GEORGIA INSTITUTE OF TECHNOLOGY		OFFICE OF CONTRAC	T ADMINISTRATION
PROJECT	ADMINISTRATION DAT	A SHEET	
- · · · · · · · · · · · · · · · · · · ·	x.		/ISION NO
Project No. <u>A-3195</u>			2/82
Project Director:			5D
Sponsor: U. 'S. Army Missile Co	mmand; Redstone Arsen	al, AL 35898	
Type Agreement: Delivery Order No			
Award Period: From <u>3/12/82</u> To	9/30/82 (Perfo		
Sponsor Amount: \$30,173.90			Contracted through:
Cost Sharing: None			GTRI/@##
Title: Radome Computer Analysis	Methodology RDF-43		
ADMINISTRATIVE DATA	OCA ContactLin	da H. Bowman x48	20
1) Sponsor Technical Contact:	2) Spons	or Admin/Contractual M	atters:
Dr. M. M. Hallum	Mr.	Thomas A. Bryant	
Systems Simulation & Developm	ent Directorate ONR	Resident Rep.	
U. S. Army Missile Command	GIT		
Attn: DRSMI-RDF	207	O'Keefe Bldg	
Redstone Arsenal, AL 35898	At1	anta, GA 30332	
205-876-4141			
Defense Priority Rating:	S Reg. 1 Security	Classification:unc	lassified
RESTRICTIONS			
See Attached government Sup	plemental Information Sheet f	or Additional Requirem	ents.
Travel: Foreign travel must have prior approval	– Contact OCA in each case	. Domestic travel requi	ires sponsor
approval where total will exceed greate	r of \$500 or 125% of approv	ed proposal budget cate	gory.
Equipment: Title vests with government;	; except that items c	osting less than	\$1,000 vests
with GIT if prior approval to	purchase is obtained	from the Contrac	ting Officer.
	、 		
COMMENTS:			2526272820
			C ARTINE S
			E E CHART
			Researching of
,,,,,,			24 ME1314 012
COPIES TO:			
	h Security Services	EES Public Relations	(2)
· · · · · · · · · · · · · · · · · · ·	Coordinator (OCA)	Computer Input	
Accounting Legal So Procurement/EES Supply Services Library	ervices (OCA)	Project File Other	
FORM OCA 4:781			

GEORGIA INSTITUTE OF TECHNOLOGY

.

SPONSORED PROJECT TERMINATION SHEET

19					
58-32			Date	9/30/82	
り Project Title:	Radome Compu	ter Analysis Method	ology RDI	F-43	
Project No:	A-3195		,	×	
Project Directo	Dr. D. J.	Kozakoff			
Sponsor:	S Army Missil	e Command; Redstone	Arsenal	, AL	
Effective Term	ination Date:	9/30/82			•
Clearance of A	ccounting Charg	pes:11/30/82			
	Closeout Actio			·	
		×			
x	Final Invoice	and Closing Occuments	x		
	Final Fiscal F	Report			
x	Final Report	of Inventions			
x	Govt. Propert	y Inventory & Related	Certificate		
	Classified Mat	erial Certificate			
	Other			-	

Assigned to: _____

EML (School/Laboratory)

COPIES TO:

Administrative Coordinator Research Property Management Accounting Procurement/EES Supply Services

.

Research Security Services **Reports Coordinator (OCA)** Legal Services (OCA) Library

EES Public Relations (2) Computer Input Project File Other ____

EODM

Technical Report #1 and Cost and Performance Report #1 A-3195

Report Period 1 March 1982 through 31 March 1982

RADOME COMPUTER ANALYSIS METHODOLOGY

D. J. Kozakoff

Contract No. DAAH01-81-D-A003 Delivery Order 0042 EES Project A-3195

Effective Date: 3/12/82 Expiration Date: 9/30/82

Prepared for

U.S. Army Missile Command Redstone Arsenal, AL 35898 Attn: DRSMI-RDF

Prepared by

Engineering Experiment Station Georgia Institute of Technology Atlanta, GA 30332

WORK PERFORMED IN THIS REPORTING PERIOD

This project was initiated in this reporting period. The only work accomplished were telecons and planning sessions with the contract technical monitor.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD

None

WORK PLANNED FOR THE NEXT REPORTING PERIOD

A project kick-off meeting in Atlanta will be held to quantify the goals and plan of attack in accomplishing this study.

L95 Cost Information

The following charges have been incurred against the contract during period 12 March through 31 March, 1982

	Expended	Encumbered
Personal Services (PS)	\$240.75	
Materials and Supplies	0	
Travel	0	-NONE-
Overhead (@ 55% of PS)	147.76	
Retirement (@ 11.59% of PS)	27.90	
TOTAL	\$416.41	

The breakdown of personal services is as follows:

	Dollars	Approximate Man Hours
Principal Research Scientists/Engineers	0	0
Senior Research Scientists/Engineers	240.75	11
Research Scientists II/Engineers II	0	. 0
Research Scientists I/Engineers I	0	0
Technicians/Draftsmen	0	0
Students	0	0
Secretarial/Clerical/Other	0	0
TOTAL	\$240.75	11

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance
Personal Services (PS)	\$11,620.22	\$240.75	\$11,379.47
Materials and Supplies	600.00	0	600.00
Travel and Shipping	900.00	0	900.00
Computer	5,000.00	0	5,000.00
Overhead	10,706.90	147.76	10,559.14
Retirement	1,346.78	27.90	1,318.88
Bixonumbrenzeci x	\$30,173.90	\$416.41	\$29,757.49

FUNDING

Based on present full funding, the funding and equivalent man hours are sufficient to complete the task. Approximately 1.4% of the proposed task has been completed.

-A-3195

A-3195

Technical Report #2 and Cost and Performance Report #2

.

Т.

Report Period

1 April through 31 July 1982

RADOME COMPUTER ANALYSIS METHODOLOGY

D. J. Kozakoff

Contract No. DAAH01-81-D-A003 Delivery Order 0042 EES Project A-3195

Effective Date: 3/12/82 Expiration Date: 9/30/82

Prepared for

U.S. Army Missile Command Redstone Arsenal, AL 35898 Attn: DRSMI-RDF

Prepared by

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332

WORK PERFORMED IN THIS REPORTING PERIOD

Complete radome modeling was accomplished to assess the affects of backwall and bulkhead reflections and antenna scattered energy. In addition, the flat panel wall transmission subroutine was scrutinized via comparison of measured and predicted data. The results show the predictions are larger insertion phase values than measured at MICOM.

Various trips were made to interface with the MICOM Technical Contract Monitor.

PROBLEMS ENCOUNTERED IN THIS REPORTING PERIOD

None.

.

WORK PLANNED FOR NEXT REPORTING PERIOD

The final written report should be completed and a rough draft will be delivered to MICOM for review.

Cost Information

The following charges have been incurred against the contract during period July 1 - July 31, 1982

	Expended	Encumbered
Personal Services (PS)	1,077.09	-0-
Materials and Supplies	4.50	-0-
Travel	202.10	-0-
Overhead (@ 73% of PS)	757.87	-0-
Retirement (@ 11.11% of PS)	190.50	-0-
TOTAL	2,232.06	-0-

The breakdown of personal services is as follows:

	Dollars	Approximate <u>Man Hours</u>
Principal Research Scientists/Engineers		
Senior Research Scientists/Engineers	882.75	39
Research Scientists II/Engineers II		
Research Scientists I/Engineers I		
Technicians/Draftsmen		
Students	194.34	28
Secretarial/Clerical/Other		
TOTAL	1,077.09	67

Approvimato

The current financial status of the contract is as follows:

	Budget As Proposed	Expended	Free Balance	
Personal Services (PS)	11,620.22	13,084.89	(1,464.67)	
Materials and Supplies	600.00	176.48	432.52	
Travel and Shipping	900.00	514.03	385.97	
Computer	5,000.00	267.54	4,732.46	
Overhead Fringe Benefits	10,706.90 1,346.78	8,344.50 1,356.58	2,367.40 (9.80)	
Encumbered	-0-	-0-	-0-	
FUNDING	30,173.90	23,744.02	6,429.88	

Based on present full funding, the funding and equivalent man hours are sufficient to complete the task. Approximately 79% of the proposed task has been completed.

