Development of Quantitative Structure-Activity Relationship for Prediction of Biological Effects of Nanoparticles Associated with Semiconductor Industries (Task Number: 425.025)

PIs:

• Yongsheng Chen, Environmental Engineering, Georgia Institute of Technology (GIT) Email: <u>vongsheng.chen@ce.gatech.edu</u>

Graduate Students:

• Kungang Li, PhD student, Environmental Engineering, GIT

Other Researchers:

- Wen Zhang, Postdoctoral Fellow, Environmental Engineering, GIT
- Yang Li, Visiting Ph.D. student, Department of Science and Environmental Engineering at Beijing Normal University
- **Cost Share (other than core ERC funding):**
 - \$25 k start-up fund from ASU;
 - 60k start-up for consumables and \$152k funds from GIT for AFM and other lab instrument purchase

Develop a quantitative structure-activity relationships (QSARs) model for prediction of the biological effects of engineered nanoparticles (NPs) associated with semiconductor industries. To pursue this goal, our approach mainly includes:

- Establish a comprehensive understanding of relevant physiochemical properties of semiconductor nanomaterials that govern their fate, transport and biological interactions.
- Collect sufficient experimental and theoretical data showing the environmental behaviors and the associated biological consequences.

ESH Metrics and Impact

- 1. Our work aims at development of fundamental understanding of cytotoxicity of semiconductor NPs to human health and provides a comprehensive database and clear definition of ESH-problematic manufactured nanomaterials.
- 2. Based on the quantitative structure-activity relationship (QSAR) model we plan to establish, problematic nanomateirals from industrial manufacturers could be predicted, identified, and effectively modified to produce environmental benign semiconductor nanomaterials.

Motivation

- Insufficient knowledge of the environmental fate, transport, transformation, and biological interactions;
- Lack of nanotoxicity data on new model biosystems;
- New criteria that are used to categorize and prioritize nanomaterials and their relevant properties.

Method of Approach

Highlight of Results

- 1. <u>Aggregation kinetics of NPs in aqueous</u> <u>solution;</u>
- 2. <u>ROS generation by NPs and</u> <u>underlying mechanisms</u>
- 3. <u>Acute toxicity of ten engineered NPs to</u> <u>paramecium and development of an</u> <u>indicator for pre-evaluating the</u> <u>toxicity of NPs</u>

1.1. Aggregation kinetics of NPs in aqueous

solution CeO₂ NP characterizations XRD Particle size distribution {220] 20 {311} Intensity (%) 2 01 (%) 5 12 CeO₂ nanoparticle Intensity (a.u.) concentration: 10 mg/L PDI: 0.129 0 10 100 1000 10000 1 40 60 Particle Diameter (nm) 30 25 Zeta Potential (mV) 3 20 EPM (10⁻⁸ m²/Vs) 2 15 10 0 5 -1 0 -2 -5 Ô ≙ R DHZPC -3 -10 Ð -15 0.01 3 4 5 6 7 8 Q 10 11 pН 30 1.5 Zeta Potential, ζ (mV) 91 8 05 75 75 95 85 92 82 $= -3.231\log(C) + 15.743$ $R^2 = 0.967$ 0.5 0 $\zeta = -2.093\log(C) + 15.85$ $R^2 = 0.9873$

14

0.0001

0.001

TEM

AFM

1.2. AggregationkineticsofNPsinaqueous solutionInteriment offect

Kungang Li, Wen Zhang, Ying Huang, Yongsheng Chen. J. Nanoparticle. Res. 2011

1.3. Aggregation kinetics of NPs in aqueous solution

Kungang Li and Yongsheng Chen. J. Hazard. Mater. 2012

Aggregation kinetics of N aqueous solution

Attachment efficiency model on the basis of Maxwell-Boltzmann distribution

Wen Zhang, John Crittenden, Kungang Li, Yongsheng Chen. ES&T 2012

2.1. ROS generation by NPs and underlying mechanisms: Cytotoxic implication

- High surface area of NPs provides more reactive sites for ROS production
- ROS formed in NP suspension usually consist of superoxide radical (O₂^{•-}), hydroxyl radicals (•OH), and singlet oxygen (¹O₂)
- Representative reaction stochiometry (TiO₂ as an example):

