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Objectives

Develop a quantitative structure-activity relationships 

(QSARs) model for prediction of the biological effects of 

engineered nanoparticles (NPs) associated with 

semiconductor industries. To pursue this goal, our 

approach mainly includes:

• Establish a comprehensive understanding of relevant 

physiochemical properties of semiconductor nanomaterials 

that govern their fate, transport and biological 

interactions.

• Collect sufficient experimental and theoretical data 

showing the environmental behaviors and the associated 

biological consequences.
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ESH Metrics and Impact

1. Our work aims at development of fundamental 

understanding of cytotoxicity of semiconductor NPs to 

human health and provides a comprehensive database 

and clear definition of ESH-problematic manufactured 

nanomaterials.

2. Based on the quantitative structure-activity relationship 

(QSAR) model we plan to establish, problematic 

nanomateirals from industrial manufacturers could be 

predicted, identified, and effectively modified to produce 

environmental benign semiconductor nanomaterials.
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Motivation

• Insufficient knowledge of the

environmental fate, transport,

transformation, and biological

interactions;

• Lack of nanotoxicity data on new

model biosystems;

• New criteria that are used to

categorize and prioritize

nanomaterials and their relevant

properties.
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Method of Approach
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Nanoparticle

Nanotoxicity 

mechanisms

Modeling ion release (e.g. Ag

NPs) on the basis of hard sphere

collision theory

Wen Zhang, Ying Yao, Nicole Sullivan, and Yongsheng Chen. 

ES&T, 2011

Andre Nel, et al. Nature Materials, 2009

ROS generation mechanism: band gap Derjaguin–Landau–Verwey–

Overbeek (DLVO) and extended

DLVO (EDLVO) theories

describe surface interactions
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Highlight of Results

1. Aggregation kinetics of NPs in aqueous 

solution;

2. ROS generation by NPs and 

underlying mechanisms

3. Acute toxicity of ten engineered NPs to 

paramecium and development of an 

indicator for pre-evaluating the 

toxicity of NPs
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Kungang Li, Wen Zhang, Ying Huang, Yongsheng Chen. J. Nanoparticle. Res. 2011
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1.3. Aggregation kinetics of NPs in aqueous solution
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1.4. Aggregation kinetics of NPs in

aqueous solution Attachment efficiency model on the basis 

of Maxwell-Boltzmann distribution
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2.1. ROS generation by NPs and underlying

mechanisms: Cytotoxic implication

• High surface area of NPs provides more reactive sites for ROS 

production

• ROS formed in NP suspension usually consist of superoxide 

radical (O2
•−), hydroxyl radicals (•OH), and singlet oxygen (1O2)

• Representative reaction stochiometry (TiO2 as an example):

Implications:

Oxidant injury of cells, lipid 

peroxidation, enzyme or 

protein oxidation, membrane 

pitting, changes in membrane 

permeability, etc. 
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Methods of probing ROS generation 

from different types of NPs

ROS •OH 1O2 O2
•−

Method HPLC HPLC UV-Vis (430 nm)

Indicator pCBA FFA XTT

2.2. ROS generation by NPs and underlying

mechanisms: ROS measurement using

indicator method
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Particles
Nominal TEM 

diameter (nm)

Hydrodyna

mic radius 

(nm)

Zeta 

potential 

(mV)

Purity 

(%)
Type

Vendor /Catelog

number

nCeO2 25 94±4 20±5 99.95
Cubic 

Fluorite

Sigma-Aldrich 

(product. No. 

643009)

nAl2O3 <50 637±245 38±3 99.9

Gamma 

phase

Sigma-Aldrich 

(product. No. 

544833)

2.3. ROS generation by NPs and underlying 

mechanisms: Characterization of CeO2 and 

Al2O3 NPs

CeO2 CeO2

200 nm

Al2O3

500 nm
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•− only.

Al2O3 NPs were found to produce 1O2

only.