A-3195

FINAL TECHNICAL REPORT

Project A-3195

RADOME COMPUTER ANALYSIS METHODOLOGY

September 1982

D. J. Kozakoff and D. Bagwell

Contract No. DAAH01-81-D-A003 Delivery Order 0042

Prepared for

U. S. ARMY MISSILE COMMAND Redstone Arsenal, AL 35898 Attn: DRSMI-RDF

Prepared by

Engineering Experiment Station Georgia Institute of Technology Atlanta, Georgia 30332 UNCLASSIFIED

SECURITY CLASSIF: (. ATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
		·
4. TITLE (and Sublitle)	0CV	5. TYPE OF REPORT & PERIOD COVERED
RADOME COMPUTER ANALYSIS METHODOL	0G1	Final Report 3/12 - 9/30/82
)		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(S)
D. J. Kozakoff		DAAH01-81-D-A003
D. Bagwell		Delivery Order 0042
9. PERFORMING ORGANIZATION NAME AND ADDRESS		
Engineering Experiment Station		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Georgia Institute of Technology		
Atlanta, Georgia 30332		
11. CONTROLLING OFFICE NAME AND ADDRESS U. S. Army Missile Command		12. REPORT DATE September 1982
Redstone Arsenal, Alabama 35898		13. NUMBER OF PAGES
Project Monitor: K. Letson		
14. MONITORING AGENCY NAME & ADDRESS(If dilleren	t from Controlling Office)	15. SECURITY CLASS. (of this report)
		UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)		
17. DISTRIBUTION STATEMENT (of the abstract entered in	in Block 20, if different from	n Report)
		ained in this document are
those of the authors and should no the official policies, either exp		-
Command.		
19. KEY WORDS (Continue on reverse side if necessary and		
Radome Analysis, Computer Methodo		Frrors.
	108, 2010018110	
· ·		
20 ABSTRACT (Continue on reverse side if necessary and		
This document contains an assessm backward ray trace computer code		-
		nead reflections. Predictions
are compared to measured data for	a test case.	
		i

DD 1 JAN 73 1473 EDITION OF 1 NOV 55 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

TABLE OF CONTENTS

Section	Title	Page
1.0	INTRODUCTION	1
2.0	OVERVIEW OF SELECTED RADOME ANALYSIS METHOD	4
3.0	DISCUSSION OF ANALYSIS ERRORS	7
3.1	General	7
3.2	Sidewall Reflections	9
3.3	Bulkhead Reflections	12
3.4	Antenna Scattered Energy	14
4.0	COMPARISON OF THEORETICAL AND MEASURED	17
4.1	RADOME DATA	17
	Radome Description	17
4.2	Comparison of Measured and Predicted Data	2 2
5.0	EVALUATION OF WALL TRANSMISSION MODEL	31
5.1	General	31
5.2	Comparison of Measured and Predicted Data	

6.0	REFERENCES
Appendix A	PROGRAM LISTING, 40
Appendix B	COMPUTED DATA 51
Appendix C	ROTATIONAL MATRIX

1.0 INTRODUCTION

This document summarizes a study with an objective of quantifying prediction errors in various computerized radome analyses techniques. In an earlier study [1], the various analysis methods including forward and backward ray trace, surface integration and plane wave spectra were investigated. It was determined that for antennas greater than approximately five wavelengths in diameter, the three-dimensional backward ray trace offered potential for superior accuracy while maintaining reasonable operating cost relative to the surface integration or plane wave spectra approaches which could cost up to \$10 per data point in computer cost (i.e. one look angle and one frequency).

Of the computer code survey completed in the first study, the three most viable which were selected for study were the Georgia Tech threedimensional backward ray trace, and RADEP3 codes and the Auburn University code. All these are backward ray trace formulations; a comparative summary of modeling features are given in Table 1-1. The tradeoffs in analysis method performance results appear in Table 1-2.

In this study, the preferred Georgia Tech code was modified in detail to model additional error contributors which were believed to be the major error sources between theoretical predictions and actual results. In addition, the wall transmissions subroutine was exercised for an example and compared with actual measurements (performed as part of this program) to determine the validity of the theory. Finally, the program was exercised for a particular radome problem and the results compared to actual measurements to determine if prediction improvement could be obtained with the modeling modifications.

Table 1-1

COMPARISON OF SELECTED COMPUTER CODES

Program	Bulkhead Reflections	Backwall Reflections	Radome Tip Modeling	Radome Wall Taper	Arbitrary Circular Polarization	Circumferential Wall Variations	Antenna Scattering	Multilayer Walls
Georgia Tech	No	No	Yes	Yes	Yes	Yes	No	Yes
Auburn University	No	Yes	Yes	No	No	No	No	Yes
RADEP 3	No	No	Yes	Yes	No	No	No	Yes

Table 1-2

TRADEOFF OF ANALYSIS METHODS

	Operating Cost	BSE Accuracy	Sidelobe Predictor Accuracy	Machine Size Required
Ray Trace Transmit	Low	Good	Poor	Small
Ray Trace Receive	Low	Good	Good	Small
PWS	High	Good	Good	Large
Surface Integration	Extremely High	Excellent	Good	Very Large

2.0 OVERVIEW OF SELECTED RADOME ANALYSIS METHOD

A flow chart of the ray trace program used herein is shown in Figure 2-1. The program interactively asks the user to input the necessary parameters to describe the (tangent ogive) radome, the antenna, and the incoming wave polarization. The program is currently preselected to the principal planes (El = 0 and AZ = 0) from 0 to 30 degrees in increments of 1 degrees. The antenna sample spacing is selected by the user. A ray is then traced outward from each sample point in the direction of the incoming wavefront. The intersection of each ray with the radome is then found by a modified regula falsi root solving method. The normal to the tangent ogive at the intersection is found and used along with the direction of propagation to define the plane of incidence. The electric field is then broken into components perpendicular and parallel to the plane of incidence. The transmission and IPD are then calculated for both of the above cases, the radome wall being assumed to be locally flat at the intercept point. The subroutine that calculates the affect of the wall takes into account multi-layer sandwiches and multiple reflections within the radome wall (see Section 5).

The electric field is then reflected in terms of the original azimuth and elevation directions for numerical integration (summation) at the antenna aperture. Monopulse sum and difference illuminations are used in sequence to allow computation of standard monopulse error voltages and to thus derive a measure of boresight error in both the elevation and azimuth channels. The ray trace technique is illustrated in Figure 2-2.

The specific subroutines that compute the affects of bulkhead, backwall and internal antenna reflections are described in detail in subsequent sections of this report.

Figure 2-1. Program Flow Chart

Figure 2-2. Backward Ray Trace Method.

3.0 DISCUSSION OF ANALYSIS ERRORS

3.1 General

The extent that the sidewall and bulkhead reflections and antenna scattered energy can affect boresight error calculations is highly dependent upon the properties of the radome and the antenna that it encloses. A radome can be theoretically designed so that reflections have negligible affects on the boresight error, but in practice, the reflections usually are large enough to influence the boresight errors.

The effect of bulkhead reflections depend mainly on the backlobe properties of the antenna. The magnitude of rays reflecting off the rear bulkhead plate are approximately the same as those directly striking the antenna. If the antenna is located close to the bulkhead then the area on the bulkhead for rays to reflect and strike the antenna is restricted and the extent of bulkhead reflections decrease.

Generally, bulkhead reflections will not have much affect until the angle of incidence of the incoming rays (with respect to the radome axis) become larger. Our antenna model assumes that the rear pattern is a mirror image of the forward pattern, decreased in magnitude by a user specified number of decibels (generally 20 dB). This should reasonably be a good model for a variety of antennas. In actual applications, positioners and electronic gear may block some of the reflections from reaching the antenna. As the incidence angle of the incoming rays gets much greater than 45 degrees, the bulkhead reflections cannot hit the antenna since they become parallel to the plane of the antenna.

The reflections off the radome side walls is another parameter that can affect boresight errors. The reflectance of a design wall may only be one percent for the electric field (.01% for the power) for a welldesigned radome. In practice, erosion and ablation may change the thickness and heating may change the electrical properties of the wall. Reflectances may then get very large, potentially even being larger than fifty percent. The sidewall reflections strike only a small segment of the antenna. As radome wall reflectances become large, the boresight errors may become very large as a result of this concentration of reflected energy. The size and position of the antenna also has an effect on sidewall reflections.

A limiting incidence angle exists, below which no sidewall reflections can occur (see Section 3.2). As the size of the antenna approaches that of the radome immediately surrounding it, this limiting angle goes to 0. As the size of an antenna increases, the effects of sidewall reflections will increase regardless of incidence angle (as long as the incidence angle is larger than the limiting angle).

The fineness ratio of the radome also has an effect on sidewall reflections, since the position and angle of the radome wall at the reflection point determines where the reflected rays can strike the antenna. A large fineness ratio should lead to increased sidewall reflections, as should moving the antenna towards the base of the radome. Sidewall affects would be expected to increase if the antenna were not perpendicular to the incident radiation.

The effects of antenna scattered energy on boresight error calculations are highly dependent upon the reflectance of the radome walls. Some of these rays may reflect off the radome wall twice before striking the antenna, enhancing the need for high reflectance to get measureable effects. The properties of the antenna control how much of the scattered energy is absorbed. A large antenna increases the probability that a reflecting ray can hit the antenna. The antenna's illumination function determines how much of the incident rays energy is scattered and the distribution of this scattered energy. A low fineness ratio for the radome should allow more rays to hit the antenna with fewer sidewall reflections. Antenna scattered energy should not be as important in typical radomes as the other types of reflections, because the reflected energy is distributed fairly evenly over the antenna aperture, reducing its affect on boresight error calculations.

3.2 Sidewall Reflections

Part of the energy incident on an antenna enclosed in a radome consists of rays that transmit through the radome, hits another position of the radome where some of the energy is reflected back into the antenna (or misses the antenna and is reflected again). The rays that reflect off the radome wall only once before striking the antenna are the only ones that are considered herein. Higher order reflections can be ignored for typical radomes since the amount of energy reflected at each contact with the radome wall becomes insignificant.

The amount of energy that is reflected off a radome wall is dependent on the angle of the incoming rays. To develop the analyses we define the antenna reference plane to be the plane of the antenna when the antenna is looking down the axis of the radome illustrated in Figure 3-1. At some incidence angle part of the incident wave that would normally hit the antenna reference plane outside of the radome is unable to hit this plane because it has already been reflected by the radome. The radome casts a "shadow" on the antenna reference plane.

