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SUMMARY

The format of this thesis is simple: We begin with the preliminary definitions and nota-

tion that are crucial to understanding the elements of this thesis. Then we introduce the idea

of finding the local dimension of partially ordered sets. The following chapter explicitly

discusses the local dimension of partially ordered set and introduces the concepts related

to graphs. Chapter 4 presents concepts about the dimension and local dimension of the

standard example, S n, with several examples to illustrate them. We then veer away from

partially ordered set and partial linear extensions and temporarily fixate on the correspon-

dence between Young Diagrams and Difference Graphs. Additionally, a few nice results

are presented regarding a specific type of covering for Young Diagrams.

Chapter 6 is about the Boolean lattice, which is one of the main topics of this thesis.

It is, however, presented in several different sections. One concentrates on the bounds of

the local dimension and the one afterward on suborders of the Boolean lattice. Chapter 7,

being more explicit rather than abstract, presents a direct proof for the local difference cover

number of the incomparability graph of the split of 2[3], the Boolean lattice of dimension

3. It also encompasses the main results of this thesis. Chapter 8 discusses some open

problems.

vii



CHAPTER 1

INTRODUCTION

I could write a very boring introduction about the topic of this thesis. But I feel that is

a waste of paper, ink, and reading time, especially since the summary already details the

contents. This whole thesis is about various topics which will be presented promptly, so

we shall let them come when they come. Let me write about something else.

Fields Metalist Andrei Okounko asserted that, "Understanding examples links with

ability to compute...I worry that...this is a skill that is not adequately emphasized and de-

veloped" [1]. In spirit of his concern, this thesis will include a variety of examples. It is

possible, in fact, that the majority of this thesis is examples. I learned the topics through

creating my own illustrations of the ideas, and that is how I intend to teach it. In the words

of several professors I have had in the past, "An example is worth a thousand words." Al-

though some may be prettier than others, mathematics as a whole is a beautiful thing, and

it should be presented as such.

The notation in this thesis will be as straight-forward as possible. Although there are

many papers cited, each with their own notations, I have modified them to be consistent and

intuitive for the ease of every reader, beginning or advanced. For instance, in this thesis,

2[n]
ℓ,k denotes the Boolean suborder induced by layers ℓ and k. In [2], the paper that uses this

concept, the author uses the notation Qn
ℓ,k. Although slightly simpler, the Q is used in other

sections to denote the split of a poset, so the prior definition is preferable although less

attractive and, quite honestly, more arduous to type. I also tend to find straight-forward no-

tation to be the best. With 2[n]
ℓ,k, one can assume that it refers to some type of Boolean lattice,

which is the case. Mathematicians have an impressive amount of information contained in

their brains; in my non-professional opinion, notation should not take up too much space.

This leaves room for more interesting things. Essentially, intuitive notation is best. And,
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ultimately, that is my philosophy of mathematics, "We should explain what we know in

the simplest possible terms with minimal generality" [1]. Each passionate mathematician

will be able to take the specific and apply it to the general if needed, so it is important, for

the sake of each reader, to make a paper as specific as possible with as many examples as

necessary.
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CHAPTER 2

PRELIMINARIES

2.1 Posets

Given a set of elements X, a partial order, denoted ⪯, is a binary relation between elements

x, y, z ∈ X that satisfies (1) reflexivity: x ⪯ x, (2) antisymmetry: x ⪯ y and y ⪯ x implies

that x = y, and (3) transitivity: if x ⪯ y and y ⪯ z then x ⪯ z.

Comparability between elements could refer to elements being greater than or less than

another element, divisibility between elements, or, as is mostly used in this thesis, whether

or not elements are subsets of each other. Given x, y ∈ X, we say that x is comparable to

y if and only if x ⪯ y or y ⪯ x. We say that x is incomparable to y if and only if x is not

comparable to y, and this is denoted x ⊥ y.

A partially ordered set, also called a poset, is denoted P = (X,⪯) where X is a set of

elements equipped with the partial order ⪯.

A Hasse diagram takes the elements of a poset and visually realizes the comparabilities

between the elements. Each element of the poset represents a vertex in the Hasse diagram.

If x ⪯ y in the poset, then the Hasse diagram will have an edge between vertex x and vertex

y if and only if there does not exist some z such that x ⪯ z ⪯ y. Additionally, x will be

below y in the Hasse diagram since x ⪯ y.

The next concept is that of a powerset. Taking any set S , the powerset of S , denoted

P(S ), is the set that contains all subsets of S . A powerset is also a poset with the compara-

bility determined through subset relations. Formally, P = (S ,⊆).

As an example of a Hasse Diagram, take the set [3] = {1, 2, 3}. Then

P[3] = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.

3



The elements {1} and {1, 2} are comparable since {1} ⊂ {1, 2}, whereas {3} and {1, 2} are

incomparable. The Hasse diagram of P[3] is the following:

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{1} {2} {3}

∅

Figure 2.1: Hasse Diagram of P[3]

This diagram explicitly shows the comparabilites and incomparabilites of P[3], since

comparable elements have an edge between them whereas incomparable elements do not.

These facts make Hasse Diagrams useful tools in the later discussions contained in this

thesis.

Definition 2.1.1. A totally ordered set, also called a chain, is a partially ordered set such

that every pair of elements in the set should be comparable.

An example of a totally ordered set would be integers with the comparability ≤ (not to

be confused with the standard comparability notation "⪯"). For any distinct a, b ∈ N, we

know that either a ≤ b or b ≤ a.

Definition 2.1.2. Given a poset P = (X,⪯), a linear extension of P is a chain L = (X,⪯) of

the elements of P such that if x ⪯ y in P then x ⪯ y in L.

Definition 2.1.3. A realizer of a poset P is a family of linear extensions, L, of P such that

x ⪯ y in each L ∈ L if and only if x ⪯ y in P.

Definition 2.1.4. Given a poset P, the dimension of P, denoted dim(P), is the minimum size

of a realizer of P.

A question remains, however. How do we find these linear extensions? Let us refer

back to the example above with the poset P[3]. In the Hasse diagram, {1} is below {1, 2}
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since {1} ⪯ {1, 2}. So in each linear extension, we must have {1} below {1, 2}. However,

since {3} ⊥ {1, 2}, we must have {3} below {1, 2} in one linear extension and {1, 2} below

{3} in another; this will demonstrate the incomparability. Since the realizer is the family

of linear extensions, L, we should know the relationships between any two elements in the

given poset based solely on L.

Continuing with P[3], we hypothesize that dim(P[3]) = 3 since there are three pairs

of incomparable elements in P[3] that may cause some difficulties. These are {1} ⊥ {2, 3}

being the first, {2} ⊥ {1, 3} the second, and {3} ⊥ {1, 2} the third. This will imply that two

PLEs will not be sufficient to realize all of the incomparabilities within the powerset.

Incomparable elements like {1} and {2} are easy since {2} will always be below {2, 3},

so in one linear extension we can put {1} above {2, 3}; in another, we can put {1} below {2},

and this will create the incomparabilty between {1} and {2} automatically from {1} ⊥ {2, 3}.

An example of a family of linear extensions that gives the upper bound of the dimension is

the following:

{1, 2, 3}
{2, 3}
{1, 3}
{3}
{1, 2}
{2}
{1}
∅

L1

{1, 2, 3}
{1, 2}
{1, 3}
{1}
{2, 3}
{2}
{3}
∅

L2

{1, 2, 3}
{1, 2}
{2, 3}
{2}
{1, 3}
{1}
{3}
∅

L3

L

This implies that dim(P[3]) ≤ 3, but since the dimension of P[3] , 2, then we have found

that dim(P[3]) = 3.