$$\begin{aligned} \operatorname{TiO}_{2} \rightarrow^{hv} \operatorname{TiO}_{2}(h_{vb}^{+} + e_{cb}^{-}) \\ \operatorname{O}_{2} + e_{cb}^{-} \rightarrow \operatorname{O}_{2} \bullet^{-} \\ \operatorname{O}_{2} \bullet^{-} + e_{cb}^{-} + 2 \operatorname{H}^{+} \rightarrow \operatorname{H}_{2} \operatorname{O}_{2} \\ \operatorname{O}_{2} \bullet^{-} + \operatorname{H}_{2} \operatorname{O}_{2} \rightarrow \bullet \operatorname{OH}^{+} + \operatorname{OH}^{-} + \operatorname{O}_{2} \\ e_{cb}^{-} + \operatorname{H}_{2} \operatorname{O}_{2} \rightarrow \bullet \operatorname{OH}^{+} + \operatorname{OH}^{-} \\ h_{vb}^{+} + \operatorname{OH}^{-} \rightarrow \bullet \operatorname{OH}^{+} \\ h_{vb}^{+} + \operatorname{H}_{2} \operatorname{O}^{-} \operatorname{H}^{+} \bullet \operatorname{OH}^{-} \\ 2 \bullet \operatorname{OH}^{-} \rightarrow \operatorname{H}_{2} \operatorname{O}_{2} \end{aligned}$$

Implications:

Oxidant injury of cells, lipid peroxidation, enzyme or protein oxidation, membrane pitting, changes in membrane permeability, etc.

2.2. ROS generation by NPs and underlying mechanisms: ROS measurement using indicator method

2.3. ROS generation by NPs and underlying mechanisms: Characterization of CeO₂ and <u>Al₂O₃ NPs</u>

Particles	Nominal TEM diameter (nm)	Hydrodyna mic radius (nm)	Zeta potential (mV)	Purity (%)	Туре	Vendor /Catelog number
nCeO ₂	25	94±4	20±5	99.95	Cubic Fluorite	Sigma-Aldrich (product. No. 643009)
nAl ₂ O ₃	<50	637±245	38±3	99.9	Gamma phase	Sigma-Aldrich (product. No. 544833)

2.4. ROS generation by NPs and underlying mechanisms: ROS measurement results

 $\succ \text{CeO}_2 \text{ NPs were found to produce } O_2^{\bullet} \text{ only.} \qquad \text{Species and Co}$

Chen. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with Antibacterial Properties of Engineered Metal Oxide Nanoparticles. *In preparation*.

2.5. ROS generation by NPs and underlying mechanisms: ROS generation mechanism

The band edge positions of CeO_2 and Al_2O_3 NPs in contact with the water solution at pH 5.6. The lower edge of E_C (blue color) and upper edge of E_V (red color) are presented along with the band gap in eV. The energy scale is indicated either the normal hydrogen electrode (NHE) or the absolute vacuum scale (AVS) as a reference. On the right side the redox potentials of ROS redox couples are presented.

The photon energy is approximately 3.4 eV for the 365-nm wavelength of incident UV.

Yang Li, Wen Zhang, Junfeng Niu, and Yongsheng Chen. Mechanism of Photogenerated Reactive Oxygen Species and Correlation with Antibacterial Properties of Engineered Metal Oxide Nanoparticles. *In preparation*.