The energy absent from this shadow region is that which will be reflected off the radome wall. A limiting angle of incidence with respect to the radome axis exists, below this limit no shadow will be cast and no energy can be reflected. This angle is found to be

$$\theta_{\rm lim} = \tan^{-1} \left(\frac{{\rm D}'/2}{{\rm L}-\Delta} \right) \tag{3-1}$$

An array of sample points is set up inside any shadow that is cast. The sample point spacing is selected according to the sample point spacing used on the antenna in the standard ray-tracing method.

A ray incident on the shadow intercepts the radome in two locations. These locations are found numerically using the same techniques as the standard ray-trace. The energy striking the antenna must be transmitted at the first intercept and reflected at the second. The effects on the magnitude and phase of the incoming ray by the transmission and reflection are calculated using the model described in

Section 5. The direction vector C of the reflected ray is:

C = K - (K - N) N

(3-2)

The coordinates of the point where the reflected ray intersects the antenna aperture must be found for all reflected rays that will hit the antenna. The equation for the rotated antenna's aperture plane is obtained by inverting the rotation matrix that rotated the antenna to its position and solving for the points X'=0 which are contained in the aperture plane. (See Appendix C for details). The intersection point can now be found by solving the equations for the antenna plane with those describing the vector C.

A phase shift is added to the electric field at the antenna due to the longer path that the reflected ray must take with respect to a reference ray coming directly in. The magnitude of the electric field absorbed by the antenna is decreased for fields not in the plane (direction vector normal to the plane) of the antenna. After these two effects on the electric field are accounted for, the electric field is added to the computer model of the monopulse network in the same method as direct incidence rays.

3.3 Bulkhead Reflections

Many missiles have a bulkhead plate between the radome of the missile body. If the bulkhead is not absorber treated, then incoming electromagnetic rays can reflect off this plate and strike the backside of the antenna; these rays are capable of causing boresight errors.

The analysis treats the reflections off the bulkhead plate as if it were flat, perfectly conducting, and located at the origin of the radome coordinates. This should be a fairly accurate model for many missiles.

The antenna is modeled the same as in the standard ray-trace, i.e., the same samples point definitions are used. However, the rays incident on the back of the antenna are reduced in gain. The user corrects for this in the program by inputing the rear antenna gain factor. This factor can also include any losses which come from imperfect reflection off of the bulkhead.

Mathematics

The rays are traced from the antenna sample points to the plane of the bulkhead separation plate along the vector (-K_x, K_y, K_z) illustrated in Figure 3-2. (Direction vector for incident rays is K_x, K_y, K_z. The vector (-K_x, K_y, K_z) was chosen because it will become the direction vector \overline{K} after reflection off of the plate. Any rays that pierce the side of the radome before hitting the bulkhead plate are discarded since they are not reflected by the bulkhead. The rays are then traced along the direction vector \overline{K} to the plane of the antenna. The intersection between the plane and ray is found by inverting the rotation matrix as described in Section 3.2. If this ray hits the antenna itself then it is discarded because rays directly incident on the antenna have already been treated in the standard ray-trace. The rays are then ray traced from the antenna plane through the radome wall along the direction \overline{K} in the same manner as the standard ray-trace.

The remaining rays may be thought of as being incident at the radome, reflecting off the bulkhead, then striking the antenna. The magnitude of the electric field is adjusted to account for non-normal incidence on the antenna as described in Section 3.2. The phase of the

Figure 3-2. Bulkhead Reflection Added to Backward Ray Trace.

electric field is adjusted to allow for the additional path from the antenna to the bulkhead to the antenna plane. The electric field is then summed to the monopulse model at the sample point on the antenna.

3.4 Antenna Scattered Energy

Not all of the energy striking an antenna is absorbed by the antenna. The energy absorbed by an antenna is dependent on the antenna's illumination function. An approximation to the energy reflected by the antenna is the inverse of the illumination functions.

The antenna scattered energy can bounce off the radome wall one or more times before striking the antenna. At each reflection most of the energy is transmitted through the radome wall if the radome is well designed. Our model takes into account one and two reflections off the radome, ignoring rays that miss the antenna after 2 radome wall reflections.

Mathematics

The standard ray-tracing method is used to trace the rays through the radome wall to the antenna, including use of the same sample points. At the antenna the rays are multiplied by the illumination function inverse being evaluated at the sample point. The antenna is assumed to be flat, because of this the rays reflecting off the antenna will intersect the radome wall at the same place that the ray initially entered the radome (see Figure 3-3). At the reflection point the direction of the ray is changed and the magnitude and phase of the electric field are changed using the same techniques as the sidewall reflections described in Section 3.2. The ray is then tested to see if it will intersect the antenna, go through the base of the radome, or strike the radome wall in another location.

If the ray intersects the antenna the intersection point is found, the electric fields magnitude and phase are adjusted, and the electric field is summed to the monopulse model, all of these being done in the same manner as the sidewall reflections of Section 3.2. If the ray passes through the base of the radome without intersecting the antenna

×124

Figure 3-3. Antenna Scattered Energy Added to Backward Ray Trace.

then the ray is discarded. If the ray strikes the radome wall the intersection point is found using numerical techniques and the new direction of the ray and effects of reflection on the ray are calculated as above. The ray is then tested to see if it strikes the antenna. If it does strike the antenna it is summed, if not the ray is dropped.

4.0 COMPARISON OF THEORETICAL AND MEASURED RADOME DATA

4.1 Radome Description

The radome posed for theoretical analysis was a tangent ogive having the basic geometry defined in Figure 4-1; for this geometry the values of the various wall parameters are:

> D = 13.46 in. L = 48.47 in. Δ = 10.75 in. δ = 0 in. d = 10.7 in.

In addition, the monolithic wall was specified to have a dielectric constant of 5.0 and loss tangent of 0.005.

The wall thickness specified for the test radome was a sophisticated prescription summarized in Table 4-1. To model this in the program, a closed form expression for radome wall thickness was derived as:

THK (inches) =
$$(0.282 + 0.0064\theta^2)$$

• COS $\left(\frac{(\text{DIST} - 34 - 4\theta)}{34 - 4\theta} \right) (0.5 + 0.108 \text{ abs } (\theta - 0.628)$ (4-1)

Where

DIST = Station referenced to radome tip (inches) θ = Radome circumferential angle from vertical (radians)

The radome roll angle reference, antenna geometry and polarization are depicted in Figure 4-2. The theoretical radome thickness resulting from the use of equation (4-1) is tabulated in Table 4-2.

Figure 4-2. Antenna Orientation for Thickness Taper Prescription

		_				
DIST	0	22.5	45	67.5	9	
0	.238	.246	.250	.249	.248	
2	.238	.246	.250	.249	.248	
4	.247	.253	.273	.278	.279	
6	.251	.259	.276	.281	.284	
8	.255	.260	.277	.282	.285	
10	. 259	.270	.267	.282	.284	
12	.258	.267	.259	.285	.287	
14	.267	. 259	.259	.262	.288	
16	.271	.283	.261	.290	.276	
18	.273	.273	.270	.291	.280	
20	.274	.267	.280	.285	.290	
22	.269	.269	.275	.291	.268	
24	.265	.281	.263	.274	.274	
26	.278	.271	.288	.266	.295	
28	.283	.274	.281	. 300	.297	
30	.285	.281	.275	.281	.297	
32	.281	.280	.278	. 280	.291	
34	.281	.276	.282	.281	.290	
36	.281	.282	.279	.283	.283	
38	.281	.281	.280	.284	.283	
40	.281	.277	.280	.278	.279	
42	.275	.275	.279	.276	.275	
44	.272	.271	.279	.276	.275	
46	.271	.267	.271	.284	.274	

THETA

WALL THICKNESS VERSUS DISTANCE FROM BASE (DIST)

TABLE 4-1

í

THETA (deg)

	0	22,5	45	67.5	90
	0 0.2377466481				• • • • • • • • • • • • •
Distance	4 0.2473400924				
from	6 0.251725534 0 8 0.255830163 0	.2611090271 0.	2652337118 0	.2671665422	0.2709155486
Base	10 0.2576494005 12 0.2631789859				
(in)	14 0.2664149819 16 0.2693537785				
	18 0.2719920973				
	20 0.2743269952 22 0.2763558674				
	24 0,2780764507 26 0,2794868257				
	28 0.2805854189	0.2822586281	0.2856200074	0.290794675	2 0.2977857375
	30 0.2813710049 32 0.2818427074				
	34 0.282 0.2828				
	36 0.2818427074				
	38 0.2813710049				
	40 0.2805854189 42 0.2794868257		• • • • • • • • • • • • •		
	44 0.2780764507				
	46 0.2763558674				

Table 4-2. Theoretical Wall Thickness Model.

21

Ĵ,

4.2 Comparison of Measured and Predicted Data

The boresight errors for the azimuth and elevation principal plane scans are shown in Figures 4-3 and 4-4. Here the same general features are found in both the measured and the calculated curves; for both plus and minus azimuth values the boresight error curve approximates a sine curve for one half of a cycle. The azimuth BSE, curves differ by about 3 milliradians between the calculated and measured while the calculated and measured curves for the elevation scans agree within 2 milliradians over most of the scan.

