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SUMMARY

Min-max optimization is a classic problem with applications in constrained optimization,

robust optimization, and game theory. This dissertation covers new convergence rate results

in min-max optimization. We show that the classic fictitious play dynamic with lexicographic

tiebreaking converges quickly for diagonal payoff matrices, partly answering a conjecture

by Karlin from 1959. We also show that linear last-iterate convergence rates are possible for

the HAMILTONIAN GRADIENT DESCENT algorithm for the class of “sufficiently bilinear”

min-max problems. Finally, we explore higher-order methods for min-max optimization

and monotone variational inequalities, showing improved iteration complexity compared to

first-order methods such as Mirror Prox.
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CHAPTER 1

INTRODUCTION

Game dynamics have been central to many exciting recent developments in machine learning.

In some cases, game-playing is an inherent part of the problem, as in Deepmind’s Alphastar

program for playing Starcraft [Vin+19]. In other cases, game dynamics are used as a

tool to train complex systems, as in Generative Adversarial Networks (GANs) [Goo+14].

These applications often involve finding a Nash Equilibrium in a zero-sum game, which is

equivalent to min-max optimization.

This work addresses several open questions related to solving min-max optimization

problems. We begin in Section 1.1 by describing some of the many settings where min-max

problems arise. We then summarize the results of this thesis in Section 1.2.

1.1 Examples of min-max problems

Min-max problems typically take the following form:

min
x∈X

max
y∈Y

g(x, y) (1.1)

where g : X × Y → R maps from constraint sets X and Y to some real number. Solving

(1.1) is equivalent to finding the Nash Equilibrium in a zero-sum game, and this perspective

has been fruitful in developing algorithms for optimization problems. One of the earliest

applications of min-max optimization was in solving linear programs, where duality of linear

programs can be viewed as a consequence of the min-max theorem [Dan51; Adl13]. This

perspective has led to the development of primal-dual algorithms for solving linear programs.

In addition to explicitly motivating algorithms, the min-max optimization perspective has

also provided useful interpretations of existing algorithms. For instance, the Boosting
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algorithm of [FS96] can be viewed as a game between a player that selects distributions

and a player that chooses a weak oracle. Another recent line of work [AW17; ALLW18a;

WA18] explored convex optimization through a min-max formulation called the Fenchel

game. Given an optimization problem over a convex function f , we can write:

min
x
f(x) = min

x
max
y
〈y, x〉 − f ∗(y)

where f ∗ is the Fenchel conjugate of f . As shown in [AW17; ALLW18a; WA18], popular

convex optimization algorithms such as Nesterov’s accelerated gradient descent [Nes83]

and Frank-Wolfe [FW56] can be written in terms of certain no-regret update rules for the

x and y players in the Fenchel game. This representation also provides new methods for

proving convergence rates of these algorithms.

When (1.1) is viewed as a two-player game, the solution to (1.1) can be thought of as

a point x∗ that is robust to all possible plays of the y-player. This notion of robustness

has been useful in many domains. For example, one can write a constrained optimization

problem as an equivalent augmented Lagrangian as follows:

min
x∈X

s.t. ∀i∈[n], hi(x)=0

f(x) = min
x∈X

max
λ

f(x)−
n∑
i=1

λihi(x). (1.2)

Then the resulting min-max problem can be viewed as a two-player zero-sum game in which

the λ-player wants to find indices where hi(x) 6= 0 to maximize her reward, while the

x-player wants to find a point that is robust to the constraint player’s actions. [FS96] show

how this perspective can be useful when the number of constraints is large, as one can find an

approximate min-max with suboptimality that scales only log arithmically with the number

of constraints. This approach has been applied to domains such as differential privacy

and fairness [HRU13; Aga+18]. Min-max problems also arise naturally in the context of

adversarial robustness, in which one wants to guarantee accuracy bounds for a classifier,

such as a neural network, in the face of inputs that undergo small adversarial perturbations.

2



For instance, [Mad+18] describe adversarial robustness as solving the following min-max

problem:

min
θ
ρ(θ),where E(x,y)∼D

[
max
δ∈S

L(θ, x+ δ, y)

]

where D is a distribution over true example-label pairs, S is some space of perturbations

(e.g. an `∞ ball), and L(θ, x, y) is a loss function for a classifier θ on an input x with true

label y.

1.2 Summary of Contributions

In this section, we summarize the contributions in this dissertation, which relate to algorithms

for solving min-max problems. Just as gradient descent is ubiquitous in vanilla optimization

problems, the analogous gradient descent/ascent (GDA) dynamic is a popular algorithm for

min-max optimization. GDA is an instance of a no-regret algorithm, which is a broad and

well-studied class of algorithms that has provable guarantees for min-max settings. While

no-regret algorithms have seen extensive use, there are many cases in which such algorithms

are undesirable and where the no-regret analysis no longer provides provable guarantees.

One example is GAN training, in which GDA and other no-regret algorithms can provably

lead to cycling and non-convergence. Given these limitations, it is natural to ask whether

one can solve min-max problems without using the no-regret framework.

This dissertation focuses on several new results that go beyond the no-regret framework.

In Chapter 3, we explore the classic fictitious play (FP) dynamic of [Bro49] for solving Nash

Equilibria in zero-sum matrix games. FP is a simple dynamic that does not fall under the

no-regret framework. Nearly 70 years ago it was shown by Robinson [Rob51] that FP does

converge to the Nash Equilibrium, although the rate she proved was exponential in the total

number of actions of the players. In 1959, Karlin [Kar59] conjectured that FP converges at

the more natural rate ofO(1/
√
k). However, Daskalakis and Pan [DP14] disproved a version

3



of this conjecture in 2014, showing that an exponentially-slow rate can occur, although their

result relied on adversarial tie-breaking. We show that Karlin’s conjecture is indeed correct

in two major instances if you appropriately handle ties. First, we show that if the game

matrix is diagonal and ties are broken lexicographically, then FP converges at a O(1/
√
k)

rate, and we also show a matching lower bound under this tie-breaking assumption. Our

second result shows that FP converges at a rate of O(1/
√
k) when the players’ decision sets

are smooth, and Õ(1/k) under an additional assumption. In this last case, we also show that

a modification of FP, known as Optimistic FP, converges at a rate of O(1/k). This chapter is

based on joint work with Andre Wibisono and Jacob Abernethy [ALW19a].

In Chapter 4, we focus on last-iterate convergence guarantees, motivated by nonconvex

min-max problems in which iterate averaging is undesirable, such as the GAN setting.

While the no-regret framework gives average-iterate convergence results in convex-concave

problems, it says virtually nothing about the last-iterates of no-regret dynamics. In fact, one

can show that a broad class of no-regret algorithms provable diverge or cycle even in simple

convex-concave games [MPP18], and previous work on global last-iterate convergence rates

has been limited to the bilinear and convex-strongly concave settings. We show that the

HAMILTONIAN GRADIENT DESCENT (HGD) algorithm achieves linear convergence in a

variety of more general settings, including convex-concave problems that satisfy a novel

sufficiently bilinear condition. We also prove convergence rates for stochastic HGD and

for some parameter settings of the Consensus Optimization algorithm of [MNG17]. This

chapter is based on joint work with Andre Wibisono and Jacob Abernethy [ALW19b].

In Chapter 5, we provide higher-order methods for solving constrained convex-concave

min-max problems and monotone variational inequalities with higher-order smoothness. No-

regret algorithms are typically first-order, and lower bounds prevent first-order algorithms

from achieving better than Ω(1/k) iteration complexity. We are able to improve upon the

iteration complexity of first-order methods by using higher-order methods. In the min-max

setting, we give an algorithm HIGHERORDERMIRRORPROX that achieves an iteration

4



complexity of O(1/k
p+1
2 ) when given access to an oracle for minimizing a pth order Taylor

expansion and when the pth-order derivatives are Lipschitz continuous. We give analogous

rates for the weak monotone variational inequality problem. For p > 2, our results improve

on the iteration complexity of the first-order Mirror Prox method of [Nem04] and the second-

order method of [MS12]. We further instantiate our entire algorithm in the unconstrained

p = 2 case. This chapter is based on joint work with Brian Bullins [BL19].

1.3 Notation and basic definitions

We now review some basic notation and definitions. We go over some more background on

game theory and common approaches for solving min-max problems in Chapter 2.

We use [n] to denote the set {1, ..., n}. In denotes the n× n identity matrix. We let ei

denote the ith elementary basis vector. For a vector v, we let v(i) denote the ith entry of v.

Let ∆n = {x ∈ Rn : xi ≥ 0,
∑n

i=1 xi = 1} be the (n− 1)-dimensional simplex. We use ∇

to denote the Jacobian operator. We use ||·|| to denote an arbitrary norm and ||·||∗ to denote

its dual norm. We use ||·||2 to denote the Euclidean norm for vectors and the operator norm

for matrices. For a symmetric matrix A, we will use λmin(A) and λmax(A) to denote the

smallest and largest eigenvalues of A. For a general real matrix A, σmin(A) and σmax(A)

denote the smallest and largest singular values of A.

We use D : Z × Z → R to denote a Bregman divergence over a distance generating

function d : Z → R that is 1-strongly convex with respect to some norm ||·||. Recall that

the definition of a Bregman divergence is as follows:

D(u, v) = d(u)− d(v)− 〈∇d(v), u− v〉 (1.3)

for all u, v ∈ Z .

Definition 1.3.1. A critical point of f : Rd → R is a point x ∈ Rd such that∇f(x) = 0.

Definition 1.3.2 (Convexity / Strong convexity). Let µ ≥ 0. A function f : Rd → R is
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µ-strongly convex if for any u, v ∈ Rd, f(u) ≥ f(v) + 〈∇f(v), u− v〉+ µ
2
||u− v||. When

f is twice-differentiable, f is µ-strongly-convex iff for all x ∈ Rd,∇2f(x) � µI . If µ = 0

in either of the above definitions, f is called convex.

Definition 1.3.3 (Monotone / Strongly monotone). Let µ ≥ 0. A vector field v : Rd → Rd

is µ-strongly monotone if for any x, y ∈ Rd, 〈x− y, v(x)− v(y)〉 ≥ µ ||x− y||2. If µ = 0,

v is called monotone.

Given a min-max optimization objective g : X ×Y → R, we will often consider x and y

to be components of one vector z = (x , y). We will use subscripts to denote iterate indices.

Following [Bal+18], we use

ξ = (∇xg,−∇yg) (1.4)

to denote the signed vector of partial derivatives.
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CHAPTER 2

BACKGROUND

In this chapter, we review some important background on game theory and min-max

optimization. A two-player zero-sum game is defined by an objective g : X × Y → R such

that in every round of the game, the x and y player choose x ∈ X and y ∈ Y respectively and

then the x player pays g(x, y) to the y player. As such, the x player would like to minimize

g(x, y) and the y player would like to maximize g(x, y). The x player would like to solve

the min-max problem (1.1), as doing so will guarantee for herself the minimax value of the

game, which she achieves by playing the minimax point x∗ = arg minx∈X maxy∈Y g(x, y).

Likewise, the y player wants to play the maximin point y∗ = arg maxy∈Y minx∈X g(x, y),

which guarantees her the maximin value of the game maxy∈Y minx∈X g(x, y).

The pair of points (x∗, y∗) forms a Nash Equilibrium, i.e. it satisfies the following

inequality for all x ∈ X and y ∈ Y:

g(x∗, y) ≤ g(x∗, y∗) ≤ g(x, y∗) (2.1)

We will also call such points min-max solutions or saddle point solutions. We can see that

solving the minimax and maximin problems for each player respectively is equivalent to

finding the Nash Equilibrium of the zero-sum game.

One popular class of zero-sum games is the class of convex-concave games, where g is a

continuous function that is convex in its first argument and concave in its second argument

and X and Y are compact convex sets. One of the most fundamental results in game theory

is Von Neumann’s celebrated min-max theorem [Neu28], which holds for convex-concave
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games, and which states the following:

min
x∈X

max
y∈Y

g(x, y) = v = max
y∈Y

min
x∈X

g(x, y) (2.2)

where v is a real value we will call the value of the game.

2.1 Approximately solving a game

We seek algorithms to find approximate Nash Equilibria or approximate min-maxes in

convex-concave zero-sum games. One classic and natural solution concept is the duality

gap ψ : X × Y → R:

ψ(x, y) = max
ŷ∈Y

g(x, ŷ)−min
x̂∈X

g(x̂, y) (2.3)

The duality gap is implicitly defined in terms of a min-max objective g, but we leave it

implicit because the relevant g will be clear from context. We can see that:

ψ(x, y) ≥ max
ŷ∈Y

g(x, ŷ)−min
x̂∈X

max
ŷ∈Y

g(x̂, ŷ)

and ψ(x, y) ≥ max
ŷ∈Y

min
x̂∈X

g(x̂, ŷ)−min
x̂∈X

g(x̂, y)

From (2.2), we can then see that if ψ(x, y) ≤ ε, then g(x, y) is within ε of v, so both players

achieve within ε of their optimum payoff value.

One of the oldest algorithms for finding a min-max is the fictitious play (FP) algorithm

proposed by Brown in 1949 [Bro49; Bro51]. In 1951, Robinson proved that FP converges to a

min-max at a rate ofO(1/k
1

2n−2 ). FP applies to the matrix game case where g(x, y) = x>Ay

for some matrix A ∈ Rn×m and where X and Y are probability simplices. Later advances

[Bla56; Han57; FS99] showed a general method for finding min-max points in convex-

concave games using no-regret online learning algorithms, which we describe in the next

section.
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2.1.1 Using no-regret algorithms to solve games

The online learning setting takes place over a series of K rounds, where in each round k,

the learner plays some iterate zk from a convex set Z and receives a convex payoff function

`k : Z → R. The goal is to minimize the regret, defined as:

RegretK =
K∑
k=1

`k(zk)−min
z∈Z

K∑
k=1

`k(z) (2.4)

Essentially, the regret measures how well the algorithm performs compared to the single

best point within Z . A no-regret algorithm is one such that the average regret RegretK
K

goes

to 0 as K goes to infinity. An important feature of the online learning framework is that the

loss functions `k may be chosen completely adversarially, which means that algorithms with

no-regret algorithms are in some sense robust.

One classic application of no-regret algorithms is to find approximate Nash Equilibria in

convex-concave zero-sum games [Bla56; Han57; FS99]. To do so, we use the following

procedure:

Algorithm 1 No-regret algorithms for solving a game
Input: K > 0

for k = 1 to K do

xk is selected according to no-regret algorithm OAlgx

yk is selected according to (possibly different) no-regret algorithm OAlgy

x-player receives loss function `xk(·) = g(·, yk)

y-player receives loss function `yk(·) = −g(xk, ·)

end for

Let (x̄K , ȳK) = ( 1
K

∑K
k=1 xk,

1
K

∑K
k=1 yk)

return (x̄, ȳ)

From this procedure, we can prove the following classic theorem:
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Theorem 2.1.1. Suppose we run Algorithm 1 with algorithms OAlgx and OAlgy whose

regret after K rounds is bounded by RegretxK and RegretyK respectively. Then the output of

Algorithm 1 satisfies ψ(x̄, ȳ) ≤ RegretxK+RegretyK
K

.

Proof. By the regret bound of OAlgx, we have:

1

K

K∑
k=1

g(xk, yk) ≤ min
x∈X

1

K

K∑
k=1

g(x, yk) +
RegretxK
K

≤ min
x∈X

g(x, ȳK) +
RegretxK
K

where the second inequality follows by Jensen’s inequality and the fact that g is concave in

y. Likewise, we can use the regret bound of OAlgy to show:

1

K

K∑
k=1

g(xk, yk) ≥ max
y∈Y

1

K

K∑
k=1

g(xk, y)− RegretyK
K

≥ max
y∈Y

g(x̄K , y)− RegretyK
K

Putting these two together, we get:

max
y∈Y

g(x̄K , y)−min
x∈X

g(x, ȳK) ≤ RegretyK
K

+
RegretxK
K
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CHAPTER 3

FAST CONVERGENCE OF FICTITIOUS PLAY

In this chapter, we consider algorithms for finding Nash Equilibria in zero-sum games where

g(x, y) = x>Ay. Fictitious play (FP) is one of the simplest and most natural dynamics for

such games. Originally proposed by [Bro49], FP is still popular today — a variant of it was

used in training Deepmind’s AlphaStar [Vin+19]. The FP dynamic imagines that each player

considers the empirical distribution of the actions of the other player and selects their action

as the best response to this statistic. Nearly 70 years ago it was shown by Robinson [Rob51]

that FP does converge to the Nash Equilibrium, although the rate she proved was exponential

in the total number of actions of the players. In 1959, Karlin [Kar59] conjectured that

FP converges at the more natural rate of O(1/
√
k). However, Daskalakis and Pan [DP14]

disproved a version of this conjecture in 2014, showing that an exponentially-slow rate can

occur, although their result relied on adversarial tie-breaking. In this chapter, we show that

Karlin’s conjecture is indeed correct in two major instances if you appropriately handle ties.

First, we show that if the game matrix is diagonal and ties are broken lexicographically,

then FP converges at a O(1/
√
k) rate, and we also show a matching lower bound under this

tie-breaking assumption. Our second result shows that FP converges at a rate of O(1/
√
k)

when the players’ decision sets are smooth, and Õ(1/k) under an additional assumption. In

this last case, we also show that a modification of FP, known as Optimistic FP, converges at

a rate of O(1/k).

3.1 Introduction

The FP dynamic of [Bro49] imagines that each player considers the empirical distribution

of the actions of the other player and selects their action as the best response to this statistic.

Mathematically speaking, we can define state variables xk, yk at each iteration k and update
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according to the rule

xk+1 = xk + arg min
x∈∆n

x>Ayk

yk+1 = yk + arg max
y∈∆m

x>k Ay.

(3.1)

Despite its simplicity, there still remain unanswered questions regarding the FP dynamic.

Julia Robinson [Rob51] proved in the 1950s that the duality gap of the scaled state variables

(x̂k, ŷk) = ( 1
k
xk,

1
k
yk) is bounded by O(1/k

1
n+m−2 ). Robinson’s result utilized a recursive

argument that introduced a 1
k

factor for each available action of the players, and she did not

address whether this was a tight rate. In what is often known as Karlin’s Conjecture from

1959, Samuel Karlin [Kar59] suggested that the true rate may be significantly faster, perhaps

on the order of O
(

1√
k

)
. This remained an open question for decades, but was seemingly

put to rest in 2014 by Daskalakis and Pan [DP14] who were able to produce an instance

of a game and a FP dynamic for which the convergence rate was indeed exponential in

the number of actions, matching the bound of Robinson. Their lower bound construction

follows along the same lines as the upper bound of Robinson, recursively generating harder

instances as more actions are given to the players.

We address the issue of ties in two different ways. We first consider the convergence of

a well-defined version FP with lexicographic tie-breaking, where the arg min and arg max

functions break ties by selecting the winner with the smallest index. We show that this

version of FP has a rate of O
(

1√
k

)
for a class of payoff matrices which includes the matrix

used in the lower bound of Daskalakis and Pan. We further provide a lower bound of

Ω
(

1√
k

)
for one such matrix in the class, yet we leave open the question of whether the

O
(

1√
k

)
upper bound is true for any arbitrary payoff matrix. Second, as the issue of ties is

in part due to the fact that the decision sets ∆n and ∆m are polytopes with flat boundaries,

we consider a scenario where the decision sets are instead slightly round bodies. In this

setting, we are able to establish that the convergence rate is guaranteed to be O
(

1√
k

)
, and

in some cases is Õ
(

1
k

)
. We also show that a modification of FP known as Optimistic FP,
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converges at a rate of O
(

1
k

)
.

3.2 Related work

We now give a brief overview of prior work on fictitious play, game dynamics, and what

results exists for convergence to equilibrium.

The original formulation of FP was by Brown [Bro49; Bro51], where he mentions both

discrete and continuous time dynamics. Robinson [Rob51] proved the slow convergence

rate of O(k−
1

m+n−2 ) for FP in discrete time, under arbitrary tie-breaking. Karlin [Kar59]

later conjectured that the convergence rate was O(k−
1
2 ). Danskin [Dan81] simplified

and extended Robinson’s result to when the min and max have errors. Daskalakis and

Pan [DP14] constructed a counter-example for Karlin’s strong conjecture using carefully

designed adversarial tie-breaking rules, showing that FP for a zero-sum game on the n× n

identity matrix has a worst-case convergence rate of Ω(k−
1
n ).

FP has also been studied for more general games. Miyasawa [Miy61] showed conver-

gence of FP for non-zero-sum 2×2 two-player games. Shapley [Sha64] showed FP does not

converge in a certain 3×3 non-zero-sum-game. Monderer and Sela [MS96] later constructed

2× 2 non-zero-sum game for which FP does not converge. Brandt et al. [BFH10] show that

it will take exponentially long for the iterates of FP (as opposed to the scaled iterates) to

reach an equilibrium for several classes of games.

Much work has also been done on continuous-time FP. Harris [Har98] proved that a

continuous-time FP dynamic with t as the time parameter has a convergence rate of O(t−1)

for any two-person zero-sum game. Ostrovski and van Strien [OS11] studied the piecewise-

linear Hamiltonian flows generated by fictitious play algorithms and the combinatorics of

the trajectories for 3× 3 games. Ostrovski and van Strien [OS14] studied the convergence

and trajectories of FP in continuous time for 3× 3 games. Swenson and Kar [SK17] showed

exponential convergence rate for continuous-time FP for “regular” games.

Finally, the FP dynamic is closely related to dynamics where both players use no-regret
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algorithms to choose their actions, and a lot of work has been done trying to understand

these dynamics as well. In particular, under the FP dynamic, both players update their

actions using the Follow-The-Leader algorithm. Hofbauer and Sandholm [HS02] studied

stochastic fictitious play and showed global convergence of an algorithm now known as

Follow-The-Perturbed-Leader. Swenson et al. [SKXL17] studied robustness of fictitious

play under perturbations. Bailey and Piliouras [BP19b] showed that network Follow-The-

Regularized-Leader (FTRL) is Hamiltonian flow. Bailey and Piliouras [BP19a] showed

O(k−
1
2 ) regret for fixed step-size FTRL with a quadratic regularizer for 2 × 2 zero-sum

games. Finally, Bailey et al. [BGP19] showed finite regret for alternating FTRL with a

quadratic regularizer.

3.3 Preliminaries

We now provide some precise definitions for games, dynamics, and convergence. Along

the way, we lay out our main results and describe them in the context of other work. The

techniques are described in greater detail in Section 3.5 and beyond.

Notation For the remainder of the chapter, we assume we are working with square payoff

matrices A ∈ Rn×n, and the decision set for the row and column players are X ⊆ Rn and

Y ⊆ Rn, respectively. For a matrix A, let Amin be the minimum diagonal entry of A and

let Amax be the maximum diagonal entry of A. The Õ and Θ̃ notation hides factors that are

logarithmic in the number of iterations k.

Note that in the matrix game setting, the duality gap can be written as follows:

ψ(x, y) = max
ỹ∈Y

x>Aỹ −min
x̃∈X

x̃>Ay. (3.2)

While ψ is defined on all of Rn × Rn, it holds that ψ(x, y) ≥ 0 for any (x, y) ∈ X × Y .

We will also consider a slight generalization of matrix games where X and Y need not be

simplices.
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3.3.1 The Fictitious Play dynamic

The fictitious play (FP) dynamic involves a sequence of state variables xk, yk ∈ Rn which

evolve for a series of iterations (or rounds) k = 1, 2, . . .. The initial iterates x0 and y0 are

classically initialized at 0, but we will also allow initializations in X × Y . We define the

recursive update

ak := arg min
x∈X

x>Ayk bk := arg max
y∈Y

x>k Ay (3.3)

xk+1 := xk + ak yk+1 := yk + bk (3.4)

Concretely, at each iteration k ≥ 1 each player plays the action that is the best response to

the long-term distribution of their opponent’s actions. It is convenient to consider the scaled

history of each player’s state, as this is appropriately normalized:

x̂k :=
xk
k

and ŷk :=
yk
k

Note that ak ∈ X , bk ∈ Y , so x̂k ∈ X and ŷk ∈ Y for k ≥ 1. Note that we can evaluate ψ

on either (x̂k, ŷk) or (xk, yk), and while it makes less sense to refer to it as the “duality gap”

in the former case we will use the terminology in both cases.

For the remainder of the chapter, we will focus on evaluating the normalized duality

gap ψ(x̂k, ŷk) as k → ∞, and to determine at what rate ψ(x̂k, ŷk) converges to 0. For

convenience, our proofs will often do this by showing the equivalent claim that ψ(xk, yk) =

o(k).

Following the discussion of tie-breaking earlier, we need to address the case when the

arg min or arg max in (3.3) is non-unique.

Assumption 3.3.1. Ties in the arg min and arg max in the FP dynamic are broken according

to lexicographic order. That is, the arg min and arg max in the FP dynamic are always

unique.
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3.3.2 Fictitious play as skew-gradient flow

We will now characterize the fictitious play dynamic as a discrete-time skew-gradient flow.

Recall the support function φX : Rn → R of a set X ⊆ Rn is given by

φX (θ) := max
x∈X

θ>x.

We can express the duality gap in terms of the support functions of the decision sets X ,Y:

ψ(x, y) = φY(A>x) + φX (−Ay).

Let Z = X × Y ⊆ R2n, and let S ∈ R2n×2n denote the skew-symmetric matrix S = 0 −A

A> 0

. Then for z = (x, y), we can write the duality gap as the support function of

the skewed input:

ψ(x, y) = ψ(z) = φZ(Sz)

since indeed φZ(Sz) = φX×Y(−Ay,A>x) = φX (−Ay) + φY(A>x).

Recall the gradient of the support function is the following maximizer:

∇φX (θ) = arg max
x∈X

θ>x.

In general when φX is not differentiable, the set of subgradients corresponds to the arg max

above. We can write fictitious play as the ε = 1 case of

xk+1 = xk + ε∇φX (−Ayk) (3.5)

yk+1 = yk + ε∇φY(A>xk). (3.6)
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As ε→ 0, the above converges to the continuous-time dynamic

Ẋt = ∇φX (−AYt)

Ẏt = ∇φY(A>Xt)

where Ẋt = d
dt
Xt and Ẏt = d

dt
Yt. Let us write Zt = (Xt, Yt), so SZt = (−AYt, A>Xt).

Then

Żt = ∇φZ(SZt). (3.7)

Note the gradient of ψ(z) = φZ(Sz) is ∇ψ(z) = S>∇φZ(Sz). If S is invertible, then we

can write the above as a skew-gradient flow: Żt = (S>)−1∇ψ(Zt), which preserves the

duality gap since (S>)−1 is skew-symmetric. However, even when S is not invertible, the

flow (3.7) always preserves the duality gap:

d

dt
ψ(Zt) = ∇ψ(Zt)

>Żt = ∇φZ(SZt)
>S∇φZ(SZt) = 0.

Therefore, for the scaled history Ẑt = Zt
t

, the duality gap decreases at an O(t−1) rate:

ψ(Ẑt) =
ψ(Zt)

t
=
ψ(Z1)

t
= Θ(t−1).

In the above, the first equality is because support function is homogeneous.

In discrete time, the forward method for discretizing the dynamic (3.7) is

zk+1 = zk + ε∇φZ(Szk), (3.8)

which is (3.5) for zk = (xk, yk). Since ψ is a convex function, the forward method increases
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ψ. Indeed, by Jensen’s inequality and since S is skew-symmetric,

ψ(zk+1)− ψ(zk) ≥ ∇ψ(zk)
>(zk+1 − zk) = ε∇φZ(Szk)

>S∇φZ(Szk) = 0.

