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ABSTRACT

Wavemesh is a powerful scheme for 3D triangular mesh process-
ing. In sharp contrast with other approaches using wavelets for
mesh compression which apply only to meshes having subdivision
connectivity, Wavemesh can simplify, approximate, and compress
meshes even if they do not respect this constraint, with unmatched
results for progressive lossless compression when compared to
other approaches. We propose in this paper an improvement for
our scheme : higher efficiency for meshes with large subdivision
connectivity sets, as shown by experimental results. Also, in some
cases, wavemesh can even perform better than mono-resolution
approaches in terms of connectivity compression.

1. INTRODUCTION

Digital models of three-dimensional shapes are essential in
numerous application domains, including CAD, entertainment,
medicine, geosciences, and architecture. In most cases, these mod-
els are represented as 3D triangular meshes, with the native sup-
port provided by graphics processors. However, the use of large
and complex models can become an issue when the end-user faces
storage or transmission (bandwidth limitation) issues. Data com-
pression comes as a solution for these problems by two differ-
ent approaches: The model can be compressed in a mono reso-
lution bitstream, or in a progressive bitstream. Mono resolution
approaches [8, 13, 12] often give the best compression rates, but
progressive schemes [1, 4, 9, 11, 5, 3, 6, 18] offer more flexibil-
ity : for a given model, several resolution levels are constructed
so that progressive transmission and reconstruction are possible.
Also, lower resolution levels can be rendered faster which can be
useful when the model size becomes a problem.

In section 2, we briefly mention several progressive com-
pression approaches for 3D triangular meshes, and review the
Wavemesh approach which we improved. Section 4 explains how
Wavemesh is improved to achieve optimal performance when pro-
cessing subdivision connectivity meshes. Section 5 illustrates the
good behavior of the new approach and a conclusion follows.

2. RELATED WORKS

Progressive transmission for meshes was introduced by Hoppe
[5], based on successive mesh simplification by edge contrac-
tions, which offer optimal granularity and linear complexity cost,
but non-linear storage and transmission cost. Several approaches
derive from Progressive Meshes: Pajarola and Rossignac imple-
mented an improved version of progressive meshes [11], encoding
the mesh connectivity reconstruction by edge splits batches, with

an average coding cost of 7.2 bits per vertex. Karni and Gotsman
[6] improved the edge contraction sequence and the geometry cod-
ing to enhance both progressive transmission rate-distortion trade-
off and rendering speed of the processed meshes.

Cohen-Or et al. [3] propose a progressive transmission based
on successive vertex removal followed by deterministic retrian-
gulation. Vertices are removed according to their valence and
their geometric properties. The deterministic retriangulation leads
to an average connectivity compression of 6 bits per vertex, but
the simplified mesh becomes less and less regular due to the Z-
retriangulation used for large valence vertices. Alliez and Des-
brun [1] improved this technique by removing only vertices with
valence bellow 7 and using a new retriangulation approach that
keeps the mesh regularity along the simplification. The vertices
can also be removed according to a geometric criterion to improve
the quality of the approximations. This approach compresses the
mesh connectivity to an average of 3.69 bits per vertex.

Karni and Gotsman [7] developped spectral geometry com-
pression, where the geometry is projected on an orthogonal vector
space, constructed with the eigenvectors of the mesh connectivity
laplacian matrix. This scheme provides good mesh approxima-
tions, even with few transmitted coefficients. However, this algo-
rithm is not fully progressive, as the mesh connectivity remains the
same, only the geometry of the mesh changes with the resolution.

In [9], Khodakovsky et al. present a pure geometry coder,
where the input model is remeshed and provides the best rate-
distortion tradeoffs so far, when the user does not need to keep
the original connectivity of the 3D mesh. Single-rate lossy com-
pression that resample the surface in a semi-regular pattern have
also been proposed [14, 2].

In [18] we introduced a new approach, Wavemesh which uses
an irregular subdivision inversion scheme [16]. This scheme aims
at processing an inverse loop subdivision [10] on the input mesh
when it is possible. The geometric approximations are performed
by wavelet decomposition, which enhances the approximation
quality of the lower resolution levels. Although Wavemesh per-
forms very well (and better than any other progressive approach),
it can be improved, both in terms of complexity and compression
efficiency, as shown in the following sections.

