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SUMMARY

The creation of the Internet has fundamentally changed the way we communicate,

conduct business, and interact with the world around us. Specifically, the Internet has

given us access to a host of information-rich environments such as email systems, the World

Wide Web, and social networking communities, which provide information consumers with

an unprecedented amount of freely available information. However, the openness of these

environments has also made them vulnerable to a new class of attacks called Denial of

Information (DoI) attacks. Attackers launch these attacks by deliberately inserting low

quality information into information-rich environments to promote that information or to

deny access to high quality information. These attacks directly threaten the usefulness

and dependability of online information-rich environments, and as a result, an important

research question is how to automatically identify and remove this low quality information

from these environments.

In this thesis research, we focus on answering this important question by countering DoI

attacks in three of the most important information-rich environments: email systems, the

World Wide Web, and social networking communities. For each environment, we perform

large-scale data collection and analysis operations to create massive corpora of low and high

quality information. Then, we use our collections to identify characteristics that uniquely

distinguish examples of low and high quality information. Finally, we use our characteri-

zations to create techniques that automatically detect and remove low quality information

from online information-rich environments.

The first contribution of this thesis research is a set of techniques for automatically

recognizing and countering various forms of DoI attacks in email systems. Initially, we

show experimentally that statistical classifiers are able to distinguish between large corpora

of low quality email messages (i.e., spam email) and high quality email messages (i.e.,

legitimate email) with a high degree of accuracy. Then, we design a new DoI attack that uses
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camouflaged messages (i.e., spam messages that mask their spam content with high quality

content that is stolen from legitimate messages) to significantly degrade the performance of

these statistical classifiers. Next, we show that the accuracy of most of the classifiers can

be restored by retraining the classifiers with camouflaged messages in their training sets.

Unfortunately, we quickly discover that the classifier retraining process is only tem-

porarily effective against camouflaged messages. Due to the constantly evolving nature of

spammers, it is only a matter of time before retrained classifiers are vulnerable to the next

generation of attacks (i.e., new camouflaged messages), and as a result, spam producers

and information consumers quickly become entrenched in a spam arms race. To break free

of this arms race, we propose two solutions. One solution involves refining the statistical

learning process by associating disproportionate weights to spam and legitimate features,

and the other solution leverages the existence of non-textual email features (e.g., URLs) to

make the classification process more resilient against attacks.

The second contribution of this thesis is a framework for collecting, analyzing, and

classifying examples of DoI attacks in the World Wide Web. Our first observation in this

domain is that research progress has been limited by the lack of a publicly available Web

spam corpus. To alleviate this situation, we propose a fully automatic Web spam collection

technique that leverages the URLs found in email spam messages to extract large Web

spam samples. Using this new approach, we created the Webb Spam Corpus – a first-of-its-

kind, large-scale, and publicly available Web spam data set. The corpus consists of nearly

350,000 Web spam pages, making it more than two orders of magnitude larger than any

other previously cited Web spam data set.

Using the Webb Spam Corpus, we perform the first large-scale characterization of Web

spam using content and HTTP session analysis. Our content analysis shows that the rate

of duplication among Web spam pages is twice the duplication rate for legitimate Web

pages, and it identifies five important categories of Web spam: Ad Farms, Parked Domains,

Advertisements, Pornography, and Redirection. Additionally, our HTTP session analysis

illustrates two important trends. First, the IP addresses that actually host the Web spam

pages are concentrated in two narrow ranges (63.* – 69.* and 204.* – 216.*). Second,
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significant overlaps exist among the session header values.

The results of our HTTP session analysis are particularly interesting because they imply

that Web spam can be identified without the heavyweight approaches used in previous

research. Rather than analyze the contents of Web pages and the link structure of the

Web graph, we present a lightweight, predictive approach to Web spam classification that

relies exclusively on HTTP session information (i.e., hosting IP addresses and HTTP session

headers). Specifically, we use HTTP session information to train classification algorithms

that distinguish between spam and legitimate Web pages. Then, by incorporating these

classifiers into HTTP retrieval operations, we are able to detect Web spam pages before the

actual content transfer.

The final contribution of this thesis research is a collection of techniques that detect

and help prevent DoI attacks within social environments (particularly social networking

communities). Over the past few years, these communities have experienced unprecedented

growth, and as a result, individuals are attaching an increasing amount of value to their

online personas. Unfortunately, the rising importance and prominence of these communities

have also made them prime targets for two distinct DoI attack classes: traditional attacks,

which have plagued users in other information-rich environments (e.g., email spam, com-

ment spam, etc.), and social-specific attacks, which leverage deceptive profiles (e.g., rogue

advertising profiles and impersonating profiles) to accomplish their objective.

First, we provide detailed descriptions for each of these attack classes, and we show that

the continued success of social networking communities is contingent upon their ability to

mitigate the risks associated with these attacks. Then, we focus our attention on social

spam. Due to a lack of data, very little is known about social spammers, their level of

sophistication, or their strategies and tactics. Hence, we developed a novel technique for

capturing examples of social spam, and we used our collected data to perform the first

characterization of social spammers and their behaviors. Concretely, we introduce social

honeypots for tracking and monitoring social spam, and we report the results of an anal-

ysis performed on spam data that was harvested by our social honeypots. Based on our

analysis, we find that the behaviors of social spammers exhibit recognizable temporal and

xvi



geographic patterns and that social spam content contains various distinguishing character-

istics. These results are quite promising and suggest that our analysis techniques may be

used to automatically identify social spam.
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CHAPTER I

INTRODUCTION

The advent of the Internet has generated a proliferation of online information-rich envi-

ronments, which provide an enormous amount of value for information consumers. Email

systems now facilitate the majority of online communication; the World Wide Web serves as

the primary portal for sharing information, and social networking communities are allowing

individuals to exchange information in a variety of new and exciting ways. Each of these

environments exhibits a degree of openness that allows individuals to obtain information

freely and efficiently. However, the open nature of these environments also makes them

vulnerable to a new wave of attacks known as Denial of Information (DoI) attacks [2, 36],

which are characterized by the deliberate insertion of low quality information (or noise) into

information-rich environments.

DoI attacks are the information analog to Denial of Service (DoS) attacks. Just as DoS

attacks flood services with syntactically correct requests to degrade the Quality of Service

(QoS) of those services, DoI attacks flood information-rich environments with syntactically

correct noise data to degrade the Quality of Information (QoI) in those environments. The

QoI of an environment serves to measure the relevance and usefulness of the information in

that environment, as it relates to the environment’s information consumers. High quality

information is highly relevant to the needs of information consumers, providing significant

value to those consumers. Conversely, low quality information is irrelevant to the needs of

information consumers, and it contributes little to no value to consumers.

Attackers primarily perform DoI attacks to accomplish one of two goals: promotion of

particular ideals by means of deception and denial of access to high quality information.

Neither of these goals is beneficial for information consumers, and as a result, consumers

seek to eliminate DoI attacks from information-rich environments. However, as information

consumers deploy countermeasures for DoI attacks, attackers quickly evolve their techniques
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to ensure the continued success of the attacks. Thus, an adversarial tension exists between

attackers and information consumers, which forces proposed solutions to DoI attacks to be

resilient against a constantly evolving adversary.

In this thesis research, we identify various forms of DoI attacks in three very distinct

but inter-related information-rich environments: email systems, the World Wide Web, and

social networking communities. To counter these attacks, we propose various techniques

for automatically identifying and removing low quality information in each of these rather

unique domains. These techniques utilize state of the art classification algorithms and

informative features that are difficult for adversaries to manipulate.

The first contribution of this thesis research is a set of techniques for automatically

recognizing and countering various forms of DoI attacks in email systems. Email systems

were among the first information-rich environments to gain wide spread acceptance by

information consumers, and as a result, they were also one of the first systems to be targeted

by DoI attacks. To counter these attacks, many information consumers began relying on

statistical spam classifiers to automatically identify and remove low quality information (i.e.,

spam email) from their inboxes. Consequently, many previous researchers have investigated

the effectiveness of these classifiers on small corpora of email messages.

To extend previous research, we performed a large-scale experimental evaluation of sta-

tistical spam classifier effectiveness, which provides two valuable insights. First, the evalu-

ation illustrates the importance of using large corpora when evaluating classifiers to ensure

consistently reliable results. Second, the evaluation shows that classifiers are able to distin-

guish between large corpora of low quality email messages and high quality email messages

with a high degree of accuracy. Although these results are encouraging, we observed a po-

tential problem with the assumptions underlying these classifiers, which we believed could

be exploited by spammers. Specifically, we hypothesized that spammers could construct

camouflaged messages (i.e., spam messages containing spam content that is camouflaged

by legitimate content) to bypass statistical spam classifiers. After performing a number of

attacks against our classifiers using camouflaged messages, we concluded that our hypoth-

esis was correct. A spammer can significantly degrade the performance of classifiers with
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camouflaged spam content. Fortunately, we are able to restore most of the accuracy for the

classifiers by retraining them to identify camouflaged messages as spam.

While performing our classifier evaluations, we identified a clear tension between spam

producers and information consumers. Spam producers are constantly evolving their tech-

niques to ensure their spam messages are delivered, and information consumers are con-

stantly evolving their countermeasures to ensure they don’t receive spam messages. This

ongoing struggle is often modeled as an arms race, and to help characterize it experimentally,

we began investigating the evolution of the construction techniques used by spammers. As

a result of this investigation, we identified numerous examples of spam construction tech-

niques that were ineffective due to various countermeasures, and we also identified many

examples of techniques that were thriving, despite the presence of seemingly effective coun-

termeasures (i.e., they were coexisting with the countermeasures).

Based on the results of our evolutionary study, we began to question the validity of

retraining as a solution for camouflaged messages. Since spammers continually evolve their

techniques, we believed they would also evolve their camouflaged messages, making them

more sophisticated over time. Thus, we evaluated the effectiveness of retraining against more

advanced camouflaged messages, and we quickly discovered that the classifier retraining pro-

cess is only temporarily effective against camouflaged messages. As information consumers

evolve and retrain their classifiers, spammers construct new camouflaged messages, which

represent a new generation of attacks. This process continues until both parties are firmly

entrenched in a spam arms race. Fortunately, in this thesis, we propose two solutions that

allow information consumers to break free of this arms race. The first solution alters the

statistical classifier training process by associating disproportionate weights to spam and

legitimate features, and the second solution incorporates various non-textual email features

(e.g., URLs) to significantly enhance the robustness of the spam classification process.

The second contribution of this thesis is a framework for collecting, analyzing, and

classifying examples of DoI attacks in the World Wide Web. Just as email spam has

negatively impacted the user messaging experience, the rise of Web spam is threatening

to severely degrade the quality of information on the World Wide Web. Fundamentally,
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Web spam is designed to pollute search engines and corrupt the user experience by driving

traffic to particular spammed Web pages, regardless of the merits of those pages. Hence,

we present various techniques for automatically identifying and removing these pages from

the Web.

First, we identify an interesting link between email spam and Web spam, and we use

this link to propose a novel technique for extracting large Web spam samples from the Web.

Then, we present the Webb Spam Corpus – a first-of-its-kind, large-scale, and publicly

available Web spam data set that was created using our automated Web spam collection

method. The corpus consists of nearly 350,000 Web spam pages, making it more than

two orders of magnitude larger than any other previously cited Web spam data set. To

help motivate the usefulness of this corpus, we also identify several application areas where

the Webb Spam Corpus may be especially helpful. Interestingly, since the Webb Spam

Corpus bridges the worlds of email spam and Web spam, we note that it can be used to aid

traditional email spam classification algorithms through an analysis of the characteristics

of the Web pages referenced by email messages.

After presenting the Webb Spam Corpus, we leverage its pages to perform the first large-

scale characterization of Web spam using content and HTTP session analysis techniques.

Our content analysis results are consistent with the hypothesis that Web spam pages are

different from legitimate Web pages, showing far more duplication of physical content and

URL redirections. Additionally, our content analysis offers a categorization of Web spam

pages, which includes Ad Farms, Parked Domains, Advertisements, Pornography, and Redi-

rection. Next, an analysis of session information collected during the crawling of the Webb

Spam Corpus shows significant concentration of hosting IP addresses in two narrow ranges

as well as significant overlaps among session header values. These findings suggest that new

content and HTTP session analysis techniques may contribute a great deal towards future

efforts to automatically distinguish spam Web pages from legitimate Web pages.

To defend against Web spam, most previous research analyzes the contents of Web pages

and the link structure of the Web graph. Unfortunately, these heavyweight approaches
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require full downloads of both legitimate and spam pages to be effective, making real-

time deployment of these techniques infeasible for Web browsers, high-performance Web

crawlers, and real-time Web applications. Leveraging the results of our HTTP session

analysis, we present a lightweight, predictive approach to Web spam classification that

relies exclusively on HTTP session information (i.e., hosting IP addresses and HTTP session

headers). Concretely, we built an HTTP session classifier based on our predictive technique,

and by incorporating this classifier into HTTP retrieval operations, we are able to detect

Web spam pages before the actual content transfer. As a result, our approach protects Web

users from Web-propagated malware, and it generates significant bandwidth and storage

savings. By applying our predictive technique to a corpus of almost 350,000 Web spam

instances and almost 400,000 legitimate instances, we were able to successfully detect 88.2%

of the Web spam pages with a false positive rate of only 0.4%. These classification results

are superior to previous evaluation results obtained with traditional link-based and content-

based techniques. Additionally, our experiments show that our approach saves an average

of 15.4 KB of bandwidth and storage resources for every successfully identified Web spam

page, while only adding an average of 101µs to each HTTP retrieval operation. Therefore,

our predictive technique can be successfully deployed in applications that demand real-time

spam detection.

The final contribution of this thesis research is a collection of techniques that detect

and help prevent DoI attacks within social environments (particularly social networking

communities). Online social networking communities are connecting hundreds of millions

of individuals across the globe and facilitating new modes of interaction. Due to their im-

mense popularity, an important question is whether the high quality information in these

communities is accessible by their users. In this thesis research, we address this question

and show that social networking communities are susceptible to numerous attacks. Specif-

ically, we identify two attack classes: traditional attacks that have been adapted to these

communities (e.g., malware propagation, spam, and phishing) and new attacks that have

emerged through malicious social networking profiles (e.g., rogue advertising profiles and

impersonating profiles). Concretely, we describe examples of these attack types that are
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observable in MySpace, which is currently the most popular social networking community.

After we describe the various security threats that exist in social environments, we focus

our attention on social spam. Unfortunately, little is known about social spammers, their

level of sophistication, or their strategies and tactics. Thus, in this thesis research, we offer

a novel technique for capturing examples of social spam, and we provide the first charac-

terization of social spammers and their behaviors. Concretely, we make two contributions:

(1) we introduce social honeypots for tracking and monitoring social spam, and (2) we re-

port the results of an analysis performed on spam data that was harvested by our social

honeypots. Based on our analysis, we find that the behaviors of social spammers exhibit

recognizable temporal and geographic patterns and that social spam content contains var-

ious distinguishing characteristics. These results are quite promising and suggest that our

analysis techniques may be used to automatically identify social spam.

The remainder of this thesis is organized as follows:

• Chapter 2: Preliminaries – We review fundamental concepts that are repeat-

edly used in future chapters about email spam. These topics include an overview of

statistical classification, brief descriptions of popular classification algorithms, and a

description of feature selection.

• Chapter 3: The Importance of Large Corpora for Email Spam Classifica-

tion – In this chapter, we present a large-scale evaluation of a Näıve Bayesian classi-

fier’s effectiveness against email spam. This evaluation showcases the importance of

using large corpora when performing classifier evaluations, and it offers guidelines for

future spam classifier experiments.

• Chapter 4: Large-Scale Evaluation of Email Spam Classifiers – Following

the guidelines set forth in the previous chapter, we perform a large-scale evaluation

of four popular email spam classifiers. First, we show that these classifiers are able to

successfully distinguish between spam and legitimate messages. Then, we introduce an

effective attack against these classifiers that uses camouflaged messages to confuse the

classification process. Finally, we offer an effective solution that retrains the classifier
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to identify the camouflaged messages as spam.

• Chapter 5: Evolutionary Characteristics of Email Spam – In this chapter, we

present the results of an evolutionary study on the construction techniques utilized

in email spam messages. This study focuses on two trends: extinction, where the

population of messages employing a given technique falls to zero or near zero, and

co-existence, where the population maintains a consistent level or grows.

• Chapter 6: Defending Classifiers Against Camouflaged Email Spam – Based

on the evolutionary properties of email spam, we revisit the camouflaged spam message

problem to determine if retraining is a viable long-term solution. We quickly realize

that retraining is only temporarily effective because new, randomized camouflaged

content is easily generated by spammers. To counter this problem, we offer a solution

that changes the current methodology for training email spam classifiers.

• Chapter 7: Integrating Diverse Email Spam Filtering Techniques – Con-

tinuing the theme of the previous chapter, we offer an integrated approach to spam

filtering that is more robust than individual techniques against email spam and cam-

ouflaged content. Concretely, we describe a new type of URL-based filtering, and

we highlight the benefits of integrating diverse techniques to create a multi-layered

defense against spam.

• Chapter 8: Using Email Spam to Identify Web Spam Automatically – In

this chapter, we present a fully automated technique for collecting Web spam examples

that leverages the link between email spam and Web spam. Then, we describe the

Webb Spam Corpus – a large-scale and publicly available Web spam data set that

was created with our automated technique.

• Chapter 9: Characterizing Web Spam Using Content and HTTP Session

Analysis – Using the Webb Spam Corpus, we provide the first large-scale charac-

terization of Web spam using content and HTTP session analysis techniques. Based

on this characterization, we observe various characteristics that uniquely distinguish
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Web spam pages from legitimate pages.

• Chapter 10: Predicting Web Spam With HTTP Session Information –

Based on the results of our HTTP session analysis, we present a predictive approach

to Web spam classification that relies exclusively on HTTP session information. Then,

we experimentally evaluate this technique and show that it offers superior accuracy

and reduced resource requirements when compared to existing approaches.

• Chapter 11: Exploring the Dark Side of Social Environments – In this

chapter, we describe various DoI attacks that affect social networking communities.

Specifically, we identify two attack classes: traditional attacks that have been adapted

to these communities and new attacks that have emerged through malicious social

networking profiles.

• Chapter 12: Using Social Honeypots To Identify Spammers – To help under-

stand different types of social spam and deception, we propose a novel technique for

harvesting deceptive spam profiles that utilizes social honeypots. Then, we provide a

characterization of spam profiles using the data we collected with our social honey-

pots. This characterization illustrates various distinguishing characteristics of spam

profiles, and it suggests that our analysis techniques can be used to automatically

detect social spam.

• Chapter 13: Conclusions and Future Research Directions – We conclude

by providing a summary of our thesis research contributions and offering various

directions for future research.
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CHAPTER II

PRELIMINARIES

In this chapter, we review a few of the fundamental concepts that appear frequently in our

discussions about email spam. These topics include an overview of statistical classification,

descriptions of three commonly used statistical classification algorithms (Näıve Bayes, Sup-

port Vector Machines, and LogitBoost), and a brief explanation of dimensionality reduction.

2.1 Statistical Classification of Email Spam

Email classification can be characterized as the problem of assigning a boolean value

(“spam” or “legitimate”) to each email message m in a collection of email messages M .

More formally, the task of spam classification is to approximate the unknown target func-

tion Φ : M → {spam, legitimate}, which describes how messages are to be classified, by

means of a function φ : M → {spam, legitimate} called the classifier (or model), such that

Φ and φ coincide as much as possible.

In the machine learning approach to email classification, a general inductive process

(also called the learner) automatically builds a classifier by observing a set of documents

that are manually classified as “spam” or “legitimate” (these documents are often called

a training set). In machine learning terminology, this classification problem is an example

of supervised learning because the learning process is supervised by the knowledge of the

category of each message that is used during training.

Different learning methods have been explored by the research community for building

spam classifiers (also called spam filters). In our email spam experiments, we focus on

three learning algorithms: Näıve Bayes [110], Support Vector Machines (SVM) [147], and

LogitBoost [61]. In the following sections, we will briefly summarize the important details

of each of these algorithms.
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2.1.1 Näıve Bayes

The Näıve Bayes learning algorithm is one of the simplest and most widely used statistical

learning solutions. Additionally, it has been utilized in a number of previous spam filtering

evaluations [6, 7, 8, 9, 84, 108, 117, 127, 156]. Given a message m, represented as a vector

of features, we can use Bayes Theorem and the Theorem of Total Probability to calculate

the probability that m is either “spam (s)” or “legitimate (l)”:

P (m = c|
−→
X = −→x ) =

P (m=c)·P (
−→
X=−→x |m=c)P

c′={s,l} P (m=c′)·P (
−→
X=−→x |m=c)

.

The classification of x is the category c that maximizes the above equation. Note that

the denominator is the same for all categories and can be ignored. The most important

attributes are the a priori probabilities of each category and the a posteriori probabilities

of the vectors, given the category, which need to be estimated from the training data.

The number of possible vectors (i.e., all combinations of different feature values) is very

large (exponential in the number of features), and many of these vectors will be missing or

sparsely found in the training data. Thus, estimating the a posteriori probabilities can be

quite difficult. To overcome these problems, a simplifying assumption is made, which leads

to the Näıve Bayes classifier: all of the features are considered conditionally independent,

given the category. With this simplifying assumption, we can rewrite the above equation:

P (m = c|
−→
X = −→x ) =

P (m=c)·
Qn

i=1 P (Xi=xi|m=c)P
c′={s,l} P (m=c′)·

Qn
i=1 P (Xi=xi|m=c)

.

The new equation requires the estimation of a much smaller number of conditional

probabilities (linear in the number of features), making their estimation feasible using the

training data. Although the independence assumption is overly simplistic, studies in several

domains (including spam filtering) have shown Näıve Bayes to be an effective classifier. The

probabilities required in this new equation can be calculated as follows:

P (m = c) = Nc
NTraining

and

P (Xi = xi|m = c) = Nc∧Xi=xi
NTraining

.
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In the above equations, Nc is the number of messages of type c, Nc∧Xi=xi is the number of

messages of type c with xi as its ith feature’s value, and NTraining is the total number of

training messages. These probabilities, along with the above equation, constitute the Näıve

Bayes classifier.

2.1.2 Support Vector Machines

Support Vector Machines (SVM) is a powerful machine learning technique based on the

structured risk minimization principle from Computational Learning Theory. Given a set

of messages, represented as feature vectors xi, the simplest version of the Support Vector

Machines learner tries to find a hyperplane in the feature space of these vectors that best

separates the two different kinds of messages. More formally, training a Support Vector

Machine is equivalent to solving the following optimization problem:

minw,b,ξi
(1
2W T ·W + C

∑N
i=1 ξi)

subjected to

yi(W T · xi + b) ≥ 1− ξi, ξi ≥ 0.

In the above equation, W is a weight vector that should be minimized in order to find an

optimal linear separating hyperplane in the feature space, and ξi are slack variables, which

are used together with C ≥ 0 to find a solution to the above equation in the non-separable

cases.

The equation above is representative of the simplest class of SVMs. In general, the

feature vectors can be mapped into a higher dimensional space using a non-linear kernel

function, and the best separating hyperplane can be found in this higher dimensional space.

However, research in text classification [92] has shown that simple linear SVMs usually

perform as well as non-linear ones.

2.1.3 LogitBoost with Regression Stumps

LogitBoost belongs to the class of Boosting Classifiers, which are classification algorithms

that try to construct a good classifier by repeated training of a weak classifier. Boosting
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uses the weak learning procedure to construct a sequence of classifiers f1, f2, . . . , fk, and

then, it uses a weighted vote among these classifiers to make a prediction.

The number of classifiers learned by Boosting is equal to the number of iterations for

which it is run. Boosting associates a weight with each training instance in each iteration.

Initially, all the instances are assigned equal weights, and during each iteration, the weights

of the instances are updated so that the weak learner learns a different classification function

in each iteration. Intuitively, those training instances, which are misclassified by all of the

previous iterations, are assigned the highest weights in the ith round, forcing the ith classifier

to concentrate on those instances in the ith round.

2.2 Dimensionality Reduction

One of the major challenges in text classification (of which email classification is an example)

is dealing with the enormously large number of features that occur in reasonably sized

corpora. Concretely, the typical size of the feature space is greater than 300,000 (denoted

300K for brevity) for a training set of 10K messages. Many of these features are not relevant

to the distinction between spam and legitimate messages, and as a result, they introduce

noise into the classification process. Thus, using these features while building a classifier

would overfit the classifier to the data and introduce errors into the classification process.

To avoid this overfitting, a small subset of features is selected from the original feature

space, and then, the classifier is trained on this subset. The process of selecting a small

number of informative features from a large feature space is called dimensionality reduction

(or feature selection).

2.2.1 Information Gain

In our email spam experiments, we used an information theoretic measure called Information

Gain [155] to select a user-specified number n of features. Information Gain is defined as

follows:

IG(fi, cj) =
∑

c∈{cj ,cj}

∑
f∈{fi,fi}

p(f, c) · log p(f,c)
p(f)·p(c) ,
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where fi is a feature in the feature vector and cj is one of the classes (i.e., spam or legit-

imate). Intuitively, the Information Gain of a feature indicates how strongly that feature

is associated with a given class. In our experiments, we calculate the Information Gain

for each token in the feature space as it relates to spam messages and legitimate messages,

respectively. Then, a user-specified number n of tokens with the highest Information Gain

scores are selected and used in the training of the filters.
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CHAPTER III

THE IMPORTANCE OF LARGE CORPORA FOR EMAIL SPAM

CLASSIFICATION

A cornerstone of machine learning research is the consensus that sufficiently large evalu-

ation samples are needed for reproducible results [125]. Natural language processing re-

searchers [13, 14] have also concluded that large corpora provide significantly more reliable

experimental results. Consequently, the collection and evaluation of large corpora have

been an important part of the machine learning and natural language processing fields.

Examples of widely used large corpora include the Penn Treebank corpus [105] and the

TREC corpora [114] for speech recognition as well as the Reuters Corpus Volume 1 (RCV1)

benchmark [103] for text categorization.

Although machine learning techniques such as the Näıve Bayes classifier form the core

of statistical spam filters, many early experimental evaluations of learning spam filters [6,

7, 8, 9, 68, 84, 117, 127, 156] used relatively small email corpora (typically on the order

of a few thousand messages selected by a few users) for evaluation. The lack of large

evaluation corpora in the early spam filtering literature (i.e., before 2006) is similar to the

early experimental results in machine learning, which preceded the availability of widely

used large corpora. Analogous to the lessons learned in natural language processing and

machine learning, the spam filter evaluations based on small evaluation corpora exhibit a

significant lack of consistency. When filters trained with small corpora are used to evaluate

test sets taken from other corpora (large or small), the filters show unreliable performance

and unpredictable swings between high and low false positive and false negative rates for

different corpora.

An application-specific argument used to justify using small corpora in the evaluation of

spam filters (e.g., those enumerated in Section 3.2) has been the differences among individu-

als in judging what is spam and what is legitimate email. We acknowledge the validity of this
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argument for client-specific spam filters, which are analogous to using speaker-dependent

speech recognition filters and application-specific corpora in machine learning [113]. On the

other hand, the analogy also suggests that the small corpora experiments have validity and

applicability that is restricted to the small number of users who selected the corpora. The

question that arises is whether we are able to train filters that work well for a large number

of users.

In analogy to speaker-independent speech recognition research, we are interested in the

use of large corpora in methodical evaluations of learning spam filters for many users.

We believe the training of filters using large corpora will improve the reproducibility of

spam filter experiments over diverse test sets of email messages (both large and small).

Additionally, filters trained with large corpora have a large potential practical impact on

server-based spam filters, which can filter out similar spam messages before many copies

reach the clients. One example of server-based filtering is the backbone filtering carried

out by members of the Message Anti-Abuse Working Group (MAAWG) [107]. In the first

quarter of 2006, they reportedly filtered 80% of the emails they received (a total of 370

billion messages) and allowed 90 billion emails through the Internet backbone to reach 390

million mailboxes.

The main contribution of this chapter is a comparative study of spam filtering exper-

iments with representative large and small email corpora. Our corpora are primarily in

English; however, we do not use any language-specific features in our study. Consequently,

our techniques should be applicable to the classification of spam messages in other lan-

guages as well. Our study shows that small corpora lead to significantly less predictable

results when compared to the results obtained by training and testing using large corpora.

Concretely, the study compares the experimental evaluation results of a Näıve Bayesian

learning spam filter when using small corpora (obtained from sources cited in the current

spam filtering literature) and large corpora (collected from publicly available sources such

as the SpamArchive spam corpus and the Enron legitimate corpus). When the filter was

trained with small corpora, it produced false positive rates varying from 0% to 46% and
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false negative rates varying from 3% to 96%; however, when it was trained with large cor-

pora, it only produced false positive rates consistently around 0% and false negative rates

varying from 10% to 20%.

The main conclusion derived from our comparative study is that future experimental

evaluations of spam filters should use large corpora (on the order of hundreds of thousands

of messages from published archives) for the sake of reliability and reproducibility. Al-

though this conclusion may not be surprising to experienced machine learning and natural

language processing researchers, it should cause significant methodological changes in ex-

perimental spam filtering research since the spam filtering literature is largely dominated

by experiments using small corpora.

The rest of the chapter is organized as follows. Section 3.1 describes the representative

large corpora and small corpora used in our experiments. Section 3.2 presents a comparative

study of spam filtering experiments using our large and small corpora. Section 3.3 continues

the comparative study and quantifies, through experimentation, an appropriate size for

large corpora in spam filtering research. Section 3.4 outlines related work, and Section 3.5

summarizes our findings.

3.1 Corpora Descriptions

In this section, we describe the representative large corpora and small corpora that were

used in our experiments. For each corpus, we detail how it was obtained and the format

of its messages. Also, Table 1 summarizes all of the corpora, giving each corpus’ name,

abbreviation, and message count. Throughout this chpater, we say that a corpus is biased

if learning filters trained with that corpus produce unreliable results, which are characterized

by a high variance in the rate of false positives or false negatives. Various degrees of bias

exist for various corpora; however, our contention is that small corpora are more prone to

bias than large corpora.
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Table 1: Corpus summaries.

Corpus Name Name Abbreviation Number of Messages

Small Spam Corpora
Ling-spam

L-s Spam 481
Spam Corpus
SpamAssassin

SA Spam 2,398
Spam Corpus

Small Legitimate Corpora
Ling-spam

L-s Legit. 2,412
Legitimate Corpus
Graduate Student

Legitimate Corpora

grad1 grad1 513
grad2 grad2 3,407
grad3 grad3 5,287

Enron Personal
Legitimate Corpora

Sally Beck beck-s 1,971
Darren Farmer farmer-d 3,672

Vincent Kaminski kaminski-v 4,477
Louise Kitchen kitchen-l 4,015
Michelle Lokay lokay-m 2,489
Richard Sanders sanders-r 1,188

William Williams III williams-w3 2,769
SpamAssassin

SA Legit. 6,451
Legitimate Corpus

Large Spam Corpus
SpamArchive

SpamArchive 600K
Spam Corpus

Large Legitimate Corpus
Enron

Enron 475K
Legitimate Corpus
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3.1.1 Small Spam Corpora

3.1.1.1 Ling-spam Spam Corpus

The Ling-spam corpora [6, 87], maintained by the Internet Content Filtering Group (i-

config) [86], contain a spam corpus of 481 spam messages that were obtained from a personal

email account. The format of these messages is slightly unique because their header fields

(with the exception of “Subject”) were removed by i-config prior to publication. Addition-

ally, four versions of this corpus are published: “bare”, “lemm”, “lemm stop”, and “stop”.

We used the “bare” version of this corpus in our evaluation because previous research [6]

has shown that the other versions of the corpus, which use a lemmatizer and a stop-list, do

not result in significantly different filter performance.

This corpus is potentially a biased sample for two reasons. First, the corpus is extremely

small. In fact, it is the smallest corpus we used in our evaluations. Second, the messages

found in the corpus were only collected from a single individual’s mailbox. Thus, the corpus

represents an extremely narrow view of spam messages. Previous research [156] has also

expressed these concerns.

3.1.1.2 SpamAssassin Spam Corpus

The SpamAssassin corpora [141], maintained by the SpamAssassin group [140], contain a

spam corpus of 2,398 spam messages that were gathered from various SpamAssassin user

submissions. All of the messages in this corpus are in a traditional email format, including

their original headers.

Although this corpus consists of messages from a number of unique users, it is still

potentially biased due to its small size. A couple thousand messages is not nearly enough

to be considered a representative sample of spam messages.

3.1.2 Small Legitimate Corpora

3.1.2.1 Ling-spam Legitimate Corpus

In addition to the spam corpus mentioned above in Section 3.1.1.1, the Ling-spam corpora

also contain a legitimate corpus of 2,412 legitimate messages that were obtained from a
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moderated linguistic mailing list called the Linguist List [146]. The format of these legiti-

mate messages is the same as the format of the Ling-spam spam messages (i.e., the header

fields [except “Subject”] are missing). Also, similar to the Ling-spam spam corpus, four

versions of this corpus are published, and we chose to use the “bare” version of this corpus

for the same reason we chose to use the “bare” Ling-spam spam corpus (as explained in

Section 3.1.1.1).

This corpus is potentially biased for two reasons. First, the corpus does not contain

enough messages to be considered a representative sample. Second, since this corpus was

collected from a linguistic mailing list, the content of the messages is exclusively about

issues pertaining to linguistics. Thus, the scope of these messages is extremely narrow and

not representative of most legitimate email messages. These concerns are also reiterated in

previous research [156].

In addition to the Ling-spam corpora, i-config also maintains the PU123A corpora. We

omitted these corpora from our evaluation because they are encoded such that each of

the messages’ features has been replaced with a unique number. This feature-to-number

mapping was done to protect the privacy of the message senders and recipients; however,

since those mappings are unpublished for the PU123A corpora, we are unable to convert

those messages to the format of our other corpora.

3.1.2.2 Enron Personal Legitimate Corpora

The Enron personal legitimate corpora consist of seven legitimate email collections that were

extracted from the Enron corpus [34, 95] by Ron Bekkerman. For a detailed explanation

of how these collections were extracted, please consult [16]. Each of the seven collections

corresponds to a specific Enron employee’s messages: Sally Beck (1,971 messages), Darren

Farmer (3,672 messages), Vincent Kaminski (4,477 messages), Louise Kitchen (4,015 mes-

sages), Michelle Lokay (2,489 messages), Richard Sanders (1,188 messages), and William

Williams III (2,769 messages). All of these messages are in the same format as the messages

found in the Enron corpus. They are missing a couple email headers (e.g., “Received”), but

they have the most common headers (e.g., “Subject”, “To”, “From”, etc.).
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These collections are all potentially biased for the same two reasons. First, each of the

collections is too small to be a representative sample. Second, each collection focuses on

only one individual’s email; thus, each collection is potentially biased towards the content

of a single individual.

3.1.2.3 Graduate Student Legitimate Corpora

The graduate student legitimate corpora consist of 513, 3,407, and 5,287 manually classi-

fied legitimate messages that were obtained from three graduate students’ personal email

accounts (grad1, grad2, and grad3). All of these messages are in a traditional email format,

including their original headers.

These corpora are potentially biased for the same two reasons as the Enron personal

legitimate corpora. First, each collection of messages is too small to be a representative

sample of legitimate messages. Second, each collection is potentially biased towards one

individual’s email content, making it representative of only one user’s email.

3.1.2.4 SpamAssassin Legitimate Corpus

The SpamAssassin corpora contain a legitimate corpus of 6,951 legitimate messages that

were collected from various SpamAssassin users. These legitimate messages are in a tradi-

tional email format, including their original headers. The messages are also broken into two

groups: easy ham (6,451 messages) and hard ham (500 messages). The easy ham messages

are “easy” to distinguish from spam, but the hard ham messages are “hard” to distinguish.

We omitted the hard ham messages from our evaluation because when the filter was trained

with this corpus, it generated extremely erratic classification results. Concretely, the hard

ham group is one of the smallest legitimate corpora, and its messages have many spam-like

characteristics. As a result, a classifier that is trained with this corpus as its only legitimate

sample generates results that show an extremely high degree of variance. The resulting

classifier has a very narrow view of legitimate messages and performs worse than the other

classifiers that were trained with other small, narrow corpora. For these reasons, using the

hard ham messages as a legitimate sample paints an even grimmer picture for the usage of

small, narrow corpora in evaluations.
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This corpus consists of messages from a number of unique users, and it contains more

messages than the other small legitimate corpora. However, it is still potentially biased due

to its size. A few thousand messages is not enough to be considered a representative sample

of spam messages.

3.1.3 Large Spam Corpus

Our large spam corpus contains over 600K spam messages that were obtained from the

publicly available spam corpora maintained by SpamArchive [139]. All of these messages

are in a traditional email format, including their original headers.

This corpus does not possess the same potentially biased characteristics that are found

in the small corpora described above in Section 3.1.1. It contains more than two orders

of magnitude more messages than any of the small spam corpora, and it contains spam

messages that were submitted by thousands of unique users. The SpamArchive has been

chosen as a representative large corpus in our experiments due to its size and diversity

of sources. The experimental results in this chapter will show that such a large corpus

produces quantitatively more consistent results than those obtained with the small corpora

described in the previous section.

We should observe the limitations of any corpus in the evaluation of email spam filters,

which are similar to the limitations of any benchmark (including those used routinely in

machine learning and natural language research). The question of whether any fixed bench-

mark is representative of an application space cannot be answered in a statistical sense

when the application space is open and evolving. Nevertheless, well designed benchmarks

that represent useful subspaces of the application area provide significant practical benefits

in the evaluation and comparison of computer systems and applications. The email spam

space is clearly a continuously developing area since new email spam is constantly created

(more than 4 billion spam messages per day as counted by MAAWG) by the spammers.

Consequently, no fixed corpus can be shown to be “representative” of the email spam space

in a statistical sense. Nevertheless, we believe that the SpamArchive corpus covers the

email spam area better than other currently published corpora due to its size and diversity
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of sources.

3.1.4 Large Legitimate Corpus

Our large legitimate corpus contains 475K messages that were taken from the Enron corpus.

In our initial experiments with the published version of the Enron corpus, we discovered a

small percentage of messages in the corpus that appeared to be spam. We used a Näıve

Bayes-based spam filter, trained with 5K randomly selected spam messages (taken from

our SpamArchive spam corpus) and 5K randomly selected legitimate messages (taken from

a collection of 700K legitimate messages that were collected privately from newsgroups,

personal email, and other user-submitted email messages), to classify the Enron messages.

Since statistical filters are generally very effective in distinguishing spam from legitimate

emails in static corpora, this procedure was able to find most of the spam messages in the

Enron corpus. The messages that the filter labeled as spam were discarded, and then, the

remaining messages were manually sampled to ensure their legitimacy. After this process

was complete, we were left with 475K Enron messages.

Similar to our large spam corpus (SpamArchive), the Enron corpus does not exhibit

the potentially biased characteristics that are evident in the small corpora described above

in Section 3.1.2. It contains almost two orders of magnitude more messages than any

of the small legitimate corpora, and it contains legitimate messages from more than 150

different users. Similar to our previous discussion about the usefulness of SpamArchive as

a benchmark, we consider the Enron corpus as a useful benchmark for legitimate email in

an open and evolving application space. Although no fixed corpus can represent the open

space of legitimate email in a statistical sense, the Enron corpus is currently the largest (and

most diverse) published email corpus without privacy problems (due to the circumstances

that led to its publication during the Enron trial).

3.2 Evaluation of Small Corpora Training Sets

In this section, we present a comparative study of spam filtering experiments using repre-

sentative large corpora and small corpora. The purpose of this experimental evaluation is

to test the following hypothesis:

22



Hypothesis: A training set taken from a small corpus is likely to introduce

bias into the trained filter.

As mentioned in Section 3.1, we use the term bias to refer to a significant variation in

filter performance when we vary the content of the test set. This is a problem when we

expect reliable and reproducible filter performance over a wide range of messages in the

test set. An intuitive explanation of our hypothesis is that we assume a comprehensive

and representative training set is needed for reproducible filter performance. Using small

corpora to create training sets only covers a small subset of the features in the set of known

spam and legitimate email messages. Consequently, when the test messages contain features

that are unknown to the filter, the filter’s performance becomes less reproducible.

In Section 3.2.1, we describe our experimental setup and the experiments we performed.

In Section 3.2.2, we summarize the experimental results for the training sets taken from

small corpora, showing the bias introduced into a Näıve Bayesian filter. In Section 3.3, we

evaluate the performance of the filter when it is trained with large corpora.

3.2.1 Methodology

To evaluate the biasing influence of each of our small corpora, we conducted a number of

experiments in which we trained our spam filter with numerous training set combinations

and observed its filtering performance on a test set taken from large corpora. In each

of these experiments, the filter’s training set was determined by consulting the training

matrix provided in Table 2, and the test set was taken from the large spam and large

legitimate corpora described in Sections 3.1.3 and 3.1.4. Using the training matrix, four

groups of experiments emerged: (1) training with small spam and small legitimate corpora,

(2) training with large spam and small legitimate corpora, (3) training with small spam and

large legitimate corpora, and (4) training with large spam and large legitimate corpora.

To create a fair comparison, we used 481 spam messages and 481 legitimate messages in

each of the training sets for all four experimental groups. We chose 481 messages because

it is the largest common corpus size for the corpora described above in Section 3.1. For
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Table 2: Four combinations of training sets.

Legitimate
Large Small

Spam

Large

Enron L-s Legit. sanders-r
beck-s williams-w3

farmer-d grad1
kaminski-v grad2
kitchen-l grad3
lokay-m SA Legit.

SpamArchive SpamArchive

Small

Enron L-s Legit. sanders-r
beck-s williams-w3

farmer-d grad1
kaminski-v grad2
kitchen-l grad3
lokay-m SA Legit.

L-s Spam L-s Spam
SA Spam SA Spam

the corpora with more than 481 messages (i.e., all of the corpora except the Ling-spam

spam corpus), we randomly selected a 481 message subset. Additionally, to accommodate

the varying message formats of each corpus, the “Subject” header was the only header

information we used in our evaluation. Unfortunately, this header represents the only header

information that is shared by all of the corpora, and in the interest of fair comparisons,

we were forced to omit all other header information. Also, due to the ease with which

spammers can spoof headers, it is expected that they will manipulate the headers with

increasing sophistication to hide any unintended traces of spam.

Once the spam and legitimate training sets were selected, we used them to train our

Näıve Bayesian filter. For our Näıve Bayesian learning spam filter, we chose the Weka

software package [152]. Weka is an open source collection of machine learning algorithms
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that has become a standard implementation tool in the machine learning community. The

Weka Näıve Bayes implementation we chose (weka.classifiers.bayes.NaiveBayes) uses the

multi-variate Bernoulli model [106, 134], which is the same event model used by most

previous Näıve Bayesian filter evaluations.

Then, we used 1K spam messages and 1K legitimate messages as a test set to evaluate

the trained filter’s classifying performance. The messages for this test set were randomly

selected from our large corpora (i.e., the SpamArchive corpus for the spam messages and

our Enron corpus for the legitimate messages). This training and classification process was

performed ten times, using ten unique seed values for the random message selection.

In the first group of experiments, the filter was trained with small spam and small legiti-

mate corpora. Since we evaluated 2 small spam corpora and 12 small legitimate corpora, this

group of experiments resulted in 24 different training set configurations. The second group

of experiments involved training the filter with large spam and small legitimate corpora.

Using our large spam corpus and the 12 small legitimate corpora, this group of experiments

used 12 different training set configurations. In the third group of experiments, the filter

was trained with small spam and large legitimate corpora. We used two small spam corpora

and one large legitimate corpus in our evaluation; thus, this group of experiments had 2

different training set configurations. The final group of experiments trained the filter with

large spam and large legitimate corpora. This group of experiments only had one training

configuration because we evaluated one large spam corpus and one large legitimate corpus.

3.2.2 Experimental Results

To evaluate our hypothesis about the biasing effect of small corpora, we present our experi-

mental results for the four experiment groups described above in Section 3.2.1. To determine

our filter’s performance when it is trained with the various training sets, we evaluate the

filter’s false positive and false negative rates. Additionally, in each of our experiments, we

varied the number of retained features that were used to train the filter between 80 and

10K (80, 160, 320, 640, 1K, 2K, ..., 10K). These retained features were selected using the

Information Gain feature selection algorithm described in Chapter 2. Thus, in most of the
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figures in this chapter, we present the filter’s false positive or false negative results as a

function of the number of retained features. The equations for the filter’s false positive and

false negative rates are the following:

false positive rate = 1− nL→L
NL

and

false negative rate = 1− nS→S
NS

.

In the above equations, nL→L is the number of legitimate test set messages the filter

correctly identified as legitimate, NL is the total number of legitimate test set messages,

nS→S is the number of spam test set messages the filter correctly identified as spam, and

NS is the total number of spam test set messages.

3.2.2.1 Training with Small Spam and Small Legitimate Corpora

Our first set of experiments tested our hypothesis by exclusively using the small, potentially

biased corpora for training. The reason each of these corpora is potentially biased is given

above in Section 3.1. We note that Figure 1 and Table 3 are designed to compare the false

positive rates of several distinctly trained filters with each other. Similarly, Figure 2 and

Table 4 compare the false negative rates of those filters. This presentation is not intended

for studying the effectiveness of any individual filter or method.