Similar data, but with added -20 dB rear bulkhead reflections, appear in Figures 4-5 and 4-6. The affects of -15 dB rear bulkhead reflections appear in Figures 4-7 and 4-8.

These bulkhead reflection components noticeably made the computed curves approach the measured curve, especially in the elevation scan. The affects of antenna backwall reflections were then investigated in Figures 4-9 and 4-10. The computed curves come more closely to the measured curves, but the affect due to sidewall reflections in this case was at most .3 milliradians.

The errors including antenna scattered energy were also calculated but not plotted here since the maximum affect of the energy was about 0.1 milliradians.

Figure 4-3. Azimuth Scan BSE (no Added Reflections)

Figure 4-4. Elevation Scan BSE (no Added Reflections)

Figure 4-5. Azimuth Scan BSE with Bulkhead Reflection of -20 dB

Figure 4-6. Elevation Scan BSE with Bulkhead Reflection of -20 dB

Figure 4-7. Azimuth Scan BSE with Bulkhead Reflection of -15 dB

Figure 4-8. Elevation Scan BSE with Bulkhead Reflection of -15 dB

Figure 4-9. Azimuth Scan BSE with Sidewall Reflection Included

Figure 4-10. Elevation Scan BSE with Sidewall Reflection Included

5.0 Evaluation of Wall Transmission Model

5.1 General

An evaluation of possible sources of computational errors suggested that the wall transmission subroutine used in the computer analysis be considered. Here, the theoretical approach is a matrix solution developed by Collin [1] who formulated expressions based on reflection and transmission components at each boundary of a multilayer dielectric media.

In the domain of geometrical optics, radome walls are approximated as being locally flat and infinite in extent. The method is based on this approximation, and is not valid for thick, highly curved walls. An incident electromagnetic wave is decomposed into components with the electric field vector perpendicular and parallel to the plane of incidence, that plane being defined as containing both the local normal to the surface and the direction vector of propagation. Arbitrary incidence angles, electrical properties, layer thickness, and number of layers can be handled. The method assumes that the dielectric and magnetic properties must be homogeneous and isotropic within individual layers.

A modification can be made for anisotropic materials [4], but added computer time cannot be justified when the anistropy is not large. Multiple reflections between the layer boundaries are analyzed by complex matrix multiplications, one matrix being needed for each boundary. The mathematics for setting up the matrices is based on solving a boundary value problem at each interface. Applicable Equations

In terms of the layer geometry, and following the development in references [1] and [2], the applicable matrix solution is:

where N = number of layers,

$$d_{i} = i \text{ th layer thickness (inches) } T_{i} = 1 - R_{i}, \text{ and}$$

$$\Phi_{i} = k_{o} (\varepsilon_{i}^{2} - \sin^{2} \theta)^{1/2}$$
(2)

$$R_{i} = \frac{Z_{i} - Z_{i-1}}{Z_{i} + Z_{i-1}}$$
(3)

Note: $Z_0 = Z_{N+1} = 1$

$$Z_{i} = \frac{\cos \theta}{(\varepsilon_{i} - \sin^{2} \theta)^{1/2}}$$
 (TE or perpendicular polarization) (4)

$$= \frac{(\varepsilon_{i} - \sin^{2}\theta)^{1/2}}{\varepsilon_{i} \cos \theta}$$
 (TM or parallel polarization) (5)

Further refinement is made via equation (2) modification:

$$\Phi_{i} = k_{0}\sqrt{\varepsilon_{i} - \sin^{2}\theta}$$
 (6)

$$\Phi_{i}' = k_{o} \sqrt{(\varepsilon_{i}' - \sin^{2} \theta) - j(\varepsilon_{i}'')} =$$

$$= k_{o} \sqrt{\varepsilon_{i}' - \sin^{2} \theta} \left\{ 1 - \frac{j\varepsilon_{i}' \tan \delta_{i}}{(\varepsilon_{i}' - \sin^{2} \theta)} \right\}^{1/2}$$
(7)

$$\Phi_{i} \approx k_{o} \sqrt{\varepsilon_{i}' - \sin^{2} \theta} \left\{ 1 - \frac{j \varepsilon_{i}' \tan \delta_{i}}{2(\varepsilon_{i}' - \sin^{2} \theta)} \right\}$$
(8)

Where in terms of the relative dielectric constant and loss tangent:

$$\varepsilon_{i} = \varepsilon_{i}' - j\varepsilon_{i}'' = \varepsilon_{i}' (1 - j \tan \delta_{i})$$
(9)

Defining,
$$\alpha_{i} = \frac{k_{o} \varepsilon_{i}' \tan \delta_{i}}{2(\varepsilon_{i}' - \sin^{2} \theta)^{1/2}} = \frac{K_{o}^{2} \tan \delta_{i}}{2\phi_{i}}$$
 (10)

Then (7) becomes,

$$\Phi_{i}' = k_{o} \sqrt{\varepsilon_{i}' - \sin^{2} \theta} - j\alpha_{i}$$
$$= \Phi_{i} - j\alpha_{i}$$
(11)

From which (1) can be expressed:

$$\begin{vmatrix} 1 & & R_5 \\ & & & \\ R_5 & & 1 \end{vmatrix} \begin{bmatrix} c_6 \\ b_6 \end{bmatrix}$$

$$\begin{bmatrix} c_1 \\ \\ \\ \\ b_1 \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} \\ \\ \\ \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} c_{N+2} \\ \\ \\ \\ \\ \\ \\ b_{N+2} \end{bmatrix}$$
(13)

The voltage transmission coefficient is

$$|T| = 20 \log (c_6/c_1) = -20 \log |A_{11}|$$
 (14)

The voltage reflection coefficient is

$$|\mathbf{R}| = 20 \log (b_1/c_1) = 20 \log |A_{21}/A_{11}|$$
 (15)

The insertion phase is defined as the difference in electrical thickness between the panel and that of free space over the same thickness as the panel [3].

 $\rm C_1$ is incident on the wall and $\rm C_{N+2}$ is transmitted then

$$C_{INC} = A_{11}C_{TRAN}$$
(16)

$$C_{\text{TRAN}} = \frac{C_{\text{INC}}}{A_{11}}$$
(17)

angle
$$(C_{\text{TRAN}})$$
 = angle (C_{INC}) - angle (A_{11}) (18)

$$IPD = -angle (A_{11}) - \frac{360 \ d(total)}{\lambda} \cos \theta \quad (degrees) \tag{19}$$

A phase delay also is incurred on the reflecting ray, $\boldsymbol{b}_1^{}\boldsymbol{.}$

$$B_{ref1} = A_{21}C_{TRAN}$$
$$= \frac{A_{21}}{A_{11}} C_{INC}$$
(20)

angle (B_{refl}) = angle (C_{INC}) + Angle (A_{21}) - Angle (A_{11}) (21)

Limitations

This method computes the transmission coefficient and insertion phase dealy for a plane wave incident at angle θ on a N-layer dielectric sheet with free space on either side; relative permeability of all layers is assumed unity.

There are no restrictions on the range of any of the variables except loss tangent. Here, the approximation made is seen in equation (7). This approximation generally restricts accuracy for loss tangents greater than about 0.10.

5.2 Comparison of Measured and Predicted Data

To assess program accuracy, a sheet of 0.375-inch plexiglass (polymethyl methacrylate) was evaluated The dielectric properties at Xband published in the technical literature indicate a value of $\varepsilon = 2.59$ and tan $\delta = 0.0067$. These values were input to the wall program to compute the parallel and perpendicular transmission coefficient and insertion phase delay (IPD).

Utilizing the measurements facility at MICOM in conjunction with the Georgia Tech radome measurements instrumentation system, actual data were obtained on a sheet approximately four-feet square. The range of incidence angles measured was limited by the radome positioner to angles less than 60 degrees.

The measured date did not include any reference measurements for the free space or "no sheet" case. The measured transmission was set to 1 and the measured IPD was set to 0 for an incidence angle of 0 degrees. The computed IPD was also set to 0 for 0° incidence angle for comparison with the measured. (These offsets are not important for radome analysis since they effect all rays entering the radome equally.)

The measured and computed values for the transmission and IPD are shown in Figures 5-1 and 5-2. The parallel polarization case had the most difference between measured and computed values for both transmission and IPD coefficients. At 60° the measured IPD differs from the computed by approximately 2 degrees (or 15%) and the measured transmission differs from the computed by approximately -0.05 (or 6%).

The measured data was actually an average of three trials. The IPD and transmission coefficients did vary from trial to trial, but the average would seem to have a low standard deviation as evidenced by the smoothness of the measured curves. The computed curves depend on the thickness and electrical properties of the plexiglass, both of which may have moderate tolerances in the commercial sheet used.

The deviation between measured and computed coefficients is large enough to effect radome boresight errors, particularly for large angles of incident (high fineness ratio radomes). It is the opinion of the authors that some of the descrepancy between measured and computed data is due to measurement errors. While it is difficult to quantify the measurement error component magnitude, it does <u>suggest</u> that if computed radome data is to be compared with actual radome data measured in the same facility, one should factor the measurement data into the data evaluation. Secondly, the measured data herein suggests a theoretical descrepancy of the mathematical model for large angles-of-incidence which can only be resolved via a more exhaustive perfection of the WALL transmission formulation.

