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SUMMARY

Medical image processing, analysis, and visualization are emerging fields of

study that enable quantitative analysis and visualization of medical images of numer-

ous modalities such as magnetic resonance image, computed tomography, positron

emission tomography, and ultrasound. They have become significant components in

many fields of bio-medical research and clinical practice. Image data sets convey

highly detailed information as their dimensions increase, which needs to be inter-

preted in a timely and accurate manner for analysis. To do this, registration of two

images of the same target is essential for many areas in which the corresponding

voxels between the two images convey the valuable information. There are numerous

algorithms accounting for the distortion between two images, but it is challenging to

find the true distortion taking physical and biological characteristics of tissue into

account. Also, segmentation is critical for delineating structures or specific organ of

interest and discriminating them from surroundings or background. From the view-

point of computer vision, this separation requires very complicated algorithm in some

cases even though it looks explicit to human vision system.

The first focus of the research in this dissertation is to derive adaptive image

registration algorithm to contrast-enhanced liver MRI. Voluntary motion caused by

patient movement is corrected by translation-only registration, but there still remains

involuntary motion arising from tissue deformation. Because of intensity change be-

tween images, a scarcity of landmarks, and a varying shape and size of the liver, any

image registration methods that are currently popular are not applicable in the case

of liver image. To overcome these drawbacks, we propose an intensity-based non-

parametric registration using local correlation coefficient computed at every voxel. In

xiii



addition, symmetric registration approach and its parallel implementation to graphics

processing units are implemented to improve the accuracy of motion estimation and

accelerate the convergence speed.

The second focus of this research is to design image segmentation algorithm for

delineating the entire liver. Visual delineation using human interaction is both time

consuming and error prone, so the automation of the process has become a necessity.

However, segmentation is often tackled because of the geometric proximity of the liver

to its surrounding organs, weak boundary, dual enhancement of kidney and liver, and

inhomogeneous intensity distribution. We propose a novel region-based active con-

tour method that couples the gradient information and local regional statistics on

multiple partitions, approximating the Couinaud liver segments.

The last focus of this research is to build a supervised classification using highly

correlated image features over the segmented volume of interest in motion-corrected

time series with chronic liver disease, measured as fibrotic burden. The colormap

representation of voxel-wise predicted scores over the entire liver would facilitate the

finding of suspicious regions. The contributions of this dissertation are to develop

• motion correction algorithm to register three-dimensional contrast-enhanced

MR liver time sequences by the symmetric demons force based on local cor-

relation coefficient and its implementation to GPU,

• motion correction algorithm to find the corresponding oblique and warped plane

in a three-dimensional MRI to a two-dimensional histology image within allow-

able error range,

• segmentation algorithm to delineate the entire liver by an edge function-scaled

region-based active contour on multiple partitions, with a new compactly-support

edge function,

xiv



• and feature analysis to assess the level of remaining liver function and to esti-

mate regional liver function using signal intensity and texture information.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Background

1.1.1 Motivation

In the United States, liver disease is the fourth leading cause of death during the most

productive adult years. Hepatitis results from a variety of etiologies, all having the

capacity to induce inflammation and fibrosis leading to chronic liver disease (CLD).

CLD is a common cause of primary liver malignancy, which is becoming one of the

more common malignancies overall. Figure 1 shows the progress of CLD. Patients

with CLD and metastatic liver tumors commonly use cross-sectional imaging for a

routine diagnostic testing. The ability to also measure the degree of CLD severity has

been lacking in image-based tests. Consequently, clinicians have relied upon indirect

measures derived from clinical status and blood or tissue tests using a biopsy that

are neither highly sensitive nor specific to early disease or to small changes in disease

Figure 1: The progress of chronic liver disease.
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progression or improvement. For this reason, we will focus on the improvement of

automated MRI-based diagnosis.

1.1.2 Liver Motion

Organ motion can cause artifacts in abdominal imaging, including a liver for a mag-

netic resonance (MR) image, and lower the quality of analysis. The development of a

strategy correcting motion requires a thorough knowledge and study of liver motion.

Suramo et al. [1] suggested that a movement range of the liver is 55 mm during

maximum respiration, 25 mm during normal respiration, 9 mm during suspended

respiration, and 2 mm during suspended respiration with a bar placed above the ab-

domen. Danrad et al.[2] reported that the motion of the diaphragm and the liver

is predominant in the superior-inferior (SI) direction with an average displacement

(±SD) (quiet respiration) of 12±7 mm (range 7∼28 mm) and 10±8 mm (range 5∼17

mm), respectively. Blackall et al. [3] demonstrated the motion with the relationship

between the diaphragm and the liver during the breathing cycle: In the superior sur-

face of the liver, the large deformation from direct contact with the diaphragm occurs,

and the inferior surface of the liver is in contact with the back of the body cavity

and is compressed against the surface as the diaphragm descends. Blackall et al. also

reported that liver motion measures 19±8 mm for shallow breathing and 37±8 mm

for deep breathing. Herline et al. [4] observed liver motion in case of insufflations in

interactive image-guided surgery and quantified an average motion of 2.5±1.4 mm.

An average total liver motion secondary to the respiration in all patients is 10.8±2.5

mm. For the liver tumor, Shimizu et al. [5] indicated that the mean length of dis-

placement is 21 mm in the cranio-caudal direction, 8 mm in the anterior-posterior

direction, and 9 mm in the lateral direction. The focus of studies by Clifford et al. [6]

and Rohlfing et al. [7] accounted for tissue deformation which the significant trans-

lation cannot compensate for. Clifford et al. showed that rigid-body translation is

2



Table 1: Hepatic rigid motion secondary to respiration (courtesy of [6]).

an average of 12∼26 mm in cranio-caudal shift, 1∼12 mm in anterior-posterior shift,

and 1∼3 mm in lateral shift.

The error introduced by assuming rigid-body motion is 3 mm on average, which

may be explained as non-rigid deformation. Only 18% of the liver recovers back to

the same position. In other words, the liver does not reoccupy the same position at

identical moments in the respiratory cycle, which is defined as motion with respect to

surrounding tissue. Rohlfing et al. demonstrated that the most global motion is cap-

tured by rigid transformation, and residual deformation amounts to approximately

6 mm as a result of implementing a free-form deformation based on B-spline. Since

above registration algorithm is based on control points, it tends to be sensitive in some

non-regular or non-uniform regions. Normally, the error introduced by assuming rigid

liver motion averages 3 mm. To date, other factors such as a needle pressure during

a transjugular intrahepatic portosystemic shunt (TIPS) procedure or heartbeat may

cause motion in the liver. 1 Hz oscillations along all axes are present and consistent

with the cardiac rhythm. According to the study by Venkatraman et al. [8], the mo-

tion caused by needle insertion–2.7∼13.2 (7.4±3.9) mm in the cranio-caudal direction,

1.1∼2.8 (2.2±0.7) mm in the anterior-posterior direction, and 1.4∼3.1 (2.2±0.7) mm

in the lateral direction–is not big compared to that caused by respiration–(3.9∼12.3

3



(7.3±3.0) mm in the cranio-caudal direction, 1.9∼3.6 (2.5±0.7) mm in the anterior-

posterior direction, and 1.2∼2.5 (1.9±0.4) mm in the lateral direction. Since needle

insertion is not involved in our imaging acquisition process, we will disregard motion

caused by that factor.

As indicated in the above studies, the numerical results of liver motion is not

exactly consistent since researchers conducted experiments on not only different sub-

jects, but the number of subjects was also not the same. Also the inconsistency of

results in studies depends on which methodology is used for estimating motion. Ob-

viously, all the studies agree in some sense that liver motion consists of rigid body

motion error because of a patient’s respiration and relatively small tissue deformation.

1.1.3 Non-Rigid Image Registration: Demons

A representative algorithm of diffusing models, optical flow, is based on the assump-

tion that the intensity of a reference image is identical to the intensity of a moving

image, and the displacement is small. Therefore, this constraint is likely to fail to

match images with slightly different intensities and relatively big displacements. To

supplement these weaknesses, Thirion [9] introduced image matching method using

demons forces as illustrated in Figure 2. The author got a general idea from the

concept of diffusing models with a parallel with Maxwell’s demons, which accounts

for the paradox of the second law of thermodynamics.

The estimated displacement incremental field ~u computed at point P in S to

match the corresponding point in M is

~u =
(S −M)~∇S

(~∇S)2 + (S −M)2
, (1)

where ~u = (ux, uy, uz), S is the static image, M is the moving image, ~∇S is the

gradient of the static image, and (~∇S)2 = (~∇S)T (~∇S). Afterwards, in [10], Cachier et

al. improved the original demons algorithm in which non-rigid matching is placed on a
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(a)

(b)

Figure 2: (a) Maxwell’s demons and a mixed gas; (b) Diffusing models: the demons

act as effectors along the contours of the static image (courtesy of [9]).

minimization framework and proved that the demons algorithm is an approximation

of a second-order gradient descent. In addition, Cachier et al. derived a positive

homogenization normalized factor α that allows the strength of demons forces to be

adjusted adaptively in each iteration, and ~u is bounded by 1
2α
. Thereby, the equation

becomes

~u =
(S −M)~∇S

(~∇S)2 + α2(S −M)2
. (2)

Next, to achieve accelerated convergence, Rogelj and Kovačič [11] and Wang et al. [12]

hit on the novel idea from Newton’s third law such that one force is the same in

quantity, but the opposite in direction from the other force that is called ‘active

force’. Thus, the combined displacement field becomes

~u =
(S −M)~∇S

(~∇S)2 + α2(S −M)2
+

(S −M)~∇M
(~∇M)2 + α2(S −M)2

. (3)

Obviously, the demons algorithm is attractive when we manipulate a huge size of

image data because it is much faster and stabler in computation than parametric
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registrations using B-spline or thin-plate-spline deformation. To date, studies about

inverse consistent deformations [13, 14] have actively developed diffeomorphic regis-

tration on the frame of the demons algorithm. This diffeomorphic framework may not

be required for small-scale and smooth deformation of the liver case, so we ignored

this concept in our research.

1.1.4 Image Segmentation: Active Contours and Level Sets

Active contours, or called snakes, refer to a curve evolution to detect objects in a

image. There are a couple of representative algorithms, a geodesic active contour and

a region-based active contour.

The geodesic active contour (GAC) [15] is one that evolves in the normal direction

by the motion of mean curvature and stops on the boundary with strong gradient

magnitude. The speed of evolving the curve is characterized by an edge detector that

is a positive and decreasing function g of the gradient of the image I,

g(I(x, y)) =
1

1 + α|∇Gσ(x, y) ∗ I(x, y)|p
, p ≥ 1, (4)

where Gσ(x, y) ∗ I(x, y) is a smoothed image generated by the convolution of image

I with the Gaussian Gσ(x, y) = σ−1/2e−|x2+y2|/4σ. The smoothing convolution can be

substituted by a geometric heat equation that smoothes the image without smearing

edges. α determines the shift of the edge function. Other choices of monotonic

decreasing functions are proposed in a Perona and Malik type nonlinear diffusion

equation [16]:

g(I(x, y)) =
1

eα|∇Gσ(x,y)∗I(x,y)|2
. (5)

In Riemannian space the energy functional indicating the length of a curve is given

by

EGAC(C) =

∫ L

0

g(|∇I(C(q))|)ds =
∫ 1

0

g(|∇I(C(q)))|C ′(q)|dq, (6)
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where ds is the Euclidean arc-length, which can be change changed into parametric

form using ds = |C ′(q)|dq. C(q) : [0, 1] → R2 is a parametrized, enclosed planar

curve. To minimize the energy functional (6), the Euler-Lagrange equation is given

by

Ct = g(I)κ ~N − (∇g · ~N) ~N, (7)

where κ is the curvature and ~N is the inward normal to the curve. We can deform the

curve evolution (7) into a levelset representation according to Ct = β ~N → φt = β|∇φ|

and ~N = − ∇φ
|∇φ|

:

∂φ

∂t
= (g(I)κ+∇g · ∇φ|∇φ|)|∇φ|

= g(I)|∇φ|κ+∇g(I) · ∇φ, (8)

where

κ = div

( ∇φ
|∇φ|

)

. (9)

To increase the speed to convergence, we add the velocity constant ν, producing the

final solution

∂φ

∂t
= g(I)|∇φ|(κ+ ν) +∇g(I) · ∇φ. (10)

The Chan-Vese model of region-based active contours (CVRAC) [17] is a particular

case of a minimal partition problem introduced by the Mumford-Shah functional [18].