In Figure 1, we show the false positive rates of our filter when it was trained with the

Ling-spam spam corpus and each of the small legitimate corpora. Each line shows the

average result of a set of 10 experimental runs. The y-axis of this figure corresponds to the

filter’s false positive rate, and the x-axis corresponds to the number of retained features

that were used for training the filter. In Table 3, we present the filter’s stable false positive

results. These results correspond to the filter’s performance in Figure 1 when the lines stop

fluctuating. Three values are given: the false positive rate’s average, standard deviation,

and coefficient of variance. We use these common statistical measures to show the existence

of variability in filter performance. Due to their pervasiveness and magnitude, we believe the

variability will not disappear with other statistical assumptions (e.g., distribution different
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Figure 1: False positive rates for the Ling-spam spam and small legitimate training sets.

Table 3: Stable false positive results for the Ling-spam spam and small legitimate training
sets.

Legit. Spam False Pos. False Pos. False Pos.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

L-s Spam

0.224 0.026 11.5%
beck-s 0.055 0.008 15.3%

farmer-d 0.118 0.017 14.0%
kaminski-v 0.047 0.007 15.5%
kitchen-l 0.022 0.007 32.5%
lokay-m 0.051 0.008 16.6%
sanders-r 0.034 0.006 17.5%

williams-w3 0.192 0.015 7.94%
grad1 0.119 0.010 8.53%
grad2 0.133 0.012 8.97%
grad3 0.103 0.013 12.6%

SA Legit. 0.115 0.008 7.24%

than normal). It is not our intention to study the detailed statistical nature of these

variations in filter performance in this particular set of corpora.

Figure 1 clearly shows a wide variation in the false positive rates produced by the

filter when it was trained with the various small corpora. On the other hand, Table 3

displays consistent behavior within the results for each individual training set. Both the

standard deviations and the coefficients of variance are small. Thus, these findings illustrate

a contrast between the consistent behavior of a single trained filter and the inconsistent

results observed when comparing all of the trained filters. As a result, we observe that

training sets taken from small corpora can produce filters with very different, individually

consistent, behaviors.
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Figure 2: False negative rates for the Ling-spam spam and small legitimate training sets.

Table 4: Stable false negative results for the Ling-spam spam and small legitimate training
sets.

Legit. Spam False Neg. False Neg. False Neg.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

L-s Spam

0.521 0.051 9.78%
beck-s 0.739 0.019 2.55%

farmer-d 0.765 0.018 2.38%
kaminski-v 0.790 0.017 2.09%
kitchen-l 0.692 0.050 7.17%
lokay-m 0.835 0.011 1.30%
sanders-r 0.459 0.064 14.0%

williams-w3 0.698 0.024 3.51%
grad1 0.951 0.009 0.92%
grad2 0.942 0.010 1.05%
grad3 0.957 0.007 0.70%

SA Legit. 0.894 0.012 1.33%

Additionally, we observe that the variation among the twelve small training sets in

Figure 1 is quite pronounced with three distinct trends. At the bottom of the figure,

the five lines primarily below 5% false positives show a gradual increase in false positive

rates as the number of retained features grows. These five lines correspond to five of

the seven Enron personal legitimate corpora (beck-s, kaminski-v, kitchen-l, lokay-m, and

sanders-r). At the top of the figure, the two lines above 15% false positives show a gradual

decrease in false positive rates as the number of retained features grows. These two lines

correspond to the Ling-spam legitimate corpus and one of the Enron personal legitimate

corpora (williams-w3). In the middle of the figure, the five lines between 5% and 15% false

positives show a sharp initial increase in false positive rates (between 80 and 1K retained
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Figure 3: False positive rates for the SpamAssassin spam and small legitimate training
sets.

Table 5: Stable false positive results for the SpamAssassin spam and small legitimate
training sets.

Legit. Spam False Pos. False Pos. False Pos.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

SA Spam

0.040 0.018 44.0%
beck-s 0.022 0.004 20.5%

farmer-d 0.061 0.012 19.2%
kaminski-v 0.015 0.004 26.6%
kitchen-l 0.003 0.002 60.4%
lokay-m 0.011 0.003 32.1%
sanders-r 0.006 0.003 42.6%

williams-w3 0.103 0.020 19.2%
grad1 0.046 0.007 14.3%
grad2 0.043 0.010 22.8%
grad3 0.031 0.005 15.0%

SA Legit. 0.032 0.007 23.2%

features), followed by a slight decrease in false positive rates. These five lines correspond

to one of the Enron personal legitimate corpora (farmer-d), the three graduate student

legitimate corpora (grad1, grad2, and grad3), and the SpamAssassin legitimate corpus. As

our goal is simply to show the existence of a bias in the filter due to small corpora, we do

not attempt to explain any individual curve further.

Figure 2 and Table 4 describe the false negative performance for the filters in Figure 1

and Table 3. In Figure 2, all of the lines show a monotonically increasing false negative rate

as the number of retained features grows, and we observe a very wide range of false negative

values. For 80 retained features, the false negative variation stretches from less than 10%

to more than 90%. For the stable values between 3K and 10K retained features, the false
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Figure 4: False negative rates for the SpamAssassin spam and small legitimate training
sets.

Table 6: Stable false negative results for the SpamAssassin spam and small legitimate
training sets.

Legit. Spam False Neg. False Neg. False Neg.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

SA Spam

0.111 0.016 14.3%
beck-s 0.195 0.016 8.06%

farmer-d 0.218 0.016 7.46%
kaminski-v 0.207 0.015 7.35%
kitchen-l 0.182 0.011 6.05%
lokay-m 0.226 0.018 8.11%
sanders-r 0.119 0.026 22.0%

williams-w3 0.205 0.016 7.88%
grad1 0.298 0.030 9.94%
grad2 0.278 0.036 13.0%
grad3 0.315 0.029 9.07%

SA Legit. 0.265 0.020 7.63%

negatives range from 46% to 96%. Thus, both Figure 1 and Figure 2 show the wide varia-

tion that supports our hypothesis about the biasing effect of small corpora. Additionally,

Table 4 shows that the filter exhibited consistent behavior for each individual small training

set (i.e., the standard deviations and coefficients of variance are small), giving even more

evidence that small, biased training sets can produce filters with very different, individually

consistent, behaviors.

To help gauge the influence of the Ling-spam spam corpus on the experimental results,

we ran similar experiments using the SpamAssassin spam corpus. Figure 3 shows the false

positive rates for the filter when it was trained with the SpamAssassin spam corpus and

each of the small legitimate corpora. Table 5 displays the filter’s stable false positive results.
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The results in Figure 3 display a smaller range in the filters’ variation compared to

those found in the Ling-spam experiments. The filter with the worst performance only had

a false positive rate around 10%, and all of the training sets represented in this figure resulted

in a single trend (i.e., increasing with the number of retained features). However, we still

observe variation in the form of vertical separation between each of the lines. Additionally, in

Table 5, we observe that each filter’s performance is consistent (i.e., the standard deviations

and coefficient of variances are small) for a given training set. Thus, as with the Ling-

spam experiments above, these results indicate that training sets taken from small corpora

generate filters that exhibit diverse, yet individually consistent, performances.

Figure 4 and Table 6 show the false negative results for the same experiments as Fig-

ure 3 and Table 5. Instead of the wide variation seen in Figure 2, this figure displays a

maximum false negative rate of less than 32%. However, three distinct trends emerge. At

the bottom of the figure, two monotonically decreasing lines stay primarily below 15% false

negatives. These two lines correspond to the Ling-spam legitimate corpus and one of the

Enron personal legitimate corpora (sanders-r). In the middle of the figure, the six primarily

flat lines stay around 20% false negatives. These lines correspond to six of the seven Enron

personal legitimate corpora (beck-s, farmer-d, kaminski-v, kitchen-l, lokay-m, williams-w3).

At the top of the figure, four monotonically increasing lines grow quickly to above 20% false

negatives. These lines correspond to the three graduate student legitimate corpora (grad1,

grad2, and grad3) and the SpamAssassin legitimate corpus.

Although the vertical dispersion of these lines is much less than that found in Figure 2,

the filters’ performance showcased in this figure is still very inconsistent. The lack of

uniformity across the various training sets in these figures supports our original hypothesis

for the case where both the spam and legitimate training sets were taken from small corpora.

On the other hand, Table 6 shows once again that each individual training set results in

consistent performance. Thus, even though the training sets generate comparatively diverse

results, their individual results are consistent.
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Figure 5: False positive rates for the SpamArchive spam and small legitimate training
sets.

Table 7: Stable false positive results for the SpamArchive spam and small legitimate
training sets.

Legit. Spam False Pos. False Pos. False Pos.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

SpamArchive

0.5190 0.0338 6.508%
beck-s 0.0004 0.0005 129.1%

farmer-d 0.0036 0.0039 108.1%
kaminski-v 0.0010 0.0016 163.3%
kitchen-l 0.0507 0.0650 128.2%
lokay-m 0.0001 0.0003 316.2%
sanders-r 0.2287 0.0505 22.10%

williams-w3 0.0164 0.0104 63.32%
grad1 0.0008 0.0008 98.60%
grad2 0.0582 0.0342 58.75%
grad3 0.0662 0.0481 72.72%

SA Legit. 0.0002 0.0004 210.8%

3.2.2.2 Training with Large Spam and Small Legitimate Corpora

With the wide variation found in Figures 1 through 4, the next question is whether the

amount of bias in the training set is linked to the variation in filter performance. Our next

set of experiments is similar to those in Section 3.2.2.1; however, in this set we reduced the

amount of bias during training by using spam training sets that were produced by random

selection from large corpora. The legitimate training sets were the same as in the previous

set of experiments, and the test set was also the same.

Figure 5 shows the false positive rates when the filter was trained using the SpamArchive

corpus and the small legitimate corpora, and Table 7 presents the filter’s false positive
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results when 10K features were retained (i.e., when the results were stable). Compared to

Figures 1 and 3, Figure 5 displays more uniformity for the most part. In fact, 9 out of

12 lines are almost identical between 80 and 2K features. However, since the figure shows

two outlying curves with more than 20% and 50% maximum false positives, the results still

show significant variation. These two outlying lines correspond to the Ling-spam legitimate

corpus and one of the Enron personal legitimate corpora (sanders-r). Additionally, a spread

exists between 0% and 7% false positives among the other ten lines when the number of

retained features is greater than 2K.

Table 7 is harder to interpret for these results because the average performance of most

of the filters is so good (i.e., the false positive rates are small). In many cases, the standard

deviations are as large as the averages; however, this does not indicate inconsistencies for

a given training set. For those particular training sets, the filter performs so well that a

single misclassification is enough to skew the results. For example, in this experiment, a

filter trained with the SpamArchive corpus and the kaminski-v corpus only misclassified

an average of 1 out of 1K legitimate messages in the test set as spam. Thus, if the filter

misclassified 2 out of 1K legitimate messages in one of the experimental runs, it would

be enough to greatly influence the standard deviation results for that training set. With

this observation in mind, it is safe to conclude that each individual filter’s results were

consistent, despite the variation among the various filters.

Figure 6 and Table 8 show the false negative results for the same experiments as Figure 5

and Table 7. Compared to Figures 2 and 4, Figure 6 displays a much smaller variation (less

than a 25% maximum false negative rate) and a single downward trend. However, at the

stable false negative rates above 3K retained features, the lines are still approximately

uniformly spread (in terms of vertical distance) between about 2% and 14%. Additionally,

similar to Tables 4 and 6, Table 8 shows that the filter exhibited consistent behavior for

each individual small training set (i.e., the standard deviations and coefficients of variance

are small).

Both Figures 5 and 6 show that replacing the spam training sets taken from small corpora

with spam training sets taken from large corpora reduced the variation in the results, which
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Figure 6: False negative rates for the SpamArchive spam and small legitimate training
sets.

Table 8: Stable false negative results for the SpamArchive spam and small legitimate
training sets.

Legit. Spam False Neg. False Neg. False Neg.
Corpus Corpus Avg. Std. Dev. C.o.V.

L-s Legit.

SpamArchive

0.018 0.006 30.6%
beck-s 0.071 0.013 18.1%

farmer-d 0.138 0.019 14.1%
kaminski-v 0.071 0.018 25.1%
kitchen-l 0.038 0.007 18.8%
lokay-m 0.099 0.015 14.7%
sanders-r 0.024 0.005 21.1%

williams-w3 0.117 0.016 13.4%
grad1 0.083 0.013 15.9%
grad2 0.047 0.012 24.7%
grad3 0.059 0.016 27.9%

SA Legit. 0.137 0.015 11.2%

is consistent with our original hypothesis. In the next section, we investigate the effect of

only replacing the legitimate training sets taken from small corpora with legitimate training

sets taken from large corpora.

3.2.2.3 Training with Small Spam and Large Legitimate Corpora

With the reduction in variation observed in Section 3.2.2.2, a plausible question is whether

replacing only the legitimate training sets taken from small corpora with legitimate training

sets taken from large corpora would have a similar effect as replacing only the spam training

sets.

Figure 7 shows the false positive rates for our filter when it was trained with each of
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Figure 7: False positive rates for the small spam and Enron legitimate training sets.

Table 9: Stable false positive results for the small spam and Enron legitimate training
sets.

Legit. Spam False Pos. False Pos. False Pos.
Corpus Corpus Avg. Std. Dev. C.o.V.

Enron
L-s Spam 0.042 0.007 17.9%
SA Spam 0.007 0.003 44.0%

the small spam corpora and our Enron corpus, and Table 9 displays the filter’s stable false

positive results. These results are very similar to the best results found in the corresponding

experiments in Section 3.2.2.1. The L-s Spam results in Figure 7 and Table 9 are better

than all but two (kitchen-l and sanders-r) of the results in Figure 1 and Table 3, and the

SA Spam results are better than all but two (kitchen-l and sanders-r) of the results in

Figure 3 and Table 5. Thus, replacing the legitimate training sets taken from small corpora

with legitimate training sets taken from large corpora reduced the bias in the false positive

results.

Figure 8 and Table 10 show the false negative rates for the same experiments as Figure 7

and Table 9. Unlike the reduction found in false positive results, the two lines in Figure 8

show a wide variation (from 20% for SA Spam to 80% for L-s Spam). Additionally, these

results are slightly higher than the average of the 12 results found in the corresponding

experiments in Section 3.2.2.1. Although we only have two small spam training sets in this

experiment (L-s Spam and SA Spam), the mixed results reaffirm our hypothesis.

In summary, sections 3.2.2.1, 3.2.2.2, and 3.2.2.3 show that our hypothesis holds for all
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Figure 8: False negative rates for the small spam and Enron legitimate training sets.

Table 10: Stable false negative results for the small spam and Enron legitimate training
sets.

Legit. Spam False Neg. False Neg. False Neg.
Corpus Corpus Avg. Std. Dev. C.o.V.

Enron
L-s Spam 0.836 0.017 1.99%
SA Spam 0.228 0.019 8.22%

three cases in Table 2 that use small corpora for their training sets. In the next section,

we evaluate the filter training when using large corpora, as a comparison to training filters

with small corpora.

3.3 Evaluation of Large Corpora Training Sets

In this section, we continue our comparative study of spam filtering experiments. First,

in Section 3.3.1, we present the performance of our filter when it was trained with large

spam and large legitimate corpora. Then, in Section 3.3.2, we experimentally evaluate the

appropriate size for large corpora in spam filtering research.

3.3.1 Training with Large Spam and Large Legitimate Corpora

In each of the three previous training set combinations, we witnessed some degree of bias.

Thus, the remaining alternative in Table 2 is using training sets taken from large spam

and large legitimate corpora to train our spam filter. We note that the converse of our

hypothesis (i.e., large training sets will not introduce bias into filters) may not be strictly
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Table 11: Stable false positive results for the SpamArchive spam and Enron legitimate
training sets.

Legit. Spam False Pos. False Pos. False Pos.
Corpus Corpus Avg. Std. Dev. C.o.V.

Enron SpamArchive 0.0001 0.0003 316.2%

true. The intuitive explanation for this situation is that the reliable performance of our

filter depends on the comprehensiveness of the feature coverage in the set of test messages.

While large corpora increase the coverage, there may be some pathological cases where even

large corpora fail for a particular training set/test set combination. Nevertheless, when both

the training set and the test set are extracted from the same corpus (large or small), the

feature coverage tends to be representative. Additionally, we will show that when large

corpora are used to train the filters, the resulting filter is able to handle a variety of test

set combinations in a reliable manner.

Table 11 displays the stable false positive results for the experiments using the Spa-

mArchive corpus and our Enron corpus. From these results, we can observe that the use

of training sets taken from large spam and large legitimate corpora resulted in very low,

consistent false positive results. In fact, these false positive rates are lower than all of the

previous experiments, reinforcing our original hypothesis that small, biased training sets

introduce a bias into the filter’s performance.

Figure 9 and Table 12 show the false negative results for the same experiments as

Table 11. These false negative values exhibit a downward trend, and they are consistently

lower than those found in Section 3.2.2.3 and comparable to those found in Section 3.2.2.2.

3.3.2 How Large Should the Corpora Be?

Previously, we showed that a training set taken from small corpora introduces a bias into

the performance of a learning spam filter. In this section, we examine the effect of varying

the training and test set sizes on the performance of the same spam filter to find the the

appropriate sample sizes for evaluations using large corpora. To perform this examination,

we exclusively used our large corpora (i.e., our SpamArchive corpus for spam messages and
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Figure 9: False negative rates for the SpamArchive spam and Enron legitimate training
sets.

Table 12: Stable false negative results for the SpamArchive spam and Enron legitimate
training sets.

Legit. Spam False Neg. False Neg. False Neg.
Corpus Corpus Avg. Std. Dev. C.o.V.

Enron SpamArchive 0.1035 0.0176 17.02%

our Enron corpus for legitimate messages) for the training and test sets, and we retained

10K features using the Information Gain feature selection algorithm. We used 6 different

training set sizes (500, 1K, 5K, 10K, 50K, and 100K) and 5 different test set sizes (500, 1K,

5K, 10K, and 50K) for a total of 30 different training and test set combinations.

Table 13 presents the filter’s false positive results for the various training and test set

combinations. Three values are given: the false positive rate’s average, standard deviation,

and coefficient of variance. We omit a graphical representation of these results because the

false positive rates are all essentially zero. However, we still observe a couple interesting

trends from the table. First, for a given training set, the results for the various test sets

are very similar, indicating a strong degree of internal consistency for our large corpora.

Second, the use of smaller test sets can result in deceptive results. For example, all of the

training set sizes generated a filter that was able to correctly classify all of the legitimate

messages in the 500 and 1K message test sets. However, for larger test sets, these filters

were not able to maintain this level of excellence. Their performance was still extremely
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Table 13: False positive results for various training and test set sizes.

Training Test False Pos. False Pos. False Pos.
Set Size Set Size Avg. Std. Dev. C.o.V.

500

500 0 0 0%
1K 0 0 0%
5K 2.00e-4 2.83e-4 141%
10K 1.60e-4 1.58e-4 98.6%
50K 1.40e-4 8.06e-5 57.5%

1K

500 0 0 0%
1K 0 0 0%
5K 8.00e-5 1.69e-4 211%
10K 6.00e-5 9.66e-5 161%
50K 8.00e-5 9.43e-5 118%

5K

500 0 0 0%
1K 0 0 0%
5K 8.00e-5 1.69e-4 211%
10K 4.00e-5 8.43e-5 211%
50K 4.00e-5 3.77e-5 94.3%

10K

500 0 0 0%
1K 0 0 0%
5K 4.00e-5 1.26e-4 316%
10K 6.00e-5 1.35e-4 225%
50K 2.00e-5 2.83e-5 141%

50K

500 0 0 0%
1K 0 0 0%
5K 0 0 0%
10K 2.00e-5 6.32e-5 316%
50K 2.40e-5 2.80e-5 117%

100K

500 0 0 0%
1K 0 0 0%
5K 4.00e-5 1.26e-4 316%
10K 2.00e-5 6.32e-5 316%
50K 4.80e-5 4.38e-5 91.3%

good; however, it was not as good as one would expect based on the performance with the

smaller test sets.

The variation of the results for larger test sets appears to be high (i.e., the coefficient

of variances are large); however, this is vastly overstated. Since the average performance

of the filter is so high (i.e., the false positive rate is essentially zero), a misclassification

of one message in one of the 10 experimental runs is enough to generate the observed

variation. Additionally, it is important to note that this variation decreases as the test

set size increases. Thus, the use of larger test sets is important for generating consistent,

reproducible results.

Figure 10 shows the false negative results for the various training and test set configu-

rations. This figure presents a couple important trends. First, as the training set increases,

the filter’s false negative rate decreases. This trend clearly shows the importance of using
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Figure 10: False negatives rates for varying training and test set sizes.

larger training sets, and it reiterates our previous conclusion about the biasing effect of

small corpora. If the filters are not trained with a sufficiently large number of messages,

their true performance will not be known. Second, as shown above in the false positive re-

sults, the false negative rates remain about the same as the test set size increases. However,

one caveat of this observation is that very small test set sizes (e.g., 500 messages) are not

very reliable indicators of the filters’ performance. In some cases, these small test sets over-

estimate the performance of the filters, and in other cases, they underestimate the filters’

performance. Thus, the larger test sets are necessary for the most accurate evaluation of

the filters’ performance.

Table 14 presents the false negative rate averages and variation results for the various

training and test set configurations when 10K features were retained. These results show

two very interesting trends. First, as the test set size increases, the variation of the results

decreases. This result reaffirms our claim that using larger test sets results in more reliable

and more reproducible results. Second, for larger test sets (e.g., larger than 1K), we observe

a generally decreasing trend for the variation of the results as the training set size increases.

This decrease is particularly noticeable when the training set size increases from 1K to

5K. As a result, we can conclude that using large training and test set sizes produces

more reliable performance results. Thus, we have provided even more evidence that large
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Table 14: False negative results for various training and test set sizes.

Training Test False Neg. False Neg. False Neg.
Set Size Set Size Avg. Std. Dev. C.o.V.

500

500 0.136 2.73e-2 20.1%
1K 0.144 2.71e-2 18.8%
5K 0.138 2.75e-2 19.9%
10K 0.139 2.41e-2 17.3%
50K 0.139 2.45e-2 17.6%

1K

500 0.118 1.24e-2 10.5%
1K 0.109 2.05e-2 18.8%
5K 0.106 1.75e-2 16.5%
10K 0.107 1.76e-2 16.4%
50K 0.107 1.70e-2 16.0%

5K

500 9.12e-2 3.15e-2 34.6%
1K 8.76e-2 1.44e-2 16.5%
5K 8.60e-2 5.45e-3 6.34%
10K 8.70e-2 3.46e-3 3.98%
50K 8.67e-2 3.62e-3 4.17%

10K

500 8.56e-2 1.31e-2 15.3%
1K 9.16e-2 1.87e-2 20.4%
5K 8.33e-2 4.92e-3 5.90%
10K 8.50e-2 3.92e-3 4.61%
50K 8.40e-2 2.18e-3 2.59%

50K

500 8.44e-2 1.45e-2 17.2%
1K 8.16e-2 1.60e-2 19.7%
5K 7.73e-2 4.54e-3 5.87%
10K 7.52e-2 3.13e-3 4.16%
50K 7.67e-2 2.15e-3 2.80%

100K

500 7.40e-2 1.48e-2 19.9%
1K 7.70e-2 1.51e-2 19.6%
5K 7.63e-2 6.28e-3 8.23%
10K 7.32e-2 2.14e-3 2.92%
50K 7.50e-2 2.17e-3 2.90%

corpora are vital for producing reliable and reproducible results during learning spam filter

evaluations.

3.4 Related Work

Many experimental evaluations have been performed using statistical spam filters. Pantel

and Lin [117] and Sahami et al. [127] were the first researchers to apply machine learning

techniques to the spam filtering problem. Pantel and Lin showed that a Näıve Bayes

algorithm could outperform RIPPER [35] - a ”keyword-spotting” rule learner developed by

W. W. Cohen. Sahami et al. explored the effectiveness of using a Näıve Bayes algorithm for

spam filtering and found that using manually derived heuristics improved the algorithms’s

performance. However, both evaluations used small, personally biased spam and legitimate

corpora that are unpublished. Drucker et al. [46] evaluated the use of support vector
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machines (SVMs) as a spam filtering solution, comparing it to RIPPER, Rocchio [91, 133],

and a boosting algorithm that used classification trees built using a version of C4.5 [123].

The result of this work was that SVMs and the boosting algorithm exhibit similar error

rates that are better than those obtained with Rocchio. Unfortunately, this evaluation

relied upon two small, biased email data sets that are unpublished.

Androutsopoulos et al. [6] extended previous spam filtering work by creating a publicly

available email corpus (Ling-spam) and using it to analyze the effect of attribute-set size,

training-corpus size, lemmatization, and stop-lists on the performance of a filter based on

the Näıve Bayes algorithm. Then, they took this work a step further [7], introducing another

publicly available email corpus (PU1) and using it to perform a similar analysis of their Näıve

Bayesian filter’s performance. They also confirmed previous results that showed a Näıve

Bayesian filter outperformed a keyword-based filter. Androutsopoulos et al. [8] used the

Ling-spam corpus to compare a Näıve Bayesian filter and a memory-based algorithm called

TiMBL [41]. Their evaluation showed that the Näıve Bayesian filter and TiMBL exhibited

similar performance, and both algorithms outperformed a keyword-based filter. Sakkis et

al. [128] explored the effectiveness of combining classifiers, using stacked generalization, to

filter spam. Using Ling-spam, they found that stacked classifiers performed better than the

individual classifiers used in the stacking. All of these evaluations were novel; however, they

were all limited by their use of small, biased email corpora (Ling-spam and PU1).

Carreras and Marquez [26] showed that the AdaBoost.MH [132] learning algorithm was

more effective than Decision Trees and a Näıve Bayes algorithm when applied to the PU1

email corpus. However, they also questioned the wide-scale applicability of their results due

to PU1’s small size. Hidalgo [80] used the Ling-spam corpus to compare the performance of

filters based on C4.5, Näıve Bayes, PART, Support Vector Machines, and Rocchio. However,

the author was not pleased with the current state of email data sets. In fact, he rejected

PU1 for the same reason we omitted it from our evaluation – it uses private, encoded

messages. Additionally, although Ling-spam was used in the evaluation, the author did not

believe Ling-spam was a representative sample of legitimate email messages because it was

collected from a linguist newsgroup. Schneider [134] used the Ling-spam and PU1 corpora
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to evaluate two different statistical event models: a multi-variate Bernoulli model and a

multinomial model. He also experimented with different feature selection algorithms that

were derived from Information Gain. Androutsopoulos et al. [9] and Zhang et al. [156] both

used small corpora to evaluate the performance of various spam filters. Androutsopoulos

et al. used the PU123A corpora to compare filters based on Näıve Bayes, Support Vector

Machines, and LogitBoost [61]. Zhang et al. used the Ling-spam, PU1, and SpamAssassin

spam corpora to compare filters based on Näıve Bayes, Maximum Entropy Model [18],

TiMBL, Support Vector Machines, and AdaBoost [60]. Although all of these evaluations

provide interesting results and insight into spam filtering, they are limited by the small

corpora they used in their experiments.

Despite the reliance on small corpora in early spam filtering evaluations, some re-

searchers are beginning to incorporate larger corpora into their experiments. An important

effort that helped motivate this gradual shift towards using larger corpora was the TREC

Spam Track, which gave researchers an opportunity to evaluate filtering approaches on

larger corpora. This workshop also generated two publicly available data sets: the TREC

2005 Spam Corpus [39] and the TREC 2006 Spam Corpus [40]. Goodman and Yih [65]

used the TREC 2005 Spam corpus to validate a simple discriminative model based on gra-

dient descent of a logistic regression model. Cormack and Bratko [38] used the TREC 2005

Spam corpus, along with the Ling-spam and PU1 data sets, to compare various filtering

algorithms (e.g., SVM, logistic regression, etc.), evaluation models (on-line and batch), and

message preprocessing approaches (e.g., removing headers, mapping alphanumeric strings

to unique integers, etc.). These recent efforts are encouraging because they suggest that

other researchers are making similar observations to those illustrated in our work. This

gradual shift also serves to further validate our work because we are the first to provide

experimental evidence that supports using large corpora in spam filtering experiments.

3.5 Summary

Since spam only became a serious problem in recent years, spam filter evaluation is a

relatively new research area. Early spam filtering literature [6, 7, 8, 9, 68, 84, 117, 127, 156]
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is dominated by experiments that rely on small corpora. This situation is similar to the

early research in the machine learning and natural language processing fields, where small

scale experiments preceded the consensus adoption of large corpora [13, 14, 125] as the basis

for reliable and reproducible experimental evaluations.

Inspired by lessons learned in machine learning and natural language processing, we

conducted a comparative study of learning spam filtering experiments using large corpora

(on the order of hundreds of thousands of messages, taken from published email archives)

and small corpora (on the order of a few thousand messages, obtained from sources cited

in current spam filtering literature). To distinguish spam from legitimate email, the ex-

periments use two training sets, one containing representative samples of spam, and the

other containing representative samples of legitimate email. Our study covers the four filter

training set combinations: (1) small spam and small legitimate corpora, (2) large spam

and small legitimate corpora, (3) small spam and large legitimate corpora, and (4) training

with large spam and large legitimate corpora. We studied both the false positive and false

negative rates of a Näıve Bayesian learning spam filter, and the results show that small

corpora lead to significantly less predictable results when compared to the results obtained

by training and testing using large corpora. The filters trained with small corpora pro-

duced false positive rates varying from 0% to 46% and false negative rates varying from 3%

to 96%; however, the filters trained with large corpora only produced false positive rates

consistently around 0% and false negative rates varying from 10% to 20%.

This comparative study is significant for two reasons. Scientifically, it recommends

methodological changes in the future experimental evaluations of learning spam filters,

particularly when compared to early spam filtering literature. Practically, filters trained

with large corpora have a high potential impact on server-based spam filters, which is an

important technique for efficient defense against spam (as reported by MAAWG [107]). At

the same time, we recognize the need for future evaluation studies as even larger corpora

become publicly available. With more than 460 billion messages processed by MAAWG in

the first quarter of 2006, it is clear that we need larger and more up-to-date corpora for

evaluating the effectiveness of evolving email spam filtering techniques. In addition, more
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sophisticated statistical methods may be applied in the comparison of evaluation results on

the slowly increasing number of published corpora for spam research.
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CHAPTER IV

LARGE-SCALE EVALUATION OF EMAIL SPAM CLASSIFIERS

Learning filters [6, 9, 26, 46, 68, 70, 117, 127, 151, 156] have become a widely accepted

technique for separating spam messages from an individual user’s incoming email stream.

Significant research and development efforts have produced software tools (e.g., SpamProbe,

SpamBayes, etc.), which can be used by individuals to effectively filter spam. In addition

to empirical use and anecdotal evidence, small-scale (on the order of a few thousand mes-

sages) evaluations of personalized learning filters have corroborated their effectiveness for

individual use.

In this chapter, we present the first experimental evaluation of learning filter effectiveness

using large corpora (about half a million known spam messages and a similar number of

legitimate messages from public archives). Intuitively, the use of large corpora represents a

“collaborative” approach to spam filtering. In contrast to filters trained by individuals with

their own email, filters trained with large corpora are exposed to meaningful information

from a variety of sources: legitimate messages from many individuals and spam messages

from many sources to many destinations. In this chapter, we study the strengths and

weaknesses of these collaborative filters.

Our first contribution in this chapter is a large-scale evaluation of learning filters that

demonstrates their effectiveness with respect to known spam. In this evaluation, we observe

that all of our filters achieve an accuracy consistently higher than 98%. However, we then

show that this level of effectiveness is vulnerable to attacks using camouflaged messages,

which combine both spam and legitimate content. Thus, our second contribution is a large-

scale evaluation of the effectiveness of the camouflaged attack against our filters. This

evaluation shows that the filters’ accuracy degrades consistently to between 50% and 75%.

In response to this attack, we designed and evaluated several strategies for increasing the

resilience of the filters. Our third contribution is showing that a particular strategy works:
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we can successfully identify camouflaged messages if the filters are explicitly trained to treat

them all as spam. Using this strategy, the filters’ accuracy climbs back to between 86% and

96%.

Our large-scale evaluations are particularly useful for companies and Internet service

providers considering the adoption of learning filters in their email gateways. Our results

support this “upstream” migration of spam filtering as a successful way to reduce bandwidth

and storage costs associated with spam. Similar to the attacks on keyword-based filters, our

evaluation of camouflaged attacks shows that spammers can easily lower the effectiveness of

learning filters. However, unlike the attacks on keyword-based filters, we actually provide

a strategy that trains the learning filters properly so that they can resist attacks.

The rest of the chapter is organized as follows. Section 4.1 summarizes our experimental

setup and corpora processing. Section 4.2 illustrates the excellent performance of current

spam filters with a normal training set and workload. Section 4.3 describes the degraded

performance of our filters when they are under attack by camouflaged messages and provides

a successful solution. Section 4.4 shows that our solution does not harm the excellent

performance shown in Section 4.2. Section 4.5 discusses related work, and Section 4.6

summarizes our results.

4.1 Experimental Setup

4.1.1 Spam Filters

In our experiments, we used four different spam filters: Näıve Bayes [127], Support Vector

Machine (SVM) [46, 147], LogitBoost [26, 61], and a Bayesian filter based on Paul Graham’s

white paper [68]. This collection of filters represents the state of the art in machine learning

(SVM and LogitBoost) as well as the most popular and widely deployed spam filtering

solutions (Näıve Bayes and Paul Graham-based). We chose the SpamProbe 1.1x5 software

package [25] for our Paul Graham-based filter because it is highly configurable and very

efficient. Additionally, an independent comparison of Paul Graham-based filters [37] found

SpamProbe to be one of the most accurate filters of its kind. For our Näıve Bayes, SVM, and

LogitBoost implementations, we chose the Weka software package [152]. Weka is an open
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source collection of machine learning algorithms that has become a standard implementation

tool in the machine learning community.

We used two Bayesian filters because each uses a different event model. SpamProbe is

based on the multinomial model, and Weka’s Näıve Bayes implementation uses the multi-

variate Bernoulli model. Previous research [106, 134] has shown that the multinomial model

typically outperforms the multi-variate Bernoulli model, and our results show that this

phenomenon also holds with large corpora and in the presence of an attack. We used a

linear kernel for our SVM filter because previous research [92] has shown that simple, linear

SVMs usually perform as well as non-linear ones. We used 100 iterations for our LogitBoost

filter because previous research [61] showed that using more than 100 iterations results in

a miniscule improvement.

4.1.2 Corpora

Unlike early evaluation experiments involving spam filters [6, 9, 26, 46, 68, 70, 117, 127,

151, 156], which were user-specific or anecdotal, our experiments were not directly related

to a specific individual’s message set. Instead, based on our results in Chapter 3, we used

very large, public corpora for our analysis.

Initially, we collected 750K spam messages from the publicly available spam corpora

maintained by SpamArchive1 and SpamAssasin2. After the spam messages were collected,

800K legitimate messages were collected from a number of sources. First, 4K legitimate

messages were collected from the legitimate corpus maintained by SpamAssasin.2 Then, an-

other 4K legitimate messages were taken from the authors’ personal mailboxes. Finally, a

newsgroup crawler was used to obtain 792K messages from various publicly available news-

groups. Since a number of these newsgroups were not moderated, we used SpamProbe,

trained with 8K randomly selected spam messages and the 8K legitimate email messages

previously mentioned, to classify the newsgroup messages (refer to Section 4.2 for a valida-

tion of this method for filtering and labeling messages). The newsgroup messages that were

labeled as spam by the filter were discarded, and afterwards, our collection of legitimate

1SpamArchive’s spam corpora can be found at ftp://spamarchive.org/pub/archives/.
2SpamAssasin’s spam and legitimate corpora can be found at http://spamassassin.org/publiccorpus/.
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messages contained 700K messages.

In addition to the legitimate email corpus we collected, we also utilized the Enron cor-

pus3 [95]. However, in our initial experiments with this corpus, we discovered a number

of messages that appeared to be spam. To alleviate this problem, we used SpamProbe,

trained with 5K randomly selected spam messages and 5K randomly selected legitimate

messages, to classify the Enron messages. The messages that SpamProbe labeled as spam

were discarded, and then, a random sample of the remaining messages were manually in-

spected to ensure their legitimacy. After this process was complete, we were left with 475K

Enron messages. Since the Enron corpus has become the standard legitimate email corpus

amongst researchers, the results we present in this chapter were obtained using our cleansed

version of this corpus.

Previous research [69, 156] claimed that significant performance improvements can be

achieved by incorporating email headers in the filtering process. Our own experiments

have also verified these results. However, we discovered that most of these performance

improvements are caused by unfair biases in the corpora. An example of such a bias is

the “Message-ID” header in the Enron corpus. Almost all of the messages in this corpus

contain a “Message-ID” header, which contains “JavaMail.evans@thyme” as a substring.

Consequently, if this header is included in the filtering process, it will unfairly bias each

filter’s evaluation of messages taken from our Enron corpus. Another example of a bias

introduced by the corpora is the “Received” header in our SpamArchive corpus. More

than 85% of the messages in this corpus contain at least one “Received” header, and most

of those messages contain multiple “Received” headers. However, “Received” headers are

not found in the messages in the Enron corpus. Consequently, if this header is included

in the filtering process, it will unfairly bias each filter’s evaluation of the messages taken

from our SpamArchive corpus. Due to these and other biases introduced by the corpora,

our experiments in this chapter used messages with all but two of their headers removed:

“Subject” and “Content-Type.”

3The Enron corpus can be found at http://www-2.cs.cmu.edu/ enron/.
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A text message cannot be interpreted directly by some of our classifier building algo-

rithms. Thus, an indexing procedure that maps a text message into a compact representa-

tion of its content needed to be uniformly applied to all of the messages in our corpora. All

of our messages were tokenized using SpamProbe [25]. This tokenization resulted in each

message being represented as a “set of words” (i.e., a tokenized message was represented

as the set of tokens occurring in it). In previous research [10, 48], it was discovered that

representations more sophisticated than this do not yield significantly better results.

4.2 Baseline Evaluation of Spam Filter Effectiveness

4.2.1 Cost Sensitive Performance Measures

To accurately evaluate our spam filters’ performance, we need to incorporate the fact that

classifying a legitimate message as spam (i.e., a false positive) is more costly to users than

classifying a spam message as legitimate (i.e., a false negative). We are able to model this

cost disparity using a performance metric called Weighted Accuracy (WAcc) [6]. WAcc

assigns a weight of λ to legitimate messages, treating each legitimate message as if it were

λ messages. Thus, if a legitimate message is (un)successfully classified, it counts as if λ

legitimate messages are (un)successfully classified. The equation for WAcc is the following:

WAcc = λ·nL→L+nS→S
λ·NL+NS

.

In the above equation, nL→L is the number of correctly classified legitimate messages,

nS→S is the number of correctly classified spam messages, NL is the total number of legiti-

mate messages, and NS is the total number of spam messages. In this chapter, most of the

figures will demonstrate our filters’ performance by showing their WAcc values with λ = 9.

4.2.2 Evaluation of the Training Set Size

To thoroughly investigate the effect of the training set size on our filters, we performed

an experiment with five different training set sizes: 500, 1K, 5K, 10K, and 50K. First, we

trained the filters with each training set, and then, we used the filters to classify a workload

that consisted of 10K messages. Half of the messages used in the training sets and workload

were randomly selected from our SpamArchive corpus, and the other half were randomly
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Figure 11: Average WAcc results (λ = 9) for the baseline evaluation using a 10K message
workload and 640 retained features.

selected from our Enron corpus. Additionally, for these experiments, we retained 320 spam

features and 320 legitimate features using the Information Gain feature selection algorithm.

Figure 11 illustrates the filters’ average WAcc results for λ = 9 after 10 iterations of this

experiment. SpamProbe, SVM and LogitBoost all exhibit similar performance, but Näıve

Bayes performs slightly worse than the others. As the number of messages in the training

set increases, the filters’ performance also increases. However, for training sizes larger than

10K, we found that the filters’ performance improves only modestly, failing to justify the

additional training time necessary to use those larger training sizes. Consequently, for the

remainder of this chapter, unless stated otherwise, we used 10K as the training set size for

our experiments. We now turn our attention to the workload size.

4.2.3 Evaluation of the Workload Size

To analyze the effect of the workload size on our filters, we performed an experiment with

five different workload sizes: 500, 1K, 5K, 10K, and 50K. First, we trained our filters with

a training set of 10K messages. Then, we used the filters to classify the various workloads.

Half of the messages in the training set and workloads were spam, and the other half were

legitimate. Additionally, we retained 640 features (320 legitimate and 320 spam).

Figure 12 shows the filters’ average WAcc results for λ = 9 after 10 iterations of this

experiment. For smaller workload sizes (i.e., 500, 1K, and 5K), the filters demonstrate
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Figure 12: Average WAcc results (λ = 9) for the baseline evaluation using a 10K message
training set and 640 retained features.

slightly fluctuating results; however, when the workload size is greater than 5K, the filters’

performance is extremely stable. Additionally, the similarities between the results for 10K

messages and 50K messages indicate that our corpora are internally consistent. Based on

these results, we chose to use a workload size of 10K messages for the remaining experiments

in this chapter. Now that we have experimentally determined an appropriate training set

and workload size, we will investigate various feature sizes.

4.2.4 Evaluation of Feature Size

In the previous two experiments, our filters used 640 retained features. Our next experiment

explores the effect of the number of retained features on the filters by using seven different

feature sizes: 10, 20, 40, 80, 160, 320, and 640. In this experiment, we trained the filters

with a training set of 5K spam messages and 5K legitimate messages. Then, we used the

filters to classify a workload of 5K spam messages and 5K legitimate messages. The only

variable was the total number of retained features.

Figure 13 displays the filters’ average WAcc results for λ = 9 after 10 iterations of this

experiment. All of the filters are quite successful when classifying the spam and legitimate

messages in the workload. SpamProbe and Näıve Bayes both demonstrate their best perfor-

mance with lower feature sizes, but SpamProbe’s performance is consistently better. SVM

and LogitBoost exhibit very similar behavior, and they both perform significantly better
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Figure 13: Average WAcc results (λ = 9) for a 10K message baseline training set and a
10K message baseline workload.

with larger feature sizes (i.e., more than 80 features).

These results concretely demonstrate the filters’ ability to correctly classify the spam

and legitimate messages in our large email corpora. However, in the next section, we present

an attack, which significantly degrades our filters’ classification performance.

4.3 Evaluation of Spam Filter Effectiveness Against Camouflaged Mes-
sages

4.3.1 Camouflaged Messages

The baseline results presented in Section 4.2 clearly illustrate the effectiveness of learning

filters when distinguishing between spam and legitimate messages. However, we have re-

cently observed a new class of messages that our filters are unable to correctly classify.

These new messages, which we will refer to as camouflaged messages, contain spam content

as well as legitimate content, and as a result, they are able to confuse our filters. The follow-

ing sections describe experiments that quantitatively evaluate the influence of camouflaged

messages on our learning filters. In these experiments, we vary the amount of camouflage

(i.e., the relative proportions of the spam and legitimate content) used in the messages, and

we also vary how the camouflaged messages are used in the training set and workload.

The camouflaged messages used in these experiments were generated using messages

from the original training set of 10K messages and original workload of 10K messages used

by the baseline experiment in Section 4.2.4. Each camouflaged message was created by
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combining parts of a spam message with parts of a legitimate message. For each pair of

spam and legitimate messages {s, l}, two camouflaged messages {c1, c2} were created.

c1 was created by combining a larger portion of spam content with a smaller portion of

legitimate content, and c2 was created similarly by combining a larger portion of legitimate

content with a smaller portion of spam content. In the experiments for this chapter, c1 (c2)

contained twice as much spam (legitimate) content as legitimate (spam) content.

Before continuing to our experimental evaluation, an important observation must be

made about the experiments involving camouflaged messages. In the baseline experiments,

the messages were taken from known collections of spam and legitimate messages, and

as a result, the training and evaluation of the filters was straightforward. However, it is

unclear how we should determine the “spamicity” or “legitimacy” of camouflaged messages

because they contain both spam and legitimate content. This uncertainty becomes even

more pronounced as the amount of legitimate content found in these messages increases from

0% to 100%. At what point do we “draw the line” to distinguish between a spam message

and a legitimate message? To address this question, we present a threshold t, which is used

to quantify the amount of legitimate content a camouflaged message must contain in order

to be identified as a legitimate message. A camouflaged message is identified as legitimate

if and only if the proportion of its legitimate content is greater than or equal to t. Using

this heuristic, we find that three distinct scenarios emerge. When t = 0%, all camouflaged

messages are treated as legitimate; when 0% < t < 100%, the camouflaged messages are

identified based on the proportion of their spam and legitimate content, and when t = 100%,

all of the camouflaged messages are treated as spam.

We exhaustively explored the design space for all three of these scenarios. By treating

all camouflaged messages as spam (i.e., when t = 100%) and carefully selecting the training

set, we show in Section 4.3.2.2 that the filters can accurately identify camouflaged messages.

However, similar results are not achieved in the other two scenarios.
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4.3.2 Identifying All Camouflaged Messages as Spam

In this section, we evaluate our filters’ ability to identify all camouflaged messages as spam

using a series of experiments.

4.3.2.1 Original Training with Camouflaged Workload

In our first experiment, using a training set of only original messages, we analyzed the

filters’ ability to correctly classify a workload consisting entirely of camouflaged messages.

Each filter was trained with the original training set of 10K messages used in the baseline

experiment. Then, the filters were used to classify a workload consisting of 10K camouflaged

messages, which were created using the original workload of 10K messages used in the

baseline experiment in Section 4.2.4.

When we identify all of the camouflaged messages in the workload as spam, WAcc

simplifies to spam recall because nL→L and NL are zero4. As a result, we use spam recall

as the evaluation metric for these camouflaged experiments.