(b) Perpendicular Polarization

Figure 5-1 Comparison of Measured to Calculated Transmission and IPD Values

(b) Perpendicular Polarization

Figure 5-2 Close Up of Comparison of Measured to Calculated Transmission and IPD Values

6.0 REFERENCES

- R. E. Collin, "Field Theory of Guided Waves," McGraw-Hill Book Company, New York, 1960.
- C. H. Krueger, Jr., "A Computer Program for Determining the Reflection and Transmission Properties of Plane Impedance Boundaries," Report AFATL-TR-67-191, Research and Technology Division, Wright-Patterson AFB, Ohio, September, 1967.
- 3. H. Jasik, "Antenna Engineering Handbook," McGraw Hill Book Company, New York, 1961.
- D. J. White and D. J. Banks, "Plane Wave Transmission and Reflection for Anisotropic Sheets of Radome Materials," Proceedings of the Sixteenth Symposium on Electromagnetic Windows, Atlanta, Georgia, June 9-11, 1982.
- D. J. Kozakoff, G. K. Huddleston and M. West, "Missile Radome Performance Assessment", Final Report on Project A-2939, prepared for U. S. Army Missile Command under Contract DAAH01-81-D-A003, Delivery Order 0015, Georgia Tech, Atlanta, Georgia, December 1981.

APPENDIX A

PROGRAM LISTING

1		PROGRAM RAD(INPUT,OUTPUT,TAPE5=INPUT,TAPE6=OUTPUT,TAPE7)
2		REAL LILTAN(5),IPD0,IPD1,THK(5),ER(5)
3		COMMON/A1/NLAY,ER,LTAN
4		COMMON/A2/APAZ,APEL,ILLUM,FREQ,THETA,IPDO,IPD1,RPD0,RPD1
5		COMMON/AA2/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
6		COMMON/A3/NRCT1,NARA1,NBLK1,NSAR,VSUM,VDAZ,VDEL
7		COMMON/A4/AZS, ELS, AZ, EL, PI, CONV, RSQ, B, THAZ, THEL, EEL, EAZ, L, TIPL
8		COMMON/A5/NF, NFIR, D2, ARAD, ADIS, NREF, NARA, NRCT, NANT, NBLK, DBLK
9		COMMON/AG5/PY+PZ+DEL
10		PI=3.1415927
11		CONV=PI/180.
12		
13		ELS=0.
14		NANTEO
15		PRINT#, "RAY(1) OR ANTENNA PATTERN(2)"
16		READ(5+#)NF
17		PRINT#, "ENTER:LENGTH AND DIAMETER OF RADOME(IN,)"
18		READ(5,*)L,D
19		D2=D/2.
20		₽=(L*L~D2*D2)/D
21		R≈8+D2
22		RSQ=R*R
23		PRINT#, "ENTER ANTENNA DIAMETER"
23		READ(5)\$)ADIA
25		ARAD=ADIA/2.
26		PRINT#, "ENTER: APERTURE ILLUMINATION FUNCTION"
27		PRINT*, 1=UNIFORM ILLUMINATION
28		PRINT#, 2=COSINE ILLUMINATION *
29		PRINT#, 3=TABLE *
30		READ(5,*)ILLUM
31		PRINT#, "ANTENNA NPOL, AZ, EL"
32		READ(5,*)APAZ,APEL
33		PRINT#, ENTER:RADOME TIF DIAMETER"
34		READ(5,*)TIPD
35		TIFL=L-SQRT(RSQ-(B+TIPD/2.)*(B+TIPD/2.))
36		PRINT*, "ENTER * DF PTS PER SIDE (EVEN)"
37		READ(5,*)NSAR
38		IF(ILLUM.EQ.1) GO TO 78
39		PRINT#, "INCLUDE A-R-A REFL. Y(1) N(0)?"
40		READ(5,*)NARA
41		NARA1=NARA
42	78	PRINT#, INCLUDE WALL REFL. Y(1) N(0)?"
43		READ(5,*)NRCT
44		NRCT1=NRCT
45		PRINT#, "INCLUDE BLKHEAD REFL. Y(1) N(0)?"
46		READ(5,*)NBLK
47		NBLK1=NBLK
48		IF(NBLK.EQ.0) GD TO 80
49		PRINT#, DB'S DOWN FOR BLKHEAD
50		READ(5,*)BKDB
51		BKDB=10.**(BKDB/20.)
52	80	PRINT#, DISTANCE TO ANTENNA*
53	00	READ(5,*)DEL
53		
		PRINT#, "EAZ, EEL"
55		READ(5,*)EAZ,EEL
56		PRINT#, "THAZ, THEL"
57		READ(5,*)THAZ,THEL
58		THAZ=THAZ*CONV
59		THEL=THEL*CONV

60		PRINT#, "ENTER FREQ (GHZ)"
61		READ(5,*)FREQ
62		NLAY=1
63		PRINT*, *ENTER: DIELECTRIC CONST., LOSS TANGENT*
64		READ(5,*)ER(1),LTAN(1)
65		IF(NF.EQ.2)G0 T0 109
66		NREF=1
67		AZS=1.
68		ELS=0.
69		CALL ARRAY
70		VAZ=VDAZ/VSUM
71		AZS=0,
72		ELS=1.
73		CALL ARRAY
74		VEL=VDEL/VSUM
75		NREF=0
76		ELS=0.
77	С	EL SCANNER
78	-	AZ=0.
79		DO 24 I=1,30
80		EL=1. #I
81		PRINT*, "EL", EL
82		CALL ARRAY
83		VT=17.45×(VDEL/VSUM)/VEL
84		FRINT#, BSE , VT
85	24	CONTINUE
86		PRINT#, "
87		EL≖0,
88		BO 25 I=1,30
87	-	AZ=1.*I
. 90		PRINT*, "AZ", AZ
91		CALL ARKAY
92		VT=17.45*(VDAZ/VSUM)/VAZ
93		PRINT*, *BSE*, VT
94	25	CONTINUE
95	20	STOP
96	С	ANTENNA PATTERNS
97	109	PRINT*, "ENTER DIR LOOKED AZ, EL"
9 8		READ(5,*)AZ,EL
99		PRINT*, "ENTER LOWER LIMIT, UPPER LIMIT, INC"
100		PRINT#, "FOR AZ SCAN"
101		READ(5,*)LLAZ,LUAZ,IAZ
102		PRINT*, "FOR EL SCAN"
103		READ(5,*)LLEL,LUEL,IEL
103		NREF=0
105		CALL ARRAY
106		RSUM=VSUM
107		NANT=1
108		I1=LUAZ+IAZ-LLAZ
109		I2=LUEL+IEL-LLEL
110		DO 106 I=1,II,IAZ
111		AZS=(I-1+LLAZ)*1.
112		DO 106 IE=1,12,IEL
113		ELS=(IE-1+LLEL)*1.
114		CALL ARRAY
115		H3=20.*ALDG10(VSUM/RSUM)
116		H1=AZ+AZS
117		H2≖EL+ELS
118	106	PRINT#11121H3
119		STOP
• • /		

Y.

120	END
121	SUBROUTINE ARRAY
122	COMMON/A2/APAZ,APEL,ILLUM,FREQ,THETA,IPD0,IPD1,RPD0,RPD1
123	COMMON/AA2/TRAN0,TRAN1,BKDB,CPHI,SPHI,THK(5)
124	COMMON/A3/NRCT1,NARA1,NBLK1,NSAR,VSUM,VDAZ,VIEL
125	COMMON/A4/AZS,ELS,AZ,EL,PI,CONV,RSQ,B,THAZ,THEL,EEL,EAZ,L,TIPL
126	COMMON/A5/NF, NFIR, D2, ARAD, ADIS, NREF, NARA, NRCT, NANT, NBLK, DBLK
127	COMMON/AA5/PY,PZ,DEL
128	COMMON/A6/VRSUM,VISUM,VRDEL,VIDEL,VRDAZ,VIDAZ,BKPS
129	COMMON/C1/POS(3) + K(3) + CAN + SAN + RM + PSN(3) + S + C(3) + NSKP
130	COMMON/C2/CAZ, SAZ, CEL, SEL
131	COMMON/AR/RAZ, IAZ, REL, IEL, E91, P91, E92, P92, N(3), P7
132	COMMON/F1/TyCOSF
133	REAL IAZ, IEL, II, I2, N(3), K, L
134	NRCT=0
135	
136	VISUM=0.
137	VRDEL=0.
138	VIDEL=0.
139	VRDAZ=0.
140	VIDAZ=0.
141	NFIR=1
142	DO 26 N1=1,NSAR
143	DO 26 N2=1,NSAR
144	NARA=0
145	NBLK=0
146	NSKP=0
147	PY=(ARAD/NSAR)*(2*N2-NSAR-1)
148	PZ=(ARAD/NSAR)*(2*N1-NSAR-1)
149	ADIS=SQRT(FY*FY+FZ*FZ)
150	IF (ADIS-GI-ARAD) GU TU 26
151	CALL RAY
152	IF(NREF.EQ.1) GO TO 26
153	IF(POS(2)**2+POS(3)**2.LT.D2*D2*.01) GO TO 107
154	IF(NARA1.EQ.0) GO TO 107
155	NARA=NARA1
156	PY1=PY
157	F ² Z1=F ² Z
158	E91=E91*(1TRANO)*(1COSF)
159	F91=F91+RFD0
160	E92=E92*(1TRAN1)*(1COSF)
161	P92=P92+RPD1
162	R1=COS(F91)×E91
163	I1=SIN(F91)*E91
164	R2=COS(P92)*E92
165	12=SIN(P92)*E92
166	RAZ=CPHI*R1+SPHI*R2
167	IAZ=CPHI*I1+SPHI*I2
.168	REL=CPHI*R2-SPHI*R1
169	IEL=CPHI#I2-SPHI#I1
170	P7=T*.531976*FREQ
171	CALL BNC(K,N)
172	T = -FOS(1)/C(1)
173	T=(POS(2)+T*C(2))**2+(POS(3)+T*C(3))**2
174	IF(T.LT.D2*D2) GO TO 107
175	CALL MRF(.01*D2,2.*D2,C)
176	P7=P7+T*•531976*FRE0
177	Z11=K(1)
178	Z12=K(2)
179	Z13=K(3)