2.4. ROS generation by NPs and underlying 

mechanisms: ROS measurement results

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng 

Chen. Mechanism of Photogenerated Reactive Oxygen 

Species and Correlation with Antibacterial Properties of 

Engineered Metal Oxide Nanoparticles. In preparation. 
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The band edge positions of CeO2 and Al2O3

NPs in contact with the water solution at pH

5.6. The lower edge of EC (blue color) and

upper edge of EV (red color) are presented

along with the band gap in eV. The energy

scale is indicated either the normal hydrogen

electrode (NHE) or the absolute vacuum scale

(AVS) as a reference. On the right side the

redox potentials of ROS redox couples are

presented.

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. 

Mechanism of Photogenerated Reactive Oxygen Species and 

Correlation with Antibacterial Properties of Engineered Metal Oxide 

Nanoparticles. In preparation. 

The photon energy is approximately 3.4 eV 

for the 365-nm wavelength of incident UV.

2.5. ROS generation by NPs and underlying 

mechanisms: ROS generation mechanism
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3.2. Preliminary indicator development 

for acute toxicity of ten engineered NPs 

to paramecium
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3.3. Preliminary indicator development

for acute toxicity of ten engineered NPs

to paramecium

Tested 

materials

48-h LC50

(mg/L)

95% confidence 

intervals (mg/L)

Adsorption rate 

constant (m/s)

Energy 

barrier (kT)

nAl2O3 9269.2 4783.135409.6 6.6210-21 33.9

nCeO2 1832.5 1739.91925.1 5.1510-9 7.81

nSiO2 442.6 337.0559.8 2.7510-10 10.9

nZnO 573.8 448.6707.9 5.4610-8 5.71

bZnO 663.7 581.6745.7 1.5010-8 6.75

nCuO 0.98 0.841.25 9.2610-6 1.61

nFe2O3 0.81 0.601.09 3.0510-5 1.36

nTiO2 7215.2 3730.138142.7 1.4510-19 31.8

C60 14918.3 3965.942272.1 3.8410-22 54.4

MWCNT 8708.0 5686.215449.8 N.A. N.A.

GO 6562.6 6304.77109.7 N.A. N.A.

ZnCl2 175.2 147.7191.3 N.A. N.A.
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nAl2O3 0

nCeO2 0

nSiO2 0

nZnO 22.89  0.07

bZnO 19.91  0.23

nCuO 0.36  0.04

nFe2O3 0

nTiO2 0

Ion release may not govern the nanotoxicity

Adsorption rate constant of NPs to cell 

membrane may be used to pre-evaluate the 

toxicity of NPs
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3.4. Preliminary indicator development

for acute toxicity of ten engineered NPs

to paramecium
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Interaction energy barrier could be a 

substitution for adsorption rate constant

Interaction energy barrier is well related 

with the acute toxicity dataKungang Li, et al. Environ. Toxicol. Chem. Under review
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Industrial Interactions and 

Technology Transfer

• Collect toxicity data of a variety of nanomaterials

• Develop models to evaluate and predict the toxicity of

nanomaterials, which saves time and money that are invested on

expensive conventional toxicity experiments

• Guide academia and industry to produce envionmental benign

semiconductor nanomaterials, on the basis of analyzing

physicochemical properties of nanomaterials
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Future Plans

Next Year Plans
• Continue toxicity tests with various typical cells (e.g., bacteria

and paramecium) and semiconductor nanoparticles of high

interest;

• Investigate the entry route of nanoparticles into cell, and

evaluate the role of endocytosis and direct penetration

• Develop AFM-based imaging tools for assessing the genotoxicity

of nanoparticles (e.g., the inhibition of DNA transcription by

nanoparticles)

Long-Term Plans
• Accumulating sufficient data to categorize and prioritize

relevant nanoparticles and their characteristics that are used for

establishing robust and accurate predictive QSAR models.

• Provide fundamental information for manufacturing

environmental benign semiconductor nanomaterials for

industries.
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