Figure 14 shows the filters’ average spam recall results after 10 iterations of this experi-

ment. This figure clearly shows that our original filters are unable to successfully classify the

camouflaged messages in the workload as spam. SpamProbe consistently outperforms the

other filters, but its best average spam recall value is only 76.57%. The Näıve Bayes filter

performs the worst, consistently classifying only around 50% of the messages as spam. As

in previous experiments, SVM and LogitBoost mimic each other’s performance, but their

highest average spam recall values are only 63.38% and 64.19%, respectively.

Obviously, when our filters only use original messages in their training set, they are

incapable of correctly classifying the camouflaged messages in the workload as spam. Thus,

to improve this situation, we performed additional experiments in which we varied the

filters’ training sets.

4WAcc simplifies to spam recall:

WAcc = λ·nL→L+nS→S
λ·NL+NS

λ·(0)+nS→S
λ·(0)+NS

= nS→S
NS

= spam recall
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Figure 14: Average spam recall results for a 10K message baseline training set and a 10K
message camouflaged workload.

4.3.2.2 Camouflaged Training with Camouflaged Workload

Our next experiments attempt to correctly classify camouflaged messages by introducing

camouflaged messages into the filters’ training sets. By training the filters with camouflaged

messages, we expected to increase the filters’ ability to successfully recognize camouflaged

messages in the workload. To evaluate this expectation, we conducted two experiments.

The first experiment used a training set of 10K camouflaged messages, which were

created using the original training set of 10K messages used in the baseline experiment in

Section 4.2.4. Initially, the filters were trained to recognize all of the camouflaged messages

as spam. Then, the filters were used to classify the same workload of 10K camouflaged

messages used in the previous experiment in Section 4.3.2.1.

We omit this experiment’s results because they are virtually identical to the results

presented in the next experiment. Also, the filters created in this experiment are unable

to correctly identify legitimate messages because they have only been trained to recognize

camouflaged messages as spam. We save the discussion of this second point for Section 4.4.

The second experiment used the same camouflaged training set as the previous ex-

periment, but it also used the original training set of 10K messages used in the baseline

experiment. Thus, the filters were trained with 10K original messages as well as 10K cam-

ouflaged messages. Then, the trained filters were used to classify the same camouflaged
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Figure 15: Average spam recall results for a 10K message baseline training set, a 10K
message camouflaged training set, and a 10K message camouflaged workload.

workload used in the previous two experiments.

Figure 15 displays the filters’ average spam recall values after 10 iterations of this ex-

periment. By comparing these results to Figure 14, we see that all of the filters drastically

improved their average spam recall values in this experiment. SpamProbe exhibited the

smallest performance increase, but its best average spam recall value is still 87.49%. The

Näıve Bayes filter improved the most, increasing its best average spam recall value from

51.64% to 86.70%. SVM and LogitBoost both perform extremely well, correctly identify-

ing more than 96% (96.38% and 96.19%, respectively) of the camouflaged messages in the

workload as spam.

These results show that if we train our filters to treat all camouflaged messages as spam,

they will successfully classify the camouflaged messages in the workload as such. Thus, we

have discovered a solution for successfully identifying camouflaged messages.

4.4 Baseline Evaluation of Spam Filter Effectiveness Revisited

In Section 4.3, we evaluated techniques for classifying camouflaged messages in the filters’

workloads. In this section, we take that evaluation a step further in order to determine the

effect our proposed solutions have on each filter’s baseline performance with the original

workload. If one of the proposed solutions sacrifices the filters’ ability to classify messages

in the original workload, its overall worth is significantly discounted.

57



 0.91

 0.92

 0.93

 0.94

 0.95

 0.96

 0.97

 0.98

 0.99

 1

 640 320 160 80 40 20 10

W
ei

gh
te

d 
A

cc
ur

ac
y,

 λ
 =

 9

Number of Retained Features

SpamProbe
Naive Bayes

SVM
LogitBoost

Figure 16: Average WAcc results (λ = 9) for a 10K message baseline training set, a 10K
message camouflaged training set, and a 10K message baseline workload.

The series of experiments we used to analyze each proposed solution’s effect on the

baseline performance is very similar to the series of experiments performed in Section 4.3.2.2.

The training set used in each of the experiments in this series is the same as the training

set in the corresponding experiment in the previous series. However, instead of using the

camouflaged workload of 10K messages used in the previous series, this series’ experiments

used the original workload of 10K messages used in the baseline experiment.

The first experiment in this series used the filters that were only trained to treat all

camouflaged messages as spam. We omit the figure for this experiment’s results because the

filters created in this experiment perform so poorly with the baseline workload. As explained

in Section 4.3.2.2, these filters are unable to correctly classify legitimate messages because

they have only been trained to identify spam. Since this proposed solution dramatically

reduces the filters’ baseline performance, it must be rejected.

The results obtained in the first experiment highlight an important point about our

proposed solutions. To be a truly effective solution, the training method must create filters,

which successfully classify camouflaged messages while also maintaining the filters’ baseline

performance. With that in mind, we now describe our final experiment.

The last experiment used the filters that were trained with the original training set and

trained to treat all camouflaged messages as spam. Figure 16 shows the average WAcc

results for λ = 9 after 10 iterations of this experiment. By comparing Figures 16 and 13, we
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discover that the average WAcc values for the filters in this experiment are very similar to

the corresponding values in the baseline experiment. SpamProbe’s performance experienced

almost no change from the baseline experiment. SVM and LogitBoost experienced a modest

performance decrease, but the decline in performance was only a couple percentage points.

These results illustrate the filters’ ability to correctly classify the original workload when

they are trained with the original training set and trained to treat all camouflaged messages

as spam. Additionally, since we concluded in Section 4.3.2.2 that these filters could correctly

classify camouflaged messages as spam, we have experimentally proven that this proposed

solution is truly effective at accurately classifying both camouflaged and original messages.

4.5 Related Work

The use of machine learning algorithms in spam filters is a well established idea. Previous

research [6, 9, 117, 127] has shown that the Näıve Bayes algorithm can be used to build

very effective personalized spam filters. Similar results have also been obtained for Support

Vector Machines [9, 46, 156] and Boosting algorithms [9, 26, 156]. However, our work is

unique in that we study the effectiveness of spam filtering on a very large scale. We used

corpora that are two orders of magnitude larger than those used in previous evaluations,

and as a result, we have shown that machine learning techniques can be used to successfully

filter spam at the gateway.

We are not the first to suggest that learning filters are potentially vulnerable to attack.

Graham-Cumming gave a talk at the 2004 MIT Spam Conference [70], in which he described

an attack against an individual user’s spam filter. This attack inserted random words

into spam messages. A previous paper [151] attempted to expand this attack by adding

commonly occurring English words instead of random words. Our research differs from this

previous work in a number of ways. First, our described attack (i.e., camouflaged messages)

uses portions of real legitimate email, and as a result, it creates more confusion than the

previously mentioned attacks. Second, our evaluation incorporated a larger set of learning

filters. Finally, we focused our attention on gateway filtering, not user-specific filtering.

Attacking a spam filter can be thought of as an example of how machine learning
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algorithms can be defeated when an adversary has control of the workload. Thus, this

chapter is similar in spirit to [42], in which the authors used game theory to model attacks

on spam filters. In that paper, the emphasis was placed on the game theoretic modeling;

however, we showed that in the domain of spam filtering, a spammer can successfully attack

current filters without using sophisticated game theoretic methods.

4.6 Summary

In this chapter, we used large corpora (half a million known spam and about the same num-

ber of legitimate messages from public collections) to evaluate learning filter effectiveness in

spam filtering. The use of such large corpora represents a collaborative approach to spam

filtering because it combines many sources in the training of filters. First, we evaluated

a production-use filtering tool (SpamProbe) and three classic machine learning algorithms

(Näıve Bayes, Support Vector Machine (SVM), and LogitBoost). We found these filters to

be highly effective in identifying spam and legitimate email, with an accuracy above 98%.

Second, we described a simple method of attacking these learning filters with camouflaged

messages, which significantly lowered the effectiveness of all the learning filters in our large-

scale experiments. Third, by exploring the design space of training strategies, we found that

by treating all camouflaged messages as spam during the training phase, we can restore the

filters’ effectiveness to within a couple percentage points of their baseline accuracy.
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CHAPTER V

EVOLUTIONARY CHARACTERISTICS OF EMAIL SPAM

The goal of spam producers is to create spam messages that reach their intended receivers

(called victims or simply users). In response to the increasing amount of spam, many

victims have adopted statistical learning filters [9, 68, 127, 156] with the goal of finding and

“killing” spam before it reaches their mailboxes. These frontally opposing goals have been

modeled as an arms race [42, 104], with the evolution of spam construction techniques and

the increasing sophistication of spam filtering techniques. Our study on spam evolution is

inspired by an analogy between the spam arms race and the biological arms race, where

new drugs (e.g., antibiotics) are created to kill existing bacteria as well as the subsequent

evolution of new bacteria variants that are capable of resisting these new antibiotics.

In this chapter, we describe a population evolution study of spam construction tech-

niques based on their “genetic markers” in spam messages. Specifically, we adopt the

detailed analysis of spam message content and structure developed and maintained by the

SpamAssassin Project [140]. In SpamAssassin 3.1.0, 495 spamicity tests are used to char-

acterize spam. These tests reflect specific spam construction techniques that are used by

spam producers. Typically, these spam construction techniques are syntactically correct

features that are rarely used in legitimate email but frequently abused by spam producers

in the construction of many spam messages. Like genetic markers, the spamicity tests help

characterize spam through a detailed analysis of message content and structure. However,

unlike genetic markers that deterministically characterize a strain of bacteria, the spamic-

ity tests are statistical in nature, only indicating a probability of whether the message is

spam. We observe at the outset that we are not evaluating the effectiveness of SpamAs-

sassin’s approach (as a spam filtering technique). We simply use SpamAssassin’s tests as a

type of “genome mapping” in our study of spam evolution. Concretely, we will look at the

prevalence of spam messages that employ specific spam construction techniques (i.e., they
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test positive for specific spamicity tests) and analyze the changes in their popularity over a

three-year period. This is analogous to a population study of bacteria strains using specific

genetic markers. As a result, we sometimes refer to spam messages that test positive for a

spamicity test as a “strain of spam.”

In this chapter, we study two trends in the analysis of spam construction techniques.

The first trend of interest is extinction, indicated by the population of a strain of spam

declining to zero or near zero during the study period. We will attempt to find a causal

explanation for the spamicity tests that show extinction of spam messages employing those

spam construction techniques. The second trend of interest is co-existence, indicated by a

sustained population of a strain of spam, particularly through the end of the study period.

Co-existence shows the survival of some spam construction techniques, even though the

presence of spamicity tests shows a clear ability to identify those strains of spam messages.

We found that explaining co-existence was usually quite speculative at this stage of study.

In our trend analysis of spam construction techniques, we classify the spamicity tests

(and our explanations) into three groups of significant factors in our study of spam evolution.

These groups are: (1) significant environmental changes, (2) individual filtering techniques,

and (3) collaborative filtering techniques. For the cases of extinction, our hypothesis is that

the identification of that spam construction technique (i.e., the definition of that spamicity

test) was the cause of extinction. Conversely, the long term persistence of a strain of

spam would indicate that the corresponding spamicity test did not cause the extinction of

the strain, even though that spam construction technique is clearly identifiable. The co-

existence of a persistently surviving spam construction technique and its spamicity test in

spam filters indicates an equilibrium similar to the co-existence of a pray and its predator.

The co-existence does not necessarily mean the predator is ineffective in killing some of

the pray. It simply indicates some concrete limitations in the predator’s killing capability

that allows the pray to continue to survive and perhaps even thrive. This study does not

evaluate quantitatively the “amount of killing” for each spamicity test, which is a subject

of future research.

The main contribution of the chapter is the large-scale experimental evaluation of the
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prevalence of representative spam construction techniques over a three-year period. Con-

cretely, we study the evolution of more than 1.4 million spam messages that were collected

from January 2003 through December 2005. Through this study, we have found convincing

evidence that some factors have been effective in causing the extinction of specific strains

of spam. As an example of significant environmental changes in the extinction category,

the removal of USERPASS support by Internet Explorer and Mozilla in 2004 seems to have

effectively eliminated that feature from spam messages. Prior to this environmental change,

spammers (and phishers, in particular) were exploiting a syntactic feature of URLs (i.e., the

ability to include arbitrary text in the <user>:<password> field of a URL) that allowed

them to deceive users.

Perhaps more intriguingly, we failed to find conclusive evidence of extinction where

some was expected. For example, URL block lists are considered an effective method for

identifying spam-related URLs. When they are adopted by collaborative filtering, they are

a powerful technique to identify spam [31, 119]. However, Figure 26 shows that despite the

deployment of block lists by many sites, a significant percentage of spam messages persist

in containing URLs that are listed on the block lists. Therefore, we include the URL block

lists in the co-existence category. We note the coarse granularity of our study, which is only

concerned with the extinction or co-existence of a particular spam strain. Consequently,

URL block lists could be effective in distinguishing a number of spam messages, but they

have not been as strong a deterrent as the removal of USERPASS support by browsers.

Our study based on spamicity tests has goals and methods that are qualitatively different

from most previous and current reports on spam evolution [22, 23, 50, 85, 138], which focus

primarily on the evolution of spam content (e.g., the emergence and popularity of certain

topics such as drugs and stocks). By focusing on spamicity tests, our goal is to learn more

about what allows some spam messages to pass through the filters to reach their victims and

what prevents others. This is in contrast to topical analysis, which is primarily a reflection

of the expected economic gains of spam producers.

The rest of the chapter is organized as follows. Section 10.3 describes our spam corpus

and experimental setup. Section 5.2 shows illustrative examples of spamicity tests that
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became extinct over time. Section 5.3 summarizes examples of spamicity tests that show

unexpected resilience to filtering techniques. Section 5.4 summarizes related work, and

Section 5.5 summarizes our findings.

5.1 Experimental Evaluation Method

5.1.1 Spam Corpus Collection and Preparation

Since January 2003, we have been collecting spam messages systematically. For each period

(e.g., monthly), we copy the new spam messages from the SpamArchive spam corpora1.

As of January 2006, our accumulated spam corpus contained more than 1.4 million spam

messages. SpamArchive’s spam messages are stored in two collections: submit and submi-

tautomated. The messages in the submit collection were submitted individually by users,

and the messages in the submitautomated collection were submitted by automated tools on

behalf of their users. Each of these collections contains close to a thousand archives that

are stored as gzipped mbox folders. The spam messages within these mbox folders contain

most of their original headers; however, some information has been removed to protect the

privacy of the users that submitted the messages. Specifically, the recipient of the message

(the “To” header) has been replaced by “submit@spamarchive.org,” and the IP address of

the relay recipient in the first “Received” header (i.e., the relay used to deliver the message

to the submitting user) has been omitted.

Since the SpamArchive spam corpora are updated daily, our system is fully automated

to update concurrently with those corpora. Every day, the system performs a number

of activities. First, it downloads the latest archives from SpamArchive’s two spam col-

lections (i.e., submit and submitautomated), and these archives are gunzipped to obtain

the corresponding mbox folders. Next, to facilitate tracking the evolution of various spam

characteristics over time, the spam messages in these mbox folders are sorted based on the

month and year they were received by the users that submitted them to SpamArchive.

The email messages stored in an mbox folder typically have three fields that store date

information: the “From ” line that delimits each message in the mbox folder (not to be

1SpamArchive’s spam corpora can be found at ftp://spamarchive.org/pub/archives/.
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Figure 17: Month-by-month break-down of the number of spam messages in our spam
corpus.

confused with the “From” email header), the “Date” email header, and the “Received”

email header(s). To sort the spam messages, we used the date information found in their

“Received” email header(s) because that information is the most reliable indication of when

the messages were delivered to the submitting users. Specifically, we used the first “Re-

ceived” header because it is attached to the message by the relay that is responsible for

delivering the message to the submitting user (i.e., the most trustworthy relay between the

spammer and the end user). We rejected the date information in the “From ” line because

it represents the date that the message was placed in the mbox folder by SpamArchive and

not the date that the message was received by the submitting user. We rejected the “Date”

email header date information because it can be spoofed easily by spammers. Figure 17

shows the distribution of spam messages that were received from January 2003 through

December 2005, based on our sorting algorithm.

5.1.2 Testing Infrastructure

As previously mentioned, the actual characteristics of spam messages that are used in our

evaluation have been adopted from SpamAssassin 3.1.0. SpamAssassin is an open source

spam filter that identifies spam messages by combining various spam detection techniques.

These techniques include textual analysis of a message’s headers and body, querying DNS

block lists, and querying collaborative filtering databases.
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Each of SpamAssassin’s spam detection techniques is composed of a variety of spamicity

tests. For example, SpamAssassin’s textual analysis component contains tests such as OB-

FUSCATING COMMENT and INTERRUPTUS, which identify examples of HTML-based

obfuscation techniques. All of these tests have a user-specified score associated with them.

When SpamAssassin analyzes a given message, it runs all of the spamicity tests. When the

message satisfies one of the tests (i.e., it tests positive), that test’s score is added to an over-

all spamicity score. The message is classified as spam if its accumulated overall spamicity

score is above a user-specified threshold. In our experiments, we are only interested in the

results of each test on each message, and we ignore the overall score since we are not using

SpamAssassin as a spam filter. Specifically, we ran the spamicity tests on the messages

(grouped by month), and for each test, we counted the number of messages (population)

that tested positive. To compensate for the variations of new spam messages each month

(Figure 17), we normalize the population count, dividing it by the total number of messages

in that month.

5.1.3 Overview of the Spam Evolution Study

In this section, we summarize the results of evaluating all 495 spamicity tests from Spa-

mAssassin 3.1.0 on our three-year spam collection from SpamArchive. We have divided

the spamicity test graphs into three groups: extinction, co-existence, and complex. The

extinction group (discussed in Section 5.2) consists of graphs that show a downward trend,

starting from a significant number of messages testing positive and ending with a rela-

tively negligible number during the last three months. The co-existence group (discussed

in Section 5.3) consists of graphs that show a persistently high number of messages testing

positive at least for the last three months (regardless of the starting point). The complex

graphs combine different trends or contain high variability, and their analysis is the subject

of future research.

The extinction group includes 236 spamicity tests, and the co-existence group includes

64 spamicity tests. We studied the distribution of test popularity within each group. Ta-

ble 15 contains the distribution of the number of tests (divided by group), according to the
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Table 15: Distribution of average results.

Average Range
Number of Spamicity Tests

Extinction Co-existence Complex
[0.0 – 0.1) 230 42 195
[0.1 – 0.2) 6 11 0
[0.2 – 0.6) 0 11 0

Table 16: Distribution of maximum results.

Maximum Range
Number of Spamicity Tests

Extinction Co-existence Complex
[0.0 – 0.1) 201 26 180
[0.1 – 0.2) 22 12 14
[0.2 – 0.3) 8 8 1
[0.3 – 0.4) 4 4 0
[0.4 – 0.5) 1 5 0
[0.5 – 0.9) 0 9 0

average percentages calculated over the three-year period. The overwhelming majority of

tests averaged less than 10% of the messages, with only 22 tests in the co-existence group

averaging between 10% and 60%. Since the co-existence group consists of curves that re-

main flat (to be considered surviving), it is expected that this group contains the highest

average numbers. However, the average does not represent the extinction group since it

blurs the downward trend that characterizes the group. Table 16 contains the distribution

of the number of tests according to the maximum percentages achieved during that three-

year period. The table shows that the extinction group contains a significant number of

tests (35) that started with more than 10% of messages containing that spam construction

technique.

The remaining graphs (Figure 18 through Figure 27) shown in the chapter are population

evolution graphs, with the x-axis representing time (from January 2003 through December

2005) and the y-axis representing the percentage of messages (in a given month) that tested

positive for the various spamicity tests being shown in the graph.
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Figure 18: Evolution of the presence of Username:Password URLs.

5.2 Evidence of Extinction

Of the 236 graphs in the extinction group, we selected a few of the most interesting ones for

discussion. In a sense, these are the “success stories” for spam filtering or other techniques

that combat spam since spam producers are completely avoiding these markers.

5.2.1 Significant Environmental Changes

The evolution of the USERPASS spam signature is an example of the extinction category.

According to RFC 1738 [19], URLs with the following format are syntactically valid:

<scheme>://<user>:<password>@<host>:<port>/<url-path>

However, spam producers (particularly, phishing message producers) began to exploit this

URL format to deceive users, disguising their malicious sites by inserting a popular site in the

<user>:<password> field. For example, a phisher might use http://www.ebay.com@badsite.com

to trick users into believing they’re accessing ebay.com, when they’re actually accessing

badsite.com. A more extensive discussion of this technique (and its many variations) is

provided in [116]. The USERPASS spam signature tracks messages that contain URLs

with the <user>:<password> format. As Figure 18 shows, more than 10% of the spam

messages in almost every month from May 2003 through January 2004 contained at least

one USERPASS URL. Then, rather abruptly, only 4.7% of the spam messages in February

2004 contained a USERPASS URL. In the following month, this percentage fell to 1.9%,
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and by May 2004, almost none of the spam messages contained a USERPASS URL. Upon

observing this trend, the most obvious question is, “What forced phishers to abandon this

technique?”

On February 2, 2004, Microsoft issued Microsoft Security Bulletin MS04-0042 along

with a security update that removed support for USERPASS URLs from Internet Explorer.

The Mozilla Project quickly followed suit by removing USERPASS support from Mozilla

(as described in Mozilla’s Bugzilla Bug 2325673). Both of these actions are environmental

changes that made the USERPASS option useless to spam/phishing producers. As the

figure shows, by mid-2004, spam producers eliminated all USERPASS URLs from their

messages.

5.2.2 Individual Filtering

One of the earliest defenses against spam was keyword-based filters [35]. Unfortunately,

spam producers defeated keyword filters by replacing keywords with randomized misspellings.

In response, victims began to use statistical learning filters (e.g., Näıve Bayesian, Support

Vector Machines – SVM, and LogitBoost) [9, 68, 127, 156] that are capable of learning and

identifying a large number of unpredictable misspellings. These filters operate individually

(i.e., they are trained by each user), and it appears that some spam strain extinctions are

due to the effectiveness of these individual filters. An example is HTML-based obfuscation

techniques.

We first discuss the evolution of four spam construction techniques involving HTML-

based obfuscations:

• OBFUSCATING COMMENT

• INTERRUPTUS

• HTML FONT LOW CONTRAST

• HTML TINY FONT

2http://www.microsoft.com/technet/security/bulletin/
MS04-004.mspx

3https://bugzilla.mozilla.org/show bug.cgi?id=232567
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Figure 19: Evolution of specific HTML-based spam obfuscation techniques.

These techniques are used to disguise keywords that indicate spam (have high spamicity

scores). Each one of the techniques can be used to invisibly divide spam keywords into

randomized components. The result is the avoidance of keyword filters and low spamicity

scores by statistical learning filters since the customary spam keywords are never present

in their entirety. For example, LOW CONTRAST and TINY FONT were used to

introduce virtually invisible fragments so the visual presentation becomes quite different

from the underlying parsed text. Similarly, COMMENT and INTERRUPTUS are

used to insert HTML tags in the middle of keywords, making the keywords unrecognizable

by learning filters. For example, spam producers might obfuscate the word Viagra using

Vi<xxx>ag<yyy>ra or V<!−−x−−>iagr<!−−y−−>a.

Figure 19 shows the evolution of these four spam construction techniques. Initially, the

COMMENT and INTERRUPTUS techniques were the most popular. Then, as the

popularity of the COMMENT technique steadily declined, spammers focused their atten-

tion on the INTERRUPTUS technique. When the INTERRUPTUS technique began to

decline (after November 2003), the LOW CONTRAST and TINY FONT techniques

were already rising in popularity. These phase differences suggest an arms race between

spam producers and individual filters. As spam producers adopt an HTML-based obfus-

cation technique, spam filters (e.g., SpamAssassin and statistical learning filters) begin to

associate the technique with high spamicity scores during the continuous retraining of the

filter. As we explained in the previous chapter, the effectiveness of filter retraining forces
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Figure 20: Evolution of all HTML-based spam obfuscation techniques.

spam producers to migrate to a new obfuscation technique. Figure 19 shows four specific

examples of these arms race cycles.

Fortunately, the spamicity tests also give us a tool to analyze all HTML-based obfusca-

tion techniques as a group. Figure 20 shows the population of spam messages that employ

any HTML-based obfuscation techniques, classified by the percentage of HTML obfusca-

tion content in each message. For example, the line marked as HTML OBFUSCATE 05 10

represents the percentage of spam messages with a message body consisting of between

5% to 10% HTML obfuscation content. Similarly, the line for HTML OBFUSCATE 05 90

represents almost all of the messages that contain HTML obfuscation content. In Figure 20,

we can observe that the line for HTML OBFUSCATE 05 90 gradually increases, indicating

a possible learning curve. Then, after the peak in October 2003, spam producers began

to slowly move away from HTML-based obfuscations, and by March 2005, the number of

messages containing HTML obfuscation techniques became vanishingly small.

Figures 19 and 20 suggest that individual filters won a battle against spam producers

in the HTML-based obfuscation arms race. Although new obfuscation techniques (e.g.,

camouflage attacks) continue to plague learning filters, the individual filters were able to

successfully detect HTML-based obfuscation techniques. As a result, by the end of 2005,

this filtering ability forced the spam producers to virtually abandon spam construction

techniques using HTML-based obfuscation.
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Figure 21: Evolution of the presence of URLs in spam messages.

5.2.3 Collaborative Filtering

Our efforts to find a clear example of extinction for spamicity tests in the collaborative

filtering category failed to yield good results. Instead, we found some evidence of co-

existence (Section 5.3.3), where clearly effective collaborative filtering techniques did not

cause those spam construction techniques to become extinct. Whether collaborative filtering

techniques have inherent limitations that prevent them from “killing off” some strains of

spam is an interesting area of future research.

5.3 Survival and Co-Existence

In this section, we discuss examples of spam construction techniques that exhibit unexpected

and persistent resiliency. These examples are interesting since they seem to work well for the

spam producers, despite explicit identification tests and attempts to filter them out. This

phenomenon is contrary to our expectations since we would normally expect the spamicity

tests to be effective in filtering out these targeted spam messages. The resilient nature of

these spam construction techniques makes them good candidates for further research since

these strains of spam are surviving and perhaps even thriving.

5.3.1 Significant Environmental Changes

First, we discuss a spamicity test that, by definition, cannot be used to extinguish spam

messages: the presence of URLs in an email message. In contrast to USERPASS, which
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Figure 22: Evolution of the presence of URLs with specific TLDs.

was rarely used in general, URLs are often present in both spam and legitimate messages.

Figure 21 shows that at least one URL appeared in between 85% and 95% of spam messages

in every month except for October 2003 (when only 75% of the spam messages contained

at least one URL).

Although a single data point could be the result of data collection problems or ran-

dom statistical fluctuations, we have a conjecture for the dip shown in October 2003. On

September 23, 2003, California Governor Gray Davis signed into law an anti-spam bill,

Senate Bill No. 186, that made each email advertisement fineable up to $1 million [118].

This could explain the removal of URLs from some spam messages and the dip shown in

October 2003. Unfortunately, Congress passed the CAN-SPAM Act at the end of October,

which replaced the strict penalties detailed in the California anti-spam bill [90]. This could

explain the “back to business as usual” mindset of spam producers and the restoration of

URLs to their normal level.

A refinement of the URL-presence spamicity test consists of the tests for URLs with

specific top level domains (TLDs). While COM and NET are commonly used TLDs, other

TLDs such as BIZ and INFO have also been used frequently by email marketers. Figure 22

shows the evolution of spam messages containing URLs with four specific TLDs: COM,

NET, BIZ, and INFO (the four most popular TLDs found during the three-year period).

We observe a dip in the COM curve around October 2003 (lasting four months). This dip

seems anti-correlated with a peak in BIZ around the same time. Whether this valley and
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Figure 23: Evolution of messages that pretend to be sent using Outlook.

peak are correlated with the dip in Figure 21 is open for debate. Another observation from

Figure 22 is that the spam producers’ favorite TLD choice (other than COM) has changed

from NET (January 2003 to June 2003) to BIZ (July 2003 to July 2004) and INFO (August

2004 to March 2005), with NET eventually returning to the top position (April 2005 to

December 2005).

5.3.2 Individual Filtering

In this section, we analyze three cases of individual filtering that were unsuccessful, despite

seemingly having the capability to extinguish spam messages of a particular strain. The

first case concerns spam messages that pretend to be sent by Outlook (i.e., the messages

contain a forged “X-Mailer” header with “Microsoft Outlook”). When the real Microsoft

Outlook application sends an HTML email message, two versions of the message are sent:

the HTML version and an automatically generated plain text version. Since the forged

messages only contain HTML content, they could not have been sent by Outlook; thus, this

spamicity test is a fairly reliable indicator of spam. Figure 23 shows the survival and co-

existence of spam messages containing the forged Outlook header with this spamicity test.

In 2003, the forged header was consistently identified in over 15% of the spam messages,

but this value dropped to around 5% in 2004. Surprisingly, in 2005, the technique began to

grow in popularity towards 15%, despite the spamicity test.
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Figure 24: Evolution of messages that use at least 2 illegal characters in their “Subject”
headers.

The second case consists of messages that use at least 2 illegal characters in their “Sub-

ject” headers. An illegal character is defined as a character that should be MIME encoded

(as per RFC 2045 [58]) but is not. Figure 24 shows the evolution of the number of messages

that employ this spam construction technique. This figure shows that despite the identi-

fication of this spamicity test and attempts to filter it out, the number of spam messages

containing such illegal characters actually grew from about 2% before 2005 to about 20%

at the end of 2005. The reasons for this thriving spam construction technique are a subject

of future research.

The third case consists of messages that contain a specific pattern in their “Message-ID”

headers. The pattern is defined by the following Perl regular expression:

<[0-9a-f]{4,}\$[0-9a-f]{4,}\$[0-9a-f]{4,}\@\S+>

This pattern is legitimately used by mail clients that place “Produced By Microsoft

MimeOLE” in their “X-MIMEOLE” headers. Thus, if a message contains the pattern

without this value in its “X-MIMEOLE” header, the “Message-ID” header is considered

forged, and the message is considered spam. Figure 25 shows the evolution of the number

of messages that have the above pattern in their “Message-ID” headers. This feature has

gained and lost popularity over the years, with a low of 2% in early 2005, followed by a

sudden growth during 2005, and another low of 2% at the end of 2005. Due to the ups and
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Figure 25: Evolution of messages that have a specific pattern in their “Message-ID”
headers.

downs in the figure, despite the ease of executing this spamicity test, whether this strain of

spam has become extinct is unclear. Depending on the interpretation of the curve during

2005, Figure 25 can be interpreted as extinct (if you only look at the last three months),

co-existence (if you take the average for the year), or inconclusive and therefore in the

complex category.

5.3.3 Collaborative Filtering

Another example of an obviously effective spamicity test concerns “URL block lists” that

enumerate URLs that are known to be spam-related through reliable sources. These block

lists are typically constructed and maintained by collaborative filtering (i.e., contributions

by many trusted participating users). For a given block list, the spamicity test finds the

spam messages that contain at least one URL that appears on that block list. Figure 26

shows the evolution of the number of messages that contain at least one URL that appears

on one of three block lists: ws.surbl.org, jp.surbl.org, and ob.surbl.org.

As the figure shows, the percentage of spam messages that contained at least one URL

on any of the three block lists remained below 20% up until March 2004. Then, from March

2004 through August 2004, the percentage of spam messages that contained at least one

URL on ws.surbl.org grew from 21.4% to 71.9%. It took jp.surbl.org slightly longer to gain

this level of popularity, but from March 2004 through October 2004, the percentage of spam

messages that contained at least one URL on this block list grew from 17.5% to 78.6%. The
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Figure 26: Evolution of URLs appearing on block lists.

ob.surbl.org block list was the slowest to obtain popularity, but from October 2004 through

November 2004, the percentage of spam messages that contained at least one URL on this

block list skyrocketed from 5.1% to 62.0%.

An alternative explanation for the population gains in Figure 26 is the improvement in

collaborative filtering performance. Suppose that the effectiveness of collaborative filtering

is directly related to the participation of effective collaborators. It is reasonable to assume

that at the beginning of any collaborative effort, only a limited number of effective collab-

orators participate, with a limited coverage. In the case of block lists, this effect would

translate to a partial coverage of known spam-related URLs. As more and more people

contribute suspicious URLs, the block list becomes more comprehensive, and the spamicity

test becomes more effective. This may explain the phase differences among the three lists,

if we assume that ws.surbl.org achieved full effectiveness first, followed by jp.surbl.org and

ob.surbl.org. Figure 26 shows that the block lists are clearly effective in identifying spam

messages (finding more than 50% of the spam messages after November 2004) that contain

spam-related URLs.

As we acknowledge the success of URL block lists, the continued and constant presence

of spam-related URLs in spam messages also shows that the effectiveness of block lists is

somehow limited. Unlike USERPASS and HTML-based obfuscation, which became extinct

by a change in browser technology and effective individual filtering, the presence of spam-

related URLs on block lists did not completely “kill” this strain of spam. The survival
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Figure 27: Evolution of relays appearing on block lists.

and co-existence of spam-related URLs on block lists implies that the benefits for spam

producers to continue including spam-related URLs in their messages may outweigh the

costs of being identified and filtered by the block list spamicity tests.

One possible explanation for this phenomenon involves a cost/benefit analysis from the

spam producer’s point of view. It is obvious that having a convenient URL directly pointing

to the spam producer’s Web site is very valuable. If the spamicity test is able to completely

and immediately filter out all such spam messages, this strain of spam would probably

become extinct. Since we assume the block list coverage is very good, the main question

is the length of the time lag between the creation of a spam-related URL and its detection

and inclusion on a block list. Despite the presence of effective collaborators, it is reasonable

to assume a non-negligible time lag (e.g., on the order of hours or days) exists between

the creation of a new URL and its discovery and inclusion on a block list. This time lag

could be a fundamental limitation of the collaborative filtering approach, which is based on

effective human participation.

Another analogous collaborative approach is DNS block lists. Unlike the URL block

lists described above, DNS block lists attempt to filter messages based on the servers that

were used to deliver the messages. Figure 27 shows the evolution of the number of spam

messages that were delivered through at least one relay that appears on a DNS block list.

Three block lists are represented: The Distributed Sender Blackhole List (DSBL), The

Spam and Open Relay Blocking System (SORBS), and NJABL.ORG. We observe both
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growth (probably due to the stabilization process described above for collaborative filters

in general) and decline of this spamicity test in Figure 27. However, as of December 2005,

the spam messages that pass through at least one of the relays on these lists did not become

extinct (at around 20%). We believe the time lag explanation above also applies here.

5.4 Related Work

Previous studies that investigated the evolution of spam were primarily concerned with

the content of spam messages. Fawcett [50] discovered a few interesting spam trends that

occurred in 2002. In his study, he found a great deal of variation in the traffic patterns

of spam and legitimate email messages, and using these variations, he illustrated the time

variation of the class prior p(spam). He also investigated the evolution of spam message

content over time, finding a number of complex trends. Specifically, he found that spam

terms (i.e., words that appear in spam messages) fall into a combination of three categories:

constant, periodic, and episodic occurrences. Finally, Fawcett mentioned the early stages of

the “spam arms race,” primarily focusing on simple techniques that were created to defeat

keyword filters.

On two separate occasions [22, 23], Brightmail published statistics about the evolution

of spam traffic and spam content. In the first set of statistics [22], they showed that from

January 2003 through December 2003, the percentage of all email that was spam grew from

42% to 58%. Additionally, in December 2003, they found that most spam messages were

categorized as PRODUCTS (21%) and ADULT (18%). In the second set of statistics [23],

they showed that from January 2004 through March 2004, the percentage of all email that

was spam grew from 60% to 63%. Additionally, in March 2004, they found that most

spam messages were categorized as PRODUCTS (25%) and FINANCIAL (20%). In the

middle of 2005, Sophos also released statistics that provided spam content categorizations.

Specifically, they found that from January 2005 through June 2005, Medication/pills was the

top spam category (41.4% of all spam messages during that period), followed by Mortgage

(11.1% of all spam messages during that period).

Hulten et al. [85] “hand-examined” 200 spam messages from a one month period in 2003
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and 1000 spam messages from a one month period in 2004. The purpose of this examination

was to identify the types of products being promoted and the types of exploits being used by

spam messages. Their main observations were that non-graphic porn/sex content was the

most prevalent spam category and that “text chaff” (i.e., textual obfuscation techniques)

was the most prevalent exploit in their data.

Our study differs from the previous work on spam evolution in several ways. First, we

study the evolution of spam construction techniques in spam messages, instead of spam

content. Second, our study uses large corpora (over 1.4 million spam messages over a

three year period) to produce concrete and clear evidence of evolution. Third, we focus

on two clear trends (extinction and co-existence) that give us a quantitatively supported

evaluation of spamicity test effectiveness in “killing” spam messages (either completely for

the extinction group or partially for the co-existence group).

5.5 Summary

In this chapter, we studied the evolution of spam, focusing on a trend analysis of spam con-

struction and filtering techniques. The study used over 1.4 million spam messages that were

collected from SpamArchive between January 2003 and January 2006. The spam construc-

tions and filtering techniques were adopted from the spamicity tests found in SpamAssassin

3.1.0. The study ran all of the messages through all of the spamicity tests, and it plotted

the percentage of messages for which the test result was positive through the three-year

period.

We consider two trends in this study: the spam construction techniques that became

“extinct” (zero or near zero spam messages for that spamicity test) and the spam con-

struction techniques that survived and co-exist with a well-defined spamicity test. We

divide the explanations of these trends into three groups of spamicity tests: significant

environmental changes, individual filtering, and collaborative filtering. Extinction of a

spam construction technique means complete filter effectiveness (e.g., individual filtering

of HTML-based obfuscation techniques) or environmental changes (e.g., the elimination of

USERPASS functionality in browsers). In contrast, co-existence indicates the existence of
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concrete limitations in the spam filters. Identified examples include forged Outlook “X-

Mailer” headers and illegal characters in “Subject” headers for individual filters and block

lists for collaborative filtering.
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CHAPTER VI

DEFENDING CLASSIFIERS AGAINST CAMOUFLAGED EMAIL

SPAM

Spam email has become a costly and pervasive problem. In response, the Messaging Anti-

Abuse Working Group (MAAWG), formed by major Internet Service Providers, began

tagging and blocking spam messages in the backbone of the Internet. According to the

2006 First Quarter Report of MAAWG, close to 370 billion emails were tagged or blocked

as spam in the backbone, compared to 90 billion emails that were considered legitimate

and delivered to their destinations. Despite this partial success, we showed in the previous

chapter that none of the current defensive techniques against spam are effective over a long

period of time due to the continuous adaptation of spammers. As an example of successful

spammer adaptation, anecdotal evidence suggests that many of the spam messages that

are reaching their destinations contain camouflaged content (i.e., legitimate tokens that are

unrelated to the spam message and used to mask spam content). This camouflage follows a

history of spammer adaptation, which began with the many misspellings of VIAGRA and

has become increasingly sophisticated over time.

Camouflaged spam messages were originally created in response to statistical learning

filters [6, 7, 8, 9, 46, 70, 117, 127, 151, 156], which analyze the textual content of emails

to distinguish spam from legitimate messages. Due to the initial success of learning filters

(against spam with little to no camouflage), they have been incorporated into major mail

clients (e.g., Microsoft Outlook and Eudora) as well as many mail servers. One of the most

important advantages of statistical filters is their ability to learn the many variations of spam

text (e.g., misspellings of VIAGRA) automatically from new spam messages. Unfortunately,

as we found in Chapter 4, the increasing amount of camouflage in spam creates an instance

of the adversarial classification problem, where spammers attempt to use legitimate tokens

as camouflage to deceive these filters. Currently, most adversarial classification researchers
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believe a general solution does not exist for this problem because the victims are always

reacting to spammers’ new camouflage (see Section 6.1 for more details), perpetuating a

continual camouflage arms race.

Although both the history of the spam domain and the general adversarial classification

field suggest a never ending camouflage arms race, the main contribution of this chapter is

an approach to statistical learning filter design that helps to escape this arms race. Our

method makes statistical learning filters resistant to randomized, camouflaged content by

exploiting a careful assignment of weights to spam features (scores for the tokens associ-

ated with spam messages) and legitimate features (scores for the tokens associated with

legitimate messages). The differentiated treatment of spam features and legitimate features

is implemented by retaining a sharply different number of legitimate and spam features

when training the learning filters and giving them appropriate weights. As a result, we are

able to increase the sensitivity of learning filters to detect the spam tokens, even in the

presence of camouflage. An intuitive explanation is based on the observation that “strong”

spam tokens (also known as low-entropy features – e.g., misspellings of VIAGRA) are good

indicators of spam, and as such, they should receive special attention because legitimate

messages usually do not contain such low-entropy spam features.

The goal of spammers is to use camouflaged content to make their spam messages

“look like” legitimate messages to text-based learning filters. Despite the presence of this

camouflaged content, we argue that text analysis is a fundamental part of content filtering

because legitimate emails are typically compromised of a non-trivial percentage of text.

Thus, most of the messages that contain only images or URLs can be easily classified as spam

because very few legitimate messages are dominated by images or URLs. Consequently, we

conjecture that spammers will inevitably use a significant amount of camouflaged text to

effectively emulate legitimate emails. This observation (and conjecture) suggests that our

method to detect spam, despite camouflage, may have increasing relevance and impact as

spammers continue to add a growing amount of camouflage to their spam messages.

Our experimental results show that the combination of a small number of legitimate

features and a large number of spam features achieves two goals. First, the small number
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of legitimate features is an effective strategy to reduce the influence of camouflage because

an increased number of legitimate features in a camouflaged message will no longer signifi-

cantly increase the probability of the message being legitimate. Second, by increasing the

number of spam features, we can capture all of the strong spam features and find each spam

message, even if it contains only a small number of spam features. In our experiments, this

strategy restores the performance of our learning filters (Näıve Bayesian, SVM, and Log-

itBoost) against camouflage attacks, maintaining less than 10 percent false negatives and

less than 2 percent false positives, even with one thousand legitimate tokens added to the

camouflaged messages. More importantly, our method gives hope that camouflage attacks

can be countered by carefully tuning learning filters.

The rest of the chapter is organized as follows. We outline spam defense background

information and other related work in Section 9.4. In Section 6.3, we summarize our exper-

imental setup and baseline filter performance. In section 6.4, we evaluate the effectiveness

of camouflage attacks on learning filters. In Section 6.5, we evaluate the effectiveness of

retraining the learning filters and the attack/retrain cycle. In Section 6.6, we show that

by carefully tuning the learning filters, we can restore their effectiveness in distinguishing

camouflaged spam from legitimate messages. Section 6.7 summarizes our results.

6.1 Background on the Spam Arms Race

Historically, spam producers and receivers (called victims) have been engaged in an arms

race ever since spam was introduced. In round one of this arms race, the victims created

keyword-based filters to distinguish spam from legitimate messages. Typically, keyword

filters are able to find incriminating words in specific parts of messages (e.g., “Ecolife Com-

pany” as the sender or “online pharmacy” in the message body). More advanced filters

can combine these criteria into sophisticated predicates. In response (round two), the spam

producers adopted the misspelling attack, which is very effective against keyword filters

because those filters depend on a victim’s precise specification of what keywords are found

in spam messages [151]. A major problem for the victims is that keyword filters need to

be maintained manually, while misspellings can be easily and automatically produced by
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software tools. Due to the misspelling attack, most victims have reduced their reliance on

keyword filters, and as a result, spam producers are usually considered the winners of round

two.

With the decline of keyword filters, round three began when victims adopted statistical

learning filters, which are based on machine learning algorithms such as Näıve Bayes, Sup-

port Vector Machines (SVM), and LogitBoost. These statistical filters have a learning phase

in which they associate words (also called tokens or features) from known spam messages

with “spamicity” scores and words from legitimate messages with “legitimacy” scores. The

learning filters automate the process of learning the misspellings used by spam producers,

becoming capable of identifying spam with misspellings with minimal guidance by victims.

These learning filters have been shown to be quite effective in distinguishing early spam

from legitimate messages [6, 7, 8, 9, 46, 70, 117, 127, 151, 156].

In response to learning filters, spam producers entered round four by introducing cam-

ouflaged content into their spam messages and launching camouflage attacks. Typically, the

camouflaged content consists of fragments of legitimate text or simply a list of commonly

used words. These words, which are associated with legitimate messages, increase the legit-

imacy scores of the camouflaged spam messages and make them look more like legitimate

email. In Chapter 4, we showed that filters trained without the knowledge of camouflaged

messages have serious difficulties identifying those camouflaged messages as spam.

In response to camouflaged content, victims began round five by using refined learning,

a process in which learning filters are trained with spam messages that contain camouflaged

content. The refined learning filters acquire the ability to identify spam with camouflaged

content, but they are only effective against the known camouflage used in the training.

In response to this refined training, spam producers can use software tools to randomize

the camouflaged content in round six. The randomized camouflage is able to confuse the

refined filters because the filters have not seen it before (see Section 6.5.3). Ominously,

this situation is analogous to round two, where automated randomization of misspellings

defeated keyword filters, suggesting a potential defeat of learning filters in the spam arms

race. Fortunately, in this chapter, we provide a solution to camouflage attacks, which

85



restores the upper hand in the spam arms race to the victims.

6.2 Related Work

The use of machine learning algorithms in spam filters is a well established idea. Previous

research [6, 7, 9, 117, 127] has shown that the Näıve Bayes algorithm can be used to build

very effective personalized spam filters. Similar results have also been obtained for Support

Vector Machines [9, 46, 156] and Boosting algorithms [9, 61, 156].