3.1. Preliminary indicator development for acute toxicity of ten engineered NPs to *paramecium*

3.2. Preliminary indicator development for acute toxicity of ten engineered NPs to paramecium

48-h LC₅₀ acute toxicity test results

SRC/SEMATECH Engineering Research Center for Environmentally Benign Semicondu

<u>3.3.</u>	Pre	elimina	ry in	<u>dicat</u>	or deve	<u>elopment</u>
for	acut	te toxio	<u>city of</u>	ten	enginee	ered NPs
<u>to p</u>	aran	<u>necium</u>	Tested NPs	Ion release ratio (%)		
	1-	C LINE AND	D_{∞}		nAl ₂ O ₃	0
$\frac{d1}{dt} =$	$k_a C_w$ $\kappa_a =$	$= \frac{\int_{h=\delta_{IFBL}}^{h=\delta_{IFBL}} \left[\left(1 + R_H / h \right) \right] dt}{\left(1 + R_H / h \right)}$	$\exp\left(V^{TOT}(h)/kT\right) -$	1 dh	nCeO ₂	0
					- nZnO	0 22.89 ± 0.07
Tested	48-h LC ₅₀ (mg/I)	95% confidence	Adsorption rate	Energy	bZnO	19.91 ± 0.23
materials	(mg/L)	intervals (mg/L)	constant (m/s)	Darrier (KT)	nCuO	0.36 ± 0.04
nAl ₂ O ₃	9269.2	4783.1-35409.6	6.62×10 ⁻²¹	33.9	nFe ₂ O ₃	0
nCeO ₂	1832.5	1739.9–1925.1	5.15×10-9	7.81	nTiO ₂	0
nSiO	1126	337.0-559.8	2 75 ×10 ⁻¹⁰	10.0	Ion release may n	ot govern the nanotoxic
115102	442.0	557.0-559.8	2.75×10	10.9	16000	
nZnO	573.8	448.6-707.9	5.46×10 ⁻⁸	5.71	13000	
bZnO	663.7	581.6-745.7	1.50×10 ⁻⁸	6.75		$y = -324.8\ln(x) - 4672.8$ $P_2 = 0.8867$
nCuO	0.98	0.84-1.25	9.26×10 ⁻⁶	1.61		N ⁻ – 0.0007
nEa O	0.01	0.60 1.00	2.05.10-5	1.20		
nre ₂ O ₃	0.81	0.00-1.09	5.05×10°	1.30		
nTiO ₂	7215.2	3730.1-38142.7	1.45×10 ⁻¹⁹	31.8	4 1000 -]	0 00
C ₆₀	14918.3	3965.9-42272.1	3.84×10 ⁻²²	54.4		
MWCNT	8708.0	5686.2-15449.8	N.A.	N.A.	1E-22 1. Aden	E-1/ IE-12 IE-V/ I protion rate constant (m/s)
<u> </u>	(5(2))	(204 7 7100 7	- ···			$a = \frac{1}{2} \left(\frac{1}{2} + \frac{1}{2} \right)$
GO	6562.6	6304./-/109./	N.A.	N.A.	Ausorption rate	constant of NPS to cell
$ZnCl_2$	175.2	147.7-191.3	N.A.	N.A.	membrane may	be used to pre-evaluate

3.4. Preliminary indicator development for acute toxicity of ten engineered NPs to paramecium 1E-04 00

Kungang Li, et al. Environ. Toxicol. Chem. Under review

Interaction energy barrier is well related with the acute toxicity data

~⁰00

1E-06

1E-08

Industrial Interactions and Technology Transfer

- Collect toxicity data of a variety of nanomaterials
- Develop models to evaluate and predict the toxicity of nanomaterials, which saves time and money that are invested on expensive conventional toxicity experiments
- Guide academia and industry to produce envionmental benign semiconductor nanomaterials, on the basis of analyzing physicochemical properties of nanomaterials

Future Plans

Next Year Plans

- Continue toxicity tests with various typical cells (e.g., *bacteria and paramecium*) and semiconductor nanoparticles of high interest;
- Investigate the entry route of nanoparticles into cell, and evaluate the role of endocytosis and direct penetration
- Develop AFM-based imaging tools for assessing the genotoxicity of nanoparticles (e.g., the inhibition of DNA transcription by nanoparticles)

Long-Term Plans

- Accumulating sufficient data to categorize and prioritize relevant nanoparticles and their characteristics that are used for establishing robust and accurate predictive QSAR models.
- Provide fundamental information for manufacturing environmental benign semiconductor nanomaterials for industries.