Under the assumption that image I has two regions of piecewise constant intensities,

the contour evolves to the boundary of objects in which the intensities inside and

outside the contour are differentiated. Let Cin denote the interior region, and Cout

the exterior region of the contour. The energy functional of CVRAC model is defined

7



as

ECV AC(c1, c2, C)

= λ1

∫

Cin

|I(x, y)− c1|2dxdy + λ2

∫

Cout

|I(x, y)− c2|2dxdy

+ µ · Length(C) + ν · Area(inside(C)), (11)

where c1 and c2 are two average intensities inside and outside the contour, respectively.

λ1, λ2 > 0 are fixed parameters, and µ and ν control the smoothness of the zero

level set and the propagation speed, respectively. In the levelset formulation, C is

represented by the zero level set of Lipschitz function φ(x, y), and the inside and

outside regions are denoted by the Heaviside function as illustrated in Figure 3.

Figure 3: Definition of curve C in the level set representation (courtesy of [17]).

Let Ω be a bounded open subset of R2. The energy functional (11) in the level

set formulation is

ECV AC(c1, c2, φ)

= λ1

∫

Ω

|I(x, y)− c1|2H(φ(x, y))dxdy

+ λ2

∫

Ω

|I(x, y)− c2|2(1− H(φ(x, y)))dxdy

+ µ

∫

Ω

|∇H(φ(x, y))|dxdy + ν

∫

Ω

H(φ(x, y))dxdy, (12)
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The average intensities can be expressed as

c1 =

∫

Ω
I(x, y) · H(φ(x, y))dxdy
∫

Ω
H(φ(x, y))dxdy

, (13)

c2 =

∫

Ω
I(x, y) · (1− H(φ(x, y)))dxdy
∫

Ω
(1− H(φ(x, y)))dxdy

, (14)

where H(z) is the Heaviside function and δ(z) is the one-dimensional Dirac function,

H(z) =

{
1, if z ≥ 0

0, if z < 0,
δ0(z) =

d

dz
H(z). (15)

The gradient descent associated with Euler-Lagrange equation for φ is

∂φ

∂t
= δ0(φ)[−λ1(I − c1)

2 + λ2(I − c2)
2 + µκ− ν]. (16)

Because δ0(φ) has finite small local support in the level sets, to extend the evolution

to all of the level sets, we can replace it by |∇φ| [19]. Thus, the global minimization

of the level set for the CVRAC model is

∂φ

∂t
= |∇(φ)|[−λ1(I − c1)

2 + λ2(I − c2)
2 + µκ− ν]. (17)

1.1.5 Image Analysis for Liver Disease Diagnosis

The study to find the way to evaluate the usefulness of a computer algorithm-based

on signal intensity changes and textural features and classification method on imag-

ing modalities such as MR, CT, and Ultrasonic is in progress by some researchers

[20, 21, 22].

Contrast-enhanced perfusion MRI refers to the use of MRI to quantify hepatic

perfusion parameters such as blood flow (rCBV) at the tissue level [23, 24, 25]. The
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3-D gradient echo sequence performed in conjunction with parallel imaging is ac-

quired with high temporal resolution. Concentration is estimated by mathematical

models representing the relationship between signal intensity and concentration of

contrast material. Resulting time-activity curves were fitted by using tracer kinetic

modeling (single-input or dual-input, single-compartment or dual-compartment). Or

model-free approach estimates parameters (hepatic perfusion index or portal venous

perfusion index) derived from the initial slope of tissue concentration time curve.

But, the remaining challenges are improving spatial and temporal resolution, accu-

rate quantification of tissue contrast material, and validation of parameters obtained

from fitting curves to kinetic models [26].

In 1973, Haralick [27] proposed a grey-level co-occurrence matrix (GLCM), which

is also called the grey tone spatial dependency matrix, texture measurements have

been a tool to represent the conditional joint probabilities of all pair wise combination

of grey levels in the spatial window of interest given two parameters: interpixel dis-

tance (δ) and orientation (θ). The second order statistics computed from the texture

of liver MR image included mean gray-scale value, standard deviation (SD), contrast,

angular second moment, entropy, mean, and inverse difference moment of ROIs of

all combination imaging data [20]. Those seven parameters from obtained textural

features were processed by an artificial neural network with learning algorithm of

back propagation comprising seven-unit input layer, six-unit hidden layer, and one-

unit output layer, and it outputted a continuous number between 0 (absent) and 1

(present).

Multiple regression analysis was used to examine correlation between the seven

numeric values of texture features by the finite difference method and the pathologic

degree of hepatic fibrosis. Correlation coefficients and Area Under the Curve (Az)

values were greatest with contrast-enhanced equilibrium phase images by the com-

puter algorithm, whereas the values of equilibrium phase images by the radiologists’
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interpretations were not so high. Reticular hyper-intensity because of delayed en-

hancement on gadolinium-enhanced equilibrium phase images was better recognized

by the computer algorithm.

1.1.6 Potential Clinical Applications

The method developed here for contrast-enhanced MRI of liver can be extended to

similar applications of other organs, including brain, cardiac, and breast imaging. For

brain imaging, contrast-enhanced MRI permits better visualization of tumor, con-

genital abnormalities, vascular malformations, acute inflammatory lesions with early

disruption of the blood brain barrier, acute ischemia and stroke. For cardiac imag-

ing, perfusion imaging is often performed with contrast-enhanced MRI. For breast

imaging, contrast-enhanced MRI is a tool for tumor detection with a sensitivity con-

siderably higher than x-ray mammography or ultrasound.

Computer-aided diagnosis (CAD) system using contrast-enhanced MRI time series

as shown in Figure 4 can assist clinicians in interpreting medical images comprehen-

sively with increased throughput. The work in this dissertation research provides

improvements in a number of aspects, including preprocessing, registration and fea-

ture analysis and is expected to benefit CAD in general.

Figure 4: Computer-aided diagnosis system using contrast-enhanced MRI sequences.
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1.2 Research Objective

The global objectives of this research are to develop a liver-specific magnetic resonance

(MR) image registration and segmentation algorithms and to find highly correlated

MR imaging features that help automatically score the severity of chronic liver dis-

ease (CLD). Our developed computer-aided diagnosis classifier measures the fibrotic

burden on the histology. For a concise analysis of liver disease, time sequences of

3D MR images should be preprocessed through an image registration to compensate

for the patient motion, respiration, or tissue motion. In addition, to improve the

accuracy of the correlation between pathologic evaluations on surgical specimens and

regions of interest (ROIs) of the MR image volume, it is necessary to find oblique and

warped planes in the MR image volume corresponding to the histology slice images

within an allowable error.

To register contrast-enhanced MR image volume sequences, we propose a novel

version of the demons algorithm that is based on a bi-directional local correlation

coefficient (Bi-LCC) scheme. This scheme improves the speed at which a conver-

gent sequence approaches to the optimum state and achieves the higher accuracy.

Furthermore, the simple and parallelizable hierarchy of the Bi-LCC demons can be

implemented on a graphics processing unit (GPU) using OpenCL. To register the

2D histology image and the 3D MR image volume, we propose a similarity transfor-

mation followed by a non-rigid registration scheme using a liver segmentation and

pairs of point landmarks selected by experts. To automate segmentation of the liver

parenchyma regions, an edge function-scaled region-based active contour (ESRAC),

which hybridizes gradient and regional statistical information, with approximate par-

titions of the liver was proposed.

A significant goal in grading liver disease is to assess the level of remaining liver

function and to estimate regional liver function. On motion-corrected and segmented
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liver parenchyma regions, for quantitative analysis of the hepatic extraction of liver-

specific MRI contrast agent, liver signal intensity change is evaluated from hepatobil-

iary phases (3-20 minutes), and parenchymal texture features are deduced from the

equilibrium (3 minutes) phase. To build a classifier using texture features, a set of

training input and output values, which is estimated by experts as a score or a per-

centage of malignancy, trains the supervised learning algorithm using a multivariate

normal distribution model and a maximum a posterior (MAP) decision rule. We will

validate the classifier by assessing the prediction accuracy with a set of testing data.
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1.3 Organization of Dissertation

The structure of the dissertation is outlined as follows:

• Chapter 2 presents the imaging protocols and contrast agent to be used for this

research.

• Chapter 3 presents contrast-enhanced liver three-dimensional magnetic reso-

nance (MR) image registration using bi-directional local correlation coefficient

demons and its implementation on graphics processing unit using OpenCL. It

also presents liver two-dimensional histology to three-dimensional MR image

registration with experimental studies.

• Chapter 4 presents a new edge function scaled region-based active contour

(ESRAC) and its application to an automate liver segmentation in contrast-

enhanced MR image with experimental studies.

• Chapter 5 presents feature analysis, including signal intensity and texture fea-

ture analyses, and supervised learning algorithm using a multivariate normal

distribution model and a maximum a posterior decision rule with test results.

• Chapter 6 provides a summary of the research performed and its key conclusions.
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CHAPTER II

PROTOCOLS AND CONTRAST AGENT

The MR studies were performed on a 1.5 T scanner (Siemens Medical Solutions,

Emory university, Atlanta, GA USA). Gadolinium (Gd)-based, contrast-enhanced,

T1-weighted gradient echo protocol (iVIBE) was used to image the liver in 14 subjects

to detect the presence of active and chronic changes in hepatic inflammation and

fibrosis [28]. Each scan is 256 × 256 × 128 in size; the in-plane resolution is 1.4648

mm; and the slice thickness is 3 mm without a gap.

The imaging protocol consists of one pre-contrast (0 second) and seven post-

contrast scans (20 seconds: arterial phase; 1 minute: portal-venous phase; 3 minutes:

equilibrium phase; 5, 10, 15 minutes; 20 minutes: delayed phases or hepatocyte

phase) after the administration of gadoxetate disodium (Gd-EOB-DTPA) contrast

agent (Eovist; Bayer HealthCare, US) as illustrated in Figure 5. The Eovist is par-

tially taken up by liver cells, thus enhancing healthy liver tissue while lesions with

no or minimal hepatocyte function remain unenhanced and thus making this region

of liver distinct in contrast uptake over time. Approximately 50% of the contrast

agent injected is renally excreted, whereas the other 50% is transported to the liver

cells and then excreted via the biliary system [29]. When a contrast agent is injected

intravenously, the hepatic arterial system is enhanced during the first pass, whereas

only minimal enhancement is registered in the parenchyma. These arterial or presinu-

soidal phase images (acquired approximately 15-25 sec after injection) are especially

important for the detection of hypervascular malignancies of the liver, i.e. lesions

which are predominantly supplied by the hepatic artery (HCC, FNH), and provide

important information on the character of the lesion. Images of the portal-venous
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(e)

Figure 5: Liver perfusion: (a) pre-contrast phase (0 second); (b) arterial phase (20

seconds); (c) portal-venous phase (1 minute); (d) equilibrium phase (3 minutes); (e)

delayed phase (20 minutes).
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phase are acquired approximately 40-70 seconds after administration of the contrast

agent, when the portal vein system and the hepatic veins are enhanced. These im-

ages show maximal parenchymal enhancement and maximal contrast differentiation

between liver and hypovascular lesions. Images of the equilibrium phase are acquired

80-120 seconds after injection of contrast agent when it has already diffused into the

interstitium. Contrast enhancement in the equilibrium phase is particularly promi-

nent in edematous tissues, such as neoplasms and areas of inflammation. Images of

the delayed phase (or hepatocyte phase) are acquired 20 minutes after injection. It

provides additional morphological and functional information about lesion cell com-

position and increased liver-to-lesion contrast.
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CHAPTER III

IMAGE REGISTRATION

3.1 Introduction and Related Works

Liver biopsy has been used as the gold standard for diagnosing liver disease or de-

termining the response to therapy. However, because of its invasiveness and limited

spatial localization, image-based, non-invasive methods have been developed to pro-

vide flexibility and better spatial coverage. Magnetic resonance imaging (MRI) is the

most diagnostically comprehensive modality both for the evaluation of tumors and

for the analysis of changes related to diffuse liver diseases, including accumulation of

fat, iron or fibrotic changes related to chronic liver disease. One of the vital elements

of liver MRI involves administration of a contrast agent followed by dynamic imaging

to obtain dynamic enhancement information on liver tumors and diffuse liver disease

characteristics. During the dynamic imaging, however, the liver moves and deforms

due to voluntary and involuntary motion. The removal of motion artifacts is essential

to obtaining accurate diagnostic information of the liver. A standard approach for

dynamic liver imaging is to register post-contrast scans to the pre-contrast scan. The

execution time of motion correction is an important factor to consider in practice

since post-contrast liver MR image sequences typically consist of several scans, and

motion correction for these scans needs to be completed within a few minutes for

time-sensitive clinical applications.