In order to be successful, learning filters must identify features that distinguish legit-

imate instances from spam instances. As a result, these filters are vulnerable to attack

by spam messages that possess a significant number of legitimate features. For example,

Graham-Cumming [70] described an attack against an individual user’s spam filter that in-

volved inserting random dictionary words into spam messages. Then, Wittel and Wu [151]

added commonly occurring English words to spam messages instead of random words. As

another extension, we used portions of legitimate message to construct camouflaged mes-

sages in Chapter 4. Lowd and Meek [104] explored the effectiveness of both active and

passive attacks with varying amounts of legitimate content added to attack spam messages.

Through their evaluation, they conclude that the only remedy for filtering attack messages

is through frequent retraining. More generally, there is an area of the machine learning field

called adversarial classification. For example, Dalvi et al. [42] studied attacks against spam

filters using game theoretic methods. They found that the iterations between attacking and

retraining spam filters continue endlessly.

Our research in this chapter differs from the previous work in two main ways. First, the

attack messages in our experiments are significantly more sophisticated, utilizing legitimate

tokens from the learning filters to maximize the confusion in the filters. Second, instead of

retraining spam filters, we describe a novel approach to design camouflage-resistant spam

filters. To the best of our knowledge, this is the first published solution to the problem of

endless iterations in the camouflage arms race.

A complementary alternative to the automated retraining of learning filters is human-

driven collaborative filtering, available to large email service providers such as Hotmail and
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Gmail. The service providers supply a user-controlled button that indicates a message is

spam, as judged by that user. For such large groups of users, several clicks from independent

users may be a strong indication of the message being spam, allowing efficient filtering

before the other users have seen the message. The advantage of collaborative filtering is the

sharing of retraining work through collaboration. However, it is not available for smaller

email service providers. Furthermore, although collaborative filtering appears to have been

quite effective, it is vulnerable in two ways. First, it contains an inherent delay between

the appearance of new camouflaged content and the actual retraining process. During this

period, the camouflage attack is very effective (see Section 6.4). Second, it is vulnerable in a

way similar to adversarial classification since spam producers can infiltrate the collaborative

filtering process by providing confusing judgment (e.g., clicking on the spam button on

legitimate messages to increase the false positive rates of the collaboratively trained filter).

We see collaborative filtering as a technique that can improve the efficiency of individual

filters, while not replacing them.

6.3 Baseline Evaluation of Learning Filters

In this section, we summarize the settings for the experiments described in Sections 6.4, 6.5,

6.5.2, 6.5.3, and 6.6. Although the evaluation of spam filtering is a well known process [6,

7, 8, 9, 46, 117, 127, 156], we outline two issues in this section. First, we discuss the

processing of each message, including feature selection and header selection to minimize

corpus-specific bias. Second, we summarize the selection of large corpora (hundreds of

thousands of messages) in our experiments and include baseline filtering results (to be

compared to the attack results in subsequent sections). For readers unfamiliar with machine

learning, we have included a short explanation of the basics of statistical learning filters in

the Appendix.

6.3.1 Training and Test Corpora

It is a standard practice in machine-learning-based text classification research [103, 105,

114, 125] to use large corpora in evaluation experiments. In Chapter 3, we presented

quantitative arguments in favor of using large samples from large corpora (on the order
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of hundreds of thousands messages) in experimental evaluations of spam filters. This is in

contrast to previous evaluation experiments involving spam filters [6, 7, 8, 9, 46, 70, 117,

127, 151, 156] that have typically used only very small samples from small corpora (on

the order of a few thousand messages). The experiments in that chapter show that small

corpora lead to significantly less predictable results than large corpora. According to our

own recommendations, we use large corpora in the research reported in this chapter.

For spam message training, we collected 750K spam messages from the publicly available

spam corpora maintained by SpamArchive1 and SpamAssasin2. For legitimate message

training, we started with the Enron corpus3 [95]. However, in our experiments with this

corpus, we discovered a number of messages that appeared to be spam. To reduce the

noise in the data set, we used a Näıve Bayesian spam filter (trained with 5K randomly

selected spam messages and 5K randomly selected legitimate messages) to classify the

Enron messages. Then, we discarded the messages that were classified as spam. After this

cleaning process, the remaining 475K legitimate Enron messages were used as legitimate

messages in our experiments.

All of the collected messages were tokenized using a software tool called SpamProbe [25].

Each message is represented as a “set of words” (i.e., the set of tokens in the message).

Using this representation, each message is represented as a feature vector f of n features:

< f1, f2, . . . , fn >. All of the features are Boolean; thus, if fi = 1, the feature is present in

a given instance; otherwise, the feature is absent. This is a commonly used representation

that has been validated by previous experiments [10, 48, 129].

6.3.2 Message Processing

A concern in the processing of messages is the presence of systematic bias in the cor-

pora chosen for training. For example, in previous work, email headers were associated

with improved spam filtering performance [156]. Our experiments confirmed the improve-

ments, which appear to have been caused by biases in the corpora. An example is the

1SpamArchive’s spam corpora can be found at ftp://spamarchive.org/pub/archives/.
2SpamAssasin’s spam and legitimate corpora can be found at http://spamassassin.org/publiccorpus/.
3The Enron corpus can be found at http://www-2.cs.cmu.edu/ enron/.
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“Message-ID” header in the Enron corpus because many message headers contain “Java-

Mail.evans@thyme” as a substring. Consequently, that substring artificially increases the

legitimacy scores of any message containing it. Conversely, the “Received” header is present

in 85% of the messages in our SpamArchive corpus, but it is absent from the messages in the

Enron corpus. To remove the systematic biases due to these header types, we use messages

with only two kinds of headers: “Subject” and “Content-Type.”

6.3.3 Effectiveness of Baseline Filters

In our experiments, we randomly selected a training set of 10K messages (5K legitimate

messages and 5K spam messages) and a test set of 10K messages (5K legitimate messages

and 5K spam messages). In Chapter 3, these settings found a representative sample and

possess sufficient variety to generate reproducible results. To establish a baseline of com-

parison for the attack experiments described in subsequent sections, we initially trained our

spam filters (Näıve Bayes, SVM, and LogitBoost) with a 10K message training set using

three different combinations of retained features during the training phase: 25, 100, and

300 legitimate features and an equal number of spam features. These feature were retained

using the Information Gain feature selection algorithm.

The results of the baseline filter evaluation are summarized in Table 17, which shows

the accuracy (in terms of false negative rates and false positive rates) of the filters being

evaluated (Näıve Bayes, SVM, and LogitBoost). We see that SVM and LogitBoost generate

low false negative rates (low single digit percentages below 2%), with slight improvements

as the number of training features increases. The performance of Näıve Bayes remains

at or below 20% false negatives for all three training settings. Due to their tuning, the

filters are conservative with respect to false positives. The false positive rates for SVM

and LogitBoost vary from less than 2% for 25 legitimate and 25 spam training features to

around 0.5% for 300 legitimate and 300 spam training features. Näıve Bayes also exhibits

very low false positive rates (0.05% for 25 legitimate and 25 spam training features and

0.02% for 300 legitimate and 300 spam training features). Due to the very low false positive

rates, we omit the false positive figures in the chapter, except for Figure 34, where we show

89



Table 17: Baseline performance of the filters.

Filter False Negative Rate False Positive Rate

25 Legitimate and 25 Spam Features
LogitBoost 0.0191 0.0164
Näıve Bayes 0.1925 0.0005

SVM 0.0190 0.0169
100 Legitimate and 100 Spam Features

LogitBoost 0.0133 0.0048
Näıve Bayes 0.2043 0.0003

SVM 0.0145 0.0052
300 Legitimate and 300 Spam Features

LogitBoost 0.0134 0.0036
Näıve Bayes 0.1777 0.0002

SVM 0.0126 0.0056

the equally low false positive rates of our new filter design.

6.4 Evaluation of Camouflage Attacks

In this section, we study the camouflage attacks in round 4 of the spam arms race outlined in

Section 6.1. We describe a camouflage attack strategy against learning filters and evaluate

three popular machine learning algorithms used in spam filtering: Näıve Bayes, SVM, and

LogitBoost. We assume that spam producers have complete knowledge of both the filters

we use and the corpora we use for training. There are two reasons for this worst-case

assumption in adversarial classification. First, the filters and the corpora used are public

knowledge, and as a result, spam producers have easy access to them. Second, our results

do not depend on any secret knowledge that is hidden from the adversaries, making the

results generally applicable to several filters and corpora (as described below).

6.4.1 Construction of Camouflaged Spam Messages

In Chapter 4, we found that a simple method of creating camouflaged spam messages

involves appending a fragment of a legitimate message to the end of a spam message.

The embedded legitimate content increases the legitimacy score of camouflaged messages.

A technically more sophisticated and effective method for creating camouflaged messages

90



involves adding only legitimate tokens to spam messages. Intuitively, legitimate tokens are

tokens that appear often in legitimate messages but rarely in spam messages during the

training phase.

More precisely, legitimate tokens are characterized by high scores in three quantitative

properties: information content, probability of occurring in legitimate messages, and prob-

ability of occurring in randomly chosen training sets. They are the most effective tokens

used as camouflage for three reasons. First, learning filters only use those tokens that are

selected by their feature selection scheme (Section 6.3.2) for classification. Our feature

selection relies on Information Gain; thus, tokens used for camouflage should have high

Information Gain scores to influence the filters. Second, the legitimacy score of a token T

is defined as the probability of that token occurring in a legitimate message:

Legitimacy(T ) = Nlegitimate(T )
Nlegitimate(T )+Nspam(T ) ,

where Nlegitimate(T ) is the number of legitimate messages in which T occurs and Nspam(T )

is the number of spam messages that contain T . Third, a successful camouflage token

must be present in the training sets of filters; thus, a high probability of occurrence in

randomly selected training sets (common words) is favored over rare words. To determine

the set of legitimate tokens for a given collection of large corpora, we run a number of spam

evaluation experiments (as outlined in Section 2.2). By extracting the legitimate tokens

with high scores in the properties described above, we can find the most effective tokens for

a camouflage attack (described in the following sections).

6.4.2 Effectiveness of Camouflage Attacks

Our next set of experiments evaluates the effectiveness of legitimate tokens in a camou-

flaged message for confusing learning filters that were trained in the baseline experiments

outlined in Section 6.3.3. The legitimate test messages are the same as in the baseline exper-

iments (5K legitimate messages), but the 5K camouflaged spam messages are constructed

by adding legitimate tokens to the original spam messages. To quantify the influence of

legitimate tokens, we gradually increased the number of added legitimate tokens from 0 to

660, in increments of 60, with a final data point at 1000 added tokens. Each experiment was
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(a) 25 legitimate and 25 spam features
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(c) 300 legitimate and 300 spam fea-
tures

Figure 28: Performance of baseline filters under attack. In (a), the filters are built using
25 legitimate and 25 spam features. In (b), the filters are built using 100 legitimate and
100 spam features. In (c), the filters are built using 300 legitimate and 300 spam features.

repeated 10 times, and the averages are reported in Figure 28 in terms of false negatives

(spam messages that have not been recognized as such). We have omitted figures for the

standard deviation and coefficient of variance values because they are consistently low (i.e.,

the highest coefficients of variance are rarely larger than 5%), indicating a great deal of

precision for each of our experimental runs. Also, since the camouflage attack is aimed at

increasing false negative rates, we omit the graphs for false positives in this and following

evaluation sections. The number of false positives remains very small in these experiments

(one example will be shown in Figure 34).

Figure 28(c) shows the rapidly increasing success of camouflage attacks for the Näıve

Bayes, SVM, and LogitBoost filters that are trained with 300 legitimate and 300 spam

features. We can see that in the baseline case (with 0 attack tokens), all of the filters have
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low false negative rates. However, the situation changes quickly as camouflage tokens are

added into the attack messages. The LogitBoost and SVM filters quickly identified the

legitimate tokens and classified the camouflaged messages as legitimate (false negatives),

starting from 60 attack tokens. The Näıve Bayes filter was slightly more robust, exhibiting

a gradually increasing false negative rate that converged to 100% at 360 tokens.

This trend becomes more pronounced as the number of features used in the training

is decreased to 100 legitimate and 100 spam features in Figure 28(b) and 25 each in Fig-

ure 28(a). As the number of training features decreases, the SVM and LogitBoost filters

remain vulnerable to camouflage attacks, but the Näıve Bayes filter shows an increasing

“resistance” to camouflage attacks. Using 100 legitimate and 100 spam features, the Näıve

Bayes filter is confused only about 70% of the time, and at 25 legitimate and 25 spam

features, the confusion rate is reduced to less than 40%.

To explain this apparent camouflage resistance at lower training feature set sizes, we

observe that in many machine learning experiments, the sensitivity and performance of

filters are increased when we increase the training feature set size of the filters. We con-

jecture that such increased sensitivity might actually make the filters more vulnerable to

camouflage attacks since they are identifying the camouflage and incorporating it into the

classification decision. At 25 legitimate and 25 spam training features, the Näıve Bayes

filter appears to be much more difficult to confuse, regardless of the number of legitimate

tokens added (the circle line in Figure 28(a) is flat).

This intuitive explanation for the camouflage resistance of the Näıve Bayes filter is sup-

ported by an analysis of the probabilistic scores assigned to the spam messages. Comparing

the baseline and the attack test sets, we see that using 25 legitimate and 25 spam features

in training reduces the score changes due to the addition of camouflage. As a concrete ex-

ample, a spam message Mspam was assigned the following unnormalized probabilistic scores:

Pspam(Mspam) = 3.23 ∗ 10−3 and Plegitimate(Mspam) = 8.51 ∗ 10−27. Thus, the filter decided

that Mspam was spam. During the camouflage attack test, 600 legitimate tokens were added

to Mspam, producing Mcamou. The filter assigned new scores: Pspam(Mcamou) = 2.91∗10−21

and Plegitimate(Mcamou) = 2.83∗10−25. Thus, we see a significant decrease in the spam score
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and an increase in the legitimacy score of Mcamou. However, the changes were insufficient

to cause the filter to switch the decision from spam to legitimate, and Mcamou remains

classified as spam. This observation will be explored in depth when we describe our new

filter design (Section 6.6).

6.5 Evaluation of Retrained Filter Defense

6.5.1 Effectiveness of Retrained Filters

In the previous section, we showed that baseline filters are easily attacked by camouflaged

messages. In response (Round 5 of the spam arms race outlined in Section 6.1), typical email

managers and users resort to retraining their filters to counteract the effects of camouflage.

During retraining, filters are explicitly trained to classify camouflaged messages as spam.

This strategy is non-trivial in practice since distinguishing the camouflaged messages is usu-

ally a human activity (e.g., individual or collaborative filtering), and tools such as learning

filters have difficulties with this task (as shown in the previous section). The goal of this

section is to study the effectiveness of retraining, not to improve the performance or reduce

the cost of the retraining strategy.

To evaluate the effectiveness of retraining, we added 600 legitimate camouflage tokens

to a percentage of the spam messages in the filters’ training sets, and then, we repeated the

first experiment in Section 6.4.2. After numerous validation experiments, we found that

the filters’ were most effective when we added the camouflage tokens to 20% of the training

spam messages. Figure 29 presents the average false negative rates for the retrained filters.

In Figure 29(a), we show the results from filters trained with 25 legitimate and 25 spam

features. The Näıve Bayes, SVM, and LogitBoost filters all consistently have false negative

rates between 20% and 30%. This is a significant improvement over the results from the

previous round in Figure 28(a).

When the number of features in the filter training is increased to 100 legitimate and 100

spam features, Figure 29(b) shows that the false negative rates for the SVM and LogitBoost

filters improve to 21% and 13% (respectively) for attack messages that contain up to 600

camouflage tokens. The situation becomes more complex when the number of retained
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Figure 29: Performance of retrained filters. In (a), the filters are built using 25 legitimate
and 25 spam features. In (b), the filters are built using 100 legitimate and 100 spam features.
In (c), the filters are built using 300 legitimate and 300 spam features.

features is increased to 300 legitimate and 300 spam features. Figure 29(c) shows that

the SVM and LogitBoost filters successfully classify all camouflaged messages containing

between 420 and 660 camouflage tokens. However, the filters show different performance

losses and gains for attack messages containing between 60 and 360 camouflage tokens.

Although the Näıve Bayes filter exhibits reasonably stable performance, the performance

of the SVM and LogitBoost filters is characterized by a bell-shaped curve, with the highest

false negative rates around 120 legitimate tokens. This bell-shaped curve is an interesting

open research question. The false positive figures are omitted since the rates continue to be

very low (i.e., the same range as those listed in Table 17).

In Figures 29(b) and 29(c), the filter performance degrades noticeably for attack mes-

sages with 660 and 1000 camouflage tokens. This degradation is due to a limitation in
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the retraining process: only 600 legitimate tokens were used as camouflage in the spam

training set. Therefore, when more than 600 camouflage tokens appear in a test message,

some of the tokens are necessarily new to the filter (i.e., they were not seen by the filters

during the retraining process). The new tokens illustrate the vulnerability of the retrained

filters, which repeats the situation discussed in Section 6.4. This situation indicates the

continuation of the camouflage arms race with the retraining approach (as discussed in the

next section).

6.5.2 Retrained Filters Under Camouflage Attack

The attack process used against the retrained filters is the same as the attack process

used against the baseline filters described in Section 6.4. The new problem faced by the

attacker is finding appropriate legitimate tokens to construct effective camouflaged messages

to bypass the retrained filters. Perhaps to the advantage of spam producers, the solution

to this new problem is very similar to the selection algorithm used to obtain the original

camouflage tokens (described in Section 6.4.1). First, tokens with legitimacy scores greater

than 0.5 are extracted from the retraining process. From these legitimate tokens, the ones

with the highest Information Gain are selected for the next iteration of camouflage attack.

This process naturally eliminates the legitimate tokens used in the previous iteration since

the Information Gain of those tokens is reduced by their presence in both legitimate and

spam messages. The selection process is repeated 100 times to determine the set of tokens

that have a statistically high probability of occurring in any randomly selected training

set. Those tokens are then used for constructing new camouflaged messages for the next

iteration of attack experiments, which use the retrained filters from Section 6.5.

Figure 30 shows the results of attacking the retrained filters with new camouflage. Fig-

ure 30(c) shows accuracy results that are similar to Figure 28(c), starting from near 0 false

negatives (for the SVM and LogitBoost filters) before the attack and rising to almost 100%

false negatives when under attack. Since those figures have the same experimental settings

(300 legitimate and 300 spam training features), they show that retrained filters lose their

accuracy in a similar way. The SVM filter is the most sensitive to camouflaged content,
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(c) 300 legitimate and 300 spam fea-
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Figure 30: Performance of retrained filters under attack. In (a), the filters are built using
25 legitimate and 25 spam features. In (b), the filters are built using 100 legitimate and
100 spam features. In (c), the filters are built using 300 legitimate and 300 spam features.

reaching 100% false negatives with 120 new camouflage tokens. The LogitBoost filter is also

quite sensitive to the camouflaged content, reaching 100% false negatives with 420 new to-

kens. The accuracy of Näıve Bayes degrades the slowest, reaching only 90% false negatives

with 600 new tokens.

While Figures 30(c) and 30(b) show the same trends, Figure 30(b) exhibits a slower

accuracy degradation. Figure 30(b) also exhibits a slower loss of accuracy than Figure 28(b),

which also has filters trained with 100 legitimate and 100 spam features. This trend is

particularly visible with the Näıve Bayes curve in Figure 30(b), which remains at less than

50% false negatives, compared to the Näıve Bayes curve in Figure 28(b), which flattens at

about 70% false negatives.

Continuing this trend, Figure 30(a) is perhaps the most interesting figure because it
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resembles Figure 29(a) more than Figure 28(a). Specifically, for the SVM and LogitBoost

filters, Figure 30(a) shows that a small number of training features gives the filters a sim-

ilar camouflage resistance that we observed with the Näıve Bayes filter in Figures 28(a)

and 30(b). This resistance to camouflage attacks for a small number of training features

will be explored in Section 6.6.

6.5.3 Iterative Retraining in the Camouflage Arms Race

Section 6.4 shows that learning filters are vulnerable to camouflage attacks (Round 4 of the

spam arms race). Sections 6.5.1 and 6.5.2 show that while the retraining strategy is effective

for distinguishing the camouflaged messages that have been seen previously (Round 5), the

retrained filter remains vulnerable to the same camouflage attack using legitimate tokens

that have not been used in an attack (Round 6). An important question is whether this

cycle in the camouflage arms race will come to an end as we repeat the retraining and

renewed camouflage attacks. The following experiments suggest that such a cycle does not

seem to end quickly when new camouflage is chosen as described in the previous section.

Let us denote the baseline filter as F0 and the set of legitimate tokens associated with

F0 as L0 (i.e., the attack token set for F0). The retrained filter is denoted by F1. From

F1, we extract a new set of legitimate tokens L1. As the iteration process continues, for

each retrained filter Fi, we have its associated legitimate tokens Li. In Figure 31, each filter

evaluation experiment is denoted by an iteration number on the x-axis, starting from 0 (the

baseline). In each iteration, the retrained filter evaluation is followed by the evaluation of a

renewed camouflage attack, denoted by the iteration number concatenated with (A). Each

renewed camouflage attack contains a set of 600 legitimate tokens that are associated with

the corresponding retrained filter.

In Figure 31, each retrained filter Fi appears as a valley (i.e., it has a low average false

negative rate), and its vulnerability to camouflage attacks using Li appears as a peak. The

general trend is the same for all iterations: declining but sustained average false negative

rates under renewed camouflage attack, for each iteration. Figures 31(a), 31(b), and 31(c)

show subtle differences among the three filter training feature size settings. While a small
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tures

Figure 31: Illustration of the camouflage attack/retraining cycle. In (a), the filters are
built using 25 legitimate and 25 spam features. In (b), the filters are built using 100
legitimate and 100 spam features. In (c), the filters are built using 300 legitimate and 300
spam features.

number of features (25 legitimate and 25 spam) shows good camouflage resistance in Fig-

ure 31(a) with relatively low peaks, the same filters are unable to achieve the normally high

accuracy of learning spam filters. The figure shows relatively high valleys, compared to the

small single digit false negative rates in Table 17. Filters in Figures 31(b) and 31(c) achieve

a high level of accuracy in their valleys (comparable to Table 17), but the attacks are able

to successfully maintain around 30% average false negatives for the peaks.

6.6 Learning Filters Resisting Camouflage Attacks

With the apparently continuing camouflage attack/retraining cycle shown in Figure 31, we

have reached the main question of this chapter: “Is it possible to stop or circumvent the
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Figure 32: Attack-resistance of baseline filters with a varying number of legitimate features
used in training.

camouflage attack/retraining cycle?” We give a positive answer in this section.

6.6.1 Analysis of Camouflage Attacks and Filter Tuning

To find a way to circumvent the camouflage attack/retraining cycle, we return to the resis-

tance to attacks shown in Figures 28(a), 30(a), and 30(b). The performance of the Näıve

Bayes filter in these figures shows that training with a small number of legitimate features

seems to increase the resistance against camouflage attacks. We investigated this possibility

with a more detailed study of filter performance by varying the number of legitimate fea-

tures used in training. As an illustration, Figures 32(a) and 32(b) show the changes in filter

performance for a specific case (camouflaged spam with 600 attack tokens added), while we

vary the number of legitimate features used in filter training between the range of 5 and 50,

combined with a fixed spam feature set size of 25. Figure 32(a) shows that the filters’ abil-

ity to successfully identify camouflaged messages degrades steadily (i.e., the false negative

rates rise) as the number of legitimate features used in training increases, particularly for

Näıve Bayes in the tested range. Figure 32(b) shows that the filters’ ability to successfully

identify legitimate messages increases slightly (i.e., the false positive rates decrease) as the

number of retained legitimate features increases. Thus, the most effective approach involves

retaining the smallest number of legitimate features that generates tolerable false positive

rates.
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Although Figure 32 shows the results of a simple experiment, it represents a signifi-

cant departure from classic spam learning filters, which are typically trained with an equal

number of legitimate and spam features. This is due to an implicit assumption that the

contributions of each token (either spam or legitimate) would be the same when the filter

processes a message. The camouflage attack forces us to reconsider this assumption since

the camouflage tokens are now being counted on both sides: the legitimacy score (before

the retraining) and the spamicity score (after retraining).

The observation of apparent attack resistance shown by a small number of legitimate

training features may be explained in two ways. First, camouflage attacks depend on a suffi-

ciently high legitimacy score. Thus, using a small number of legitimate features in the filter

training will reduce the sensitivity to legitimate tokens by lowering the overall legitimacy

scores of the messages being tested. Second, spam messages (whether camouflaged or not)

typically contain a non-zero number of spam features. With a high number of spam training

features, we can train the filter to have high spam sensitivity in detecting spam. Next, we

show that the combination of high sensitivity to spam and low sensitivity to camouflage is

the right combination to resist camouflage attacks.

6.6.2 Evaluation of Camouflage Attack Resistance

In this section, we describe and evaluate a new spam filter design capable of handling

camouflaged messages with minimal retraining. We describe a quantitative analysis of the

rationale for the design, and then, we summarize an experimental evaluation of that design.

First, we establish the terminology used to describe the spam classification process.

• The spam filter training uses two feature sets: the legitimate feature set denoted by

L and the spam feature set denoted by S.

• A camouflaged attack message N contains a set of original spam tokens denoted by

NS plus a set of appended camouflage legitimate tokens denoted by NL.

• The set of legitimate tokens in N that are identifiable by the filter is L∩NL, and the

corresponding set of identifiable spam tokens is S ∩NS .

101



• The learning filter will classify N as spam if the spamicity score calculated from S∩NS

is greater than the legitimacy score calculated from L ∩NL.

To achieve the combination of high sensitivity to spam and low sensitivity to camouflage,

we divide the problem into two parts. The first goal of the new filter design is to decrease

the sensitivity of filters towards legitimate (and camouflage) tokens. The legitimacy score

is lower when the size of L∩NL is smaller, and this is achieved by minimizing the size of L

during training since NL is under the control of the spam producer. The second goal of the

new filter design is to increase the sensitivity of filters towards spam tokens. The spamicity

score is higher when the size of S ∩ NS is larger, and this is achieved by maximizing the

size of S during training since NS is under the control of the spam producer.

The combination of minimizing L and maximizing S during training is our basic strategy

for increasing the filters’ ability to detect camouflaged attack messages and achieve low

false negative rates. In addition, if the legitimate messages do not contain spam tokens,

this combination should be able to identify the legitimate messages and maintain low false

positives. Now, we consider improvements on the basic design.

In addition to minimizing L, a second strategy to further reduce the size of L∩NL is to

choose L in a manner that makes it more difficult for spam producers to guess the content

of L. If the camouflage tokens used by spam producers are outside of L, they become

ineffective attack tokens since they do not contribute to the legitimacy score of the attack

message N . In our notation, L∩NL becomes empty. Unfortunately, classic feature selection

algorithms such as Information Gain (Section 2.2) could make L easily reproducible by spam

producers, facilitating their ability to guess L. Instead, we can randomly select the content

of L from a large set of candidate legitimate features (e.g., features that exceed a threshold

of Information Gain during feature selection). The randomization of L should reduce the

intersection between NL and L.

Finally, we need to consider another attack strategy that increases the size of L ∩ NL:

sending an entire dictionary as the camouflage. This technique would guarantee that

L ∩ NL = L, neutralizing the randomization of L described above. To prevent dictio-

nary attacks, we can bound NL by bounding the maximum size of the legitimate messages
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Figure 33: Attack-resistant spam filters. In (a), the filters are built using 25 legitimate and
1000 spam features. In (b), the filters are built using 25 legitimate and 6000 spam features.
In (c), the filters are built using 25 legitimate and 9000 spam features. All features are
randomly selected.

(excluding attachments) we consider with our approach. From our large legitimate collec-

tions (e.g., Enron) we have found empirically that less than 0.01% of all legitimate messages

contain more than 600 tokens (excluding attachments). Consequently, we can give special

treatment and filtering to messages with more than 600 tokens (e.g., individual or collabo-

rative filtering techniques).

We summarize the above discussion with four heuristics for the design of camouflage

resistant spam filters. The first three minimize the legitimacy score by decreasing filter sen-

sitivity to legitimate features, and the last one maximizes the spamicity score by increasing

filter sensitivity to spam features.

1. Minimize the number of legitimate features L that are used for training.
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2. Randomize the content of L to reduce successful guesses by spam producers.

3. Limit the size of legitimate email messages handled by this approach.

4. Maximize the number of spam features S that are used for training.

Figure 33 shows these heuristics to be effective against camouflage attacks with up

to 1000 camouflage tokens. In this experiment, we did not bound the maximum size of

legitimate messages (i.e., Heuristic 3) to ensure that the results are easy to compare with

the results from previous experiments. Determining the effect of this additional heuristic is

still an open research topic. In Figure 33(a), we trained the filters with 25 legitimate features

and 1K spam features. We chose 25 legitimate features because that setting provided the

best trade-off between false negative and false positive performance in Figure 32. Compared

to Figure 28(a), this figure shows dramatic improvements for the SVM and LogitBoost

filters, from almost 100% false negatives down to between 20% and 40% false negatives for

up to 600 camouflage attack tokens. The performance of the Näıve Bayes filter is mixed,

with some improvements in the 60 to 360 camouflage attack token range but comparable

or higher false negatives for more than 360 attack tokens. Of the previous experiments,

perhaps Figure 33(a) resembles Figure 30(a) the most, showing that the increase in the

number of training spam features from 25 to 1000 may be insufficient.

By increasing the number of training spam features from 1K to 6K in Figure 33(b), we

see significant improvements for the SVM and LogitBoost filters, which now achieve less

than 10% false negatives. The Näıve Bayes filter also improves, generating less than 20%

false negatives. In addition to improvements over Figure 33(a), Figure 33(b) is also clearly

better than Figure 30(a). Perhaps more interesting is the fact that Figure 33(b) shows

performance that is better than the retrained filters in Figure 29(b), particularly for large

numbers of camouflage attack tokens (more than 600).

By increasing the number of training spam tokens to 9K in Figure 33(c), we observe a

small improvement over Figure 33(b). Even for attack messages containing 1K legitimate

tokens, the SVM and LogitBoost filters generate false negative rates consistently around

7% and 8%, respectively, and the Näıve Bayes filter achieves a false negative rate around
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Figure 34: Attack-resistant spam filters. In (a), the filters are built using 25 legitimate and
1000 spam features. In (b), the filters are built using 25 legitimate and 6000 spam features.
In (c), the filters are built using 25 legitimate and 9000 spam features. All features are
randomly selected.

18%. This resistance to camouflage is better than the retrained filters (without renewed

attack) in Figure 29, except for a small range of feature sizes (between 400 and 660) in

Figure 29(c).

For completeness, we also include the false positive statistics for this last set of exper-

iments. Figure 34(a) shows the false positives corresponding to Figure 33(a), where the

SVM and LogitBoost filters generate around 1.7% false positives, and the Näıve Bayes filter

exhibits just over 1%. Figures 34(b) and 34(c) show slight variations in false positive accu-

racy for the 6K and 9K trained spam features, between 1.1% and 0.5%. We note that due

to the small number of messages involved (0.1% of 5K test messages is only 5 messages),

changing a single message would explain these variations. In general, the spam producers
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are unconcerned about the false positives, and the camouflage attack is only directed at

increasing the false negatives. Our experiments corroborate this observation, with very low

false positives for every set of experiments described in this chapter.

Finally, it is important to note that the number of retained features (i.e., 25 legitimate

and 9K spam) suggested by our experimental results may not be appropriate for all corpora

or filters. Fundamentally, the success of our proposed spam filter design (and the corre-

sponding heuristics) is significantly more important than the specific feature set sizes that

were used to illustrate that success. As spam producers continue to evolve their techniques,

we fully expect that victims will be forced to redefine the specifics of our proposed solu-

tion; however, the general principles illustrated in this chapter should be applicable for the

foreseeable future.

6.7 Summary

The “arms race” between spam producers and victims is created by the victims’ attempt

to filter out spam and the producers’ attempt to circumvent those filters. When learn-

ing spam filters such as Näıve Bayes, SVM, and LogitBoost were introduced, they were

shown to be successful in distinguishing spam messages. However, spam producers can

introduce camouflage attack tokens into spam messages to confuse the learning filters very

effectively. The filter retraining approach (using camouflaged messages as spam during

the retraining process) may solve the problem for known camouflage attack tokens, but

this approach remains ineffective against new, randomized camouflage attack tokens. In

Sections 6.3 through 6.5, we described specific rounds of the general spam arms race as

well as the camouflage attack/retraining cycle (Round 5 in Section 6.5). These sections

include experimental evaluation of the effectiveness of attacks and defenses in each round.

For example, baseline filters trained without the knowledge of camouflage quickly succumb

to even a small number of camouflage tokens, classifying almost 100% of the camouflaged

messages as legitimate (false negatives).

These experiments provided hints for a new method of designing and building spam

filters that are resistant to camouflage attacks. This method is primarily based on two
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observations. First, we should decrease the filters’ sensitivity to camouflage tokens to reduce

the effectiveness of camouflaged attack content. Second, we should increase the filters’

sensitivity to spam tokens to increase the “distance” between camouflaged spam messages

and legitimate messages. This method is implemented with four heuristics: (1) minimize

the set of legitimate features L that are used for training to decrease filter sensitivity to

camouflage tokens; (2) randomize the content of L to reduce the probability of attack tokens

coinciding with L content; (3) limit the size of legitimate email messages to defeat dictionary

attacks, and (4) maximize the set of spam features S that are used for training.

Our experiments show that filters (including Näıve Bayes, SVM, and LogitBoost) created

using our method are able to resist camouflage attacks effectively (Section 6.6). For example,

with 25 legitimate features and 9K spam features, we trained learning filters that achieved

false negative rates below 10% for attack messages containing 1K randomized camouflage

tokens. This is a significant and unexpected result since previous work on adversarial

classification [42, 104] and experiments on filter retraining (Section 6.5) both suggest that

the camouflage attack/retraining cycle will continue for many iterations without an obvious

end.
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CHAPTER VII

INTEGRATING DIVERSE EMAIL SPAM FILTERING TECHNIQUES

As we have discussed in previous chapters, spam filtering is a commonly accepted technique

for dealing with spam, and current spam filters classify messages based primarily on the

tokens found in those messages’ text. However, this approach has had mixed results. On

the one hand, many spam messages have token signatures that facilitate filtering. These

signatures typically consist of tokens that are invariant for the many variants automatically

generated by spammers. On the other hand, spammers can use various techniques to defeat

filters. For example, in Chapter 5, we showed that keyword filters can be defeated using

deliberate misspellings, and in Chapters 4 and 6, we found that statistical learning filters

can be confused using camouflage (i.e., legitimate content added to spam messages).

To overcome the limitations of token-based filters, we propose a diversified filtering

approach that looks at other forms of spam signatures to complement existing text-based

techniques. Examples of these other types of signatures include the presence of URLs

and the contents of their corresponding Web sites, the file types and contents of email

attachments, and header information such as the sender’s identity and the email’s routed

path. In this chapter, we focus our attention on spam messages that contain URLs and

provide a novel approach for filtering these messages. The key observation is that most

spam messages contain URLs, which are “live” since the spammers would not be able to

profit without a functioning link to their site. Thus, by checking the URLs found in a

message and verifying a user’s interest in the Web sites referenced by those URLs, we are

able to add a new dimension to spam filtering.

This chapter has two main contributions. First, we describe three techniques for filter-

ing email messages that contain URLs: URL category whitelists, URL regular expression

whitelists, and dynamic classification of Web sites. Second, we describe a prototype imple-

mentation that takes advantage of these three techniques to help enhance spam filtering.
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Our preliminary results suggest that new dimensions in spam filtering (e.g., using URLs)

deserve further exploration.

The remainder of the chapter is structured as follows. Section 7.1 gives an overview

of the related work done in this research area. In Section 7.2, we describe our approach,

and Section 7.3 discusses the details of our system’s implementation. We summarize our

findings in Section 7.4.

7.1 Related Work

Spam filtering is currently the standard approach used to stop email spam. However, most

of the current approaches and products use content-based filtering. These content-based

approaches include whitelisting, blacklisting, keyword-based [35], statistical classification [7,

127], heuristic-based filtering [109, 140], and collaborative filtering [119]. Other classes of fil-

tering approaches include challenge-response [88], MTA/Gateway filtering (Tarproxy [101],

greylisting [77], etc.), and micropayments [97, 145].

Some content-based approaches rely exclusively on message headers: automatic and

Bayesian whitelisting [93], blacklisting (MAPS, RBL), and others. These techniques have

two main disadvantages. Spammers can easily forge message headers, and legitimate do-

mains can easily become blacklisted.

Other content-based approaches rely on message tokens and their corresponding statis-

tics. For example, simple Bayesian Machine Learning approaches, introduced by Duda et

al. [47] and originally applied to spam filtering by Sahami et al. [127], use the conditional

probability of tokens occurring in spam and legitimate messages to distinguish between

these two types of messages. The evaluation by Androutsopoulos et al. [7] showed that

these approaches are viable but not without shortcomings. The advantages of these ap-

proaches is that they are user-specific and offer low false positive and false negative rates

after sufficient training with the current generation of spam. Their disadvantages are that

this training process is rather time-consuming, and the resulting training statistics cannot

be easily re-used or combined for different users. Additionally, as mentioned in previous

chapters, spammers are able to evade these approaches by using common words [104, 151]
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and camouflage to augment their spam messages.

Exchange Intelligent Filter [109] and SpamAssassin [140] are two examples of content-

based approaches that use heuristics to filter spam. Both tools calculate a score for every

message based on manually extracted sets of features (rule bases). The disadvantage of

these heuristic-based methods is that they are very ad hoc and require regular updates

to ensure accuracy. In fact, these regular updates can often be as complex as the filters

themselves [64]. The current version of SpamAssassin attempts to deal with this problem by

including a number of plug-ins that support different methods (including Bayesian filtering)

to improve the score calculation process. One of these plug-ins is related to our approach:

SURBL/SpamCopUri [31]. This plug-in blocks messages by using a blacklist of URLs. The

blacklist is created based on the spam submissions received from users. One disadvantage

of this method is that it takes time for spam messages to be reported. By the time an

update is received, it could already be too late (i.e., other users may have already received

the spam messages). Additionally, it is very easy for spammers to change the text of a URL

and have it point to the same content (e.g., a redirect).

Our approach is different from SURBL in two ways. First, the definition of what con-

stitutes a spam message in our approach is personalized. Each user has a different set of

categories, which correspond to that particular user’s interests. Additionally, this informa-

tion can be combined and shared easily among users. Second, in addition to the text of a

URL, our approach also uses the contents of the Web site referenced by that URL. For sim-

ilar reasons, our approach is also different from the URL module used by Brightmail [135].

7.2 Description

As spammers become more sophisticated, the token signatures (e.g., tokens found in the

message body) used by text-based filters to distinguish between spam and legitimate mes-

sages will no longer be valid. Thus, we must focus our attention on the characteristics of

spam messages that spammers are unable to successfully obscure. A very clear example of

such a characteristic is the presence of URLs in spam messages. Spammers rely on these

110



URLs as a feedback mechanism, and as a result, the URLs must be accessible to the mes-

sages’ recipients. This required accessibility introduces a new technique for filtering spam

messages.

In our new approach, we filter email messages based on the URLs they contain. If the

URLs in a particular message point to Web sites that are of interest to a given user, that

message is considered legitimate; otherwise, the message is considered spam. We determine

a user’s interest in a URL (and its corresponding Web site) using three techniques: URL

category whitelists, URL regular expression whitelists, and dynamic classification of Web

sites. In the following sections, each of these techniques is described in more detail.

7.2.1 URL Category Whitelists

Many search engines (e.g., Google, Yahoo!, LookSmart, etc.) maintain directories that

contain category information for Web sites. For example, Google’s directory [66] categorizes

http://www.google.com as Computers/Internet/Searching/Search Engines/Google. Using

these directories, we are able to categorize the URLs a user is interested in, compiling a list of

acceptable categories Acategories. Then, we can use Acategories to classify incoming messages

as either legitimate or spam based on the URLs they contain. When a new message arrives,

the URLs found in that message are categorized. If all of the corresponding categories match

categories in Acategories, the message is classified as legitimate. Otherwise, the message is

classified as spam. Unfortunately, not all URLs are listed in the search engines’ directories.

For the remainder of this chapter, we will use the term uncategorized URLs to refer to

URLs that are not listed in any of the directories, and we will use the term categorized

URLs to refer to URLs that are listed in at least one of the directories. In the next section,

we describe an additional technique utilized to help handle uncategorized URLs.

7.2.2 URL Regular Expression Whitelists

Using search engine directories to categorize and classify URLs is a novel solution, but

it is not always successful. As previously mentioned, uncategorized URLs are not listed

in these directories. Additionally, in some cases, users have an interest in Web sites that

cannot be expressed easily with categories. For example, a user might want to register
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an interest in all Web sites under a given top-level domain (e.g., *.edu, *.mil, etc.). For

these special cases, an additional technique is needed to classify the URLs. One possible

technique is the construction of a URL regular expression whitelist, which contains a list

of acceptable regular expressions Aregex. When a new message arrives, the URLs found

in that message are compared to the regular expressions in Aregex. If all of the URLs

match at least one of those regular expressions, the message is classified as legitimate.

Otherwise, the system obtains the categories for the URLs that did not match any of the

regular expressions and compares those categories to Acategories (as explained in the previous

section). Unfortunately, this process might still result in uncategorized URLs that do not

match any regular expressions in Aregex. Thus, in the next section, we explain another

technique used to deal with the remaining uncategorized URLs.

7.2.3 Web site Classification

In addition to creating Acategories and Aregex, our approach also retrieves the contents

of the Web sites referenced by the URLs used to create those whitelists. These Web site

contents are used to train a learning spam filter (e.g., Näıve Bayes, Support Vector Machines,

LogitBoost, etc.), which is used to classify uncategorized URLs that do not match any of the

regular expressions in Aregex. When a new message arrives containing these uncategorized

URLs, the contents of the Web sites referenced by those URLs are retrieved. Then, the

learning spam filter is used to classify each of the Web sites. If the filter classifies one of

those Web sites as spam, the corresponding message is classified as spam. Otherwise, if

all of the Web sites are classified as legitimate, the corresponding message is classified as

legitimate.

7.3 Implementation

Our system can be implemented as either server-based or client-based. In the server-based

implementation, all users’ mail is filtered by a central server, and that server keeps track

of each user’s profile. In the client-based implementation, each client runs a separate copy

of our system. The main advantage of the server-based implementation is the improved

performance obtained by maintaining a global cache of URL information (see Section 7.3.1
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for a description of this cache). The main advantage of the client-based implementation is

the improved privacy protection it provides each user.

For our prototype implementation, we chose a server-based approach. It uses a RedHat

Linux v9 machine, which runs an Apache Web server with mod ssl. Our system consists of

two parts: a Web-based configuration interface and a mail classifier. The mail classifier is

implemented using Perl and procmail, and it also includes a learning spam filter based on

POPFile [71]. The system’s operation is broken into two phases: training and configuration.

These two phases are described in detail in the following sections.

7.3.1 Training

Since each user has unique Web site interests, a separate profile is maintained for every user

in the system. Each of these profiles consists of three main parts:

• A list of acceptable categories Acategories (as explained above in Section 7.2.1).

• A list of regular expressions Aregex for acceptable URLs (as explained above in Sec-

tion 7.2.2).

• A trained learning spam filter (as explained above in Section 7.2.3).

A user’s profile is created during the system’s training phase. By default, this profile

is generated automatically by the system, but the user also has the option of creating the

profile manually. Additionally, our system provides three pre-defined profiles for academic,

business, and home users. These profiles can be used without modification; they can serve

as a template for users, or they can be disregarded completely. A partial example of the

Academic profile is given in Figures 35 and 36.

The automatic profile generation process occurs as follows. First, training URLs are

extracted from the user’s existing legitimate email messages. Additional URLs can also

be obtained from the user’s Bookmarks/Favorites list, which is maintained by the user’s

favorite Web browser. Once the training URLs are obtained, they are categorized using

the directories of multiple search engines (e.g., Google, Yahoo!, LookSmart, etc.), and the

corresponding categories are stored in Acategories.
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Science/Conferences

Science/News

Science/Publications

Computers/Computer_Science/Organizations

Computers/Computer_Science/Research_Institutes

Computers/Computer_Science/Academic_Departments/North_America/United_States/Georgia

Science/Technology/Academia

News/Colleges_and_Universities/

Computers/Internet/Policy

Computers/Internet/Searching/Search_Engines/Google

Computers/Supercomputing

Computers/Systems/

News/By_Subject/Information_Technology

News/By_Subject/Information_Technology/Computers

News/By_Subject/Information_Technology/Internet/Headlines_and_Snippets

...

Figure 35: Academic profile: category whitelist.

*.edu

*.gov

*.org

*.mil

*.yahoo.com

*.google.com

www.cnn.com

www.nytimes.com

portal.acm.org

ieeexplore.ieee.org

citeseer.ist.psu.edu

www.research.ibm.com

www.research.att.com

www.research.microsoft.com

...

Figure 36: Academic profile: regular expression whitelist.

Since it may take several seconds to query the search engines for each URL, our system

also maintains a system-wide cache for query results to improve performance. This cache

contains category and other information retrieved from search engines, and its entries are

periodically expired to ensure the information remains current. Thus, when a user needs

to query the search engines, the cache is consulted first. If the necessary information is not

found there, the query is forwarded to the search engines.