The next important definition is the following:

Definition 2.1.5. Given a poset P = (X,⪯), a partial linear extension, or PLE, of P is a

linear extension of a subposet of P. In essence, a PLE is the same as a linear extension

except that a PLE does not need to include every element of the poset.
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Definition 2.1.6. Given a poset P = (X,⪯), a local realizer of P is a family L of PLEs such

that (1) if x ⪯ y in P then x ⪯ y in L ∈ L and (2) if x ⊥ y then there exist L, L′ ∈ L such

that x ⪯ y in L and y ⪯ x in L′.

A local realizer is in the same vein as a realizer, except that it relies on both PLEs

and and possibly linear extensions rather than only linear extensions. A local realizer is a

family of PLEs and linear extensions such that every comparability in our poset is realized

through the them in the family.

For example, the following local realizer of P[3] will have four PLEs:

{1, 2, 3}
{2, 3}
{1, 3}
{1, 2}
{3}
{2}
{1}
∅

L1

{1, 2}
{1, 3}
{2, 3}
{1}
{2}
{3}

L2

{2}
{3}
{1, 2}
{1, 3}

L3

{1}
{2, 3}

L4

Hence, L = {L1, L2} is a local realizer rather than a realizer of P[3] since it contains

both linear extensions and partial linear extensions.

Definition 2.1.7. Given a poset P, a realizer L of P, and some x ∈ P, the frequency of

x in L, denoted µ(x,L) is the number of PLEs in L that contain x. Additionally, µ(L) =

maxx∈P µ(x,L) denotes the maximum frequency over all elements of P.

The frequency will allow us to determine, in a sense, "how good" a local realizer is. For

example, take the local realizer of P[3] from above and let x = {1}. Since {1} appears in

three PLEs, then µ({1},L) = 3. The maximum frequency over all elements in a poset P is

denoted µ(L). In the case of P[3], the elements that occur the most times appear in three

of the PLEs, and this implies that µ(L) = 3 for P[3].

Definition 2.1.8. The local dimension of a poset P is the smallest µ(L) taken over all

possible local realizers L of the poset P. Explicitly, ldim(P) = minL µ(L).
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Any realizer can also be a local realizer since a linear extension is also a partial linear

exention. Thus, it follows that, in general, ldim(P) ≤ dim(P) for a poset P.

And, as a final "hooah" for this section, Hiraguchi proved in [3] the following theorem:

Theorem 2.1.1. [3] Given a poset P = (X,⪯) then dim(P) ≤ ⌊n/2⌋ where n is the number

of elements in P.

Remark 2.1.1. The standard example S n in Chapter 4 shows that this bound is the best

possible.

2.2 Difference Graphs

A height-two poset is one in which there is no chain with three elements.

Definition 2.2.1. Given a poset P = (X,⪯) on n elements, the split of P is a height-two poset

Q on 2n elements, with minimal elements {x′ : x ∈ P} and maximal elements {x′′ : x ∈ P}

such that for all x, y ∈ P, x′ ⪯ y′′ in Q if and only if x ⪯ y in P.

Further, the set of minimal elements is denoted A = {x′ : x ∈ P} and the maximal

elements B = {x′′ : x ∈ P}.

Definition 2.2.2. Given a height-two poset Q, the incomparability graph of Q, denoted

In(Q), is a bipartite graph with partite classes A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bm}

such that there exists an edge aib j if and only if ai ⊥ b j in Q.

These graphs are the visual representations of the incomparablities within the split of a

poset, and they will prove extremely useful in the near future.

Definition 2.2.3. For positive integers a and b, a difference graph, denoted H = H(a, b; f ),

is a bipartite graph with a + b vertices with partite sets U = {u1, . . . , ua} and W =

{w1, . . . ,wb} equipped with a non-increasing function f : [a] → [b] such that f (1) = b

and, for all i ∈ [a], N(vi) = {w1, . . . ,w f (i)} if f (i) ≥ 1.

7



Difference graphs and incomparability graphs are used hand-in-hand, and we will use

difference graphs to create covers of the incomparability graphs of the split of our posets.

Definition 2.2.4. A difference graph cover of a graph G is a family H of subgraphs of G

such that E(G) =
⋃

H∈H E(H) and each H is a difference graph.

In particular, given a height-two posetQ (which is the split of a poset P), we would want

a difference graph cover to contain all edges of In(Q) since the edges of In(Q) represent the

incomparabilities within the split of the poset. If not all edges of In(Q) are covered, then

the difference graph cover will not encompass all of the incomparabilities in the split.

Definition 2.2.5. The total difference graph cover number, abbreviated tdc, takes the small-

est number of vertices in each difference graph cover of In(Q). Formally,

tdc(In(Q)) = min
H

∑
H∈H

|V(H)| : H is a difference graph cover of In(Q)

 .
As an example, take the graph

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 2.2: Graph In(Q)

The key to finding a difference graph cover of In(Q) is to look for nested neighborhoods.

Definition 2.2.6. Nested neighborhoods of a graph are sets of neighbors of vertices that

are subsets of each other. For example, in our graph above, N(a2) ⊂ N(a1), so the neigh-

borhoods of a2 and a1 are nested.

Since N(a2) ⊂ N(a1) and N(a5) ⊂ N(a4) ⊂ N(a3), splitting these into two difference

graphs will be a cover of In(Q). Call them H1 and H2 with H = {H1,H2}. Let H1 be the

graph of the left and H2 be the graph on the right below.

8



b1 b2 b3 b5

a1 a2

b3 b4 b5

a3 a4 a5

Figure 2.3: Difference graph cover of In(Q)

This is the best covering of In(Q) since the only possibility of changing the difference

graphs would be to split H1 or H2 into two subgraphs. But this would give more occurrences

of each vertex in In(Q), and in turn it would increase tdc(In(Q)). Note that |V(H1)| = 6 and

|V(H2)| = 6, and since this is the bestH , we find that tdc(In(Q)) = 12.

Definition 2.2.7. Given a graph G (note that this could be In(Q)), a difference graph cover

H of G and a vertex v ∈ V(G), the multiplicity of v inH , denoted mult(v,H), is the number

of difference graphs in H containing v. The local difference graph cover number of G, or

ldc(G), is defined as

ldc(G) = min
H

{
max

vi∈V(G)
{mult(v,H)} : H is a difference graph cover of G

}
.

With our graph In(Q) and difference graph cover H in Figure 2.3, if we look at the

number of appearances of each vertex in the cover, we find that every element appears at

most twice, so ldc(In(Q)) ≤ 2.

Definition 2.2.8. A complete bipartite graph cover of a graph G is a set of complete bipar-

tite graphs, B, that cover all of the edges of G such that ∪B∈BE(B) = E(G).

This applies directly to the next definition, which is closely related to ldc(G).

Definition 2.2.9. The local complete bipartite cover number of G, denoted lbc(G), is the

least ℓ such that there is a cover of G with complete bipartite graphs in which every vertex

of G appears in at most ℓ of the subgraphs in the cover.

9



The following is an example of a complete biparite graph cover of Figure 2.2.

b1 b2 b3 b5

a1 a3 a4

b4

a2 a3 a4 a5

b3

Figure 2.4: B(In(Q))

Vertices a1, a2, and a5 appear once, and a3 and a4 appear twice. Regarding B, we have

that b1, b2, b4 and b5 appear once whereas b3 appears twice. This implies that lbc(In(Q)) is

at most 2.