In contrast to voluntary motion that can be corrected by simple rigid body mo-

tion correction algorithms, involuntary motion is subject to a limitation for employ-

ing suitable methods because of the lack of image features or landmarks in the liver

MRI. Consequently, landmark-based parametric registrations are not available. Image
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intensity-based parametric registrations using uniform or user-supplied control point

grid with cubic B-spline or thin-plate spline radial basis expansion can have sensitive

registration results. This is because there can exist local minima of similarity mea-

sure surrounding control points ([30, 31, 7, 32]). And computation time depends on

the space of control point grid. Therefore, to overcome these drawbacks we will pro-

pose novel accelerated version of local correlation coefficient based demons algorithm

satisfying accuracy and efficiency among various non-parametric algorithms.

3.2 Translation-only Rigid Motion Correction

Prior to applying a non-rigid registration, we employed a simple rigid registration

scheme that inputs a starting translational transformation estimate T0={tx, ty, tz},

and assumes that the transformation quantity is within the capture range of a reg-

istration measure. We evaluated the chosen similarity measure, normalized cross

correlation (NCC), for a set of seven transformations T(T0). We compared the start-

ing estimate with increments and decrements of each of three translations in three-

dimensional space. Then, the maximum of similarity measures among the set of

seven transformations determined the next optimal transformation, T1. The search

for T(Tn+1) was repeated until the similarity measure yielded no improvement. With

coarse-to-fine strategy, more detailed optimization were performed with decreasing

the step size–[5, 2, 1] voxels in order.

3.3 Bi-directional Local Correlation Coefficient Demons

3.3.1 Local Correlation Coefficient Demons

Under the assumption that intensities of images are preserved during motion, the

demons algorithm, based on the sum of squared differences (SSD) criterion, has been

used for matching images. However, as pointed above, SSD is inappropriate for the

case of images whose intensities are evolving, but correlated. For this reason, we

used a local correlation coefficient (LCC) demons algorithm, introduced by [33], for
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registering locally and affinely contrast-changing images. The LCC is defined as the

sum of correlation coefficients centered at voxel p such as

LCC(S,M) =
∑

p∈Nn

CCp(S,M), (18)

where CCp(S,M) is

CCp(S,M) =
〈S,M〉p

σp(S)σp(M)
. (19)

During the calculation of CCp(S,M), a Gaussian window (σCC) was used to weigh the

voxels in the neighborhood of voxel p. Its isotropic and gradually decreasing weights

from the center facilitates the computation of the local statistics–a local mean and a

local variance–centered at voxel p. This computation is accomplished by a convolution

with the Gaussian kernel as follows:

Sp = (GσCC
∗ S)[p], M p = (GσCC

∗M)[p] (20)

σ2
p(S) = S2

p − S
2

p = GσCC
∗ (S2)[p]− (GσCC

∗ S)2[p] (21)

σ2
p(M) = S2

p −M
2

p = GσCC
∗ (M2)[p]− (GσCC

∗M)2[p] (22)

〈S,M〉p = SMp − SpM p (23)

= GσCC
∗ (SM)[p]− (GσCC

∗ S)[p](GσCC
∗M)[p]. (24)

In the SSD-based demons process minimizing the SSD between S and M, at each

iteration the displacement incremental field becomes

uSSD =
(S(x− u)−M(x))∇S(x − u)

(∇S(x− u))⊤∇S(x− u) + α2(S(x− u)−M(x))2
(25)

=
−2ESSD∇ESSD

(∇ESSD)2 + 4α2(ESSD)2
, (26)
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where ESSD = (S(x − u) − M(x))2 is a similarity measure at some point and

∇ESSD = −2(S(x − u) − M(x))∇S is the gradient of the similarity with respect

to the displacement field at some point. When this framework is applied to the

LCC-based demons algorithm, the gradient-descent optimizing framework based on

SSD criteria is replaced by the gradient-ascent optimizing framework based on LCC

criteria to find its maxima. Thus, ESSD is replaced by ELCC and (-) sign by (+) sign as

uLCC =
2ELCC∇ELCC

(∇ELCC)2 + 4α2(ELCC)2
. (27)

3.3.2 Bi-directional Scheme

Because uni-directional registration lacks reciprocal consistency and may lead to in-

ferior registration due to the asymmetry of the similarity measure, we introduce a

bi-directional (symmetric) LCC demons algorithm by incorporating symmetric regis-

tration concept. In general, image registration methods proceed in one direction in

which a static image is fixed and a displacement field u is updated for matching a

moving image to the static image. Depending on the direction of image registration,

the topological transformation would be different because of the asymmetry of a sim-

ilarity measurement. To overcome the limitation of utilizing one directional force,

symmetric image registration treats two images that are equally involved in the reg-

istration process by applying Newton’s action and reaction law. The symmetric force

applied to the moving image is

FM(x) = FM(x) + F ′
S(x), (28)

where FM(x) denotes a force which acts on image M in order to match it with image

S, and F ′
S(x) denotes a reciprocal force of FS(x) which acts on image S in order to
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match it with image M with F ′
S(x) = −FS(x). Eq. (28) can be rewritten as

FM(x) = FM(x)− FS(x). (29)

The displacement incremental fields computed from the symmetric LCC demons

forces corresponding to FM and FS become

uM =
2ELCCM

∇ELCCM

‖∇ELCCM
‖2 + 4α2(ELCCM

)2
, (30)

uS =
2ELCCS

∇ELCCS

‖∇ELCCS
‖2 + 4α2(ELCCS

)2
, (31)

where local energies ELCCM
and ELCCS

at p are defined as

ELCCM
= ELCCS

= CCp(S,M) =
< S,M >p

σp(S) σp(M)
. (32)

The analytical gradient solutions of ELCCM
and ELCCS

at each point p are derived

and are followed by their simplifications by dropping all the Gaussian convolutions

as

∂ELCCM
(x)

∂uM,p

=
∂CCp(S(x− uM),M(x))

∂uM

(33)

= −
[

MpGσCC
∗ 1

σp(M)σp(S)
− SpGσCC

∗ < S,M >p

σp(M)σ3
p(S)

+GσCC
∗
(
< S,M >p Sp

σp(M)σ3
p(S)

− M p

σp(M)σp(S)

)]

∇Sp (34)

≈ −1
σp(S)σp(M)

(

(M −M p)− (S − Sp)
< S,M >p

σ2
p(S)

)

∇S, (35)
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∂ELCCS
(x)

∂uS,p
=

∂CCp(S(x),M(x− uS))

∂uS
(36)

= −
[

SpGσCC
∗ 1

σp(S)σp(M)
−MpGσCC

∗ < S,M >p

σp(S)σ3
p(M)

+GσCC
∗
(
< S,M >p M p

σp(S)σ3
p(M)

− Sp

σp(S)σp(M)

)]

∇Mp (37)

≈ −1
σp(S)σp(M)

(

(S − Sp)− (M −M p)
< S,M >p

σ2
p(M)

)

∇M. (38)

The simplified derivative of correlation coefficient is called SLCC from this point.

The mappings of each image coordinate xM and xS to a global coordinate X are

X = xM + uM(xM ) and X = xS + uS(xS). Even though symmetric displacement

fields uM(xM) and uS(xS) in the image coordinates are taken into account, in practice

the static image S is fixed, but only moving image M is updated for iterations. To

merge uS(xS) into uM(xM ) in the xM coordinate system, we consider the static image

coordinate xS as the global coordinate X and multiply uS by the inverse Jacobian of

transformation X with respect to xM , which is then added by uM(xM) as shown in

Eq. (39). Thus, the displacement incremental field in the global coordinate system is

given by

u = uM − J−1 ∗ uS, where J =
∂X

∂xM
= I +

∂uM(xM)

∂xM
. (39)

Computing Jacobian matrix for each voxel is computationally expensive. The small

scale deformation of in-vivo objects, including the tissue of the liver, are nearly-

incompressible due to the high water content ([34, 35, 36, 37, 38, 39, 40, 41]) such

that J = ∂X
∂xM
≈ I. Thus, Eq. (39) can be further simplified to

u = uM − uS (40)

=
2ELCCM

∇ELCCM

‖∇ELCCM
‖2 + 4α2(ELCCM

)2
− 2ELCCS

∇ELCCS

‖∇ELCCS
‖2 + 4α2(ELCCS

)2
. (41)
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3.3.3 Anisotropic Gaussian Filter-based Approach

Gσ(~r) =
1

(√
2πσ

)3 e
‖~r‖2

2σ2 (42)

is a Gaussian smoothing filter with a standard deviation σ. One of disadvantages of

the demons algorithm is the absence of constraints on the displacement, and it does

not necessarily preserve the topology of the object. To reduce the unsmooth displace-

ment from noise, the displacement field is smoothed by Gaussian filtering. The clas-

sical SSD-based demons algorithm presented by [42] included the Gaussian filtering

to fluid-like regularize the displacement incremental field (σfluid) and to diffusion-like

regularize the total displacement field (σdiffusion). And the computation of local corre-

lation in the LCC demons algorithm is also Gaussian filtering based (σCC). Note that

in anisotropic voxel size, the filtering needs to be anisotropic and is obtained when

scaling differently in the x-, y-, and z-direction. The directional scaling depends on

the physical voxel size (δi) in the direction i and is defined as

σi =
σ

δi
, (43)

where σ is a standard deviation of the Gaussian filtering. Given anisotropic scal-

ings, we can build three one-dimensional separate recursive filter approximating the

Gaussian filter ([43, 44]).

3.3.4 Algorithm

In each iteration, multiple terms (e.g., a local mean and a local variance) are updated

to compute displacement incremental fields via Eq. (30) and Eq. (31). The application

of the inner Gaussian filter (with σfluid) is performed using

t← Gσdiffusion
∗
{
t+Gσfluid

∗ Eq.(41)
}
, (44)
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where tn is the displacement field. The updated deformation or transformation field

(i.e., a three-dimensional displacement field added to a three-dimensional regular grid)

interpolates the moving image with a tri-linear scheme.

M(x)←M (x+ t(x)) . (45)

Steps given by Eq. (41), Eq. (44), and Eq. (45) repeats until the mean of L2 norm

of displacement field is smaller than given threshold, or the iteration reaches the

maximum number, in our case 10−2 and 150, respectively.

[9] did not describe how one chooses parameters for a given application, which

turns out in practice to be a delicate matter ([45]). Based on three-dimensional

simulations using mathematically deformed phantom liver images, we found optimized

combinations of parameters, α, σCC , σfluid, and σdiffusion detailed in Section 3.4.1.

3.4 Simulation

The proposed method was evaluated using simulations. Simulated image was obtained

by mathematically deforming a phantom image with a characteristic of a divergence-

free flow and affinely, locally changing intensities of the phantom image so that it

meets the condition of the contrast-enhanced MR image. The deformation follows the

divergence-free condition, div u = 0, from the assumption that liver tissue is nearly

incompressible. The assumption is valid over the entire liver volume, including a few

extra voxels surrounding the boundary of the liver. The determinant of the Jacobian

matrix of the deformation (referred to as Jacobian, J) was set to one assuming volume-

preserving or incompressible. [46] expanded the Jacobian as

J = det
∂t

∂r
= det(Id+

∂u

∂r
) = 1 + tr

∂u

∂r
+ detr2

∂u

∂r
+ det

∂u

∂r
, (46)
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where detr2 represents the sum of the principal minors. The third and fourth terms

of the expansion are negligible compared to the first two terms for a spatially smooth

displacement field. Thus,

J ≈ 1 + tr
∂u

∂r
. (47)

Since tr ∂u
∂r

= div u, and if divergence-free condition is satisfied, Eq. (47) can be

expressed as J = 1, i.e., the proposed deformation is approximately incompressible.