After the categories are stored in Acategories and the system-wide cache, regular expres-

sions are created to match each of the user’s unique, uncategorized training URLs. These

regular expressions are then stored in Aregex. Next, the system retrieves the contents of the

Web sites referenced by the URLs that were used to create Acategories and Aregex. The sys-

tem also retrieves the contents of the Web sites referenced by the URLs present in the user’s

existing spam messages. Once the system has these Web sites’ contents, those contents are

used to train the system’s learning spam filter.

An immediate problem that arises when obtaining a Web site’s contents is redirection.

Spammers can easily use multiple redirects to hide their real Web site. Thus, any attempt

to obtain Web site content must handle redirects correctly. In our system, we resolve this
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issue by relying on the cached copies of Web sites. which are stored by search engines. When

the search engines index Web sites, their crawlers automatically follow the redirects. Thus,

the cached copies stored by the search engines are the end-sites rather than the redirecting

pages. Our system’s learning spam filter uses these cached copies during its training and

classification phases.

After the profile generation process is complete, users may edit and verify their Acategories

and Aregex at any time to ensure their interests are properly reflected. They are also able

to provide the learning spam filter with additional training data or correct any misclassifi-

cations made by the filter.

7.3.2 Classification

Once the training phase is complete, the system uses the user’s profile to classify incoming

email messages. This classification process works as follows. When a new message arrives,

it is scanned for URLs. If the message does not contain any URLs, it is passed to another

filtering subsystem, which is beyond the scope of this chapter. Otherwise, the system checks

every URL in the message according to the following process.

First, each URL is compared to the regular expressions in Aregex. If all of the URLs

match at least one of those regular expressions, the message is classified as legitimate.

Otherwise, the category information is obtained for the URLs that did not match any of

the regular expressions. To improve performance and reduce the load placed on the search

engines, the system initially consults the system-wide cache for each URL’s category. If the

cache does not contain the necessary information, the search engines are queried, and the

results are placed in the cache. Once the system has the categories for the URLs, those

categories are compared to the categories in Acategories. For every URL with a category

found in Acategories, a new regular expression is created and added to Aregex. The purpose

of this new regular expression is to optimize the system’s performance when this URL is

encountered again, and we refer to this optimization process as incremental learning. If

all of the URLs have categories found in Acategories, the message is classified as legitimate.

Otherwise, if one of the URLs has a category not found in Acategories, the message is classified
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as spam. However, if some of the URLs are uncategorized, the learning spam filter is used

to classify the contents of the Web sites referenced by those URLs. If all of those Web sites

are classified as legitimate, the corresponding message is classified as legitimate. Otherwise,

if one of the Web sites is classified as spam, the message is classified as spam.

7.4 Summary

In this chapter, we discussed the need for a diversified approach to spam filtering. Con-

cretely, we presented a new method of filtering spam, which focuses on the presence and

significance of URLs as a spam signature. URLs are very reliable indicators of spam since

they need to be “live” in order for spammers to profit from potential contact with their

victims. First, we parse the messages and identify the URLs they contain. Then, we use

URL category information already maintained by search engines to check the validity and

content classification of those URLs. Based on this information, we are able to determine

if the messages are spam.

Our new filtering method complements the current generation of token-based spam

filters, which are vulnerable to spammers’ manipulation of spam message content. It is also

a good example of a diverse and independent technique that can be integrated with other

techniques to create a spam filtering system, which is more robust and effective than each

of the comprising techniques.
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CHAPTER VIII

USING EMAIL SPAM TO IDENTIFY WEB SPAM

AUTOMATICALLY

As the Web grew to become the primary means for sharing information and supporting

online commerce, the problems associated with Web spam also grew. Web spam is defined

as Web pages that are created to manipulate search engines and deceive Web users [76, 75].

Just as email spam has negatively impacted the email user experience, the rise of Web spam

is threatening to severely degrade the quality of information on the World Wide Web. Web

spam is regarded as one of the most important challenges facing search engines and Web

users [75, 78], and recent studies suggest that it accounts for a significant portion of all Web

content, including 8% of Web pages [54] and 18% of Web sites [76].

Although the problems posed by Web spam have been widely acknowledged, we believe

research progress has been limited by the lack of a publicly available Web spam corpus. In

previous Web spam research [4, 17, 32, 43, 45, 54, 76, 154], proposed solutions have been

evaluated on relatively small Web spam data sets (on the order of hundreds of Web pages).

In many cases, these previous researchers had access to large samples of Web data (on

the order of millions of pages); however, the onerous task of hand-labeling each Web page

made it impossible for them to evaluate even a small fraction of their data. Given the size

and dynamic nature of Web content, a manual approach is neither scalable nor sensible.

Additionally, none of the previously cited Web spam data sets have been made publicly

available so the reproducibility of current Web spam research results is somewhat limited.

Similar to email spam research on the experimental evaluation of spam filters using

large spam corpora such as the Enron [95] and SpamArchive [139] corpora, future Web

spam research depends on the availability of large collections of Web spam data. Thus,

the first contribution of this chapter is a fully automatic Web spam collection technique

for extracting large Web spam samples. Our new collection technique is based on the
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observation that the URLs found in email spam messages are reliable indicators of Web

spam pages. Specifically, we extract the URLs from spam messages, cleanse those URLs of

false positives (i.e., URLs for legitimate sites), and collect the corresponding Web pages.

Given the dynamic nature of the Web, this collection method is extremely useful because

it can be configured to maintain up-to-date Web spam data samples.

The second contribution of this chapter is the Webb Spam Corpus – a large-scale and

publicly available Web spam data set that was created using our automated Web spam

collection method1. This corpus consists of nearly 350,000 Web spam pages, making it

more than two orders of magnitude larger than any other previously cited Web spam data

set. We describe interesting characteristics of this corpus, and we encourage Web spam and

email spam researchers to use it in their work.

The third part of the chapter outlines the usefulness of the Webb Spam Corpus in

several application areas. We summarize related research efforts and describe how our

Web spam collection technique and corpus could immediately enhance this previous work.

Then, we present other interesting application scenarios that we believe could benefit from

our approach. One particularly interesting application area is email filtering. Since the

Webb Spam Corpus bridges the worlds of email spam and Web spam, we note that it can

be used to aid traditional email spam classification algorithms through an analysis of the

characteristics of the Web pages referenced by email messages.

The rest of the chapter is organized as follows. Section 8.1 describes our automated

technique for obtaining Web spam pages, and it explains how this technique was used to

create the Webb Spam Corpus. Section 8.2 provides two sample applications that will

immediately benefit from our automated technique and corpus: (1) automatic classification

and filtering of Web spam pages and (2) identifying link-based Web spam. Section 8.3

summarizes our findings.

1The Webb Spam Corpus can be found at http://www.webbspamcorpus.org/.
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8.1 The Webb Spam Corpus

In this section, we describe our method for automatically obtaining Web spam pages, and

we present the Webb Spam Corpus – a collection of almost 350,000 Web spam pages that

were obtained using our fully automated collection method. First, we explain our general

methodology for collecting Web spam. Then, we provide a step-by-step example to clarify

the general technique. Finally, we describe the cleansing operations we performed to improve

the quality and usefulness of the Webb Spam Corpus.

8.1.1 Obtaining the Corpus

The motivation for our Web spam collection method comes from the observation that email

spammers often include URLs in their spam messages. In Chapter 5, we found that at least

one URL has appeared in between 85% and 95% of SpamArchive spam messages in all but

one month over the course of a three year period. We leverage the presence of those URLs

in email spam to aid in the collection of Web spam examples.

8.1.1.1 General Methodology

As previously mentioned, our Web spam collection technique relies on the URLs found

in email spam messages. We obtained our email spam messages from the SpamArchive

corpora2. Between November 2002 and January 2006, SpamArchive collected and published

close to two thousand archives (each stored as a gzipped mbox folder), totaling more than

1.4 million spam messages. We used all of these messages to help obtain the Webb Spam

Corpus.

First, we downloaded all of the SpamArchive archives that were published up until Jan-

uary 6, 2006, and we gunzipped these archives to obtain their corresponding mbox folders.

Then, we parsed the messages in each mbox folder to obtain a list of the unique URLs

that were present in the “Subject” headers and bodies of those messages. We extracted

URLs from arbitrary text using Perl’s URI::Find::Schemeless module, and we used Perl’s

Html::LinkExtor module to extract URLs from HTML. In total, we extracted almost 1.2

2SpamArchive’s spam corpora can be found at ftp://spamarchive.org/pub/archives/.
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Table 18: Number of redirects returned by intended URLs.

Number of Redirects Number of Intended URLs

0 204,077
1 92,952
2 37,789
3 7,230
4 4,358
5 1,120
6 585
7 322
8 117
9 55
10 61
11 193
12 13
13 6

million unique URLs, which we will refer to as the intended URLs. Once we had this list

of intended URLs, we wrote a custom crawler (based on Perl’s LWP::Parallel::UserAgent

module) to obtain their corresponding Web pages.

The crawler attempted to access each of the intended URLs; however, many of the URLs

returned HTTP-level redirects (i.e., a 3xx HTTP status code). The crawler followed all of

these redirects until it finally accessed a URL that did not return a redirect. We refer to

this final URL in the redirect chain as an actual URL, and it is important to note that

all of the intended URLs that were successfully accessed without returning a redirect (i.e.,

they returned 2xx HTTP status codes) are also considered actual URLs. To illustrate the

amount of redirection that occurred, Table 18 shows the number of intended URLs that

returned between 0 and 13 redirects. At the top of the table, we observe that the majority

(204,077) of the intended URLs were also actual URLs, and at the bottom of the table, we

observe that 6 intended URLs forced the crawler to follow 13 redirects before it accessed

the actual URL.

Our crawler obtained two types of information for every successfully accessed URL

(including those that returned a redirect): the HTML content of the page identified by
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the URL and the HTTP session information associated with the page request transaction.

The HTTP session information contains a number of headers, but the exact content varies

from page to page. The most common headers include the HTTP status code, “Server” (the

version of the Web server that served the page), “Content-Type”, and “Client-Peer” (the IP

address of the machine that served the page). In addition to the standard headers obtained

by the crawler, we also added a header for a page’s URL using the following format:

URL: <URL of the page>

We stored each of these HTTP session headers in a file by using HTML’s commenting

mechanism (i.e., <!−− HEADER −−>) to ensure each file is a valid HTML document (and

parseable by an HTML parser). For example, in the actual corpus files, “Content-Type:

text/html” is stored as “<!−− Content-Type: text/html −−>”.

For each of the actual URLs, the corresponding HTML content and session information

are both stored in a single file that abides by the following naming convention:

<md5 hash of the page’s HTML content> m,

where m is an integer value used to uniquely identify files that share the same md5 hash

value for their HTML content. For example, MD5 0 contains the first page with MD5 as

the md5 hash value for its HTML content, MD5 1 contains the second page with this md5

value, and so on.

For each of the intended URLs that has an associated redirect chain, the HTML content

(if any exists) and session information for each link in the redirect chain are both stored in

a single file that abides by the following naming convention:

<md5 hash of the page’s HTML content> m redirect n,

where m is the same as above, and n is an integer used to uniquely identify each link in

a given redirect chain. For example, MD5 0 redirect 0 contains the original response that

was obtained from the intended URL, and MD5 0 redirect 1 contains the response that

was obtained from the next link in the chain. This pattern continues for as many links

as there were in the redirect chain. As explained above, MD5 0 contains the page that
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From nobody Wed May 28 18:53:38 2003

Return-Path: <bounce-53821024-5237@mail22.recessionspecials.com>

Received: from mail22.recessionspecials.com ([65.61.148.12])

by (InterMail vM.5.01.05.17 201-253-122-126-117-20021021) with SMTP id

for Sat, 22 Mar 2003 03:23:44 -0700

Content-Disposition: inline

Content-Transfer-Encoding: 7bit

Content-Type: text/plain; boundary="_----------=_3645302494369200417066"

MIME-Version: 1.0

X-Mailer: MIME::Lite 2.117 (F2.6; B2.12; Q2.03)

Date: Sat, 22 Mar 2003 10:23:43 UT

Subject: You’ve Won!

X-List-Unsubscribe: <unsub-53821024-5237@recessionspecials.com>

From: "Vicki" <returns-lztfkoskhyzktw@recessionspecials.com>

Reply-To: "Vicki" <returns-lztfkoskhyzktw@recessionspecials.com>

Return-Path: <bounce-53821024-5237@recessionspecials.com>

To: submit@spamarchive.org

You’ve Won!

Click to see what it is:

http://click.recessionspecials.com/sp/t.pl?id=92408:57561182

_________________________________________________

Remove yourself from this recurring list by sending a blank email to

mailto:unsub-53821024-5237@recessionspecials.com

Figure 37: Example email spam message obtained from SpamArchive.

corresponds to the end of the chain (i.e., the response obtained from the actual URL). Also,

by extracting the “URL” value from each file’s session information, it is possible to traverse

the path of links that lead from the intended URL to the actual URL.

We used the md5 hash of each page’s HTML content as the primary file name information

to facilitate efficient duplicate page detection within the corpus. However, it is important

to note that we have not actually removed any duplicate pages from the corpus. Since

each of the intended URLs was unique, the duplicate pages in the corpus imply multiple

entrances (or gateways) to the same page. This situation is very similar to Web spamming

techniques such as link exchanges and link farms, and in Section 8.2.2, we will investigate

this observation further. We believe these types of observations are extremely interesting

and quite useful for investigating the techniques that are being used by Web spammers.

Thus, we have tried to keep perturbations of the corpus to a minimum. Unfortunately,

some corpus cleansing operations were unavoidable, and we describe those operations in

Section 8.1.2.

8.1.1.2 Illustrative Example

To help clarify our general methodology, we provide a step-by-step explanation (with exam-

ples) of our automatic Web spam collection technique. We begin this description with an

example of an email spam message that we obtained from SpamArchive. Figure 37 shows
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<!-- URL: http://click.recessionspecials.com/sp/t.pl?id=92408:57561182 -->

<!-- HTTP/1.1 302 Found -->

<!-- Connection: close -->

<!-- Date: Fri, 23 Dec 2005 18:11:43 GMT -->

<!-- Location: / -->

<!-- Server: Apache/2.0 -->

<!-- Content-Length: 0 -->

<!-- Content-Type: text/html; charset=UTF-8 -->

<!-- X-Powered-By: PHP/5.0.5 -->

Figure 38: Example HTTP session information obtained from an HTTP redirect.

the headers and body of this spam message.

Upon obtaining this message, we parsed its “Subject” header and message body text to

obtain a list of intended URLs. In this example, two intended URLs were found:

http://click.recessionspecials.com/sp/t.pl?id=92408:57561182

and

mailto:unsub-53821024-5237@recessionspecials.com.

We rejected the second URL because we only retained URLs with “http” or “https” as their

scheme. It is important to note that many URLs were schemeless, and we retained all of

those URLs.

After we parsed http://click.recessionspecials.com/sp/t.pl?id=92408:57561182 as an in-

tended URL, we used our crawler to obtain its corresponding Web page. However, this

URL returned a redirect that directed the crawler to http://click.recessionspecials.com/.

Figure 38 shows the HTTP session information (it did not have any HTML content) as-

sociated with this redirect. As described above in Section 8.1.1.1, this session information

provides valuable information about the HTTP page request transaction. For example, the

figure shows the HTTP status code (302), the type of Web server that processed the request

(Apache/2.0), and the next URL in the redirect chain (http://click.recessionspecials.com/).

Upon receiving the redirect, our crawler attempted to obtain the Web page correspond-

ing to the next URL in the redirect chain. This next URL did not return a redirect (i.e.,

it is an actual URL) so the crawler successfully obtained the page. Figure 39 shows the

HTTP session information and HTML content associated with this Web spam page.

The md5 hash value for this page’s HTML content is 25ca3b2835685e7d90697f148a0ae572.

Thus, we used this md5 value to name all of the corpus files associated with this page. The

data shown in Figure 38 is stored in a file named 25ca3b2835685e7d90697f148a0ae572 0 redirect 0.

Similarly, the information shown in Figure 39 is stored in a file named 25ca3b2835685e7d90697f148a0ae572 0.
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<!-- URL: http://click.recessionspecials.com/ -->

<!-- HTTP/1.1 200 OK -->

<!-- Connection: close -->

<!-- Date: Fri, 23 Dec 2005 18:12:19 GMT -->

<!-- Server: Apache/2.0 -->

<!-- Content-Length: 732 -->

<!-- Content-Type: text/html; charset=UTF-8 -->

<!-- Client-Peer: 64.40.102.44:80 -->

<!-- Link: <http://static.hitfarm.com/template/qing/images/qing.ico>;

/="/"; rel="shortcut icon"; type="image/x-icon" -->

<!-- P3P: CP="NOI COR NID ADMa DEVa PSAa PSDa STP NAV DEM STA PRE" -->

<!-- Set-Cookie: source=1; expires=Fri, 23 Dec 2005 20:12:19 GMT -->

<!-- Title: recessionspecials.com -->

<!-- X-Powered-By: PHP/5.0.5 -->

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html lang="en">

<head>

<title>recessionspecials.com</title>

<link rel="shortcut icon" href="http://static.hitfarm.com/template/qing/

images/qing.ico" type="image/x-icon" />

</head>

<frameset cols="1,*" border="0" frameborder="0">

<frame name="hftop" src="/top.php" scrolling="no" frameborder="0"

marginwidth="0" marginheight="0" noresize="noresize" />

<frame name="hfasi" src="http://apps5.oingo.com/apps/domainpark/

domainpark.cgi?cid=MEDI3409&s=recessionspecials.com&ip=130.207.5.18"

scrolling="auto" frameborder="0" marginwidth="0" marginheight="0"

noresize="noresize" />

<noframes>

<body>

<p>This page requires frames</p>

</body>

</noframes>

</frameset>

</html>

Figure 39: Example HTTP session information and content for a Web spam page.

To investigate this Web spam page further, we rendered its HTML content in a popular

Web browser (Firefox). Figure 40(a) shows the browser-rendered view of the HTML file

shown in Figure 39. This figure clearly shows that the page is an example of a fake directory

(also known as a directory clone [75]) – a seemingly legitimate page that contains a vast

number of outgoing links to other pages, grouped into categories. Legitimate directories

(e.g., the DMOZ Open Directory) attempt to provide users with an unbiased, categorized

view of the Web. Fake directories also provide a categorization of the Web, but it is biased

by the motivations of the Web spammer. Figure 40(b) shows the browser-rendered view of

the page that is returned after a user clicks on the “Travel” link (located at the top-left of

the original page). This page is filled with travel-related links; however, all of the links are

tied to Google’s AdSense program. Thus, the Web spammer receives a monetary reward

every time a user clicks on one of these links. Also, as is often the case with fake directories,

some of these links point to pages that are controlled by the Web spammer. Thus, this

spamming technique also generates additional traffic for the spammer’s other pages. This

example illustrates one of the many interesting observations that can be made with the aid

of our technique and corpus. In Section 8.2, we will investigate other areas where our work
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(a) (b)

Figure 40: Examples of browser-rendered Web spam pages.

can be applied.

8.1.2 Cleansing the Corpus

In this section, we describe the cleansing operations we performed to make the Webb Spam

Corpus as useful as possible. These cleansing operations fall into two categories: “Content-

Type” purification and false positive removal. During the crawling process, we obtained

407,987 files that had a number of different values in their “Content-Type” session headers

(e.g., application, audio, image, video, etc.). Since we were only interested in maintaining

HTML Web pages in the Webb Spam Corpus, we removed all of the files with non-textual

“Content-Type” headers (25,065 content files and their corresponding 33,312 redirect files).

After we removed the non-textual files from the corpus, we began analyzing the remain-

ing 382,922 Web pages. During this analysis, we found a number of duplicates. Specifically,

of the 382,922 spam Web pages, 101,453 were duplicates, and 281,469 were unique. Du-

plicate pages exist in the corpus because a number of intended URLs directed our crawler

to the same actual URL. Thus, each of the duplicate pages has a unique redirect chain

associated with it. Figure 41 shows the distribution of intended URLs per actual URL (i.e.,

the number of intended URLs that point to the same actual URL) that we found during

our initial analysis. The x-axis shows how many intended URLs mapped to a single actual

URL, and the y-axis shows how many of these actual URLs there were. A point at position
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Figure 41: Distribution of the number of intended URLs that point to the same actual
URL.

(x, y) denotes the existence of y actual URLs such that each actual URL was pointed to by

x intended URLs.

From the figure, we see that 267,533 actual URLs were uniquely pointed to by one

intended URL (the point at the top-left of the figure), and 7,628 actual URLs were pointed

to by two intended URLs. On the opposite end of the spectrum, one particular actual URL

was pointed to by 6,108 intended URLs (the point at the bottom-right of the figure). To

further investigate this point and others at the bottom-right of the figure, Table 19 provides

the 10 actual URLs that were pointed to by the most intended URLs. In this table, each

actual URL is provided along with the number of intended URLs that pointed to it.

This table clearly shows a number of specific Web spam examples; however, it also shows

two unexpected URLs:

http://www.yahoo.com

and

http://www.msn.com.

Most people would agree that neither of these URLs are spam so their presence in the

corpus was somewhat confusing. To explain this phenomenon, we investigated the intended

URLs that pointed to these two actual URLs and found that they were broken redirects.

The following two URLs are examples of the types of broken redirects we found:

http://drs.yahoo.com/quips/*http://coolguy.biz/sm/chair.php
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Table 19: Ten actual URLs that were pointed to by the most intended URLs.

Actual URL Count

http://bluerocketonline.TechBuyer.com/
6,108

landerj̇sp?referrer=&domain=bluerocketonline.com&cm mmc=

http://www.yahoo.com 4,663
http://www.msn.com 2,028
http://yoursmartrewards.com/

1,880
rd p?p=99302&c=9479-visa300 emc d22&a=CD579

http://click.recessionspecials.com/ 1,836
http://migada.com/main index.html 1,553
http://gmncc.com/main index.html 813
http://click.beyondspecials.com/ 783
http://web.yearendsaver.com/ 597
http://mail02a.emailcourrier.com/ 526

and

http://g.msn.com/8HMBEN/?http://www.all-net-offers.com/jf.

Email spammers used these URLs in their messages to deceive users. At first glance, the

URLs appear to be legitimate Yahoo! and MSN URLs, and as a result, unsuspecting users

might click on them. Unfortunately, when our crawler tried to access these URLs, the

targets of the redirection were no longer available. Consequently, the legitimate Yahoo!

and MSN URLs were inserted into our corpus multiple times.

Upon discovering these anomalous pages, we devised a few heuristics to identify addi-

tional false positives (i.e., legitimate pages that were mistakenly included in the corpus).

Specifically, we used Alexa’s Top 500 list [3] and SiteAdvisor’s rating system [137] to com-

pile a list of potential false positives. Then, we manually inspected this list and identified

the pages that were clearly false positives. Finally, we removed the false positives that

we identified. After we applied this cleansing process to the corpus, we found and removed

34,044 legitimate pages as well as their 44,141 corresponding redirect files, leaving the Webb

Spam Corpus with a final total of 348,878 Web spam pages and 223,414 redirect files.

The presence of false positives in our original collection raises an interesting research

challenge. Since our approach relies upon the URLs found in email spam messages, we
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believe it is potentially vulnerable to a new breed of attacks called legitimate URL attacks. In

these attacks, spammers intentionally include legitimate URLs (e.g., www.yahoo.com) in their

email spam messages to introduce false positives into our Web spam collection process. This

potential attack has not affected the Webb Spam Corpus, but it could impact future efforts

to collect Web spam using our methodology as well as other automated spam collection

efforts (e.g., SpamArchive). Thus, we present this potential threat as an important direction

for future research.

8.2 Sample Applications

In this section, we focus on sample applications that will greatly benefit from our corpus and

Web spam collection methodology. Our work is broadly applicable to Web spam research,

but we focus our attention on two specific applications: (1) automatic classification and

filtering of Web spam pages and (2) identifying link-based Web spam.

8.2.1 Automatic Classification and Filtering of Web Spam Pages

As long as the Web has been in existence, researchers have been developing techniques to

automatically categorize its content. Originally, these categorization efforts were concerned

with automatically producing Web directories with minimal human interaction. However,

due to the emergence of Web spam, researchers have begun focusing their efforts on auto-

matically classifying Web spam pages to separate them from legitimate Web pages. The

evolution of these classification efforts is very similar to the evolution of early email spam

classification research. Similar to the limitations faced by email spam researchers before

the introduction of the Ling-spam [6], PU123A [7, 9], and Enron [95] corpora, current Web

spam classification research is limited by the lack of a publicly available corpus. In the

next section, we describe several previous Web spam classification research efforts. Then,

we discuss how our corpus and Web spam collection process will contribute to this previous

work. Finally, we describe how our work will further future research in this area.
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8.2.1.1 Summary of Related Work

Chandrinos et al. [32] were among the first to investigate automatic filtering of Web spam.

Specifically, they presented a method for automatically identifying pornographic content on

the Web. First, they trained a Näıve Bayesian classifier to distinguish between obscene and

non-obscene Web pages. To train the classifier, they used the textual contents of the page

as well as two image attributes: whether or not the page contained at least one suspicious

image and whether or not the page contained at least one non-suspicious image. Then, they

used this classifier to determine whether or not a given page was obscene. Using a collection

of 849 pages (315 legitimate pages and 534 pornographic pages), their classifier was able to

obtain 100% obscene precision and 97.5% obscene recall (with zero obscene false positives).

Amitay et al. [4] presented a unique approach for categorizing Web sites. Instead of

focusing on the content of the sites, they only utilized connectivity and structural data to

categorize sites into eight pre-defined functionality categories (e.g., corporate sites, search

engines, portals, etc.). First, they used their connectivity and structural data to identify

16 distinguishing features. Then, using these features, they utilized two automatic learning

techniques to categorize the sites: a decision-rule classifier and a Bayesian classifier. Using a

data set of 202 manually tagged Web sites, their decision-rule classifier achieved an average

expected error of 45.5%, and their Bayesian classifier achieved an average expected error

of 41.0%. Also, although it was not the focus of their research, they proposed using their

technique to classify Web spam pages.

Fetterly et al. [54] and Drost and Scheffer [45] both used statistical techniques to identify

Web spam pages. Fetterly et al. statistically analyzed two large data sets of Web pages

(DS1 and DS2) using properties such as linkage structure, page content, and page evolution.

They found that many of the outliers in the statistical distribution of these properties were

Web spam, and as a result, they advocated the use of outlier detection for identifying similar

pages. Drost and Scheffer trained a Support Vector Machine (SVM) classifier to accurately

distinguish between guestbook spam, link farms and link exchange sites, and legitimate

sites. In their evaluations, they used 854 DMOZ Open Directory pages as their legitimate

sample and 431 manually identified Web spam pages (251 examples of guestbook spam
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and 180 link farm and link exchange pages). The results of their evaluations showed that

the SVM classifier can effectively separate spam and legitimate Web pages, consistently

obtaining area under the ROC curve (AUC) values greater than 90%.

8.2.1.2 Benefits of the Webb Spam Corpus

All of this previous research is novel; however, it suffers from two main limitations. First, all

of the data sets used in these evaluations are far too small to be considered representative

samples of Web spam. These data sets are small because Web spam researchers have been

forced to manually identify and tag Web spam examples. This manual labeling process

is extremely time-consuming, and as a result, it has forced previous researchers to apply

their techniques on limited samples of their Web data. Second, none of the previously cited

Web spam data sets have been released into the public domain. Thus, other researchers

are currently unable to verify the validity of the claims made by this previous research. In

their paper, Drost and Scheffer claim to have a publicly available spam data set; however,

the paper does not provide a link, and we have been unable to locate it online.

Our Web spam collection technique and corresponding corpus help solve both of the

limitations found in previous research. The Webb Spam Corpus is a very large sample

of Web spam (over two orders of magnitude larger than previously cited Web spam data

sets). Also, our automated Web spam collection technique allows researchers to quickly

and easily obtain even more examples. The main challenge with any automated Web spam

classification technique is accurate labeling (as shown by the limited Web spam sample

sizes of previous research), and although our approach does not completely eliminate this

problem, it does minimize the manual effort required. Researchers simply need to identify

a few false positives as opposed to the arduous task of manually searching for a sufficiently

large collection of Web spam pages. Additionally, the Webb Spam Corpus is publicly

available so researchers can easily publish reproducible results.

8.2.1.3 New Research Opportunities

In addition to the benefits our approach and corpus offer previous research efforts, we believe

this work opens the door for a number of new research opportunities. First, automatic Web
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spam classification could greatly benefit Web filtering efforts, similar to the way email spam

classification has improved email filtering. Specifically, our work could be used to provide

more effective parental controls on the Web. The Webb Spam Corpus contains a number

of porn-related pages as well as additional content that is not suitable for children. This

content provides valuable insight into the characteristics of Web spam pages and allows

researchers to build more effective Web content filters.

In addition to its contributions to Web filtering, the Webb Spam Corpus also provides

a unique approach to email spam filtering. In Chapter 7, we showed how Web content

can be used to improve the effectiveness of email spam filtering techniques. Specifically,

we leveraged the Web content that corresponds to the URLs found in email messages to

enhance email classification decisions. An email message that points to legitimate Web pages

is more likely to be legitimate than an email message that points to suspicious Web pages.

By augmenting traditional text-based spam filters with contextual information such as the

spamicity of the URLs found within an email message, we can create more sophisticated

classification systems. Thus, we can utilize the link between email and the Web to help

eliminate spam in both domains.

8.2.2 Identifying Link-Based Web Spam

One of the most prominent examples of Web spam is the targeted manipulation of search

engines to increase the visibility of certain Web spam pages. Since the vast majority of Web

users use search engines to access the Web [33, 122], spammers can artificially increase the

value of a spam page by effectively deceiving a search engine’s core ranking algorithms. Most

modern search engines employ link-based ranking algorithms (e.g., Google’s PageRank) that

evaluate the quality of a Web page based on the number and quality of the other Web pages

that point to it. These algorithms rely on a fundamental assumption that a link from one

page to another is an authentic conferral of authority by the pointing page to the target

page.
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Link-based Web spam directly attacks the credibility of such link-based ranking algo-

rithms by inflating the perceived quality of the spammer’s target page. The simplest ex-

ample of link-based Web spam is called a link exchange – a scenario in which two or more

Web spammers collude to link to each other’s pages. A more sophisticated example is the

construction of large link farms of spammer-controlled Web pages that exist solely to link to

a spammer’s target page. These link farms make it appear to the link-based ranking algo-

rithms that the target page is receiving many votes of confidence, and as a result, the target

page receives an undeserved boost in its ranking. In contrast to the brute force approach of

a link farm (where there are a large number of links from low-quality, spammer-controlled

pages), spammers also engage in techniques to acquire links from higher-quality Web pages.

For example, a Web spammer can create a seemingly legitimate Web site (called a honey

pot) to attract links from unsuspecting legitimate Web sites. The honey pot can then pass

along its accumulated quality to the target spam page. Spammers can also hijack links from

legitimate Web sites by inserting links into Weblog comments, wikis, Web-based message

boards, as well as submitting spam links to legitimate Web directories. From the link-based

ranking algorithm’s perspective, these hijacked legitimate pages are endorsing the spam

page, and as a result, the spam page receives an undeserved ranking boost. Of course, Web

spammers may choose to combine these basic link-based Web spam patterns in a number

of ways to construct more complicated and less easily detected linking arrangements. For

a more detailed discussion of these spamming techniques, please consult [75].

The majority of previous link-based Web spam research has focused on its identification

and removal; however, we believe this research has been limited by the absence of a publicly

available Web spam corpus. In the next section, we summarize several of these previous

efforts and explain their limitations. Then, we explain how our Web spam collection tech-

nique and corpus will enhance this previous work and help facilitate future work on the

identification of link-based Web spam.
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8.2.2.1 Summary of Related Work

Davison [43] was the first to investigate link-based Web spam, and he studied the identi-

fication of nepotistic links – “links between pages that are present for reasons other than

merit.” Specifically, he created decision trees to determine whether or not a given link

was nepotistic. His experiments relied on two data sets – 1,536 links that were arbitrar-

ily selected and 750 links that were sampled from a DiscoWeb search engine crawl. This

work was extremely valuable because it was the first to use automated learning methods

to identify link-based Web spam. However, it also identified two corpora-related problems

with Web spam research. First, as the author admits, the two data sets were too small to

be considered representative samples. Second, the results obtained with each data set were

noticeably different, highlighting the need for a publicly available Web spam corpus to help

benchmark research results.

These corpora-related limitations are also evident in other previous research. For ex-

ample, the TrustRank algorithm, proposed by Gyöngyi et al. [76], uses a variation of the

traditional PageRank algorithm to propagate trust from a seed set of pre-trusted Web pages

to the pages that are pointed to by those pre-trusted pages. Intuitively, pages that have

many incoming-links from trusted pages will also be trusted. As long as spam pages are

relatively distant (in terms of link distance) from trusted pages, the algorithm can yield

more spam resilient rankings than PageRank. Unfortunately, although the TrustRank ex-

perimental validation had access to a data set of 31 million Web sites that were collected

by AltaVista, the actual experiments only used an evaluation sample of 748 manually iden-

tified pages (of which, 135 were labeled as spam). The limited size of this evaluation size is

another illustration of the difficulty involved with manually identifying Web spam examples.

Wu and Davison [154] proposed a technique that propagates distrust to bad pages. First,

their algorithm searches for pages with common nodes in their incoming and outgoing links

sets. If the number of common nodes for a given page is above a given threshold (3, in their

experiments), that page is marked as bad and placed in a seed set. Then, every page that

points to more than a threshold number (3, in their experiments) of pages in the seed set is

also marked as bad. Finally, every link involving one of the bad pages is considered spam.
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In their experiments, Wu and Davison had access to a 20 million page data set that they

received from the search.ch search engine; however, their evaluation sample only contained

732 spam sites (due to the manual labeling problem).

Similarly, Benczur et al. [17] proposed the SpamRank algorithm to identify pages with a

large amount of undeserved PageRank (i.e., PageRank that was derived from spam pages).

First, they identified the major PageRank contributing pages (the “supporters”) for every

page in their data set. They then penalized pages that had statistically anomalous support-

ers (in terms of the distribution of their PageRank scores). By incorporating these penalties

into the revised PageRank calculation, pages with a large amount of undeserved PageRank

were identified and given much lower PageRank values (and correspondingly lower rank-

ings). The authors report experimental results over an evaluation sample containing 910

pages (of which 16.5% were spam) that were taken from a 31 million page data set.

8.2.2.2 Benefits of the Webb Spam Corpus

Given the interesting research results so far, we believe that rich, new opportunities exist for

cross-validating previous results, enhancing the previously proposed link-based Web spam

algorithms, and developing more refined algorithms for identifying link-based Web spam.

Our new method for obtaining Web spam examples (and the Webb Spam Corpus itself)

immediately benefits this previous research because it greatly increases the coverage of Web

spam pages. Our corpus already contains over two orders of magnitude more Web spam

examples than previous data sets (almost 350,000 pages versus less than 2,000 in each cited

case), and unlike those previous data sets, our corpus is publicly available.

With our corpus, researchers can easily benchmark their techniques using a single, pub-

licly available corpus – a luxury currently missing from Web spam research. Additionally,

our collection methodology gives researchers a simple technique for automatically obtaining

new Web spam examples in the future, a particularly important feature for maintaining the

freshness of spam samples in the face of a dynamic and evolving group of spam adversaries.

This automatic technique should greatly reduce the workload of Web spam researchers,

minimizing the manual Web spam tagging process and allowing them to focus their efforts
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on developing new solutions.

8.2.2.3 New Research Opportunities

In addition to providing a standardized corpus for evaluating link-based Web spam identifi-

cation algorithms, we believe that a careful study of the linking features of the Webb Spam

Corpus may yield new insights into how spammers construct complex linking arrangements

and provide new avenues for developing more robust link-based Web spam identification

algorithms.

As a first step towards developing new algorithms, we propose the following hypothesis:

many of the Web pages corresponding to URLs found in spam messages are also target

pages in link-based Web spam. This hypothesis is driven by the observation that email

spammers and Web spammers share the same motivations. In email spam, spammers want

to promote certain pages so that they receive traffic and ultimately monetary rewards (or

private information, in the case of phishers). Similarly, in Web spam, spammers want to

promote certain pages for the exact same reasons.

To help investigate this hypothesis, we constructed a host-based connectivity graph to

determine the interconnectivity within the Webb Spam Corpus. Initially, we treated each

host that appears in the Webb Spam Corpus as a node in a Web graph. Then, we parsed

each page in the corpus to obtain the URLs found in its HTML content, only retaining

the URLs that pointed to another page within the corpus. Each of these URLs represents

a link from one page in the corpus to another. After we had all of these page-level links,

we converted them to host-level links (based on the host names in each URL) to make the

number of nodes in the Web graph more manageable. Finally, we constructed a host-based

connectivity graph.

The host-based connectivity graph contains 70,230 unique hosts and 137,039 unique

links (not including self-links). Thus, by simply investigating the hosts within the Webb

Spam Corpus, we have already identified a great deal of interlinkage. We have been forced

to omit the complete host-based connectivity graph because it looks like a giant circle of

ink (due to the vast number of nodes and interconnections). Instead, we have provided an
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Figure 42: Host-based connectivity graph.

extremely condensed version of the connectivity graph in Figure 42.

The graph shown in Figure 42 was constructed using the 15 hosts with the most outgoing

links (i.e., they linked to the largest number of hosts in the corpus). The figure shows each

of the hosts along with their 1-hop (hosts they directly link to) and 2-hop (hosts their direct

neighbors link to) neighbors. Even this simple graph, which contains 948 unique hosts and

3,330 unique links, clearly illustrates the interconnectivity of the Web spam hosts within the

corpus. We believe this interconnectivity provides preliminary support for our hypothesis,

and as a result, we intend to thoroughly investigate this topic in future research.

8.3 Summary

As the problems posed by Web spam continue to grow in severity, it is imperative that the

research community follow the best practices that have already been established in similar

domains (e.g., email spam research). Of these best practices, one of the most important is

the use of large, publicly available corpora. In this chapter, we have taken the initial step

towards applying these best practices to the Web spam domain. We have provided a novel

method for automatically obtaining Web spam pages, and we have also presented the Webb

Spam Corpus – a publicly available corpus of almost 350,000 Web spam pages that were
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obtained using our automated method.

The Webb Spam Corpus is the first public data set of its kind, and it is more than

two orders of magnitude larger than previously cited Web spam data sets. In all research

domains, the lack of publicly available corpora severely impedes research progress; thus, by

presenting our approach to Web spam collection and the Webb Spam Corpus, we hope to

fuel significant research efforts.
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CHAPTER IX

CHARACTERIZING WEB SPAM USING CONTENT AND HTTP

SESSION ANALYSIS

Web spam has grown to a significant percentage of all Web pages (between 13.8% and

22.1% of all Web pages [27, 115]), threatening the dependability and usefulness of Web-

based information in a manner similar to how email spam has affected email. Unfortunately,

previous research on the nature of Web spam [27, 54, 115, 149, 150, 153] has suffered from

the difficulties associated with manually classifying and separating Web spam pages from

legitimate pages. As a result, these previous studies have been limited to a few thousand

Web spam pages, which is insufficient for an effective content analysis (as customarily

performed in email spam research).

In this chapter, we provide the first large-scale experimental study of Web spam pages

by applying content and HTTP session analysis techniques to the Webb Spam Corpus –

a collection of almost 350,000 Web spam examples that is two orders of magnitude larger

than the collections used in previous evaluations. Our main hypothesis in this study is that

Web spam pages are fundamentally different from “normal” Web pages. To evaluate this

hypothesis, we characterize the content and HTTP session properties of Web spam pages

using a variety of methods. The Web spam content analysis is composed of two parts. The

first part quantifies the amount of duplication present among Web spam pages. Previous

studies [24, 53, 55] have shown that only about two thirds of all Web pages are unique;

thus, we expected to find a similar degree of duplication among our Web spam pages. To

evaluate duplication in the corpus, we constructed clusters (equivalence classes) of duplicate

or near-duplicate pages. Based on the sizes of these equivalence classes, we discovered that

duplication is twice as prevalent among Web spam pages (i.e., only about one third of the

pages are unique).

The second part of the content analysis focuses on a categorization of Web spam pages.
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Specifically, we identify five important categories of Web spam: Ad Farms, Parked Do-

mains, Advertisements, Pornography, and Redirection. The Ad Farms and Parked

Domains categories consist of pages that are comprised exclusively of advertising links.

These pages exist solely to generate traffic for other sites and money for Web spammers

(through pay-per-click advertising programs). The Advertisements category contains

pages that advertise specific products and services, and the pages in the Pornography

category are pornographic in nature. The Redirection category consists of pages that em-

ploy various redirection techniques. Within the Redirection category, we identify seven

redirection techniques (HTTP-level redirects, 3 HTML-based redirects, and 3 JavaScript-

based redirects), and we find that 43.9% of Web spam pages use some form of HTML or

JavaScript redirection.

The third component of our research is an evaluation of the HTTP session information

associated with Web spam. First, we examine the IP addresses that hosted our Web spam

pages and find that 84% of the Web spam pages were hosted on the 63.* – 69.* and 204.* –

216.* IP address ranges. Then, we evaluate the most commonly used HTTP session headers

and values. As a result of this evaluation, we find that many Web spam pages have similar

values for numerous headers. For example, we find that 94.2% of the Web spam pages with

a “Server” header were hosted by Apache (63.9%) or Microsoft IIS (30.3%). These results

are particularly interesting because they suggest that HTTP session information might be

extremely valuable for automatically distinguishing between Web spam pages and normal

pages.

The rest of the chapter is organized as follows. Section 9.1 describes our Web spam

corpus and summarizes its collection methodology. In Section 9.2, we report the results

of a content analysis of Web spam, which consists of two parts. The first part evaluates

the amount of duplication that appears in Web spam. The second part identifies concrete

Web spam categories and provides an extensive description of the redirection techniques

being used by Web spammers. In Section 9.3, we report the results of an analysis of Web

spam HTTP session information, which identifies the most common hosting IP addresses

and HTTP header values associated with Web spam. Section 9.4 summarizes related work,
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and Section 9.5 summarizes our results.

9.1 Corpus Summary

In the previous chapter, we presented an automatic technique for obtaining Web spam

examples that leverages the presence of URLs in email spam messages. Specifically, we

extracted almost 1.2 million unique URLs from more than 1.4 million email spam messages.

Then, we built a crawler to obtain the Web pages that corresponded to those URLs. Our

crawler attempted to access each of the URLs; however, many of the URLs returned HTTP

redirects (i.e., 3xx HTTP status codes). The crawler followed all of these redirects until it

finally accessed a URL that did not return a redirect.

Our crawler obtained two types of information for every successfully accessed URL

(including those that returned a redirect): the HTML content of the page identified by

the URL and the HTTP session information associated with the page request transaction.

As a result, we created a file for every successfully accessed URL that contains all of this

information. After our crawling process was complete, we had 348,878 Web spam pages

and 223,414 redirect files (i.e., files that correspond to redirect responses). These files are

collectively referred to as the Webb Spam Corpus, and they provide the basis for our analysis

in this chapter.

We acknowledge that our collection of Web spam examples is not representative of all

Web spam; however, it is two orders of magnitude larger than any other available source

of Web spam to date, and as such, it currently provides the most realistic snapshot of

Web spammer behavior. Thus, although the characteristics of our corpus might not be

indicative of all Web spam, our observations still provide extremely useful insights about

the techniques being employed by Web spammers.

9.2 Content Analysis

In this section, we provide the results of our large-scale analysis of Web spam content.

This analysis consists of two parts. The first part, discussed in Section 9.2.1, quantifies

the amount of duplication present among Web spam pages. The second part, discussed in

Section 9.2.2, presents a categorization of Web spam pages.
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Figure 43: Number and size of the shingling clusters.

9.2.1 Web Spam Duplication

Previous research has shown that approximately one third of all Web pages are duplicates

or near-duplicates of a Web page in the remaining two thirds [24, 53, 55]. To evaluate the

amount of duplication among Web spam pages, we analyzed three forms of duplication in

our corpus: URL duplication, content duplication, and content near-duplication.

In the previous chapter, we identified the existence of duplicate URLs in the Webb Spam

Corpus (i.e., multiple Web spam pages with the same URL), and we explained that these

duplicate URLs are the result of multiple unique HTTP redirect chains that lead to the

same destination. Specifically, we found that the corpus contains 263,446 unique URLs,

which means about one fourth of the Web spam pages have a URL that is the same as one

of the Web spam pages in the remaining three fourths.

To identify content duplication, we computed MD5 hashes for the HTML content of

all of the Web spam pages in our corpus. After evaluating these results, we found 202,208

unique MD5 values. Thus, 146,670 of the Web spam pages (42%) have the exact same

HTML content as one of the pages in a collection of 202,208 unique Web spam pages.

Many of these duplicates are explained by the URL duplication that exists in the corpus

(described above), but since each of the duplicate URLs represents a distinct entry point

(i.e., a unique HTTP redirect chain) to a given page, we consider them to be functionally

equivalent to content duplicates.
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Table 20: Most of the 50 largest equivalence classes.