2.3 Difference Graphs and Partial Linear Extensions

Difference graphs and PLEs are closely linked. Given a difference graph, we can create

a PLE of the split of a poset. Also, given a set of PLEs, we can create a set of difference

graphs. It is important to remember that the "best" family of PLEs, the local realizer, is what

gives the local dimension; similarly, a set of difference graphs realizes the local difference

cover number. Hence, the local dimension is closely associated with the local difference

cover number.

Given a difference graph, we can construct a PLE based on the nested neighborhoods.

Again take the graph In(Q) from above with the difference graph cover in Figure 2.3. The

construction of two PLEs is as follows: Starting with H1, take the vertex with the largest

neighborhood and place it at the top of the PLE. In our example, that will be a1. Note that

these could be PLEs rather than linear extensions since they may or may not include every

10



element in the poset. The next elements in the PLE will be the neighbors of a1 that are not

neighbors of a2, and those are b2 and b5. Next will come the vertex of the nested neighbor,

a2, and finally the neighbors shared by a1 and a2 will complete the PLE. Thus, the PLE will

be a1, b2, b5, a2, b1, b3. The process for H2 is the same. The PLE that comes from H2 is

a3, b5, a4, b4, a5, b3. Notice that these two PLEs do not, in fact, make a local realizer of

the set of points. There are many incomparabilities that are not realized, and we will need

at least one or two more PLEs to make a local realizer. However, in writing these PLEs, it

is crucial to maintain comparabilities between elements as well. At first glance, this seems

a simple undertaking. However it is quite the contrary.

Doing the opposite, if we are given a set of PLEs, we know that each PLE will be

a difference graph. Noting the nested elements of the PLE, we can easily generate the

associated difference graphs.

This sets the stage for an important lemma in [4], which is that the local dimension of

Q of a poset is equal to the local difference graph cover number of In(Q) plus or minus two.

Proposition 2.3.1. [4] If Q is a height-two poset, and In(Q) is the imcomparability graph

of Q, then

ldc(In(Q)) ≤ ldim(Q) ≤ ldc(In(Q)) + 2.

Proof. The reasoning for this theorem is intuitive. Based on the logic presented above, we

know that the local dimension of the split will encompass all comparabilities and incom-

parabilities from Q. The difference graph cover, however, realizes the incomparabilities

between the elements of A and B from Q, but it does not necessarily realize incomparabili-

ties within A and within B. Recall that all elements in A are incomparable with each other

and similarly for all elements of B. Thus, if we convert the difference graphs to PLEs, we

may need at most two additional PLEs to realize all comparabilities and incomparabilities

of the split Q. This implies that the difference between ldim(Q) and ldc(In(Q)) is at most

two. □
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CHAPTER 3

LOCAL DIMENSION OF POSETS

3.1 Bounds of the Local Dimension of a Poset

This chapter discusses the result of [4], which asymptotically determines the maximum

local dimension of a poset on n elements. Before we introduce the main result, we state the

following lemma, proven by Barrera-Cruz et. al [5], which relates the local dimension of

P and its split.

Lemma 3.1.1. [5] Let P be a poset and Q the split of P. Then,

ldim(Q) − 2 ≤ ldim(P) ≤ 2ldim(Q) − 1.

Although not proven in this thesis, the lemma above will be extremely important for

the results of this thesis.

The following two theorems give upper and lower bounds on the maximum local bipar-

tite graph cover of a graph on n vertices. First, the following result of Csirmaz, Ligeti, and

Tardos [6] implies that lbc(G) ≤ (1 + o(1))(n/ log2 n) for any graph G with n vertices.

Theorem 3.1.2. [6] Let G = (V, E) be a graph on n vertices. The set of edges, E, can

be partitioned into complete bipartite subgraphs of such that each vertex is contained in

(1 + o(1))(n/ log2 n) of the bipartite subgraphs.

The bound in Theorem 3.1.2 is best possible, up to a constant factor, by the following

theorem by Chung, Erdős, and Spencer [7].

Theorem 3.1.3. [7] There is a graph G on n vertices such that for any cover of E(G) with

complete bipartite graphs, there is a vertex that appears in Ω(n/ log n) graphs in the cover.

In other words, lbc(G) = Ω(n/ log n).
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Lemma 3.1.4. [4] Given a poset P with n points, ldim(P) ≤ (1 + o(1)) 4n
log2(2n) .

Proof. Define Q as the split of P. Showing that ldim(Q) ≤ (1 + o(1)) 2n
log2(2n) will imply our

lemma, since this means that 2ldim(Q) ≤ (1+ o(1)) 4n
log2(2n) . By Lemma 3.1.1, ldim(P)+ 1 ≤

2ldim(Q), and our result will be proven.

If Q is the split of P, then Q has a minimal set, A, and a maximal set, B. We will

begin with two linear extensions of Q, namely L1 and L2. Recall that every element of A

should be comparable with every element of B, so let A < B in both linear extensions. The

notation "<" is used to denote elements being under other elements in the linear extension

or partial linear extension. This is called a block form. Essentially, the minimal elements

are grouped together and so are the maximal elements. Now, we need the elements of A

to be incomparable with each other and similarly for B, so if some ai < a j in L1, then let

a j < ai in L2, and use the same reasoning for B. We now have two linear extensions of Q

where not only is a < b for all a ∈ A and b ∈ B, but also all ai’s are incomparable to each

other and similarly for all bi’s. The only piece we are missing now is the incomparabilities

between elements of A and B.

Let G be a graph such that its vertices are in the set A ∪ B with edge set E. Note that

|V(G)| = 2n. If ab ∈ E, then a and b are incomparable in Q. By Theorem 3.1.2, the edge

set of any graph G can be partitioned into complete bipartite graphs where each vertex is

in at most (1 + o(1)) 2n
log2(2n) of the complete bipartite subgraphs, G1,G2, . . . ,Gm. In this

case, we use 2n in the place of n since 2n is the size of the vertex set of G. Notice that

the edges must be partitioned since they represent the incomparabilities between elements

of A and B. Assume that we have a family of PLEs,M, and Mi ∈ M is one of the PLEs

in the family. Also, recall that V(G) = A ∪ B, but since Mi will not have every a ∈ A

and b ∈ B, let V(Gi) = Ai ∪ Bi where Ai and Bi are subsets of A and B, respectively,

and Gi is one of the complete bipartite subgraphs of G. In Mi, let Bi < Ai. Since Gi for

i = 1, . . . ,m is partitioned by edges, it is necessary that the maximal elements are less than

the minimal elements, because these edges represent the incomparabilities between A and

13



B. In our other linear extensions, L1 and L2, we always had A < B, so now, to create the

incomparabilities, we must have Bi < Ai. Additionally, this is only true for some elements

of A and B since there are some comparable elements between A and B, and hence those

are realized in L1 and L2. With the PLEs, we are only concerned with incomparabilities

between A and B. Since all of the comparabilities and incomparabilites between A and B

are defined, we will say that L = {L1, L2,M1, . . . ,Mm} is the local realizer for Q, and each

element in Q appears at most (1 + o(1)) 2n
log2(2n) times. This comes from the fact that each

vertex appears in at most (1+o(1)) 2n
log2(2n) of the PLEs inM by [4]. Adding the occurrences

in L1 and L2 adds two more occurrences.

This implies that µ(x,L) = (1 + o(1)) 2n
log2(2n) , since any element x appears at most that

number of times. Since the local dimension is the smallest µ(L), then µ(L) ≤ µ(x,L), and

the local dimension of Q is less than (1 + o(1)) 2n
log2(2n) , completing the proof of the upper

bound. □

For the lower bound of the local dimension of a poset, we first need the following result:

Corollary 3.1.5. [4] For some ϵ > 0 and n sufficiently large, there exists a bipartite graph

G such that

ldc(G) ≥
tdc(G)

n
≥

(
1 − 2ϵ

4e

)
n

ln n
.

