIN(E1)+R2*SIN(E2)
 NSET=N2+N1-1
 NSET=N2+N1-1
 CR(NSET)=SQRT(R3*R3+E3*E3)
 CR(NSET)=SQRT(R3*R3+E3*E3)
 CI(NSET)=ATAN2(E3,R3)
 CI(NSET)=ATAN2(E3,R3)
 DO 33 I=1,4
 DO 33 I=1,4
 AR(I)=CR(I)
 AR(I)=CR(I)
 33 AI(I)=CI(I)
33 AI(I)=CI(I)
RETURN
RETURN
END

```
    END
```

APPENDIX B.

COMPUTED DATA

The purpose of this Appendix is to document additional data which has been computed during the analysis method validation.

The data presented within the main text of this report has been run for a dielectric constant of 5.0 , which is believed to be that of the measured radome article. An increase in dielectric constant to 5.1 resulted in the data shown in Figures $B-1$ and $B-2$. Here, there was poorer agreement between theoretical and measured compared to the data in the report.

Secondly, the variation of the distance of the antenna from the base of the radome were tried in an effort to get the crossing points in the measured and computed azimuth scans to match. An antenna to base distance of 17 inches made this agreement fairly good, as seen in Figures $\mathrm{B}-3$ and $\mathrm{B}-4$.

Figure B-l. Azimuth Scan with Dielectric Constant Changed from 5.0 to 5.1

BSE ELevation (Millradians)

Figure B-2. Elevation Scan with Dielectric Constant Changed from 5.0 to 5.1

Figure B-3. Azimuth Scan with Antenna's Distance from Base Changed from 10.7 to 17 inches

Figure B-4. Elevation Scan with Antenna's Distance from Base Changed from 10.7 to 17 inches.

APPENDIX C

ROTATIONAL MATRIX

The rotational matrix $[M]$ is different for $A Z / E L$ or EL/AZ gimbal configurations. Specifically, for an AZ/EL gimbal

$$
[M]=\left[\begin{array}{ccccc}
\cos \theta_{\mathrm{EL}} & \cos \theta_{A Z} & -\sin \theta_{\mathrm{EL}} & \cos \theta_{\mathrm{EL}} & \sin \theta_{\mathrm{AZ}} \tag{A-1}\\
\sin \theta_{\mathrm{EL}} & \sin \theta_{A Z} & \cos \theta_{\mathrm{EL}} & \sin \theta_{\mathrm{EL}} & \sin \theta_{\mathrm{AZ}} \\
& & 0 & \cos \theta_{\mathrm{AZ}} &
\end{array}\right]
$$

For an EL/AZ gimbal,

$$
[M]=\left[\begin{array}{cccl}
\cos \theta_{E L} & & -\cos \theta_{A Z} & \sin \theta_{E L} \\
\sin \theta_{A Z} \\
\sin \theta_{E L} & & \cos \theta_{E L} & \\
-\sin \theta_{A Z} & \cos \theta_{E L} & \sin \theta_{E L} & \sin \theta_{A Z} \\
\sin ^{2} & \cos ^{\theta}{ }_{A Z}
\end{array}\right] \text { (A-2) }
$$

A unit vector K at the origin in the direction θ is given in terms of the rotational matrices via

$$
K=[M] \quad\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

At a point y_{p}, z_{p} on the antenna face (see Figure $A-1$), a vector $\overline{\mathrm{P}}_{1}$ from the origin to a point on the antenna (in terms of rotated coordinates) is:

$$
P_{1}=[M]\left[\begin{array}{c}
0 \tag{A-4}\\
y_{p} \\
z_{p}
\end{array}\right]
$$

Finally, this is shifted by the distance ($x=$ del) the antenna is offset into the radome.

$$
P_{2}=P_{1}+\left[\begin{array}{l}
\mathrm{de} 1 \\
0 \\
0
\end{array}\right]
$$