		× (1) = 0 (1)
180		K(1)=C(1)
181		K(2)=C(2)
182		К(З)≈С(З)
183		CALL RAY
184		K(1)≖Z11
185		K(2)=Z12
186		K(3)=Z13
		PY=PY1
187		
188		PZ=PZ1
189		
190	107	NBLK=NBLK1
191		IF(NBLK.EQ.0.0R.K(1).EQ.1.) GO TO 26
192		POS(1)=-CAZ*SEL*PY+SAZ*PZ+DEL
193		PDS(2)=CEL*PY
194		POS(3)=SEL*SAZ*PY+CAZ*PZ
195		S1=POS(1)/K(1)
196		FOS(1)=0.
197		FOS(2)=POS(2)+S1#K(2)
198		PDS(3)=PD5(3)+S1*K(3)
199		IF(SQRT(POS(2)*POS(2)+POS(3)*POS(3)).GT.D2) GD TD 26
_		
200		C(1) = K(1)
201		C(2)=K(2)
202		C(3)=K(3)
203		NSKP=2
204		CALL RAY
205		DBLK=SQRT((PSN(1)-DEL)*(PSN(1)-DEL)+PSN(2)*FSN(2)+PSN(3)*FSN(3))
206		IF(DRLK.LT.ARAD)GO TO 26
207		BKPS=(S1+S)*FREQ*•531976
208		NSKP=0
209	-	CALL RAY
210	26	CONTINUE
211	20	NSKP=0
212		NBLK=0
213		NRCT=NRCT1
214		IF(NRCT.EQ.O.DR.NREF.EQ.1) GD TO 40
215		RM=K(1)/SQRT(K(3)*K(3)+K(2)*K(2))
216		TEMP=(L-DEL)/D2
217		IF(RM.GT.TEMP) GO TO 40
218		RADM=(L-DEL)/RM
219		
220		ANG=SIGN(PI/2.,-K(2))
		ANG=SIGN(PI/2.,-K(2)) IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3))
221		
		IF(K(3).NE.0.) ANG=ATAN2(-K(2)+-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2
222		IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2
222 223		IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.0) GD TD 40
222 223 224		IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.0) GD TD 40 IF(NY.LT.2) NY=2
222 223 224 225		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TD 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2
222 223 224 225 226		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY
222 223 224 225 226 227		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ
222 223 224 225 226 227 228		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ NRCT=1
222 223 224 225 226 227 228 229		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY
222 223 224 225 226 227 228 229 230		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ)
222 223 224 225 226 227 228 229 230 231		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.O) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ)
222 223 224 225 226 227 228 229 230 231 232		IF(K(3).NE.O.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.O) GO TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DO 30 N1=1,NY DO 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GO TO 30
222 223 224 225 226 227 228 229 230 231 232 233		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.0) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*FY+PZ*PZ) IF(ADIS.LT.D2) GD TO 30 DIS=(RADM-PZ)*RM</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.0) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GD TO 30 DIS=(RADM-PZ)*RM IF(ARS(PY).GT.SQRT(RSQ-(L-DIS)*(L-DIS))-B) GO TO 30</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234 235		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.0) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*FY+PZ*PZ) IF(ADIS.LT.D2) GD TO 30 DIS=(RADM-PZ)*RM</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.0) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GD TO 30 DIS=(RADM-PZ)*RM IF(ARS(PY).GT.SQRT(RSQ-(L-DIS)*(L-DIS))-B) GO TO 30</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234 235		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.EQ.0) GD TO 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GO TO 30 DIS=(RADM-PZ)*RM IF(ARS(PY).GT.SQRT(RSQ-(L-DIS)*(L-DIS))-B) GO TO 30 CAN=COS(ANG)</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.0) GD TD 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GD TD 30 DIS=(RADM-PZ)*RM IF(ARS(PY).GT.SQRT(RSQ-(L-DIS)*(L-DIS))-B) GD TD 30 CAN=COS(ANG) SAN=SIN(ANG)</pre>
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237		<pre>IF(K(3).NE.0.) ANG=ATAN2(-K(2),-K(3)) NY=INT(D2*NSAR/(2.*ARAD)+.25)*2 NZ=INT(RADM*NSAR/(4.*ARAD)+.25)*2 IF(NZ.ER.0) GD TD 40 IF(NY.LT.2) NY=2 IF(NZ.LT.2) NZ=2 DD 30 N1=1,NY DD 30 N2=1,NZ NRCT=1 PY=(2*N1-NY-1)*D2/NY FZ=(2*N2-1)*RADM/(2.*NZ) ADIS=SQRT(PY*PY+PZ*PZ) IF(ADIS.LT.D2) GD TD 30 DIS=(RADM-FZ)*RM IF(ARS(FY).GT.SQRT(RSQ-(L-DIS)*(L-DIS))-B) GD TD 30 CAN=COS(ANG) SAN=SIN(ANG) POS(1)=DEL</pre>

240)	CALL RAY
241		CONTINUE
242		CONTINUE
243	_	BSE FINDER
244		VSUM=SORT (VRSUM*VRSUM+VISUM*VISUM)
245		IF(NF.EQ.2) RETURN
246		IF(NREF.EQ.1) GO TO 27
247	-	ANSUM=ATAN2(VISUM,VRSUM)
246		ANDAZ=ATAN2(VIDAZ,VRDAZ)
245		ANDEL=ATAN2(VIDEL,VRDEL)
250		VDAZ=SQRT(VRDAZ*VRDAZ+VIDAZ*VIDAZ)*SIGN(1.,SIN(ANDAZ-ANSUM)) VDEL=SQRT(VRDEL*VRDEL+VIDEL*VIDEL)*SIGN(1.,SIN(ANDEL-ANSUM))
251 252		RETURN
253		
254		SUBROUTINE RAY
255		REAL K(3), N(3), T2(3), IAZ, IEL, I1, I2, I3, IPD0, IPD1, L, PINT(3)
256		COMMON/A2/APAZ, APEL, ILLUM, FREQ, THETA, IPDO, IPD1, RPD0, RPD1
257		COMMON/A4/AZS, ELS, AZ, EL, PI, CONV, RSG, B, THAZ, THEL, EEL, EAZ, L, TIPL
258		COMMON/AA2/TRAN0,TRAN1,BKDB,CPHI,SPHI,THK(5)
259		COMMON/A5/NF,NFIR,D2,ARAD,ADIS,NREF,NARA,NRCT,NANT,NBLK,DBLK
260		COMMON/AA5/PY,PZ,DEL
261		COMMON/A6/VRSUM,VISUM,VRDEL,VIDEL,VRDAZ,VIDAZ,BKPS
262		COMMON/B1/NLST;AR(4);AI(4);BR(4);BI(4);CR(4);CI(4)
263	5	COMMON/C1/POS(3);K(3);CAN;SAN;RM;PSN(3);S;C(3);NSKP
264	1	COMMON/C2/CAZ,SAZ,CEL,SEL
265	5	COMMON/AR/RAZ,IAZ,REL,IEL,E91,P91,E92,F92,N(3),F7
266	5	COMMON/F1/T,COSF
267	7	IF(NARA.EQ.O) P7=0.
268	3	- IF(NSKP.E0.2) 60 TO 990
269	>	IF(NARA.EQ.1) GO TO 63
270)	IF(NBLK.EQ.1) P7=P7+BKPS
271	L	IF(NRCT.EQ.1.OR.NBLK.EQ.1) GO TO 59
272	2	IF(NF.NE.2.AND.NREF.EQ.0) GO TO 18
273	5	CAZS=COS(AZS*CONV)
274	k	SAZS=SIN(AZS*CONV)
275	ŭ	CELS=COS(ELS*CONV)
276	b	SELS=SIN(ELS*CONV)
277	,	PSH1=SAZS*PZ-CAZS*SELS*FY
278	3	PSH2=CELS*PY
279	,	PSH3=SELS#SAZ#PY+CAZS#PZ
280)	ALF=ACOS((ARS(PSH2*PY+PSH3*PZ)/(ADIS*ADIS)-1E-8))
281		F7=SIGN(SIN(ALP)*ADIS*FREQ*.531976,FSH1)
282		IF(NREF.EQ.1) GO TO 1000
283		IF(NFIR.EQ.0) GO TO 19
284		NFIR=0
285		H=(AZ+AZS)*CONV
286		CAZ=COS(H)
287		SAZ=SIN(H)
288		H1=(EL+ELS)*CONV
289		CEL=COS(H1)
290		SEL=SIN(H1)
291		IF(NANT,EQ.1) GO TO 19
292		K(1)=CAZ*CEL
293		K(2)=SEL
294		K(3)=-SAZ*CEL
295		POS(1)=-CAZ*SEL*FY+SAZ*FZ+DEL
296		POS(2)=CEL*PY
297		POS(3)=SEL*SAZ*PY+CAZ*PZ
298		MOD REGULA FALSI
299		IF(NRCT.EQ.1) GO TO 62
2//	- /	an nunerranya/ www.wa