Lemma 3.1.6. [4] There exists a poset P with n points such that Ω
(

n
log(n)

)
≤ ldim(P).

Proof. For this proof, we work in two cases, the first where n is an even number and the

second where n is an odd number.

Case 1: Assume that n is an even number. By Corollary 3.1.5, there is a bipartite graph

G = (A ∪ B, E) with |A| = |B| = n/2 such that, for ϵ > 0 and a sufficiently large n, we have

ldc(G) ≥
(
1 − 2ϵ

4e

)
n

ln n
.
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Rewriting the right hand side, we find that

ldc(G) ≥ Ω
(

n
log n

)
.

Now, take the split Q that is height-two with A and B the minimal and maximal elements,

respectively. Further, let a ≤ b in Q if and only if ab is not an edge in G for a ∈ A and

b ∈ B. This means that a and b are comparable.

Next, let M be a local realizer of P where µ(M) = ldim(P). In other words, M has

the highest concentration of the most commonly occurring element in in extensions. If

L1 and L2 are two linear extensions of P, let A < B in both linear extensions such that

ai < a j in L1 implies that a j < ai in L2 and similarly for the elements of B. So not only

do these two extensions maintain the comparability of elements between A and B, but also

they create the incomparabilities within A and within B. The only thing we are missing

is the incomparabilities between elements of A and B, so let M be a linear extension in

M with the form A1 < B1 < · · · < At < Bt where t ∈ N, and At and Bt could be empty.

Now, denote M′ to be a PLE created from the linear extension M by deleting A1 and Bt.

This is significant since all comparable pairs have already been realized in L1 and L2, so

deleting A1 will remove any minimal elements from the bottom of the block form, and

deleting Bt will remove any maximal elements from the top of the block form. Thus, if

a and b are incomparable, since we already have a < b in both of the linear extensions,

we need b < a in M′. Then, B1 will always have minimal elements above it, and At will

always have maximal elements below it. Essentially, removing A1 and Bt makes M′ a more

efficient form of M. Since a < b for all a ∈ A1 and b ∈ B1, removing A1 makes no real

difference in the incomparabilities. This is the same for At and Bt. Since At and Bt are

always comparable, removing Bt only makes M′ more efficient. Finally, this implies that

µ(M′) ≤ µ(M)+ 2. We have the +2 since an element will appear at most two more times in

M′ than M. The case where n is odd follows closely. □
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Combining Lemma 3.1.4 and Lemma 3.1.6, we get the following theorem presented

and proven in [4], which states that the maximum local dimension among all posets with n

elements is Θ(n/ log n).

Theorem 3.1.7. [4] Let P be a poset on n elements attaining the maximum local dimension

among all posets on n elements. Then

Ω

(
n

log(n)

)
≤ ldim(P) ≤ (1 + o(1))

4n
log2(2n)

.
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CHAPTER 4

LOCAL DIMENSION OF THE STANDARD EXAMPLE

The Standard Example, denoted S n, is a bipartite graph with partite classes A and B such

that |V(A)| = |V(B)| = n. Let ai ∈ A for i ∈ [1, n] and b j ∈ B for j ∈ [1, n]. There exists an

edge aib j ∈ E(G) if and only if i , j. See S 7 below:

b1 b2 b3 b4 b5 b6 b7

a1 a2 a3 a4 a5 a6 a7

Figure 4.1: S 7

Dushnik and Miller prove in [8] that dim(S n) = n whereas ldim(S n) = 3 for n ≥ 3.

Take, for example, S 5. The graph is

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 4.2: S 5

The incomparability graph of S 5, denoted In(S 5), is the following:
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b1 b2 b3 b4 b5

a1 a2 a3 a4 a5

Figure 4.3: In(S 5)

Splitting these into difference graphs will help us calculate the dimension and local

dimension, but since none of these are nested, we will have the difference graphs

bi

ai

Figure 4.4: Hi for i = 1, 2, 3, 4, 5

This gives us five difference graphs. Now we need to find the linear extensions and

PLEs that will create the local realizer of S 5. All elements of B are incomparable to each

other and similarly for the elements of A, so we know that in one PLE we should have

ai < a j for some i, j = 1, 2, . . . , 5 and in another PLE we will have a j < ai; the same will

occur for the elements of B.

Each of our difference graphs above will give one count per vertex of S 5, but since

we will not be combining ai and b j for i , j in a PLE, then first we need two linear

extensions of S 5 that realize the incomparabilities within B and within A. Two examples

are the following:
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b5

b4

b3

b2

b1
a5

a4

a3

a2

a1

L1

b1

b2

b3

b4

b5
a1

a2

a3

a4

a5

L2

These two linear extensions realize all incomparabilities within the minimal and maxi-

mal elements without realizing the incomparabilities between elements of A and B together,

since those will be handled in the PLEs from the difference graphs. Those PLEs will be the

following:

a1

b1

L3

a2

b2

L4

a3

b3

L5

a4

b4

L6

a5

b5

L7

We require many small PLEs because each element bi is comparable to each a j as long

as i , j. To create other longer PLEs could create incomparabilities between elements that

are, in fact, comparable in the standard example.

In conclusion, the local realizer of S 5 is L = {L1, L2, L3, L4, L5, L6, L7} where each ai

and bi for i = 1, 2, . . . , 5 appears at most three times. Therefore, ldim(S 5) = 3.

Regarding the dimension of S 5, we need to have linear extensions that realize the com-

parabilities and incomparabilities of S 5. By [8], we know that dim(S 5) = 5, so we will

need five linear extensions. Recall that linear extensions, as opposed to partial linear ex-

tensions, must contain all of the elements of S 5; this is how we know that we need exactly

five linear extensions. Keeping L1 and L2 from above, we immediately have a problem.

Since those two only realize incomparabilities within A and within B, that only leaves us

three more linear extensions to get our realizer. We could do this, but since these are linear
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extensions, that would give dim(S 5) ≤ 7 which, although legitimate, is unnecessarily large.

The incomparabilities between A and B are as follows:

b1 ⊥ a1, b2 ⊥ a2, b3 ⊥ a3, b4 ⊥ a4, b5 ⊥ a5.

Then, we also need the incomparabilities within A and within B. The following are five

linear extensions that realize everything we need:

b5

b4

b3

b2
a1

b1
a2

a3

a4

a5

L1

b1

b3

b4

b5
a2

b2
a5

a4

a3

a1

L2

b2

b1

b5

b4
a3

b3
a4

a5

a1

a2

L3

b5

b3

b2

b1
a4

b4
a1

a2

a3

a5

L4

b4

b3

b2

b1
a5

b5
a1

a2

a3

a4

L5

We cannot do this in any less than five linear extensions because we must be careful to

keep ai comparable with b j when i , j. If we tried to create more incomparabilities in each

linear extension, we would arrive at a contradiction since, in some place, there would be

b j < ai even though they are meant to be comparable.
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CHAPTER 5

CORRESPONDENCE BETWEEN YOUNG DIAGRAMS AND DIFFERENCE

GRAPHS

In a previous chapter, we presented the association between PLEs and difference graphs.

Now, we will take this a step further and make the connections between difference graphs

and Young Diagrams. This will be crucial for future problems since Young Diagrams are

easier to generate computationally, and the process of coloring them will give us the local

difference graph cover number of the associated graph covered by the set of difference

graphs.