We used a deformation model satisfying the divergence-free condition as follows:

let Ω ⊂ ℜ3 denote the domain of the model and the center point (Px, Py, Pz) ∈ Ω

move by ∆ in the z direction, and let (ux, uy, uz) denote the displacement field.

ux = ∆ · (x− Px)(z − Pz)

x2 + y2

[

1− exp−
(x−Px)2+(y−Py)

2

2σ2

]

exp(−
(z−Pz)

2

2σ2 ) (48)

uy = ∆ · (y − Py)(z − Pz)

x2 + y2

[

1− exp−
(x−Px)2+(y−Py)

2

2σ2

]

exp(−
(z−Pz)

2

2σ2 ) (49)

uz = ∆ · exp
(

−
(x−Px)2+(y−Py)

2+(z−Pz)
2

2σ2

)

(50)

satisfying lim(x,y)→ (Px,Py) ux = 0 and lim(x,y)→ (Px,Py) uy = 0 in which σ represents

how far the deformation lies from the point (Px, Py, Pz). This formula is symmetric

and circular for x, y and z axes. For an oblique direction d, let orthonormal vectors î,

ĵ and k̂ represent the unit vectors of a local coordinate system centered at P where

k̂ = d
‖d‖

. For a given point r, the corresponding local coordinates are x = (r − p) · î,

y = (r − p) · ĵ and z = (r − p) · k̂. By using the local coordinates and ∆ = ‖d‖, one

can evaluate the displacement component given by Eq. (48), Eq. (49), and Eq. (50)

and finally obtain the displacement vector at point r as u = uxî+ uy ĵ + uzk̂. A way

to determine unit vectors î and ĵ is given by the following algorithm.

(1) Select the minimum of |kx|, |ky|, |kz|. If |kx| is the minimal, then t̂ = (1, 0, 0). If
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(a) (b)

(c) (d)

Figure 6: 3-D divergence-free deformation field caused by the center point’s movement

by ∆ = 10 mm in the z direction: global motion with σ = 60 in (a) and (b), and local

motion with σ = 30 in (c) and (d) are synthesized.

|ky| is the minimal, then t̂ = (0, 1, 0). If |kz| is the minimal, then t̂ = (0, 0, 1).

(2) î = t̂×k̂

‖t̂×k̂‖
(3) ĵ = k̂ × î

The resultant displacement field is divergence-free and is centered at point p. Besides,

it points in the direction d and has a magnitude of ‖d‖ at point p. The Jacobian

determinant calculated from the given deformation field deviated from one within

±3%, in agreement with the observation of [47]. Figure 6 depicts global and local

deformation fields generated by 10 mm movement of the central point in z-direction

with scalings of 60 and 30.

Intensities of the liver image scanned at multiple times before and after contrast

administration are not preserved due to uptake of a contrast agent within the liver,

with patterns, based upon morphology and time-course of the uptake, reflecting spe-

cific disease. And inhomogeneities arise from imperfection of static magnetic field
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and RF coil. To ascertain the intensity changing relationship between pre- and post-

contrast scans, we compared the intensities of pre-contrast and post-contrast scan

which was corrected for translation-only motion over the liver parenchyma region

xp. Figure 7 (a) illustrates the fittings of sets of intensities at corresponding voxels

for one patient, which is shown affinely correlated. For delayed phase (20 min after

injection) of three healthy and three unhealthy patients, multiplicative and additive

factors range from 0.56 to 2.25 and from -56 to 136, respectively. To obtain the

normalized affine model, mean values are selected as the coefficients of the global

intensity changing profile in the liver parenchyma. In addition, local enhancement,

which depends on the geometry, is established by a subtraction of the affine model

from the real data followed by nonlinear regression to a gamma distribution model as

shown in Figure 7 (b). The normalized local enhancement model centered at point r

is given as Îpost(x) = 12.9(||x− r|| + 23.2)0.44exp−0.008∗||x−r|| − 48.5, and thereby the

total intensity changing profile becomes Ipost(xp) = 1.41Ipre(xp) + 96 + Îpost(x). For

the vessels in the liver, hepatic artery and portal vein supplying oxygenated blood to

the liver and hepatic vein draining de-oxygenated blood from the liver are segmented

separately as seen in Figure 8. The intensity model for the region of hepatic artery

and portal vein xhp is deduced as Ipost(xhp) = Ipre(xhp) + 140 + Îpost(x) and for the

region of hepatic vein xv is I
post(xv) = Ipre(xv)+100+ Îpost(x). The pre-scan image of

one normal patient and its deformed image in accordance with above characteristics

will be used in the following simulations.

3.4.1 Parameter Optimizations of Uni-LCC Demons

The LCC demons method uses four parameters; α, σCC , σfluid, and σdiffusion, whose

specifications are not given in the literature. In this section, we describe how to

optimize parameters for the Uni-LCC demons with exact derivative in Eq. 33 based

on various comparisons by simulating images.
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(a) (b)

Figure 7: Global relationship of intensity between pre- and post-contrast scans (a) and

local intensity enhancement modeling (b) of the liver parenchyma.

(a) (b)

Figure 8: Vessels in the liver: hepatic artery and portal vein (red); hepatic vein (green)

in the front (left) and top (right) views.
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The parameter α, which is not present in the original demons formulation ([42]),

was introduced by [48], and it was named as a homogenization factor. The purpose

of α is to control the maximal displacement, which is bounded by 1
2α
. The term is

closely related with how fast the algorithm converges. Note that if α is set very small

for the purpose of speed, it can lead to unstable convergence. First, we defined a

normalized local correlation coefficient (NLCC) as

NLCC =
LCC(S,M)

n
=

∑n
p=1CCp(S,M)

n
, (51)

where n is the total number of voxels of which correlation coefficients are computed.

Using the phantom simulation image that displaced ∆ = 10 mm in the z direction

with σ = 60 mm, NLCCs changes for three possible choices of α = 0.25, 0.5, 1, with

other fixed parameters, were compared as shown in Figure 9. While the convergence

with α = 0.25 showed the steepest increase in NLCC in the early state but exposed

a lack of stability in the steady state. The NLCC curves at α = 0.5 show not

only the most stable increase but also the largest convergence. The bigger value

α = 1 converges with the slower rate. These results are supported by theoretical

computation of maximal bound of each case as 2, 1, and 0.5 mm. Since the smallest

edge of a voxel is 1.46 mm, slightly smaller bound than the size can thwart both

unstability and lagging in the convergence; thus, α was set as 0.5.

Figure 9: NLCC curves in terms of homogenization factor α.
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After the setup of α, we performed tests to search for the optimized σCC among

a set of possible choices {1, 2, 3, 4, 5}. As a result, NLCCs had values that were very

proximate to each other with a difference on the order of 10−2. A mean displacement

error (MEANE), which is the root mean square between the true and estimated

displacements, was used for optimization of remaining parameters, assuming that

MEANE must be close to zero. While we optimized σCC , the parameters σfluid and

σdiffusion were set to 3. According to the results in Table 2, σCC = 2 mm recovered

the deformation field with the least MEANE. Note that if the image is affected by

motion artifacts or pathologic severity, suitably larger σCC will give more stability to

the computed local statistics.

Table 2: Mean displacement error in terms of σCC.

σCC 1 2 3 4 5

MEANE (mm) 0.319 0.303 0.335 0.377 0.428

Next, the scaling parameters σF luid and σDiffusion of the spatial smoothing fil-

ters were determined. Due to analogous roles of two filterings, optimization was

not separately performed, but finite and suggestive candidates for remaining pa-

rameters were evaluated with the fixed σCC . Among the permutations of {3, 4, 5},

σCC/σF luid/σDiffusion = 2/5/3 mm produced the lowest MEANE as shown in Table 3.

Table 3: Mean displacement error in terms of combinations of σFluid and σDiffusion with

the fixed σCC of 2.

σF luid/σDiffusion 3/3 3/4 3/5

MEANE (mm) 0.306 0.337 0.418

σF luid/σDiffusion 4/3 4/4 4/5

MEANE 0.296 0.333 0.417

σF luid/σDiffusion 5/3 5/4 5/5

MEANE 0.290 0.329 0.416
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3.4.2 Exact LCC Demons vs. Simplified LCC (SLCC) Demons

The CC derivative in Eq. (33) was simplified to reduce computation complexity. In

the previous study by [33], the authors mentioned SLCC performs slightly better

than LCC in the tests of brain MRI, which was contrary to their prediction. In this

section, we will confirm the influence of the derivative simplification in liver MRI. The

qualitative measurement is to inspect the overlap between the reference and estimated

vessel masks recovered by registration. The quantitative measurement is to assess the

MEANE and volume of error (VOE) defined as

VOE (%) = 100 ·
(

1− VS

⋂
VR

VS

⋃
VR

)

, (52)

where VS is the estimated volume mask and VR is the reference volume mask. The

measurements are evaluated separately for each of hepatic vein (VOEv), hepatic

artery with portal vein (VOEhp), and parenchyma (VOEp). In Figure 10, the left

two columns compare the performance between the Uni-LCC demons and Uni-SLCC

demons algorithms. The areas pointed by arrows, in which the simplified version

cannot recover as much as the exact version, show the difference clearly. In Table 4,

the Uni-LCC yielded better performance by an average MEANE of 0.085 mm, VOEv

of 2.75%, VOEhp of 2.6%, and VOEp of 0.3% than the Uni-SLCC. The comparison in

opposite-directional registration showed the similar tendency. For computation time,

the Uni-LCC took 7.2 seconds, but the Uni-SLCC 4.3 seconds. Thus, the simplifica-

tion of the CC derivative sacrifices accuracy to some degree in the case of liver MRI

simulation, with the reduction of computation time by 40%.

3.4.3 Contribution of Bi-directional Scheme

In this section, the influence of bi-directional scheme on the performance of LCC

demons algorithm is discussed. Tests were performed on the Uni-LCC demons, inverse
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(a) (b) (c) (d)

Figure 10: Visual inspection of registration on hepatic vein (top) and combined hepatic

artery and portal vein (bottom) using (a) exact Uni-LCC demons, (b) simplified Uni-

LCC demons, (c) exact Bi-LCC demons, and (d) simplified Bi-LCC demons. Overlap of

reference and estimated masks (yellow), only reference mask (red), and only estimated

mask (green) are indicated. Note the difference in the area pointed by arrows.

Table 4: Quantitative results of simulations with (a) global and (b) local deformation:

mean displacement error and volume error in hepatic vein, combination of hepatic

artery and portal vein, and liver parenchyma. An asterisk indicates registration in the

opposite direction.

Uni-LCC Uni-SLCC Uni-LCC* Uni-SLCC* Bi-LCC Bi-SLCC

MEANE (mm) 0.366 0.461 0.299 0.392 0.298 0.338

VOEv (%) 11.6 14.3 9.8 12.6 8.1 8.8

VOEhp (%) 11.9 15.0 10.2 13.7 8.0 9.4

VOEp (%) 0.8 1.1 0.9 1.1 0.8 1.0

(a)

Uni-LCC Uni-SLCC Uni-LCC* Uni-SLCC* Bi-LCC Bi-SLCC

MEANE (mm) 0.428 0.503 0.403 0.488 0.324 0.378

VOEv (%) 18.5 21.3 17.6 20.9 13.0 14.9

VOEhp (%) 17.7 19.8 16.7 19.4 12.7 14.3

VOEp (%) 1.2 1.5 1.5 1.7 1.0 1.4

(b)
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Uni-LCC demons, and Bi-LCC demons, with their simplified versions. With the uni-

directional method, we checked both directions of registration. On the grid recovery

in Figure 11, the Bi-LCC demons algorithm leads to closer matching than the Uni-

LCC demons algorithm. In this grid, the maximum displacement error was measured:

the Uni-LCC demons method produced 2.216 mm, which is larger than the average

voxel size 1.976 mm; the Bi-LCC demons algorithm yielded 1.395 mm, which is a

subvoxel size. As for registration of vessels in Figure 10, the Bi-LCC demons and its

simplified version improved vessel recovery rather than the Uni-LCC demons. Table

4 shows that the Bi-LCC demons exhibited improvements by an average MEANE of

21%, VOEv of 4.5%, VOEhp of 4.45%, and VOEp of 0.1%, in the global and local

deformations, compared to the Uni-LCC demons. For reference, note that the visual

differences between the Bi-LCC and Bi-SLCC methods are not as noticeable as the

Uni-LCC and Uni-SLCC methods.
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(a) (b)

Figure 11: Grid comparisons between the true deformed grid (red curve) and estimated

deformed grid (blue curve) from methods by the Uni-LCC demons algorithm (a), and

by the Bi-LCC demons algorithm (b) for three local regions.