3. TECHNICAL BACKGROUND ON WAVEMESH

In order to achieve progressive transmission, Wavemesh simpli-
fies the original mesh by reversing an irregular subdivision scheme
[16]. The simplification is repeated until the resulting mesh cannot
be simplified anymore (for meshes homeomorphic to a sphere, the
simplest mesh is a tetrahedron). We obtain a hierarchy of meshes,
from the simplest oneM0 to the original meshMJ . For each mesh



M j we callvj its number of vertices. Following [17], the wavelet
decomposition can be applied to the geometrical properties of the
different meshes which are linked by the following matrix rela-
tions:
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whereCj is thevj
× 3 matrix representing the coordinates of the

vertices ofM j , Dj−1 is the(vj
−vj−1)×3 matrix of the wavelet

coefficients at levelj, Aj andBj are the analysis filters,P j and
Qj are the synthesis filters. As both the connectivity simplifica-
tion and the geometrical approximation are reversible, we achieve
an effective progressive transmission when transmitting only the
lowest resolution meshM0, and by iteratively transmitting the
subdivision information fromM j to M j+1 and the wavelet coeffi-
cientsDj where0 ≤ j < J [18]. The connectivity simplification
scheme used by Wavemesh attempts to inverse Loop subdivision
[10] on the mesh wherever it is possible, that is, on semi-regular re-
gions. For irregular meshes, this simplification is impossible, and
Wavemesh merges faces not only four by four, but also in groups
of three or two faces, or leaves some faces unchanged, and per-
forms edge flips when needed. In [18] we showed that to obtain
the best compression ratio, we must simplify a meshM j+1 to a
meshM j having the lowest possible number of vertices.

4. IMPROVING THE INVERSE PROBLEM SOLVER

This section describes how we improve the behavior of wavemesh
for meshes with or without subdivision connectivity.

4.1. Meshes with subdivision connectivity

The original simplification scheme is based on a region growing
algorithm, which expands a simplified mesh set, starting from a
group of four seed faces which will be merged into one face in the
simplified mesh. As explain in [15], without any supplementary
assumption, our algorithm could find the optimal simplification
for subdivision connectivity meshes in only 25% of the cases. Ac-
tually, this hit rate depends on the choice of the four chosen seed
triangles. Figure 1 shows the example of a simple mesh which was
obtained by applying Loop subdivision on a coarse mesh. In figure
1(b), the chosen seed faces are the dark greyed ones. With these
seed triangles, the simplification could not find the optimal sim-
plification; only the greyed faces were merged four by four. This
issue is due to (1) the black marked vertex which has valence 5,
and (2) the mesh boundaries. On the other hand, choosing an other
group of seed triangles in figure 1(c) gives the optimal simplifi-
cation, as all the faces were merged four by four. The optimally
simplified mesh is shown in figure 1(c). The difference between
these two cases is that the first seed triangles do not have any ir-
regular vertex (that is a vertex with valence different from 6) on
their boundaries, and the second group has an irregular vertex on
one of its corner. Let a triangular base meshM0 with genus 0 with
or without boundaries and regularly subdivided 1:4 up to the res-
olution j . A necessary and sufficient condition to find the exact
solution of the inverse problem of the regular subdivision by 4:1
face merging ofM j is to choose a seed group of four faces (first
merging) having a vertex with a valence different of six on one of
its corner. Proof : In the direct subdivision problem a vertexvi

(a) (b)

(c) (d)

Fig. 1. Seed faces selection : (a) subdivided mesh (b) unlucky
seed triangles choice; (c) lucky triangles choice (d) original coarse
mesh

of valencevali of the base meshM0 has a constant invariant va-
lence for each subdivision. It follows that a vertexvk of M j with
a valence different from six is a vertex ofM0 since every vertex
created by a 1:4 subdivision has a valence of 6. A necessary con-
dition for the reversible subdivision is that such vertices should be
preserved at each merging step. Clearly this is a sufficient condi-
tion because merging 4:1 is exactly the inverse of subdivision 1:4
if we consider the same seed group.

A problem occurs when the mesh does not have any irregular
vertex, but these cases are very rare, since for example, a mesh
homeomorphic to a sphere must have at least four irregular ver-
tices. We can prove that by using Euler’s formula for 2D polygons
with genus 0 :
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whereej andf j are respectively the number of edges and the num-
ber of faces of the meshM j . Introducing the constraints for trian-
gle meshes [8]: ∑

i

vali = 2e
j (5)

2e
j = 3f

j (6)

wherevali is the valence of the vertexi. Combining 4 and 6 re-
sults:
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Let us now assume thatM j hasn1 valence six vertices andn2

other vertices. We also assume that thesen2 vertices are labelled
from 0 ton2 − 1. Equation 5 combined with 7 now becomes:

6n1 +
∑

i/vali 6=6

vali = 6(n1 + n2) − 12 (8)

Considering that any vertex must have a valence at least equal to
three, it comes :

n2 ≥ 4 (9)