Definition 5.0.1. A Young Diagram (also called a Ferrers diagram, particularly when rep-

resented using dots) is a finite collection of boxes, or cells, arranged in left-justified rows,

with the row lengths in non-increasing order.

In this thesis, a Young Diagram is represented as a chart that illustrates the incompara-

bilities between elements of the split of a poset, and they are of the form:

a1

a2

...

an

b1 b2 . . . bm

where squares are colored based on the incomparabilities between elements. For in-

stance, if a1 ⊥ b2, then the square at the intersection of those two vertices would be colored.
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Let us discuss the conversion between a difference graph and a Young diagram. The

split, Q, of a poset gives a bipartite incomparability graph containing two partite classes,

one of which is the minimal elements of Q and the other is the maximal elements of Q. Say,

for example, we have A = {a1, a2, a3, a4, a5} and B = {b1, b2, b3, b4, b5}, and let us assume,

for the sake of example, that we have the incomparability graph In(Q):

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5

To create Young Diagrams, we first need to split In(Q) into a difference graph cover:

b1 b2 b3 b5

a1 a2

b3 b4 b5

a3 a4 a5

Figure 5.1: Difference graph cover of In(Q)

Let H1 be the graph of the left and H2 the graph on the right. Each of these graphs

will give a Young Diagram, which will be denoted YD(Hi) for i = 1, 2, and each edge

will represent a square of the Young Diagram; therefore, the Young Diagram will show the

incomparabilities between the elements. The two Young diagrams will be:

a1

a2

b1 b2 b3 b5

X X X X

X X

YD(H1)

a3

a4

a5

b3 b4 b5

X X X

X X

X

YD(H2)
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Similarly, we can use Young Diagrams to generate the difference graph cover of the

incomparability graph of the split of a poset.
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CHAPTER 6

THE BOOLEAN LATTICE

6.1 Bounds of Local Dimension of the Boolean Lattice

For the most part, the rest of this thesis will show results regarding the Boolean Lattice.

Note that the ground set is simply the set containing the elements of the poset.

Definition 6.1.1. The Boolean Lattice, denoted 2[n], is a poset with ground set P[n] and

comparability "⊆". Formally, 2[n] = (P[n],⊆).

In the form of a diagram, the lattice of 2[3] happens to be the same as the Hasse Diagram

of P[3], which is the following:

{1, 2, 3}

{1, 3}{1, 2} {2, 3}

{1} {2} {3}

∅

Figure 6.1: 2[3]

In [4], Kim et. al proved the following theorem regarding the local dimension of the

Boolean Lattice:

Theorem 6.1.1. [4] For n a positive integer,

n
2e log n

≤ ldim
(
2[n]

)
≤ n.

The proof for this theorem is involved, so first we will discuss some of the important

ideas used therein.
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Following the notation of [4], let P be an induced subposet of 2[n]. If we have 0 ≤ s ≤ n,

then
(

[n]
s

)
denotes the subsets of the set [n] containing s elements. We call

(
[n]
s

)
the sth layer.

Layers can induce subposets of 2[n], so we will denote this subposet Pn(s, t) = Pn where s

and t are the layers. Then ldim(Pn) is the local dimension of the induced subposet. Since Pn

has fewer elements than 2[n], clearly ldim(Pn) ≤ ldim(2[n]) and similarly for the dimension.

Proof. Let n be a sufficiently large integer, and let k = ⌈n/e⌉. If we can show that

ldim(Pn(1, n−k)) = Ω(n/ log n), then we will get the lower bound since ldim(Pn(1, n−k)) ≤

ldim(2[n]). Take the auxiliary bipartite graph Gn(1, n − k) = (V,S) where n is the set of

edges. The set V will have a vertex for every element in the 1st layer,
(

[n]
1

)
, and S will

have a vertex for each element in the (n − k)th layer,
(

[n]
n−k

)
. Notice that these elements

will be sets rather than singletons. Let {i} ∈ V and S ∈ S, so {i} is a singleton and S

is a subset. We will now define edges between these elements. If {i} is adjacent to some

S , then {i} < S . As an example, let n = 20. Then k = 8 and n − k = 12. We find

that
(

[n]
n−k

)
= {{1, 2, . . . , 12}, {2, 3, . . . , 13}, . . . , {9, 10, . . . , 20}} and

(
[n]
1

)
= {{1}, {2}, . . . , {20}}.

Then, we know that {1} is adjacent to all of the sets in S that do not contain 1, so {1} is

adjacent to {2, 3, . . . , 13} and the rest of the sets that come after it. The set {1}, however, is

not adjacent to {1, 2, . . . , 12}.

By [7], there exists some bipartite graph Gn such that lbc(Gn) = Ω(n/ log n). Then,

since Pn is a subposet, ldim(2[n]) ≥ ldim(Pn) ≥ Ω(n/ log n) = lbc(Gn). Now, let H be

a difference subgraph of Gn. A difference subgraph is a difference graph that is also a

subgraph of Gn.

We call H small in S ∈ S if there are less than b = 2 ln n edges incident to S in H. In

other words, H is small in the set S if there are less than b edges in H that share the vertex

S . Otherwise, we say that H is big is S . Note also that if H is big in S , then H is also big

in S as a whole. Let H be a difference graph cover of Gn such that ℓ = ldc(Gn) is realized

inH ..

Case 1: Assume that all H ∈ H are small in S ∈ S. We know that each S has degree
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k, and this implies that there are k vertices {vi} ∈ V such that {vi} < S . Thus, if each H is

small, then all k edges incident with S are covered by difference graphs containing at most

b − 1 of those edges; otherwise H would be big. Then, each S appears in at least

k
b − 1

≥
k
b
=
⌈n/e⌉

b
≥

n
e

b
=

n
eb
=

n
2e ln n

difference graphs H ∈ H . We have k
b−1 since the k edges incident to S are divided

among the maximum number of edges for each H. This implies that ldc(Gn) ≥ n
2e ln n

since ldc(Gn) = k
b−1 .

Case 2: Assume that for each S ∈ S that there is at least one big difference graph H.

By definition, the neighborhoods of S are nested in H. Thus, if H is big in S 1, S 2, . . . , S t,

then there must be b singletons in V that are adjacent to each of those sets in H. So none

of the b singletons are in S 1, S 2, . . . , S t. This implies that t ≤
(

n−b
n−k

)
=

(
n−b
k−b

)
.

Since there are at most ℓ difference graphs containing any singleton {vi} ∈ V, but each

big difference graph contains at least b singletons, then there must be at most ℓn/b big

difference graphs. There are n singletons for each H, and there are ℓ difference graphs H,

which is how we get ℓn. Let (v,Hbig) denote the big difference graph containing some fixed

vertex v. Not only do we know that it has at least b singletons since it is big, but also it

has at most ℓn singletons since each of the n vertices inV is in at most ℓ of the difference

graphs. This implies that the number of big difference graphs is less than or equal to ℓn/b.

Since each S ∈ S has at least one big difference graph, then we get that

ℓn
b

(
n − b
k − b

)
≥

(
n
k

)

where
(

n
k

)
is the size of S since

(
n

n−k

)
=

(
n
k

)
and

(
n−b
k−b

)
≥ t where t is the number of sets in

which there exists at least one big H.
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Now, plugging in k = ⌈n/e⌉ and b = 2 ln n, we have

ℓ ≥
b
n

(
n
k

)(
n − b
k − b

)−1

≥
b
n

(
n
k

)b

≥
ln n
n

e2 ln n = n ln n ≥ n
1

ln n
≥

n
2e ln n

.

Since ℓ = ldc(Gn) where Gn is the bipartite graph associated with Pn, then ldim(2[n]) ≥

ldim(Pn) ≥ n
2e ln n . This completes the proof of the lower bound.