This is similar to [BP19b] when the regularizer is the indicator function of the domain.

3.4 Main Results

In light of the preliminary material above, we can now give a birds-eye view of the work in

this chapter. The formal results will be laid out in full detail in the following sections.

3.4.1 Fast convergence for diagonal matrices

Our first core result is to show that Karlin’s conjecture is indeed true for the class of diagonal

matrices, as long as the natural Assumption 3.3.1 holds true. This class is an important

special case, as it includes the identity matrix used by the lower bound of Daskalakis and

Pan [DP14]. This shows that the slow-converging construction is obliterated by Assump-

tion 3.3.1.

Theorem (informal). Let A ∈ Rn×n be a diagonal matrix with a strictly positive1 diag-

onal. Then the FP dynamic (3.4), under Assumption 3.3.1, guarantees ψ( 1
k
xk,

1
k
yk) =

O

(√
A3

max

Amin
k−1/2

)
.

Our result greatly expands the class of games for which the FP dynamic has been shown to

converge quickly to equilibrium. Previously, the FP dynamic was only known to achieve a

O(k−1/2) convergence rate for 2× 2 matrices. Also of note is that our convergence rate is

independent of the dimension n. The main proof of Theorem 3.6.15 is in Section 3.6, with

minor proofs being deferred to Section 3.7.

Our proof of this result relies on three main properties. We first note that in the diagonal

case under Assumption 3.3.1, the dynamic alternates between two distinct phases, which we
1The requirement that the diagonal be strictly positive is without loss of generality, as we discuss in

Section 3.6.
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call sync and split phases. We use the term sync-split pair to denote a pair of consecutive

phases consisting of a sync phase followed by a split phase. Second, we show that the duality

gap can only increase by a constant amount over the course of each sync-split pair. Finally,

we define a potential function that allows us to show that the duration of each sync-split pair

is proportional to the duality gap at the start of the sync-split pair.

From these properties, we can derive the rate. To get some intuition, we can consider the

case when round 1 is the first round of a sync-split pair and the duality gap always increases

by a constant c during each sync-split pair. That is, the duality gap at the start of the τ th

sync-split pair is (τ−1)c. Then by the end of the tth sync-split pair, the total duality gap will

be tc. Meanwhile, it will take
∑t

j=1(j − 1)c = Θ(t2c) rounds to complete these t sync-split

pairs. So we can see that the duality gap grows as the square root of the number of rounds.

We also prove the following lower bound:

Theorem (informal). Let A be the n× n identity matrix. Then the FP dynamic (3.4), under

Assumption 3.3.1, satisfies ψ( 1
k
xk,

1
k
yk) = Ω

(√
1
n
k−1/2

)
.

While analogous lower bounds existed for the 2× 2 case, to our knowledge, no lower bound

has been proven for the FP dynamic under Assumption 3.3.1 for settings in more than two

dimensions. This lower bound shows that the dependence on k in Theorem 3.6.15 is tight.

The dependence on n is likely suboptimal, and we leave improving that dependence to future

work. We prove Theorem 3.6.23 in Section 3.6.3. The proof is structured similarly to the

proof of the upper bound, as the characterization of the FP dynamic in that proof is actually

quite tight.

3.4.2 Faster convergence in the smooth case

Our second set of results focuses on the generalization of the FP dynamic that we introduced

in Section 3.3.2. We observed that the FP dynamic can be viewed through the lens of a skew-

gradient flow, where the pair of zk = (xk, yk) is updated as zk+1 = zk +∇φZ(Szk), where

φZ is the support function on Z = X ×Y and S is an appropriately chosen skew-symmetric
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matrix. This perspective is helpful as it allows us to reason about the convergence of the

dynamic through properties of φZ .

What we show in Section 3.5 is that when φZ is smooth, the FP dynamic is well-behaved

and easy to control. Of course, this does not apply to the case when Z = ∆n × ∆n,

which is the standard FP setting, since the sharp edges of the probability simplex lead to

non-smoothness of the support function. But if we consider a “slightly rounder” body Z—a

relaxed version of ∆n ×∆n, for example—then we can obtain convergence rates in line

with Karlin’s conjecture.

Theorem (informal). Let Z be such that φZ is twice differentiable everywhere but at the

origin. Consider the dynamic on zk = (xk, yk) described above. Then

ψ

(
1

k
zk

)
=


O
(

log k
k

)
when 0 /∈ SZ

O
(

1√
k

)
when 0 ∈ (SZ)◦

We also show that our bound in the 0 ∈ (SZ)◦ case is tight when φ is orthogonally

strongly convex. We note that requiring φZ to be a smooth function is another way to avoid

the tie-breaking issue. A tie in the arg min or arg max occurs when φZ is non-differentiable

and hence the subgradient set is non-unique.

We also show similar convergence rates for an optimistic version of FP, defined as

zk+1 = zk +∇φ(Szk+ 1
2
), where zk+ 1

2
= zk +∇φ(Szk).

Theorem (informal). Let Z be such that φZ is twice differentiable everywhere but at the

origin, and assume 0 /∈ SZ . Consider the optimistic FP dynamic on zk = (xk, yk) described

above. Then φ( 1
k
Szk) = O(k−1).
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3.5 Analysis of fictitious play in the smooth case

In this section, we outline our results for fictitious play over smooth constraint sets. Let Z

be a nonempty, compact, convex set in Rm. We consider the optimization problem:

min
z∈Z

φ(Sz)

where S = −S> ∈ Rm×m is a skew-symmetric matrix and φ : Rn → R is the support

function of Z . Analogous to von Neumann’s minimax theorem, the minimum value is

always 0; note that this holds even without any smoothness assumption on φ.

Theorem 3.5.1. Suppose Z ⊂ Rm is nonempty, compact, and convex. Suppose S> = −S.

Then

min
z∈Z

φ(Sz) = 0. (3.9)

Note that φ(0) = 0, and φ is positively homogeneous: φ(tθ) = tφ(θ) for all t ≥ 0,

θ ∈ Rm. So at θ = 0 the function φ has a cone structure and it is not differentiable. But

away from 0, φ can be differentiable. In this section we make the following assumption.

Assumption 3.5.2. The support function φ(θ) is twice-differentiable at all θ 6= 0.

The positive homogeneity of φ implies the gradient is scale-invariant: ∇φ(tθ) = ∇φ(θ),

and the Hessian is inversely proportional to the input: ∇2φ(tθ) = 1
t
∇2φ(θ) for all t > 0,

θ ∈ Rn \ {0}.

We note this smoothness assumption does not hold for the original fictitious play algo-

rithm (in which Z = ∆n ×∆n). However, in general we can arbitrarily approximate any

convex set with a smooth set (i.e., one with a smooth support function). Here we show in

the smooth case, the behavior of fictitious play is different from the behavior on the simplex.

We study the forward method (fictitious play), which starts from an arbitrary z1 ∈ Z
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and for k ≥ 1 maintains

zk+1 = zk +∇φ(Szk).

Note that zk ∈ kZ . We define the scaled history ẑk = zk
k
∈ Z .

As noted in Section 3.3.2, the forward method in fact increases the support function;

indeed, since φ is convex, by Jensen’s inequality

φ(Szk+1) ≥ φ(Szk) +∇φ(Szk)
>S∇φ(Szk) = φ(Szk).

We will bound how much φ(Szk) grows along the forward method. We present the

analysis in two cases: In Section 3.5.1 we consider 0 /∈ SZ (as in the original fictitious

play) and show φ(Szk) = O(log k). In Section 3.5.2 we consider 0 ∈ SZ and show

φ(Szk) = O(
√
k); furthermore, we show a matching lower bound under a notion of

orthogonal strong convexity. In Section 3.5.3 we propose an optimistic variant of the

forward method and show φ(Szk) = O(1) in the first case.

3.5.1 Case 1: 0 /∈ SZ

Suppose 0 /∈ SZ (so the minimum is achieved on a ray). Assume φ is twice-differentiable.

Let

d = min
z∈Z
‖Sz‖ > 0, D = max

z∈Z
‖Sz‖ <∞, L = sup

‖θ‖=1

‖∇2φ(θ)‖ <∞. (3.10)

Note along the forward method we have zk ∈ kZ , so ‖zk‖ = Θ(k). This implies that

the support function only increases by O(1/k) in each step of the forward method.

Lemma 3.5.3. Assume 0 /∈ SZ and Assumption 3.5.2. For each k ≥ 1, the forward method
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satisfies:

φ(Szk+1) ≤ φ(Szk) +
LD2

2dk
.

By iterating, we have the following bound on the support function along the forward

method.

Theorem 3.5.4. Assume 0 /∈ SZ and Assumption 3.5.2. For each k ≥ 2, the forward

method satisfies:

φ(Szk) ≤ φ(Sz1) +
LD2

2d
(1 + log(k − 1)) = O(log k).

Furthermore, recall along the forward method the support function increases: φ(Szk) ≥

φ(Sz1). Therefore, we have Ω(k−1) ≤ φ(Sẑk) ≤ O(k−1 log k) for the scaled history

ẑk = zk
k

.

Note that this is different from the Ω(k−
1
2 ) behavior for the original fictitious play on

the simplex.

3.5.2 Case 2: 0 ∈ (SZ)◦

Suppose 0 ∈ (SZ)◦, which means 0 ∈ SZ and 0 /∈ ∂(SZ) = S∂Z (so the minimizer is

z∗ = 0). We have φ(θ) > 0 for all θ ∈ Rn \ {0}. Assume φ is twice-differentiable. Let

m = min
‖θ‖=1

φ(θ) > 0, R = max
z∈∂Z
‖z‖ <∞, L = sup

‖θ‖=1

‖∇2φ(θ)‖ <∞.

Note that for all θ ∈ Rn we have

m‖θ‖ ≤ φ(θ) = θ>∇φ(θ) ≤ R‖θ‖.

In this case we can show the forward method increases the support function by an
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amount inversely proportional to its current value.

Lemma 3.5.5. Assume 0 ∈ (SZ)◦ and Assumption 3.5.2. For each k ≥ 1, the forward

method satisfies:

φ(Szk+1) ≤ φ(Szk) +
L′

φ(Szk)

where L′ = LR4‖A‖2/m.

By iterating, we get the following bound on the support function along the forward

method.

Theorem 3.5.6. Assume 0 ∈ (SZ)◦ and Assumption 3.5.2. For each k ≥ 1, the forward

method satisfies:

φ(Szk) ≤
√
φ(Sz1)2 + (k − 1)L′′ = O(

√
k)

where L′′ = L′2

φ(Sz1)2
+2L′ and L′ = LR4‖A‖2/m. That is, φ(Sẑk) ≤ O(k−

1
2 ) for the scaled

history ẑk = zk
k

.

Under orthogonal strong convexity, we can show this rate is tight.

Lower bound under orthogonal strong convexity

Since a support function φ is positively homogeneous (φ(tθ) = tφ(θ)), the Hessian is

singular along its input: ∇2φ(θ)θ = 0. But orthogonal to the input, φ can have some

curvature.

Definition 3.5.7. We say φ is α-orthogonally strongly convex if φ is twice-differentiable

and α-strongly convex along directions orthogonal to the input:

α := inf
‖θ‖=1

inf
‖v‖=1

v>θ=0

v>∇2φ(θ)v > 0. (3.11)
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In this section we make the following assumption.

Assumption 3.5.8. The support function φ is α-orthogonally strongly convex for some

α > 0.

Under orthogonal strong convexity, we can prove a matching lower bound. Let

m = min
‖θ‖=1

φ(θ) > 0, R0 = min
z∈∂Z
‖Sz‖ > 0, R = max

z∈∂Z
‖z‖ <∞.

Lemma 3.5.9. Assume 0 ∈ (SZ)◦ and Assumption 3.5.8. For each k ≥ 1, the forward

method satisfies:

φ(Szk+1) ≥ φ(Szk) +
C

φ(Szk)

where C = αm3R0

16R2 min {‖Sz1‖, R0}.

By iterating, we have the following lower bound.

Theorem 3.5.10. Assume 0 ∈ (SZ)◦ and Assumption 3.5.8. For each k ≥ 1, the forward

method satisfies:

φ(Szk) ≥
√
φ(Sz1)2 + 2C(k − 1) = Ω(

√
k)

where C = αm3R0

16R2 min{‖Sz1‖, R0}. Therefore φ(Sẑk) = Θ(k−
1
2 ) for the scaled history

ẑk = zk
k

.

An example where φ is orthogonally strongly convex is when Z is an ellipsoid (or any

`p-ball, p > 1). In this case we indeed get a Θ(k−
1
2 ) rate.

Example 3.5.11. Let Z = {z ∈ Rn : z>B−1z ≤ 1} where B = B> � 0. Then φ(θ) =
√
θ>Bθ = ‖θ‖B and ∇φ(θ) = Bθ/‖θ‖B. The forward method becomes

zk+1 = zk +
BSzk
‖Szk‖B

.
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Then ‖Szk+1‖2
B = ‖Szk‖2

B +
‖SBSzk‖2B
‖Szk‖2B

, so φ(Szk) = ‖Szk‖B = Θ(
√
k) and φ(Sẑk) =

Θ(k−1/2).

3.5.3 Faster convergence in via optimism

We study the following optimistic forward method:2

zk+1 = zk +∇φ(Szk+ 1
2
) where zk+ 1

2
= zk +∇φ(Szk).

In this section we assume φ is twice-differentiable (Assumption 3.5.2). We also assume

0 /∈ SZ (which is the case in the original fictitious play). We recall the definitions of d,D, L

from (3.10).

Lemma 3.5.12. Assume 0 /∈ SZ and Assumption 3.5.2. For k ≥ 1, the optimistic forward

method satisfies:

φ(Szk+1) ≤ φ(Szk) +
L2D2‖S‖
d2k(k + 1)

.

Since 1
k(k+1)

= 1
k
− 1

k+1
, we can write the above as φ(Szk+1) + L2D2‖S‖

d2(k+1)
≤ φ(Szk) +

L2D2‖S‖
d2k

. That is,

Ek = φ(Szk) +
L2D2‖S‖
d2k

is a Lyapunov function, which means it decreases along the optimistic forward method. This

implies the following bound. In particular, as k →∞, we see the support function is finite.

Theorem 3.5.13. Assume 0 /∈ SZ and Assumption 3.5.2. For k ≥ 1, the optimistic forward

2We note the above is in extra-gradient form. There is another optimistic form: zk+1 = zk + 2∇φ(Szk)−
∇φ(Szk−1). We study the extra-gradient form above for simplicity; similar results can also be established for
the optimistic form.
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method satisfies:

φ(Szk) ≤ φ(Sz1) +
L2D2‖S‖

d2
.

Therefore, φ(Sẑk) = O(k−1) for the scaled history ẑk = zk
k

.

3.6 Fast Convergence of Fictitious Play for Diagonal Payoff Matrices

In this section, we deal with the case when X = Y = ∆n. We define some new notation

that will aid in this analysis. Let pk(i) = e>i Ayk and qk(j) = x>k Aej , so the fictitious play

dynamic can be written as:

xk+1 = xk + earg mini pk(i)

yk+1 = yk + earg maxj qk(j)

Let p∗k = mini∈[n] pk(i) and q∗k = maxj∈[n] qk(j). Then ψ(xk, yk) = q∗k − p∗k.

Now we define the gap vectors and total gap vector:

Definition 3.6.1. The gap vectors for a given round k are vectors uk ∈ Rn and vk ∈ Rn

such that uk(i) = pk(i)− p∗k and vk(j) = q∗k − qk(j).

Definition 3.6.2. The total gap vector for a given round k is a vector wk ∈ Rn such that

wk(i) = A−1
ii (uk(i) + vk(i)).

We see that the ith entry of u and v tracks how far the ith action is from being the optimal

action for the x and y players respectively. Note that at least one entry of uk and one entry

of vk is 0, corresponding to the best action for the x and y players respectively. Moreover, u

and v are always nonnegative, which implies that w is always nonnegative.

It will be useful to define the following states of the dynamic:

Definition 3.6.3 (Sync and split rounds). Suppose in some round k, the row and column

players both play action i. Then round k is called a sync round, and in particular it is a
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sync(i, i) round. We will also say that round k’s type is “sync(i, i)”. Suppose in some round

k′, the row player plays action j and the column player plays action i such that i 6= j. Then

round k′ is called a split round, and in particular it is a split(j, i) round. We will also say

that round k’s type is “split(j, i)”. So a round’s type will either be “sync(i, i)” for some

i ∈ [n] or “split(j, i)” for some i, j ∈ [n].

Definition 3.6.4. Let a phase denote a maximal consecutive block of rounds of a particular

type. In particular, suppose:

1. rounds k to k + s are all of some type, call it type α;

2. if k ≥ 2, round k − 1 is not type α;

3. round k + s+ 1 is not type α.

Then rounds k to k + s constitute a phase. Moreover, if rounds k to k + s are all sync(i, i)

rounds, then they constitute a sync phase and in particular a sync(i, i) phase. Likewise, if

rounds k to k+s are all split(j, i) rounds, then they constitute a split phase and in particular

a split(j, i) phase.

Round # k − 1 k k + 1 k + 2 k + 3
Row player action i i i i j

Column player action ` i i i i
Round type split(i, `) sync(i, i) sync(i, i) sync(i, i) split(j, i)︸ ︷︷ ︸

sync(i, i) phase

Figure 3.1: Illustration of Definitions 3.6.3 and 3.6.4. Rounds k to k + 2 form a sync(i, i)
phase.

Definition 3.6.5. Suppose rounds k to k + k′ − 1 form a sync(i, i) phase and rounds k + k′

to k+ s− 1 form a complete split(j, i) phase Then we call rounds k to k+ s− 1 a sync-split

pair and in particular a sync-split(i→ j) pair.
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If we look at the trajectory of the FP dynamic, namely (xk, yk) for k ∈ {0, 1, 2, ...}, we

will encounter a countable number of sync and split phases. Suppose that the sync phases

start in rounds {s1, s2, ...} where st1 < st2 for t1 < t2. Then we say the τ th sync phase of

the trajectory is the sync phase starting in round sτ . We will use the indices i, j, ` to denote

generic actions in {1, ..., n} unless otherwise specified. We will generally use k to specify a

generic round of the FP dynamic where k ≥ 1.

In the rest of this section, we will assume that Assumption 3.3.1 holds, which motivates

the following definition:

Definition 3.6.6. Let the tiebreak order of the fictitious play dynamic be a pair of per-

mutations (σx, σy) ∈ Sn × Sn such that when breaking ties between a set of indices I,

the x player chooses the index rx = arg min`∈I σx(`) and the y player chooses the index

ry = arg min`∈I σy(`).

In the rest of this section, we will also assume that A is a diagonal matrix with positive

diagonal, so we omit this from the lemma statements for notational clarity. Note that if all

diagonal entries of A are negative, we can simply reverse the roles of x and y and play on

the matrix −A. Moreover, if A has positive and non-positive diagonal entries, then the Nash

Equilibria will not have full support because any equilibrium strategy for the x player will

not use the rows with positive diagonal entries and any equilibrium strategy for the y player

will not use the columns with non-positive diagonal entries.

3.6.1 Important properties of the FP dynamic

In this section, we characterize some key properties of the FP dynamic. We start by showing

that the dynamic alternates between sync and split phases:

Lemma 3.6.7. Suppose round k is a sync(i, i) phase. Then this phase will end in some

round k + s for finite s, and round k + s + 1 will be a split(j, i) round for some j 6= i.

Likewise, if round k is a split(j, i) phase, then this phase will end in some round k + s
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for finite s, and round k + s + 1 will be a sync(j, j) round. Thus, the dynamic alternates

between sync and split phases, and the dynamic will proceed through an unbounded number

of sync and split phases. Moreover, for any t ≥ 1, if the tth sync phase of the FP dynamic is

a sync(it, it) phase and the (t+ 1)th sync phase is a sync(it+1, it+1) phases, then it 6= it+1.

Next, we characterize how the duality gap and w change over the course of sync and

split phases with Lemmas 3.6.8 and 3.6.9. From these lemmas, we can see that the duality

gap only increases by at most Amax during each sync and split phase and that each entry of

w increases by an amount proportional to the increases in the duality gap.

Lemma 3.6.8. Suppose rounds k to k+s are sync(i, i) rounds for s ≥ 0 and round k+s+1

is a split(j, i) round. Let ε = Aii − uk+s−1(j). Then

1. 0 ≤ ε ≤ Aii

2. wk+s(`) = wk−1(`) + A−1
`` ε for all `.

3. ε = ψ(xk+s, yk+s)− ψ(xk−1, yk−1)

Lemma 3.6.9. Suppose rounds k to k+s are split(j, i) rounds for s ≥ 0 and round k+s+1

is a sync(j, j) round. Let ε = Ajj − vk+s−1(j). Then,

1. 0 ≤ ε ≤ Ajj

2. wk+s(`) = wk−1(`) + A−1
`` ε for ` 6∈ {i, j}

3. ε = ψ(xk+s, yk+s)− ψ(xk−1, yk−1)

4. wk+s(j) = 0 and wk+s(i) = wk−1(i) + wk−1(j) + (A−1
ii + A−1

jj )ε

Using Lemmas 3.6.8 and 3.6.9, we can prove the following lemma, which shows that

over the course of a sync-split phase, w changes in a very precise way. At the start of the

sync-split pair, w has n− 1 non-zero values. At the end of the sync-split pair, each of these

values has increased by an amount proportional to the increase in the duality gap, and the

value in the jth coordinate has moved to the ith coordinate.
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Lemma 3.6.10. Suppose rounds k to k + s − 1 form a sync-split(i → j) pair. Let ε =

ψ(xk+s−1, yk+s−1)− ψ(xk−1, yk−1). Then wk+s−1(`) ≥ wk−1(`) + ε
Amax

for ` 6∈ {i, j} and

wk+s−1(j) = wk−1(i) = 0 and wk+s−1(i) ≥ wk−1(j) + 2ε
Amax

.

From Lemma 3.6.10, we can inductively prove the following corollary, which describes

how w evolves over the course of a series of consecutive sync-split pairs.

Corollary 3.6.11. Let t ≥ 0. Suppose we play t + 1 consecutive sync-split pairs starting

in rounds s1, ..., st+1 respectively, and let round st+1 be a sync(it+1, it+1) round. Let

εj = ψ(xsj+1−1, ysj+1−1)− ψ(xsj−1, ysj−1). Then wst+1−1(`) ≥
∑t

j=1
εj

Amax
for ` 6= it+1.

Finally, the following lemma shows that the length of a sync-split pair is lower bounded

by an entry of w.

Lemma 3.6.12. Suppose rounds k to k + s − 1 form a sync-split(i → j) pair. Then

s ≥ Aminwk−1(j)

Amax
.

3.6.2 Proof of main theorem

Using the results in the previous section, we can prove our main lemma:

Lemma 3.6.13. Let A be an n × n diagonal matrix with positive diagonal, and let As-

sumption 3.3.1 hold. Suppose we initialize the fictitious play dynamic at some (x0, y0) ∈

R≥0 × R≥0 such that round 1 is a sync round. Then for any k ≥ 1 such that round k + 1 is

the first round of a sync phase, we have ψ(xk, yk)− ψ(x0, y0) ≤ 2
√

A3
max

Amin

√
k.

Proof of Lemma 3.6.13. Let δ = ψ(xk, yk)−ψ(x0, y0). Let the sync phase starting in round

k + 1 be the (t + 1)th sync phase of the FP trajectory. Note that t ≥ 1 because the first

sync phase starts in round 1. Let the τ th sync phase be a sync(iτ , iτ ) phase, and let sτ be

the round in which the τ th sync phase starts. By assumption, the dynamic starts in a sync

phase and round k + 1 is the first round of a new sync phase, so t sync-split pairs will have
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completed by the end of round k. Then we have:

k =
t∑

j=1

((sj+1 − 1)− (sj − 1)) ≥
t∑

j=1

Aminwsj−1(ij+1)

Amax

where the inequality comes from Lemma 3.6.12.

Note that round sj is a sync(ij, ij) round and ij 6= ij+1 by Lemma 3.6.7. Let εj =

ψ(xsj+1−1, ysj+1−1)−ψ(xsj−1, ysj−1). By Corollary 3.6.11, we havewsj(ij+1) ≥
∑j

`=1
εl

Amax
.

Then we have:

k ≥ Amin

A2
max

t∑
j=1

j∑
`=1

εl =
Amin

A2
max

t∑
j=1

(t− j + 1)εj

Note that
∑t

j=1 εj = δ and for all j ∈ [t], 0 ≤ εj ≤ Amax and 0 ≤ δ ≤ tAmax. So either

δ < 2Amax or by Lemma 3.6.14 we have k ≥ Aminδ
2

4A3
max

. Overall, this shows that

δ ≤ max

{
2

√
A3

max

Amin

√
k, 2Amax

}

But for k ≥ 1, the first term in the max will dominate, so we have proved that ψ(xk, yk)−

ψ(x0, y0) ≤ 2
√

A3
max

Amin

√
k.

Lemma 3.6.14. Let H = {h ∈ Rt|
∑t

j=1 hj = δ and ∀j, 0 ≤ hj ≤ Amax} where 0 ≤ δ ≤

tAmax. Assume δ ≥ 2Amax. Then

min
h∈H

t∑
j=1

(t− j + 1)hj ≥
δ2

4Amax

Using Lemma 3.6.13, it is straightforward to show our main theorem:

Theorem 3.6.15. Let A be an n × n diagonal matrix with positive diagonal, and let

Assumption 3.3.1 hold. Suppose we initialize the fictitious play dynamic at some (x0, y0) ∈

R≥0×R≥0. Then for any k ≥ 9Amax, we have ψ( 1
k
xk,

1
k
yk)−ψ( 1

k
x0,

1
k
y0) ≤ 4

√
A3

max

Amin
k−1/2.
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Proof. For j ≥ 1, let sj be the round in which the jth sync phase of the FP trajectory

starts. First note that if k < s2 − 1, then the dynamic will have completed at most two split

phases and one sync phase, so by Lemmas 3.6.8 and 3.6.9, the duality gap will be at most

3Amax. Now consider the case when k ≥ s2 − 1. Let t be such that st − 1 ≤ k < st+1 − 1.

Then we can use Lemma 3.6.13 with the FP dynamic initialized at (xs1−1, ys1−1) to get

ψ(xst−1, yst−1)− ψ(xs1−1, ys1−1) ≤ 2
√

A3
max

Amin

√
st − 1− s1. There will be at most one split

phase before round s1 − 1 and at most one sync phase and one split phase and one sync

phase in rounds st to k. Thus, by Lemmas 3.6.8 and 3.6.9, the duality gap can increase by at

most 3Amax over the course of those rounds. Then we have:

ψ(xk, yk)− ψ(x0, y0) ≤ 2

√
A3

max

Amin

√
st − 1− s1 + 3Amax ≤ 2

√
A3

max

Amin

√
k + 3Amax

Note that this is obviously bigger than the upper bound on the duality gap in the k < s2 − 1

case. We get the final bound by noting that the
√
k term dominates for k ≥ 9Amax.

3.6.3 Proof of lower bound

In this section, we prove our lower bound. We start with the following lemmas which show

that the duality gap increases by either ε ∈ {0, 1} in the last round of a sync or split phase.

Moreover, the value of ε depends on the tiebreak order.