Rank Size Categories Most Common Domain (Count)

1 13,806 Ad Farms, Redirection techbuyer.com (6,877)
2 12,090 Redirection www.bizrate.com (578)
3 5,420 Pornography, Redirection www.ezinetracking.com (832)
4 4,138 Parked Domains, Redirection migada.com (1,553)

5, 8, 41, 46 4,034, 2,837, 594, 567 Ad Farms, Redirection mx07.com (4,034)
6 3,294 Parked Domains, Redirection pntaa.com (452)
7 3,053 Advertisements www.macmall.com (3,053)

9, 10, 11, 21 2,791, 2,749, 2,646, 1,142 Ad Farms ew01.com (6,579)
12 2,096 Advertisements yoursmartrewards.com (2,096)
13 1,983 Parked Domains, Redirection www.optinspecialists.info (426)

14, 32 1,837, 784 Ad farms, Redirection click.recessionspecials.com (1,836)
15 1,828 Redirection mailer.ebates.com (1,828)
17 1,606 Parked Domains, Redirection www.flgstff.com (777)
18 1,336 Parked Domains www.gibox.com (133)

19, 38 1,239, 622 Ad Farms, Redirection lb3.netster.com (1,821)
22 1,069 Advertisements morozware.com (62)

23, 28, 30, 34, 43, 47 1,014, 822, 802, 712, 583, 562 Ad Farms, Redirection www.thehdhd.com (1,014)
24 995 Advertisements www.personaloem.info (995)
25 977 Advertisements ratedoem.info (112)
26 857 Parked Domains pn01.com (402)
27 831 Advertisements www.netidentity.com (831)
33 724 Parked Domains, Redirection apps5.oingo.com (724)
35 674 Parked Domains, Redirection www.demote.com (2)
37 630 Advertisements www.pimsleurapproach.com (630)
42 588 Parked Domains, Redirection new.hostcn2.com (84)
44 580 Parked Domains, Redirection www.zudak.com (282)
45 570 Pornography www.centerfolds4free.com (29)
48 554 Parked Domains, Redirection landing.domainsponsor.com (542)

49, 50 536, 532 Ad Farms dbm.consumer-marketplace.com (451)

To evaluate the amount of near-duplication in our corpus, we used the shingling algo-

rithm that was developed by Fetterly et al. [52, 53, 55] to construct equivalence classes

of duplicate and near-duplicate Web spam pages. First, we preprocessed every Web spam

page in the corpus. Specifically, the HTML tags in each page were replaced by white space,

and every page was tokenized into a collection of words, where a word is defined as an

uninterrupted series of alphanumeric characters.

Then, for every page, we created a fingerprint for each of its n words using a Rabin

fingerprinting function [124] (with a degree 64 primitive polynomial pA). Once we had

the n word fingerprints, we combined them into 5-word phrases. The collection of word

fingerprints was treated like a circle (i.e., the first fingerprint follows the last fingerprint) so

that every fingerprint started a phrase, and as a result, we obtained n 5-word phrases. Next,

we generated n phrase fingerprints for the n 5-word phrases using a Rabin fingerprinting

function (with a degree 64 primitive polynomial pB). After we obtained the n phrase

fingerprints, we applied 84 unique Rabin fingerprinting functions (with degree 64 primitive

polynomials p1, ..., p84) to each of the n phrase fingerprints. For every one of the 84

functions, the smallest of the n fingerprints was stored. Once this process was complete,
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each Web spam page was reduced to 84 fingerprints, which are referred to as that page’s

shingles.

Once all of the pages were converted to a collection of 84 shingles, we clustered the pages

into equivalence classes (i.e., clusters of duplicate or near-duplicate pages). Two pages were

considered duplicates if all of their shingles matched, and they were near-duplicates if their

shingles agreed in two out of the six possible non-overlapping collections of 14 shingles. For

a more detailed description of this shingling algorithm, please consult [52, 53, 55].

After running the shingling algorithm on our Web spam pages, we were left with 109,157

unique clusters of duplicate and near-duplicate pages. Figure 43 shows the distribution of

the number and size of the shingling clusters. From the figure, we see that 87,819 clusters

contain a single Web spam page (the point at the top-left of the figure). These pages are

truly unique because none of the other pages in the corpus duplicate their content. On the

opposite end of the spectrum, one cluster contains 13,806 Web spam pages (the point at

the bottom-right of the figure). All of these pages are either duplicates or near-duplicates

of each other. The main observation from these results is that two thirds of Web spam

pages are duplicates or near-duplicates of a Web spam page in the remaining one third.

Thus, duplication is twice as prevalent among Web spam pages as it is among Web pages

in general.

9.2.2 Web Spam Categorization

To categorize the content of Web spam pages, we manually investigated the 50 largest

equivalence classes (as defined by the clustering algorithm described in Section 9.2.1). These

50 clusters contain 93,595 Web spam pages, accounting for 26.8% of the Web spam pages

in our corpus. Based on our investigation, we identified five categories that describe the

pages we reviewed:

• Ad Farms

• Parked Domains

• Advertisements
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• Pornography

• Redirection

These categories help describe the purpose of the pages in each of the shingling clusters

as well as the goals of the spammers who created them. Table 20 lists most of the 50

largest equivalence classes. For each cluster, we provide its rank (in terms of size), size, and

categorization. We also provide the most common domain name found in each of the listed

clusters. In the remainder of this section, we will describe our five Web spam categories

and detail the important characteristics of their representative pages.

9.2.3 Ad Farms

Ad farms are pages that only contain advertising links (usually in the form of ad listings).

These pages are of little value to visitors because they do not contain any original content.

Additionally, many (if not all) of the links that appear in their ad listings are low quality

because they are not ordered by traditional ranking algorithms (e.g., Google’s PageRank).

In fact, a large fraction of the links are controlled by the Web spammers themselves.

To deceive visitors into believing ad farms are valuable and legitimate, most Web spam-

mers create elaborate entry pages that appear to be legitimate directories. Figure 44(a)

shows an example of an ad farm’s entry page. Once visitors click on one of the categories in

these fake directories, they are typically redirected to an ad listing. Figure 44(b) shows an

example of an ad listing that is returned when a user clicks on one of the links depicted in

Figure 44(a). The links that are displayed in these ad listings are typically obtained from an

ad syndicator, but the HTML structures used by ad farms are created by Web spammers.

Ad farms are extremely common in our corpus; 21 of the 50 largest equivalence classes are

composed exclusively of ad farms. The 1st cluster contains pages that use JavaScript location

objects and meta refresh tags to redirect users to an ad farm. Out of the cluster’s 13,806

pages, only 1,821 unique hostnames are represented, and those hostnames consist of various

subdomains off of 58 unique domain names (e.g., valuevalet.seeq.com, happy-thoughts.

seeq.com, inraw.seeq.com, etc.). Spammers create numerous subdomains for three reasons.

First, every subdomain represents a new address on the Web. As a result, spammers
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Figure 44: Ad Farm examples.

can use each of these addresses as another unique entry point into an ad farm. Second,

creating multiple subdomains is far less expensive than creating an equivalent number of

unique domain names. Third, the name of a given subdomain can help influence the actual

advertising links that are displayed in the ad farm. Thus, spammers can maximize the

coverage of their ad farms by using numerous, non-overlapping subdomain names.

The pages in the 5th, 8th, 41st, and 46th clusters use a frameset (consisting of two frames)

to redirect users to an ad farm. The first frame loads fake directory content (i.e., various

categories and subcategories, which lead to corresponding ad listings), and the second frame

loads a search field that allows users to search for specific ad farm content. Each of the four

clusters contains numerous subdomains off of a specific domain name. The 5th cluster uses

mx07.com; the 8th cluster uses emailcourrier.com; the 41st cluster uses yearendsaver.com,

and the 46th cluster uses brightermail.com. We grouped these clusters together in Table 20

because all of their pages have similar HTML structures and were hosted at the same IP

address (64.69.68.141). The only difference between the clusters is the actual text that is

used in the ad links on their pages. For example, the ad farms in the 8th cluster are primarily
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concerned with email-related ads, whereas the ad farms in the 41st cluster are focused on

accounting-related ads.

The 9th, 10th, 11th, and 21st clusters also contain pages that display ad farms. However,

unlike the previous examples, these pages do not use redirection techniques. They display

the ad farms directly. Similar to the last group of clusters, we grouped these clusters

together in Table 20 because their pages use the same HTML structure, and all of their

pages were hosted at one of two IP addresses (204.251.15.193 and 204.251.15.194). The

clusters also use a number of subdomains off of a specific domain name. The 9th, 11th, and

21st clusters use ew01.com, and the 10th cluster uses www.msstd.com.

The 23rd, 28th, 30th, 34th, 43rd, and 47th clusters are also particularly interesting because

they contain an additional level of redirection that is missing from the files in the previous

clusters. First, the pages in these clusters redirect users to lb1.youbettersearch.com. To

accomplish this initial redirection, some of the pages use the replace method for JavaScript

location objects, and others use meta refresh tags. Then, that hostname uses another level

of redirection to obtain the content for its ad farms.

9.2.4 Parked Domains

Domain parking services allow individuals to display a Web page that acts as a place holder

for newly registered domains. A popular choice for this place holder is an ad listing because

it allows an individual to monetize a domain with minimal effort. Unfortunately, Web

spammers quickly exploited this opportunity and began parking hundreds of thousands of

domains with ad listings.

Parked domains are functionally equivalent to ad farms. They both use ad syndicators as

their primary sources of content, and they both provide little to no value to their visitors.

However, parked domains possess two unique characteristics that distinguish them from

ad farms. First, parked domains rely on domain parking services (e.g., apps5.oingo.com,

searchportal.information.com, landing.domainsponsor.com, etc.) to provide their entire

advertising infrastructure (the HTML structure of the entry pages as well as the content for

the ad listings). Second, domain parkers are typically much more motivated than ad farmers
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to sell the domains they are using to display ad links. In many cases, parked domains even

include links with phrases such as “Offer To Buy This Domain” or “Purchase This Domain”

to persuade visitors to buy the domain.

Eight of the clusters (#4, #6, #13, #17, #35, #42, #44, and #48) contain pages

that use various techniques to redirect users to ad listings, which are provided by various

domain parking services. The pages in the 4th cluster use a frameset (consisting of one

frame) to redirect users to apps5.oingo.com, while the pages in the 6th cluster use the

replace method for JavaScript location objects to accomplish the redirection. The 13th and

17th clusters consist of pages that use a frameset to redirect users to a handful of different

domain parking services. For both clusters, searchportal.information.com is the most

commonly used service. The 35th and 42nd clusters both contain pages that redirect users to

apps5.oingo.com. The pages in the 35th cluster use a frame to accomplish the redirection,

and the pages in the 42nd cluster use an iframe. The 44th cluster contains pages that

use a frameset (consisting of two frames) to redirect users to landing.domainsponsor.com

or apps5.oingo.com. The 48th cluster also contains pages that rely on domain parking

services (landing.domainsponsor.com and searchportal.information.com). However, unlike

the other clusters, which contain pages that redirect users with content-based redirection,

these pages are obtained by following HTTP redirects.

Three of the clusters (#18, #26, and #33) contain pages that were generated by DNS

registrars. The pages in the 18th and 26th clusters were generated by registrars that provide

their own domain parking services (GoDaddy and DomainDiscover, respectively). These

pages contain a combination of syndicated ad listings and registrar-specific advertisements.

The pages in the 33rd cluster were generated by a DNS registrar (Network Solutions);

however, the pages rely on a domain parking service (apps5.oingo.com) for their content.

9.2.5 Advertisements

In addition to ad farms and parked domains, which display ad listings for various Web

pages, the corpus also contains numerous pages that advertise specific products and ser-

vices. Ad farms and parked domains are essentially directories for advertisements, and these
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Figure 45: Advertisement examples.

advertisement pages are examples of the types of pages being advertised in those directories.

Two examples of these advertisement pages are shown in Figures 45(a) and 45(b).

The 7th cluster contains pages that display advertisements for software and hardware

products that are being sold at macmall.com. The pages in the 12th cluster offer free gift

cards in exchange for a user’s personal information (e.g., email address), and they all use

the same domain name (yoursmartrewards.com). The 15th cluster consists of pages that

use meta refresh tags to redirect users to http://www.ebates.com. This site is a well-known

advertiser and adware/spyware distributor. The pages in the 22nd and 25th clusters all

display advertisements for various software packages, and the 24th cluster contains pages

that display advertisements for “Pink Floyd Products.” The pages in the 27th cluster display

advertisements for various domain names being sold by www.netidentity.com. These pages

are different from parked domains because the pages are not concerned with generating

ad revenue – their sole purpose is selling domains. The 37th cluster contains pages that

display advertisements for various foreign language instructional materials (e.g., books,

tapes, videos, etc.) being sold at www.pimsleurapproach.com.
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9.2.6 Pornography

Although only 2 of the 50 largest equivalence classes consist of pornography-related pages,

those 2 clusters account for almost 2% of the entire corpus. The 3rd cluster contains 5,420

pages that execute “drive-by advertising.” Specifically, these pages generate pop-up ad-

vertisements for www.freeezinebucks.com, and then, they use meta refresh tags to redirect

users to various pornographic Web sites (e.g., www2.grandegirls.com, www.wannawatch.com,

etc.). The 45th cluster contains 570 pages that prompt the user to log in to a pornographic

site (e.g., www.brunettes4free.com, www.girlgirl4free.com, etc.).

9.2.7 Redirection

Many Web spammers use redirection to hide their spam content [75]. Thus, one of the most

ubiquitous characteristics of Web spam pages is their use of redirection. Table 20 shows that

27 of the 50 largest equivalence classes contain pages that utilize redirection techniques. In

this section, we investigate the most popular techniques, and we present the most popular

redirection destinations.

The easiest way to accomplish redirection is at the HTTP-level (i.e., returning a 3xx

status code). As explained in the previous chapter, the Webb Spam Corpus contains 223,414

redirect files that represent examples of this type of HTTP redirection. All of these HTTP

redirect files contain one of two 3xx status codes: 301 (“Moved Permanently”) and 302

(“Found”). Aside from HTTP redirection, a number of content-based redirection techniques

also exist. Based on our manual examination of the largest equivalence classes in the corpus,

we identified six content-based redirection techniques that are repeatedly employed by Web

spammers. Three of these techniques are accomplished using HTML, and the other three

are accomplished using JavaScript. The HTML techniques make use of meta refresh tags,

frame tags, and iframe tags. The JavaScript techniques include assigning a URL to a

location object, assigning a URL to a location object’s href attribute, and passing a URL

to the replace method of a location object.

Identifying examples of the HTML redirection techniques was fairly straightforward

due to the syntactic properties of the HTML tags that are used (meta, frame, and iframe).
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Specifically, we wrote a custom HTML parser (based on Perl’s HTML::Parser module) to

identify these tags and extract the URLs being used for redirection. For the remainder of

this chapter, we will refer to these extracted URLs (and their corresponding hostnames) as

targets of redirection.

Identifying examples of the JavaScript redirection techniques was significantly more

challenging for a number of reasons. First, many of the pages in the corpus contain exter-

nal JavaScript references that use relative addresses. These relative addresses rely on the

existence of locally stored JavaScript scripts. However, the files in the corpus only con-

tain HTML content and embedded JavaScript scripts (i.e., none of the external JavaScript

scripts are stored locally). To solve this problem, we dynamically rewrote the HTML files,

replacing the relative script addresses with absolute addresses. As a result, we were able to

download the necessary external script files when they were needed.

Another challenge posed by the JavaScript techniques is the nondeterministic behavior

of JavaScript script execution. Unlike the HTML techniques, which we easily identified with

an HTML parser, the JavaScript techniques were often hidden by conditional statements or

accomplished with additional levels of indirection (e.g., method calls). Additionally, many

of the techniques used variables to assign the targets of redirection (as opposed to using

direct assignments).

To overcome these obstacles, we dynamically rewrote the HTML files to trap JavaScript

method calls (e.g., replace()) and assignments to important JavaScript objects and at-

tributes (e.g., location and location.href) that dealt with redirection. Specifically, we re-

placed each redirection technique with an alert method. Then, to capture the targets of

redirection, we passed the original redirection parameters as arguments to the alert method.

As a result, the JavaScript redirection techniques were replaced as follows:

• location = URL; became alert( “location: URL” );

• location.href = URL; became alert( “location.href: URL” );

• location.replace( URL ); became alert( “location.replace: URL” );

In each of the above replacements, URL could be a static string or a variable construc-

tion. Our HTML rewriting techniques were able to handle both of these cases.
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Figure 46: Relative frequency of redirection techniques.

After rewriting our corpus files, we used HtmlUnit 1.101 to create a custom WebClient

that trapped alert method calls and parsed their arguments (i.e., the targets of redirection).

Then, we used our WebClient to access the rewritten HTML files, execute their JavaScript

scripts (using the Rhino JavaScript engine2), and capture the alert method calls that were

generated by JavaScript redirection techniques. Finally, we extracted the redirection targets

and converted any relative target addresses to absolute target addresses.

Based on our analysis, we discovered that the corpus contains 144,801 unique redirect

chains, each containing an average of 1.54 HTTP redirects. Thus, 41.5% of the Web spam

pages were obtained by following a redirect chain. Additionally, of the 348,878 Web spam

pages, 153,265 (43.9%) use some form of HTML or JavaScript redirection. Only 1,304 of

the 223,414 redirect files (0.6%) use HTML or JavaScript redirection techniques, but that is

not surprising since most of those files only contain session information for HTTP redirects.

Figure 46 shows a pie chart that breaks down the relative frequency of the redirection

techniques across all of the corpus files (i.e., Web spam pages and redirect files). HTTP

redirection (without the use of any content-based techniques) is clearly the most popular

form of redirection in the corpus, accounting for 60% of the redirections (49% for “Found”

redirects and 11% for “Moved Permanently” redirects). The next most popular techniques

involve only using HTML frame tags or HTML iframe tags. These techniques account for

1http://htmlunit.sourceforge.net/
2http://www.mozilla.org/rhino/
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Table 21: Most common targets of redirection.

Top 5 targets of redirection

Hostname Count
lb1.youbettersearch.com 44,334
ads2.drivelinemedia.com 15,798

bluerocketonline.TechBuyer.com 12,204
login.tracking101.com 11,639

apps5.oingo.com 10,153

Top 5 targets of HTTP redirection

Hostname Count
login.tracking101.com 11,639

www.macmall.com 8,895
cpaempire.com 5,350

mailer.ebates.com 3,656
click.be3a.com 2,488

Top 5 targets of frame redirection

Hostname Count
apps5.oingo.com 6,952

searchportal.information.com 5,796
landing.domainsponsor.com 5,256
click.recessionspecials.com 1,836

migada.com 1,553

Top 5 targets of iframe redirection

Hostname Count
ads2.drivelinemedia.com 15,798

simg.zedo.com 6,002
lb3.netster.com 4,961
apps5.oingo.com 3,201

www.creativecow.net 2,098

Top 5 targets of meta refresh redirection

Hostname Count
lb1.youbettersearch.com 22,278

bluerocketonline.TechBuyer.com 6,108
www.ebates.com 1,828

biz.tigerdirect.com 803
programs.weginc.com 722

Top 5 targets of location* redirection

Hostname Count
lb1.youbettersearch.com 22,056

bluerocketonline.TechBuyer.com 6,096
www.classmates.com 659

yoursmartrewards.com 427
c.azjmp.com 417

14% and 8% of the redirections, respectively. Redirection using meta refresh tags appears

in a variety of flavors. The most popular form of meta refresh redirection is accomplished

in conjunction with the replace method of a JavaScript location object. This technique

accounts for 7% of the redirections in the corpus. Files that exclusively use one of the three

JavaScript techniques, which we grouped together as “location*” in the figure, account for

2% of the redirections. All of the other combinations of redirection techniques collectively

account for 1% of the redirections.

Table 21 shows the hostnames that are most frequently the targets of redirection in our

corpus. The first set of counts represent the combined view of all of the HTTP, HTML,
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Figure 47: Number of pages being hosted by a single IP address.

and JavaScript redirection techniques we identified. This list consists of 2 ad farms (lb1.

youbettersearch.com and bluerocketonline.TechBuyer.com), 2 advertisers (ads2.drivelinemedia.

com and login.tracking101.com), and 1 domain parking service. The top 5 HTTP redirect

targets are all advertisers. The top 5 frame redirect targets consist of 3 domain parking ser-

vices (apps5.oingo.com, searchportal.information.com, and landing.domainsponsor.com),

1 ad farm (click.recessionspecials.com), and 1 parked domain. The top 5 iframe redi-

rect targets consist of 1 ad farm (lb3.netster.com), 3 advertisers (ads2.drivelinemedia.com,

simg.zedo.com, and www.creativecow.net), and 1 domain parking service (apps5.oingo.com).

The top 5 meta refresh redirect targets consist of 2 ad farms (lb1.youbettersearch.com

and bluerocketonline.TechBuyer.com), 2 advertisers (www.ebates.com and biz.tigerdirect.

com), and 1 pornographer. The top 5 location* redirection targets consist of 2 ad farms

(lb1.youbettersearch.com and bluerocketonline.TechBuyer.com) and 3 advertisers (www.

classmates.com, c.azjmp.com, and yoursmartrewards.com).

9.3 HTTP Session Analysis

In addition to the HTML content of Web spam pages, our corpus also contains the HTTP

session information that was obtained from the servers that were hosting those pages. In

this section, we characterize this session information, focusing on the most common server

IP addresses and session header values.
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Table 22: Top 10 hosting IP addresses.

Hosting IP Address Count

64.225.154.135 22,332
208.254.3.166 13,806
64.69.68.141 10,615

204.251.15.194 8,211
209.233.130.40 6,713
66.116.109.62 6,294
64.40.102.44 5,923

80.245.197.244 5,206
207.219.111.23 5,201
204.251.15.193 3,963

9.3.1 Hosting IP Addresses

One of the most important pieces of HTTP session information is the IP address that hosted

a given Web spam page – the hosting IP address. Figure 47 shows the distribution of all of

the hosting IP addresses in our corpus. This figure clearly shows that most of the hosting

IP addresses were concentrated around a few IP address ranges. Specifically, the 63.* – 69.*

and 204.* – 216.* IP address ranges account for 45.4% and 38.6% of the hosting IP addresses

in the corpus, respectively (84%, collectively). Table 22 shows the 10 most popular hosting

IP addresses, and all but one of them are in these IP address ranges.

Interestingly, these IP address ranges also include the two most popular Web spam IP

address ranges discussed in previous work by Wang et al. [150]. Specifically, they found

that most of their spam examples were being hosted on two IP address ranges (64.111.*

and 66.230.*). Our corpus includes 120 and 916 examples from those address ranges, re-

spectively. The presence of these hosting IP addresses in our corpus reaffirms their results,

and it also emphasizes the value of our corpus and the method used to obtain it.

9.3.2 HTTP Session Headers

In addition to the hosting IP addresses of Web spam pages, our corpus also contains all of

the HTTP session headers that were associated with the page request transaction. In this

section, we identify the most commonly used headers as well as the most popular header
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Table 23: Top 10 HTTP session headers.

Header Total Count Unique Count Most Popular Value (Count)

Content-Type 348,878 688 text/html (155,401)
Server 343,168 6,513 microsoft-iis/6.0 (64,787)

Connection 327,478 6 close (304,557)
X-Powered-By 209,215 261 asp.net (80,294)
Content-Length 162,532 31,232 1470 (6,115)
Cache-Control 148,715 548 private (69,571)

Set-Cookie 145,315 140,431 gx jst=9fa7274e662d6164; path=/apps/system, gx jst=9fa7274e662d6164 (626)
Link 142,785 15,573 </style/kentech.css>; rel=“stylesheet”; type=“text/css” (25,620)

Expires 93,477 25,056 mon, 26 jul 1997 05:00:00 gmt (18,933)
Pragma 75,435 32 no-cache (64,344)

values.

Many of the corpus files contained more than one value for a given header. In each of

those cases, we concatenated all of the separate values into a comma delimited list. We did

this because we wanted a one-to-one mapping for a file and each of its headers to simplify

header comparisons from one file to another.

Table 23 shows the 10 most popular HTTP session headers in terms of the number of

Web spam pages that contain them. The table shows the number of pages each header

appears in, the number of unique values each header has, and the most popular value for

each of the headers. The “Content-Type” header is the most popular header, appearing in

all 348,878 of the Web spam pages in our corpus. As we explained in the previous chapter,

the corpus only contains files with textual “Content-Type” values. Thus, the values for the

“Content-Type” header are primarily “text/html” combined with permutations of various

charset encodings (e.g., “iso-8859-1,” “utf-8,” etc.).

The “Server” header is the second most popular header, appearing in 343,168 of the Web

spam pages. This header is extremely important because it describes the Web server that

actually served a given Web spam page. Microsoft IIS 6.0 is the most commonly used Web

server in our corpus (18.9% of the pages were hosted by it), but generally, Apache (63.9%)

was used more frequently than Microsoft IIS (30.3%). Overall, these two Web servers were

clearly the most popular option among Web spammers, accounting for 94.2% of the pages

that contain a “Server” header.
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9.4 Related Work

Fetterly et al. [54] statistically analyzed two data sets of Web pages (DS1 and DS2) using

properties such as linkage structure, page content, and page evolution. They found that

many of the outliers in the statistical distributions of these properties were Web spam, and

they manually identified 98 out of 1,286 Web pages as spam. Ntoulas et al. [115] extended

the work by investigating additional content-based features of a collection of 2,364 Web spam

pages (e.g., fraction of visible content, compressibility, independent n-gram likelihoods, etc.).

Castillo et al. [27] also identified a few spam features (e.g., synthetic text, parked domains,

etc.) using a collection of 1,447 manually labeled Web spam pages. Our work differs from

these previous evaluations in two very important ways. First, our characterization was

performed on a collection of Web spam pages that is two orders of magnitude larger than

the collections used in previous studies. Second, we are the first to analyze the HTTP

session information associated with Web spam pages.

Wu and Davison [153] performed a preliminary evaluation of the redirection techniques

used on the Web. Specifically, they looked at HTTP redirection, meta refresh redirection,

and two types of JavaScript redirection in a collection of unlabelled Web pages. Wang et

al. [150] took this work a step further by analyzing network redirection traffic from known

spam domains to identify redirection URLs. In this chapter, we provide an evaluation of

the redirection techniques used by Web spammers that enhances these previous studies in

three ways. First, our analysis encompasses hundreds of thousands of Web spam pages,

whereas previous studies only used a few thousand pages. Second, we investigate a more

comprehensive list of redirection techniques: HTTP redirection, 3 HTML-based techniques,

and 3 JavaScript-based techniques. Third, previous research [75, 153] detailed the difficulties

associated with identifying and processing JavaScript redirection techniques. We were able

to overcome these difficulties by using sophisticated HTML rewriting techniques, and as a

result, we are the first to present a large-scale evaluation of JavaScript-based redirection

techniques.

Wang et al. [149] developed an automated approach for identifying typo-squatting do-

mains, which are a specific type of parked domains. Using this approach, they found that
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a handful of domain parking services are responsible for parking about 30% of the typo-

squatting domains they identified. In our study, we also identified numerous examples of

parked domains; however, our analysis was not confined to typo-squatting domains, and we

investigated a significantly larger collection of Web spam pages.

9.5 Summary

We have conducted the first large-scale experimental study of Web spam through content

and HTTP session analysis on the Webb Spam Corpus – a collection of almost 350,000

Web spam pages. Our results are consistent with the hypothesis that Web spam pages

are fundamentally different from normal Web pages. Specifically, we found that the rate of

duplication among Web spam pages is twice the duplication rate for normal Web pages. Our

content analysis also found five important categories of Web spam: Ad Farms, Parked

Domains, Advertisements, Pornography, and Redirection.

In addition to content analysis, we also performed HTTP session analysis on the session

data that was collected during the construction of the Webb Spam Corpus. This session

analysis showed two trends. First, the hosting IP addresses are concentrated in two narrow

ranges (63.* – 69.* and 204.* – 216.*). Second, significant overlaps exist among the session

header values. Both of these trends are consistent with the hypothesis that Web spam

pages are detectably different from normal Web pages, in a way similar to the results of our

content analysis.

Although previous Web spam research has focused primarily on link analysis, our results

suggest that content and HTTP session analysis techniques can contribute greatly towards

distinguishing Web spam pages from normal Web pages. This is a promising result because

these techniques can become new weapons in our ongoing battle against Web spam.
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CHAPTER X

PREDICTING WEB SPAM WITH HTTP SESSION INFORMATION

The use of malicious Web pages to influence human users and attack browser client ma-

chines has grown significantly despite continued research and industry efforts. Examples of

malicious Web pages (commonly called Web spam) include pages that subvert search engine

ranking algorithms (accounting for between 13.8% and 22.1% of all Web pages [27, 115]) as

well as pages designed to propagate malware by hosting Web-borne spyware and browser

exploits [111, 112, 121, 149]. Thus, for both performance and security reasons, the identifi-

cation of Web spam pages has become increasingly important.

Most previous and current research efforts on Web spam defenses have focused on pro-

tecting human users by identifying Web pages that skew search engine rankings through

link or content manipulations. Representative examples of this research include link-

based [15, 17, 28, 30, 76, 154] and content-based [54, 115] analysis techniques. Although

these analysis techniques effectively identify certain types of Web spam, the techniques need

to download and inspect the content associated with suspect Web pages for the analysis al-

gorithms to work. This dependence on Web spam content makes these previous approaches

practically defenseless against Web-propagated malware, and it severely limits their impact

on the resource burdens imposed by Web spam.

Notwithstanding the common assumption that Web spam content is necessary for iden-

tifying Web spam, the main hypothesis of this chapter is that HTTP session information

(i.e., hosting IP addresses and HTTP session headers) provides sufficient evidence for the

successful identification of many Web spam pages. This hypothesis is supported by the

results in the previous chapter, which show that very distinct patterns emerge within the

HTTP session information associated with Web spam pages. In this chapter, we leverage

that observation by using HTTP session information to train classification algorithms to

distinguish between spam and legitimate Web pages.
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The first contribution of this chapter is a new approach for retrieving Web pages using

HTTP. Specifically, we insert an HTTP session classifier into the HTTP retrieval process,

which predicts whether a Web page is spam based on the page’s HTTP session information

(completely ignoring its content). This predictive approach protects Web users from Web-

propagated malware, and it generates significant bandwidth and storage savings because

it avoids downloading and storing useless Web spam pages. Our approach is particularly

useful for search engines because it enables more efficient and effective Web crawlers, which

will generate indexes with higher quality content.

The second contribution of this chapter is a large-scale experimental evaluation of Web

spam classification using HTTP session information. As part of this evaluation, we in-

vestigate various classification algorithms and discover that many classifiers are capable of

successfully detecting almost 90% of the Web spam in our corpora. Then, we evaluate the

effects of varying class distributions and observe that our best classifiers are very robust

under a number of environmental circumstances. Finally, we investigate the computational

costs and resource savings associated with our approach. Based on our experiments, we

observe that our most effective classifier only adds an average of 101µs to each Web page

retrieval, while saving an average of 15.4 KB of bandwidth and storage resources for every

successfully identified Web spam page.

The remainder of the chapter is organized as follows. Section 10.1 reviews previous

research on Web spam identification and classification. Section 10.2 provides background

information about HTTP operations and describes our new approach for retrieving Web

pages. Section 10.3 describes the experimental setup we used to evaluate our new approach,

and Sections 10.4 and 10.5 present our experimental results using various corpora of spam

and legitimate Web pages. We summarize our findings in Section 10.6.

10.1 Related Work

Previous Web spam research can be categorized broadly into three groups: link-based,

content-based, and hybrid analysis techniques. Link-based analysis techniques attempt to

identify Web spam pages based on their hyperlink connections to other pages. Davison [43]
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was the first to investigate link-based Web spam, building decision trees to successfully

identify “nepotistic links.” Becchetti et al. [15] revisited the use of decision trees on a newer

collection of Web data and were able to successfully identify 80.4% of the 840 Web spam

examples in their sample with a false positive rate of 1.1%. To help mitigate the effects

of link manipulations on link-based ranking algorithms, Gyöngyi et al. [76] developed an

algorithm called TrustRank that can be used to propagate trust from a seed set of Web

pages to the successors of those pages. Wu and Davison [154] and Benczur et al. [17] also

proposed solutions for improving the resiliency of ranking algorithms. However, instead of

propagating trust to good pages, they propagated distrust to bad pages. Finally, Caverlee

et al. [30] proposed a spam resilient ranking approach called Spam-Resilient SourceRank.

This approach collects Web pages into logical groupings called sources, and it provides

parameters that can be tuned to throttle the ranking influence of various sources.

Content-based analysis techniques focus on identifying fundamental differences between

the content of spam and legitimate Web pages. Fetterly et al. [54] statistically analyzed

two data sets of Web pages (DS1 and DS2) using properties such as page content, content

duplication, and page evolution. They found that many of the outliers in the statistical

distributions of these properties were Web spam, and they manually identified 98 out of

1,286 Web pages as spam. Ntoulas et al. [115] extended the work by using additional

content-based features (e.g., fraction of visible content, compressibility, independent n-gram

likelihoods, etc.) to build decision trees, which were able to successfully classify 86.2% of

their collection of 2,364 spam pages with a false positive rate of 1.3%. Anderson et al. [5]

developed a technique called spamscatter, which extracts URLs from spam email messages,

obtains the corresponding Web content, and clusters that Web content based on an image

shingling technique. Using their approach on a one-week collection of email, they were able

to identify 2,334 unique “scams” being hosted on 7,029 unique IP addresses.

Hybrid analysis techniques combine content-based and link-based techniques to iden-

tify Web spam. Gyöngyi and Garcia-Molina [75] proposed a taxonomy that categorizes

various techniques used by Web spammers to manipulate search engine results. This tax-

onomy showcases a variety of content-based and link-based spamming techniques. Drost
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Request Line GET / HTTP/1.1

Headers
Host: click.recessionspecials.com

User-Agent: Mozilla/5.0

Empty Line

Figure 48: Example HTTP request message.

and Scheffer [45] trained a support vector machines (SVM) classifier using content-based

features (e.g., number of page tokens, number of URL characters, etc.) as well as link-based

features (e.g., contextual similarities between a page, its predecessor, and its successors).

Then, using a private collection of 1,285 Web pages (431 spam and 854 legitimate), their

classifier consistently obtained area under the ROC curve (AUC) values greater than 90%.

Castillo et al. [28] created a cost-sensitive decision tree using the content-based features

described in [115] and link-based features described in [15]. Their decision tree was able

to successfully identify 88.4% of their 675 Web spam examples with a false positive rate

of 6.3%. Finally, Wang et al. [150] proposed a five-layer double-funnel model for analyzing

Web spam. Then, using this model and the Strider Search Ranger system, which combines

content-based and redirection traffic analysis techniques, they identified various URLs and

IP addresses that were associated with Web spam pages.

10.2 Web Page Retrieval Using HTTP

In this section, we review the underlying protocols responsible for Web browsing and Web

crawling. First, we discuss the HTTP operations available for retrieving a Web page from

a Web server. Then, we propose a new approach for retrieving Web pages that leverages

HTTP session classification to avoid downloading Web spam content.

10.2.1 Traditional Approach

The HyperText Transfer Protocol (HTTP) [56] is a request/response protocol that allows

clients (or user agents) to exchange information with servers (or origin servers) located

around the world. In the Web context, user agents are typically Web browsers and Web

crawlers, and origin servers are typically Web servers that store various forms of Web data.

The information exchange between user agents and origin servers is accomplished by

transmitting MIME-like messages (as specified in RFC 2616 [56]) back and forth between
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Status Line HTTP/1.1 200 OK

Connection: close

Date: Fri, 23 Dec 2005 18:12:19 GMT

Server: Apache/2.0

Content-Length: 732

Content-Type: text/html; charset=UTF-8

Headers Link: <http://static.hitfarm.com/template/qing/images/qing.ico>;

/="/"; rel="shortcut icon"; type="image/x-icon"

P3P: CP="NOI COR NID ADMa DEVa PSAa PSDa STP NAV DEM STA PRE"

Set-Cookie: source=1; expires=Fri, 23 Dec 2005 20:12:19 GMT

Title: recessionspecials.com

X-Powered-By: PHP/5.0.5

Empty Line
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html lang="en">

<head>

<title>recessionspecials.com</title>

<link rel="shortcut icon" href="http://static.hitfarm.com/template/

qing/images/qing.ico" type="image/x-icon" />

</head>

<frameset cols="1,*" border="0" frameborder="0">

<frame name="hftop" src="/top.php" scrolling="no" frameborder="0"

marginwidth="0" marginheight="0" noresize="noresize" />

Message Body <frame name="hfasi" src="http://apps5.oingo.com/apps/domainpark/

domainpark.cgi?cid=MEDI3409&s=recessionspecials.com&

ip=130.207.5.18" scrolling="auto" frameborder="0" marginwidth="0"

marginheight="0" noresize="noresize" />

<noframes>

<body>

<p>This page requires frames</p>

</body>

</noframes>

</frameset>

</html>

Figure 49: Example HTTP response message.

the user agents and origin servers. First, the user agent initiates a request by sending a

request message to the origin server. A request message contains a request line, zero or

more session headers, an empty line that denotes the end of the headers, and an optional

message body. The request line includes a request method, a URL on which to apply the

request method, and the user agent’s supported HTTP version (HTTP/1.1 is the most

widely supported version). An annotated example of a simple “GET” request message is

shown in Figure 48.

After the origin server receives a request message, the server performs the requested

method on the provided URL and returns the result in a response message. Figure 49

shows the annotated response message that corresponds to the “GET” request message

shown in Figure 48. A response message contains a status line, zero or more headers, an

empty line that denotes the end of the headers, and an optional message body. The status

line includes the origin server’s supported HTTP version, a three digit status code (e.g.,

“200”) that indicates whether or not the request was successful, and a textual description

of the status code (e.g., “OK”).
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10.2.2 Proposed Approach

To improve the Web browsing experience for users and to enhance the quality of informa-

tion obtained by Web crawlers, we propose a new approach for retrieving Web pages with

HTTP. Our proposed approach does not affect the underlying HTTP operations; however,

it does change the manner in which user agents respond to the results of those operations.

Specifically, we insert an HTTP session classifier into the retrieval process to dramatically

reduce the amount of Web spam that is retrieved by user agents. First, the user agent

initiates a “GET” request using the approach described above in Section 10.2.1. Upon

receiving the request message, the origin server performs the requested method and returns

the result in a response message.

In the traditional approach, the user agent blindly accepts the response (and its cor-

responding Web page), continuing to its next task (i.e., crawling the contents of the next

URL, requesting images or other embedded objects that are found in the received Web

page, etc.). However, in our proposed approach, the user agent only reads the response line

and HTTP session headers from the response message (i.e., it reads up to the empty line).

Then, the user agent employs a classifier to evaluate the headers and classify them as spam

or legitimate. If the headers are classified as spam, the user agent closes its connection

with the origin server, ignoring the remainder of the response message and saving valuable

bandwidth and storage resources. Alternatively, if the headers are classified as legitimate,

the user agent finishes reading the response message and continues its normal operation.

Our new approach offers at least three benefits. First, the approach is broadly applicable

to any URL on the Web, regardless of where that URL is obtained (e.g., in an email, in

a search engine result, in a social networking community, etc.). Since we integrate our

predictive technique into the HTTP retrieval process, we are able to protect all of the page

requests made by a user agent. Second, by making the classification decision at the HTTP

level, we avoid downloading the content of a page unless we predict the page is legitimate.

Thus, our approach enables more efficient and effective Web crawlers by providing significant

bandwidth and storage savings. Additionally, by restricting content downloads, we can

protect Web users against exposure to Web-borne spyware and browser exploits, which are
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becoming increasingly prevalent on Web spam pages [111, 121, 149]. Third, our approach

is complementary to existing link-based and content-based analysis techniques. Hence, the

approach can be combined with existing techniques to create a multi-layered defense against

Web spam.

10.3 Experimental Setup

The success of our predictive approach is contingent upon the performance of HTTP session

classification. Therefore, we performed extensive evaluations to determine the effectiveness

of classifying Web spam using HTTP session information. In this section, we discuss the

fundamental principles used to perform our experimental evaluations. Then, in Sections 10.4

and 10.5, we provide experimental evidence that HTTP session classification is an effective

and efficient solution for automatically predicting Web spam pages.

10.3.1 Classification Framework

Previous research [15, 28, 43, 45, 115] has shown that Web spam detection can be modeled

as a binary classification problem, where the two classes are spam and legitimate (or non-

spam). In binary classification problems, a model (or classifier) is built and evaluated in

two separate phases: the training phase and the classification phase (or testing phase).

During the training phase, a set of labeled instances (i.e., the training data) is used to

train a classifier, establishing a mapping between instance features and the classes. During

the classification phase, the trained classifier is used to classify a separate set of labeled

instances (i.e., the testing data), and the resulting classifications are presented in the form

of a confusion matrix (or contingency table):

Predicted Class
Legitimate Spam

Correct Class Legitimate a b
Spam c d

In the above confusion matrix, a represents the number of correctly classified legitimate

Web pages, b represents the number of legitimate Web pages that were misclassified as

spam, c represents the number of Web spam pages that were misclassified as legitimate,
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and d represents the number of correctly classified Web spam pages. Once a confusion

matrix is generated, we compute various performance metrics to evaluate the effectiveness

of a classifier: true positive (TP) rate, false positive (FP) rate, F-measure, and Accuracy.

The TP rate is the same as recall R, which is d
c+d , and the FP rate is b

a+b . F-measure is

defined as 2PR
P+R , where P is d

b+d , and Accuracy is defined as a+d
a+b+c+d . All of these metrics

are well known and widely cited throughout previous machine learning and information

retrieval research.

To improve the reliability of our classifier evaluations, each evaluation was performed

using stratified tenfold cross-validation [96]. In stratified tenfold cross-validation, a fixed

sample of data is randomly divided into ten equally-sized folds (or partitions), and each

fold is comprised of approximately the same class distribution as the original sample. After

the data is split, each fold is evaluated with a classifier that was trained with the other nine

folds, and a confusion matrix is generated by averaging the results of these ten evaluations.

Finally, the performance metrics are calculated using this confusion matrix.

10.3.2 Corpora

In Chapter 8, we developed an automatic technique for obtaining Web spam examples that

leverages the presence of URLs in email spam messages. Specifically, we extracted almost

1.2 million unique URLs from more than 1.4 million email spam messages. Then, we built

a crawler to obtain the Web pages that corresponded to those URLs. Our crawler obtained

two types of information for every successfully accessed URL: the HTML content of the

page identified by the URL and the HTTP session information associated with the page

request transaction. After our crawling process was complete, we had 348,878 Web spam

pages, which are referred to as the Webb Spam Corpus. This corpus is currently the largest

publicly available collection of Web spam, and it served as our primary source of spam

instances.

In addition to the Webb Spam Corpus, we also used the labeled spam instances in the

WEBSPAM-UK2006 corpus1 as a source of Web spam pages. The WEBSPAM-UK2006

1The WEBSPAM-UK2006 corpus can be found at http://www.yr-bcn.es/webspam/datasets/.
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Table 24: Corpora summaries.

Corpus Number of Crawl
Abbreviation Instances Date

WebbSpam 348,878 December 2005
WebBase 392,664 December 2005

UK2006Spam 1,338 July 2007
UK2006Legit 3,542 July 2007

corpus [27] is a publicly available Web spam collection that is based on a May 2006 crawl

of the .uk domain. This corpus is much smaller and far less diverse than the Webb Spam

Corpus, but since the WEBSPAM-UK2006 corpus has appeared in recent Web spam clas-

sification research [15, 28], we used it for comparative purposes. Unfortunately, this corpus

does not contain HTTP session information, and as a result, we were forced to recrawl its

spam URLs and obtain their corresponding HTTP session information. We performed this

crawl in July 2007 (i.e., a little over a year after the original corpus was created), and we

were only able to obtain 1,338 out of the 1,924 spam pages (70%) in the corpus because the

missing pages were no longer available.

Since the Webb Spam Corpus was collected at the end of December 2005, we needed

legitimate Web data from a similar time period to establish a fair comparison between spam

and legitimate HTTP session information. To obtain this temporally similar data, we used

the December 2005 crawl from Stanford’s publicly available WebBase Web Page Reposi-

tory [82]. This crawl is comprised of 20.7 million pages, which are stored along with the

HTTP session information that was returned when the pages were crawled. We extracted a

stratified random sample of 392,664 legitimate pages from this crawl, maintaining the same

relative distribution of hosts in our sample.

In addition to our WebBase data, we also used the labeled legitimate instances in the

WEBSPAM-UK2006 corpus as a source of legitimate Web data. As mentioned above, this

corpus does not contain HTTP session information; thus, we recrawled the legitimate URLs

from the corpus to obtain that data. We performed this crawl in July 2007, and we were

only able to obtain 3,542 out of the 5,549 legitimate pages (64%) in the corpus because the
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Figure 50: Hosting IP addresses. In (a), we compare the hosting IP addresses from the
Webb Spam Corpus and WebBase data. In (b), we compare the hosting IP addresses for
the spam and legitimate pages in the WEBSPAM-UK2006 corpus.

missing pages were no longer available.

Table 24 presents a summary of our corpora. For each corpus, the table lists its abbre-

viated name, its number of instances, and the date it was created.

10.3.3 HTTP Session Information Features

Classification algorithms require their inputs (or data instances) to be represented in a

consistent format. In our experiments, we adopted the traditional vector space model [129]

(or “bag of words” model), which has been quite effective in previous information retrieval

and machine learning research. In the vector space model, each data instance is represented

as a feature vector f of n features: < f1, f2, . . . , fn >. All of our features are Boolean;

hence, if fi = 1, the feature is present in a given instance; otherwise, the feature is absent.

Unlike previous Web spam classification research, which has relied on link-based and

content-based analysis techniques, our work focuses exclusively on HTTP session informa-

tion. One of the most important pieces of HTTP session information is the IP address of the

Web server that hosts a given Web page – the hosting IP address. Figure 50(a) compares

the distributions of the hosting IP addresses for the Webb Spam Corpus and WebBase data.