300		CALL MRF(0.,L+ARAD,K)
301		GO TO 63
302	62	CDIS=SQRT(PZ*PZ+RM*RM*PZ*PZ)
303		CALL MRF(CDIS,2.*CDIS,K)
304	63	POS(1)=POS(1)+T#K(1)
305		IF(POS(1).GT.L-TIPL) RETURN
306		POS(2)=POS(2)+T#K(2)
307		PD5(3)=PD5(3)+T#K(3)
308		N(1)=POS(1)/SQRT(RSQ-POS(1)*POS(1))
309		U=SQRT(1+N(1)*N(1))
310		N(1) = N(1)/U
311		U=U*SQRT(POS(2)*POS(2)+POS(3)*POS(3))
312		N(2)=POS(2)/U
313		N(3)=POS(3)/U
314		T2(1)=K(2)*N(3)−K(3)*N(2)
		$T_2(1) = R(2) = R(3) = R(3) = R(3) = R(3)$ $T_2(2) = R(3) = R(3) = R(3) = R(3)$
315		
316		$T_2(3) = K(1) = N(2) - K(2) = N(1)$
317		U=SQRT(T2(1)*T2(1)+T2(2)*T2(2)+T2(3)*T2(3))
318		$T_2(1) = T_2(1) / U$
319		T2(2)=T2(2)/U
320		T2(3)=T2(3)/U
321		THETA=ASIN(ABS(U))
322		PHI=SIGN(ACOS(T2(1)*SAZ+T2(3)*CAZ),T2(2))
323		CPHI=COS(PHI)
324		SPHI=SIN(PHI)
325		IF(NRCT.EQ.2.OR.NARA.EQ.1) GO TO 23
326		RAZ=COS(THAZ) #EAZ
327		IAZ=SIN(THAZ)*EAZ
328	-	REL=COS(THEL) * EEL
329		IEL=SIN(THEL)*EEL
330	23	R3=CFHI*RAZ+SFHI*REL
331		I3=CPHI*IAZ+SPHI*IEL
332		E91=SQRT(R3*R3+I3*I3)
333		P91=ATAN2(13+R3)
334		R3=CFHI*REL-SPHI*RAZ
335		I3=CPHI#IEL-SPHI#IAZ
336		E92=SQRT(R3*R3+I3*I3)
337		P92=ATAN2(I3,R3)
338	С	ADD EFFECTS OF RADOME
339	U	IF(NRCT.NE.2.AND.NARA.NE.1) GO TO 999
340		CALL THIC(POS,THK)
		CALL WALL
341		E91=E91=(1TRANO)/K(1)
342 343		F91=F91+RPD0
		E92=E92*(1TRAN1)/K(1)
344		
345		P92=P92+RFD1
346		CALL BNC(K+N)
347	990	YM=SEL/(CEL*CAZ)
348		ZM=SAZ/CAZ
349		S=DEL+POS(3)#ZM-POS(2)#YM-POS(1)
350		S≠S/(C(1)+C(2)*YM-C(3)*ZM)
351		PSN(1)=POS(1)+S*C(1)
352		PSN(2)=POS(2)+5*C(2)
353		FSN(3)=FDS(3)+5#C(3)
354		IF(NSKF.EQ.2) RETURN
355		IF(NARA.EQ.1) GO TO 996
356		D1=PINT(1)-POS(1)
357		D4=PINT(2)-POS(2)
358		D3=PINT(3)-POS(3)
359		PHA=SQRT(D1*D1+D4*D4+D3*D3)+S

360	996	PY=SEL#SAZ#PSN(3)+CEL#PSN(2)-SEL#CAZ#(PSN(1)-DEL)
361		PZ=SAZ#(PSN(1)-DEL)+CAZ#PSN(3)
362		ADIS=SORT(PY#PY+PZ#PZ)
363		IF(ADIS.GT.ARAD) RETURN
364		IF(NARA+EQ+1) GO TO 997
365		DIS=ABS((PINT(1)-PSN(1))*K(1)+(PINT(2)-PSN(2))*K(2)
366		\$+(FINT(3)-PSN(3))*K(3))
367		PHA=(PHA-DIS)*,531976*FREQ
		P7=P7+PHA
368		
369		GO TO 998
370	997	P7=P7+S
371		GO TO 998
372	999	CALL THIC(POS,THK)
373		CALL WALL
		E91=E91*TRANO
374		
375		P91=P91+IPD0
376		E92=E92*TRAN1
377		P92=P92+IPD1
378	998	SPHI=-SPHI
379	,,,,	R1=COS(P91+P7)#E91
380		I1=SIN(P91+F7)*E91
381		R2=C05(P92+P7)#E92
382		I2=SIN(F92+P7)*E92
383		IF(NRCT.NE.1) GO TO 1000
384		RAZ=CPHI*R1+SPHI*R2
385		IAZ=CPHI#I1+SPHI#I2
386		REL=CPHI*R2-SPHI*R1
387		IEL=CPHI#I2-SPHI#I1
388		NRCT=2
389		- FINT(1)=POS(1)
390		PINT(2) = POS(2)
391		PINT(3) = POS(3)
392		POS(1)=DEL
393		POS(2)=SAN#PZ+CAN#PY
394		POS(3)=CAN*FZ-SAN*FY
395		CALL MRF(0.,CDIS,K)
396		GO TO 63
397	1000	COSF=1.
	1000	
398		IF(NBLK+EQ+1) COSF=COSF#BKDB
399		SINFEL=SIGN(1.,PY)
400		SINFAZ=SIGN(1.,FZ)
401		IF(ILLUM.NE.2) GD TO 50
402		CDSF=COS(1.24507*AUIS/ARAD)*COSF
403		SINFAZ=SIN(FI*PZ/ARAD)
404		SINFEL=SIN(FI*FY/ARAD)
405	50	AAZ=1.
406		AEL=1.
407		IF(NRCT.EQ.O.AND.NARA.EQ.O) GD TO 51
408		ZM=SQRT(C(1)*C(1)+C(3)*C(3))*SQRT(1-K(2)*K(2))
409		YM=SQRT(C(1)*C(1)+C(2)*C(2))*SQRT(1-K(3)*K(3))
410		AAZ=(C(1)*K(1)+C(3)*K(3))/ZM
411		AEL=(C(1)*K(1)+C(2)*K(2))/YM
412	51	IF(NBLK+EQ.0) GO TO 55
413		AAZ=COS(2,*ACOS(K(1)/SQRT(1,-K(2)*K(2))))
414		AEL=COS(2.*ACOS(K(1)/SQRT(1K(3)*K(3))))
	5.F	
415	55	IF(NF.NE.2) GD TO 56
416		AAZ=AAZ*CAZS*CAZS*CELS*CELS/SQRT(1,-SELS*SELS)
417		AEL≠AEL*CAZS*CAZS*CELS*CELS/SQRT(1SAZS*SAZS*CELS*CELS)
418	56	APAZ1=APAZ*AAZ
419		APEL1=APEL#AEL

420		IF(NREF.EQ.0) GO TO 52
421		RSB=(EAZ#COS(THAZ+P7)#APAZ1+EEL#COS(THEL+P7)#APEL1)#COSF
422		ESS=(EAZ#SIN(THAZ+P7)#APAZ1+EEL#SIN(THEL+P7)#APEL1)#COSF
423		GO TO 54
424	52	RSS=((CPHI*R1+SPHI*R2)*APAZ1+(CPHI*R2-SPHI*R1)*APEL1)*COSF
425		ESS=((CPHI#I1+SPHI#I2)#APAZ1+(CPHI#I2-SPHI#I1)#APEL1)#COSF
426	54	VRSUM=VRSUM+RSS
427	•••	VISUM=VISUM+ESS
428		VRDEL=VRDEL+RSS*SINFEL
429		VIDEL=VIDEL+ESS*SINFEL
430		VRDAZ=VRDAZ+RSS#SINFAZ
431		VIDAZ=VIDAZ+ESS*SINFAZ
432		RETURN
433		END
434		SUBROUTINE MRF(A,B1,K2)
		REAL K1(3)+K2(3)
435		
436		COMMON/F1/T+COSF
437		COMMON/F2/K1
438		K1(3)=K2(3)
439		K1(2)=K2(2)
440		K1(1)=K2(1)
441		F≂FH(A)
442		G=FH(B1)
443		W=A
444		F2=F
445		DO 20 N3=1,5
446		W1=(G#A-F#B1)/(G-F)
447		F0=F2
448	-	F2=FH(W1)
449		F1=F2
450		IF(A.NE.W1) F1≖FH(A)
451		IF(SIGN(1.,F2).EQ.SIGN(1.,F1)) GO TO 21
452		B1=W1
453		G≃F2
454		IF(SIGN(1.,F2).EQ.SIGN(1.,F0)) F≈F/2.
455		GO TO 20
456	21	A=W1
457		F≖F2
458		IF(SIGN(1.,F2).EQ.SIGN(1.,F0)) G≖G/2.
459	20	4=41
460		T={G*A-F*B1}/(G-F)
461		RETURN
462		END
463		FUNCTION FH(T1)
464		REAL K / K1 (3) / L
465		COMMON/A4/AZS, ELS, AZ, EL, PI, CONV, RSQ, B, THAZ, THEL, EEL, EAZ, L, TIFL
466		COMMON/C1/POS(3),K(3),CAN,SAN,RM,PSN(3),S,C(3),NSKP
467		COMMON/F2/K1
468		X=POS(1)+T1*K1(1)
469		Y=POS(2)+T1*K1(2)
470		Z = POS(3) + T1 * K1(3)
471		FH=SQRT(RSQ-XxX)-B-SQRT(YXY+ZXZ)
472		
		RETURN
473		
474		SUBROUTINE BNC(VK,VN)
475		DIMENSION VK(3), VN(3)
476		COMMON/C1/POS(3),K(3),CAN,SAN,RM,PSN(3),5,C(3),NSKP
477		DOT=2.*(VN(1)*VK(1)+VN(2)*VK(2)+VN(3)*VK(3))
478		C(1)=VK(1)-DOT#VN(1)
479		C(2)=VK(2)-DOT#VN(2)