Lemma 3.6.16. Let Assumption 3.3.1 hold and let (σx, σy) be the tiebreak order for the FP

dynamic. Let A = In. Let round k be a sync(i, i) round, and let round k + 1 be a split(j, i)

round. Let ε = ψ(xk, yk)− ψ(xk−1, yk−1). Then if σx(i) < σx(j), we have ε = 1, while if

σx(i) < σx(j), we have ε = 0.

Lemma 3.6.17. Let Assumption 3.3.1 hold and let (σx, σy) be the tiebreak order for the FP

dynamic. Let A = In. Let round k be a split(j, i) round, and let round k + 1 be a split(j, j)

round. Let ε = ψ(xk, yk)− ψ(xk−1, yk−1). Then if σy(i) < σy(j), we have ε = 0, while if

σy(i) > σy(j), we have ε = 1.
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Next we prove the following lemma, which shows that the duality gap will only increase

under the settings in Lemmas 3.6.16 and 3.6.17 and that the duality gap is non-decreasing.

Lemma 3.6.18. Let Assumption 3.3.1 hold and let A = In. Then ψ(xk, yk) is integral for

all k ≥ 0, and only increases in the settings described by Lemmas 3.6.16 and 3.6.17. In

particular, if ψ(xk, yk) > ψ(xk−1, yk−1) for k ≥ 1, then ψ(xk, yk) = ψ(xk−1, yk−1) + 1.

Moreover, for k ≥ 1, we have ψ(xk, yk) ≥ ψ(xk−1, yk−1) (i.e. the duality gap is non-

decreasing).

We can also write the following lemma and corollary, analogous to Lemma 3.6.10 and

Corollary 3.6.20.

Lemma 3.6.19. Let Assumption 3.3.1 hold and let A = In. Suppose rounds k to k + s− 1

form a sync-split(i→ j) pair. Let ε = ψ(xk+s, yk+s)− ψ(xk−1, yk−1). Then wk+s−1(`) ≤

wk−1(`) + 2ε for all ` ∈ [n].

Corollary 3.6.20. Let Assumption 3.3.1 hold and let A = In. Let t ≥ 0. Let the first

t + 1 sync phases of the FP trajectory start in rounds s1, ..., st+1 respectively. Let εj =

ψ(xsj+1−1, ysj+1−1) − ψ(xsj−1, ysj−1). Then wst+1−1(`) − ws1−1(`) ≤ 2
∑t

j=1 εj for all

` ∈ [n]. That is, wst+1−1(`) − ws1−1(`) ≤ 2(ψ(xst+1−1, yst+1−1) − ψ(xs1−1, ys1−1)) for all

` ∈ [n].

Proof of Corollary 3.6.20. Note that each sync phase will be followed by a split phase, so

by Lemma 3.6.7, rounds sj to sj+1 − 1 form a sync-split pair. Then we have for all ` ∈ [n]:

wst+1−1(`)− ws1−1(`) =
t∑

j=1

(wsj+1−1(`)− wsj−1(`)) ≤ 2
t∑

j=1

εj

where the inequality follows from Lemma 3.6.19.

Finally, we prove the following lemma, which can be proved similarly to Lemma 3.6.12.
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Lemma 3.6.21. Let Assumption 3.3.1 hold and let A = In. Suppose round k is the first

round of a sync-split(i→ j) pair and round k + s− 1 is the last round of the sync-split pair.

Then s ≤ 4ψ(xk−1, yk−1) + 3.

This allows us to prove our main lemma, which gives an upper bound on the number of

rounds before the duality gap increases.

Lemma 3.6.22. Let Assumption 3.3.1 hold and let A = In. Let k ≥ 0 and let δ = ψ(xk, yk).

Then ψ(xk+τ , yk+τ ) ≥ δ + 1 for τ ≥ (4δ + 3)(n+ 1).

Proof. Let (σx, σy) be the tiebreak order for the FP dynamic. We will upper bound the

number of rounds before the duality gap increases. Let round k + s be the earliest round in

which the duality gap is larger than δ. By Lemma 3.6.18, ψ(xk+s, xk+s) = δ + 1. Rounds k

to k+ s− 1 will consist of an alternating sequence of sync and split phases by Lemma 3.6.7.

Let t ≥ 0 be the number of sync phases we start in between rounds k and k+ s− 1 inclusive

and let the τ th such sync phase be a sync(iτ , iτ ) phase. Since the duality gap is always

non-decreasing by Lemma 3.6.18, it cannot increase during rounds k to k + s− 1. Then by

Lemma 3.6.16, we must have σx(i1) < σx(i2) < ... < σx(it). Thus, t ≤ n. Since sync and

split phases alternate by Lemma 3.6.7, we can have at most n+ 1 split phases during rounds

k to k + s− 1. Each split phase will be part of a sync-split pair starting in some round τ

such that ψ(xτ−1, yτ−1) ≤ δ, and these sync-split pairs also include all sync phases that start

during rounds k to k + s− 1. Then by Lemma 3.6.21, each sync-split pair will take at most

4δ + 3 rounds. Thus, we have that when the duality gap is δ, it will increase to δ + 1 in at

most (4δ + 3)(n + 1) rounds, i.e. s ≤ (4δ + 3)(n + 1). As mentioned earlier, the duality

gap is non-decreasing by Lemma 3.6.18, which gives the result.

Using Lemma 3.6.22, we can prove our main theorem.

Theorem 3.6.23. Let Assumption 3.3.1 hold. Then the fictitious play dynamic on the n× n

identity matrix initialized at x0 = y0 = 0 satisfies ψ( 1
k
xk,

1
k
yk) = Ω

(√
1
n
k−1/2

)
for

k ≥ 60(n+ 1).
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Proof of Theorem 3.6.23. For any nonnegative integer δ, let rδ be the earliest round τ in

which ψ(xτ , yτ ) = δ (by Lemma 3.6.22, all rδ are finite and well-defined). Let Bk =

ψ(xk, yk)− ψ(x0, y0) for all k ≥ 0. Then by Lemma 3.6.22, Bk must satisfy the following:

k ≤
Bk+1∑
δ=1

(rδ − rδ−1) ≤
Bk+1∑
δ=1

(4δ + 3)(n+ 1) (3.12)

⇐⇒ k ≤ (2B2
k + 9Bk + 7)(n+ 1) (3.13)

If k ≥ 60(n+ 1), we must have Bk ≥ 3, so 9Bk + 7 ≤ 4B2
k , which gives Bk ≥

√
k

6(n+1)
.

3.7 Proofs for Section 3.6

3.7.1 Proofs of Lemmas 3.6.7-3.6.12

Lemma 3.7.1. Suppose Assumption 3.3.1 holds. Suppose we are in a sync(i, i) phase in

round k. Then this sync phase will end after some finite number of rounds s and in round

k + s+ 1, we enter a split(j, i) phase for some j ∈ [n].

Proof. Since round k is a sync(i, i) round, we must have pk−1(i) = p∗k−1 and qk−1(i) = q∗k−1.

During the sync(i, i) phase, the row player only plays action i, so q(i) increases while the

other entries of q stay the same. This means the column player will never switch actions

in the round after a sync(i, i) round because q(i) remains the maximum entry of q and is

unique by Assumption 3.3.1. On the other hand, p(i) increases in each round of a sync

phase because Aii > 0, while the other entries of p stay the same. Since the entries of p are

finite, the row player will eventually switch in some round k + s+ 1, and in that round the

column player will not switch, so we enter a split phase.

Lemma 3.7.2. Suppose Assumption 3.3.1 holds. Suppose we are in a split(j, i) phase in

round k. Then this split phase will end after some finite number of rounds s and in round

k + s+ 1, we enter a sync(j, j) phase.
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Proof. Since round k is a split(j, i) round, we must have pk−1(j) = p∗k−1 and qk−1(i) = q∗k−1.

During this phase, the column player only plays action i, so p(i) increases while the other

entries of p stay the same. This means that the row player will never switch actions in the

round after a split(j, i) round because p(j) remains the minimum entry of p and is unique

by Assumption 3.3.1. On the other hand, q(j) increases in each round of the split phase

because Ajj > 0, while all other entries of q remain the same. Since the entries of q are

finite, the column player will eventually switch to action j, and in that round the row player

will not switch, so we enter a sync phase.

Proof of Lemma 3.6.7. The first two claims follow by Lemma 3.7.1 and Lemma 3.7.2. Since

the dynamic will begin in a sync or split phase by definition, the dynamic must alternate

between sync and split phases. Since each sync and split phase is finite, we will go through

an unbounded number of sync and split phases. Moreover, we can see that the next sync

phase after a sync(i, i) phase will be a sync(j, j) phase for j 6= i, proving the last claim.

Proof of Lemma 3.6.8. Since the column player just plays i during the sync phase, the

maximum entry of q is q(i) for rounds [k − 1, k + s]. Moreover, since the row player just

plays action i, q(i) is the only entry of q that changes, and q(i) increases by Aii in each

round. Thus,

1. q∗k+s = q∗k−1 + (s+ 1)Aii

2. vk+s(i) = vk−1(i) = 0

3. vk+s(`) = q∗k+s − qk+s(`) = q∗k−1 + (s + 1)Aii − qk−1(`) = vk(`) + (s + 1)Aii for

` 6= i

Since the row player just plays action i, p(i) is the minimum entry of p for rounds

[k − 1, k + s− 1]. Since the column player just plays action i, p(i) increases by Aii in each

round, and p(i) is the only entry of p that changes. However, in round k + s, the minimum
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entry of pk+s must be pk+s(j). So

p∗k−1 = pk−1(i) = pk+s−1(i)− sAii = pk+s−1(j) + (pk+s−1(i)− pk+s−1(j))− sAii

= pk+s(j)− uk+s−1(j)− sAii

= p∗k+s − uk+s−1(j)− sAii

= p∗k+s − (s+ 1)Aii + ε

where the last equality follows because ε = Aii−uk+s−1(j). Since pk+s−1(i) ≤ pk+s−1(j) ≤

pk+s(i) = pk+s−1(i) + Aii, we know Aii ≥ uk+s−1(j), so ε ∈ [0, Aii].

Thus,

1. p∗k+s = p∗k−1 + (s+ 1)Aii − ε

2. uk+s(`) = uk−1(`)− (s+ 1)Aii + ε for ` 6= i. In particular, uk+s(j) = uk−1(j)− (s+

1)Aii + ε = 0.

3. uk+s(i) = uk−1(i) + ε = ε

Putting together the above, we have: wk+s(`) = vk+s(`) + uk+s(`) = wk−1(`) + A−1
`` ε for

all `.

Also, note that ψ(xk+s, yk+s) = q∗k+s−p∗k+s = q∗k−1−p∗k−1 +ε = ψ(xk−1, yk−1)+ε.

Proof of Lemma 3.6.9. Since the row player only plays action j, we have p∗τ = pτ (j) for all

τ ∈ [k − 1, k + s]. Since the column player only plays action i in these rounds, p(i) is the

only entry of p that increases in each round, and it increases by Aii in each round. Thus, all

entries of u are non-decreasing in rounds [k−1, k+s], which in turn means p∗k+s = pk−1(j).

Thus,

1. p∗k+s = p∗k−1

2. uk+s(`) = uk−1(`) for ` 6= j. In particular, uk+s(j) = uk−1(j) = 0.
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3. uk+s(i) = uk−1(i) + (s+ 1)Aii

In rounds k to k + s, the row player only plays action j, q(j) is the only entry of q that

changes in these rounds, and it increases by Ajj in each round. Since the column player

plays action i in these rounds, the maximum entry of qτ is qτ (i) for τ ∈ [k − 1, k + s− 1],

which means that q∗k+s−1 = qk+s−1(i) = qk−1(i) = q∗k−1. In round k + s, the maximum

entry of q becomes q(j). So

q∗k+s = qk+s(j) = qk+s−1(j) + Ajj = q∗k+s−1 + (qk+s−1(j)− q∗k+s−1) + Ajj

= q∗k+s−1 − vk+s−1(j) + Ajj

= q∗k+s−1 − ε

where we used ε = Ajj − vk+s−1(j). Since qk+s−1(j) ≤ qk+s−1(i) ≤ qk+s(j) = qk+s−1(i) +

Ajj , we know Ajj ≥ vk+s−1(j), so ε ∈ [0, Ajj]. Thus, we have:

1. q∗k+s = q∗k−1 + ε

2. vk+s(`) = vk−1(`) + ε for ` 6= j. In particular, vk+s(i) = vk−1(i) + ε = ε.

3. vk+s(j) = vk−1(j)− (s+ 1)Ajj + ε = 0, so s+ 1 = A−1
jj (vk−1(j) + ε)

Putting the above together, we see that wk+s(`) = wk−1(`) +A−1
`` ε for ` 6∈ {i, j}. Moreover,

we see that wk+s(j) = 0. Also,

wk+s(i) = A−1
ii (uk+s(i) + vk+s(i)) = A−1

ii (uk−1(i) + (s+ 1)Aii + vk−1(i) + ε)

= A−1
ii (uk−1(i) + AiiA

−1
jj (vk−1(j) + ε) + vk−1(i) + ε)

= wk−1(i) + A−1
jj vk−1(j) + (A−1

ii + A−1
jj )ε

= wk−1(i) + wk−1(j) + (A−1
ii + A−1

jj )ε

where the last equality follows because uk−1(j) = 0. Finally, note that ψ(xk+s, yk+s) =

q∗k+s − p∗k+s = q∗k−1 − p∗k−1 + ε = ψ(xk−1, yk−1) + ε.
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Proof of Lemma 3.6.12. Let round k + k′ be the first round of the split phase in the sync-

split pair. We know that in round k + k′, the row player plays action j, so uk+k′−1(j) = 0.

Meanwhile, in each round of the sync phase, both players play action i, which causes

p(i) and q(i) to increase by Aii. Therefore, for τ ∈ [k, k + k′ − 1], we have uτ (j) =

uτ−1(j) − min{Aii, uτ−1(j)} and vτ (j) = vτ−1(j) + Aii. So overall, k′ ≥ uk−1(j)/Aii.

Moreover, vk+k′−1(j) = vk−1(j) + k′Aii.

In each round of the split phase, the row player plays action j, which causes q(j) to

increase by Ajj in each round, so for τ ∈ [k + k′, k + s− 1], we have vτ (j) = vτ−1(j)−

min{Ajj, vτ−1(j)} and vk+s−1(j) = 0. Thus, s − k′ ≥ vk+k′−1(j)/Ajj rounds. We know

that vk+k′−1(j) = vk−1(j) + k′Aii ≥ vk−1(j) because Aii > 0, so overall we have:

s ≥ uk−1(j)

Aii
+
vk−1(j)

Ajj
= A−1

jj

(
Ajjuk−1(j)

Aii
+ vk−1(j)

)
≥ Amin

Amax

A−1
jj (uk−1(j) + vk−1(j)) =

Amin

Amax

wk−1(j)

To prove Lemma 3.6.10, we will need the following useful lemma. We will use this

lemma in our lower bound proof as well.

Lemma 3.7.3. Suppose rounds k to k + s− 1 form a sync-split(i→ j) pair and let round

k+ k′ be the last round of the sync phase for this sync-split pair. Let ε1 = ψ(xk+k′ , yk+k′)−

ψ(xk−1, yk−1) and ε2 = ψ(xk+s−1, yk+s−1)− ψ(xk+k′ , yk+k′). Then we have:

1. wk+s−1(`) = wk−1(`) + A−1
`` (ε1 + ε2) for ` 6= {i, j}

2. wk+s−1(j) = wk−1(i) = 0

3. wk+s−1(i) = wk−1(j) + (A−1
ii + A−1

jj )(ε1 + ε2)

Proof of Lemma 3.7.3. This follows from the characterizations in Lemmas 3.6.8 and 3.6.9.
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Since the last round of the sync phase is round k + k′, Lemma 3.6.8 gives:

wk+k′(`) = wk−1(`) + A−1
`` ε1 for ` ∈ [n] (3.14)

Next, by Lemma 3.6.9, we see that

wk+s−1(i) = wk+k′(i) + wk+k′(j) + (A−1
ii + A−1

jj )ε2 (3.15)

wk+s−1(`) = wk+k′(`) + A−1
`` ε2 for ` /∈ {i, j} (3.16)

Combining (3.14) and (3.16) immediately gives the first claim of the lemma. Next, observe

that wk−1(i) = uk−1(i) + vk−1(i) = 0 since round k is a sync(i, i) round. Likewise

wk+s−1(j) = uk+s−1(j) + vk+s−1(j) = 0 since round k+ s is a sync(j, j) round. This gives

the second claim of the lemma. Finally, we have

wk+s−1(i) = wk+k′(i) + wk+k′(j) + (A−1
ii + A−1

jj )ε2

= wk−1(i) + A−1
ii ε1 + wk−1(j) + A−1

jj ε1 + (A−1
ii + A−1

jj )ε2

= wk−1(j) + (A−1
ii + A−1

jj )(ε1 + ε2)

Proof of Lemma 3.6.10. This follows immediately from Lemma 3.7.3 by noting that ε =

ε1 + ε2.

Proof of Corollary 3.6.11. For t = 0, this is trivially true because entries of w are always

non-negative. Now assume the statement is true for t ≤ τ − 1 and suppose we play τ + 1

consecutive sync-split pairs starting in rounds s1, ..., sτ+1. Without loss of generality, let

the τ th sync-split pair be a sync-split(i→ j) pair. By the inductive hypothesis, wsτ−1(`) ≥∑τ−1
j=1

εj
Amax

for ` 6= i. Then by Lemma 3.6.10:

1. wsτ+1−1(`) ≥ wsτ−1(`) + ετ
Amax

for ` 6∈ {i, j}
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2. wsτ+1−1(j) = wsτ−1(i) = 0

3. wsτ+1−1(i) ≥ wsτ−1(j) + 2ε
Amax

.

Thus, all non-zero entries of wsτ+1−1 are at least
∑τ

j=1
εj

Amax
.

3.7.2 Proof of Lemma 3.6.14

Proof of Lemma 3.6.14. To prove Lemma 3.6.14, we will use Lemma 3.7.4 with α = Amax,

β = δ, and cj = (t − j + 1) for all j ∈ [t]. We plug in the resulting h∗ and note that it is

non-negative and its last bδ/Amaxc entries are Amax, which gives:

min
h∈H

t∑
j=1

(t− j + 1)hj =
t∑

j=1

(t− j + 1)h∗j ≥
bδ/Amaxc∑
j=1

jAmax

≥ Amax(δ/Amax)(δ/Amax − 1)

2

≥ δ2

4Amax

where we used δ/Amax ≥ 2 for the last inequality.

Lemma 3.7.4. Let H = {h ∈ Rt|
∑t

j=1 hj = β and ∀j, 0 ≤ hj ≤ α} for 0 ≤ β ≤ tα. Let

g(h) =
∑t

j=1 cjhj for 0 < ct < ct−1 < ... < c1. Let h∗ ∈ Rt be the following vector:

h∗ = ( 0, 0, ..., 0, 0︸ ︷︷ ︸
t−bβ/αc−1 entries

, β − α · bβ/αc , α, α, ..., α︸ ︷︷ ︸
bβ/αc entries

).

In other words, h∗ has dβ/αe non-zeros and entries as follows:

1. The last bβ/αc entries of h∗ are α. Namely, h∗j = α for j ∈ {t − bβ/αc + 1, t −

bβ/αc+ 2, ..., t}.

2. h∗t−bβ/αc = β − α · bβ/αc

3. h∗j = 0 for j ∈ {1, ..., t− bβ/αc − 1}
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Then h∗ = arg minh∈H g(h).

Proof of Lemma 3.7.4. Since g is linear andH is a bounded, non-empty (t−1)-dimensional

polytope, any solution h ∈ arg minh∈H g(h) must be tight for at least t − 1 constraints.

That is, t− 1 coordinates of h must be either 0 or α. Due to the sum constraint, it is clear

that bβ/αc entries of h must be α and t − bβ/αc − 1 entries must be 0. Moreover, the

remaining entry of h must have value β − α · bβ/αc. In other words, the solution must

be a vector h such that hj = h∗σ(j) for some permutation σ. Then it suffices to show that

only permutations that sort h∗ in non-decreasing order minimize f(σ) =
∑t

j=1 h
∗
σ(j)cj .

Note that cj is sorted in decreasing order. Consider some permutation σ̂ that doesn’t sort

h∗ in non-decreasing order. Then for some i < j, we have h∗σ̂(i) > h∗σ̂(j). Consider a

permutation σ′ such that σ′(`) = σ̂(`) for ` /∈ {i, j} and σ′(i) = σ̂(j) and σ′(j) = σ̂(i).

Then f(σ̂)− f(σ′) = (h∗σ̂(j)−h∗σ̂(i))(cj − ci) > 0 since i < j. We have shown that σ̂ cannot

be the minimizer of f , so the minimizer must sort h in non-decreasing order, as is the case

for the identity permutation of h∗.

3.7.3 Proof of Lemma 3.6.16

Proof of Lemma 3.6.16. Since all Aii = 1, all entries of p must be integral. Note that

p∗k−1 = pk−1(i) and p∗k = pk(j). Since round k is a sync(i, i) round, pk(i) = pk−1(i) + 1.

Moreover, since q(i) is the maximum entry of q for rounds k−1 and k, we have q∗k = q∗k−1+1.

If σx(j) < σx(i), then we must have pk−1(i) < pk−1(j) otherwise the x player would

have played j due to the tiebreak order. This implies pk(i) = pk(j), which means p∗k =

p∗k−1 + 1. So ε = q∗k − p∗k − (q∗k−1 − p∗k−1) = 1 in this case.

If σx(j) > σx(i), then pk(i) > pk(j). Due to the integrality of p, we have pk(i) = pk(j)+

1, which implies pk−1(j) = pk−1(i). Thus, p∗k = p∗k−1. So ε = q∗k − p∗k − (q∗k−1 − p∗k−1) = 0

in this case.
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3.7.4 Proof of Lemma 3.6.17

Proof of Lemma 3.6.17. Since all Aii = 1, all entries of q must be integral. Note that

q∗k−1 = qk−1(i) and q∗k = qk(j). Since round k is a split(j, i) round, qk(j) = qk−1(j) + 1.

Moreover, since p(j) is the maximum entry of p for rounds k − 1 and k, we have p∗k = p∗k−1.

If σy(j) < σy(i), then we must have qk−1(i) > qk−1(j) otherwise the y player would

have played j due to the tiebreak order. This implies qk(i) = qk(j), which means q∗k = q∗k−1.

So ε = q∗k − p∗k − (q∗k−1 − p∗k−1) = 0 in this case.

If σy(j) > σy(i), then qk(i) < qk(j). Due to the integrality of q, we have qk(j) = qk(i)+

1, which implies qk−1(j) = qk−1(i). Thus, q∗k = q∗k−1+1. So ε = q∗k−p∗k−(q∗k−1−p∗k−1) = 1

in this case.

3.7.5 Proof of Lemma 3.6.18

We first need to prove the following lemma:

Lemma 3.7.5. Suppose rounds k and k + 1 are both sync(i, i) rounds or both split(j, i)

rounds. Then ψ(xk, yk) = ψ(xk−1, yk−1).

Proof. If rounds k and k + 1 are both of the same type, then p∗k−1 = p∗k and q∗k−1 = q∗k

because both players play the same action in rounds k and k+ 1. Then we have ψ(xk, yk) =

q∗k − p∗k = q∗k−1 − p∗k−1 = ψ(xk−1, yk−1).

Proof of Lemma 3.6.18. The first claim follows because ψ(xk, yk) = q∗k − p∗k and p and q

are integral for A = In. For any given pair of rounds, Lemma 3.6.7 implies that either the

rounds are of the same type or we encounter the settings of Lemmas 3.6.16 and 3.6.17. If

the rounds are the same type, then by Lemma 3.7.5, the duality gap is unchanged. Thus, in

all cases the duality gap can never increase and it only increases in the settings described by

Lemmas 3.6.16 and 3.6.17.
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3.7.6 Proof of Lemma 3.6.21

We first need the following lemma, which is analogous to Lemma 3.6.12.

Lemma 3.7.6. Let Assumption 3.3.1 hold and let A be a diagonal matrix with positive

diagonal. Suppose rounds k to k + s − 1 form a sync-split(i → j) pair. Then s ≤
2Amax

Amin
wk−1(j) + 1

Amin
+ 2.

Proof. Let round k + k′ be the first round of the split phase in the sync-split pair. We know

that in round k + k′, the row player plays action j, so uk+k′−1(j) = 0. Meanwhile, in each

round of the sync phase, both players play action i, which causes p(i) and q(i) to increase by

Aii. Therefore, for τ ∈ [k, k + k′ − 1], we have uτ (j) = uτ−1(j)−min{Aii, uτ−1(j)} and

vτ (j) = vτ−1+Aii. So overall, k′ ≤ uk−1(j)/Aii+1. Moreover, vk+k′(j) = vk−1(j)+k′Aii.

In each round of the split phase, the row player plays action j, which causes q(j) to

increase by 1 in each round, so for τ ∈ [k + k′, k + s − 1], we have vτ (j) = vτ−1(j) −

min{Ajj, v(j)} and until vk+s−1(j) = 0. Thus, s− k′ ≤ vk+k′(j)/Ajj + 1. So overall we

have:

s ≤ uk−1(j)

Aii
+ 1 +

vk+k′(j)

Ajj
+ 1 =

uk−1(j)

Aii
+
vk−1(j) + k′Aii

Ajj
+ 2

≤ uk−1(j)

Aii
+
vk−1(j) + (uk−1(j)

Aii
+ 1)Aii

Ajj
+ 2

≤ A−1
jj

((
Ajj
Aii

+ 1

)
uk−1(j) + vk−1(j) + 1

)
+ 2

≤ 2Amax

Amin

wk−1(j) +
1

Amin

+ 2

Proof of Lemma 3.6.21. By Lemma 3.7.6, a sync-split(i → j) pair will last for at most

2wk−1(j) + 3 rounds. By Corollary 3.6.20, wk−1(j) ≤ 2ψ(xk−1, yk−1), which gives the

result.
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3.8 Proofs for Section 3.5

Proof of Theorem 3.5.1. For all z ∈ Z , we have φ(Sz) = maxw∈Z w
>Az ≥ z>Az = 0.

Therefore, minz∈Z φ(Sz) ≥ 0. We will show there exists z∗ ∈ Z such that φ(Sz∗) = 0.

Define the set-valued map T : Z → 2Z by

T (z) = ∂φ(Sz) = arg max
z̃∈Z

z̃>Sz.

Note that T (z) is a nonempty, closed, and convex set for each z ∈ Z . We will show T is

a closed map. Then since Z is compact and convex, by Kakutani’s fixed point theorem,

there exists a fixed point z∗ ∈ Z of T , so z∗ ∈ T (z∗) = ∂φ(Sz∗) = arg maxz̃∈Z z̃
>Sz∗.

Therefore, z∗ satisfies φ(Sz∗) = (z∗)>Sz∗ = 0, as desired.

We now show T is a closed map, that is, if zn ∈ Z and wn ∈ T (zn) such that

limn→∞ zn = z and limn→∞wn = w, then w ∈ T (z). Note that wn ∈ T (zn) =

∂φ(Szn) = arg maxz̃∈Z z̃
>Szn means φ(Szn) = w>n Szn. Since φ is a continuous function,

and wn → w, zn → z, we have φ(Sz) = limn→∞ φ(Szn) = limn→∞w
>
n Szn = w>Sz.

Therefore, w ∈ arg maxz̃∈Z z̃
>Sz = ∂φ(Sz) = T (z), as desired.