The upper bound is proven in [9]. They show that dim(2[n]) = n, and since the local

dimension of a poset is less than or equal to the dimension of a poset, then we get the upper

bound as desired. □

6.2 Suborders of the Boolean Lattice

Before beginning this section officially, I will first introduce a few additional notations.

Since this chapter will frequently refer to layers that induce a suborder of the Boolean

Lattice, denote 2[n]
l,k to be the suborder of the Boolean Lattice induced by the layers l and k.

If l = k, it is simply denoted 2[n]
k .

Now, if P = (X,⪯), take the poset 2[n]
x for each x ∈ X with the ground set Yx.

Definition 6.2.1. Given two sets, the lexicographic sum is defined as the set of ordered pairs

with one element in X and the other element in Yx such that the first elements of the ordered

pairs are comparable and the second elements in the pair are comparable. Formally, we

define ∑
x∈X

2[n]
x = {(x, y) : x ∈ X, y ∈ Yx}

such that two elements (x, y) and (w, z) are comparable if and only if we have either x ≺ z

or we have both y ⪯ w and x = z.

The dimension of the lexicographic sum was was proven by Hiraguchi in [3], and it

states that

dim

∑
x∈X

2[n]
x

 = max
{
dim(P), max{dim

(
2[n]

x

)
: x ∈ X}

}
.
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Lewis proves in [2] the following inequalities regarding local dimension of the lexico-

graphic sums.

First,

ldim

∑
x∈X

2[n]
x

 ≥ max
{
ldim(P),max

{
ldim

(
2[n]

x

)
: x ∈ X

} }
,

Proof. This proof is the most straight-forward of the three. Note that
∑

2[n]
x will have

suborders equivalent to both P and 2[n]
x . This implies that the local dimension of the lexi-

cographic sum is greater than or equal to the maximum of the local dimension of P and the

local dimension of 2[n]
x . □

The next inequality is the following:

ldim

∑
x∈X

2[n]
x

 ≤ max
{
ldim(P),max

{
dim

(
2[n]

x

)
: x ∈ X

} }
,

Proof. If L is a local realizer of P andM is a realizer of 2[n]
x , then Lewis [2] constructs a

local realizer of
∑

2[n]
x in the following way:

The first case is when |Mx| ≤ µ(x,L), which means that the number of linear extensions

M ∈ M is less than or equal to the number of times each x appears in the PLEs L ∈ L. In

this instance, replace the x in each PLE with x × M for M ∈ Mx. Each M will be used at

least once since there are |Mx| linear extensions, and this number is less than or equal to

the number of PLEs containing x.

The second case is when |Mx| > µ(x,L). For these x’s, again replace the x in each

PLE with x × M. The only stipulation, however, is that the M’s need to be unique for each

PLE. Then, some of the linear extensions M may not be used since there are more linear

extensions than there are PLEs containing x.

Next, letN denote the set of all of these new posets we have created. Essentially, using

the above two cases, we can make new posets for each x ∈ X based on the linear extensions

M ∈ Mx and the PLEs in L. Note also that each M ∈ Mx is filled with the elements y ∈ Yx.

Now, if x ∈ X and y ∈ Yx, then µ((x, y),N) = max
{
µ(x,L), |Mx|

}
. For instance, assume
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that for some given x we have |Mx| > µ(x,L). Then the number of times (x, y) appears in

N should be equal to µ(x,L) since we do not necessarily use each M ∈ Mx.

The last step is to prove that N is a local realizer. Our set N will already contain

the comparabilities from the posets from which it is derived, so we only need to focus

on incomparabilities. Assume that we have two incomparable ordered pairs in N , say

(w, z) ⪯̸ (x, y). Then we know that either w ⊀ x or both z ⪯̸ y and x = w. In the first case,

this implies that there exists some PLE in L such that x ≺ w. But when x and w are later

replaced by x×M and w×M, this gives us the elements (x, y) and (w, z) with (x, y) ⪯ (w, z),

which means that the incomparability is realized. In the second situation, there would exist

some M ∈ Mx with y ⪯ z, but then the z would be replaced by z×M inN . This also would

realize the incomparability. Since these two options encompass all incomarabilities,N is a

local realizer. □

The last inequality is

ldim

∑
x∈X

2[n]
x

 ≤ ldim(P) +max
{
ldim

(
2[n]

x

)
: x ∈ X

}
.

Proof. Again take L a local realizer of P andM a realizer of 2[n]
x . Take an arbitrary linear

extension of 2[n]
x , call it Mx. Similarly to a previous proof, replace each x in L and each

x × M with x × Mx, and call N the set containing these new elements. From the same

reasoning as the proof above, N is a local realizer of
∑

x∈X 2[n]
x . Additionally, we have the

fact that µ((x, y),N) = µ(x,L) + µ(y,Mx) since the element (x, y) will appear for each

instance of x ∈ L and also for each instance of y ∈ Mx. □

Proposition 6.2.1. The three of these inequalities together form a proposition in [2].

Definition 6.2.2. Let X be a discrete random variable from the set {x1, x2, . . . , xn}. If P{X =
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xi} is the probability of having X = xi, then the entropy of X is

H(X) = −
∑

i∈[1,n],
P(xi),0

P(xi) logP(xi).

The entropy of X can be loosely considered as the approximate amount of information we

obtain based on the value of X. Additionally, since log is a concave function, we have that

H(X) ≤ log n when X is uniformly distributed.

An alphabet is a finite set containing two or more elements. Each of these elements is

called a symbol, and a word is a finite sequence of said symbols. Lastly, if A is an alphabet,

then we say that A ∗ is all possible words over A .

Definition 6.2.3. Let Σ be a finite set with A an alphabet. A prefix-free code is defined as

a map C from Σ to A ∗ such that for x, y ∈ Σ, if x and y are not equal, then C (x) is not in

the beginning of the word C (y), following the standard definition of a prefix.

Using the prior definitions, we can prove the following theorem presented and proven

in [2]:

Theorem 6.2.2. [2] If X is a random variable that receives values from a set Σ, and if

A is an alphabet, then the expected length of a prefix-free code C , denoted C (X), is, at

minimum, H(X)
log |A | .

Crespelle in reference [10] shows the existence of what is called a Crespelle codeword

for a given poset P.

Definition 6.2.4. If P = (X,⪯), then we have the ability to encode the poset as a word

with an alphabet A with 3n symbols. First, let A = {xi, xm, x f : x ∈ X}. Let L be a

local realizer of P. Each nontrivial PLE in L is a list of elements of X with the form xi

in the beginning and xm in all other places. The trivial PLEs are simply one element of

X, and hence the local realizer stays the same when we remove them. The next step is to
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concatenate all of these lists and replace all ending symbols, which are xm, with x f . This

new list is called the Crespelle codeword for poset P.

Let, for instance, d = ldim(P). This means that, in the local realizer L, any element x ∈

X appears in at most d of the PLEs. However, in the Crespelle codeword, each element will

appear at most dn times, which implies that the local dimension of the Crespelle codeword

for P is dn.

With the definition of the Crespelle codeword, we can prove the following theorem

from [2]:

Theorem 6.2.3. [2] The local dimension of a uniformly chosen poset from a set of all

n-element posets, [n], is at a minimum

(
1
4
− o(1)

)
n

log n
.

Proof. Let n ≥ 2 since the case where n = 1 is trivial. Assume that P is a poset satisfying

the standards given in the theorem. We can assign an equal probability to each outcome

of choosing this poset. The number of partial orders will be, at minimum, the number of

minimal and maximal elements, which is equal to 2
1
4 n2

. This implies, then, that H(P) ≥ 1
4n2.