Figure 12 presents a comparison of computational efficiency. Up to the conver-

gence, the Uni-LCC demons algorithm iterated 79 times while the Bi-LCC demons

algorithm iterated 45 times. And their respective simplified versions iterated 91 times

and 52 times, which was reduced by 43%. As for the runtime per iteration, the uni-

scheme and the bi-scheme consumed 7.2 seconds and 9.8 seconds, and the simplified

ones consumed 4.3 seconds and 4.4 seconds, respectively. So, if taking the runtime
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per iteration into account for computing the entire runtime, as one of Uni-LCC was

assumed 1, the Uni-SLCC was 0.69, the Bi-LCC was 0.78, and the Bi-SLCC was 0.40.

Thus, the Bi-SLCC reduced the runtime by 60%.

Figure 12: Comparison of the convergence rate among the Uni-LCC, Bi-LCC, and their

simplified versions.

3.5 Application to Patient Data

We compared a boundary matching of pre- and post-contrast images registered by

the Uni-LCC and Bi-LCC demons, respectively. A checkerboard, which shows alter-

nate squares from two images, was used for assessing the quality of the boundary

matching. Figure 13, the boundary mismatching of the Uni-LCC demons was found

mainly around the left lobe of the liver, the ends of superior, and inferior regions.

However, the Bi-LCC demons resulted in good boundary matching. The results from

the simplified versions were not shown here because there is no distinct difference

from the exact versions in the checkerboard.

A misalignment of vessel branch points or critical surface points was measured.

As shown in Figure 14, with the fixed reference points in the pre-contrast image,
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their correspondences in the registered images were identified for each patient. The

points evaluated were located in the sharp edge of the left lobe, the crack between

the left and right lobes, or the vessel branch. The mean of the L2 misalignment error

measured 2.17 mm in the Bi-LCC demons, but 7.44 mm in the Uni-LCC demons.
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(a) (b)

Figure 13: Comparison of checkerboard between (a) the Uni-LCC and (b) Bi-LCC

demons. The arrows distinguish the difference well. The boundary matching degree of

the pre- and registered post-contrast images is visually inspected.
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(a) (b) (c)

Figure 14: Misalignment of vessel branch points or critical surface points: the reference

points (yellow) and the corresponding points (blue) in reference image (a); registered

image by the Uni-LCC demons (b); registered image by the Bi-LCC demons (c).

Myriad studies in the past have ascertained hepatic motion in various ways. We

also analyzed hepatic motion resulting from the translation-only and Bi-LCC demons

methods for each patient as shown in Figure 15: average shift of 4.5±1.7 mm in the
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Figure 15: Hepatic rigid and non-rigid motion for 14 subjects.

lateral, 7.5±4 mm in anterior-posterior, and 18±6 mm in cranio-caudal directions.

These sizes of hepatic rigid motion agree with the estimates from previous studies

by [5] and [6] to some extent. Non-rigid registration by Bi-LCC demons algorithm

resulted in maximum motion of 7.83 mm and an average motion of 2.87±0.7 mm.

These values are approximately similar with the previous result, 3 mm reported by

[6] and [7]. It is worth noting that the liver can move locally as much as 10 mm,

justifying the use of 10 mm displacement in the simulation.

3.6 Graphics Processing Unit (GPU)-based Implementa-
tion Using OpenCL

In contrast to other registration algorithms, Bi-LCC demons algorithm is computa-

tionally fast enough on the order of sub-hour that they need to be executed in less

than a minute for clinical use. A graphics processing unit (GPU) normally has 100+

processing elements (scalar cores), large on-board memory space (1+ GB), and a high

bandwidth (25+ times faster than the bandwidth between a central processing unit

(CPU) and main memory) in a data transfer. Because of highly parallel structure,

the GPU device has been applied to general numerical processing beyond graphics

issues. The image registration field is also not an exception from adaptations of GPU.
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For example, in [49, 50], the authors studied a compute unified device architecture

(CUDA) implementation of an original demons algorithm. However, a limitation of

CUDA is that it is platform, vendor, or hardware-specific while open computing lan-

guage (OpenCL) provides a capability of a diverse mix of parallel CPUs, GPUs, and

other processing units [51].

OpenCL implements a relaxed version of the data parallel programming and im-

plicit model: a programmer specifies the size of workitems in a workgroup and the

size of total workitems. The division into workgroups is automatically managed by

the OpenCL implementation. Figure 16 illustrates the system of MR liver image

registration using GPU which consists of the two programs, “translation-only regis-

tration” and “Bi-LCC demons algorithm,” and each program has kernels necessary

for its implementation.

Input images such as segmented, fixed, and moving images are written into the buffers

in the global memory of the device. The output image of each program is saved back

to the host memory. Note that the rigid-body transformed moving images are addi-

tionally written into image objects for utilizing hardware interpolation.

A few main techniques applied to our method facilitate the use of well developed

GPU resources: pre-compilation, hardware interpolation, and parallel reduction op-

eration. First, in contrast to CUDA in which programs are compiled with an external

tool before execution, the OpenCL compiler is invoked at runtime. To pre-compile

OpenCL, programmers can use the clGetProgramInfo() API call to retrieve a com-

piled binary and save it for later use. Then, along with the clCreateProgramWithBi-

nary() call, we can create an OpenCL program object directly from the pre-compiled

binary. Second, an image object is used to store a two- or three-dimensional texture,

frame-buffer, or image. The built-in image function, “read imagef,” reads a sampled

or interpolated value at a non-integer coordinate of the image object with either a

nearest neighbor or a linear option. In the kernel, after elements of input are read
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Figure 16: GPU-based liver image registration system.

from the image object, their hardware-interpolated elements are written back to the

buffer object, which stores the updated elements of the moving image. Third, when

reducing an array of values to a single value in parallel such as NCC or SLCC, the

strategy of parallel reduction is very important for effective processing. The details

about conflict-free sequential addressing and complete unrolling techniques involved
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in parallel reduction are presented in software development kit (SDK) guides pro-

vided by NVIDIA corp. In addition, page-locked memory transfers attain the highest

bandwidth (+5 GB/s) between a host and a device, and cached memory (constant

or texture memory) is useful for storing frequently-loaded and small data such as

Gaussian kernels.

Including our GPU, the mobile GPU models before the Fermi architecture of

NVIDIA or 6xxx level of ATI do not support a double precision floating-point format.

We will validate the use of a single precision floating-point datatype only available in

our GPU throughout a comparison of resulting displacement fields using the single

and double datatype. Hardware interpolation offered by GPU will be also confirmed.

The computer used in the test is ASUS Notebook with Intel Core2 Duo CPU P8700

@ 2.53GHz and 6 GB of main memory in Window 7. The NVIDIA GTX 260M mobile

GPU supporting OpenCL 1.0 and compute capability 1.1 is integrated. The GPU

has 14 compute units (multi-processors) with 8 processing elements (scalar cores)

each, or 112 processing elements in total and a performance of 462 GFLOPS. The

programming tool is Microsoft Visual Studio 2008 in which C/C++ programs were

built in a release mode.

As shown in Figure 17, the mean and maximum errors from the known displace-

ment field are smaller than or equal to the average of voxel size, 1.98 mm. And the

local deformation has a larger error since three parameters in the Bi-LCC demons al-

gorithm are optimized to be fitted into the globally deformed situation. In Figure 18,

a comparison with the result using the CPU double datatype exhibited that the float

datatype with the hardware interpolation in the GPU exhibits slightly bigger, but

an allowable error than the algorithmic interpolation in the CPU with the runtime

reduction by 16.1%.

Table 5 illustrates the contribution of each technique introduced for the speedup
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Figure 17: Simulation results: the mean and max error in the resulting displacement

from the known displacement satisfying divergence-free condition are specified for eight

cases.

of GPU implementation using real liver subjects. Above all, we can notice the signif-

icance of parallel reduction in which all work-items need to be busy and escape data

conflict. Table 6 indicates that the GPU implementation outperforms the CPU im-

plementation by approximately 50 times in computation time. For GPU, it measures

1.76 sec for translation-only registration and 56 sec for Bi-LCC demons registration,

i.e. 57.76 sec for one postscan and 6.7 minutes for seven postscans. On the other

hand, for CPU, it measures 4.03 sec for translation-only and 46.5 minutes for Bi-LCC

demons registration, i.e. 46.5 minutes for one post-scan and 5.4 hours. Note that

the Gaussian filtering is the most expensive process because this kernel has the most

GFLOP per iteration. In particular, the kernel of gradient computation has a rela-

tively subnormal factor, for the kernel has an if-statement checking boundary, and

the divergent branches inside warps interfere a fast data flow on the GPU. The visual

inspection through a checker board display was performed as shown in Figure 13.

The arrows point out the biggest changes between before and after translation-only

registration and Bi-LCC demons registration to the real liver subject.
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Figure 18: Simulation results: the precision error resulted from the use of float datatype

and hardware interpolation in GPU implementation is negligible.

Table 5: Speedup factors as each technique is employed over one unemployed in GPU

programming.

GPU resources Speedup Factor (%)

Pre-compilation 3.7

Hardware interpolation 16.1

Parallel reduction 51.2

Table 6: The comparison of the run time for each kernel in CPU vs. GPU.

Run time CPU(sec) GPU(sec) Speedup(x)

Gradient 0.28 0.029 9.7

Incremental displacement 1.03 0.013 79.2

Three Gaussian filterings 21.79 0.36 60.5

Tri-linear interpolation 1.62 0.039 41.5

LCC\SLCC 0.32 0.0060 53.3

Miscellaneous (Multply, Add, ...) 2.90 0.11 25.7

One iteration 27.94 0.56 49.9

100 iterations 46.5 min 56 sec 50.0

Translation-only 4.03 sec 1.76 sec 2.3
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3.7 Conclusion

We have presented a bi-directional local correlation coefficient (Bi-LCC) demons

method for motion correction of contrast-enhanced liver MRI with the potential for

clinical applications. With three-dimensional simulations using mathematically ma-

nipulated phantom images, we optimized the four parameters of the LCC demons

algorithm, α, σCC , σfluid, and σdiffusion, from some sets of available alternatives.

By introducing a bi-directional scheme, the Bi-LCC demons, compared to the uni-

directional LCC demons and simplified versions, could achieve faster convergence to

the steady-state and higher accuracy such that the average error is subvoxel size. In

applying this method to 14 clinical MRI studies, the performance was verified using

a checkerboard and quantifications such as a misalignment of vessel branch points or

critical surface points.

3.8 Liver 2D Histology – 3D MR Image Registration

It is important to adjust for non-uniformity of disease severity throughout the liver;

characteristically the liver shows marked regional differences in disease severity within

individual patients. To improve the accuracy in correlation between pathologic tissue

evaluation on specimens obtained from different regions of the explanted whole liver,

representing different degrees of CLD severity, and ROIs of MR image, it is desirable

to find the corresponding oblique and warped plane in a MR volume within allowable

error range. Figure 19 illustrates two different modalities and dimensions of the liver

image to be considered in this part. The reasons why this task is challenging are as

follows:

1. Correlating in vivo liver MR images with histology images of the sectioned ex-

planted liver is difficult since the liver geometry changes dramatically when the flex-

ible liver is no longer supported by its surrounding anatomic structures. Additional
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deformations occur because of the loss of tissue distension from blood pressure and

tissue relaxation when the liver specimen is cut [52].