Proof of Lemma 3.5.3. Let vk = zk+1 − zk = ∇φ(Szk). By Taylor’s formula, we can write

φ(Szk+1) = φ(Szk) +∇φ(Szk)
>Svk +

∫ 1

0

(1− t) v>k S>∇2φ(Szk,t)Svk dt (3.17)

where zk,t = zk + tvk for 0 ≤ t ≤ 1. Note that

∇φ(Szk)
>Svk = ∇φ(Szk)

>S∇φ(Szk) = 0.

Furthermore, since zk,t ∈ (k + t)Z , we have ‖Szk,t‖ ≥ (k + t)d ≥ kd, so ∇2φ(Szk,t) �
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L
‖Szk,t‖

I � L
kd
I . Therefore,

∫ 1

0

(1− t) v>k S>∇2φ(Szk,t)Svk dt ≤
∫ 1

0

(1− t) L‖Svk‖
2

kd
dt ≤ LD2

2kd
.

Then from (3.17) we have φ(Szk+1) ≤ φ(Szk) + LD2

2kd
, as desired.

Proof of Theorem 3.5.4. From Lemma 3.5.3, we have

φ(Szk) ≤ φ(Sz1) +
LD2

2d

k−1∑
`=1

1

`

≤ φ(Sz1) +
LD2

2d

(
1 +

∫ k−1

1

1

t
dt

)
= φ(Sz1) +

LD2

2d
(1 + log(k − 1)) .

3.8.1 Auxiliary results for 0 ∈ (SZ)◦

We will use the following auxiliary result.

Lemma 3.8.1. Suppose 0 ∈ (SZ)◦. Assume Assumption 3.5.2. For all θ ∈ Rn \ {0},

| cos(θ, S∇φ(θ))| ≤
√

1− m2

R2
.

Proof. Note that φ(θ) = θ>∇φ(θ). Then for all θ ∈ Rn \ {0} with θ̂ = θ/‖θ‖,

cos∠(θ,∇φ(θ)) =
θ>∇φ(θ)

‖θ‖‖∇φ(θ)‖
=

φ(θ)

‖θ‖‖∇φ(θ)‖
=

φ(θ̂)

‖∇φ(θ)‖
≥ m

R
.

Furthermore, since S> = −S,

cos(∇φ(θ), S∇φ(θ)) =
∇φ(θ)>S∇φ(θ)

‖∇φ(θ)‖‖S∇φ(θ)‖
= 0.

47



Then by Lemma 3.8.4,

| cos∠(θ, S∇φ(θ))| ≤
√

1− m2

R2

as desired.

Lemma 3.8.2. Assume Assumption 3.5.2. Let L = sup‖θ‖=1 ‖∇2φ(θ)‖ < ∞. For all

θ, v ∈ Rn \ {0} with | cos∠(θ, v)| ≤ C < 1, we have

〈∇φ(θ + v)−∇φ(θ), v〉 ≤ L√
1− C2

‖v‖2

‖θ‖
.

Proof. Let c ≡ cos∠(θ, v) and r = ‖v‖/‖θ‖. For 0 ≤ t ≤ 1, let θt = θ + tv, so

‖θt‖2 = ‖θ‖2 + 2tv>θ + t2‖v‖2

= ‖θ‖2 + 2ct‖v‖‖θ‖+ t2‖v‖2

= ‖θ‖2(1 + 2ctr + t2r2)

≥ ‖θ‖2(1− 2Ctr + t2r2)

= ‖θ‖2(1− C2 + (C − tr)2)

≥ ‖θ‖2(1− C2). (3.18)

Let θ̂t = θt/‖θt‖. We can write∇φ(θ + v)−∇φ(θ) =
∫ 1

0
∇2φ(θt)v dt, so

〈∇φ(θ + v)−∇φ(θ), v〉 =

∫ 1

0

〈v,∇2φ(θt)v〉 dt

=

∫ 1

0

〈v,∇2φ(θ̂t)v〉
‖θt‖

dt

≤
∫ 1

0

L‖v‖2

‖θt‖
dt

(3.18)
≤ L√

1− C2

‖v‖2

‖θ‖
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as desired.

Proof of Lemma 3.5.5. Let vk = zk+1 − zk = ∇φ(Szk) so ‖vk‖ ≤ R. By Lemma 3.8.1,

| cos∠(Szk, Svk)| ≤ C :=

√
1− m2

R2
.

Then by Jensen’s inequality and Lemma 3.8.2,

φ(Szk+1)− φ(Szk) ≤ 〈∇φ(Szk+1), S(zk+1 − zk)〉

= 〈∇φ(Szk+1)−∇φ(Szk), Szk+1 − Szk〉

≤ L√
1− C2

‖Svk‖2

‖Szk‖

=
LR

m

‖Svk‖2

‖Szk‖

≤ LR

m

‖S‖2R2

‖Szk‖

≤ LR

m

‖S‖2R3

φ(Szk)
.

Therefore,

φ(Szk+1) ≤ φ(Szk) +
L′

φ(Szk)

where L′ := LR4‖S‖2/m.

Proof of Theorem 3.5.6. By Lemma 3.5.5,

φ(Szk+1)2 ≤ φ(Szk)
2 +

L′2

φ(Szk)2
+ 2L′

≤ φ(Szk)
2 +

L′2

φ(Sz1)2
+ 2L′
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where the last inequality holds since φ(Szk) ≥ φ(Sz1). Therefore,

φ(Szk)
2 ≤ φ(Sz1)2 + (k − 1)L′′ = O(k)

where L′′ := L′2

φ(θ1)2
+ 2L′, so

φ(Szk) ≤
√
φ(Sz1)2 + (k − 1)L′′ = O(

√
k)

as desired.

3.8.2 Auxiliary results for strong convexity

Lemma 3.8.3. Suppose φ is α-orthogonally strongly convex. For all θ, v ∈ Rn \ {0},

v>∇2φ(θ)v ≥ α
‖v‖2

‖θ‖
sin2 ∠(θ, v)

where ∠(θ, v) is the angle between θ and v (from the origin).

Proof. Let θ̂ = θ/‖θ‖ and v̂ = v/‖v‖. Note that by the homogeneity property of φ,

v>∇2φ(θ)v =
‖v‖2

‖θ‖
v̂>∇2φ(θ̂)v̂.

Let c ≡ cos∠(θ, v) = θ̂>v̂. Let v⊥ = v̂ − (θ̂>v̂)θ̂ = v̂ − cθ̂ denote the component of v̂

orthogonal to θ̂, and note that ‖v⊥‖2 = 1− c2 = sin2 ∠(θ, v). Then since∇2φ(θ̂)θ̂ = 0 and

using the definition of α-orthogonal strong convexity, we have

v̂>∇2φ(θ̂)v̂ = (v⊥ + cθ̂)>∇2φ(θ̂)(v⊥ + cθ̂) = v>⊥∇2φ(θ̂)v⊥ ≥ α‖v⊥‖2 = sin2 ∠(θ, v)

as desired.

Lemma 3.8.4. Let u, v, w ∈ Rn \ {0} with cos∠(u, v) = 0 and | cos∠(v, w)| ≥ c ≥ 0.
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Then

sin2 ∠(u,w) ≥ c2.

Proof. Without loss of generality assume ‖u‖ = ‖v‖ = ‖w‖ = 1. We choose a coordinate

system such that u = (1, 0, . . . , 0), v = (0, 1, 0, . . . , 0), and w = (x, y, z) for some x, y ∈

R, z ∈ Rn−2, with x2 + y2 + ‖z‖2 = ‖w‖2 = 1. Then cos∠(u, v) = u>v = 0 and

cos∠(v, w) = v>w = y, so we assume |y| ≥ c ≥ 0. c(v, w) = v>w = y and c(u,w) =

u>w = x. Furthermore, cos∠(u,w) = u>w = x, and

sin2 ∠(u,w) = 1− x2 = y2 + ‖z‖2 ≥ y2 ≥ c2

as desired.

Lemma 3.8.5. Let θ, v ∈ Rn \ {0}, let r = ‖v‖/‖θ‖, and c = cos∠(θ, v). Then for all

0 ≤ t ≤ 1,

c(θ + tv, v) =
c+ tr√

1 + 2ctr + t2r2
.

Proof. Let c = c(θ, v) and r = ‖v‖/‖θ‖. For 0 ≤ t ≤ 1, let θt = θ + tv, so

‖θt‖2 = ‖θ‖2(1 + 2ctr + t2r2).

Then

c(θt, v) =
θ>t v

‖θt‖‖v‖
=

θ>v + t‖v‖2

‖θ‖‖v‖
√

1 + 2ctr + t2r2
=

c+ tr√
1 + 2ctr + t2r2

.

Proof of Lemma 3.5.9. Let vk = Szk+1 − Szk = ∇φ(Szk) ∈ Z , so ‖Svk‖ ≥ R0. Let
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c ≡ cos(Szk, Svk), so |c| ≤
√

1− m2

R2 by Lemma 3.8.1, and let r = ‖Svk‖/‖Szk‖. For

0 ≤ t ≤ 1, let zk,t = zk + tvk, so

‖Szk,t‖ = ‖Szk‖
√

1 + 2ctr + t2r2. (3.19)

Let ct = cos(Szk,t, Svk), so by Lemma 3.8.5,

ct =
c+ tr√

1 + 2ctr + t2r2
. (3.20)

Let Ŝzk,t = Szk,t/‖Szk,t‖ and Ŝvk = Svk/‖Svk‖. Then by Lemma 3.8.3,

φ(Szk+1)− φ(Szk) =

∫ 1

0

(1− t) (Svk)
>∇2φ(Szk,t)Svk dt

=

∫ 1

0

(1− t) ‖Svk‖
2

‖Szk,t‖
Ŝvk

>
∇2φ(Ŝzk,t)Ŝvk dt

(3.19)
=
‖Svk‖2

‖Szk‖

∫ 1

0

(1− t) Ŝvk
>
∇2φ(Ŝzk,t)Ŝvk√

1 + 2ctr + t2r2
dt

≥ ‖Svk‖
2

‖Szk‖

∫ 1

0

(1− t) α(1− c2
t )√

1 + 2ctr + t2r2
dt

(3.20)
=
‖Svk‖2

‖Szk‖

∫ 1

0

(1− t) α(1− c2)

(1 + 2ctr + t2r2)3/2
dt

≥ ‖Svk‖
2

‖Szk‖
αm2

R2

∫ 1

0

1− t
(1 + 2ctr + t2r2)3/2

dt.

We consider two cases:

• Suppose r ≤ 1. Then since 1 + 2ctr + t2r2 ≤ 1 + 2 + 1 = 4,

∫ 1

0

1− t
(1 + 2ctr + t2r2)3/2

dt ≥ 1

8

∫ 1

0

(1− t) dt =
1

16
.
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Therefore, in this case

φ(Szk+1)− φ(Szk) ≥
αm2

16R2

‖Svk‖2

‖Szk‖

≥ αm2R2
0

16R2

1

‖Szk‖

≥ αm3R2
0

16R2

1

φ(Szk)
.

• Suppose r > 1. Then for 0 ≤ t ≤ 1
2r

, 1 + 2ctr + t2r2 ≤ 1 + 1 + 1
4

= 9
4
, so

∫ 1

0

1− t
(1 + 2ctr + t2r2)3/2

dt ≥
∫ 1

2r

0

1− t
(1 + 2ctr + t2r2)3/2

dt

≥
∫ 1

2r

0

1− 1
2r

(3/2)3
dt

=
1

2r

(
1− 1

2r

)
8

27

≥ 2

27r

≥ 1

16r
.

Therefore, in this case

φ(Szk+1)− φ(Szk) ≥
αm2

R2

‖Svk‖2

‖Szk‖
1

16r

=
αm2

16R2
‖Svk‖

≥ αm2R0

16R2

≥ αm2R0

16R2

φ(Sz1)

φ(Szk)

≥ αm3R0‖Sz1‖
16R2

1

φ(Szk)
.
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In both cases above we have

φ(Szk+1) ≥ φ(Szk) +
C

φ(Szk)

with C = αm3R0

16R2 min {‖θ1‖, R0}, as desired.

Proof of Theorem 3.5.10. By Lemma 3.5.9,

φ(Szk+1)2 ≥ φ(Szk)
2 + 2C +

C2

φ(Szk)2
≥ φ(Szk)

2 + 2C.

Therefore,

φ(Szk)
2 ≥ φ(Sz1)2 + 2C(k − 1),

so

φ(Szk) ≥
√
φ(Sz1)2 + 2C(k − 1) = Ω(

√
k).

Proof of Lemma 3.5.12. Since φ is convex, by Jensen’s inequality,

φ(Szk+1)− φ(Szk) ≤ ∇φ(Szk+1)>S(zk+1 − zk)

= ∇φ(Szk+1)>S∇φ(Szk+ 1
2
)

=
(
∇φ(Szk+1)−∇φ(Szk+ 1

2
)
)>
S∇φ(Szk+ 1

2
)

≤ ‖∇φ(Szk+1)−∇φ(Szk+ 1
2
)‖ ‖S∇φ(Szk+ 1

2
)‖

≤ ‖∇φ(Szk+1)−∇φ(Szk+ 1
2
)‖D. (3.21)
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By Taylor’s formula, we can write

∇φ(Szk+1)−∇φ(Szk+ 1
2
) =

∫ 1

0

∇2φ(Sz̃k,t)S(zk+1 − zk+ 1
2
) dt

=

∫ 1

0

∇2φ(Sz̃k,t)S(∇φ(Szk+ 1
2
)−∇φ(Szk)) dt

where for 0 ≤ t ≤ 1, z̃k,t = (1− t)zk+ 1
2

+ tzk+1 = zk + (1− t)∇φ(Szk) + t∇φ(Szk+ 1
2
).

Note that z̃k,t ∈ (k + 1)Z , so ‖Sz̃k,t‖ ≥ d(k + 1), which implies ∇2φ(Sz̃k,t) � L
d(k+1)

I ,

and thus

‖∇φ(Szk+1)−∇φ(Szk+ 1
2
)‖ ≤ L

d(k + 1)
‖S‖ ‖∇φ(Szk+ 1

2
)−∇φ(Szk)‖. (3.22)

Again by Taylor’s formula, we can write

∇φ(Szk+ 1
2
)−∇φ(Szk) =

∫ 1

0

∇2φ(Szk,t)S(zk+ 1
2
− zk) dt

=

∫ 1

0

∇2φ(Szk,t)S∇φ(Szk) dt

where for 0 ≤ t ≤ 1, zk,t = (1− t)zk + tzk+ 1
2

= zk + t∇φ(Szk). Note that zk,t ∈ (k+ t)Z ,

so ‖Szk,t‖ ≥ d(k + t) ≥ dk, which implies∇2φ(Szk,t) � L
dk
I , and thus

‖∇φ(Szk+ 1
2
)−∇φ(Szk)‖ ≤

L

dk
‖S∇φ(Szk)‖ ≤

LD

dk
.

Plugging this to (3.22) and back to (3.21), we conclude φ(Szk+1) ≤ φ(Szk) + L2D2‖S‖
d2k(k+1)

, as

desired.
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Theorem of Lemma 3.5.13. By Lemma 3.5.12 and writing 1
k(k+1)

= 1
k
− 1

k+1
, we have

φ(Szk) ≤ φ(Sz1) +
L2D2‖S‖

d2

k−1∑
`=1

(
1

`
− 1

`+ 1

)
= φ(Sz1) +

L2D2‖S‖
d2

(
1− 1

k

)
≤ φ(Sz1) +

L2D2‖S‖
d2

.
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CHAPTER 4

LAST-ITERATE CONVERGENCE RATES FOR MIN-MAX OPTIMIZATION

In this chapter, we focus on last-iterate convergence of algorithms in smooth unconstrained

min-max optimization problems. While classic work in convex-concave min-max optimiza-

tion relies on average-iterate convergence results, the emergence of nonconvex applications

such as training Generative Adversarial Networks has led to renewed interest in last-iterate

convergence guarantees. Proving last-iterate convergence is challenging because many natu-

ral algorithms, such as Gradient Descent/Ascent, provably diverge or cycle even in simple

convex-concave min-max settings, and previous work on global last-iterate convergence

rates has been limited to the bilinear and convex-strongly concave settings. We show that

the HAMILTONIAN GRADIENT DESCENT (HGD) algorithm achieves linear convergence in

a variety of more general settings, including convex-concave problems that satisfy a novel

sufficiently bilinear condition. We also prove convergence rates for stochastic HGD and for

some parameter settings of the Consensus Optimization algorithm of [MNG17].

4.1 Introduction

Last-iterate convergence guarantees for min-max problems have been challenging to prove

since standard analysis of no-regret algorithms says essentially nothing about last-iterate

convergence. Widely used no-regret algorithms, such as Gradient Descent/Ascent (GDA),

fail to converge even in the simple bilinear setting where g(x, y) = x>Cy for some arbitrary

matrix C. GDA provably cycles in continuous time and diverges in discrete time (see for

example [DISZ18; MGN18]). In fact, the full range of Follow-The-Regularized-Leader

(FTRL) algorithms provably do not converge in zero-sum games with interior equilibria

[MPP18]. This occurs because the iterates of the FTRL algorithms exhibit cyclic behavior,

a phenomenon commonly observed when training GANs in practice as well.
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Much of the recent research on last-iterate convergence in min-max problems has

focused on asymptotic or local convergence [Mer+19; MNG17; DP18; Bal+18; Let+19;

MJS19]. While these results are certainly useful, one would ideally like to prove global

non-asymptotic last-iterate convergence rates. Provable global convergence rates allow

for quantitative comparison of different algorithms and can aid in choosing learning rates

and architectures to ensure fast convergence in practice. Yet despite the extensive amount

of literature on convergence rates for convex optimization, very few global last-iterate

convergence rates have been proved for min-max problems. Prior work on global last-iterate

convergence rates has been limited to the bilinear or convex-strongly concave settings

[Tse95; LS19; DH19; MOP19]. In particular, the following basic question is still open:

“What global last-iterate convergence rates are achievable for convex-concave min-max

problems?”

Understanding global last-iterate rates in the convex-concave setting is an important

stepping stone towards provable last-iterate rates in the nonconvex-nonconcave setting.

Motivated by this, we prove new linear last-iterate convergence rates in the convex-concave

setting for an algorithm called HAMILTONIAN GRADIENT DESCENT (HGD) under weaker

assumptions compared to previous results. HGD is gradient descent on the squared norm of

the gradient, and it has been mentioned in [MNG17; Bal+18]. Our results are the first to show

non-asymptotic convergence of an efficient algorithm in settings that not linear or strongly

convex in either input. In particular, we introduce a novel “sufficiently bilinear” condition on

the second-order derivatives of the objective g and show that this condition is sufficient for

HGD to achieve linear convergence in convex-concave settings. The “sufficiently bilinear”

condition appears to be a new sufficient condition for linear convergence rates that is distinct

from previously known conditions such as the Polyak-Łojasiewicz (PL) condition or pure

bilinearity. Our analysis relies on showing that the squared norm of the gradient satisfies the

PL condition in various settings. As a corollary of this result, we can leverage [KNS16] to

show that a stochastic version of HGD will have a last-iterate convergence rate of O(1/
√
k)
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in the “sufficiently bilinear” setting, albeit with an additional smoothness assumption. On

the practical side, while vanilla HGD has issues training GANs in practice, [MNG17] show

that a related algorithm known as Consensus Optimization (CO) can effectively train GANs

in a variety of settings, including on CIFAR-10 and celebA. We show that CO can be viewed

as a perturbation of HGD, which implies that for some parameter settings, CO converges at

the same rate as HGD.

Figure 4.1: HGD converges quickly, while GDA spirals. This nonconvex-nonconcave
objective is defined in Section 4.14.

We begin in Section 4.2 with background material and notation, including some of our

key assumptions. In Section 4.4, we discuss Hamiltonian Gradient Descent (HGD), and
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we present our linear convergence rates for HGD in various settings. In Section 4.5, we

present some of the key technical components used to prove our results from Section 4.4.

We present our results for Stochastic HGD in Section 4.6, and we present our results for

Consensus Optimization in Section 4.7. The details of our proofs are in Section 4.13.

4.2 Preliminaries

Notation Recall that we use ξ to denote the gradient descent ascent vector field, as defined

in (1.4). Under this notation, the Gradient Descent/Ascent (GDA) update can be written as

zk+1 = zk − ηξ(zk).

For notational convenience, we will use J to denote the Jacobian of ξ, i.e.

J ≡ ∇ξ =

 ∇2
xxg ∇2

xyg

−∇2
yxg −∇2

yyg

 .

Note that unlike the Hessian in standard optimization, J is not symmetric, due to the

negative sign in ξ. When clear from the context, we often omit dependence on x when

writing ξ, J, g,H, and other functions. Note that ξ, J , andH are defined for a given objective

g – we omit this dependence as well for notational clarity. We will always assume g is

sufficiently differentiable whenever we take derivatives. In particular, we assume third-order

differentiability in Section 4.4.

We will also use the following non-standard definitions for notational convenience:

Definition 4.2.1 (Higher-order Lipschitz). A function g : Rn → R is (L2, L3)-Lipschitz if

for all z ∈ Rn, we have ||∇ξ(z)|| ≤ L2 and ||∇J(z)|| ≤ L3.

Definition 4.2.2 (Smoothness at a point). A function f : Rn → R is L-smooth at a point z

if ||∇2f(z)|| ≤ L.

Notions of convergence in min-max problems Since we are in the unconstrained setting,

the normal notion of duality gap (2.3) is unsuitable. As such, we use a different notion
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of convergence, as we now describe. Our rates will apply to min-max problems where g

satisfies the following assumption:

Assumption 4.2.3. All critical points of the objective g are global min-maxes (i.e. they

satisfy (2.1)).

In other words, we prove convergence rates to min-maxes in settings where convergence

to critical points is necessary and sufficient for convergence to min-maxes. This assumption

is true for convex-concave settings, but also holds for some nonconvex-nonconcave settings,

as we discuss in Section 4.10. This assumption allows us to measure the convergence of our

algorithms to ε-approximate critical points, defined as follows:

Definition 4.2.4. Let ε ≥ 0. A point z ∈ Rn × Rn is an ε-approximate critical point if

||ξ(z)|| ≤ ε.

Convergence to approximate critical points is a common goal in standard convex and

nonconvex optimization (see for example [AZH16; GL16; CHDS17; Aga+17]), as it is a

necessary condition for convergence to local or global minima, and it is a natural measure

of convergence since the value of g at a given point gives no information about how close

we are to a min-max. Our main convergence rate results focus on this first-order notion of

convergence, which is sufficient given Assumption 4.2.3. We discuss notions of second-order

convergence and ways to adapt our results to the general nonconvex setting in Section 4.3.

4.3 Related work

Asymptotic and local convergence In standard nonconvex optimization, a common goal

is to find second-order local minima, which are approximate critical points where∇2f is

approximately positive definite. Likewise, a common goal in nonconvex min-max opti-

mization is to find approximate critical points where an analogous second-order condition

holds, namely that∇2
xxg(x) is approximately positive definite and∇2

yyg(x) is approximately

negative definite. Critical points where this second-order condition holds are called local
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min-maxes. When Assumption 4.2.3 holds, all critical points are global min-maxes, but in

more general settings, we may encounter critical points that do not satisfy these conditions.

Critical points may be local min-mins or max-mins or indefinite points. A number of

recent papers have proposed dynamics for nonconvex min-max optimization, showing local

stability or local asymptotic convergence results [MNG17; Mer+19; DP18; Bal+18; Let+19;

MJS19]. The key guarantee that these papers generally give is that their algorithms will be

stable at local min-maxes and unstable at some set of undesirable critical points (such as

local max-mins). This essentially amounts to a guarantee that in the convex-concave setting,

their algorithms will converge asymptotically and in the strictly concave-strictly convex

setting (i.e. where there is only an undesirable max-min), their algorithms will diverge

asymptotically. This type of local stability is essentially the best one can ask for in the

general nonconvex setting, and we show how to give similar guarantees for our algorithm in

Section 4.8.

Non-asymptotic convergence rates Work on global non-asymptotic last-iterate conver-

gence rates has been limited to very restrictive settings. A classic result by [Roc76] shows a

linear convergence rate for the proximal point method in the bilinear and strongly convex-

strongly concave cases. Another classic result, by [Tse95], shows a linear convergence

rate for the extragradient algorithm in the bilinear case. [LS19] show that a number of

algorithms achieve a linear convergence rate in the bilinear case, including Optimistic Mirror

Descent (OMD) and Consensus Optimization (CO). They also show that GDA obtains

a linear convergence rate in the strongly convex-strongly concave case. [MOP19] show

that OMD and EG obtain a linear rate for the strongly convex-strongly concave case, in

addition to proving similar results for generalized versions of both algorithms. [DH19]

show that GDA achieves a linear convergence rate for a convex-strongly concave setting

with a full column rank linear interaction term.1 Finally, concurrent work by [AMLJG19]

1Specifically, they assume g(x, y) = f(x) + yTAx− h(y), where f is smooth and convex, h is smooth
and strongly convex, and A has full column rank. We make a brief comparison of our work to that of [DH19]
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shows global linear convergence rates for various algorithms in a very similar setting to ours.

Other concurrent work by [Azi+20] provides convergence rates for an accelerated variant of

Consensus Optimization.

Non-uniform average-iterate convergence A number of recent works have studied the

convergence of non-uniform averages of iterates. Iterate averaging can lend stability to

an algorithm or improve performance if the algorithm cycles around the solution. On the

other hand, uniform averages can suffer from worse performance in nonconvex settings if

early iterates are far from optimal. Non-uniform averaging is a way to achieve the stability

benefits of iterate averaging while potentially speeding up convergence compared to uniform

averaging. In this way, one can view non-uniform averaging as an interpolation between

average-iterate and last-iterate algorithms.

One popular non-uniform averaging scheme is the exponential moving average (EMA).

For an algorithm with iterates z(0), ..., z(T ), the EMA at iterate t is defined recursively as

z
(t)
EMA = βz

(t−1)
EMA + (1− β)z

(t−1)
EMA

where z(0)
EMA = z(0) and β < 1. A typical value for β is 0.999. [Yaz+19] and [GBVLJ19]

show that uniform and EMA schemes can improve GAN performance on a variety of datasets.

[MGN18] and [KALL18] use EMA to evaluate the GAN models they train, showing the

effectiveness of EMA in practice.

In terms of theoretical results, [Kro19] studies saddle point problems of the form

min
x

max
y
f(x) + g(x) + 〈Kx, y〉 − h∗(y),

where f is a smooth convex function, g and h are convex functions with easily computable

prox-mappings, and K is some linear operator. They show that for certain algorithms,

for the convex-strongly concave setting in Section 4.9.
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linear averaging and quadratic averaging schemes are provably at least as good as the

uniform average scheme in terms of iterate complexity. [ALLW18b] show how linear and

exponential averaging schemes can be used to achieve faster convergence rates in some

specific convex-concave games.

Overall, while non-uniform averaging is appealing for a variety of reasons, there is

currently no theoretical explanation for why it outperforms uniform averages or why it

would converge at all in many settings. In fact, one natural way to show convergence for an

EMA scheme would be to show last-iterate convergence.