The figure clearly shows that each distribution is quite distinct. The hosting IP addresses

in the Webb Spam Corpus are concentrated around a few IP address ranges. Specifically,
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Table 25: Most popular HTTP session headers.

WebbSpam WebBase UK2006Spam UK2006Legit
Header Total Count Total Count Total Count Total Count

(Unique Count) (Unique Count) (Unique Count) (Unique Count)

Content-Type 348,878 (688) 392,600 (122) 1,338 (41) 3,542 (123)
Server 343,168 (6,513) 387,301 (2,505) 1,336 (196) 3,490 (704)

Connection 327,478 (6) 354,837 (8) 1,322 (2) 3,230 (4)
X-Powered-By 209,215 (261) 114,181 (111) 862 (52) 1,753 (90)
Content-Length 162,532 (31,232) 214,100 (58,417) 498 (447) 2,203 (1,987)
Cache-Control 148,715 (548) 103,916 (1,461) 283 (27) 1,377 (117)

Set-Cookie 145,315 (140,431) 110,519 (105,636) 287 (287) 1,392 (1,376)
Link 142,785 (15,573) 79 (64) 797 (421) 2,690 (2,215)

Expires 93,477 (25,056) 55,991 (31,197) 183 (44) 745 (353)
Pragma 75,435 (32) 29,464 (9) 167 (5) 541 (10)

Last-Modified 73,071 (50,206) 149,191 (125,573) 418 (380) 1,348 (1,245)
P3P 59,023 (816) 21,970 (205) 27 (14) 84 (54)

Accept-Ranges 47,821 (4) 157,384 (4) 442 (1) 1,245 (2)
X-Meta-Robots 45,900 (241) N/A 327 (25) 662 (64)

Refresh 45,075 (8,556) 136 (6) 9 (8) 150 (137)
Etag 42,546 (24,783) 118,804 (115,122) 347 (317) 1,125 (1,039)
Vary 25,721 (45) 15,939 (27) 43 (5) 120 (12)

Content-Language 20,397 (163) 9,661 (49) 138 (7) 401 (18)

the 63.* – 69.* and 204.* – 216.* IP address ranges account for 45.4% and 38.6% of the

addresses associated with that corpus, respectively (84%, collectively). On the other hand,

only 50.6% of the WebBase data’s hosting IP addresses are in those ranges (21.8% for 63.*

– 69.* and 28.8% for 204.* – 216.*). Similarly, 25.6% of the hosting IP addresses associated

with the WebBase data are in the 128.* – 171.* range, whereas only 2.3% of the addresses in

the Webb Spam Corpus fall within that range. Figure 50(b) compares the distributions of

the hosting IP addresses for the spam and legitimate instances in the WEBSPAM-UK2006

corpus, showing distinct trends that are similar to those described for the Webb Spam Cor-

pus and WebBase data. Since the distributions of spam and legitimate hosting IP addresses

are quite distinct, we used those addresses as features in our classification experiments to

help distinguish between spam and legitimate Web pages.

In addition to hosting IP addresses, we also derived a number of features from HTTP

session header values. Table 25 shows a list of the most popular HTTP session headers

in our corpora. For each corpus, the table lists the number of pages associated with each

header and the number of unique values each header has in the corpus. Two important

observations emerge from this table. First, the relative popularity of the various HTTP

session headers varies greatly among spam and legitimate Web pages. For example, 60% of

the spam instances in the Webb Spam Corpus possess an “X-Powered-By” header, whereas

only 29.1% of the legitimate instances in the WebBase data contain that header. This
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disparity is even larger for the “Link” header, which is found in 40.9% of the spam instances

and only 0.02% of the legitimate instances. The table also shows a similar phenomenon for

the spam and legitimate instances in the WEBSPAM-UK2006 corpus.

The other important observation from Table 25 is that distinct distributions exist for

the HTTP session header values of spam and legitimate Web pages. For example, of the

59,023 spam instances in the Webb Spam Corpus that possess a “P3P” header value, only

34.5% of them have a value that is also possessed by at least one legitimate instance in

the WebBase data (i.e., 65.5% of those spam instances are uniquely identified by their

“P3P” header value). Similarly, 17.8% of all spam instances in the Webb Spam Corpus are

uniquely identified by their “Content-Type” header value, and 24.8% of the spam instances

with a “Server” header value are uniquely identified by those values. Similar distinctions

also exist for the HTTP session header values of spam and legitimate Web pages in the

WEBSPAM-UK2006 corpus.

To derive classification features from HTTP session headers, we created three repre-

sentations (phrases, n-grams, and tokens) for each unique header value. First, we stored

the header value as an uninterrupted phrase. Then, we tokenized the header value using

whitespace and punctuation characters as delimiters. Next, we stored the resulting tokens,

along with the unique 2-grams and 3-grams. Finally, we prepended the header name to each

of our generated feature values to disambiguate the values for distinct headers. For exam-

ple, we prepended all “Server” values with “server ” to avoid potential collisions with the

values of other headers. To illustrate our feature generation process, Table 26 shows the fea-

tures that were derived from the sample “Server” header shown in Table 25 (“apache/2.0.52

(fedora)”).

10.3.4 Feature Selection

Text data is often characterized as having an extremely high dimensionality due to the vast

number of features that can occur in the feature vector. Our corpora exhibit a particularly

high dimensionality because they contain thousands of unique headers with millions of

unique values. Additionally, we expand the feature space even further with hosting IP
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Table 26: Feature representations.

Representation Feature

Phrase server apache/2.0.52 (fedora)
server apache/2 0 52
server 0 52 fedora

N-grams server apache/2 0
server 0 52

server 52 fedora

Tokens

server apache/2
server 0
server 52

server fedora

addresses and the three feature representations (i.e., phrases, n-grams, and tokens) that we

apply to each HTTP header value.

Many of these features are critical for establishing accurate class boundaries and cre-

ating effective classifiers. However, not all of these features are relevant to the distinction

between spam and legitimate instances. Irrelevant features actually introduce noise into

the classification process, wasting valuable computational and storage resources during the

training phase and all subsequent uses of the trained classifier. To alleviate the problems

associated with high dimensionality, we select a smaller number of the “best” features from

our vast feature space – a process known as dimensionality reduction (or feature selection).

In our experiments, we use a well-known information theoretic measure called Information

Gain [57, 155] to accomplish this feature selection process. Information Gain is defined as

follows:

IG(fi, cj) =
∑

c∈{cj ,cj}

∑
f∈{fi,fi}

p(f, c) · log p(f,c)
p(f)·p(c) ,

where fi is a feature in the feature vector, p(f) is the probability that f occurs in the

training set, cj is one of the classes (i.e., spam or legitimate), p(c) is the probability that

c occurs in the training set, and p(f, c) is the joint probability that f and c occur in the

training set.

Intuitively, Information Gain quantifies how much the knowledge of feature fi helps to
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correctly identify class ci. Thus, if feature f0 has a higher Information Gain value than

feature f1, we say that f0 has more predictive power than f1. For our experiments, we

calculate the Information Gain for each feature in the feature space of a given collection

of corpora. Then, a user-specified number n of tokens with the highest Information Gain

scores are selected (or retained) and used to train the classifiers.

10.3.5 Classifiers

Unlike previous Web spam classification research [15, 28, 43, 115], which has relied almost

exclusively on decision trees (e.g., C4.5), we performed our HTTP session classification ex-

periments with a variety of classification algorithms. Specifically, we performed an extensive

evaluation with 40 classifiers that are implemented in the Weka toolkit [152]. These classi-

fiers include decision trees (e.g., C4.5, random forest, etc.), rule generators (e.g., RIPPER,

PART, etc.), boosting algorithms (e.g., AdaBoost, LogitBoost, etc.), logistic regression,

radial basis function (RBF) networks, HyperPipes, multilayer perceptrons, support vector

machines (SVM), and näıve bayes. The algorithmic details of these classifiers are beyond

the scope of this chapter. Additional information about the classifiers is available in most

standard machine learning texts (e.g., [110]).

10.4 Webb Spam and WebBase Results

In this section, we present our experimental HTTP session classification results using spam

instances from the Webb Spam Corpus and legitimate instances from our WebBase sample.

The Webb Spam Corpus is currently the largest publicly available collection of Web spam;

consequently, the results presented in this section are a truly representative measure of the

effectiveness of our approach.

10.4.1 Classifier Evaluation

Our first experiments explored the impact of feature set size and corpus sample size on

the effectiveness of our classifiers. As part of these experiments, we varied the feature set

size between 100 and 10,000 (incrementing the variations on a log scale), and we varied the

corpus sample size across the same range with the same variations. As a result, we evaluated
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Table 27: Top 10 features for Webb Spam and WebBase.

Rank Feature

1 accept-ranges bytes
2 x-powered-by php/4 3
3 x-powered-by php/4
4 content-type text/html; charset=utf-8
5 content-type text/html; charset=iso-8859-1
6 expires 00 00 gmt
7 64.225.154.135
8 server fedora
9 pragma no-cache
10 p3p cp=

close to 400 unique feature set size and corpus sample size combinations. After performing

this evaluation, we found that the majority of our classifiers consistently exhibited their best

performance with 5,000 retained features (the 10 most effective features for these corpora are

summarized in Table 27) and a corpus sample consisting of 10,000 data instances. Therefore,

those settings were used for the remainder of our experiments involving the Webb Spam

Corpus and WebBase data.

Once we identified an appropriate feature set size and corpus sample size, we used those

settings to evaluate the performance of the 40 classifiers we described above in Section 10.3.5.

This evaluation was performed using a random corpus sample with an equal distribution

of spam and legitimate instances (i.e., 5,000 instances of each class). We chose to use

an equal class distribution to minimize the class-specific contributions and focus on each

classifier’s ability to correctly classify instances from each class. We revisit this decision

in Section 10.4.2 by investigating the impact of a corpus sample’s class distribution on the

performance of a classifier.

The performance metrics for the 5 most effective classifiers from our evaluation are pre-

sented in Table 28. The table clearly shows that all of our classifiers were quite successful;

however, HyperPipes was consistently the best performer. SVM and C4.5 both exhibit a

slightly higher TP rate (i.e., spam detection rate) than HyperPipes, but HyperPipes offers
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Table 28: Classifier performance results for Webb Spam and WebBase.

Classifier TP FP F-Measure Accuracy

Content-based [115] 86.2% 1.3% 0.886 92.5%
C4.5 88.5% 4.6% 0.916 91.9%

HyperPipes 88.2% 0.4% 0.935 93.9%
Logistic Regression 88.2% 2.0% 0.927 93.1%

RBFNetwork 87.1% 0.8% 0.927 93.2%
SVM 89.4% 2.3% 0.933 93.6%

a substantially lower FP rate than all of the other classifiers. The HyperPipes classifier op-

erates as follows. During the training phase, an n-dimensional parallel-pipe (or HyperPipe)

is constructed for each class. Each HyperPipe contains all of the feature values associated

with its class, which generates feature boundaries for that class. During the testing phase,

each test instance is classified according to the class that most contains that instance (i.e.,

the class with feature boundaries that overlap the most with the test instance).

To further investigate the performance of HyperPipes (and the other classifiers), we

generated a Receiver Operating Characteristics (ROC) graph. ROC graphs display the TP

rate on the Y axis and the FP rate on the X axis, depicting the relative tradeoffs between

benefits (true positives) and costs (false positives). In the machine learning community,

these graphs are used as another method for comparing the performance of classifiers [51].

Figure 51 shows the ROC graph for our classifiers. As the graph shows, the HyperPipes clas-

sifier offers one of the best tradeoffs between TP and FP performance. Since users are more

concerned with reducing false positives (i.e., legitimate Web pages that are misclassified as

spam) than false negatives (i.e., Web spam pages that are misclassified as legitimate), the

HyperPipes classifier offers the best overall performance, and we will rely on it for future

evaluations.

To help put our results in their proper context, Table 28 also shows the best results

from a previously studied content-based Web spam classifier [115]. Since the results from

this previous study were obtained using a private data set, we were unable to generate

directly comparable results. However, an indirect comparison shows that all of our top 5
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Figure 51: ROC curves for the top 5 classifiers using Webb Spam and WebBase.

classifiers were able to detect a higher percentage of Web spam pages than the content-

based classifier (i.e., our classifiers exhibited higher TP rates), and two of our classifiers

(HyperPipes and RBFNetwork) generated lower FP rates. Based on these results, we believe

that our approach for predicting Web spam with HTTP session information performs as

well as (if not better than) content-based Web spam classification efforts.

10.4.2 Class Distribution Evaluation

Based on the empirical growth patterns exhibited by Web spam [74], we expect the per-

centage of Web spam on the Web to continue growing for the foreseeable future. As a

result, any proposed solution for Web spam must be resilient against a constantly evolving

distribution of spam and legitimate Web pages. With this in mind, we performed an ex-

periment to evaluate the effect of a corpus sample’s class distribution on the performance

of a HyperPipes classifier. First, we created 9 corpus samples, each with a different class

distribution. The percentage of spam instances in each sample was varied from 10% to

90%, in increments of 10%. Then, for each sample, we selected the 5,000 most informative

features and evaluated a HyperPipes classifier using stratified tenfold cross-validation. The

results of this evaluation are summarized in Table 29. As the table shows, the classifier’s

performance declines as the sample’s spam percentage increases. However, the classifier’s

overall performance is incredibly robust. The FP rate remains relatively constant until the

sample is composed of 60% spam, and the lowest TP rate, F-Measure, and Accuracy values
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Table 29: Class distribution results for Webb Spam and WebBase.

Spam
TP FP F-Measure Accuracy

Percentage

10% 87.2% 0.3% 0.917 98.4%
20% 91.2% 0.3% 0.948 98.0%
30% 89.4% 0.3% 0.941 96.6%
40% 89.1% 0.3% 0.940 95.5%
50% 88.2% 0.4% 0.935 93.9%
60% 87.1% 0.6% 0.929 92.0%
70% 86.1% 0.8% 0.924 90.0%
80% 85.6% 1.0% 0.921 88.3%
90% 85.2% 3.1% 0.919 86.4%

are all within about 10% of their best values.

10.4.3 Computational Costs

Up to this point, our evaluations have focused primarily on the effectiveness of HTTP

session classification. However, another important consideration for our proposed Web

spam solution is the computational cost of HTTP session classification. Ultimately, even

the most effective classifier is useless if its timing requirements inhibit Web browsers and

Web crawlers from performing their intended tasks.

To evaluate the computational requirements of HTTP session classification, we per-

formed timing experiments using the 5 classifiers presented in Section 10.4.1. For each

classifier, we computed the training time and per instance classification time necessary to

perform a stratified tenfold cross-validation evaluation. Our timing experiments were con-

ducted on a dual processor (Intel Xeon 2.8 GHz) system with 4 GB of memory, and the

results for the 3 most efficient classifiers are shown in Table 30. As the table shows, C4.5

and HyperPipes are both extremely efficient when classifying data instances, requiring an

average of only 9µs and 101µs, respectively. RBFNetwork is more than two orders of mag-

nitude slower than HyperPipes, requiring an average of 14.32ms to classify each instance.

The table also shows that HyperPipes is the most efficient classifier in terms of training

time (408.8ms). The training times of C4.5 (5,389.1s) and RBFNetwork (734.99s) are both

more than three orders of magnitude larger than the corresponding training time for Hyper-

Pipes. However, it is important to note that these training times are only incurred when the
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Table 30: Classifier training and per instance classification times using Webb Spam and
WebBase.

Training Classify Time
Classifier Time Per Instance

Avg. (s) σ (s) Avg. (ms) σ (ms)

C4.5 5,389.1 3.67 0.009 0.002
HyperPipes 0.4088 0.03 0.101 0.008

RBFNetwork 734.99 8.16 14.32 0.033

classifiers are trained (or retrained), which is an infrequent occurrence. Regardless, our Hy-

perPipes classifier provides the most efficient HTTP session classification solution, adding

a mere 101µs to each HTTP request operation. This timing requirement will be completely

unnoticeable by Web users, and it should also have almost no effect on the operations of

Web crawlers.

10.4.4 Resource Savings

One of the primary benefits of our predictive approach is that it identifies Web spam without

downloading the contents of Web spam pages. By eliminating these downloads, we generate

significant bandwidth and storage space savings for Web browsers and Web crawlers.

To help quantify the resource savings associated with our approach, we calculated size

information for our spam instances. Specifically, we determined that the average size of a

Web spam response message in the Webb Spam Corpus is about 16 KB (15.4 KB for the

message body and 0.6 KB for the headers). Hence, if our approach successfully detected

100% of the Web spam pages in the corpus, we would save about 15.4 KB in bandwidth

and storage costs every time we encountered a spam URL. Based on the actual detection

rate (88.2%) exhibited by our HyperPipes classifier, we expect to save an average of about

13.6 KB for every encountered spam URL.

10.5 WEBSPAM-UK2006 Results

In Section 10.4, we showcased the effectiveness of our predictive approach to Web spam

classification on large, diverse corpora. The Webb Spam Corpus and WebBase data were

drawn from a variety of domains (e.g., .com, .net, .info, etc.), and each collection contains
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Table 31: Top 10 features for WEBSPAM-UK2006.

Rank Feature

1 x-powered-by php/4
2 x-powered-by php/4 4
3 set-cookie path=/
4 server apache/1.3.33 (unix)
5 cache-control private
6 pics-label gov uk
7 serveri microsoft-iis/5.0
8 212.100.249.135
9 212.227.240.69
10 content-type text/html;charset=iso-8859-1

more than 300,000 pages. In this section, we focus on the smaller, more focused WEBSPAM-

UK2006 corpus. This collection has the advantage of being more recent than our other

corpora (July 2007 versus December 2005), but it only contains a few thousand pages that

were all drawn from the .uk domain. Therefore, the corpus was used primarily to investigate

the robustness of our predictive method in such a different setting.

10.5.1 Classifier Evaluation

To evaluate the effectiveness of HTTP session classifiers on the WEBSPAM-UK2006 corpus,

we used the same methodology that we described in Section 10.4.1. First, we explored the

impact of the feature set size, and again, we found that the majority of the classifiers

generated their best results with 5,000 retained features (the 10 most effective features for

the WEBSPAM-UK2006 corpus are summarized in Table 31). Due to the limited size of

this corpus, we did not evaluate the impact of corpus sample size on the classifiers. Instead,

we chose to use a sample size of 1,486 because that is the largest sample size, given the

available data, that would allow us to reproduce the class distribution evaluation described

in Section 10.4.2. Both of these settings were used for the remainder of our experiments

involving the WEBSPAM-UK2006 corpus.

After we determined an appropriate feature set size and corpus sample size, we used

a random corpus sample with an equal distribution of spam and legitimate instances (i.e.,
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Table 32: Classifier performance results for WEBSPAM-UK2006.

Classifier TP FP F-Measure Accuracy

Hybrid [28] 88.4% 6.3% 0.763 91.1%
C4.5 79.1% 22.9% 0.783 78.1%

HyperPipes 71.9% 2.2% 0.826 84.9%
Logistic Regression 86.1% 19.8% 0.837 86.0%

RBFNetwork 96.1% 19.9% 0.890 88.1%
SVM 84.3% 22.1% 0.817 81.1%

743 instances of each class) to evaluate the performance of the 40 classification algorithms

described in Section 10.3.5. Table 32 summarizes the results of the 5 most effective classifiers

from this evaluation. As the table illustrates, the TP rates for all of the classifiers (except

RBFNetwork) declined compared to their performance in Table 28, and the FP rates for all

of the classifiers increased. A similar performance degradation is also evident in the ROC

graph shown in Figure 52.

At least two explanations exist for the performance degradation of the classifiers on this

corpus. First, our corpus sample size (1,486) for this evaluation was almost an order of

magnitude smaller than the corpus sample size used for the evaluation in Section 10.4.1.

Unfortunately, this was unavoidable due to the limited size of the WEBSPAM-UK2006

corpus. Second, previous research [28] noted several times that the content of the spam

and legitimate pages in this corpus is more similar than in other corpora. Thus, it is

not unreasonable to expect the HTTP session information associated with the spam and

legitimate pages in this corpus to be equally similar, making it much more difficult to

correctly identify the class boundaries.

Table 32 also shows the best results from a previously studied Web spam classifier

that was trained on this corpus using both content-based and link-based features (i.e., a

hybrid technique) [28]. It is important to note that these previous results were generated

with a highly optimized decision tree algorithm that utilized multiple passes of stacked

graphical learning. Our classifiers, on the other hand, were built using default settings and

without the benefit of meta-learning optimizations, and even without these optimizations,

they generated comparable results. In fact, our HyperPipes classifier actually produced a
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Figure 52: ROC curves for the top 5 classifiers using WEBSPAM-UK2006.

significantly lower FP rate, which prompted us to use it for the remaining evaluations.

10.5.2 Class Distribution Evaluation

As mentioned above in Section 10.4.2, effective Web spam solutions must be able to handle

an evolving distribution of spam and legitimate Web pages. Therefore, after we identified

HyperPipes as the best classifier for this corpus, we evaluated its resiliency against various

class distributions. Using the same approach described in Section 10.4.2, we evaluated

the classifier on 9 corpus samples with class distributions varying from 10% spam to 90%

spam, in increments of 10%. The results of this evaluation are shown in Table 33. The

table shows somewhat erratic TP rates, FP rates, and F-Measure values as the percentage

of spam increases. Unlike Table 29, which shows a slow decline for these metrics as the

spam percentage increases, the results in Table 33 exhibit distinct patterns of increasing

and decreasing performance. When the spam percentage is between 30% and 70%, the

classifier’s performance is relatively consistent, exhibiting TP rates between 62.7% and

73.1% and FP rates between 1.0% and 2.2%. However, the classifier’s performance varies

widely for the most extreme class distributions (i.e., spam percentages of 10%, 20%, 80%,

and 90%).

The most logical explanation for the classifier’s performance variations is the small size

of this corpus. When the spam percentage was 10%, the sample only contained 149 spam

instances. This small spam sample made it extremely difficult for the classifier to learn
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Table 33: Class distribution results for WEBSPAM-UK2006.

Spam
TP FP F-Measure Accuracy

Percentage

10% 36.2% 1.5% 0.484 92.3%
20% 59.9% 0.9% 0.733 91.3%
30% 71.5% 1.8% 0.814 90.2%
40% 73.1% 1.5% 0.834 88.4%
50% 71.9% 2.2% 0.826 84.9%
60% 62.7% 1.0% 0.767 77.2%
70% 70.8% 2.0% 0.825 78.9%
80% 65.4% 3.7% 0.787 71.6%
90% 67.2% 10.1% 0.798 69.4%

distinguishing spam features, and the classifier’s TP rate decreased dramatically. Similarly,

when the spam percentage was 90%, the sample only contained 149 legitimate instances.

This small number of legitimate instances made it quite challenging for the classifier to

learn distinguishing legitimate features; consequently, the classifier’s FP rate increased. If

the WEBSPAM-UK2006 corpus was larger and we could derive a sample size comparable to

the one used in Section 10.4.2, we believe these performance fluctuations would be reduced.

10.5.3 Computational Costs

To evaluate the computational costs of HTTP session classification on the WEBSPAM-

UK2006 corpus, we performed timing experiments with the 5 classifiers presented in Sec-

tion 10.5.1. Using the same approach described in Section 10.4.3, we computed the training

time and per instance classification time necessary for each classifier to perform a strati-

fied tenfold cross-validation evaluation. Table 34 shows the results for the 3 most efficient

classifiers. The relative performance of the classifiers shown in the table is the same as in

Table 30. However, the training times in Table 34 are all much lower because the corpus

sample size for this evaluation was almost an order of magnitude smaller. Additionally, the

per classification times for C4.5 and HyperPipes actually increased slightly, whereas the

corresponding time for RBFNetwork decreased. We believe these slight variations are an-

other artifact of the small sample size, which is reaffirmed by the higher standard deviation

values shown in Table 34. As a result, we believe the timings obtained on the larger corpora

in Section 10.4.3 are more indicative of our approach’s efficiency.
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Table 34: Classifier training and per instance classification times using WEBSPAM-
UK2006.

Training Classify Time
Classifier Time Per Instance

Avg. (s) σ (s) Avg. (ms) σ (ms)

C4.5 134.21 1.95 0.010 0.007
HyperPipes 0.1480 0.01 0.232 0.010

RBFNetwork 51.556 0.42 8.332 0.233

10.5.4 Resource Savings

By avoiding the costly downloads associated with Web spam pages, our approach saves

valuable bandwidth and storage resources for Web browsers and Web crawlers. To help

quantify the magnitude of these savings, we investigated the size characteristics of the Web

spam pages in the WEBSPAM-UK2006 corpus. The average size of a Web spam response

message in the corpus is about 24 KB (23.3 KB for the message body and 0.7 KB for the

headers). Hence, if our approach successfully detected 100% of the Web spam pages, we

would save about 23.3 KB in bandwidth and storage costs every time we encountered a spam

URL. Based on the actual detection rate (71.9%) exhibited by our HyperPipes classifier,

we expect to save an average of about 16.8 KB for every encountered spam URL.

10.6 Summary

In this chapter, we have presented a predictive approach to Web spam classification that

relies exclusively on HTTP session information (i.e., hosting IP addresses and HTTP session

headers), and we used this predictive approach to build an HTTP session classifier. Using

a corpus of almost 350,000 Web spam instances and almost 400,000 legitimate instances,

our HTTP session classifier effectively detected 88.2% of the Web spam pages with a false

positive rate of only 0.4%. Additionally, by incorporating this classifier into the HTTP

retrieval process, our approach was capable of saving an average of 15.4 KB of bandwidth

and storage resources for every successfully identified Web spam page, while only adding

an average of 101µs to each HTTP retrieval operation.
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CHAPTER XI

EXPLORING THE DARK SIDE OF SOCIAL ENVIRONMENTS

Over the past few years, social networking communities have experienced unprecedented

growth. Communities such as MySpace and Facebook are connecting people in a variety

of new and exciting ways, and as a result, individuals are attaching an increasing amount

of value to their online personas. Unfortunately, the rising importance and prominence of

these communities have also made them prime targets for attack by malicious entities.

We observe two distinct attack classes that threaten social networking communities and

the privacy of their users. First, traditional attacks that have plagued Internet users for

many years (e.g., malware propagation, spam, and phishing) have been adapted to take

advantage of the unique properties of online communities. These traditional attacks are

thriving in their new environment, and the severity of these attacks promises to grow as

attackers become more sophisticated. The second attack class consists of new attacks that

have emerged from the very fabric of these communities. One prominent example is the

use of deceptive profiles (e.g., rogue advertising profiles and impersonating profiles) that are

becoming more widespread, difficult to detect, and extremely costly to legitimate community

members.

In this chapter, we provide detailed descriptions for each of these attack classes, and

we show that the continued success of social networking communities is contingent upon

their ability to mitigate the risks associated with these attacks. For concreteness, we de-

scribe attacks that are observable in MySpace, which is the most popular social networking

community in terms of unique visitors (more than 65 million in February 2008) [59], total

traffic (4.29% of all U.S. Internet visits in February 2008) [83], and user base (more than

110 million active accounts as of February 2008) [143]. Our observations show the practi-

cal importance of these attacks and their impact on millions of users. Additionally, since
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other social networking communities are both functionally and structurally similar to MyS-

pace, the attacks we describe can be easily adapted to most (if not all) social networking

communities.

The rest of the chapter is organized as follows. Section 11.1 provides background in-

formation about social networking communities. In Section 11.2, we describe traditional

attacks that have adapted to target social networking environments, including malware

propagation, spam, and phishing. In Section 11.3, we present new attacks that specifically

target social networking communities by utilizing deceptive profiles such as rogue advertis-

ing profiles and impersonating profiles. Section 11.4 summarizes our findings.

11.1 Background on Social Networking Communities

Social networking communities provide an online platform for people to manage existing re-

lationships, form new ones, and engage in a variety of social interactions. Typically, a user’s

online presence in these communities is represented by profile, which is a user-controlled

Web page that contains a picture of the user along with various pieces of personal informa-

tion. Profiles connect to other profiles through explicitly declared friend relationships and

numerous messaging mechanisms.

An example of a MySpace profile is shown in Figure 53(a). Some of a profile’s personal

information is mandatory (e.g., the user’s name, age, gender, location, etc.), and some of

it is optional (e.g., the user’s interests, relationship status, occupation, etc.). To facilitate

self-expression, each profile also has free text “About me” and “Who I’d like to meet”

sections, and users are allowed to embed various objects in their profiles such as pictures,

audio clips, and videos. In addition to personal information and embedded content, a

user’s profile also contains a list of links to the profiles of that user’s friends. These friend

links are bidirectional because a link is established only after both parties acknowledge the

friendship. To initiate a friendship, a user sends a friend request to another user. If the

other user accepts this request, the friendship is established, and a friend link is added to

both users’ profiles.

Aside from friend requests, MySpace provides a number of other communication facilities
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(a) Public Profile (b) Private Profile

Figure 53: Example MySpace profiles. In (a), the profile is publicly accessible. In (b), the
profile is private.

that enable users to communicate with each other within the community. These facilities

include messaging, bulletin, commenting, blogging, and instant messaging (IM) systems.

The messaging system allows users to exchange intra-community email messages with any

other user (i.e., both friends and strangers). The bulletin system is essentially an exclusive

bulletin board that only a user’s friends can view, enabling users to communicate with

all of their friends at once. Users can post comments on their friends’ profiles using the

commenting system, and the blogging system allows users to maintain blogs on their profiles,

which other users can read and comment on. Finally, the IM system provides users with a

mechanism to send intra-community instant messages to any other user.

Due to the wealth of private information that is accessible on user profiles and the

various means of communication that are available, MySpace provides mechanisms to pro-

tect the privacy of its users. First and foremost, users have the ability to choose between

making their profiles publicly viewable (the default option) or private. If a user’s profile

is designated as private, only the user’s friends are allowed to view the profile’s detailed

personal information (e.g., the user’s interests, blog entries, comments, etc.). However, as
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Figure 53(b) shows, a private profile still reveals the user’s name, picture, headline, gen-

der, age, location, and last login date. MySpace also provides a few finer-grained privacy

mechanisms. Users can control who is allowed to IM them (everyone, only friends, or no

one) and who is allowed to leave blog comments (everyone or only friends). Users can also

maintain a block list to prevent specific users from contacting them at all. Unfortunately, as

we will see in the following sections, these privacy mechanisms have been unable to prevent

a number of attacks.

11.2 Traditional Attacks Targeting Social Networking Communities

Since social networking communities include communication facilities that are fundamen-

tally similar to traditional means (i.e., email, blogs, instant messaging, etc.), many of the

attacks that are effective against those traditional communication media have been adapted

to exploit social network communications. Due to the massive size of many social network-

ing communities, their tightly connected nature, and their relatively näıve user bases, these

communities are target rich environments for attackers. In this section, we describe three

of the adapted attacks that have been observed in MySpace: malware propagation, spam,

and phishing.

11.2.1 Malware Propagation

Malware creators aim to spread their malicious content to as many victims as possible.

Since MySpace is the most popular community on the Web, it has become a prime target

for malware propagation. In fact, over the past couple of years, MySpace was attacked

by at least one instance of each of the following malware categories: worms, spyware, and

adware. For the remainder of this section, we will detail the most interesting occurrences of

these attacks, and we will explain the threats they pose to social networking communities.

11.2.1.1 Worms

The most successful example of rapid worm propagation in a social networking community

occurred in MySpace on October 4, 2005. The worm was called the “Samy worm,” and it

generated more than a million friend requests for its creator (Samy) over the course of a
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single day. The basic operation of this worm was quite simple but extremely clever [130].

First, Samy wrote the worm using Javascript, and then, he embedded it in his MySpace

profile. MySpace disallows users from adding scripts to their profiles by filtering scripting

tags and removing specific strings (e.g., “javascript”). To evade these filters, Samy exploited

the behavior of popular Web browsers such as Internet Explorer. Specifically, he hid the code

inside a Cascading Style Sheet (CSS) tag and obfuscated the strings that MySpace would

filter (e.g., “javascript” became “java\nscript”). Thus, even though MySpace had security

mechanisms in place, the lax security of certain Web browsers allowed the obfuscated code

to execute successfully.

When a MySpace user accessed Samy’s profile, the embedded Javascript code sent Samy

a friend request on that user’s behalf. The code also embedded itself in the user’s profile

(in the same manner that it was embedded in Samy’s profile). Consequently, when other

MySpace users visited the newly infected profile, the code would send Samy friend requests

from those users and propagate itself to their profiles. As Samy described it, “If 5 people

viewed my profile, that’s 5 new friends. If 5 people viewed each of their profiles, that’s 25

more new friends.”

Fortunately, this worm was relatively harmless for its infected users because it only

affected their MySpace profiles and not their actual machines. However, the same cannot

be said for MySpace. Due to the worm’s viral growth pattern, the MySpace administrators

were forced to temporarily shut down the site to stop the worm’s propagation and remove

the worm’s code from the infected users’ profiles. The service outage was relatively brief,

but this incident clearly illustrates the potential damage that social networking worms are

capable of inflicting. Specifically, this worm teaches two very important lessons. First,

the success of the worm’s obfuscated code clearly highlights the importance of Web site

security as well as Web browser security. A delicate balance exists between functionality

and security, and this balance must be respected when designing and developing online

communities. Second, the worm’s propagation speed showcases how quickly the entire

community could become infected. In this case, more than a million users were affected in

less than 24 hours.
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A much more dangerous social networking worm appeared on MySpace in the middle of

July 2006. Similar to the Samy worm, this worm propagated itself through the profiles of

unsuspecting MySpace users. However, unlike the Samy worm, this worm’s code was hidden

inside a malformed Shockwave Flash (.swf) file that directly exploited a vulnerability on

users’ machines. Additionally, instead of generating innocuous friend requests, this worm

actually redirected users’ Web browsers to a politically charged blog posting.

The manner in which this worm spread is as follows. First, the worm’s creator gener-

ated a malformed .swf file and embedded it in a MySpace profile. This .swf file exploited

a critical vulnerability in Macromedia Flash Player v8.0.24.0 and earlier versions, which

allows an attacker to execute code on an affected machine. When a MySpace user with a

vulnerable Macromedia Flash Player accessed the profile, the code in the .swf file automat-

ically redirected the user’s browser to a blog posting that contained political propaganda.

Finally, the code propagated itself by embedding a copy of the .swf file in the infected user’s

profile.

This worm was also relatively harmless; however, it was far more troubling than the

Samy worm because it actually exploited a vulnerability on users’ computers, which allowed

it to execute code. Fortunately, the worm’s creator was only interested in spreading political

ideals because nothing prevented the worm from installing any number of malicious utilities

on its victims’ machines. For example, the worm could have installed spyware or adware,

and it could have even zombified the infected machine (i.e., compromise the computer and

enlist it in a botnet [62]). Combine these frightening, yet completely realistic, scenarios

with the viral propagation patterns of these worms, and it becomes immediately obvious

how devastating worms could be in a social networking environment and why they must be

prevented.

11.2.1.2 Spyware

Although spyware has yet to be distributed within the payload of a social networking

worm, it has already made a few appearances in social networking communities. The most

prominent example of spyware appearing in MySpace occurred towards the beginning of
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Figure 54: Embedded .wmf image within a deckoutyourdeck.com advertisement.

July 2006. At that time, an advertisement for deckoutyourdeck.com, which contained a

malformed Windows Metafile (.wmf) image, was inserted into one of the ad networks that

MySpace uses. This malformed .wmf image exploited a critical vulnerability in the Graphics

Rendering Engine of Windows, which allows remote code execution.

MySpace displays an ad banner, which is randomly selected from MySpace’s supplying

ad networks, at the top of every profile. When a user accessed a profile that displayed the

deckoutyourdeck.com ad, the user was prompted to download the embedded .wmf image.

Figure 54 shows a screenshot of this prompted download. If the user was running an

unpatched version of Windows, the .wmf file installed an assortment of programs, including

known spyware utilities such as PurityScan [98]. These spyware utilities pose a serious

threat to the user because they track the user’s Web browsing behaviors, and they install

various other third-party applications without the user’s consent.

Unfortunately, despite the fact that Microsoft released a patch for this vulnerability more

than six months before the ad appeared on MySpace, over a million users were affected.

Thus, this incident reveals two very important points. First, many users have a false

sense of security in these communities. One of the most basic secure browsing principles is

never to download questionable content, yet more than a million users gladly accepted this

suspicious (and completely unsolicited) download request. Second, an alarming number of
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Figure 55: Deceptive Zango popup license agreement.

users are not vigilant about protecting themselves against security threats. This incident

proves that at least a million users neglected to install security patches for more than

six months. Therefore, social networking communities must assume that their users are

completely vulnerable and take every precaution necessary to protect them from malicious

content.

11.2.1.3 Adware

An interesting instance of adware appearing in MySpace occurred around the same time

as the previous spyware example. A security researcher was browsing MySpace profiles

and found two that were named after a known adware company called “Zango” (formerly

known as “180solutions”). Both profiles were created to deceive users into downloading and

installing the Zango Search Assistant and Toolbar (two known adware programs) [20]. The

first profile claimed that the programs could “protect kids from predators,” and the second

profile was even more deceptive.
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When a user accessed the second Zango profile, a popup with a license agreement im-

mediately launched, asking the user to accept the license in order to play a video file. This

license popup is shown in Figure 55. If the user accepted the license by clicking the “Play

Now” button, a video file began to play, but secretly, the Zango Search Assistant and Tool-

bar were also installed on the user’s system. As Figure 55 illustrates, this popup contained

a number of deceptive elements. First, the popup did not explicitly indicate that an instal-

lation was taking place. The text in the top-left corner of the popup mentions the Zango

Search Assistant and Toolbar, but it does not tell the user that they will be installed. Ad-

ditionally, none of the popup’s buttons mention an installation. Instead, they are entitled

“Play Now” and “Play,” which implies that the only action will be the play-back of a video

file. Finally, the most prominent features of the popup are the video’s preview window

in the top-right corner and the “Play Now” button. The actual license agreement and its

preselected checkbox are positioned at the bottom, where they are likely to be overlooked.

Consequently, many users played the video before they noticed the license agreement, and

the adware was successfully installed on their machines.

According to Zango, both profiles were created by a Zango developer that was acting

against the company’s policy of not targeting MySpace. As a result, the deceptive video clip

was removed, and the company released a public apology. However, this occurrence clearly

illustrates the potential for abuse by adware companies in social networking communities.

Additionally, the success of this deception further illustrates the näıvety of users and the

need for these communities to provide effective security mechanisms that protect against

malicious content.

11.2.2 Spam

In addition to malware propagation, another type of attack on traditional communication

media (e.g., email, blogs, instant messaging, etc.) is spam. Since MySpace provides similar

communication facilities, they are also susceptible to spamming abuse. In fact, almost all

spamming activities that occur outside the community can be recreated inside the commu-

nity. To aggravate the problem, spammers can also use the profile information posted by
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users to target them outside the social networking community. Although MySpace’s Terms

of Use Agreement prohibits users from providing contact information such as email ad-

dresses and URLs on their profiles, many users still do so at their own peril. Consequently,

spammers can use that information to spam those users using traditional techniques.

Spamming relies on the open nature of communications; thus, the vulnerabilities of

MySpace’s communication facilities are proportionate to the openness of their access. On

the conservative side, the commenting and bulletin systems are the most spam resistant

because they can only be used by a user’s friends. The blogging, IM, and friend request

systems also provide the option of disallowing non-friends from using them to contact a user,

but this protection is not enabled by default. Thus, these three systems are more susceptible

to spamming because any user can use them to contact other users that have not enabled

this protection. The messaging system is the most vulnerable to abuse because it does

not provide an effective spam prevention mechanism. It allows users to report a message

as being spam, but those users have no assurances that immediate action will be taken.

Therefore, users may receive a number of spam messages before MySpace administrators

eliminate the offending spammer from the system. MySpace also provides a general block

listing mechanism that allows users to completely prevent all communication from specific

users. However, this feature is ineffective due to the ease with which users can create new

MySpace profiles (i.e., if spammers have been blocked, they can create new profiles and

continue their spamming activities undeterred).

Spammers abuse these communication systems for the same reason they abuse tradi-

tional communication facilities: promotion. Spammers want to expose their products, Web

sites, and viewpoints to as many individuals as possible, and spamming provides them with

a technique to accomplish that goal. For social networking communities, this spamming

activity represents a huge problem for a couple of reasons. First, spam content wastes a sig-

nificant amount of resources, including storage space, bandwidth, and users’ time. This last

wasted resource leads us to the second major consequence of social network spam. When

users waste time dealing with spam, it has a negative effect on their overall experience with

these communities because it prevents them from participating in their desired activities.
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For example, when users are forced to sift through an inbox full of annoying spam messages,

they are unable to send and receive messages. Similarly, when users are burdened with re-

moving an endless stream of spam comments on their blogs, they are unable to post new

content. Consequently, if users become overwhelmed with spam, they will have no incentive

to continue interacting with these communities, and the communities will be forced to shut

down.

In addition to spamming the social networking community, spammers are also able to

use the information on user profiles to more effectively spam users outside the community.

By mining email addresses, IM screen names, and other contact information from these

profiles, spammers can spam users using traditional techniques (e.g., email spam, spim, blog

comment spam, etc.). Additionally, spammers can use the personal information on these

profiles to construct user-specific spam content that is more relevant to the user, making

it more likely to be read. For example, if a user’s profile contains a great deal of sports-

related information, a spammer can leverage this information to create a sports-oriented

spam message for that user. Since the message’s content matches the user’s interests, the

user is much more likely to read it, and as a result, the spam’s sales pitch is more likely to

be successful. To make their messages even more deceptive, spammers can also masquerade

as users’ friends. A user’s profile contains a list of that user’s friends; thus, spammers can

use this information to make their messages appear as if they were sent by those friends.

Since a user is much more likely to read and trust a message from a friend, the spammer

has a higher probability of success with these disguised messages [89].

11.2.3 Phishing

In a traditional phishing attack, a phisher seeks to obtain a targeted user’s sensitive infor-

mation through means of deception. Historically, phishers have been interested in credit

card information, banking information, and login information for various Web sites (e.g.,

eBay, PayPal, etc.). As social networking communities have become more popular, com-

plex networks of friends have been established within them. Consequently, social networking

communities have become a prime target for phishers because they are portals to a large
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number of potential victims.

A MySpace phishing attack utilizes the same deceptive techniques that are employed

in traditional phishing attacks. First, a user is presented with a seemingly legitimate URL

(called a phishing URL) that appears to be affiliated with MySpace. This phishing URL is

typically propagated in two distinct manners: the communication systems provided by MyS-

pace and traditional communication channels (e.g., email, blogs, instant messaging, etc.).

For example, in May 2006, a phisher used the MySpace spamming techniques described

above to send a phishing message to various MySpace users. This message had “CHECK

OUT these old school pictures...” as its subject and a phishing URL in its body [144]. Upon

accessing one of these phishing URLs, the user is directed to a fraudulent Web page that

appears identical to the authentic MySpace login page. When the user enters the necessary

MySpace login information, the fraudulent page stores that information and uses it to redi-

rect the user to the authentic MySpace community. Thus, the user is completely unaware

of the attack, while the phisher successfully obtains the user’s sensitive login information.

Phishing attacks represent a serious threat to MySpace users for three reasons. First,

victimized users often lose control of their profiles. In many cases, phishers will immediately

change the login information of profiles they have compromised, locking victims out of their

own profiles. Since users spend a great deal of time and energy building new friendships,

writing blogs, and customizing their profiles, it is somewhat traumatic when they lose control

of their creations. Even in cases where a compromised profile’s login information remains

the same, the phisher’s activities severely damage that profile’s credibility. For example, if a

phisher compromises a user’s profile and begins spamming that user’s friends, those friends

will eventually distrust the compromised profile and remove it from their lists of friends. The

second reason these attacks are dangerous is due to the viral propagation patterns that are

possible in social networking communities. As shown with the malware examples above, one

compromised user can quickly escalate into a network full of compromised users. Specifically,

once a single user’s login information is compromised, the phisher can use that user’s profile

to propagate the attack to the user’s friends. In our spam discussion, we mentioned a few

MySpace communication systems that are somewhat spam resistant. However, the spam
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resistance of those systems assumes that a user’s friends can be trusted (i.e., they are not

spammers, phishers, etc.). Thus, if a user’s profile becomes compromised, that user’s friends

are immediately at risk because the phisher can contact them under the guise of a profile

they trust. As a result, a compromised user’s friends are highly likely to become phishing

victims (i.e., access the phishing URL), and by the time they realize they should distrust

the compromised profile, it will be too late. The final threat posed by MySpace phishing

attacks relies on the knowledge that many computer users reuse the same login information

at many different sites [126]. Thus, if a user’s MySpace login information is compromised,

that user’s login information at those other sites is automatically compromised as well.

In addition to launching phishing attacks that specifically target social networking com-

munities, phishers can also use the private information found in these communities to make

their traditional phishing attacks more effective. As previously mentioned, many MyS-

pace users include various pieces of personal information on their profiles (e.g., location,

interests, occupation, etc.). Phishers can easily use this personal information to construct

user-specific messages that a potential victim would be much more likely to read and trust.

For example, a phisher could send the potential victim a fraudulent eBay email that con-

tains auction information for products the victim would be interested in buying. Each of

these products could be selected using the user’s interests and associated with one or more

phishing URLs. Since this email message contains user-specific content, the victim is more

likely to read it and access one of its phishing URLs. As a result, this user-specific attack

has a higher probability of success than a generic phishing attack.