Now, let d = E[ldim(P)]. Note that E denotes the expected value, which is a general-

ization of a weighted average. Then the smallest Crespelle codeword will have length dn

as shown above, and by Theorem 6.2.2, H(P) ≤ dn log(3n). This implies that

d ≥
n

4 log(3n)

since H(P) ≥ 1
4n2. Because n

4 log(3n) is equivalent to
(

1
4 − o(1)

)
n

log n , we have proven the

result. □

The next theorem involves pairs of layers from the Boolean lattice.
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Theorem 6.2.4. [2] For ℓ, k < n, a lower bound for the local dimension of layers from the

Boolean lattice is given as follows:

ldim
(
2[n]
ℓ,k

)
≥

(
1

log n
− O

(
log log n
(log n)2

))
log

(
n
k

)
.

Proof. Without loss of generality, assume that ℓ < k where P is a random height-two poset

with elements defined as follows. Let A = [n]ℓ and B = [m] for n,m ∈ N . For every b ∈ B

let Xb be a random subset of [n] with size k. Define P = A∪̇B. Recall that A∪̇B is a disjoint

union of sets A and B. Also, let every b be above a ∈ A if a ⊆ Xb. Note that taking the

disjoint union between A and B gives a joint distribution of random variables that are also

mutually independent. This implies, then, that adding their entropies together will be at

least m log
(

n
k

)
. If we again define d = E[ldim(P)], then by Theorem 6.2.2 we have

H(P) ≤ d
((

n
ℓ

)
+ m

) (
log

(
3
(
n
ℓ

)
+ 3m

))

since n in Theorem 6.2.2 is equivalent to
(

n
ℓ

)
+ m in this case. With some algebraic manip-

ulation, we find that

d ≥
m log

(
n
k

)((
n
ℓ

)
+ m

) (
log

(
3
(

n
ℓ

)
+ 3m

)) .
Letting m =

⌊(
n
ℓ

) (
log

(
n
ℓ

)
− 1

)⌋
, we get

d ≥
log

(
n
k

)
log

(
n
ℓ

) − log
(

n
k

)
(
log

(
n
ℓ

))2

log log
(
n
ℓ

)
+ log 6 +

(
n
ℓ

)−1 .
Since it is possible for ldim(P) to be greater than or equal to d, let ldim(P) ≥ d. We will

modify P to get a new poset, P̃, as follows. Let S ⊆ A, and for each such S , if there two or

more vertices in B with a neighborhood in S , then we will delete all of those vertices except

for one. Recall that P is a lexicographic sum, and, therefore, it is a sum of antichains over P̃.

Note that an antichain is a subset of a poset that contains elements that are all incomparable
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to each other. Additionally, P̃ is not a chain. By Proposition 6.2.1, P and P̃ have the same

local dimension, but since P̃ embeds into 2[n]
ℓ,k, then we have

ldim
(
2[n]
ℓ,k

)
≥ ldim(P̃) ≥ d,

completing the proof. □

The next theorem is also important in the discussion of this topic, and the proof is

detailed in [11]:

Theorem 6.2.5. [11]

ldim
(
2[n]

1,2

)
≥ log log n − O(log log log n)

as n→ ∞.

Now, due to the embedding of the Boolean lattice, we know that

ldim
(
2[n]
ℓ,k

)
≥ (1 − oℓ,k(1)) log log n.

for ℓ < k fixed in N and as n → ∞. This inequality also follows from the fact that 2[n−k+1]
1,2

embeds into 2[n]
k,k+1 and also 2[n]

ℓ,k embeds into 2[n+1]
ℓ,k+1 by [2].

To show the upper bound of the local dimension of suborders of the Boolean lattice, we

have the following theorem from [2]:

Theorem 6.2.6. [2] For 1 ≤ ℓ < k ≤ n and ℓ ≤ n
log n ,

ldim
(
2[n]
ℓ,k

)
≤ (1 + oℓ(1))

n
log n

.

Proof. Assume that G is a bipartite graph such that G = (E, A∪B) where |E| = n. With Γ(v)

denoting the set of neighbors of vertex v, for every v ∈ A, let X = {u ∈ B : vu ∈ S } ⊆ Γ(v)
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where S is the k-sets. Recall that a k-set is some subset with k points of a ground set;

specifically, it can be strictly separated from the rest of the points in the ground set. Now,

let L be a local realizer of 2[n]
ℓ,k defined with k-subsets and ℓ-subsets of E(G). If L is a PLE

in L, let L first contain the k-sets satisfying set X followed by the ℓ-sets containing some

edge vu but with u < X. In other words, L first has the k-sets such that for a vertex in B

there exists an edge in the k-set, and it is followed by the ℓ-sets with an edge between A

and B but for edge vu not in the k-set. Let π0 be the list of all ℓ-sets of edges followed by all

k-sets of edges. The order within the ℓ- and k-sets is unimportant since we will now let π1

have all ℓ-sets in opposite order followed by all k-sets in opposite order. This implies that

L = {π0, π1} ∪ {L : v ∈ [A], X ⊂ [B]} is a local realizer of 2[n]
ℓ,k. Additionally, according to

[2], each ℓ-set has multiplicity ℓ ∗ 2∆−1 + 2, where ∆ is the maximum degree of any given

vertex in A, and each k-set has a multiplicity of at most |A| + 2.

To complete this proof, if G is a bipartite graph, we can take A and B such that |A| =⌈
n

log n−log log n−log ℓ

⌉
and |B| = ⌈log n − log log n − log ℓ⌉ with 1 ≤ ℓ < k ≤ n and ℓ < n

log n to be

the partite classes of G. Then we find that

2∆−1 + 2ℓ ≤ 2|B|−1ℓ + 2 <
n

log n
+ 2

which implies that

|A| + 2 ≤
n

log n
+

2n
(log n)2 (log log n + log ℓ) + 3.

Finally, this implies that

2[n]
ℓ,k ≤

n
log n

+
2n

(log n)2 (log log n + log ℓ) + 3 = (1 + oℓ(1))
n

log n

and the proof is complete. □
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CHAPTER 7

RESULTS ABOUT THE LOCAL DIFFERENCE COVER NUMBER OF THE

BOOLEAN LATTICE

Figure 7.1: Young Diagram of 2[3]

For this section, our poset will be 2[n] and Qn will denote the split of 2[n]. Recall, also,

that In(Qn) denotes the incomparability graph of the split of 2[n]. The orientation of the

Young Diagrams in this chapter have been selected for a reason. If we have YD(In(Qn)),

where Qn denotes the split of the Boolean Lattice 2[n], then each Young Diagram may be

split into quarters rendering three Young Diagrams of In(Qn−1). This organization will

prove useful in a future proof.

Additionally, the colors in Figure 7.1 are called the necessary colors of the diagram. A

necessary color is defined as a color in the diagram that absolutely cannot be changed.

Remark 7.0.1. Note also that the Young diagram representation of In(Qn) is called gener-

alized since each difference graph from the difference graph cover of In(Qn) will generate
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one Young diagram, and the generalized Young diagram is simply a culmination of these

smaller Young diagrams.

Each of these smaller Young diagrams is represented by a color in the generalized

diagram. Hence, each color represents a Young diagram. For the rest of this thesis, we may

assume that all Young diagrams of In(Qn) are generalized.

Lemma 7.0.1. The Young Diagram of In(Q3) can be colored with at most 2 colors in each

row and column. This implies that ldc (In(Q3))) = 2.