4.4 Hamiltonian Gradient Descent

Our main algorithm for finding saddle points of g(x, y) is called HAMILTONIAN GRADIENT

DESCENT (HGD). HGD consists of performing gradient descent on a particular objective

functionH that we refer to as the Hamiltonian, following the terminology of [Bal+18].2 If

we let ξ :=
(
∂g
∂x
,−∂g

∂y

)
be the vector of (appropriately-signed) partial derivatives, then the

Hamiltonian is:

H(z) := 1
2
‖ξ(z)‖2 = 1

2

(
‖ ∂g
∂x

(z)‖2 + ‖∂g
∂y

(z)‖2
)
.

Since a critical point occurs when ξ(z) = 0, we can find a (approximate) critical point

by finding a (approximate) minimizer of H. Moreover, under Assumption 4.2.3, finding

a critical point is equivalent to finding a saddle point. This motivates the HGD update

procedure on zk = (xk, yk) with step-size η > 0:

zk+1 = zk − η∇H(zk), (4.1)

HGD has been mentioned in [MNG17; Bal+18], and it strongly resembles the Consensus

2We note that the functionH is not the Hamiltonian as in the sense of classical physics, as we do not use
the symplectic structure in our analysis, but rather we only perform gradient descent onH.
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Optimization (CO) approach of [MNG17]. The HGD update requires a Hessian-vector

product because ∇H = ξ>J , making HGD a second-order iterative scheme. However,

Hessian-vector products are cheap to compute when the objective is defined by a neural

net, taking only two gradient oracle calls [Pea94]. This makes the Hessian-vector product

oracle a theoretically appealing primitive, and it has been used widely in the nonconvex

optimization literature. Since Hessian-vector product oracles are feasible to compute for

GANs, many recent algorithms for local min-max nonconvex optimization have also utilized

Hessian-vector products [MNG17; Bal+18; ADLH19; Let+19; MJS19].

To the best of our knowledge, previous work on last-iterate convergence rates has only

focused on how algorithms perform in three particular cases: (a) when the objective g is

bilinear, (b) when g is strongly convex-strongly concave, and (c) when g is convex-strongly

concave [Tse95; LS19; DH19; MOP19]. The existence of methods with provable finite-time

guarantees for settings beyond the aforementioned has remained an open problem. This work

is the first to show that an efficient algorithm, namely HGD, can achieve non-asymptotic

convergence in settings that are not strongly convex or linear in either player.

4.4.1 Convergence Rates for HGD

We now state our main theorems for this chapter, which show convergence to critical points.

When Assumption 4.2.3 holds, we get convergence to min-maxes. All of our main results

will use the following multi-part assumption:

Assumption 4.4.1. Let g : Rn × Rn → R.

1. Assume a critical point for g exists.

2. Assume g is (L2, L3)-Lipschitz.

Our first theorem shows that HGD converges for the strongly convex-strongly concave

case. Although simple, this result will help us demonstrate our analysis techniques.
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Theorem 4.4.2. Let Assumption 4.4.1 hold and let g(x, y) be α-strongly convex in x and

α-strongly concave in y. Let L2
H = ||ξ(z0)|| · L3 + L2

2. Then HGD with step-size η = 1/L2
H

starting from some z0 ∈ Rn × Rn will have the following convergence rate:

||ξ(zk)|| ≤
(

1− α2

L2
H

)k/2
||ξ(z0)|| . (4.2)

Next, we show that HGD converges when g is linear in one of its arguments and the

cross-derivative is full rank. This setting allows a slightly tighter analysis compared to

Theorem 4.4.4.

Theorem 4.4.3. Let Assumption 4.4.1 hold and let g(x, y) be L-smooth in x and linear in y,

and assume the cross derivative ∇2
xyg is full rank with all singular values at least γ > 0

for all z ∈ Rn × Rn. Let L2
H = ||ξ(z0)|| · L3 + L2

2. Then HGD with step-size η = 1/L2
H

starting from some z0 ∈ Rn × Rn will have the following convergence rate:

||ξ(zk)|| ≤
(

1− γ4

(2γ2 + L2)L2
H

)k/2
||ξ(z0)|| . (4.3)

Finally, we show our main result, which requires smoothness in both players and a large,

well-conditioned cross-derivative.

Theorem 4.4.4. Let Assumption 4.4.1 hold and let g be L-smooth in x and L-smooth in

y. Let µ2 = minx,y λmin((∇2
yyg(x, y))2) and ρ2 = minx,y λmin((∇2

xxg(x, y))2), and assume

the cross derivative ∇2
xyg is full rank with all singular values lower bounded by γ > 0 and

upper bounded by Γ for all z ∈ Rn × Rn. Moreover, let the following “sufficiently bilinear”

condition hold:

(γ2 + ρ2)(µ2 + γ2)− 4L2Γ2 > 0. (4.4)

Let L2
H = ||ξ(z0)|| · L3 + L2

2. Then HGD with step-size η = 1/L2
H starting from some
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z0 ∈ Rn × Rn will satisfy

||ξ(zk)|| ≤
(

1− (γ2+ρ2)(γ2+µ2)−4L2Γ2

(2γ2+ρ2+µ2)L2
H

)k/2
||ξ(z0)|| . (4.5)

As discussed above, Theorem 4.4.4 provides the first last-iterate convergence rate for

min-max problems that are not strongly convex or linear in either input. For example, the

objective g(x, y) = f(x) + 3Lx>y − h(y), where f and h are L-smooth convex functions,

satisfies the assumptions of Theorem 4.4.4 and is not strongly convex or linear in either input.

We discuss a simple example that is not convex-concave in Section 4.10. We also show how

our results can be applied to specific settings, such as the Dirac-GAN, in Section 4.12.

The “sufficiently bilinear” condition (4.4) is in some sense necessary for our linear

convergence rate since linear convergence is impossible in general for convex-concave

settings, due to lower bounds on convex optimization [AH18; ASS17]. We give some

explanations for this condition in the following section. In simple experiments for HGD

on convex-concave and nonconvex-nonconcave objectives, the convergence rate speeds up

when there is a larger bilinear component, as expected from our theoretical results. We show

these experiments in Section 4.14.

4.4.2 Explanation of “sufficiently bilinear” condition

In this section, we explain the “sufficiently bilinear” condition (4.4). Suppose our objective

is g(x, y) = ĝ(x, y) + cx>y for a smooth function ĝ. Then for sufficiently large values of c

(i.e. g has a large enough bilinear term), we see that g satisfies (4.4). To see this, note that if

we have γ4 > 4L2Γ2, then condition (4.4) holds. Let γ′ and Γ′ be lower and upper bounds

on the singular values of ∇2
xyĝ. Then it suffices to have (γ′ + c)4 > 4L2(Γ′ + c)2, which is

true for c = 3 max{L,Γ′} (i.e. c = O(L) suffices).

This condition is analogous to the case when we use GDA on the objective g(x, y) =

ĝ(x, y) + c ||x||2 − c ||y||2 for L-smooth convex-concave ĝ. According to [LS19], GDA
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will converge at a rate of roughly L̃2

c2
log(1/ε) for L̃-smooth and c-strongly convex-strongly

concave objectives.3 For c = 0, GDA will diverge in the worst case. For c = o(L), we get

linear convergence, but it will be slow because L+c
c

is large (this can be thought of as a large

condition number). Finally, for c = Ω(L), we get fast linear convergence, since L+c
c

= O(1).

Thus, to get fast linear convergence it suffices to make the problem “sufficiently strongly

convex-strongly concave” (or “sufficiently strongly monotone”).

Theorem 4.4.4 and condition (4.4) show that there exists another class of settings where

we can achieve linear rates in the min-max setting. In our case, if we have an objective

g(x, y) = ĝ(x, y) + cx>y for a smooth function ĝ, we will get linear convergence if

‖∇2
xyĝ‖ ≤ δL and c ≥ 3(1 + δ)L, which ensures that the problem is “sufficiently bilinear.”

Intuitively, it makes sense that the “sufficiently bilinear” setting allows a linear rate because

the pure bilinear setting allows a linear rate.

Another way to understand condition (4.4) is that it is a sufficient condition for the

existence of a unique critical point in a general class of settings, as we show in the following

lemma, which we prove in Section 4.11.

Lemma 4.4.5. Let g(x, y) = f(x) + cx>y − h(y) where f and h are L-smooth. Moreover,

assume that∇2f(x) and∇2h(y) each have a 0 eigenvalue for some x and y. If (4.4) holds,

then g has a unique critical point.

4.5 Proof sketches for HGD convergence rate results

In this section, we go over the key components of the proofs for our convergence rates

from Section 4.4.1. Recall that the intuition behind HGD was that critical points (where

ξ(z) = 0) are global minima ofH = 1
2
||ξ||2. On the other hand, there is no guarantee that

H is a convex potential function, and a priori, one would not assume gradient descent on

this potential would find a critical point. Nonetheless, we are able to show that in a variety

of settings, H satisfies the PL condition, which allows HGD to have linear convergence.

3The actual rate is β
c log(1/ε), for some parameter β that is at least (L+ c)2.
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Proving this requires proving properties about the singular values of J ≡ ∇ξ.

4.5.1 The Polyak-Łojasiewicz condition for the Hamiltonian

We begin by recalling the definition of the PL condition.

Definition 4.5.1 (Polyak-Łojasiewicz (PL) condition [Pol63; Loj63]). A function f : Rn →

R satisfies the PL condition with parameter α > 0 if for all x ∈ Rn, 1
2
||∇f(x)||2 ≥

α(f(x)−minx∗∈Rn f(x∗)).

The PL condition is well-known to be the weakest condition necessary to obtain linear

convergence rate for gradient methods; see for example [KNS16]. We will show that H

satisfies the PL condition, which allows us to use the following slightly modified form of a

classic theorem.

Theorem 4.5.2 (Linear rate under PL [Pol63; Loj63]). Let f : Rn → R satisfy the PL

condition with parameter α and let z∗ ∈ arg minz∈Rn f(z). Suppose we run gradient

descent from z0 ∈ Rn with step-size 1
L

and suppose that f is L-smooth at each zk. Then we

have: f(zk)− f(z∗) ≤ (1− α
L

)k(f(z0)− f(z∗)).

Proof. Using a second-order Taylor expansion, we get:

f(zk+1) ≤ f(zk)− 〈∇f(zk), zk+1 − zk〉

+
L

2
∇2f(zk) ||zk+1 − zk||2

Using the update rule for gradient descent and using the fact that ||∇2f(zk)|| ≤ L gives:

f(zk+1) ≤ f(zk)−
1

2L
||∇f(zk)||2 (4.6)
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Subtracting f(x∗) from both sides of (4.6) and applying the PL condition gives:

f(zk+1)− f(x∗) ≤ f(zk)− f(z∗) (4.7)

− α

L
(f(zk)− f(x∗)) (4.8)

=
(

1− α

L

)
(f(zk)− f(z∗)) (4.9)

Applying the last line recursively gives the result.

To show thatH satisfies the PL condition, we will use the following key lemma:

Lemma 4.5.3. Let Assumption 4.4.1 hold and assume we have a twice differentiable g(x, y)

with associated ξ,H, J . Let c > 0. If JJ> � αI for every x, then H satisfies the PL

condition with parameter α.

Proof. Consider the squared norm of the gradient of the Hamiltonian:

1
2
‖∇H‖2 =

1

2
‖J>ξ‖2 =

1

2
〈ξ, (JJ>)ξ〉 ≥ α

2
||ξ||2 = αH.

By Assumption 4.4.1, we are guaranteed that g has a critical point. The proof is finished by

noting thatH(z) = 0 when z is a critical point.

To use Lemma 4.5.3, we will need control over the eigenvalues of JJ>, which we

achieve with the following linear algebraic lemmas. We provide their proofs in Section 4.13.

Lemma 4.5.4. Let H =
(

M1 B
−B> −M2

)
and let ε ≥ 0. If M1 � εI and M2 ≺ −εI , then for

all eigenvalues λ of HH>, we have λ > ε2.

Lemma 4.5.5. Let H =
(

A C
−C> 0

)
, where C is square and full rank. Then if λ is an

eigenvalue of HH>, then we must have λ ≥ σ4
min(C)

2σ2
min(C)+||A||2 .

Finally, to use Theorem 4.5.2, we will also need to show that H is smooth at all zk,

which holds when g is (L2, L3)-Lipschitz.
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Lemma 4.5.6. Consider any g(x, y) which is (L2, L3)-Lipschitz for constants L2, L3 > 0.

Suppose we run HGD initialized at some z0 and with η = 1/L2
H. Then for all zk encountered

during HGD, we have thatH(zk) is (||ξ(z0)|| · L3 + L2
2)-smooth.

Proof. Note that∇H = ξ>J and∇2H = ξ>∇J + J>J . Then we have:

∣∣∣∣∇2H
∣∣∣∣ =

∣∣∣∣ξ>∇J + J>J
∣∣∣∣ ≤ ||∇J || · ||ξ||+ ∣∣∣∣J>J∣∣∣∣

≤ ||ξ|| · L3 + L2
2

Thus, it suffices to show that ||ξ(zk)|| ≤ ||ξ(z0)|| for all k ≥ 0. Suppose we take a gradient

descent step on H with parameter η = 1/L2
H from some point z to some point z′, and let

L2
H be such that ||∇2H(z)|| ≤ L2

H. Then by (4.6), we must haveH(z′) ≤ H(z). Then we

always have that H(zk+1) ≤ H(zk) for k ≥ 0, which implies that ||ξ(zk)|| ≤ ||ξ(z0)|| for

all k ≥ 0. This completes the proof.

4.5.2 Proof sketches for Theorems 4.4.2, 4.4.3, and 4.4.4

We now proceed to sketch the proofs of our main theorems using the techniques we have

described. The following lemma shows it suffices to prove the PL condition forH for the

various settings of our theorems:

Lemma 4.5.7. Given g : Rn×Rn → R, supposeH satisfies the PL condition with parameter

α2. Suppose we use HGD starting from some z0 ∈ Rn × Rn with step-size η = 1/L2
H and

supposeH is L2
H-smooth at all zk visited by HGD. Then we have the following:

||ξ(zk)|| ≤
(

1− α2

L2
H

)k/2
||ξ(z0)|| .

Proof. SinceH satisfies the PL condition with parameter α2 andH is L2
H-smooth at all zk,

we know by Theorem 4.5.2 that gradient descent onH with step-size 1/L2
H converges at a

rate ofH(zk) ≤ (1− α2

L2
H

)kH(z0). Substituting in forH gives the lemma.
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It remains to show that H satisfies the PL condition in the settings of Theorems 4.4.2

to 4.4.4. First, we show the result for the strongly convex-strongly concave setting of

Theorem 4.4.2.

Lemma 4.5.8 (PL for the strongly convex-strongly concave setting). Let g be c-strongly

convex in x and c-strongly concave in y. ThenH satisfies the PL condition with parameter

α = c2.

Proof. We apply Lemma 4.5.4 withH = J . Since g is c-strongly-convex in x and c-strongly

concave in y we have M1 = ∇2
xxg � cI and M2 = −∇2

yyg � cI . Then the magnitude of

the eigenvalues of J is at least c. Thus, JJ> � c2I , so by Lemma 4.5.3,H satisfies the PL

condition with parameter c2.

Next, we show that H satisfies the PL condition for the nonconvex-linear setting of

Theorem 4.4.3. We prove this lemma in Section 4.13.3 by using Lemma 4.5.5.

Lemma 4.5.9 (PL for the smooth nonconvex-linear setting). Let g be L-smooth in x and

linear in y. Moreover, for all z ∈ Rn × Rn, let ∇2
xyg(x, y) be full rank and square with

σmin(∇2
xyg(x, y)) ≥ γ. ThenH satisfies the PL condition with parameter α = γ4

2γ2+L2 .

Finally, we prove thatH satisfies the PL condition in the nonconvex-nonconvex setting of

Theorem 4.4.4. The proof for Lemma 4.5.10 is in Section 4.13.4, and it uses Lemma 4.13.2,

which is similar to Lemma 4.5.5.

Lemma 4.5.10 (PL for the smooth nonconvex-nonconvex setting). Let g be L-smooth in x

and L-smooth in y. Also, let ∇2
xyg be full rank and let all of its singular values be lower

bounded by γ and upper bounded by Γ for all z ∈ Rn × Rn. Let

ρ2 = min
x,y

λmin((∇2
xxg(x, y))2)

and µ2 = min
x,y

λmin((∇2
yyg(x, y))2)
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Assume the following condition holds:

(γ2 + ρ2)(γ2 + µ2)− 4L2Γ2 > 0.

ThenH satisfies the PL condition with parameter α = (γ2+ρ2)(γ2+µ2)−4L2Γ2

2γ2+ρ2+µ2
.

Combining Lemmas 4.5.8 to 4.5.10 with Lemma 4.5.7 yields Theorems 4.4.2 to 4.4.4.

4.6 Extension to Stochastic HGD

Our results above also imply rates for stochastic HGD, where the gradient ∇H in (4.1),

is replaced by a stochastic estimator v of ∇H such that E[v] = ∇H. Since we show that

H satisfies the PL condition with parameter α in different settings, we can use Theorem 4

in [KNS16] to show that stochastic HGD converges at a O(1/
√
k) rate in the settings of

Theorems 4.4.2 to 4.4.4, including the “sufficiently bilinear” setting. However, we need

to explicitly assume that H is L2
H-smooth at each iterate of the algorithm. While this

assumption may seem strong, it will be satisfied as long as the iterates of the algorithm

remain in some bounded region.

Theorem 4.6.1. Let g : Rn × Rn → R. Assume a critical point for g exists and supposeH

satisfies the PL condition with parameter α2. Suppose we use the update zk+1 = zk−ηkv(zk),

where v is a stochastic estimate of ∇H such that E[v] = ∇H and E[‖v(zk)‖2] ≤ C2 for all

zk. Moreover, assume thatH is LH smooth at all zk. Then if we use ηk = 2k+1
2α2(k+1)2

, we have

the following convergence rate: E[‖ξ(zk)‖] ≤
√

L2
HC

2

kα4 .

To prove Theorem 4.6.1, we need the following theorem from [KNS16].4

Theorem 4.6.2 ([KNS16]). Assume that f has a non-empty solution set and satisfies the

PL condition with parameter α. Let f ∗ be the minimum value of f . Let v be a stochastic

estimate of ∇f such that E[v] = ∇f . Assume E[‖v(zk)‖2] ≤ C2 for all zk and some C.

4The actual theorem in [KNS16] is stated in a slightly different way, but it is equivalent to our presentation.
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Suppose we use the SGD update zk+1 = zk − ηkv(zk) with ηk = 2k+1
2α(k+1)2

, and suppose f is

L-smooth at each zk. Then we get a convergence rate of

E[f(zk)− f ∗] ≤
LC2

2kα2
(4.10)

If instead we use a constant ηk = η < 1
2α

, then we obtain a linear convergence rate up to a

solution level that is proportional to η,

E[f(zk)− f ∗] ≤ (1− 2αη)k[f(z0)− f ∗] +
LC2η

4α

We now show how to use Theorem 4.6.2 to prove Theorem 4.6.1.

Proof of Theorem 4.6.1. If H satisfies the PL condition with parameter α2, then we can

apply Theorem 4.6.2 to the stochastic variant of HGD. sinceH∗ = 0, we get

E
[

1

2
‖ξ(zk)‖2

]
≤ L2

HC
2

2kα4
(4.11)

The theorem follows from Jensen’s inequality, which implies that

E [‖ξ(zk)‖] ≤
√

E [‖ξ(zk)‖2].

4.7 Extension to Consensus Optimization

The Consensus Optimization (CO) algorithm of [MNG17] is as follows:

zk+1 = zk − η(ξ(zk) + γ∇H(zk)) (4.12)
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where γ > 0. This is essentially a weighted combination of GDA and HGD. [MNG17]

remark that while HGD has poor performance on nonconvex problems in practice, CO can

effectively train GANs in a variety of settings, including on CIFAR-10 and celebA. While

they frame CO as GDA with a small modification, they actually set γ = 10 for several of

their experiments, which suggests that one can also view CO as a modified form of HGD.

Using this perspective, we prove Theorem 4.7.1, which implies that we get linear

convergence of CO in the same settings as Theorems 4.4.2 to 4.4.4 provided that γ is

sufficiently large (i.e. the HGD update is large compared to the GDA update). Previously,

[LS19] proved that CO achieves linear convergence in the bilinear setting, so our result

greatly expands the settings where CO has provable non-asymptotic convergence.

Theorem 4.7.1. Let Assumption 4.4.1 hold. Let g be Lg smooth and suppose H satisfies

the PL condition with parameter α2. Let L2
H = ||ξ(z0)|| · L3 + L2

2. Then if we update some

z0 ∈ Rn × Rn using the CO update (4.12) with step-size η = α2

4L2
HLg

and γ = 4Lg
α2 , we get

the following convergence:

||ξ(zk)|| ≤
(

1− α2

4L2
H

)k
||ξ(z0)|| . (4.13)

We also show that CO converges in practice on some simple examples in Section 4.14.

The key technical component to proving Theorem 4.7.1 is showing that HGD still

performs well even with small arbitrary perturbations, as we show in the following lemma:

Lemma 4.7.2. Let zk+1 = zk − η∇H(zk) + ηvv
(k) where v(k) is some arbitrary vector such

that
∣∣∣∣v(k)

∣∣∣∣ = ||ξ(zk)||. Let g be Lg-smooth and supposeH satisfies the PL condition with

parameter α. Let η = 1
L2
H

and let ηv = α2

4L2
HLg

. Then we get the following convergence:

||ξ(zk)|| ≤
(

1− α2

4L2
H

)k
||ξ(z0)|| . (4.14)

From Lemma 4.7.2, it is simple to prove Theorem 4.7.1.
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Proof of Theorem 4.7.1. Note that the CO update (4.12) with γ = 4Lg
α2 is exactly the update

in Lemma 4.7.2 with v(k) = −ξ(zk), so we get the desired convergence rate.

Our result treats GDA as an adversarial perturbation even though this is not the case,

which suggests that this analysis may be improved. It would be nice if one could directly

apply the PL-based analysis that we used for HGD, but this does not seem to work for CO

because CO is not an instance of gradient descent on some proxy objective.

Finally, we prove Lemma 4.7.2.

Proof of Lemma 4.7.2. Let zk+1/2 = zk − η∇H(zk), so zk+1 = zk+1/2 + ηvv
(k). From (4.9)

in the proof of Theorem 4.5.2 with η = 1
L2
H

, we get

∣∣∣∣ξ(zk+1/2)
∣∣∣∣ ≤ (1− α2

L2
H

)1/2

||ξ(zk)|| ≤ (1− α2

2L2
H

) ||ξ(zk)|| . (4.15)

Next, note that the triangle inequality and smoothness of g imply:

||ξ(zk+1)|| ≤
∣∣∣∣ξ(zk+1/2)

∣∣∣∣+
∣∣∣∣ξ(zk+1)− ξ(zk+1/2)

∣∣∣∣
≤
∣∣∣∣ξ(zk+1/2)

∣∣∣∣x+ Lg
∣∣∣∣zk+1 − zk+1/2

∣∣∣∣
=
∣∣∣∣ξ(zk+1/2)

∣∣∣∣+ Lg ||ηvv||

Using the above result and
∣∣∣∣v(k)

∣∣∣∣ = ||ξ(zk)||, we get:

||ξ(zk+1)|| ≤
(

1− α2

2L2
H

+ Lgηv

)
||ξ(zk)|| (4.16)

Setting ηv = α2

4L2
HLg

gives the result.

Note that for this result, we assume g is Lg smooth in x and y jointly, whereas in other

parts of the paper we assume g is smooth in x or y separately. If g is L-smooth in x and

L-smooth in y and
∣∣∣∣∇2

xyg(x, y)
∣∣∣∣ ≤ Lc for all x, y, then g will be L+ Lc smooth.
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4.8 Nonconvex extensions for HGD

While the naive version of HGD will try to converge to all critical points, we can modify

HGD slightly to achieve second-order stability guarantees as in various related work such as

[Bal+18; Let+19]. In particular, we consider modifying HGD so that there is some scalar α

in front of the∇H term as follows:

zk+1 = zk − ηα∇H(zk) (4.17)

We now present two ways to choose α. Our first method is inspired by the Simplectic

Gradient Adjustment algorithm of [Bal+18], which is as follows:

zk+1 = zk − η(ξ(zk)− λA>ξ(zk)) (4.18)

where A is the antisymmetric part of J and λ = sgn
(
〈ξ, J〉

〈
A>ξ, J

〉)
. [Bal+18] show

that λ is positive when in a strictly convex-strictly concave region and negative in a strictly

concave-strictly convex region. Thus, if we choose α = λ = sgn
(
〈ξ, J〉

〈
A>ξ, J

〉)
, we can

ensure that the modified HGD will exhibit local stability around strict min-maxes and local

instability around strict max-mins. This follows simply because we will do gradient descent

onH in the first case and gradient ascent onH in the second case.

Another way to choose α involves using an approximate eigenvalue computation on

∇2
xxg and ∇2

yyg to detect whether ∇2
xxg is positive semidefinite and ∇2

yyg is negative

semidefinite (which would mean we are in a convex-concave region). We set α = 1 if we are

in a convex-concave region and −1 otherwise, which will guarantee local stability around

min-maxes and local instability around other critical points. This approximate eigenvector

computation can be done using a logarithmic number of Hessian-vector products.
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4.9 Comparison of Theorem 4.4.4 to [DH19]

In this section, we compare our results in Theorem 4.4.4 to those of [DH19]. [DH19]

prove a rate for GDA when g is L-smooth and convex in x and L-smooth and µ-strongly

concave in y and ∇2
xyg is some fixed matrix A. The specific setting they consider is to

find the unconstrained min-max for a function g : Rd1 × Rd2 → R defined as g(x, y) =

f(x) + y>Ax− h(y) where f is convex and smooth, h is strongly-convex and smooth, and

A ∈ Rd2×d1 has rank d1 (i.e. A has full column rank).

Their rate uses the potential function Pt = λat + bt, where we have:

λ =
2LΓ(L+ Γ2

µ
)

µγ2
(4.19)

ak = ||zk − x∗|| (4.20)

bk =
∣∣∣∣y(k) − y∗

∣∣∣∣ (4.21)

where (x∗, y∗) is the min-max for the objective. Their rate (Theorem 3.1 in [DH19]) is

Pk+1 ≤

(
1− c µ2γ4

L3Γ2(L+ Γ2

µ
)

)k

Pk (4.22)

for some constant c > 0. To translate this rate into bounds on ||ξ||, we can use the smooth-

ness of g in both of its arguments to note that
∣∣∣∣ ∂g
∂x

(x, y)
∣∣∣∣ =

∣∣∣∣ ∂g
∂x

(x, y)− ∂g
∂x

(x∗1, x
∗
2)
∣∣∣∣ ≤

L ||zk − x∗|| and likewise for y. So the rate on Pk translates into a rate on ||ξ|| with some

additional factor in front.

Their rate and our rate are incomparable – neither is strictly better. For instance when

γ = Γ is much larger than all other quantities, their rates simplify to
(

1−O
(
µ3

L3

))k
, while

ours go to
(

1−O
(
γ2

L2
H

))k/2
. While our convergence rate requires the sufficiently bilinear

condition (4.4) to hold, we do not require convexity in x or concavity in y. Moreover, we

allow ∇2
xyg to change as long as the bounds on the singular values hold whereas [DH19]
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require∇2
xyg to be a fixed matrix.

4.10 Nonconvex-nonconcave setting where Assumption 4.2.3 and the conditions for

Theorem 4.4.4 hold

In this section we give a concrete example of a nonconvex-nonconcave setting where

Assumption 4.2.3 and the conditions for Theorem 4.4.4 hold. We choose this example for

simplicity, but one can easily come up with other more complicated examples.