11.3 New Attacks Against Social Networking Communities

Initially, social networking communities were composed of ordinary people – typically kids

and young adults that created profiles to interact with their friends. However, as these

communities began to expand, new parties became interested because the communities

evolved into portals for connecting and interacting with these ordinary people. The first

wave of new participants were entertainers (e.g., musicians, comedians, and actors) that

created profiles to communicate with their current fans and reach out to potential new ones.
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Not long after that, companies began partnering with communities to create advertising

profiles (i.e., profiles that advertise the company and its products). Eventually, other public

figures such as politicians became involved, creating profiles to promote their campaigns,

solicit volunteers, and request donations. Unfortunately, the explosive growth of these

communities and the conflicting interests of their various participants have generated a

range of new attacks. In this section, we describe attacks that utilize two types of malicious

social networking profiles: rogue advertising profiles and impersonating profiles.

11.3.1 Rogue Advertising Profiles

According to analysts at eMarketer, companies currently spend around $280 million on

social network advertising in the U.S., and by 2010, that figure is expected to grow to

$1.9 billion [94]. Thus, it is not surprising that MySpace has partnerships with numerous

companies, which allow those companies to advertise legitimately in the social networking

community. For example, both Burger King and Wendy’s have embraced the potential of

social network advertising by creating advertising profiles on MySpace. Burger King uses

the King, a marketing character that appears in the company’s commercials, to promote

its MySpace profile at http://www.myspace.com/burgerking. Similarly, Wendy’s uses

a small hamburger patty named Smart to promote its MySpace profile at http://www.

myspace.com/wendysquare. However, this new advertising craze is not exclusive to fast

food restaurants. MySpace profiles also exist for television shows (e.g., “It’s Always Sunny

in Philadelphia”), commercial products (e.g., Herbal Essences shampoo), and movies (e.g.,

“Talladega Nights”).

Although MySpace’s Terms of Use Agreement strictly prohibits commercial use of the

community without prior approval, a number of companies violate this policy by creating

advertising profiles without MySpace’s consent. We refer to these profiles as rogue adver-

tising profiles, and they appear in many forms with varying degrees of deception. The most

innocuous group of rogue advertising profiles is created by small Web site operators that are

merely trying to generate Web traffic for their sites. These profiles are relatively harmless

because they simply include URLs for these small sites, and they are openly affiliated with
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a company (i.e., they do not attempt to deceive users into believing the profiles belong to

an ordinary individual). However, these profiles are still unacceptable because they pollute

the community with unwanted and unauthorized advertising.

A much more deceptive group of rogue advertising profiles is generated by nefarious

companies such as gambling and pornographic Web sites. Unlike legitimate advertising

profiles, which are clearly identifiable as a marketing device, these deceptive rogue advertis-

ing profiles appear as though they are maintained by an individual (and not a company). As

a result, näıve users can easily mistake these rogue advertising profiles as ordinary MySpace

profiles that were created by ordinary MySpace users. The deceptive profile construction

process proceeds as follows. First, a fraudulent MySpace profile is created using a picture of

an attractive female. This profile also contains a provocative description in its “About me”

section that visitors assume was written by the pictured female. Conveniently, this descrip-

tion usually includes at least one reference to the URL of a nefarious Web site. If the profile

is particularly deceptive, the description includes an instant messenger screen name instead

of a URL. The inclusion of a screen name is especially manipulative because most users

assume that a conversation over IM can only be accomplished by a real person. However,

the screen names found on these rogue advertising profiles are almost always attached to an

IM bot (i.e., a computer program that emulates a real conversation) that attempts to direct

its victims to the URL of a nefarious Web site. Once the profile is completed, its creator

sends friend requests to males near a specific geographic location, which the profile is also

associated with (i.e., the pictured female claims to live there). When the males receive these

requests, a number of them accept and visit the profile, making the deception a success.

Figure 56 shows four examples of deceptive rogue advertising profiles, which we slightly

modified to hide objectionable content. By analyzing these examples, a number of interest-

ing observations emerge. First, the profiles are extremely similar. Figures 56(a) and 56(b)

share the exact same “About me” text, and Figures 56(c) and 56(d) share the same “About

me” text and profile picture. Thus, these two pairs of profiles were probably created by the

same individuals. The next observation addresses the content of each profile’s “About me”

text. All four of these profiles are particularly deceptive because they all provide instant
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(a) (b)

(c) (d)

Figure 56: Pornographic rogue advertising profiles.

messenger screen names to induce users to contact IM bots. Finally, all of the profiles

claim to be located in different cities. Despite their uncanny similarities, the profiles in Fig-

ures 56(a) and 56(b) are supposedly located in different parts of California, and the profiles

in Figures 56(c) and 56(d) are in completely different parts of the country. These location

differences exist because each profile is meant to target males in a different geographic area.

This also explains why the profiles are allowed to be so similar. As long as the profiles in

a given location are unique, users are less likely to become suspicious that the profiles are

fraudulent.

Deceptive rogue advertising profiles represent a serious security threat because they

directly manipulate the behavior of users. Since the profiles appear to be maintained by
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ordinary (albeit very attractive) people, other users mistakenly trust their content. Ad-

ditionally, users often believe they have made a connection with the people pictured on

these profiles because the users received friend requests from these profiles. Consequently,

users access the URLs that are on the profiles (or in IM conversations) and become victims

to the content found on the corresponding Web pages. In most cases, these pages contain

pornographic or gambling-related material, but nothing prevents malicious individuals from

embedding malware on the pages. Thus, to protect its users, social networking communities

must develop techniques to identify and eliminate these profiles.

11.3.2 Impersonating Profiles

Due to the enormous popularity of social networking communities, they have emerged as

forums for individuals to voice their opinions about various topics as well as other people.

In MySpace, some users are more tactful and express their views in blog postings on their

profiles or in comments on their friends’ profiles. However, other users have taken their

crusade to an entirely new level, creating new MySpace profiles that directly target specific

ideals, companies, and even people. We refer to these profiles as impersonating profiles

because they impersonate their targets to convey their message.

MySpace contains profiles that impersonate actors (e.g., Tom Hanks), athletes (e.g.,

Michael Jordan), technologists (e.g., Bill Gates), and politicians (e.g., George W. Bush).

Even ancient philosophers, such as Socrates and Aristotle, have profiles dedicated to them.

In fact, most of these individuals are impersonated by multiple distinct profiles. In some

cases, these profiles are meant to be an homage to the individuals in question. However,

more often than not, the impersonating profiles are meant to be slanderous to the targets of

the impersonation. For example, after News Corporation purchased MySpace in July 2005,

impersonating profiles for Rupert Murdoch (News Corporation’s CEO) began to appear,

making claims such as, “I just bought MySpace.com, soon I will own the rest of the internet”

and “Dictatorships are fun... as long as I’m in charge.” Two examples of these profiles are

shown in Figures 57(a) and 57(b). To make matters worse, impersonators are able to use

MySpace’s communication facilities to contact other users under the guise of these profiles.
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(a) (b)

Figure 57: Example impersonating profiles for Rupert Murdoch.

Thus, these counterfeit Rupert Murdoch profiles can express any number of scandalous

opinions, and the negative backlash will be directed at the real Rupert Murdoch.

From the impersonators’ standpoint, these profiles appear to be amusing satire. How-

ever, from the victims’ standpoint, these profiles represent a form of identity theft as well as

a public relations nightmare. The general public is unable to verify the authenticity of these

profiles; thus, any slanderous comments found on the profiles (or received under the guise

of the profiles) will be incorrectly associated with the victims of the impersonation. Using

the example above, nothing prevents users from believing that Rupert Murdoch actually

created one of those profiles or that he actually shares the viewpoints it contains. Admit-

tedly, these viewpoints are somewhat absurd, but it is easy to envision subtler comments

that can severely damage an individual’s reputation. Since the success of most public fig-

ures is completely contingent upon the strength of their fan bases, an impersonating profile

represents a direct threat to its victim’s credibility and livelihood.
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Sadly, this growing epidemic is not limited to high profile individuals. Private citizens

such as teachers, principals, and police officers have also been victimized by these imper-

sonating profiles. In fact, over the past couple of years, the news has been filled with stories

about these types of attacks. For example, in December 2005, a 16-year-old boy posted

an impersonating profile of a local police officer, which contained various derogatory state-

ments about the police officer’s appearance, intelligence, and sexual orientation [136]. Then,

in April 2006, an eighth grader created impersonating profiles of his English teacher that

contained racist remarks and falsely represented the teacher as a pornographer and child

molester [131]. In September 2006, a high school assistant principal sued two students for

creating an impersonating profile that falsely identified her as a lesbian [11]. These exam-

ples clearly illustrate the magnitude of this problem, and unfortunately, they represent a

small sample of a growing list of incidents.

In addition to the risks already mentioned, impersonating profiles can also be used to

amplify the severity of the other attacks we have already discussed. Specifically, a spammer

could create an impersonating profile for a MySpace user and use the profile to spam that

user’s friends. Malware creators and phishers could also use this approach to spread their

malicious content to the user’s friends. Since these friends would be under the impression

that they were communicating with the authentic profile, they would be much more likely

to trust the communication, and as a result, the attacks would be far more successful.

11.4 Summary

In only a few years, social networking communities have made staggering strides in popu-

larity (MySpace welcomed more than 65 million unique visitors in February 2008 [59]) and

importance (YouTube was acquired by Google for $1.65 billion in October 2006 [67]). Aside

from their social and economic impact, one of the most important questions is whether

social networking environments are safe for their users. In this chapter, we have analyzed

this safety question and described several security and privacy threats that have translated

into real attacks in MySpace. Some of these attacks have been adapted from other Inter-

net environments, including variants of malware propagation, spam, and phishing. Other
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attacks are new and unique to social networking environments, including the creation of

rogue advertising profiles and impersonating profiles. From our real world observations, it

is clear that additional efforts should be made to protect social networking users.
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CHAPTER XII

USING SOCIAL HONEYPOTS TO IDENTIFY SPAMMERS

Over the past few years, social networking communities have experienced unprecedented

growth, both in terms of size and popularity. In fact, of the top-20 most visited World Wide

Web destinations, six are now social networks, which is five more than the list from only

three years ago [3]. This flood of activity is remaking the Web into a “social Web” where

users and their communities are the centers for online growth, commerce, and information

sharing. Unfortunately, as we found in the previous chapter, the rapid growth of these

communities has made them prime targets for attacks by malicious individuals. Most

notably, these communities are being bombarded by social spam [79].

Some of the spam in social networking communities is quite familiar. For example,

message spam within a community is similar in form and function to email spam on the

wider Internet, and comment spam on social networking profiles manifests itself in a similar

fashion to blog spam. Defenses against these familiar forms of spam can be easily adapted to

target their social networking analogs [79]. However, other forms of social spam are new and

have risen out of the very fabric of these communities. One of the most important examples

of this new generation of spam is deceptive spam profiles, which attempt to manipulate user

behavior. These deceptive profiles are inserted into the social network by spammers in an

effort to prey on innocent community users and to pollute these communities. Although fake

profiles (or fakesters) have been a “fun” part of online social networks from their earliest

days [148], growing evidence suggests that spammers are deploying deceptive profiles in

increasing numbers and with more intent to do harm. For example, deceptive profiles can

be used to drive legitimate users to Web spam pages, to distribute malware, and to disrupt

the quality of community-based knowledge by spreading disinformation.

Understanding different types of social spam and deception is the first step towards

countering these vulnerabilities. Hence, in this chapter, we propose a novel technique for
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harvesting deceptive spam profiles from social networking communities using social hon-

eypots. Then, we provide a characterization of the spam profiles that we collected with

our social honeypots. To the best of our knowledge, this is the first use of honeypots in

the social networking environment as well as the first characterization of deceptive spam

profiles.

Our social honeypots draw inspiration from security researchers who have used honey-

pots to observe and analyze malicious activity. Specifically, honeypots have already been

used to characterize malicious hacker activity [142], to generate intrusion detection sig-

natures [99], and to observe email address harvesters [120]. In our current research, we

create honeypot profiles within a community to attract spammer activity so that we can

identify and analyze the characteristics of social spam profiles. Concretely, we constructed

51 honeypot profiles and associated them with distinct geographic locations in MySpace,

the largest and most active social networking community. After creating our social honey-

pots, we deployed them and collected all of the traffic they received (via friend requests).

Based on a four month evaluation period from October 1, 2007 to February 1, 2008, we

have conducted a sweeping characterization of the harvested spam profiles from our social

honeypots. A few of the most interesting findings from this analysis are:

• The spamming behaviors of spam profiles follow distinct temporal patterns.

• The most popular spamming targets are Midwestern states, and the most popular

location for spam profiles is California.

• The geographic locations of spam profiles almost never overlap with the locations of

their targets.

• 57.2% of the spam profiles obtain their “About me” content from another profile.

• Many of the spam profiles exhibit distinct demographic characteristics (e.g., age, re-

lationship status, etc.).

• Spam profiles use thousands of URLs and various redirection techniques to funnel

users to a hand full of destination Web pages.
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The rest of the chapter is organized as follows. Section 12.1 summarizes related work.

Section 12.2 provides background information about social networking communities and

describes the social spam that is currently plaguing these communities. In Section 12.3,

we present our methodology for creating social honeypots and collecting deceptive spam

profiles. In Section 12.4, we report the results of an analysis we performed on the spam

profiles that we collected in these honeypots. Section 12.5 summarizes our results.

12.1 Related Work

Due to the explosive growth and popularity of social networking communities, a great deal

of research has been done to study various aspects of these communities. Specifically, these

studies have focused on usage patterns [29, 63], information revelation patterns [29, 81],

and social implications [44, 49] of the most popular communities. Work has also been done

to characterize the growth of these communities [100] and to predict new friendships [102]

and group formations [12].

Recently, researchers have also begun investigating the darker side of these commu-

nities. For example, numerous studies have explored the privacy threats associated with

public information revelation in the communities [1, 12, 21, 72]. Aside from privacy risks,

researchers have also identified attacks that are directed at these communities (e.g., social

spam) [79]. In the previous chapter, we showed that social networking communities are

susceptible to two broad classes of attacks: traditional attacks that have been adapted to

these communities (e.g., malware propagation) and new attacks that have emerged from

within the communities (e.g., deceptive spam profiles).

Unfortunately, very little work has been done to address the emerging security threats in

social networking communities. Heymann et al. [79] presented a framework for addressing

these threats, and Zinman and Donath [157] attempted to use machine learning techniques

to classify profiles. However, the research community desperately needs real-world examples

and characterizations of malicious activity to inspire new solutions. Thus, to help address

this problem, we present a novel technique for collecting deceptive spam profiles in social

networking communities that relies on social honeypot profiles. Additionally, we provide the
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Figure 58: An example of a deceptive spam profile.

first characterization of deceptive spam profiles in an effort to stimulate research progress.

12.2 Social Spam

Social networking communities, such as MySpace, provide an online platform for people

to manage existing relationships, form new ones, and participate in a variety of social

interactions. To facilitate these interactions, a user’s online presence in the community is

represented by a profile, which is a user-controlled Web page that contains a picture of the

user and various pieces of personal information. Additionally, a user’s profile also contains

a list of links to the profiles of that user’s friends. Each of these friend links is bidirectional

and established only after the user has received and accepted a friend request from another

user.

Aside from friend requests, MySpace also provides a number of other communication

facilities that enable users to communicate with each other within the community. These

facilities include (but are not limited to) messaging, commenting, and blogging systems.

Unfortunately, spammers have already begun exploiting these systems by propagating spam

(e.g., message spam, comment spam, etc.) through them. Even more troubling is the fact

that spammers are now polluting the communities with deceptive spam profiles that aim
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Figure 59: An example of a spam friend request.

to manipulate legitimate users.

An example of a MySpace spam profile1 is shown in Figure 58. As the figure shows, spam

profiles contain a wealth of information and various deceptive properties. Most notably,

these profiles typically use a provocative image of a woman to entice users to view them.

Then, once the profiles have attracted visitors, they direct those visitors to perform an action

of some sort (e.g., visiting a Web page outside of the community) by using a seductive story

in their “About me” sections. For example, the profile in Figure 58 provides a link to

another Web page and promises that “bad girl pics” will be found there.

After spammers have constructed their deceptive profiles, they must attract visitors.

To generate this traffic for their profiles, spammers typically employ two strategies. First,

spammers keep their profiles logged in to MySpace for long periods of time. This strategy

generates attention because many of the MySpace searching mechanisms give preferential

treatment to profiles that are currently logged in to the system. Consequently, when users

are browsing through profiles, the spam profiles will be prominently displayed. The second

strategy is much more aggressive and involves sending friend requests to MySpace users.

Figure 59 shows an example friend request that corresponds to the profile shown in Fig-

ure 58. Unlike the first strategy, which passively relies on users to visit the spam profiles,

this strategy actively contacts users and deceives them into believing the profile’s creator

wants to befriend them.

1All of the provocative images in the chapter have been blurred so as not to offend anyone.
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Figure 60: An example of a social honeypot.

12.3 Social Honeypots

For years, researchers have been deploying honeypots to capture examples of nefarious

activities [99, 120, 142]. In this chapter, we utilize honeypots to collect deceptive spam

profiles in social networking communities. Specifically, we created 51 MySpace profiles to

serve as our social honeypots. To observe any geographic artifacts of spamming behavior,

each of these profiles was given a specific geographic location (i.e., one honeypot was assigned

to each of the U.S. states and Washington, D.C.). With the exception of the D.C. honeypot,

each profile’s city was chosen based on the most populated city in a given state. For example,

Atlanta has the largest population in Georgia, and as a result, it was the city used for the

Georgia honeypot. We used this strategy because we assumed that spammers would target

larger cities due to their larger populations of potential victims.

All 51 of our honeypot profiles are identical except for their geographic information

(see Figure 60 for an example). Each profile has the same name, gender, and birthday.

Additionally, all of the demographic information was chosen to make the profiles appear

attractive to spammers. Specifically, all of the profiles share the same relationship status

(single), body type (athletic), and ethnicity (White / Caucasian). These demographic

characteristics were also among the most popular in our previous large-scale characterization

of MySpace profiles [29].

To collect timely information and increase the likelihood of being targeted by spammers,

we created custom MySpace bots to ensure that all of our profiles are logged in to MySpace
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24 hours a day, 7 days a week 2. In addition to keeping our honeypot profiles logged in to

the community, our bots also monitor any spamming activity that is directed at the profiles.

Specifically, the bots are constantly checking the profiles for newly received friend requests.

To avoid burdening MySpace with excessive traffic (and to avoid being labeled as a spam

bot), each of our bots follows a polling policy that employs random sleep timers and an

exponential backoff algorithm, which fluctuates sleep times based on the current amount

of spamming activity (with a minimum and maximum sleep time of five minutes and one

hour, respectively). Therefore, when a honeypot profile is receiving spam, its corresponding

bot polls MySpace more aggressively than when the profile is not receiving spam.

After one of our honeypot profiles receives a new friend request, the bot responsible for

that profile performs various tasks. First, the bot downloads the spam profile that sent the

friend request3, storing a copy of the profile along with a honeypot-specific identifier and a

timestamp that corresponds to the time when the friend request was sent to the honeypot

profile. Then, after storing a local copy of the profile, the bot rejects the friend request.

We decided to reject the friend requests for two reasons. First, we wanted to identify spam

profiles that are repeat offenders (i.e., they continuously send friend requests until they are

accepted). Second, we did not want our honeypot profiles to be mistaken as spam profiles.

If we blindly accept all of the spam friend requests, our honeypot profiles will appear to be

helping the spam profiles in a manner similar to a Web spam page that participates in a

link exchange or link farm [73]. Thus, to avoid suspicion by MySpace, our honeypot profiles

conservatively reject the friend requests that they receive.

Many of the spam profiles contain links in their “About me” sections that direct users

to Web pages outside of the social networking community. We wanted to study the char-

acteristics of these Web pages; hence, in addition to storing the spam profiles, our bots

also crawl the pages that are being advertised by these profiles. Specifically, after one of

our bots stores a local copy of a profile, the bot parses the profile’s “About me” section

2We experienced a few short outages (on the order of hours) due to MySpace system updates, which
forced us to slightly modify our bots.

3Band profiles also send unsolicited friend requests; however, our bots simply reject these requests without
processing them.
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and extracts its URLs. Then, the bot crawls the Web pages corresponding to those URLs,

storing them along with their associated spam profile.

Not surprisingly, almost all of the URLs that are advertised by spam profiles are en-

trances to sophisticated redirection chains. To identify the final destinations in these chains,

our bots follow every redirect. First, the bots attempt to access each of the URLs being

advertised by a spam profile. If a bot encounters HTTP redirects (i.e., 3xx HTTP sta-

tus codes), the bot follows them until it accesses a URL that does not return a redirect.

Then, the corresponding Web page is stored and parsed for HTML/javascript redirection

techniques using the redirection detection algorithm we presented in Chapter 9. If our al-

gorithm extracts redirection URLs, our bots attempt to access them. Once again, if the

bots encounter HTTP redirects, they follow the redirects until they find URLs that do not

return redirects. Finally, the corresponding Web pages are stored. After completing this

process, we are left with a collection of final destination pages and the intermediary pages

that were crawled along the way.

12.4 Social Honeypot Data Analysis

In this section, we investigate various characteristics of the 1,570 friend requests (and cor-

responding spam profiles) that we collected in our social honeypots during a four month

evaluation period from October 1, 2007 to February 1, 2008. First, we characterize the

temporal distribution of the spam friend requests that our honeypots received. Then, we

analyze the geographic properties of social spam. Next, we investigate duplication in spam

profiles and identify five popular groups of spam profiles. After our duplication analysis,

we identify interesting demographic characteristics of spam profiles. Finally, we analyze the

Web pages that are advertised by spam profiles.

12.4.1 Temporal Distribution of Spam Friend Requests

Since all of our honeypot profiles were constantly logged into MySpace during our four

month evaluation period, we were able to observe various temporal patterns for spamming

activity. In Figure 61(a), we present the number of friend requests that our honeypots

received on each day of this four month period. This figure is interesting for a few reasons.
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Figure 61: Temporal distributions of the spam friend requests received by our social
honeypots.

First, we observe three peaks in spamming activity that occur around holidays. Specifically,

our honeypots received the most friend requests the day before, the day of, and the day

after Columbus Day (79), Halloween (95), and Thanksgiving (90). One possible explanation

for these spikes is that legitimate users might spend more time online during these holiday

periods, giving spammers a larger audience for their deceptive profiles.

Another intriguing observation from Figure 61(a) is that our honeypots began receiving

significantly fewer friend requests after December 2. In fact, of the 1,570 friend requests that

our honeypots received, only 299 (19.0%) of them were received after this date. We are still

investigating the reasons behind this reduced activity, but one hypothesis is that spammers

realized the underlying purpose of our honeypot profiles. Since all of our honeypots reject

friend requests after the corresponding spam profiles have been stored, spammers should

eventually recognize that each of the honeypots represents a wasted friend request. As we

explained in Section 12.3, we decided to reject spam friend requests because we wanted to

avoid having our honeypots labeled as spam by MySpace. As part of our ongoing research,

we are revisiting this decision to investigate whether it affects the spamming activity we

observe.

To analyze finer-grained temporal patterns, Figure 61(b) shows the hourly distribution
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of the friend requests that our honeypots received4. As the figure shows, for every hour of

the day, our honeypots received at least 35 friend requests from spammers. Additionally,

distinct hourly patterns emerge from the figure. Most notably, spamming activity is at its

peak around 2pm and from 10pm to 1am, and it is at its lowest levels between 4am and

9am. These patterns are particularly interesting because they mirror previous results about

the communication patterns of legitimate users in social networking communities [63]. The

similarities between legitimate and spam activity patterns are somewhat intuitive for at

least two reasons. First, spammers want to be active when their targets are active because

they want to increase the chances of successfully deceiving those users. Second, by blending

their traffic in with legitimate traffic, spammers reduce the risk of being identified by the

operators of these communities.

12.4.2 Geographic Distribution of Spam Friend Requests

Since each of our honeypot profiles claims to be in a unique geographic location (i.e., one

honeypot is in each of the fifty U.S. states and Washington, D.C.), we are able to analyze

the geographic properties of spamming behavior. Figure 62(a) shows a color-coded map of

the United States, which represents the relative popularity of our geographically dispersed

honeypots. States with darker shades of green represent honeypots that received more friend

requests than the honeypots in states with lighter shades of green. As the figure shows,

a large fraction of the spamming activity was directed at the Midwestern states. In fact,

the five most popular targets were the honeypots in Omaha, Nebraska (80 friend requests),

Kansas City, Missouri (58 friend requests), Milwaukee, Wisconsin (56 friend requests),

Louisville, Kentucky (56 friend requests), and Minneapolis, Minnesota (53 friend requests).

In our previous research [29], we found that MySpace users from Midwestern states began

using MySpace considerably later than users from Western states because MySpace was

founded in California. As a result, one explanation for why Midwestern users are frequently

targeted by spammers is that those users might be less MySpace-savvy and thus a more

attractive target for deception by spammers. This hypothesis is also supported by the fact

4All of the times are normalized based on the time zone that corresponds to the honeypot profile’s
location.
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(a) Target distribution (b) Originator distribution

Figure 62: Geographic distributions of spam profiles and their targets.

that our Los Angeles, California honeypot received fewer friend requests (10) than any of

the other honeypots.

Figure 62(b) shows another color-coded map of the United States. However, unlike

Figure 62(a), this figure shows the relative popularity of various states as locations for

spam profiles. States with darker shades of green have more spam profiles affiliated with

them than states with lighter shades of green. As the figure shows, the most popular

locations for the spam profiles were California and Southeastern states. Specifically, the

five most popular states for spam profiles were California (186 spam profiles), Florida (92

spam profiles), Georgia (78 spam profiles), Arkansas (74 spam profiles), and Alabama (73

spam profiles).

After investigating the most popular originating and target locations for spam profiles,

an obvious question is how much overlap (if any) exists for those locations. Concretely,

we wanted to know how often the declared location of a spam profile matches the declared

location of a targeted profile. Our original hypothesis was that we would identify a signif-

icant number of matches because we believed victims might be hesitant to accept a friend

request from someone outside of their city or state. However, we were surprised to find that

1,534 (97.7%) of the friend requests were from spam profiles that reported a location that

did not match the city or state associated with the honeypot profile that received them.

One explanation for this disconnect between the locations of spam profiles and their
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victims is that a clear tension exists between increasing the deceptive properties of a spam

profile and making the profile broadly applicable to a large number of potential victims.

Obviously, spammers would prefer to create personalized spam profiles for every potential

victim because that would greatly increase the likelihood of a successful deception. How-

ever, it is costly to create personalized profiles for every potential victim, and as a result,

spammers focus on casting as wide a net as possible.

12.4.3 Spam Profile Duplication

While investigating the geographic distribution of the friend requests that our honeypot

profiles received, we noticed that many of our honeypots received a friend request from

the same spam profile. In fact, 65 spam profiles sent a friend request to more than one

of our honeypots, generating a total of 148 friend requests. 40 (78.4%) of our honeypots

received at least one of these duplicate friend requests, and the honeypots that received the

most friend requests (i.e., the Omaha, Nebraska honeypot and the Kansas City, Missouri

honeypot) also received the most duplicates (11 duplicates and 8 duplicates, respectively).

Surprisingly, none of our honeypots received more than one friend request from a given

spam profile (i.e., none of the spam profiles were repeat offenders). Thus, after one of our

honeypots rejected a spam profile’s friend request, that profile was intelligent enough not

to send the honeypot another friend request.

After we identified the existence of duplicate friend requests, we wanted to determine

how much lag time (if any) exists between the first arrival of a friend request and the arrivals

of its duplicates. To quantify the delays between duplicate friend requests, we created 65

time series – one for each set of the duplicate friend requests. Then, for each time series,

we computed the size of the time window that includes the first and last point. Based on

this analysis, we found that 63 (96.9%) of the time windows close in less than 4 minutes,

and 53 (81.5%) of the time windows close in less than a minute. Therefore, when these

spam profiles sent friend requests, they sent a large number of them in a short period of

time (i.e., they were not particularly stealthy).

Once we determined the number of unique profiles in our collection (1,487), we wanted
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to know how many of those profiles possess content that is a duplicate (or a near-duplicate)

of another profile’s content. In Chapter 9, we found that only one-third of Web spam pages

are unique, and we wanted to determine if the same level of duplication exists among spam

profiles. To quantify the amount of content duplication in our collection of 1,487 unique

spam profiles, we used the shingling algorithm from Chapter 9 on all of their HTML content

to construct equivalence classes of duplicate and near-duplicate profiles.

First, we preprocessed each profile by replacing its HTML tags with white space and

tokenizing it into a collection of words (where a word is defined as an uninterrupted series

of alphanumeric characters). Then, for every profile, we created a fingerprint for each of its

n words using a Rabin fingerprinting function [124] (with a degree 64 primitive polynomial

pA). Once we had the n word fingerprints, we combined them into 5-word phrases. The

collection of word fingerprints was treated like a circle (i.e., the first fingerprint follows the

last fingerprint) so that every fingerprint started a phrase, and as a result, we obtained n

5-word phrases. Next, we generated n phrase fingerprints for the n 5-word phrases using a

Rabin fingerprinting function (with a degree 64 primitive polynomial pB). After we obtained

the n phrase fingerprints, we applied 84 unique Rabin fingerprinting functions (with degree

64 primitive polynomials p1, ..., p84) to each of the n phrase fingerprints. For every one

of the 84 functions, we stored the smallest of the n fingerprints, and once this process was

complete, each spam profile was reduced to 84 fingerprints, which are referred to as that

profile’s shingles. Once all of the profiles were converted to a collection of 84 shingles, we

clustered the profiles into equivalence classes (i.e., clusters of duplicate or near-duplicate

profiles). Two profiles were considered duplicates if all of their shingles matched, and they

were near-duplicates if their shingles agreed in two out of the six possible non-overlapping

collections of 14 shingles. For a more detailed description of this shingling algorithm, please

consult [24, 55].

After this clustering was complete, we were left with 1,261 unique clusters of duplicate

and near-duplicate profiles. Thus, only 226 (15.2%) of the profiles have the same (or nearly

the same) HTML content as one of the remaining 1,261 profiles. This level of duplication

is significantly less than what we observed with Web spam pages; however, we do not
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Figure 63: An example of a Click Trap.

believe this is an accurate measure of spam profile duplication. Since most of a spam

profile’s deceptive text is found in the “About me” section, a more reasonable metric for

profile duplication is actually “About me” duplication. Hence, in addition to running our

shingling algorithm over all of the HTML content in a profile, we also extracted the “About

me” content and built equivalence classes using that data. This “About me” clustering

generated 637 unique clusters, which means 850 (57.2%) of the profiles have the same (or

nearly the same) “About me” content as one of the remaining 637 profiles.

Based on the results of our content duplication analysis, we can conclude that duplication

among spam profiles is on par with duplication among Web spam pages. 15.2% of the spam

profiles obtain all of their HTML content from another profile, and 57.2% of the spam

profiles obtain their “About me” content from another profile. This observation is quite

encouraging because it implies that the problem of identifying all spam profiles can actually

be reduced to the problem of identifying a much smaller set of unique profiles.

12.4.4 Spam Profile Examples

After we completed our content duplication analysis, we manually investigated the profiles

in our various clusterings. Based on this investigation, we discovered that most of our spam
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Figure 64: An example of a Japanese Pill Pusher.

profiles fall into one of five categories:

• Click Traps: Each profile contains a background image that is also a link to another

Web page. If users click anywhere on the profile, they are immediately directed to

the link’s corresponding Web site. One of the most popular (and most deceptive)

examples displays a fake list of friends, which is actually a collection of provocative

images that direct users to a nefarious Web page (see Figure 63 for an example).

• Friend Infiltrators: These profiles do not have any overtly deceptive elements (aside

from their images – and even those are innocuous in some cases). The purpose of the

profiles is to befriend as many users as possible so that they can infiltrate the users’

circles of friends and bypass any communication restrictions imposed on non-friends.

Once a user accepts a friend request from one of these profiles, the profile begins

spamming that user through every available communication system (e.g., message

spam, comment spam, etc.).

• Pornographic Storytellers: Each of these profiles has an “About me” section that

consists of randomized pornographic stories, which are bookended by links that lead to

pornographic Web pages. The anchor text used in these profiles is extremely similar,
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even though the rest of the “About me” text is almost completely randomized.

• Japanese Pill Pushers: These profiles contain a sales pitch for male enhancement

pills in their “About me” sections. According to the pitch, the attractive woman

pictured in the profile has a boyfriend that purchased these pills at an incredible

discount, and if you act now, you can do the same. An example is shown in Figure 64.

• Winnies: All of these profiles have the same headline: “Hey its winnie.” However,

despite this headline, none of the profiles are actually named “Winnie.” In addition

to a shared headline, each of the profiles also includes a link to a Web page where

users can see the pictured female’s pornographic pictures. An example of one of these

profiles was shown in Section 12.2 (Figure 58).

12.4.5 Spam Profile Demographics

In our content duplication analysis, we analyzed the HTML and “About me” sections of

spam profiles in a general sense. To observe more specific features of these profiles, we

investigated demographic characteristics of the 1,487 spam profiles that we captured in our

honeypots. These characteristics include traditional demographics (e.g., age, gender, etc.)

as well as profile-specific features (e.g., number of friends, headlines, etc.).

Our first observation from this demographic analysis is that many of the spam profiles

share various demographic characteristics. Specifically, all of the profiles are female and

between the ages of 17 and 34 (85.9% of the profiles state an age between 21 and 27).

Additionally, 1,476 (99.3%) of the profiles report that they are single. None of these char-

acteristics are particularly surprising because they all reinforce the deceptive nature of these

profiles. Specifically, these demographic features make each profile appear as though it was

created by a young, “available” woman.

Our second observation is that many spam profiles include additional personal informa-

tion to enhance their deceptive properties. The profiles that are most adept at leveraging

personal information to their advantage are the Japanese Pill Pushers. These profiles are

the only ones that claim to be in a relationship, but this relationship status is warranted

because the profiles mention a boyfriend in their “About me” sections. Additionally, these
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Figure 65: Distribution of the number friends associated with spam profiles.

profiles list “less than $30,000” as their annual income. This is the lowest allowable option

on MySpace, and as a result, this annual income value makes it seem like the profile’s cre-

ator is not particularly wealthy, which reinforces the affordability of the male enhancement

pills that these profiles are advertising.

Our final observation is that many of the spam profiles successfully befriended legitimate

users. Figure 65 shows the distribution of friends associated with each of the spam profiles.

It is important to note that this distribution is skewed towards the low end of the spectrum

because our bots visited and stored the spam profiles very quickly (and potentially before

any other users had a chance to accept the spam friend requests). However, despite this

fact, 455 (30.6%) of the profiles had more than one friend when our bots collected them.

Thus, almost a third of the spam profiles were already attracting victims when our bots

visited them.

12.4.6 Advertised Web Pages

Since the purpose of spam profiles is to deceive users into performing an action (e.g., visiting

a Web page), most of the profiles contain links to Web pages outside of the community.

Specifically, 1,245 (83.7%) of the profiles contain at least one link in their “About me”

sections. The remaining 242 profiles are all examples of Friend Infiltrators, and as a result,

they postpone their promotional activities until after they have befriended users.

From the 1,245 profiles that contain links, our bots were able to extract and successfully
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access 1,048 profile URLs. Of these 1,048 profile URLs, only 482 (46.0%) of them were

unique, which means more than half of the URLs that appear in spam profiles are duplicates.

When our bots attempted to crawl the profile URLs, 339 (32.3%) of them returned a total of

657 HTTP redirects. After following these HTTP redirect chains, our original 482 unique

profile URLs funneled our bots to only 148 unique destination URLs. Therefore, of the

1,048 Web pages that our bots ultimately obtained with the profile URLs, 900 (85.9%) of

them have duplicate URLs.

To investigate this duplication even further, we performed a shingling analysis on the

HTML content of these 1,048 Web pages. Based on this analysis, we discovered only 6

unique clusters of duplicate and near-duplicate Web pages. Thus, 1,042 (99.4%) of the

Web pages contain content that was duplicated from the other 6 Web pages. Three of

these clusters, which account for 93.3% of the pages, contain pages that act as interme-

diary redirection pages (i.e., the pages immediately redirect users using HTML/javascript

redirection techniques). Two of the clusters, which account for 6.6% of the pages, contain

pornographic Web pages, and the last cluster contains a single Web page, which executes a

phishing attack against MySpace.

Since 93.3% of the pages employ redirection techniques, we parsed those pages for

HTML/javascript redirects using our redirection detection algorithm from Chapter 9. Based

on this redirection analysis, we identified redirects that use HTML meta refresh tags,

javascript location variable assignments, and HTML iframe tags. In total, our algorithm

identified 1,307 redirection URLs. However, of those 1,307 URLs, only 136 (10.4%) of them

were unique; hence, over 90% of the redirection URLs are duplicates.

When our bots crawled these redirection URLs, 959 (73.4%) of them returned a total of

1,288 HTTP redirects. After following these HTTP redirect chains, our bots were eventually

funneled to only 15 unique URLs. Thus, of the 1,307 Web pages that our bots crawled using

the redirection URLs, only 15 (1.1%) of them have unique URLs. Even more striking is the

fact that only 5 domain names are used in those 15 unique URLs, and of those 5 domain

names, fling.com and amateurmatch.com Web pages account for 975 (74.6%) of the Web

pages. An example of one of the amateurmatch.com Web pages is shown in Figure 66.
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Figure 66: An example of a Web page that is advertised by a spam profile.

Based on the results of our Web page analysis, we can conclude that all of the URLs that

are advertised in spam profiles point to an extremely small number of destination pages.

Specifically, 1,048 profile URLs funneled our bots to only 6 destinations, and 1,307 redi-

rection URLs funneled our bots to only 5 destinations. This observation is quite valuable

because it significantly reduces the problem of identifying the Web pages that are adver-

tised by spam profiles. Instead of dealing with 2,355 URLs, we must simply identify 11

destinations.

12.5 Summary

In this chapter, we presented a novel technique for automatically collecting deceptive spam

profiles in social networking communities. Specifically, our approach deploys honeypot

profiles and collects all of the spam profiles associated with the spam friend requests that

they receive. We also provided the first characterization of deceptive spam profiles using

the data that we collected in our 51 social honeypots over a four month evaluation period.

This characterization covered various topics including temporal and geographic distributions

of spamming activity, content duplication, an analysis of profile demographics, and an
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evaluation of the Web pages that are advertised by spam profiles.
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CHAPTER XIII

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this thesis research, we focused on countering DoI attacks in three information-rich en-

vironments: email systems, the World Wide Web, and social networking communities. For

each environment, we performed large-scale data collection and analysis operations to cre-

ate massive corpora of low and high quality information. Then, we used our collections to

identify characteristics that uniquely distinguish examples of low and high quality informa-

tion. Finally, we used our characterizations to create techniques that automatically detect

and remove low quality information from online information-rich environments.

13.1 Countering DoI Attacks in Email Systems

Our first contribution in this dissertation was a collection of techniques for automatically

detecting and removing low quality information associated with DoI attacks in email sys-

tems. We began by performing a large-scale experimental evaluation of statistical spam

classifier effectiveness. This evaluation showcased the importance of using large corpora

for classifier evaluations, and it showed that classifiers are able to successfully distinguish

between large corpora of low quality email messages. We then showed that spammers can

significantly degrade the performance of these classifiers with camouflaged spam content.

However, we were able to restore most of the accuracy for the classifiers by retraining them

to identify camouflaged messages as spam.

Next, we identified a clear tension between spam producers and information consumers.

Spam producers are constantly evolving their techniques to ensure their spam messages

are delivered, and information consumers are constantly evolving their countermeasures

to ensure they don’t receive spam messages. To experimentally model this arms race,

we investigated the evolution of various email spam construction techniques and found

numerous techniques that were ineffective over time due to anti-spam countermeasures. We

also identified examples of techniques that were coexisting with anti-spam countermeasures.
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This latter group of techniques led us to revisit the problems associated with camouflaged

spam content. Since spammers continually evolve their techniques, we believed they would

also evolve their camouflaged messages to defeat statistical spam classifiers.

To test the effects of evolving camouflaged spam content, we evaluated the classifier re-

training solution against progressively more advanced camouflaged messages. Based on this

evaluation, we discovered that the retraining process is only temporarily effective against

camouflaged messages. As information consumers evolve and retrain their classifiers, spam-

mers construct new camouflaged messages, which represent a new generation of attacks

that defeat the retrained classifiers. This process continues until both parties are firmly en-

trenched in a spam arms race. Fortunately, we proposed two solutions that allow information

consumers to break free of this arms race. The first solution alters the statistical classifier

training process by associating disproportionate weights to spam and legitimate features,

and the second solution incorporates various non-textual email features (e.g., URLs) to

significantly enhance the robustness of the spam classification process.

Moving forward, our research in this domain can extend along numerous dimensions.

In the short term, we will focus on answering various open questions that were posed

throughout this thesis research. For example, in Chapter 5, each one of the spamicity

tests showing co-existence is a challenge to be explained in more detail since those filters

were unable to “kill off” that particular spam construction technique. More concretely, the

several conjectures and potential explanations for the interactions between a spamicity test

and its associated spam construction technique should be verified quantitatively. Another

interesting research question is the lack of extinction examples for collaborative filtering,

despite the large number of extinctions. Is it possible that collaborative filtering approaches

have some inherent limitations (e.g., time lag) that prevent them from causing any strain of

spam to become extinct? For the long term, other attacks on statistical spam classifiers and

defense mechanisms may engage in arms races similar to the camouflage attacks described

in Chapters 4 and 6. A general theoretical framework analogous to adversarial classification,

which allows us to escape endless arms race cycles, would be a significant research challenge.
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13.2 Countering DoI Attacks in the World Wide Web

After successfully defending against DoI attacks in email systems, we presented a framework

for collecting, analyzing, and classifying examples of DoI attacks in the World Wide Web.

First, we leveraged an interesting link between email spam and Web spam to propose a

novel technique for extracting large Web spam samples from the Web. Then, we used our

automated Web spam collection method to create the Webb Spam Corpus – a first-of-its-

kind, large-scale, and publicly available Web spam data set. The corpus consists of nearly

350,000 Web spam pages, making it more than two orders of magnitude larger than any

other previously cited Web spam data set.

Then, we utilized the Web spam pages in the Webb Spam Corpus to perform the first

large-scale characterization of Web spam using content and HTTP session analysis tech-

niques. Our content analysis results are consistent with the hypothesis that Web spam

pages are different from legitimate Web pages, showing far more duplication of physical

content and URL redirections. Additionally, our content analysis offers a categorization

of Web spam pages, which includes Ad Farms, Parked Domains, Advertisements,

Pornography, and Redirection. Next, an analysis of session information collected dur-

ing the crawling of the Webb Spam Corpus shows significant concentration of hosting IP

addresses in two narrow ranges as well as significant overlaps among session header values.

Leveraging the results of our HTTP session analysis, we presented a lightweight, predic-

tive approach to Web spam classification that relies exclusively on HTTP session informa-

tion (i.e., hosting IP addresses and HTTP session headers). Concretely, we built an HTTP

session classifier based on our predictive technique, and by incorporating this classifier into

HTTP retrieval operations, we are able to detect Web spam pages before the actual content

transfer. By applying our predictive technique to a corpus of almost 350,000 Web spam

instances and almost 400,000 legitimate instances, we were able to successfully detect 88.2%

of the Web spam pages with a false positive rate of only 0.4%. Additionally, our experiments

show that our approach saves an average of 15.4 KB of bandwidth and storage resources

for every successfully identified Web spam page, while only adding an average of 101µs to

each HTTP retrieval operation.

224



Our predictive approach to Web spam classification is complementary to previous Web

spam research that is focused on link-based and content-based analysis techniques. Thus, an

interesting direction for future research involves combining our HTTP session classification

process with these existing analysis techniques to create a multi-layered defense against

Web spam. This multi-layered defense could potentially minimize the weaknesses of each

individual technique, while offering additional robustness to the overall spam classification

process.

13.3 Countering DoI Attacks in Social Environments

Our final contribution in this dissertation was a collection of techniques that detect and help

prevent DoI attacks within social environments (particularly social networking communi-

ties). First, we showed that social networking communities are susceptible to numerous

attacks, making it difficult for users to access high quality information in these environ-

ments. Specifically, we identified two attack classes: traditional attacks that have been

adapted to these communities (e.g., malware propagation, spam, and phishing) and new

attacks that have emerged through malicious social networking profiles (e.g., rogue advertis-

ing profiles and impersonating profiles). Concretely, we described examples of these attack

types that are observable in MySpace, which is currently the most popular social networking

community.

After we described the various security threats that exist in social environments, we

focused our attention on social spam. Unfortunately, little is known about social spam-

mers, their level of sophistication, or their strategies and tactics. Thus, we offered a novel

technique for capturing examples of social spam, and we provided the first characteriza-

tion of social spammers and their behaviors. Concretely, we made two contributions: (1)

we introduced social honeypots for tracking and monitoring social spam, and (2) we re-

ported the results of an analysis performed on spam data that was harvested by our social

honeypots. Based on our analysis, we found that the behaviors of social spammers ex-

hibit recognizable temporal and geographic patterns and that social spam content contains

various distinguishing characteristics.
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As part of our ongoing work, we will investigate additional techniques for automatically

countering DoI attacks in this increasingly important domain. By utilizing the successful

approaches we developed in other information-rich environments, we expect to observe high

degrees of accuracy when detecting DoI attacks in social environments. Specifically, we will

apply statistical classification techniques that rely on the features we discovered as part

of our characterization work, and we will continue to research new methodologies that are

resilient against constantly evolving adversaries.
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[75] Gyöngyi, Z. and Garcia-Molina, H., “Web spam taxonomy,” in Proceedings of
the 1st International Workshop on Adversarial Information Retrieval on the Web
(AIRWeb ’05), 2005.
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