Publications, Presentations, and Recognitions/Awards

Publications (Total 12: 8 published, 2 accept, and 2 submitted)

- 1. Kungang Li, Wen Zhang, Ying Huang, Yongsheng Chen. Aggregation kinetics of CeO₂ nanoparticles in KCl and CaCl₂ solutions: Measurements and modeling. *Journal of Nanoparticle Research*. 2011, 13, 6483
- 2. Kungang Li and Yongsheng Chen. Effect of natural organic matter on the aggregation kinetics of CeO₂ nanoparticles in KCl and CaCl₂ solutions: Measurements and modeling. *Journal of Hazardous Materials*. DOI: 10.1016/j.jhazmat.2012.01.013.
- **3.** Wen Zhang, Ying Yao, Kungang Li, Ying Huang, Yongsheng Chen, "Influence of dissolved oxygen on aggregation kinetics of citratecoated silver nanoparticles", *Environmental Pollution*, (2011), doi:10.1016/j.envpol.2011.07.013
- 4. Wen Zhang, Ying Yao, Nicole Sullivan, Yongsheng Chen, "Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics", *Environmental Science and Technology*, 45(2011):4422-4428
- 5. Wen, Zhang, Bruce Rittman, and Yongsheng Chen, "Size effects on adsorption of hematite nanoparticles on Ecoli cells.", *Environmental Science and Technology*, 45 (2011): 2172–2178
- 6. Wen Zhang, Ying Yao, and Yongsheng Chen, "Imaging and Quantifying the Morphology and Nanoelectrical Properties of Quantum Dot Nanoparticles Interacting with DNA", *J. Phys. Chem. C*, 15 (2011): 599–606
- 7. Wen Zhang, Andrew G. Stack, and Yongsheng Chen, "Interaction Force Measurement between E. coli Cells and Nanoparticles Immobilized Surfaces with Using AFM", *Colloids and Surfaces B: Biointerfaces*, 82 (2011) 316–324
- 8. Wen Zhang, Madhavi Kalive, David G Capco, and Yongsheng Chen, "Adsorption of Hematite Nanoparticles onto Caco-2 Cells and the Cellular Impairments: effect of particle size", *Nanotechnology*, 21 (2010): 355103-35512
- 9. Wen Zhang, John Crittenden, Kungang Li, Yongsheng Chen. Attachment efficiency of nanoparticle aggregation in aqueous dispersions: Modeling and experimental validation. *Environmental Science and Technology*. Accepted.
- **10.** Li, Yang; Zhang, Wen; Li, Kungang; Yao, Ying; Niu, Junfeng; Chen, Yongsheng, '' Oxidative Dissolution of Polymer-Coated CdSe/ZnS Quantum Dots under UV Irradiation: Mechanisms and Kinetics ", *Environmental Pollution*, (2011), accept
- **11.** Kungang Li, Ying Chen, Wen Zhang, Zhichao Pu, Lin Jiang, Yongsheng Chen. Preliminary indicator development for acute toxicity of ten engineered nanoparticles to *paramecium*. *Environmental Toxicology and Chemistry*. submitted.
- 12. Wen Zhang, Joseph Hughes, and Yongsheng Chen, "Impacts of Hematite Nanoparticle Exposure on Biomechanical and Surface Electrical Properties of E. coli Cells", *Applied and Environmental Microbiology*, (2011), submitted

Presentation

During year 2008-2010, Wen Zhang attended and made oral presentations in 8 national conferences, including ASM, ACS, USEPA grantees meetings, ICEIN, SRC, IENC, and etc.

Award

Wen Zhang, Recipient of Simon Karecki Award 2011