For our example, we define the following function:

F (x) =


−3(x+ π

2
) for x ≤ −π

2

−3 cosx for − π
2
< x ≤ π

2

− cosx+ 2x− π for x > π
2

(4.23)

The first and second derivatives of F are as follows:

F ′(x) =


−3 for x ≤ −π

2

3 sinx for − π
2
< x ≤ π

2

sinx+ 2 for x > π
2

(4.24)

F ′′(x) =


0 for x ≤ −π

2

3 cosx for − π
2
< x ≤ π

2

cosx for x > π
2

(4.25)

From Figure 4.2, we can see that this function is neither convex nor concave. We note

that although this function is not thrice differentiable, which is technically required to prove

smoothness ofH in our result, we can instead show this smoothness for the iterates of the
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algorithm by showing it is true for all points on the line between zk and zk+1 for k ≥ 0.

Figure 4.2: Plot of nonconvex function F (x) defined in (4.23), as well as its first and second
derivatives

Our objective will be g(x, g2) = F (x) + 4x>y − F (y). Note that L = 3 because

F ′′(x) ≤ 3 for all x. Also, γ = Γ = 4 since∇2
xyg = 4I .

First, we show that g satisfies Assumption 4.4.1. We see that g has a critical point at (0, 0).

Moreover, g is (L2, L3)-Lipschitz for any finite-sized region of R2. Thus, if we assume our

algorithm stays within a ball of some radius R, the (L2, L3)-Lipschitz assumption will be

satisfied. Since our algorithm does not diverge and indeed converges at a linear rate to the

min-max, this assumption is fairly mild.

Next, we show that g satisfies condition (4.4). Condition (4.4) requires γ4 > 4L2Γ2 for

g. We see that this holds because γ4 = 44 = 256 and 4LΓ2 = 4 ∗ 3 ∗ 42 = 192.

Therefore, the assumptions of Theorem 4.4.4 are satisfied.

We can also show that this objective satisfies Assumption 4.2.3, so we get convergence

to the min-max of g. We will show that g has only one critical point (at (0, 0)) and that this

critical point is a min-max. We first give a “proof by picture” below, showing a plot of g in

Figure 4.3, along with plots of g(·, 0) and g(0, ·) showing that (0, 0) is indeed a min-max.
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Figure 4.3: Plot of nonconvex-nonconcave g(x, y) = F (x) + 4x>y − F (y)

We can also formally show that (0, 0) is the unique critical point of g and that it is a

min-max. We prove this for completeness, although the calculations more or less amount to

a simple case analysis. Let us look at the derivatives of g with respect to x and y:

∂g

∂x
(x, y) =


−3 + 4y for x ≤ −π

2

3 sinx+ 4y for − π
2
< x ≤ π

2

sinx+ 2 + 4y for x > π
2

(4.26)
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Figure 4.4: Plot of g(·, 0). We can see that there is only one min and it occurs at x = 0.

∂g

∂y
(x, y) =


3 + 4x for y ≤ −π

2

−3 sin y + 4x for − π
2
< y ≤ π

2

− sin y + 2 + 4x for y > π
2

(4.27)

Observe that if x ∈ [−π
2
, π

2
] then critical points of g must satisfy 3 sinx + 4y = 0, which

implies that y ∈ [−3
4
, 3

4
]. Likewise, if y ∈ [−π

2
, π

2
], then critical points of g must have

x ∈ [−3
4
, 3

4
]. We show that this implies that g only has critical points where x and y are both

in the range [−π
2
, π

2
].

Suppose g had a critical point such that x ≤ −π
2
. Then this critical point must satisfy

y = 3
4
. But from our observation above, if a critical point has y = 3

4
, then x must lie in

[−3
4
, 3

4
], which contradicts x ≤ −π

2
.

Next, suppose g had a critical point such that x > π
2

. Then this critical point must satisfy

y = −1
4
(sinx + 2), which implies that y ∈ [−3

4
, 3

4
]. But then by the observation above, x

82



Figure 4.5: Plot of g(0, y). We can see that there is only one max and it occurs at y = 0.

must lie in [−3
4
, 3

4
], which contradicts x > π

2
.

From this we see that any critical point of g must have x ∈ [−π
2
, π

2
]. We can make

analogous arguments to show that any critical point of g must have y ∈ [−π
2
, π

2
].

From this, we can conclude that all critical points of g must satisfy the following:

3 sinx+ 4y = 0 (4.28)

−3 sin y + 4x = 0 (4.29)
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These equations imply the following:

x =
3

4
sin y (4.30)

y = −3

4
sinx (4.31)

⇒ x =
3

4
sin

(
−3

4
sin y

)
(4.32)

⇒ y = −3

4
sin

(
3

4
sin y

)
(4.33)

That is, for all critical points of g, x must be a fixed point of h1(x) = 3
4

sin
(
−3

4
sinx

)
and

y must be a fixed point of h2(x) = −3
4

sin
(

3
4

sinx
)
. Since |h′1(x)| < 1 and |h′2(x)| < 1

always, h1 and h2 are contractive maps, so they have only one fixed point each. Thus, g will

only have one critical point, namely the point (x, y) such that x is the unique fixed point of

h1 and y is the unique fixed point of h2.

Finally, we can observe that (0, 0) is a critical point of g, so it must be the unique critical

point of g. One can also see that this is a min-max by looking at the second derivatives of F

in (4.25).

4.11 Proof of Lemma 4.4.5

To prove Lemma 4.4.5, we will use the following lemma:

Lemma 4.11.1. Let g(x, y) = f(x) + cx>y − h(y) where f and h are L-smooth. Then if

c > L, g has a unique critical point.

Proof of Lemma 4.4.5. Condition (4.4) is as follows:

(γ2 + ρ2)(µ2 + γ2)− 4L2Γ2 > 0. (4.34)

Note that in our setting, γ = Γ = c. Next, observe that if∇2f(x) and∇2h(y) each have a 0
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eigenvalue for some x and y, condition (4.4) reduces to:

c > 2L. (4.35)

Then by Lemma 4.11.1, we see that g must have a unique critical point.

Next, we prove Lemma 4.11.1.

Proof of Lemma 4.11.1. Suppose our objective is g(x, y) = f(x) + cx>y − h(y) where f

and h are both L-smooth convex functions. Critical points of g must satisfy the following:

∇f(x) + cy = 0 (4.36)

−∇h(y) + cx = 0 (4.37)

⇒ x =
1

c
∇h(y) (4.38)

⇒ y = −1

c
∇f

(
1

c
∇h(y)

)
(4.39)

In other words, y must be a fixed point of F (z) = −1
c
∇f(1

c
∇h(z)). The function F will

have a unique fixed point if it is a contractive map. We now show that for c > L, this is the

case.

||F (u)− F (v)|| =
∣∣∣∣∣∣∣∣1c∇f

(
1

c
∇h(u)

)
− 1

c
∇f

(
1

c
∇h(v)

)∣∣∣∣∣∣∣∣ (4.40)

≤ L

c
·
∣∣∣∣∣∣∣∣1c∇h(u)− 1

c
∇h(v)

∣∣∣∣∣∣∣∣ (4.41)

≤ L2

c2
||u− v|| < ||u− v|| (4.42)

where the inequalities follow from smoothness of f and h. An analogous property can be

shown by solving for x instead. Thus, if c > L, then g will have a unique fixed point.

Condition (4.4) is thus a sufficient condition for the existence of a unique critical point

for the class of objectives above.
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4.12 Applications

In this section, we discuss how our results can be applied to various settings. One simple

setting is the Dirac-GAN from [MGN18], where g(x, y) = minx maxy f(x>y)− f(0) for

some function f whose derivative is always non-zero. When f(t) = t, the Dirac-GAN is

just a bilinear game, so HGD will converge globally to the Nash Equilibrium (NE) of this

Dirac-GAN, as shown in [Bal+18]. Our results prove global convergence rates for HGD on

the Dirac-GAN even when a small smooth convex regularizer is added for the discriminator

or subtracted for the generator. Moreover, Lemma 2.2 of [MGN18] shows that the diagonal

blocks of the Jacobian are 0 at the NE for arbitrary f with non-zero derivative. As such,

HGD will achieve the convergence rates in this chapter in a region around the NE for the

Dirac-GAN for arbitrary f with non-zero derivative even when a small smooth convex

regularizer is added for either player.

[DH19] list several applications where the min-max formulation is relevant, such as in

ERM problems with a linear classifier. Given a data matrix A, the ERM problem involves

solving minx `(Ax)+f(x) for some smooth, convex loss ` and smooth, convex regularizer f .

This problem has the saddle point formulation minx maxy y
>Ax− `∗(y) + f(x). According

to [DH19], this formulation can be advantageous when it allows a finite-sum structure,

reduces communication complexity in a distributed setting, or allows some sparsity structure

to be exploited. Our results show that linear rates are possible for this problem if A is square,

well-conditioned, and sufficiently large compared to ` and f .

4.13 Proofs for Section 4.5

In this section, we prove our main results about the convergence of HGD, starting with some

key technical lemmas.
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4.13.1 Proof of Lemma 4.5.4

Proof. Note that HH> =

 M2
1 +BBT −M1B −BM2

−(M1B +BM2)T M2
2 +BTB

 =

 M1 −B

−BT M2


2

.

Now let Z =

 M1 −B

−BT M2

. It suffices to show that for any eigenvalue δ of Z, |δ| ≤ ε.

For the sake of contradiction, let v be an eigenvalue of Z with eigenvalue δ such that |δ| ≤ ε.

Let v =

v1

v2

. Since Zv = δv for |δ| ≤ ε and M1 � εI and M2 ≺ −εI , we must have

v1 6= 0 and v2 6= 0. Then we have:

 M1v1 −Bv2

M2v2 −B>v1

 = δ

v1

v2

 (4.43)

This implies

(M1 − δI)v1 = Bv2 (4.44)

(M2 − δI)v2 = B>v1 (4.45)

Let M̂1 = M1 − δI and let M̂2 = M2 − δI . Note that M̂1 � 0 and M̂2 ≺ 0. Then we can

write v1 = M̂−1
1 Bv2. Further, we can substitute into (4.45) to get

M̂2v2 = B>M̂−1
1 Bv2 (4.46)

⇐⇒ −M̂−1
2 B>M̂−1

1 Bv2 = −v2 (4.47)

In other words, v2 is an eigenvector of −M̂−1
2 B>M̂−1

1 B with eigenvalue −1. Let A =

−M̂−1
2 and T = B>M̂−1

1 B. Note that A is positive definite and T is PSD. Then we have:

AT = A1/2(A1/2TA1/2)A−1/2 (4.48)
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Since A1/2TA1/2 is PSD, and AT is similar to A1/2TA1/2, we must have that all of the

eigenvalues of AT are nonnegative. This contradicts that v2 is an eigenvector of AT with

eigenvalue −1.

Thus, all eigenvalues of Z must have magnitude greater than ε.

4.13.2 Proof of Lemma 4.5.5

Proof. Suppose λ is an eigenvalue of HH> with eigenvector v =

v1

v2

. WLOG, suppose

λ < σ2
min(C). Since v is an eigenvector, we have:

A2 + CC> −AC

−C>A C>C


v1

v2

 = λ

v1

v2

 (4.49)

Thus, we have:

(A2 + CC> − λI)v1 − ACv2 = 0 (4.50)

−C>Av1 + (C>C − λI)v2 = 0 (4.51)

Since λ < σ2
min(C), we have that C>C − λI is invertible, so we can write v2 = (C>C −

λI)−1C>Av1 from the (4.51). Plugging this into (4.50) gives:

(A2 + CC> − λI − AC(C>C − λI)−1C>A)v1 = 0 (4.52)

(A(I − C(C>C − λI)−1C>)A+ CC> − λI)v1 = 0 (4.53)
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Write the SVD of C as C = UΣV >. Then we have:

C(C>C − λI)−1C> = UΣV >(V ΣU>UΣV > − λI)−1V ΣU> (4.54)

= UΣV >(V (Σ2 − λI)V >)−1V ΣU> (4.55)

= UΣV >V −T (Σ2 − λI)−1V −1V ΣU> (4.56)

= UΣ2(Σ2 − λI)−1U> (4.57)

= UDU> (4.58)

where the second line follows because V V > = I when C is full rank and where D is a

diagonal matrix such that Dii =
σ2
i (C)

σ2
i (C)−λ .

Let M = I −D, so M is diagonal with Mii = −λ
σ2
i (C)−λ . Then (4.53) becomes:

(AMA+ CC> − λI)v1 = 0 (4.59)

This means T = AMA + CC> − λI has a 0 eigenvalue. A simple lower bound for the

eigenvalues of T is

λmin(T ) ≥ − ||A||2 λ

σ2
min − λ

+ σ2
min(C)− λ (4.60)

We will show that if λ < δ, where δ = σ2
min(C) + ||A||2

2
−
√

(σ2
min + ||A||2

2
)2 − σ4

min,

then λmin(T ) > 0, which is a contradiction. It suffices to show the following inequality:

− ||A||2 λ

σ2
min − λ

+ σ2
min(C)− λ > 0 (4.61)

⇐⇒ σ2
min(C)− λ > ||A||2 λ

σ2
min − λ

(4.62)

⇐⇒ (σ2
min(C)− λ)2 > ||A||2 λ (4.63)

⇐⇒ λ2 − (2σ2
min(C) + ||A||2)λ+ σ4

min(C) > 0 (4.64)
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(4.64) has zeros at the following values:

σ2
min(C) +

||A||2

2
±

√√√√(σ2
min +

||A||2

2

)2

− σ4
min(C) (4.65)

Since (4.64) is a convex parabola, if λ is less than both zeros, we will have proved (4.64).

This is clearly true if λ < δ.

As a last step, we can give a slightly nicer form of δ, using Lemma 4.13.1. Letting

x = σ2
min(C) + ||A||2

2
and c = σ4

min(C), we have δ > σ4
min(C)

2σ2
min(C)+||A||2 . So to reiterate, if

λ <
σ4
min(C)

2σ2
min(C)+||A||2 < δ, then (4.64) holds, so T � 0, which contradicts (4.59).

Lemma 4.13.1. For x ∈ (0, 1) and c ∈ (0, x2), we have:

x−
√
x2 − c > c

2x

Proof.

x−
√
x2 − c = x− x

√
1− c

x2
> x− x

(
1− c

2x2

)
=

c

2x

4.13.3 Proof of Lemma 4.5.9

Proof. Let C(x, y) = ∇2
xyg(x, y). For all z ∈ Rn × Rn, C(x, y) is square and full rank by

assumption, so we can apply Lemma 4.5.5 with H = J at each point z ∈ Rn × Rn, which

gives λ(JJ>) ≥ σ4
min(C(x,y))

2σ2
min(C(x,y))+||∇2

xxg(x,y)||2 . We have ||∇2
xxg(x, y)|| ≤ L since g is smooth in

x. Also, σ2
min(C(x, y)) ≥ γ. Then we have that JJ> � γ4

2γ2+L2 I , so by Lemma 4.5.3, H

satisfies the PL condition with parameter γ4

2γ2+L2 .

4.13.4 Proof of Lemma 4.5.10

To prove Lemma 4.5.10, we use the following lemma:
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Lemma 4.13.2. Let H =

 A C

−C> −B

, where C is square and full rank. Moreover, let

c = (σ2
min(C) + λmin(A2))(λmin(B2) + σ2

min(C)) − σ2
max(C)(||A|| + ||B||)2 and assume

c > 0. Then if λ is an eigenvalue of HH> =

 A2 + CC> −AC − CB

−C>A−BC> B2 + C>C

, we must

have

λ ≥ (σ2
min(C) + λmin(A2))(λmin(B2) + σ2

min(C))− σ2
max(C)(||A||+ ||B||)2

(2σ2
min(C) + λmin(A2) + λmin(B2))2

.

Proof of Lemma 4.13.2. This proof resembles that of Lemma 4.5.5. Let v =

v1

v2

 be an

eigenvector of HH> with eigenvalue λ. Expanding HH>v = λv, we have:

(A2 + CC> − λI)v1 − (AC + CB)v2 = 0 (4.66)

−(C>A+BC>)v1 + (B2 + C>C − λI)︸ ︷︷ ︸
M

v2 = 0 (4.67)

⇒ v2 = M−1(C>A+BC>)v1 (4.68)

⇒ (−(AC + CB)M−1(C>A+BC>) + A2 + CC> − λI)v1 = 0 (4.69)

where M is invertible because C>C is positive definite and WLOG, we may assume that

λ < λmin(C>C) = σ2
min(C). We will show that if the assumptions in the statement of the

lemma hold, then we get a contradiction if λ is below some positive threshold. In particular,

we show that the following inequality holds for small enough λ (this inequality contradicts
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(4.69)):

σ2
min(C)− λ+ λmin(A2) > σ2

max(C)(||A||+ ||B||)2
∣∣∣∣M−1

∣∣∣∣
⇐ σ2

min(C)− λ+ λmin(A2) >
σ2

max(C)

λmin(B2) + σ2
min(C)− λ

(||A||+ ||B||)2

⇐⇒ λ2 − (2σ2
min(C) + λmin(A2) + λmin(B2))λ+

(σ2
min(C) + λmin(A2))(λmin(B2) + σ2

min(C))−σ2
max(C)(||A||+ ||B||)2 > 0

Letting b = 2σ2
min(C) + λmin(A2) + λmin(B2), we can solve for the zeros of the above

equation:

λ =
b±
√
b2 − 4c

2
(4.70)

Note that we have c > 0 by assumption, so this equation has only positive roots. Note also

that b2 > 4c, so the roots will not be imaginary. Then we see that if λ < δ = b−
√
b2−4c
2

, we

get a contradiction. Using Lemma 4.13.1, we see that δ > c
b
. So we’ve proven that λ < c

b

gives a contradiction, so we must have λ ≥ c
b
, i.e.

λ ≥ (σ2
min(C) + λmin(A2))(λmin(B2) + σ2

min(C))− σ2
max(C)(||A||+ ||B||)2

2σ2
min(C) + λmin(A2) + λmin(B2)

.

Proof of Lemma 4.5.10. The proof is very similar to that of Lemma 4.5.9. Let C(x, y) =

∇2
xyg(x, y). For all z ∈ Rn×Rn, C(x, y) is square and full rank with bounds on its singular

values by assumption. Moreover, (4.4) holds, so we can apply Lemma 4.13.2 with H = J

at each point z ∈ Rn × Rn. Using the fact that g is smooth in x and y, this gives

λ(JJ>) ≥ (σ2
min(C(x, y)) + λmin(A2))(σ2

min(C(x, y)) + µ2)− 4L2σ2
max(C(x, y))

2σ2
min(C(x, y)) + λmin(A2) + µ2

.

92



Using the bounds on the singular values of C(x, y), we have that

JJ> � (γ2 + λmin(A2))(γ2 + µ2)− 4L2Γ2

2γ2 + λmin(A2) + µ2
I,

so by Lemma 4.5.3,H satisfies the PL condition with parameter (γ2+λmin(A2))(γ2+µ2)−4L2Γ2

2γ2+λmin(A2)+µ2
.

4.14 Experiments

In this section, we present some experimental results showing how GDA, HGD, and CO

perform on a convex-concave objective and a nonconvex-nonconcave objective. For our CO

plots, γ refers to the γ parameter in the CO algorithm. All of our experiments are initialized

at (5, 5). The step-size η for HGD and GDA is always 0.01, while the step-size η for CO

with γ = {0.1, 1, 10} is {0.1, 0.01, 0.001} respectively to account for the fact that increasing

γ increases the effective step-size, so the η parameter needs to be decreased accordingly.

The experiments were all run on a standard 2017 Macbook Pro.

The main takeaways from the experiments are that CO with low γ will not converge if

there is a large bilinear term, while CO with high γ and HGD all converge for small and

large bilinear terms. When the bilinear term is large, CO with high γ and HGD both will

converge in fewer iterations (for the same step-size). We did not optimize for step-size, so it

is possible this effect may change if the optimal step-size is chosen for each setting.

4.14.1 Convex-concave objective

The convex-concave objective we use is g(x, y) = f(x) + cxy − f(y) where f(x) =

log(1 + ex). We show a plot of f in Figure 4.6.

When c = 3, GDA converges, and when c = 10, GDA diverges. We note that HGD and

CO (for large enough γ) tend to converge faster when c is larger.
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Figure 4.6: Plot of f(x) = log(1 + ex) with its first and second derivatives. This is a convex,
smooth function

GDA converges (c = 3)

These plots show g when c = 3, so GDA converges, as does CO with γ = 0.1.
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(a)

(b)

Figure 4.7: GDA vs. HGD for 300 iterations for g(x, y) = f(x) + cxy − f(y) where
f(x) = log(1 + ex) and c = 3. GDA slowly circles towards the min-max, and HGD goes
directly to the min-max.
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(a)

(b)

Figure 4.8: CO for 100 iterations with different values of γ for g(x, y) = f(x) + cxy− f(y)
where f(x) = log(1+ex) and c = 3. The γ = 0.1 curve slowly circles towards the min-max,
while the other curves go directly to the min-max.
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(a)

(b)

Figure 4.9: HGD vs. CO for 100 iterations for g(x, y) = f(x) + cxy − f(y) where
f(x) = log(1 + ex) and c = 3 with different values of γ.
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GDA diverges (c = 10)

These plots show g when c = 10, so GDA diverges, as does CO with γ = 0.1. Note that in

this case, CO with γ ≥ 1 and HGD both require very few iterations (typically about 2) to

reach the min-max.
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(a)

(b)

Figure 4.10: GDA vs. HGD for 150 iterations for g(x, y) = f(x) + cxy − f(y) where
f(x) = log(1 + ex) and c = 10. GDA slowly circles away from the min-max, while HGD
goes directly to the min-max.
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(a)

(b)

Figure 4.11: CO for 15 iterations with different values of γ for g(x, y) = f(x) + cxy− f(y)
where f(x) = log(1 + ex) and c = 10. The γ = 0.1 curve makes a cyclic pattern around
the min-max, while the other curves go directly to the min-max.
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(a)

(b)

Figure 4.12: HGD vs. CO for 15 iterations with different values of γ for g(x, y) =
f(x) + cxy − f(y) where f(x) = log(1 + ex) and c = 10.
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4.14.2 Nonconvex-nonconcave objective

The nonconvex-nonconcave objective we use is g(x, y) = F (x) + cxy − F (y) where F is

defined as in (4.23) in Section 4.10.

F (x) =


−3(x+ π

2
) for x ≤ −π

2

−3 cosx for − π
2
< x ≤ π

2

− cosx+ 2x− π for x > π
2

(4.71)

We show a plot of F in Figure 4.13.

Figure 4.13: Plot of nonconvex function F (x) defined in (4.23), as well as its first and
second derivatives

As in the convex-concave case, when c = 3, GDA converges, and when c = 10, GDA

diverges. Again, HGD and CO (for large enough γ) tend to converge faster when c is larger.

GDA converges (c = 3)

These plots show g when c = 3, so GDA converges, as does CO with γ = 0.1.
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(a)

(b)

Figure 4.14: GDA vs. HGD for 300 iterations for g(x, y) = F (x) + cxy − F (y) where
F (x) is defined in (4.71) and c = 3. GDA slowly circles towards the min-max, and HGD
goes more directly to the min-max.
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(a)

(b)

Figure 4.15: CO for 100 iterations with different values of γ for g(x, y) = F (x)+cxy−F (y)
where F (x) is defined in (4.71) and c = 3. The γ = 0.1 curve slowly circles towards the
min-max, while the other curves go more directly to the min-max.
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(a)

(b)

Figure 4.16: HGD vs. CO for 100 iterations for g(x, y) = F (x) + cxy − F (y) where F (x)
is defined in (4.71) and c = 3 with different values of γ.
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GDA diverges (c = 10)

These plots show g when c = 10, so GDA diverges, as does CO with γ = 0.1. Note that in

this case, CO with γ ≥ 1 and HGD both require very few iterations (typically about 2) to

reach the min-max.
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(a)

(b)

Figure 4.17: GDA vs. HGD for 150 iterations for g(x, y) = F (x) + cxy − F (y) where

F (x) is defined in (4.71) and c = 10. GDA slowly circles away from the min-max, while

HGD goes directly to the min-max.

107



(a)

(b)

Figure 4.18: CO for 15 iterations with different values of γ for g(x, y) = F (x)+cxy−F (y)

where F (x) is defined in (4.71) and c = 10. The γ = 0.1 curve makes an erratic cycle

around the min-max, slowly diverging, while the other curves go directly to the min-max.
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(a)

(b)

Figure 4.19: HGD vs. CO for 15 iterations with different values of γ for g(x, y) =

F (x) + cxy − F (y) where F (x) is defined in (4.71) and c = 10.

4.14.3 Effect of bilinear term on HGD convergence in nonconvex-nonconvex objective

In this section, we look at the convergence of HGD for the same objective as discussed in

the previous section, namely g(x, y) = F (x) + cxy − F (y) where F is defined as in (4.23)
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in Section 4.10.

F (x) =


−3(x+ π

2
) for x ≤ −π

2

−3 cosx for − π
2
< x ≤ π

2

− cosx+ 2x− π for x > π
2

(4.72)

In this case, we will vary c to show that HGD converges faster for higher c and will not

converge for sufficiently low c.

Figure 4.20: Distance to minmax for HGD iterates for different values of c in the objective
g(x, y) = F (x) + cxy − F (y) where F (x) is defined in (4.71).
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Figure 4.21: Gradient norm for HGD iterates for different values of c in the objective
g(x, y) = F (x) + cxy− F (y) where F (x) is defined in (4.71). Since all runs are initialized
at (5, 5), when c is increased, the initial gradient norm also increases. Nonetheless, HGD
still converges faster for the cases with higher c.
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CHAPTER 5

HIGHER-ORDER METHODS FOR CONVEX-CONCAVE MIN-MAX

OPTIMIZATION AND MONOTONE VARIATIONAL INEQUALITIES

In this chapter, we consider solving convex-concave min-max problems as well as a more

general class of problems known as monotone variational inequalities. We will show an

algorithm called HIGHERORDERMIRRORPROX that achieves an iteration complexity of

O(1/k
p+1
2 ) when given access to an oracle for minimizing a pth order Taylor expansion and

when the pth-order derivatives are Lipschitz continuous. We also give analogous rates for

the weak monotone variational inequality problem. For p > 2, our results improve on the

iteration complexity of the first-order Mirror Prox method of [Nem04] and the second-order

method of [MS12]. We further instantiate our entire algorithm in the unconstrained p = 2

case.

5.1 Introduction

Monotone variational inequalities (MVIs) are a well-studied class of problems that are very

related to convex-concave min-max problems [Min+62; KS80; Nem04]. In an MVI, we are

given a monotone operator F : Z → Rn over a convex set Z ⊆ Rn, and the goal is to find a

point z∗ ∈ Z such that

∀z ∈ Z, 〈F (z), z∗ − z〉 ≤ 0. (5.1)

Such a point is called a solution to a weak (Minty) MVI [Kom99].

The Mirror Prox (MP) algorithm of [Nem04] is a popular method for solving both (5.1)

(when F is Lipschitz continuous) and (1.1) (when g is smooth). MP is a generalization of

the extragradient algorithm of [Kor76], and it converges in O(1/k) iterations, which is tight
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for first-order methods (FOMs) [NY83]. Given that MP achieves the optimal performance

for FOMs, there is a natural question of whether one can improve on the iteration complexity

by using higher-order methods (HOMs), which tend to converge in fewer iterations but at

the expense of higher cost per iteration. HOMs use higher-order derivatives of the objective

function and generally require higher-order smoothness, namely that the higher derivatives

of the objective be Lipschitz continuous.