4.2. Irregular meshes

Another improvement can be made by choosing several seed
groups for one given mesh : we first choose a group of seed trian-
gles as explained earlier, and grow the seed region by only merg-
ing faces four by four. When the region cannot grow anymore, we
choose another group of seed triangles in the set of non merged



triangles and grow this region still by merging only groups of four
triangles. This step is repeated until no new seed group can be
found. The last step consists in growing the merged regions with
the irregular inverse scheme. This approach will be more effective
on irregular meshes having large subdivision connectivity subre-
gions. Figure 2 shows a comparison between the original simpli-
fication algorithm and the improved one on the Mannequin mesh
(11703 vertices). Although this mesh is irregular, its top part has
subdivision connectivity. Its bottom side may have been triangu-
lated in order to have a closed mesh. Figure 2(a) shows the results
obtained by the original algorithm. the triangles colored in grey
were merged four by four, the black and white ones were not. We
can see that the original approach did not find the optimal sim-
plification for the upper side of the mesh. Figure 2(b) shows the
results obtained with the new approach : all the triangles in the
upper side were merged four by four; then the algorithm was able
to find at the first try the optimal simplification for the subdivision
connectivity region.

(a) (b)

Fig. 2. Improved inverse problem solver : (a) original approach:
even if the mesh has subdivision connectivity regions, misalign-
ment results in non optimal simplification (different colors), (b)
optimized approach : subdivision connectivity regions are opti-
mally simplified (uniform coloring)

4.3. Progressive connectivity coding

When operating on a mesh that is the result of at least one stage
of a regular subdivision, our progressive compression algorithm
can now automatically detect that the mesh has regular subdivi-
sion connectivity and restore the connectivity of the mesh before
the last subdivision stage. We encode such situations with a 1-bit
flag, thus avoiding the need to transmit any connectivity informa-
tion for the corresponding refinement. Based on this flag, the de-
compression module will correctly refine the connectivity of the
previously decoded mesh using regular subdivision. This process
may be repeated to similarly undo prior stages of subdivision, until
the coarsest mesh is reached.

When simplifying the coarsest mesh that was the initial stage
of a subdivision process, or when simplifying a mesh that is not
the result of a subdivision process, our algorithm removes a subset
of the vertices and encodes information that will enable a semi-
regular refinement process to restore them, along with the correct
connectivity.

Regions where the connectivity is semi-regular are simplified
to a coarser mesh from which they can be reproduced through reg-

Model v Ve AD01 WM(I) WM(II)
Mann. 11703 0.36 3.58 2.71 0.58

9.98 9.65 8.07
Venus 11362 0.32 3.59 2.77 0.27

10.15 8.63 7.14
Fandisk 6475 1 4.99 3.2 3.02

12.34 10.03 9.83
Tiger 2738 0.057 2.67 1.72 0.31

12.67 12.34 11.74
Horse 19851 2.21 4.61 3.89 3.88

16.24 16.75 16.75

Table 1. Comparison of lossless compression results. Numbers
are : connectivity coding (above) and geometry coding (below),
both in bits per vertex. All the models were quantized to 10 bits
per coordinates, except for the horse (12 bits)

ular subdivision. Thus, the main objective of our encoding is to
tell the subdivision process which regions are regular and how to
refine the irregular ones. It does so primarily by indicating which
edges of the simplified mesh must be split. Additional bits are nec-
essary to resolve triangulation ambiguities in cases where only two
edges of a triangle in the simplified mesh are split and also, in rare
cases, to convert the result of the semi-regular subdivision to the
desired connectivity by flipping specific edges.

5. RESULTS

Table 1 Shows a comparison of different algorithms for lossless
compression, for 5 different meshes. The second row is the num-
ber of vertices of the considered mesh. The third row is the vertices
valence entropy, which gives us a good approximation of the effi-
ciency of the best existing single rate encoders [8, 13]. The three
next rows give results obtained with [1], the original Wavemesh
implementation [18] and the proposed improved approach. On the
very irregular Horse mesh, the new Wavemesh approach performs
as good as the previous one. For the fandisk mesh, which has some
subdivision connectivity regions, the improved version performed
better than the old one. On meshes with large subdivision con-
nectivity regions (Venus, Tiger and Mannequin), the new method
dramatically reduces the connectivity cost bellow 1 bit per vertex.
Also, for the venus mesh, our approach leads to a connectivity
encoding cost of 0.28 bits per vertex, which is lower than the ver-
tices valence entropy, which means that for this mesh, Wavemesh
performs better than single resolution approaches. In figure 3, we
compare the rate distortion efficiency of our new implementation
versus different schemes [1, 6, 7, 18] We can see that our new ap-
proach outperforms all other lossless progressive algorithm, and is
on pair with Spectral Compression, which is neither a fully pro-
gressive nor a lossless approach.

6. CONCLUSION AND PERSPECTIVES

We proposed in this paper an improvement of the Wavemesh ap-
proach, higher efficiency for meshes with regular regions, which
outperforms other lossless progressive approach both in terms of
rate-distortion and lossless compression. Further work could ad-
dress genus reduction, large models processing, and non-manifold
meshes handling.



Fig. 3. Rate-distortion curve for the venus mesh
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