480		C(3)=VK(3)~DOT#VN(3)
481		RETURN
482		END
483		SUBROUTINE THIC(POS,THK)
484		DIMENSION POS(3),THK(5)
485		THE=ABS(ATAN(POS(3)/POS(2)))
486		THK(1)=34,-4,*THE
487		THK(1)≠(₽OS(1)-THK(1))/THK(1)
488		THK(1)=COS(THK(1)*(.5+ABS((THE628)*.108)))
489		THK(1)=THK(1)=(.282+.010=THE)=2.54
490		RETURN
491		END
492		SUBROUTINE WALL
493		REAL IPD,IPD0,IPD1,K0,LTAN(5),Z(5),U1(5),U2(5),R(5)
494		COMMON/B1/NLST;AR(4);AI(4);BR(4);BI(4);CR(4);CI(4)
495		COMMON/A1/NLAY,ER(5),LTAN(5)
496		COMMON/A2/APAZ;APEL;ILLUM;FREQ;THETA;IPD0;IPD1;RPD0;RPD1
497		COMMON/AA2/TRANO,TRAN1,BKDB,CPHI,SPHI,THK(5)
498		NPOL=0
499		CTH=COS(THETA)
500		STH=SIN(THETA)**2
501		K0≖0,2094395*FREQ
502		MLAY≂NLAY+1
503	11	NLST=0
504		DO 10 I=1,MLAY
505		IF(I.NE.(MLAY)) GO TO 12
506		Z(I)=1.
507		GO TO 13
508	12	U1(I)=SQRT(ER(I)-STH)
509		Z(I)=CTH/U1(I)
510		U2(I)=THK(I)*KO*LTAN(I)/(2.*U1(I))
511		U1(I)=U1(I)#KO
512		IF(NPOL+EQ+1) Z(I)=1+/(ER(I)#Z(I))
513		IF(I.NE.1) GO TO 13
514		R(1) = (Z(1) - 1,)/(Z(1) + 1,)
515		GO TO 10
516	13	R(I) = (Z(I) - Z(I-1)) / (Z(I) + Z(I-1))
517	10	CONTINUE
518		AR(1)=EXP(U2(1))
519		AR(4)=1,/AR(1)
520		AR(2)=R(1)=AR(4)
521		AR(3)=R(1)#AR(1)
522		AI(1)=U1(1)*THK(1) AI(2)=-AI(1)
523 524		AI(2)=-AI(1) AI(3)=AI(1)
525 526		AI(4)=AI(2) DD 14 1-2-NLAY
		DO 14 J≈2,NLAY
527 ⁻ 528		IF(NLAY.EQ.1) GO TO 40 BR(1)≠EXP(U2(J))
528 529		
		BR(4)=1./BR(1)
530 531		BR(2)=R(J)≠BR(4) BE(7)=E(J)≠BR(1)
532		BR(3)=R(J)#BR(1) BI(1)=U1(J)#THK(J)
533		BI(2)=-BI(1)
534		BI(2) = BI(1) BI(3) = BI(1)
535		BI(4)≠BI(2)
536		CALL MULT
537	14	CONTINUE
538	40	CONTINUE
539		BR(1)=1.

۰.

540		BR(4)=1.
541		BR(2)=R(HLAY)
542		BR(3)=BR(2)
543		BI(1)=0.
544		BI(2)=0.
545		BI(3)=0.
546		BI(4)=0.
547		NLST≖1
548		CALL MULT
549		TRAN=1.
550		DO 15 K=1,MLAY
551	15	TRAN=TRAN‡(1R(K))
552		TRAN=TRAN/CR(1)
553		SUM=0.
554		DO 16 L=1,NLAY
555	16	SUM=SUM+THK(L)
556		IPD=CI(1)-CTH*KO*SUM
557		IF(NPOL.EQ.0) 60 TO 17
558		TRAN1=TRAN
559		IPD1=IPD
560		RPD1=CI(1)-CI(3)
561		RETURN
562	17	TRANO=TRAN
563		IPD0=IPD
564		RPDO=CI(1)−CI(3)
565		NPOL=1
566		GO TO 11
567		END
568	~	SUBROUTINE MULT
569		COMMON/B1/NLST,AR(4),AI(4),BR(4),BI(4),CR(4),CI(4)
570	С	COMPLEX MATRIX MULTIPLICATION
571		DO 32 N1=1+3+2
572		DO 32 N2=1,2
573		IF(NLST.EQ.1.AND.N1-N2.EQ.1) RETURN
574		R1=AR(N1)#BR(N2)
575		R2=AR(N1+1)*BR(N2+2)
576		E1=AI(N1)+BI(N2)
577		E2=AI(N1+1)+BI(N2+2)
578		R3=R1#COS(E1)+R2#COS(E2)
579		E3=R1*SIN(E1)+R2*SIN(E2)
580		. NSET=N2+N1-1
581		CR(NSET)=SQRT(R3*R3+E3*E3)
582	32	CI(NSET)=ATAN2(E3,R3)
583		DO 33 I=1,4
584		AR(I)=CR(I)
585	33	AI(I)=CI(I)
586		RETURN
587		END

APPENDIX B.

COMPUTED DATA

The purpose of this Appendix is to document additional data which has been computed during the analysis method validation.

The data presented within the main text of this report has been run for a dielectric constant of 5.0, which is believed to be that of the measured radome article. An increase in dielectric constant to 5.1 resulted in the data shown in Figures B-1 and B-2. Here, there was poorer agreement between theoretical and measured compared to the data in the report.

Secondly, the variation of the distance of the antenna from the base of the radome were tried in an effort to get the crossing points in the measured and computed azimuth scans to match. An antenna to base distance of 17 inches made this agreement fairly good, as seen in Figures B-3 and B-4.

Figure B-1. Azimuth Scan with Dielectric Constant Changed from 5.0 to 5.1

Figure B-2. Elevation Scan with Dielectric Constant Changed from 5.0 to 5.1

Figure B-3. Azimuth Scan with Antenna's Distance from Base Changed from 10.7 to 17 inches

Elevation Angle

Figure B-4. Elevation Scan with Antenna's Distance from Base Changed from 10.7 to 17 inches.

APPENDIX C

ROTATIONAL MATRIX

The rotational matrix [M] is different for AZ/EL or EL/AZ gimbal configurations. Specifically, for an AZ/EL gimbal

$$[M] = \begin{bmatrix} \cos \theta & \cos \theta & z & -\sin \theta & \sin \theta & \sin \theta & z \\ \sin \theta & \sin \theta & AZ & \cos \theta & \sin \theta & \sin \theta & AZ \\ -\sin \theta & AZ & 0 & \cos \theta & AZ \end{bmatrix} (A-1)$$

For an EL/AZ gimbal,

$$[M] = \begin{bmatrix} \cos \theta_{EL} & -\cos \theta_{AZ} & \sin \theta_{EL} & \sin \theta_{AZ} \\ \sin \theta_{EL} & \cos \theta_{EL} & 0 \\ -\sin \theta_{AZ} & \cos \theta_{EL} & \sin \theta_{AZ} & \cos \theta_{AZ} \end{bmatrix}$$
(A-2)

A unit vector K at the origin in the direction θ is given in terms of the rotational matrices via

$$K = [M] \begin{bmatrix} 1\\0\\0 \end{bmatrix}$$
(A-3)

At a point y_p , z_p on the antenna face (see Figure A-1), a vector \overline{P}_1 from the origin to a point on the antenna (in terms of rotated coordinates) is:

$$P_{1} = [M] y_{p}$$
 (A-4)
$$z_{p}$$

Finally, this is shifted by the distance (x = del) the antenna is offset into the radome.

$$P_2 = P_1 + \begin{bmatrix} de1\\0\\0 \end{bmatrix}$$
 (A-5)