In vanilla optimization, while FOMs such as gradient descent are the gold standard for

optimization algorithms, HOMs are useful in a variety of different settings. Newton’s method

is one of the most well-known HOMs, and it is a central component of path-following interior-

point methods [NN94]. In cases when the higher-order update is efficiently computable,

HOMs can achieve faster overall running times than FOMs. For example, HOMs have

been used to find approximate local minima in nonconvex optimization faster than gradient

descent [Aga+17; CDHS18]. While second-order methods are the most common type of

HOM, there has also been significant recent work on HOMs beyond second-order methods

[AH18; ASS18; Gas+18; JWZ18; Bub+18; Bul18].

HOMs have seen much less study in the context of MVIs and min-max problems.

[MS12] use a second-order method with an implicit update that achieves improved iteration

complexity of O(1/k
3
2 ) for problems with second-order smoothness. Their method uses

the Hybrid Proximal Extragradient (HPE) framework established in [MS10] and requires

access to an oracle for a second-order constrained optimization problem. However, it was

unknown whether one could achieve further improved iteration complexity in the presence

of third-order smoothness and beyond.

In this chapter, our main contribution is a higher-order method HIGHERORDERMIR-

RORPROX for approximately solving MVIs and convex-concave min-max problems that

achieves an iteration complexity of O(1/k
p+1
2 ) for problems with pth-order smoothness. To

our knowledge, this is the first result showing that improved convergence rates are possible

for problems with third-order smoothness and beyond. Our algorithm requires access to an
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oracle for minimizing a pth-order Taylor expansion and uses a higher-order implicit update

that can be thought of as a generalization of Mirror Prox. Since the implicit update may be

difficult to compute in the constrained case, we show how to instantiate our algorithm in the

second-order unconstrained case, giving overall running time bounds in that setting.

We begin by reviewing definitions, notions of convergence, and related work in Section 5.2.

Then we summarize our main results and our algorithm in Section 5.3. In Section 5.4, we

present the proof of our main result. We then show how to fully instantiate our algorithm in

the unconstrained p = 2 case in Section 5.5.

5.2 Preliminaries

We will use MVI(F,Z) to denote the MVI given in (5.1) over a vector field F : Z → Rn

and convex constraint set Z ⊆ Rn. Unless otherwise specified, we will use z∗ to signify a

solution to MVI(F,Z). Throughout the chapter, we will use γk to represent positive weights,

and we let ΓK
def
=
∑K

k=1 γk.

For notational convenience, we assume our algorithms have access to a monotone

operator F . This is the usual assumption in MVIs, but it will also allow us to solve min-max

problems, as we now show. For min-max problems (1.1), recall that we defined the gradient

descent-ascent field of g:

ξ(x, y)
def
=

 ∇xg(x, y)

−∇yg(x, y)

 (5.2)

Letting z =

x
y

 and Z = X × Y , we can say ξ maps Z to Rn with only a slight abuse of

notation. It is then easy to show that ξ is monotone when g is convex-concave. So to apply

our algorithms to min-max settings, we simply apply them on ξ.

Our algorithms will require the following assumption:
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Definition 5.2.1. A vector field F : Z → Rn is pth-order Lp smooth w.r.t. ||·|| if, for all

u, v ∈ Z , ∣∣∣∣∇p−1F (u)−∇p−1F (v)
∣∣∣∣
∗ ≤ Lp ||u− v|| ,

where we define

∣∣∣∣∇p−1F (u)−∇p−1F (v)
∣∣∣∣
∗

def
= max

h:||h||≤1

∣∣∣∇p−1F (u)[h]p−1 −∇p−1F (v)[h]p−1
∣∣∣.

Remark 5.2.2. Our definition of pth-order smoothness as a property of the (p − 1)th

derivative of F is motivated by the min-max setting (1.1), where ξ is already expressed in

terms of the gradient of g. If ξ is pth order smooth, this is a statement about the Lipschitz

continuity of pth order derivatives of g.

Another key component of our algorithms is the pth-order Taylor expansion of F at u

evaluated at v:

Tp(v;u) =

p∑
i=0

∇(i)F (u)[v − u]i (5.3)

While T depends on F , we leave this implicit to lighten notation, as the relevant F will

always be obvious from context.

Remark 5.2.3. To be consistent with Remark 5.2.2, when we refer to “pth-order methods,”

we will be referring to methods that use a (p− 1)th-order Taylor expansion of F and which

typically require pth-order smoothness. Again, this indexing makes sense in the context of

min-max problems, where a pth-order method uses a Taylor expansion involving pth-order

derivatives of g.

A well-studied consequence of Definition 5.2.1 is the following:

Fact 5.2.4. Let u, v ∈ Z , and let F : Z → Rn be pth-order Lp smooth. Then,

||F (v)− Tp−1(v;u)||∗ ≤
Lp
p!
||v − u||p . (5.4)
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Finally, our algorithms will all require the following assumption:

Assumption 5.2.5. There exists a solution x∗ ∈ X to the weak variational inequality

MVI(F,X ), namely x∗ is a point that satisfies (5.1).

Assumption 5.2.5 always holds when Z is a compact convex set and F is continuous on

Z [KS80].

5.2.1 Notions of convergence for variational inequalities

The main solution concept for (5.1) that we consider is an ε-approximate weak solution to

MVI(F,Z), namely a point z∗ such that:

∀z ∈ Z, 〈F (z), z∗ − z〉 ≤ ε. (5.5)

Our main bounds will be of the form:

∀z ∈ Z, 1

ΓK

K∑
k=1

γk〈F (zk), zk − z〉 ≤ ε, (5.6)

where zk are iterates produced by our algorithm and γk are positive constants. We now show

conditions under which a guarantee of the form (5.6) gives ε-approximate weak solutions.

Lemma 5.2.6. Let F : Z → Rn, let zk ∈ Z for k ∈ [K] be monotone, and let γk > 0. Let

z̄k = 1
ΓK

∑K
k=1 γkzk. Assume (5.6) holds. Then z̄k is an ε-approximate weak solution to

MVI(F,Z).

Proof. By monotonicity, we have:

〈F (zk), zk − z〉 ≥ 〈F (z), zk − z〉
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Therefore,

K∑
k=1

γk〈F (zk), zk − z〉 ≥
K∑
k=1

γk〈F (z), zk − z〉 = ΓK〈F (z), z̄k − z〉

Then z̄ is an ε-approximate solution to the weak MVI problem.

5.2.2 Solving convex-concave min-max problems with variational inequalities

The classic notion of convergence for (1.1) is the duality gap, which we defined in (2.3). In

this section, we will sometimes write ψX×Y to specify the sets over which the max and min

are taken:

ψX×Y(x, y) = max
ŷ∈Y

g(x, ŷ)−min
x̂∈X

g(x̂, y) (5.7)

We will now show how to prove bounds on the duality gap given a bound like in (5.6),

using the following lemma:

Lemma 5.2.7. Let F : Z → Rn, let zk ∈ Z for k ∈ [K], and let γk > 0. Let z̄k =

1
ΓK

∑K
k=1 γkzk. Assume (5.6) holds. If F is the gradient descent-ascent field for a convex-

concave problem (as in (5.2)), then ψX×Y(z̄k) ≤ ε.

Proof. When F is the gradient descent-ascent field for a convex-concave problem, we have:

〈F (zk), zk − z〉 = (〈∇xg(xk, yk), xk − x〉+ 〈−∇yg(xk, yk), yk − y〉)

≥ g(xk, yk)− g(x, yk) + g(xk, y)− g(xk, yk)

= g(xk, y)− g(x, yk)
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Overall, then we have:

K∑
k=1

γk〈F (zk), zk − z〉 ≥
K∑
k=1

γk(g(xk, y)− g(x, yk)) ≥ ΓK(g(x̄k, y)− g(x, ȳk))

≥ ΓK · ψX×Y(x̄k, ȳk)

5.2.3 Related work

Monotone variational inequalities The weak MVI (5.1) is a classic and well-studied

optimization problem [Min+62; Kom99; Nem04; MS10]. It is closely related to the strong

MVI problem [Sta70], where the goal is to find a z∗ ∈ Z such that

∀z ∈ Z, 〈F (z∗), z∗ − z〉 ≤ 0. (5.8)

When F is continuous and single-valued, any solution to the weak MVI (5.1) is a solution

to the strong MVI.

Our algorithm is based on the Mirror Prox (MP) algorithm of [Nem04], which is a

generalization of the extragradient method of [Kor76]. MP is a first-order method that

achieves O(1/k) iteration complexity, which is tight [NY83]. [MS10] prove convergence

rates for MP in the unconstrained case by formulating MP as an instance of what they

call a Hybrid Proximal Extragradient (HPE) algorithm. [MS12] provide a second-order

algorithm to solve (5.1) in settings with second-order smoothness. That algorithm achieves

an O(1/k
3
2 ) iteration complexity, and its analysis goes through the HPE framework from

[MS10].

Min-max optimization Many convex-concave min-max optimization problems are either

solved with MP or first-order no-regret algorithms. [OX18] show a lower bound of Ω(1/k)

for first-order methods in constrained smooth convex-concave saddle point problems, even
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in the simple case when g(x, y) = f(x) + 〈Ax− b, y〉−h(y) for convex f and h. A number

of recent works have also applied second-order methods to unconstrained smooth min-max

problems, where the second-order information is often accessed through Hessian-vector

products [Bal+18; GM18; Let+19; ADLH19; ALW19b; SA19].

Higher-order methods for convex optimization Higher-order methods have a long his-

tory of use in solving convex optimization problems. Assuming Lipschitz continuity of the

Hessian, [Nes08] provided an accelerated variant of the cubic regularization method [NP06],

which was further generalized by [Bae09] under pth-order smoothness assumptions. The

rate in [Nes08] was later improved by [MS13], and since then several works concerning

lower bounds in this setting [AH18; ASS18] have shown that this rate is essentially tight

(up to logarithmic factors) when the Hessian is Lipschitz continuous. Recently, several

works have shown that the lower bound is also essentially tight for p > 2 [Gas+18; JWZ18;

Bub+18; Bul18], leading to advances in related problems, such as `∞ regression [BL19]

and parallel non-smooth convex optimization [Bub+19].

5.3 Main results

Our main result is a new higher-order method HIGHERORDERMIRRORPROX (Algorithm 2)

for solving MVIs and convex-concave min-max problems with higher-order smoothness.

We prove the following convergence rate:

Theorem 5.3.1. Suppose F : Z → Rn is pth-order Lp-smooth. Let R
def
= max

z∈Z
D(z, z1).

Moreover, let ε = 16Lp
p!

(
R
k

) p+1
2 . Then for z̄K as output by Algorithm 2:

1. If F is monotone, then z̄k is an ε-approximate solution to the weak MVI problem.

2. If F is the gradient descent-ascent field for a convex-concave problem over X and Y ,

then ψX×Y(z̄k) ≤ ε.
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Our result matches the rate of [MS12] when p = 2 and gives improved convergence

rates for higher p. To our knowledge, this is the first algorithm to achieve improved iteration

complexity in the presence of higher-order smoothness. We compare our algorithm to that

of [MS12] in more detail in Section 5.3.3.

As in other higher-order algorithms [Gas+18; JWZ18; Bub+18], each iteration of our

algorithm requires access to an oracle for solving a minimization over a pth order Taylor

series. This oracle may be difficult to compute, particularly in the constrained setting. We

can also consider running our algorithm in the unconstrained setting, which requires a

slightly weaker unconstrained minimization oracle rather than a constrained minimization

oracle. We discuss how to interpret our bounds in the unconstrained setting in Section 5.3.1.

Finally, we show how to instantiate our method in the second-order unconstrained case,

giving the following running time bounds:

Theorem 5.3.2 (Main theorem, p = 2 (Informal)). Suppose F : Rn → Rn is sufficiently

smooth, and let {(ẑk, γk)}k∈[K] be the output of HIGHERORDERMIRRORPROX (p = 2) +

BINARYSEARCHγ (Algorithm 3). Then, for ΓK
def
=

K∑
k=1

γk, the iterates {ẑk}k∈[K] satisfy, for

all z ∈ Rn,

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk − z〉 ≤ 8L2

(
max {D(z, z1), 1}

K

) 3
2

, (5.9)

with per-iteration cost dominated by Õ(1) matrix inversions.1

5.3.1 Interpreting our results in the unconstrained setting

In the unconstrained setting, the standard solution concepts for MVIs and min-max problems

can be vacuous in general. For example, for g(x, y) = x>y and the associated vector field ξ,

all approximate solutions to the min-max problem / MVI are exact solutions. However, the

bounds we prove are still meaningful. In the MVI case, our guarantee can be interpreted

1Here we use the Õ(·) notation to suppress logarithmic factors.
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Algorithm 2 HIGHERORDERMIRRORPROX

Input: z1 ∈ Z , p ≥ 1, 0 < ε < 1, K > 0,
for k = 1 to K do

Determine γk, ẑk such that:

ẑk = arg min
z∈Z

{γk〈Tp(ẑk; zk), z − zk〉+D(z, zk)} , and (5.10)

p!

32Lp ||ẑk − zk||p−1 ≤ γk ≤
p!

16Lp ||ẑk − zk||p−1 (5.11)

zk+1 = arg min
z∈Z

{〈γkF (ẑk), z − ẑk〉+D(z, zk)} (5.12)

end for
Define ΓK

def
=
∑K

k=1 γk

return z̄K
def
= 1

ΓK

∑K
k=1 γkẑk

as stating that for all z such that D(z, z1) ≤ R, we have 〈F (z), z̄k − z〉 ≤ O(R/k
p+1
2 ) as

long as D(z∗, z1) ≤ R. Likewise, for min-max problems, if Z ′ is a convex set containing

z∗, then we can say that ψZ′(z̄k) ≤ O(R/k
p+1
2 ), where R ≥ maxz∈Z′ D(z, z1).

5.3.2 Explanation of our algorithm

Our algorithm is inspired by the Mirror Prox (MP) algorithm of [Nem04], defined as follows:

ẑk = arg min
z∈Z

{〈γkF (zk), z − zk〉+D(z, zk)} (5.13)

zk+1 = arg min
z∈Z

{〈γkF (ẑk), z − ẑk〉+D(z, zk)} (5.14)

whereD is a Bregman divergence. [Nem04] motivates MP with a “conceptual prox method”,

which is given as follows:

zk+1 = arg min
z∈Z
{〈γk+1F (zk+1), z − zk+1〉+D(z, zk)}. (5.15)

This is an implicit method, as computing zk+1 requires solving the equation above for a given

step-size γk+1. However, this method has good iteration complexity. [Nem04] shows that if
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one could run (5.15) exactly, then the γ-averaged iterate zT = 1
ΓK

∑K
k=1 γkzk converges at

a rate of O(1/ΓK). Thus, if one could implement (5.15) with large step-sizes, one could

achieve faster iteration complexity.

It turns out that as long as one approximates (5.15) with small error, one can achieve a

similar convergence rate. The MP algorithm with constant γk does just that, leading to a

O(1/k) convergence rate. While one would like to increase the step-size in MP to improve

the convergence rate, this approach does not work because MP with large step-sizes will no

longer approximate (5.15) with small error.

In our algorithm, we replace the first-order minimization in MP (5.13) with a pth-

order minimization (5.10). We also simultaneously choose a particular step-size. This

can be viewed as approximating (5.15) with large step-sizes while using the higher-order

minimization to ensure that our algorithm is still a “good” approximation of (5.15).

5.3.3 Comparison to [MS12]

[MS12] give a second-order algorithm for solving (5.1) with iteration complexity O(1/k
3
2 )

in the presence of second-order smoothness. Like our algorithm, their algorithm also heavily

relies on the idea of approximating a proximal point method with a large step-size. In

fact, their algorithm is very similar to our algorithm in the second-order case. However,

our analysis is rather different and arguably simpler. While their analysis goes through

the Hybrid Proximal Extragradient framework of [MS10], our analysis relies on a natural

extension of the Mirror Prox analysis. Finally, [MS12] only deal with the Euclidean setting,

whereas we allow arbitrary norms.

While [MS12] do not explicitly instantiate their second-order oracle, they mention that

their oracle reduces to solving a strongly monotone variational inequality, which can then be

solving using a variety of approaches, including interior point methods. In the p = 2 case,

our oracle can be similarly instantiated.
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5.4 Higher-Order Mirror Prox Guarantees

In this section, we prove our main result of the convergence guarantees provided by Algo-

rithm 2.

Lemma 5.4.1. Suppose F : Rn → Rn is pth-order Lp-smooth and let ΓK
def
=

K∑
k=1

γk. Then,

the iterates {ẑk}k∈[K] generated by Algorithm 2 satisfy, for all z ∈ Z ,

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk − z〉 ≤
16Lp
p!

(
D(z, z1)

K

) p+1
2

. (5.16)

Theorem 5.4.2. Suppose F : Z → Rn is pth-order Lp-smooth. Let R
def
= max

z∈Z
D(z, z1).

Moreover, let ε = 16Lp
p!

(
R
k

) p+1
2 . Then for z̄k as output by Algorithm 2:

1. If F is monotone, then z̄k is an ε-approximate solution to the weak MVI problem.

2. If F is the gradient descent-ascent field for a convex-concave problem over X and Y ,

then ψX×Y(z̄k) ≤ ε.

Theorem 5.4.2 follows immediately from Lemmas 5.2.6, 5.2.7, and 5.4.1. To prove

Lemma 5.4.1, we will need to establish our main technical result (Lemma 5.4.3), which we

prove in Section 5.4.1 and whose proof proceeds in a similar manner to the Mirror Prox

analysis [Nem04; Tse08].

Lemma 5.4.3. Suppose F : Rn → Rn is pth-order Lp-smooth. Then, {γk, ẑk, zk+1}k∈[K] as

generated by Algorithm 2 satisfy, for all z ∈ Z ,

K∑
k=1

〈γkF (ẑk), ẑk− z〉+
1

4

K∑
k=1

||ẑk − zk||2 +
1

4

K∑
k=1

||zk+1 − ẑk||2 ≤ D(z, z1)−D(z, zk+1).

(5.17)

We will also need the following technical lemma:

Lemma 5.4.4. Let R, ak ≥ 0 for all k ∈ [K], and let
∑K

k=1 a
2 ≤ R. Then

∑K
k=1 a

−p ≥
k
p
2+1

R
p
2

.
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We prove Lemma 5.4.4 in Section 5.6.1. We now have the necessary tools to prove

Lemma 5.4.1.

Proof of Lemma 5.4.1. Using Lemma 5.4.3, we can divide both sides of (5.17) by ΓK , and

so using the non-negativity of ‖ · ‖ and the Bregman divergence, we get:

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk − z〉 ≤
D(z, z1)

ΓK
.

We simply need to lower bound 1
ΓK

in order to prove our convergence rate result. By

Assumption 5.2.5, we know that there exists a solution z∗ to MVI(F,Z), which means that

for all k ∈ [K], we have 〈γkF (ẑk), ẑk − z∗〉 ≥ 0. We can combine this with Lemma 5.4.3

to get that 1
4

∑K
k=1 ||ẑk − zk|| ≤ D(z∗, z1). Since γk ≥ p!

32Lp||ẑk−zk||p−1 , we can apply

Lemma 5.4.4 by setting ak = ||ẑk − zk|| and R = D(z∗, z1), which gives the result.

5.4.1 Proof of main technical result (Lemma 5.4.3)

Before proving Lemma 5.4.3, we state a useful lemma concerning the updates (5.10) and

(5.12) in Algorithm 2.

Lemma 5.4.5 ([Tse08]). Let φ(·) be a convex function, let z ∈ Z , and let

z+ = arg min
x
{φ(x) +D(x, z)} . (5.18)

Then, for all x ∈ Z ,

φ(x) +D(x, z) ≥ φ(z+) +D(z+, z) +D(x, z+). (5.19)

We now prove Lemma 5.4.3, which is our main technical result.

Proof of Lemma 5.4.3. By Lemma 5.4.5, along with the algorithm’s determination of ẑk,
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we have that for all z ∈ Z ,

γk〈Tp−1(ẑk; zk), ẑk − z〉 ≤ D(z, zk)−D(z, ẑk)−D(ẑk, zk) (5.20)

Using Lemma 5.4.5 again with the choice of zk+1, it follows that for all z ∈ Z ,

γk〈F (ẑk), zk+1 − z〉 ≤ D(z, zk)−D(z, zk+1)−D(zk+1, zk). (5.21)

We may now observe that

γk〈F (ẑk), ẑk − z〉 = γk〈F (ẑk), ẑk − zk+1〉+ γk〈F (ẑk), zk+1 − z〉

= γk〈F (ẑk)− Tp−1(ẑk; zk), ẑk − zk+1〉+ γk〈Tp−1(ẑk; zk), ẑk − zk+1〉

+ γk〈F (ẑk), zk+1 − z〉

≤ γk〈F (ẑk)− Tp−1(ẑk; zk), ẑk − zk+1〉 −D(zk+1, ẑk)−D(ẑk, zk)

+D(z, zk)−D(z, zk+1),

where the final inequality follows from (5.20) and (5.21). Now by Hölder’s inequality, using

eq. (5.4), and the 1-strong convexity of d(·) w.r.t. ||·||, it follows that

γk〈F (ẑk), ẑk − z〉 ≤ γk ||F (ẑk)− Tp−1(ẑk; zk)||∗ · ||ẑk − zk+1|| −D(zk+1, ẑk)−D(ẑk, zk)

+D(z, zk)−D(z, zk+1)

≤ γkLp
p!
||ẑk − zk||p · ||ẑk − zk+1|| −D(zk+1, ẑk)−D(ẑk, zk) +D(z, zk)−D(z, zk+1)

≤ γkLp
p!
||ẑk − zk||p · ||ẑk − zk+1|| −

1

2
||zk+1 − ẑk||2 −

1

2
||ẑk − zk||2

+D(z, zk)−D(z, zk+1).

Finally, by our guarantee from Algorithm 2 that γk ≤ p!

16Lp||ẑk−zk||p−1 , and using the fact
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that ab ≤ a2

2
+ b2

2
for a, b ≥ 0, it follows that

γk〈F (ẑk), ẑk − z〉+
1

4
||ẑk − zk||2 +

1

4
||zk+1 − ẑk||2 ≤ D(z, zk)−D(z, zk+1). (5.22)

Summing over k = 1, . . . , K gives the result.

5.5 Instantiating HIGHERORDERMIRRORPROX (for p = 2)

In this section, we provide an efficient implementation of HIGHERORDERMIRRORPROXfor

the case where F is second-order smooth. In particular, we consider the unconstrained

problem (i.e., Z = Rn) with the Bregman divergence chosen as D(u, v) = 1
2
||u− v||22.

First, for technical reasons, we require the following assumption:

Assumption 5.5.1. During the execution of Algorithm 3, for all k ≥ 1, γ > 0, we assume

that (I + γ∇F (zk)) is invertible and σmin(γ−1I +∇F (zk)) ≥ σmin(∇F (zk)).

As we discuss further in Section 5.10, this always holds for convex-concave min-max

problems. We then arrive at the following result for this setting:

Theorem 5.5.2 (Main theorem, p = 2). Suppose F : Rn → Rn is first-order L1-smooth,

second-order L2-smooth, and Assumption 5.5.1 holds. Let z∗ be a solution to MVI(F,Rn),

let K > 0, and let {(ẑk, γk)}k∈[K] be the output of HIGHERORDERMIRRORPROX (p = 2)

+ BINARYSEARCHγ (Algorithm 3). Further assume that, for all k, σmin(∇F (zk)) ≥ µ.

Then, for ΓK
def
=

K∑
k=1

γk, the iterates {ẑk}k∈[K] satisfy, for all z ∈ Rn,

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk − z〉 ≤ 8L2

(
max {D(z, z1), 1}

K

) 3
2

. (5.23)

In addition, the computational cost of each iteration of Algorithm 3 is dominated by a total

of O
(

log
(
L1||z1−z∗||2K

µ

))
matrix inversions.
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The proof of Theorem 5.5.2 can be found in Section 5.7.1, and we provide a sketch

below.

Sketch. In the second-order unconstrained case, we can compute the implicitly defined

update (5.10) for a given γk by setting ẑk
def
= zk − γk(I + γk∇F (zk))

−1F (zk). Thus, it

suffices to find a γk that satisfies (5.11). We show that either we can find such a γk or we find

a suitable γ+ and γ− for our binary search algorithm. Finally, Lemma 5.5.3 shows that our

binary search algorithm BINARYSEARCHγ finds appropriate γk in O
(

log
(
L1||z1−z∗||2K

µ

))
matrix inversions. A key part of proving Lemma 5.5.3 is showing that a certain function

q(γ) (defined in (5.25)) has bounded derivative (Lemma 5.5.4).

Algorithm 3 HIGHERORDERMIRRORPROX (p = 2) + BINARYSEARCHγ
Input: z1 ∈ Rn, 0 < ε < 1, K > 0
for k = 1 to K do

Set γ− = σmin(∇F (zk))
12||F (zk)||2

, γ+ = k
3
2

if γ+ < 1
8||ẑk(γ+)−zk||2

then
γk ← γ+

else if γ− ≥ γ+ then
γk ← γ−

else
γk ← BINARYSEARCHγ(zk, ε, γ−, γ+)

end if
ẑk

def
= zk − γk(I + γk∇F (zk))

−1F (zk)
zk+1 = arg min

z
{〈γkF (ẑk), z − ẑk〉+D(z, zk)}

end for
Define ΓK

def
=

K∑
k=1

γk

return z̄K
def
= 1

ΓK

K∑
k=1

γkẑk

5.5.1 Binary search

The following lemmas show the correctness of the main binary search procedure. We prove

these lemmas in Sections 5.7.2 and 5.7.3.
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Lemma 5.5.3. Suppose γ−, γ+ are such that γ− ≤ 1
12||ẑk(γ−)−zk||2

and γ+ ≥ 1
12||ẑk(γ+)−zk||2

,

where ẑk(γ) = zk − γ(I + γ∇F (zk))
−1F (zk), Then, BINARYSEARCHγ (Algorithm 4)

outputs γ̄ such that

1

16 ||ẑk(γ̄)− zk||2
≤ γ̄ ≤ 1

8 ||ẑk(γ̄)− zk||2
(5.24)

after N = O
(

log
(
C̄K
δ

))
iterations of the binary search procedure, where δ, C̄ are as

defined in the algorithm.

Lemma 5.5.4. Let q : R 7→ R be defined as

q(γ)
def
=

1

12γ ||(I + γ∇F (zk))−1F (zk)||
=

1

12 ||(γ−1I +∇F (zk))−1F (zk)||
, (5.25)

and let δ
def
= σmin(∇F (zk))

12||F (zk)|| . Then, for all γ ≥ δ, we have

∣∣∣∣ ddγ q(γ)

∣∣∣∣ ≤ C, for C
def
=

1

δ2

( 1
δ

+ ||∇F (zk)||
12σmin(∇F (zk)) ||F (zk)||

)3

. (5.26)

Algorithm 4 BINARYSEARCHγ

Input: zk, 0 < ε < 1, γinit
− , γinit

+ .
Initialize γ− ← γinit

− , γ+ ← γinit
+ , γ̄ ← γ−+γ+

2

Set δ = σmin(∇F (zk))
12||F (zk)|| , C = 1

δ2

(
1
δ

+||∇F (zk)||
12σmin(∇F (zk))||F (zk)||

)3

, C̄ = max {C, 1}, N =

O(log( C̄K
δ

)).