Proof. Notice the three necessary colors in Figure 7.1. If we index the diagram like a

matrix, we get entry (2, 2) is color 1, (3, 3) is color 2, and (5, 5) is color 3. First, we will

show that ldc(2[3]) , 1. Assume to the contrary that we can color this diagram with at most

one color in each row and column. Then all of row 2 ought to be Color 1. But then this

implies that entry (3, 4) must also be Color 1, which is a contradiction since entry (3, 3)

absolutely must be Color 2. So ldc(In(Q3)) , 1.

Next, we need to show that ldc(In(Q3)) = 2 exists. See the coloring below:

Figure 7.2: Colored Young Diagram of In(Q3)
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This is one of many 2-colorings of YD(In(Q3)), but it effectively shows that, since there

exists a 2-coloring of the diagram, that ldc(In(Q3)) = 2. □

Corollary 7.0.2.

ldc (In(Qn)) ≤ n − 1.

Proof. Each Young Diagram of In(Qn) can be divided into quarters. Each quarter, except

for the lower right hand, are identical to the Young Diagram of In(Qn−1). If we color those

three quarters identically to the coloring of the Young Diagram for In(Qn−1), then we are

adding no additional colors to each row or column. By simply coloring the square in the

lower right hand entirely in the nth color for the diagram, we achieve an n − 1 coloring

of the Young Diagram. This implies that we have, in the "worst" case scenario, an n − 1

coloring of the Young Diagram for In(Qn). □

Conjecture 1.

ldc (In(Qn)) = n − 1.

This conjecture follows from Corollary 7.0.2. Based on our work for this thesis, we

have reason to believe that an n − 1 coloring is the best coloring for the local difference

cover number of the Boolean Lattice. See the figure below:
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Figure 7.3: Partially Colored Young Diagram of In(Q4)

Since n = 4, we have four main colors: pink, blue, green, and yellow. The grey squares

could contain any of the four colors. The purple squares, however, are the "problem"

squares. Those squares are called problem squares because they exist at the intersection of

a row and a column that already have distinct 2-colorings. Hence, regardless of the color

chosen for problem squares, another color will be added to at least one row or column.

This diagram was colored with minimization in mind. It was colored attempting to use

the minimum number of colors in each row and each column. Notice, however, that there

remain eight problem squares in the coloring. Despite the choice of color for the purple

squares, a third color will be added to a row and a column, giving a local difference graph

cover number of three for this Young Diagram.

Finally, we state the following theorem, which motivates this thesis.

Theorem 7.0.3.

ldim
(
2[n]

)
= Θ(n) ⇐⇒ ldc (In(Qn)) = Θ(n).

Proof. The proof of this theorem is a corollary of a number of propositions and observa-
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tions dicussed in this thesis. First of all, by Lemma 3.1.1, we have that

ldim(Qn) − 2 ≤ ldim(2[n]) ≤ 2ldim(Qn) − 1.

By Proposition 2.3.1, we have that

ldc(In(Qn)) ≤ ldim(Qn)) ≤ ldc(In(Qn)) + 2.

Therefore, by combining these two inequalities, we have that

ldc(In(Qn)) − 2 ≤ ldim
(
2[n]

)
≤ 2ldc(In(Qn)) + 3.

□

Remark 7.0.2. If ldc (In(Qn)) ≥ n−1, then the local dimension ofQn should also be greater

than or equal to n − 1. This implies that ldim
(
2[n]

)
≥ n − 3.
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CHAPTER 8

FINAL REMARKS

8.1 Open Problems

Lewis presents several compelling problems in [2]. For instance, if we define 2[n]
1,k as some

function dependent on n, how does the function act as n goes to infinity? Dushnik shows

in [12] that the dimension of 2[n]
1,k is monotone for some specific values of k; however, the

local dimension is not so.

Also presented in [4] is whether or not the bound for the local dimension of the Boolean

lattice is tight. Due to the fact that this upper bound is trivial, it begs the question of whether

or not that bound can be reduced.

And, of course, as mentioned in the previous chapter,

Conjecture 2.

ldc (In(Qn)) = n − 1.

We have reasonable evidence to suggest the correctness of this statement; however, a

proof is yet to be constructed. Based on the patterns with the the cases we have studied,

it seems that there will always exist rows and columns containing problem squares; this

implies that the local difference graph cover number is, indeed, n − 1. A reasonable way to

prove this conjecture would be to write a program that generates the ideal colorings of the

Young Diagrams. If the program could essentially "sort out" the good colorings from the

bad, then it would give strong incentive that this answer is correct.

Over the course of writing this thesis, we have tried to color the Young Diagrams in a

variety of ways. We tried splitting the diagram into smaller diagrams and coloring them

alike, but this always generated problem squares. Additionally, we tried to strategically

remove certain elements to get an n−2 coloring. We also looked for some sort of algorithm
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for coloring the diagram that would give a direct proof for the conjecture, similar to the

proof for Lemma 7.0.1. But the sheer number of options for small cases like 2[4] proved it a

very difficult and tedious undertaking. There was also room for doubt since it is impossible

to guarantee a square to be a certain color, unlike with 2[3] where there are only three color

choices to begin with.

Another method we considered is to somehow show that all colorings are, in a sense,

isomorphic. Then, the individual colorings could be considered the same, providing a small

simplification to this complicated problem.

The last and more crucial problem is that of the exact local dimension of 2[n]. Although

we have various bounds for posets and the Boolean Lattice, there is nothing absolute, and

certainly there are no proofs for anything exact. This is the question that began this whole

thesis, and we believe that the most straight-forward method to finding the solution will

come through the local difference graph cover number. The question remains: What exactly

is the local dimension of the Boolean Lattice?

8.2 Conclusion

As for the concluding thoughts of this thesis, we have presented a variety of definitions

from several different areas of mathematics. These key definitions provide the framework

to understanding the main theorems presented in Chapter 3, Chapter 6, and Chapter 7.

In Chapter 3, we addressed the known bounds of the local dimension of a given poset,

and although a definite formula for calculating ldim(P) for any given P is not known at this

time, this theorem helps to prove other results.

In Chapter 6, we discuss the Boolean lattice. Most importantly, we present the result

from [4] that the local dimension of the Boolean lattice is bounded above by n and below

by n/2e log n.

Finally, in Chapter 7, we discuss the importance of difference graphs and Young di-

agrams in proving the local difference graph cover number of the Boolean lattice. The
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goal, ultimately, is to use these facts and methods to prove the exact local dimension of the

Boolean lattice, but, at this time, we have nothing definite except for Theorem 7.0.3, which

states that the local dimension of the Boolean lattice is linear if and only if the local dif-

ference graph cover number of In(Qn) is linear. One last remark is that the local difference

graph cover number of In(Qn) being greater than or equal to n − 1 implies that the local

dimension of the Boolean lattice will be greater than or equal to n − 3.

42



REFERENCES

[1] I. V. Muñoz and U. Persson, “Interviews with three fields metalists,” 2007.

[2] D. Lewis, The local dimension of suborders of the boolean lattice, 2020.

[3] T. Hiraguchi, On the dimension of partially ordered sets. 1955.

[4] J. Kim et al., “On difference graphs and the local dimension of posets,” European
Journal of Combinatorics, vol. 86, p. 103 074, May 2020.

[5] F. Barrera-Cruz, T. Prag, H. C. Smith, L. Taylor, and W. T. Trotter, “Comparing
dushnik-miller dimension, boolean dimension and local dimension,” Order, vol. 37,
no. 2, pp. 243–269, 2019.

[6] L. Csirmaz, P. Ligeti, and G. Tardos, “Erdős–pyber theorem for hypergraphs and
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