2. The histology image has only in-plane pixel information (2D) in contrary to MR

image that has both in-plane and out-of-plane pixel information (3D). In addition,

the physical scales (sizes) of pixel in the histology image are unknown in contrast to

MR image.

3. Finding the correspondence in intensities or anatomical structures between two

modalities is so indefinite in image processing perspective that we can not apply

multi-modality image registration by a maximization of mutual information or object

feature-based registration.

However, in spite of these obstacles, the liver boundary shape and a set of point

landmarks selected by experts can be used for matching the 2D histology to the 3D

MR image.

Figure 19: Liver 2D histology image and 3D MR image volume of one subject.

3.8.1 Initialization by Similarity Transformation

Using our developed software as shown in Figure 20, we get similarity transformation

matrix S, based on a given set of manually selected point landmarks between the 2D
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histology image and the 3D MR image. We assume that the grid in the 2D histology

image is homogeneous and regular, and all the z coordinates in the 2D histology image

are zero. Similarity transformation, including uniform scale, rotation, and translation,

is used as the initialization step for nonrigid registration to find the closest solution.

The closed-form solution for the transformation parameters that optimally aligns two

point sets in the least squares sense was introduced in [53]:

S(~r) = sR · ~r + ~t, (53)

where S(~r) denotes the similarity transformation of ~r, s the uniform scale scalar, R

the rotation matrix, and ~t the translation vector. Once the elements of similarity

transformation are computed, the initial similarity transformed grid that matches

each pixels of histology to MRI can be obtained. For convenience when computing

directional gradients, we build the similarity transformed 3D MR image volume by

stacking slices parallel to the 2D initial transformation grid under assumption that

the slice thickness of the histology image is homogeneous with the in-plane pixel size.

We consider the original coordinate system of MR image volume as a world coordi-

nate system (WCS) and the similarity transformed coordinate system of MR image

volume as a local coordinate system (LCS).

At the final step to generate the non-rigidly registered image, to escape the rescal-

ing error existent in the similarity transformed 3D MR image volume, the transfor-

mation field in the LCS must be converted to one in the WCS for using the original

MR image volume. The way to recover the transformation field in the WCS is as

follows:
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Figure 20: A software to help experts to extract point landmarks.
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Here, in the homogeneous coordinate expression, Sh is a similarity transformation

matrix that consists of the translation Th, the uniform scaling Ŝh, and the rotation

Rh. The basis vectors of Sh are the column vectors of ThŜhRh. The transformed co-

ordinate, (x′, y′, z′, 1)T can be represented with the linear combination of basis vectors

of Sh since those are linearly independent.
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where (Tx,Ty,Tz)
T is the transformation field in the WCS, (u′

x, u
′
y, u

′
z)

T the displace-

ment field in the LCS, and (x′, y′, z′)T the initialized field by similarity transformation.

3.8.2 Incorporating Point Landmarks to 2D-3D Segmented Image-based
Registration

A way to incorporate point landmarks into intensity-based registration was proposed

in [54] in which the energy to be minimized between two binary segmented images

I : ℜ2 → ℜ and J : ℜ3 → ℜ is defined as

E(C1, C2,T) = S(I, J, C1) + σ ‖C1 −T‖2 + σγ ‖C2 −T‖2 + σλR(T). (56)

In this energy, C1 : ℜ2 → ℜ3 is a dense vector field demonstrating a set of corre-

spondences between pixels of the segmented image I and J according to the intensity

similarity measure, and C2 : ℜ2 → ℜ3 is a sparse vector field demonstrating a set of

correspondences between a few point landmarks in I and their matching points in J ,

and T : ℜ2 → ℜ3 is the estimated transformation. σ is related to the level of noise

in the image, λ is the smoothing strength, and γ is the relative strength of the geo-

metric features compared to the intensity information. An efficient way minimizing

Equation (56) is to minimize it alternatively w.r.t C1 and T.

(1) Find correspondences C1 by minimizing S(I, J, C1) + σ ‖C1 −T‖2.

Here, the Gâteaux derivative of S(I, J, C1) = 1
2
‖JC1 − I‖L2

with respect to C1 is

approximated to f(x, y, C1(x, y)) = (I(x, y) − JC1(x, y))∇3JC1(x, y) in which ∇3 in-

cludes the third dimensional gradient of J around C1.

(2) Find the transformation T by minimizing ‖C1 −T‖2+γ ‖C2 −T‖2+γR(T). The

unique and explicit solution is a combination of convolution and splines [55] as the

following:

T(x) = K ∗ C1(x) +

p
∑

i=1

αiK(x− pi), (57)
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where the radial basis function K is a classical Gaussian kernel, independently on

each component of the vector without Poisson effect in our case, and αi ∈ R are

coefficients found by solving a set of linear equations. To obtain αi, the linear system

can be rewritten as

(
1

γ
Id+W

)

α = β, (58)

W = (K(xi − xj)) =












K(x1 − x1) K(x1 − x2) · · · K(x1 − xp)

K(x2 − x1)
. . .

...

...
. . .

...

K(xp − x1) · · · · · · K(xp − xp)












, (59)

β = ((C2(x1)−K ∗ C1(x1)), . . . , (C2(xp)−K ∗ C1(xp)))
T. (60)

3.8.3 Application of Spatially Varying (Inhomogeneous) Diffusion Equa-
tion

In Equation (56), the regularization part λR(T) is implemented with applying Gaus-

sian smoothing to the dense displacement field and Gaussian radial basis function to

the sparse displacement field. The weighting parameter λ that controls the smooth-

ness is determined by the variance of Gaussian kernel. The regularization equally

influences on all the image domain if using the homogeneous variance.

However, it is desirable that in vicinity of point landmarks, the smoothing effect

of C1 on T is reduced gradually. Thereby, the displacement field adjacent to point

landmarks is more influenced by the sparse vector field C2 defined by corresponding

point landmarks. To implement this concept, we propose that the Gaussian smooth-

ing to the dense displacement field K ∗ C1(x) is replaced by the spatially varying

(inhomogeneous) diffusion equation as follows:

∂

∂t
C1(x, y, t) = ∇ · (D(x, y)∇C1(x, y, t)), (61)
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Figure 21: Varying diffusivity dependent on Euclidean distance r from the nearest

point landmark.

where D(x, y) is a diffusion conductance or diffusivity. If D(x, y) is constant and

independent of x and y, Equation (61) leads to a linear diffusion equation with a ho-

mogeneous diffusivity, so called a heat equation, which can be simplified to Gaussian

convolution.

Our inhomogeneous diffusivity D(r(x, y)) is dependent on x and y as follows:

D(r(x, y)) = − τ(1− ξ2)(1− ξ1)

r(ξ2 − ξ1) + τ(1− ξ2)
+ 1, D ∈ ℜM×N , (62)

where r(x, y) denotes mini
2
√

(x− xi)2 + (y − yi)2, and (xi, yi) is the position of i -th

point landmark in the histology image. The diffusivity decreases to ξ1 as the distance

to the nearest point landmark decreases, and the maximum diffusivity is confined

to 1. The input τ to the function is assigned to the output ξ2. Empirically we

determined ξ1 = 0, ξ2 = 0.5, and τ = 20 pixels. The numerical scheme to solve the

inhomogeneous diffusion equation was introduced by Frangakis [56].

3.8.4 Results

This section will exhibit qualitative and quantitative comparisons of our proposed

method using the inhomogeneous diffusivity with the method using the homogeneous
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diffusivity on real subjects. The qualitative comparison includes the boundary match-

ing and the deformed transformation grid with point landmarks (Figure 22, 24, and

23). The quantitative comparison includes the sum of squared differences (SSD) and

the closeness between transformed coordinates at point landmarks in the histology im-

age after the registration is completed and corresponding landmarks of the MR image

volume (Table 7). In Figure 22, the registration with the inhomogeneous diffusivity

produced generally more acceptable boundary matching results than the registration

with the homogeneous diffusivity. In Figure 24, we can see that the transformation

was adjusted in vicinity of point landmarks, which resulted in the improved matching.

And the numeric results in Table 7 verify a justification for a use of the inhomogeneous

diffusivity regularization.

Table 7: Numeric results of a sum of squared difference (SSD) and an average of point

landmark differences for inhomogeneous vs. homogeneous diffusivity.

Pat Measures Inhomogeneous diffusivity Homogeneous diffusivity

Pat ♯1
SSD 0.01421 0.02183

Avg. of point distances 4.1638 6.6323

Pat ♯2
SSD 0.02801 0.06109

Avg. of point distances 2.5895 5.1400

Pat ♯3
SSD 0.02316 0.05228

Avg. of point distances 6.9145 12.1460

Pat ♯4
SSD 0.01618 0.02811

Avg. of point distances 10.5672 13.3777

Also, for a reliable verification, some of those point landmarks are utilized just for

verifying the proposed method separately from being utilized for registering images.
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(a) (b) (c) (d)

Figure 22: Image results for four real subjects: (a) column indicates the histology im-

age, (b) column indicates the initialized MR image by the similarity transformation,

(c) column indicates the resulting image after the non-rigid registration with the ho-

mogeneous diffusivity, and (d) column indicates the resulting image after the non-rigid

registration with the inhomogeneous diffusivity.

3.8.5 Conclusion

we presented a method for registration of 2D gross pathology image and 3D MRI of

the liver. Registration of liver histology and MR images is an important first step

required for optimized analysis of the correlation between histologic tissue evalua-

tion on specimens and corresponding ROIs of MR image. Given manually selected

multiple point landmarks, the method is initialized with similarity transformation.

The following non-rigid registration combines liver segmentation and point landmarks

using a spatially-varying diffusion. Tests on real cases show accurate alignment of

histology and MRI.
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(a) (b) (c)

Figure 23: Results of grid and points using the homogeneous diffusivity for four pa-

tients: (a) a front view after similarity transformation, (b) a front view after non-rigid

registration, and (c) a side view after non-rigid registration. Note that in the side view

(c) of the last patient, some of control points are not matching in out-of-plane.
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(a) (b) (c)

Figure 24: Results of transformed grids and point landmarks using the inhomogeneous

diffusivity for four patients: (a) a front view after similarity transformation, (b) a front

view after non-rigid registration, and (c) a side view after non-rigid registration. The

green and red points indicate the point landmarks of MR images and histology images,

respectively.
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CHAPTER IV

IMAGE SEGMENTATION

4.1 Introduction and Related Works

For a non-invasive, image-based analysis using the assessment of texture features

or contrast uptake time curves, magnetic resonance imaging (MRI) is now being

used for supplementing biopsies, which are suboptimal, invasive procedures. MRI is

the most diagnostically comprehensive modality for both the evaluation of tumors

and the analysis of changes related to diffuse liver diseases. Liver segmentation in

contrast-enhanced MRI is an essential pre-processing task for defining and localizing

the volume of interest (VOI). Visual delineation by humans is both time consuming

and error prone, so the automation of the process has become a necessity.

Because of the geometric proximity of the liver to its surroundings and inhomoge-

neous intensity distribution, liver segmentation is extremely complicated. The liver

consists of left and right lobes constructed around a central vein perfusing into the

left and right hepatic veins. It also contains the hepatic artery and the portal vein

engaged in main blood supplies. Exteriorly abdominal organs responsible for urinary

and digestive functions such as the kidney, the pancreas, and the spleen are located

close to the liver. Therefore, because of the weak organ boundaries, poor gradient

information, and indistinct intensity, MRI cannot easily distinguish the liver from the

other organs. In addition, an inhomogeneity of intensity arises from imperfections of

the image acquisition process, including inhomogeneities of the static field and radio

frequency transmission and reception [57], the position of the imaged object, and the

partial contrast uptake.