Define ẑk(γ)
def
= zk − γ(I + γ∇F (zk))

−1F (zk)
for k = 0 to N − 1 do
D = 1

12||ẑk(γ̄)−zk||
if γ̄ ≤ D then
γ− ← γ̄

else
γ+ ← γ̄

end if
γ̄ = γ−+γ+

2

end for
return γ̄ ← γ+
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5.6 Proofs from Section 5.4

5.6.1 Proof of Lemma 5.4.4

Proof of Lemma 5.4.4. We use the following power means:

M1(x) =

∑K
k=1 xk
K

M−2/p(x) =

(∑K
k=1 x

−2/p
k

K

)−p/2

By the power mean inequality, we have M1/p(x) ≥M−2/p(x), so letting xk = 1
apk

gives:

∑K
k=1

1
apk

K
≥

(
K∑K
k=1 a

2
k

)p/2

≥
(
K

R

)p/2
⇒

K∑
k=1

1

apk
≥ K1+p/2

Rp/2

5.6.2 Proof of Lemma 5.4.5

Proof of Lemma 5.4.5. By the optimality condition for z+, we know that for all x ∈ Z ,

φ(x) + 〈∇xD(z+, z), x− z+〉 ≥ φ(z+). (5.27)

Rearranging and adding D(x, z) to both sides gives us

φ(x) +D(x, z) ≥ φ(z+) +D(x, z)− 〈∇xD(z+, z), x− z+〉

= φ(z+) +D(x, z) +D(x, z+) +D(z+, z)−D(x, z)

= φ(z+) +D(x, z+) +D(z+, z),
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where the first equality comes from the Bregman three-point property, i.e.,

〈∇d(w)−∇d(v), u− v〉 = D(u, v) +D(v, w)−D(u,w), for all u, v, w ∈ Z. (5.28)

5.7 Proofs from Section 5.5

5.7.1 Proof of Theorem 5.5.2

Proof of Theorem 5.5.2. We will first show that the choices of γ+ and γ− are valid bi-

nary search bounds whenever BINARYSEARCHγ is called by Algorithm 3, i.e., that γ+ ≥
1

12||ẑk(γ+)−zk||2
and γ− ≤ 1

12||ẑk(γ−)−zk||2
. We begin with our choice of γ+ = k

3
2 . Suppose

that, for some iteration t, it is the case that γ+ < 1
8||ẑk(γ+)−zk||2

. If so, then the algorithm sets

γk ← γ+, which means that ΓK ≥ γ+ = k
3
2 . Therefore, since we know that

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk − z〉 ≤ 8L2
D(z, z1)

ΓK
, (5.29)

it follows that

1

ΓK

K∑
k=1

〈γkF (ẑk), ẑk− z〉 ≤ 8L2
D(z, z1)

K
3
2

≤ 8L2
D(z, z1)

K
3
2

≤ 8L2

(
max {D(z, z1), 1}

K

) 3
2

,

(5.30)

and so we would be done. In addition, supposing it is the case that γ− ≥ γ+ (at which point,

the algorithm sets γk ← γ−), we again reach this conclusion by the same reasoning. For

ensuring the validity of γ−, note that by (5.37), it follows that γ− = δ ≤ 1
12||ẑk(δ)−zk||2

.

Having established the validity of the binary search bounds in the case that the search

routine is in fact called, we now move on to show how we may explicitly instantiate the

implicitly defined update in (5.10). Namely, in this setting the key conditions (5.10) and

130



(5.11) that must simultaneously hold can be equivalently expressed as

ẑk = arg min
z∈Rn

{
γk〈F (zk) +∇F (zk)(ẑk − zk), z − zk〉+

1

2
||z − zk||2

}
, and (5.31)

1

16L1 ||ẑk − zk||2
≤ γk ≤

1

8L1 ||ẑk − zk||2
. (5.32)

From (5.31), it follows by first-order optimality conditions that γk(F (zk)+∇F (zk)(ẑk−

zk)) + ẑk − zk = 0, and so rearranging gives us

(I + γk∇F (zk))ẑk = (I + γk∇F (zk))zk − γkF (zk).

Since we assume that (I + γk∇F (zk)) is invertible, it follows that

ẑk = zk − γk(I + γk∇F (zk))
−1F (zk), (5.33)

which is precisely the update that occurs in Algorithm 3. All that remains is to en-

sure that we may determine γk such that (5.32) holds, which follows from the output of

BINARYSEARCHγ as a consequence of Lemma 5.5.3. Finally, since the iteration complexity

of BINARYSEARCHγ is bounded by

N = O

(
log

(
C̄K

δ

))
= O

(
log

(
K ||F (zk)||2
σmin(∇F (zk))

))
≤ O

(
log

(
L1 ||z1 − z∗||2K

µ

))
,

(5.34)

where the final inequality follows from Lemma 5.8.1, which bounds ||F (zk)||, along with

our assumption that, for all k, σmin(∇F (zk)) ≥ µ, and each iteration of BINARYSEARCHγ

requires O
(

log
(
L1||z1−z∗||2K

µ

))
matrix inversions, which results in the total complexity in

the theorem.
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5.7.2 Proof of Lemma 5.5.3

Proof of Lemma 5.5.3. By assumption, we have that γ− and γ+ are initialized to be valid

search bounds, i.e., γ− ≤ 1
12||ẑk(γ−)−zk||

and γ+ ≥ 1
12||ẑk(γ+)−zk||

. By Lemma 5.5.4 and letting

C̄
def
= max {C, 1}, we know that, for all x, y ≥ γ−,

|q(y)− q(x)| ≤ C̄ · |y − x| (5.35)

After N = O
(

log
(
C̄K
δ

))
iterations of the binary search procedure we know that

|γ+ − γ−| ≤
δ

100C̄
≤ δ

100
, (5.36)

and so taken together with (5.35), we have

γ+ ≤ γ− +
δ

100
≤ q(γ−) +

δ

100
≤ q(γ+) + C |γ+ − γ−|+

δ

100
≤ q(γ+) +

2δ

100

≤ 3

2
q(γ+) =

1

8 ||ẑk(γ+)− zk||
.

Here, the last inequality follows from the fact that, for γ > 0,

q(γ) =
1

12 ||(γ−1I +∇F (zk))−1F (zk)||
≥ 1

12 ||(γ−1I +∇F (zk))−1|| · ||F (zk)||

≥ 1

12 ||∇F (zk)−1|| · ||F (zk)||

=
σmin(∇F (zk))

12 ||F (zk)||

= δ. (5.37)

Thus, it follows that

1

16 ||ẑk(γ̄)− zk||
≤ γ̄ ≤ 1

8 ||ẑk(γ̄)− zk||
(5.38)
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for γ̄ = γ+, as determined by Algorithm 4.

5.7.3 Proof of Lemma 5.5.4

Proof of Lemma 5.5.4. We begin by rewriting q(γ) as

q(γ) =
1

12

(
F (zk)

>(γ−1I +∇F (zk))
−1>(γ−1I +∇F (zk))

−1F (zk)
)−1/2

=
1

12

(
F (zk)

>(γ−1I +∇F (zk)
>)−1(γ−1I +∇F (zk))

−1F (zk)
)−1/2

Now, let M1(γ)
def
= (γ−1I +∇F (zk)

>)−1 and M2(γ)
def
= (γ−1I +∇F (zk))

−1. By standard

matrix calculus, we may observe that

d

dγ
M1(γ) =

1

γ2
(γ−1I +∇F (zk)

>)−2 and
d

dγ
M2(γ) =

1

γ2
(γ−1I +∇F (zk))

−2. (5.39)

It follows that

d

dγ
q(γ) = −1

2
q(γ)3 ·

(
F (zk)

>(γ−1I +∇F (zk)
>)−1

(
d

dγ
M2(γ)

)
F (zk)

+ F (zk)
>
(
d

dγ
M1(γ)

)
(γ−1I +∇F (zk))

−1F (zk)

)

= − 1

2γ2
q(γ)3 ·

(
F (zk)

>(γ−1I +∇F (zk)
>)−1(γ−1I +∇F (zk))

−2F (zk)

+ F (zk)
>(γ−1I +∇F (zk)

>)−2(γ−1I +∇F (zk))
−1F (zk)

)
.
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Now, by standard norm inequalities, we have

∣∣∣∣ ddγ q(γ)

∣∣∣∣ ≤ 1

2γ2
|q(γ)|3

( ∣∣∣∣(γ−1I +∇F (zk)
>)−1

∣∣∣∣ · ∣∣∣∣(γ−1I +∇F (zk))
−1
∣∣∣∣2

+
∣∣∣∣(γ−1I +∇F (zk)

>)−1
∣∣∣∣2 · ∣∣∣∣(γ−1I +∇F (zk))

−1
∣∣∣∣ ) ||F (zk)||2

=
1

γ2
|q(γ)|3 ·

∣∣∣∣(γ−1I +∇F (zk))
−1
∣∣∣∣3 · ||F (zk)||2 .

Note that for all γ ≥ δ,

|q(γ)| = 1

12 ||(γ−1I +∇F (zk))−1F (zk)||
≤ γ−1 + ||∇F (zk)||

||F (zk)||
≤

1
δ

+ ||∇F (zk)||
12 ||F (zk)||

(5.40)

and

∣∣∣∣(γ−1I +∇F (zk))
−1
∣∣∣∣ =

1

σmin(γ−1I +∇F (zk))
≤ 1

σmin(∇F (zk))
, (5.41)

where the final inequality follows by Assumption 5.5.1. Taken together, this gives us that

∣∣∣∣ ddγ q(γ)

∣∣∣∣ ≤ 1

δ2

( 1
δ

+ ||∇F (zk)||
12σmin(∇F (zk)) ||F (zk)||

)3

, (5.42)

and so the lemma follows.

5.8 Proof of Lemma 5.8.1

Lemma 5.8.1. Assume F is first-order L1 smooth and D(u, v) = 1
2
||u− v||2.

||F (zk)|| ≤ 4
√
kL1 ||z1 − z∗|| (5.43)

To prove Lemma 5.8.1, we need the following lemma, which we prove in Section 5.8.1.

Lemma 5.8.2. Suppose F : Rn → Rn is pth-order Lp-smooth. Let {zk}Kk=1 be the iterates
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generated by Algorithm 2 and let z∗ be a solution to MVI(F,Z). Then for any v ∈ Z ,

||zk − v||2 ≤ 2k
(
8D(z1, z

∗) + ||z1 − v||2
)

(5.44)

Proof of Lemma 5.8.1. By Assumption 5.2.5, we know there exists a z∗ such that (5.1)

holds. By Lemma 5.9.1, any such z∗ is also a solution to (5.8), namely:

∀z ∈ Rn, 〈F (z∗), z∗ − z〉 ≤ 0 (5.45)

Since we are in the unconstrained setting, this implies that F (z∗) = 0. Then we have:

||F (zk)|| = ||F (zk)− F (z∗)|| ≤ L1 ||zk − z∗|| (5.46)

where the inequality follows by the L1 smoothness of F . By Lemma 5.8.2, we have

||zk − z∗|| ≤
√

2k
(
4 ||z1 − z∗||2 + ||z1 − z∗||2

)
≤ 4
√
k ||z1 − z∗|| (5.47)

Combining this with (5.46) gives the result.

5.8.1 Proof of Lemma 5.8.2

We will need the following two lemmas to prove Lemma 5.8.2:

Lemma 5.8.3. Let ai > 0 for i ∈ [n]. Then,

(
n∑
i=1

ai

)2

≤ n

n∑
i=1

a2
i (5.48)
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Proof. Let a be the vector of ai’s. We define the following power means:

M1(a) =

∑n
i=1 ai
n

(5.49)

M2(a) =

(∑n
i=1 a

2
i

n

)1/2

(5.50)

By the power mean inequality, we have M1(a) ≤M2(a), which gives the result.

Lemma 5.8.4. Let z∗ be the solution to MVI(F,Z). Then for the iterates zk of Algorithm 2

initialized at z1, we have:

1

8

K∑
k=1

||zk+1 − zk||2 ≤ D(z∗, z1). (5.51)

Proof. This follows from two simple observations. First, note that:

K∑
k=1

||zk+1 − zk||2 ≤
K∑
k=1

(2 ||zk+1 − ẑk||2 + 2 ||ẑk − zk||2). (5.52)

Now, by Assumption 5.2.5, we know that each term of
K∑
k=1

〈γkF (ẑk), ẑk − z〉 is non-negative

for some z∗ ∈ Z , namely the solution to MVI(F,Z). Combining this with Lemma 5.4.3

and (5.52) gives the result.

Proof of Lemma 5.8.2. By the triangle inequality, we have:

||zk − v||2 ≤

(
k∑
τ=1

||zτ − zτ+1||+ ||z1 − v||

)2

(5.53)

≤ (k + 1)

(
k∑
τ=1

||zτ − zτ+1||2 + ||z1 − v||2
)

(5.54)

where the second inequality follows from using Lemma 5.8.3 with ai = ||zi − zi+1|| for

i ∈ [k] and ak+1 = ||z1 − v||. We then apply Lemma 5.8.4 to (5.54) to get the result, using

the fact that k + 1 ≤ 2k.
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5.9 Equivalence of exact solutions to weak and strong MVIs

Lemma 5.9.1 ([KS80]). For continuous F : Rn → Rn, any solution of (5.1) is a solution to

(5.8).

Proof. Let z∗ be a solution to (5.1). Let z = z∗ + t(v − z∗) for an arbitrary v ∈ Z and for

t > 0. Then:

〈F (z∗ + t(v − z∗)),−t(v − z∗)〉 ≤ 0 (5.55)

⇐⇒ 〈F (z∗ + t(v − z∗)), z∗ − v)〉 ≤ 0 (5.56)

Taking the limit of (5.56) as t goes to 0 gives:

〈F (z∗), z∗ − v〉 ≤ 0 (5.57)

Thus, z∗ is a solution to (5.8).

5.10 Invertibility concerns

While the general setting of Algorithm 3 assumes (I +∇F (zk)) is invertible, it turns out

that for convex-concave games, this assumption is not necessary. In particular, the Jacobian

of the vector field (5.2) is

∇F (x, y) =

 ∇2
xxφ(x, y) ∇2

xyφ(x, y)

−∇2
yxφ(x, y) −∇2

yyφ(x, y)

 . (5.58)
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Note that there is a natural decomposition of ∇F (x, y) as a sum of a symmetric and an

anti-symmetric matrix, namely

∇F (x, y) =

∇2
xxφ(x, y) 0

0 −∇2
yyφ(x, y)

+

 0 ∇2
xyφ(x, y)

−∇2
yxφ(x, y) 0

 . (5.59)

The following is a useful lemma about the real part of eigenvalues of matrices, based on

such a symmetric-asymmetric decomposition.

Lemma 5.10.1. Let M be a real matrix such that M = S +A, where S is a symmetric real

matrix and A is an antisymmetric real matrix. If S is nonsingular, then M is nonsingular.

Likewise, if S is positive definite (or PSD), then the real part of eigenvalues ofM are positive

(or non-negative).

Proof of Lemma 5.10.1. Let v be an eigenvector of M with eigenvalue λ (these may both

be complex). Let v = vr + ivi and λ = λr + iλi be the decompositions of v and λ into real

and imaginary parts.

λ ||v|| = v∗Mv = v∗Sv + v∗Av

= (vr − ivi)>S(vr + ivi) + (vr − ivi)>A(vr + ivi)

= v>r Svr + v>i Svi + i(v>r Svi − v>i Svr) + v>r Avr + v>i Avi

+ i(v>r Avi − v>i Avr)

Since x>Ax = 0 for any antisymmetric matrix A, we have that λr = 1
||v||(v

>
r Svr + v>i Svi),

which implies the conclusions of the lemma. To see the fact about antisymmetric matrices,

observe:

x>Ax = x>A>x = −x>Ax ⇐⇒ 2x>Ax = 0
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By convexity and concavity of φ(x, y) in x and y, respectively, we know that the

symmetric part of (5.59) is PSD for all z ∈ Z . It follows that, for all t, (I +∇F (zk)) is

positive definite, and therefore invertible. It may additionally be seen in this setting that

σmin(γ−1I +∇F (zk)) ≥ σmin(∇F (zk)).

139



REFERENCES

[ALLW18a] J. Abernethy, K. A. Lai, K. Levy, and J.-K. Wang. “Faster Rates for Convex-
Concave Games”. In: Conference on Learning Theory (COLT) (2018).

[ALLW18b] J. Abernethy, K. A. Lai, K. Y. Levy, and J.-K. Wang. “Faster rates for convex-
concave games”. In: CONFERENCE ON LEARNING THEORY (COLT) (2018).

[ALW19a] J. Abernethy, K. A. Lai, and A. Wibisono. “Fictitious Play: Convergence,
Smoothness, and Optimism”. In: (2019). URL: http://arxiv.org/
abs/1911.08418.

[ALW19b] J. Abernethy, K. A. Lai, and A. Wibisono. “Last-iterate convergence rates for
min-max optimization”. In: (2019). URL: https://arxiv.org/abs/
1906.02027.

[AW17] J. Abernethy and J.-K. Wang. “Frank-Wolfe and Equilibrium Computation”.
In: Annual Conference on Neural Information Processing Systems (NIPS)
(2017).

[Adl13] I. Adler. “The equivalence of linear programs and zero-sum games”. In:
International Journal of Game Theory 42.1 (2013), pp. 165–177.

[ADLH19] L. Adolphs, H. Daneshmand, A. Lucchi, and T. Hofmann. “Local Saddle
Point Optimization: A Curvature Exploitation Approach”. In: Artificial Intel-
ligence and Statistics (AISTATS). 2019.

[Aga+18] A. Agarwal, A. Beygelzimer, M. Dudik, J. Langford, and H. Wallach. “A
Reductions Approach to Fair Classification”. In: International Conference
on Machine Learning (ICML). 2018, pp. 60–69.

[AH18] N. Agarwal and E. Hazan. “Lower bounds for higher-order convex optimiza-
tion”. In: Conference on Learning Theory (COLT). 2018.

[Aga+17] N. Agarwal, Z. Allen-Zhu, B. Bullins, E. Hazan, and T. Ma. “Finding ap-
proximate local minima faster than gradient descent”. In: Proceedings of
the 49th Annual ACM SIGACT Symposium on Theory of Computing. ACM.
2017, pp. 1195–1199.

[AZH16] Z. Allen-Zhu and E. Hazan. “Variance reduction for faster non-convex opti-
mization”. In: International Conference on Machine Learning (ICML). 2016,
pp. 699–707.

140

http://arxiv.org/abs/1911.08418
http://arxiv.org/abs/1911.08418
https://arxiv.org/abs/1906.02027
https://arxiv.org/abs/1906.02027


[ASS17] Y. Arjevani, O. Shamir, and R. Shiff. “Oracle complexity of second-order
methods for smooth convex optimization”. In: Mathematical Programming
(2017), pp. 1–34.

[ASS18] Y. Arjevani, O. Shamir, and R. Shiff. “Oracle complexity of second-order
methods for smooth convex optimization”. In: Mathematical Programming
(2018), pp. 1–34.

[AMLJG19] W. Azizian, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel. “A Tight and
Unified Analysis of Extragradient for a Whole Spectrum of Differentiable
Games”. In: arXiv preprint arXiv:1906.05945 (2019).

[Azi+20] W. Azizian, D. Scieur, I. Mitliagkas, S. Lacoste-Julien, and G. Gidel. “Accel-
erating Smooth Games by Manipulating Spectral Shapes”. In: arXiv preprint
arXiv:2001.00602 (2020).

[Bae09] M. Baes. “Estimate sequence methods: extensions and approximations”. In:
(2009).

[BGP19] J. P. Bailey, G. Gidel, and G. Piliouras. “Finite Regret and Cycles with
Fixed Step-Size via Alternating Gradient Descent-Ascent”. In: arXiv preprint
arXiv:1907.04392 (2019).

[BP19a] J. P. Bailey and G. Piliouras. “Fast and Furious Learning in Zero-Sum Games:
Vanishing Regret with Non-Vanishing Step Sizes”. In: Neural Information
Processing Systems, NeurIPS 2019, Vancouver, Canada. 2019.

[BP19b] J. P. Bailey and G. Piliouras. “Multi-agent learning in network zero-sum
games is a Hamiltonian system”. In: Proceedings of the 18th International
Conference on Autonomous Agents and MultiAgent Systems. International
Foundation for Autonomous Agents and Multiagent Systems. 2019, pp. 233–
241.

[Bal+18] D. Balduzzi, S. Racaniere, J. Martens, J. Foerster, K. Tuyls, and T. Grae-
pel. “The Mechanics of n-Player Differentiable Games”. In: International
Conference on Machine Learning (ICML). 2018.

[Bla56] D. Blackwell. “An analog of the minimax theorem for vector payoffs”. In:
Pacific Journal of Mathematics 6.1 (1956), pp. 1–8.

[BFH10] F. Brandt, F. Fischer, and P. Harrenstein. “On the rate of convergence of
fictitious play”. In: International Symposium on Algorithmic Game Theory.
Springer. 2010, pp. 102–113.

141



[Bro49] G. W. Brown. Some notes on computation of games solutions. Tech. rep.
RAND CORP Santa Monica, CA, 1949.

[Bro51] G. W. Brown. “Iterative solution of games by fictitious play”. In: Activity
analysis of production and allocation 13.1 (1951), pp. 374–376.

[Bub+18] S. Bubeck, Q. Jiang, Y. T. Lee, Y. Li, and A. Sidford. “Near-optimal method
for highly smooth convex optimization”. In: arXiv preprint arXiv:1812.08026
(2018).

[Bub+19] S. Bubeck, Q. Jiang, Y.-T. Lee, Y. Li, and A. Sidford. “Complexity of Highly
Parallel Non-Smooth Convex Optimization”. In: Advances in Neural Infor-
mation Processing Systems. 2019, pp. 13900–13909.

[Bul18] B. Bullins. “Fast minimization of structured convex quartics”. In: arXiv
preprint arXiv:1812.10349 (2018).

[BL19] B. Bullins and K. A. Lai. “Higher-order methods for min-max optimization”.
In: (2019).

[CDHS18] Y. Carmon, J. C. Duchi, O. Hinder, and A. Sidford. “Accelerated methods
for nonconvex optimization”. In: SIAM Journal on Optimization 28.2 (2018),
pp. 1751–1772.

[CHDS17] Y. Carmon, O. Hinder, J. C. Duchi, and A. Sidford. ““Convex Until Proven
Guilty”: Dimension-Free Acceleration of Gradient Descent on Non-Convex
Functions”. In: International Conference on Machine Learning (ICML).
2017.

[Dan81] J. M. Danskin. “Fictitious play for continuous games revisited”. In: Inter-
national Journal of Game Theory 10.3 (Sept. 1981), pp. 147–154. URL:
https://doi.org/10.1007/BF01755961.

[Dan51] G. B. Dantzig. “A proof of the equivalence of the programming problem
and the game problem”. In: Activity Analysis of Production and Allocation
(1951). Ed. by T. Koopmans, pp. 330–335.

[DISZ18] C. Daskalakis, A. Ilyas, V. Syrgkanis, and H. Zeng. “Training GANs with Op-
timism”. In: International Conference on Learning Representations (ICLR).
2018.

[DP14] C. Daskalakis and Q. Pan. “A counter-example to Karlin’s strong conjecture
for fictitious play”. In: 2014 IEEE 55th Annual Symposium on Foundations
of Computer Science. IEEE. 2014, pp. 11–20.

142

https://doi.org/10.1007/BF01755961


[DP18] C. Daskalakis and I. Panageas. “The Limit Points of (Optimistic) Gradient
Descent in Min-Max Optimization”. In: Advances in Neural Information
Processing Systems (NeurIPS). 2018, pp. 9255–9265.

[DH19] S. S. Du and W. Hu. “Linear Convergence of the Primal-Dual Gradient
Method for Convex-Concave Saddle Point Problems without Strong Con-
vexity”. In: Artificial Intelligence and Statistics (AISTATS). 2019.

[FW56] M. Frank and P. Wolfe. “An algorithm for quadratic programming”. In: Naval
research logistics quarterly 3.1-2 (1956), pp. 95–110.

[FS96] Y. Freund and R. E. Schapire. “Game theory, on-line prediction and boost-
ing”. In: Conference on Learning Theory (COLT). 1996, pp. 325–332.

[FS99] Y. Freund and R. E. Schapire. “Adaptive Game Playing Using Multiplicative
Weights”. In: Games and Economic Behavior 29.1-2 (Oct. 1999), pp. 79–
103.

[Gas+18] A. Gasnikov, P. Dvurechensky, E. Gorbunov, D. Kovalev, A. Mohhamed,
E. Chernousova, and C. A. Uribe. “The global rate of convergence for op-
timal tensor methods in smooth convex optimization”. In: arXiv preprint
arXiv:1809.00382 (v10) (2018).

[GM18] I. Gemp and S. Mahadevan. “Global convergence to the equilibrium of gans
using variational inequalities”. In: arXiv preprint arXiv:1808.01531 (2018).

[GL16] S. Ghadimi and G. Lan. “Accelerated gradient methods for nonconvex non-
linear and stochastic programming”. In: Mathematical Programming 156.1-2
(2016), pp. 59–99.

[GBVLJ19] G. Gidel, H. Berard, P. Vincent, and S. Lacoste-Julien. “A Variational In-
equality Perspective on Generative Adversarial Nets”. In: International Con-
ference on Learning Representations (ICLR) (2019).

[Goo+14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio. “Generative adversarial nets”. In: Advances in
Neural Information Processing Systems (NeurIPS). 2014, pp. 2672–2680.

[Han57] J. Hannan. “Approximation to Bayes risk in repeated play”. In: Contributions
to the Theory of Games 3 (1957), pp. 97–139.

[Har98] C. Harris. “On the rate of convergence of continuous-time fictitious play”.
In: Games and Economic Behavior 22.2 (1998), pp. 238–259.

143



[HS02] J. Hofbauer and W. H. Sandholm. “On the global convergence of stochastic
fictitious play”. In: Econometrica 70.6 (2002), pp. 2265–2294.

[HRU13] J. Hsu, A. Roth, and J. Ullman. “Differential privacy for the analyst via
private equilibrium computation”. In: Symposium on Theory of Computing
(STOC). 2013, pp. 341–350.

[JWZ18] B. Jiang, H. Wang, and S. Zhang. “An optimal high-order tensor method for
convex optimization”. In: arXiv preprint arXiv:1812.06557 (2018).

[KNS16] H. Karimi, J. Nutini, and M. Schmidt. “Linear convergence of gradient and
proximal-gradient methods under the Polyak-Łojasiewicz condition”. In:
Joint European Conference on Machine Learning and Knowledge Discovery
in Databases. Springer. 2016, pp. 795–811.

[Kar59] S. Karlin. Mathematical Methods and Theory in Games, Programming, and
Economics. Addison-Wesley, 1959.

[KALL18] T. Karras, T. Aila, S. Laine, and J. Lehtinen. “Progressive growing of gans
for improved quality, stability, and variation”. In: International Conference
on Learning Representations (ICLR) (2018).

[KS80] D. Kinderlehrer and G. Stampacchia. An introduction to variational inequal-
ities and their applications. Vol. 31. Siam, 1980.
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