Although representative algorithms in computed tomography (CT) scans [58] can
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be used for segmentation, we need to analyze the properties of each one and ascer-

tain its availability for contrast-enhanced liver MRI. For example, shape-constrained

segmentation using a statistical shape model [59, 58, 60] or atlas-matching using B-

splines [61] require extensive training sets and landmarks resulting from the high

variation of the shape of the liver. The region growing method [62] can lead to leak-

age into adjacent organs because of a lack of topological constrains, and the use of

fixed confidence intervals for the intensity distribution cannot guarantee segmentation

of the entire liver region with varying intensity. Another algorithm, the graph-cut

method [63], is a highly interactive refinement process that adds or removes individual

segmented regions. However, these are only a few of the methodologies that relate

to the MRI. One algorithm, shown to be feasible and efficient, is to perform region-

growing on a partitioned probabilistic model [64] which divides the liver into eight

parts based on its various local intensity statistics. Improved active contour methods

for perfusion analysis [65] have employed multiple initialization, multiple step fast

marching method (FMM), and level set methods (LSM) to overcome leakage and

over-segmentation problems; and then the convex hull (CH) algorithm combined par-

tial segmentations.

The active contour, which uses level set representation, is state-of-the-art tech-

nology in segmentation. It is advantageous because its resulting contours facilitate

labeling without an additional process of connecting boundaries and because it al-

lows the merging and splitting of multiple contours. Unfortunately, the classic active

contour methods such as edge-based geodesic active contour or region-based active

contour methods, which use either gradient or regional statistics, are insufficient for

ill-conditioned images. A unified approach to mitigating this problem is geodesic

active regions [66], which extract the boundary attraction from the geodesic active

contour framework and compute the regional attraction by maximizing a posteriori

frame partition probability. However, a limitation of this method is that a priori
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information about the optimal number of partitions is unknown, and the liver in

contrast-enhanced MRI may not have a Gaussian mixture profile that discriminates

it from surrounding organs. Consequently, segmentation results might contain non-

liver regions imaged in the intensity range overlapping with the liver. Another coupled

active contour method using a prior shape and intensity profile [67] is also insufficient

because it has to account for the wide variation in the liver shape.

Therefore, we will present a simple new coupling active contour method with level

set representation that requires boundary and regional mean intensity information

but not a prior probabilistic information or a shape model. This method, the edge

function-scaled region-based active contour (ESRAC), will be discussed with 3-D ex-

perimental studies using contrast-enhanced liver MRI.

4.2 Edge Function-Scaled Region-based Active Contour (ES-
RAC)

Unlike geodesic active contour (GAC) model, Chan-Vese region-based active contour

(CVRAC) model can detect the target whose boundaries are not necessarily defined

by a gradient or very smooth boundaries. However, the CVRAC by itself cannot work

well in cases in which the regional statistics cannot bisect the image into the target

and the non-targets, including background. In contrast-enhanced abdominal MRI,

for example, the liver may not be only object intensity-enhanced by the uptake of

contrast agent, but the kidney also can be enhanced because of the partial uptake of

the material. Or, the malfunctioning of liver cells may impede transport of contrast

agent, leading to little contrast-enhancement. To overcome this limitation, we can use

other information such as the curvature or texture statistics, which are not robust to

general cases. Unlike the classical active contour models, GAC and CVRAC, which

take either the gradient or regional statistics into account to detect the boundary of

the target, the novel active contour model, ESRAC, incorporates both in a simple
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way. We first define the edge function-scaled fitting term,

F1(c1, C) + F2(c2, C) =λ1

∫

Cin

g(I(x, y))|I(x, y)− c1|2dxdy

+ λ2

∫

Cout

g(I(x, y))|I(x, y)− c2|2dxdy, (63)

where g(I(x, y)) is the edge detector characterized as (5). By adding the geodesic

constraints, this fitting term is regularized, and thereby the energy functional for the

ESRAC model becomes

EESRAC(c1, c2, C) = F1(c1, C) + F2(c2, C)

+ µ · LengthR(C) + ν ·AreaR(inside(C)), (64)

where LengthR(C) and AreaR(C) are the length of contour and the area inside the

contour in the Riemannian space, respectively, as defined in (6) in the GAC model.

The associated Euler-Lagrange equation for level set φ deduces

∂φ

∂t
= |∇φ|

[

−λ1g(I)(I − c1)
2 + λ2g(I)(I − c2)

2

︸ ︷︷ ︸

region-based term

+ µ

(

g(I)(κ+ ν) +∇g(I) · ∇φ|∇φ|

)

︸ ︷︷ ︸

edge-based term

]

. (65)

By coupling the GAC model and the CVAC model, the ESRAC model does not

have the limitations of these models. Figure 25 helps explain the interaction. On

the top images, in which the intensities change very smoothly, only the edge-based

term does not prevent the evolution around the estimated boundary because the

strong gradient, which turns the edge function to zero, does not exist. However,

the edge-based term causes the region-based term to adversely react to the gradient

descent flow, and the total gradient descent flow becomes zero around the boundary
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Figure 25: Image illustrating a hybridization of the ESRAC model. The images on

the top have no strong edge, but they are able to differentiate the target in the upper

center by an intensity criterion. The images on the bottom have a strong edge, but the

target from the background exhibits no intensity difference: the GAC model (left); the

CVRAC model (center); the ESRAC model (right). The enclosed red curve indicates

the final evolution of the contour.
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as the simulation in the top right image. We can also assume another boundary

case, as illustrated in the bottom images, in which the mean intensity of the target

region in the upper center is not distinct from the outside of the boundary. Little

gradient descent flow is led by a region-based term, so the contour fails to diffuse

in the simulation on the bottom center. Nevertheless, the edge-based force supports

the gradient descent flow by the region-based force, so the contour expands up to the

boundary. The ESRAC model that uses the coupled forces arising from the edge-

based term and the region-based term succeeds in both boundary cases.

Edge functions become monotonically decreasing and asymptotically positive zero

as the gradient goes to infinity as follows: g(I(x, y)) = (1+α|∇Gσ(x, y) ∗ I(x, y)|2)−1

and g(I(x, y)) = (eα|∇Gσ(x,y)∗I(x,y)|2)−1, which respectively correspond to left two plots

in Figure 26. Because of its open bound in the interval of [0, ∞), numerically setting

it up to stop propagating the curve at a desired gradient threshold using the functions

becomes an issue. Although the L2 norm of the gradient has been generally used as

a function variable, it is anisotropic despite the intensity change being equivalent

in any direction. For example, if the intensity changes on the horizontal, vertical,

and diagonal boundaries in two-dimensional space from 0 to 255, then the numerical

gradients using the finite difference method are (0, 255
2
)T , (255

2
, 0)T , and (255

2
, 255

2
)T ,

whose L2 norms of the gradients are 255
2
, 255

2
, and

√
2255

2
, respectively. Anisotropy

of the L2 norm can cause segmentation errors. A good alternative is to use the L∞

norm, which is the absolute maximum of the vector elements. Thus, a new compactly-

supported edge function with L∞ norm is given by

g(I(x, y)) = (1− α|∇Gσ ∗ I(x, y)|2∞)2+, (66)

where f = (1 − r)2+ indicates that the function f is zero if r is greater than 1. This

function is continuous and differentiable at r = 1, so it belongs to class C1. The
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threshold α is an inverse of the lowest squared L∞ norm that make Equation (66)

zero, α = 1
|∇GT |2∞

.

4.3 Application to Contrast-Enhanced Liver MRI

In total, contrast-enhanced liver MRI sequences consisting of pre-contrast (0 second

after injection), arterial (20 second), portal-venous (1 minute), equilibrium (3-4 min),

and delayed phases (20 min) are acquired in the clinical routine. The post-contrast

scans are corrected for motion to match to the pre-contrast scan in intensity-based

rigid and non-rigid manner [68]. Approximately 50% of the contrast agent injected

is renally excreted, whereas the other 50% is transported to the liver cells and then

excreted via the biliary system [29]. The dual enhancement and geometric proximity

of the kidney and the liver make segmentation of the liver so demanding.

4.3.1 Liver Partitioning

The signal quality of contrast-enhanced liver MRI can be affected by inhomogeneities

of the static magnetic field and localized contrast uptake. One way to mitigate this

problem is to separate the liver into multiple partitions and compute the regional

statistics for each partition in the ESRAC model. According to Couinaud liver seg-

ments, the liver can be divided into eight functionally independent partitions in which

the plane defined by the portal vein divides the liver superiorly and inferiorly, and

the right, middle, and left hepatic veins divide into four segments in the periphery.

Due to the difficulty of categorizing according to the portal and hepatic veins in MR

imaging, we linearly divide the image by a set of fixed orientations, as illustrated in

Figure 28 (c) and (d), from the center of the aorta detected in every slice where the

circular Hough transform algorithm [69] can detect the circular shape of the aorta

with a specific diameter in the arterial phase, shown in Figure 28 (b). The plane

on which the superior and inferior regions are divided is approximated as the central

plane of the aorta. To apply this partitions into the ESRAC model, we construct a
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Figure 26: Edge functions on the left: g1(I(x, y)) = (1 + α|∇Gσ(x, y) ∗ I(x, y)|2)−1; on the

middle: g2(I(x, y)) = (eα|∇Gσ(x,y)∗I(x,y)|
2

)−1; and on the right: g3(I(x, y)) = (1 − α|∇Gσ ∗
I(x, y)|2)2+. Note that the X axis is log-scaled.
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label array L(x, y), consisting of integer elements 1 to M, to represent the M exclusive

partitions. And a mask T (L(x, y), k) corresponding to the k-th partition is given by

T (L(x, y), k) =







1, if L(x, y) = k;

0, otherwise.
(67)

Ep−ESRAC(c
k
1, c

k
2, C)

=

M∑

k=1

[

λ1

∫

Cin

T (L(x, y), k)g(I(x, y))|I(x, y)− ck1|2dxdy

+ λ2

∫

Cout

T (L(x, y), k)g(I(x, y))|I(x, y)− ck2|2dxdy
]

+ µ · LengthR(C) + ν ·AreaR(inside(C)), (68)

where ck1 and ck2 denote average intensities inside and outside the contour in the k-th

partition, respectively, which is shown in Figure 27. The associated level set is given

by

∂φ

∂t
= |∇φ|

{ M∑

k=1

T (L, k)

[

− λ1g(I)(I − ck1)
2 + λ2g(I)(I − ck2)

2

]

+ µ

(

g(I)(κ+ ν̂) +∇g(I) · ∇φ|∇φ|

)}

. (69)

4.3.2 Seed Initialization

To initialize a seed region, thresholding of [200,∞] is applied to the delayed phase

image. Then to remove isolated segments and unnecessary connections from sur-

rounding objects, including the kidney, the stomach, or the pancreas, we perform a

finite iteration of 3-D erosion using the sphere structure with a five-voxel radius to the

obtained binary image. Then, from the eroded binary mask, the largest connected
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Figure 27: The level set representation of p-ESRAC: the zero level set φ0 is more

evolved by the local statistics in multiple partitions.

3-D region is chosen as the initial seed.

4.3.3 Segmentation using ESRAC

Upon visual inspection, the kidney appears to be most enhanced in the arterial phase

and then decreases with time while the liver keeps enhanced up to the delayed phase

for normal subjects. However, in the case of abnormal subjects, the uptake of a

contrast agent to the liver cells does not function, and the signal decreases after

peaking in the early phase; therefore, the contrast between the liver and the kidney

is not strong in the delayed phase. To deal with this problem, our knowledge of

the boundaries between the liver and surrounding organs: the boundaries of the liver

against the kidney and the abdominal wall are clear in the arterial and delayed phases,

respectively. To incorporate this knowledge into the ESRAC model, we compute

element-wise maxima of L∞ norms of the gradient in the Gaussian-smoothed arterial

and delayed phases for each voxel, as shown in Figure 29, and the regional statistics
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(a) (b)

(c) (d)

Figure 28: Partition of the liver: (a) eight functionally independent partitions of the

liver, (b) accumulation map of the circular Hough transform for detecting the aorta in

the arterial phase, (c) and (d) subdivision of the liver by a set of fixed angles from the

center of the detected aorta in the superior and inferior parts, respectively.
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in the partitioned liver only in the delayed phase. Prior to segmentation, resampling

to isotropic voxel size is necessary for the smooth evolution of the contour, and then

downsampling is recommended to reduce computation time. This active contour is

iteration-based, so it is repeated until the mean of the absolute difference between the

current and previous level sets in the entire image domain is smaller than 5 × 10−4.

The maximum iteration was set as 103 times. The sigma of the Gaussian smoothing

was 0.5, and the threshold α in Equation (66) was 10−2.

4.3.4 Iterative Morphological Operation

After completing the segmentation, iterative morphological operations (IMO) is per-

formed to acquire the enclosed and smooth segmented volume. First, the filling oper-

ation removes the elongated holes generated by the high gradient around the vessels,

and then closing operation smoothes out the uneven surface of the segmented vol-

ume. Then for each iteration, the IMOs are performed in axial, coronal, and saggittal

planes and repeat until the volume of non-zero voxel undergoes no change.
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(a) (b)

(c) (d) (e)

Figure 29: Computation of the gradient: (a) motion-corrected image at the arterial

phase; (b) motion-corrected image at the delayed phase; (c, d) the L∞ norm of the

gradient at the arterial and delayed phases, respectively; (e) the element-wise maxima

of L∞ norms at two phases. The red circles indicate regions where the gradient is not

large enough at each phase. The combination of (c) and (d) yielded a better gradient

image in (e).

4.4 Experimental Results

For all of the subjects, a reference volume was delineated manually to use it as gold

standard for evaluating the performance of the segmentation. It was initiated by

thresholding, and then modified by removing the extra volume or filling in gaps man-

ually in the BrainSuite graphic tool [70]. Using the same initial seeds that had been

generated automatically, we quantified the accuracy of the segmentation using the

following metrics: the dice similarity coefficient (DSC), the true-positive rate (TPR),

the false-positive rate (FPR), the relative volume difference (RVD), the volumetric

overlap error (VOE), all defined below, and the average symmetric surface distance

(ASSD), which computes the average distances of the closest voxel along the refer-

ence and segmented borders. The R2 coefficient, which is the square of the correlation
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coefficient of the volumes between the reference and segmented regions, was also eval-

uated. The larger absolute values of DSC, TPR, and R2 and the smaller absolute

values of FPR, RVD, VOE, and ASSD correspond to higher segmentation accuracy.

Metric Definition

DSC VS

⋂

VR

.5∗(VS+VR)

TPR VS

⋂

VR

VR

FPR
VS

⋂

V c
R

VR

RVD VS−VR

VR

VOE 1− VS

⋂

VR

VS

⋃

VR

where VS and VR denote the segmented and the reference volumes, respectively.

4.4.1 Validation of Partitioned ESRAC (p-ESRAC)

To validate the partition of the liver, the ESRAC is incorporated with the computed

regional statistics of the eight independent partitions, the so-called “partitioned ES-

RAC” (p-ESRAC), and compared it with the ESRAC. In Figure 30, signal inhomo-

geneity appeared over the liver, particularly where the left lobe region (a,b) or the

hypodense leison region (c) was lower in intensity than other regions. Therefore,

for ESRAC, these regions were not included in the contour since the higher mean

intensity of the remaining region inside the contour impeded the evolution of the

contour in the low-signal region. By contrast, the p-ESRAC model, affected just

by the local mean computation of the partition, including the vulnerable regions,

performed better in the contour evolution. As for the quantifications covering the

14 subjects, Table 8 showed that the p-ESRAC slightly outperformed the ESRAC

in most measures except for the FPR; for the p-ESRAC, the average DSC (with

the standard deviation) was 93.9(±1.6)%, TPR 92.5(±3.1)%, FPR is 4.5(±3.2)%,

RVD is −3.0(±5.5)%, VOE is 11.5(±2.8)%, ASSD is 1.8(±0.6)%, and R2 0.9696.

For the ESRAC, the average DSC (with the standard deviation) was 93.8(±1.7)%,

70



TPR 92.1(±3.6)%, FPR 4.2(±2.9)%, RVD −3.7(±5.8)%, VOE is 11.7(±2.9)%, ASSD

1.9(±0.6)%, and R2 0.9673. The lower FPR indicates less over-segmentation, sug-

gesting that the p-ESRAC tends to segment slightly larger than the ESRAC, but

with a negligible area outside the reference.

71



(a)

(b)

(c)

Figure 30: Visual comparison between the p-ESRAC and the ESRAC for three sub-

jects. The left column shows the original image in the delayed phase with the reference

contour (green). The middle and the right columns show the segmented region (pink)

resulting from the ESRAC and the p-ESRAC with the reference region (white), re-

spectively.
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4.4.2 Comparison of the p-ESRAC with Other Techniques

To confirm that existing methods are not as adaptive as our method for contrast-

enhanced liver MRI, we compared ESRAC and p-ESRAC with other automated seg-

mentation techniques, including region growing (RG), geodesic active contour (GAC),

and Chan-Vese region-based active contour (CVRAC) methods. In the RG algorithm

[71], similar neighboring pixels are merged, starting from manually or automatically

selected seeds from the region of interest. The absolute threshold level was 5% of the

difference between the maximum and the minimum of the image. The initial value

of the region mean was updated at every iteration. (Other techniques are already

mentioned in the background section.) Figure 31 shows that the RG was prone to

leakage to neighboring objects, including the kidney, which were separated from the

liver by a small intensity. By taking advantage of the gradient response between the

liver and the kidney, which was relatively evident, the GAC managed to partition

the kidney from the entire liver; leakage to background, however, was still inevitable.

Even though the CVRAC showed better results than previous methods, substantially

curbing over-segmentation, the leakage-to-kidney problem still occurred and needs to

be addressed. Our p-ESRAC method worked exceptionally well in most cases, signif-

icantly improving the over-segmentation problem.

In most measures, the ESRAC yielded superior quantitative results over the other

methodologies. Based on measurements of the FPR, over-segmentation decreased.

However, the ESRAC produced lower TPR than the CVRAC because the gradient of

the voxels close to the boundaries of a target was high, so the constraint of gradient

scaling. As a result, the FPR that accounted for over-segmentation of the ESRAC

decreased more than that of the CVRAC. However, the TPR increased a little at

a risk of being under-segmented around the border. Figure 4.4.3 shows that the

volume of the reference and the segment using the p-ESRAC are most linearly cor-

related, R2 =0.9696, and the slope of the regression model is closest to one, 0.9555.
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In Table 8, note that the p-CVRAC and the p-RG (for reference, the p-GAC does

not exist) increased the TPR. In other words, under-segmentation was corrected by

the p-CVRAC and the p-RG more significantly than it was by their original meth-

ods from 97.9 to 99.2 and from 74.8 to 93.1, respectively. However, the FPR of the

p-CVRAC and the p-RG underwent a greater increase than their original methods

from 31.3 to 52.5 and from 13.5 to 59.1, respectively. This finding indicates an even

greater risk of over-segmentation. Therefore, after the incorporation of the partition

scheme into the computed regional statistics in the CVRAC and the RG, their overall

performance was worse than that of ESRAC.
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Figure 31: Visual comparisons among four segmentation algorithms. The original image

and reference contour (green) at the delayed phase in the first column, the segmented

regions resulting from varying segmentation methods. The results are shown in the

coronal (top) and axial (bottom) planes, and the green mask indicates the computed

segmented region.
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Table 8: The average and standard deviation of the quantitative measures–the dice

similarity coefficient (DSC), the true-positive rate (TPR), the false-positive rate (FPR),

the relative volumetric difference (RVD), the volumetric overlap error (VOE), the

average symmetric surface distance (ASSD)–for 14 real subjects were evaluated using

the four automated segmentation methodologies.

DSC (%) TPR (%) FPR (%) RVD (%) VOE (%) ASSD (mm) R2

p-ESRAC
avg 93.9 92.5 4.5 -3.0 11.5 1.8

0.9696
std 1.6 3.1 3.2 5.5 2.8 0.6

p-CVRAC
avg 80.7 99.2 52.5 51.7 31.1 4.8

0.5266
std 11.3 1.1 44.8 45.1 14.7 3.2

p-RG
avg 77.5 93.1 59.1 52.2 34.0 3.2

0.6282
std 16.5 5.4 60.9 63.0 22.1 2.5

ESRAC
avg 93.8 92.1 4.2 -3.7 11.7 1.9

0.9673
std 1.7 3.6 2.9 5.8 2.9 0.6

CVRAC
avg 86.8 97.9 31.3 29.1 22.2 3.5

0.5578
std 10.0 3.9 35.1 35.8 13.9 2.8

RG
avg 79.4 74.8 13.5 -11.7 33.4 5.6

0.6070
std 8.4 13.9 20.3 29.5 11.6 2.8

GAC
avg 43.8 90.4 327.0 317.4 69.0 2.4

0.4284
std 22.9 5.3 221.2 223.9 22.0 0.9

4.4.3 Computation Time

In this study, we used an Intel Xeon CPU X5355 @ 2.66GHz with 16 GB of main

memory in Linux OS. The overall process of evaluating the p-ESRAC model included

detecting aorta, initializing seeds, resampling, downsampling, implementing the active

contour and iterative morphological operations. Completing all the computations

took 12 minutes, 7.8 minutes of which was taken by implementing the active contour

for 700 iterations and applying the downsampling by a factor of 2. By contrast,

manual segmentation took around 30 minutes for one subject, so by employing the

automated p-ESRAC model, the segmentation time decreased by 35%.

4.5 Conclusion

Because of the dual enhancement and geometric proximity of the kidney and the

liver, segmentation of the liver is an extremely difficult, complex task. This paper

proposes a novel edge function-scaled region-based active contour (ESRAC) algorithm
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 32: Linear regression models and R2 coefficients between the segmented volume

resulted from using (a) p-ESRAC, (b) ESRAC, (c) p-CVRAC, (d) CVRAC, (e) p-RG,

(f) RG, and (g) GAC methods and the reference volume for 14 subjects.

77



to resolve the leakage-to-kidney, under- and over-segmentation problems. We applied

automated multiple partitions of the liver because of inhomogeneous intensity dis-

tribution and verified this approach through qualitative and quantitative evaluations

with manually-segmented reference volumes of 14 real subjects. The experimental

results revealed that compared to other techniques, the ESRAC model considerably

reduced over-segmentation, including the leakage of the kidney, and decreased the

false-positive rate to 4.2(±2.9)%. Furthermore, its partitioned version (p-ESRAC)

decreased under-segmentation and increased the true-positive rate to 92.5(±3.1)%.

Based on further quantitative metrics, the p-ESRAC resulted in even more accurate

segmentation than the region growing, Chan-Vese region-based active contour, or

geodesic active contour methods. Therefore, despite the atypical shape and inhomo-

geneous intensity of the target (i.e., the liver) and its weak boundary conditions (i.e.,

its surroundings), the p-ESRAC is a promising automated technique for MR imaging.
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CHAPTER V

FEATURE ANALYSIS

A significant purpose in grading liver disease is to assess the level of remaining liver

function and estimate regional liver function. On motion-corrected and segmented

liver parenchyma regions, quantification of the concentration of liver-specific MRI

contrast agent is performed. Liver signal intensity change is evaluated from the hep-

atobiliary phase (3-20 minutes after injection), and parenchymal texture features are

deduced from the equilibrium phase (3 minutes after injection). To build a classifier

using texture features, the highly correlated image features are selected first, based on

distance criteria, and training feature vectors with the known degree of malignancy

were used to train a supervised learning algorithm. Maximum-a-posterior (MAP) de-

cision rule determines which group the test data belong to. The classifier is validated

by assessing the prediction accuracy using leave-one-out cross-validation.

5.1 Signal Intensity Analysis

Hepatic contrast agent is taken up to various degrees by functioning hepatocytes, and

the paramagnetic property of the contrast agent shorten the longitudinal relaxation

time (T1) of the liver. This shortening effect of T1 causes varying increase of signal

intensity in T1-weighted MRI. There are representative approaches to quantify the

hepatic function. First, qualitative method measures the shape of the signal intensity

curve. And semi-quantitative methods are used to measure indices that describe one

or more parts of signal intensity curves such as uptake slope, max amplitude, and

the washout area under curve. Lastly, a true quantitative method is used to measure

indices from contrast medium concentration changes using pharmacokinetic modeling,

including measuring relaxation rate or contrast concentration. Due to the constraints
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of low temporal resolution in the range of dynamic phase and MRI-related unknown

parameters, enabled quantitative methods are very limited.

(a) (b)

Figure 33: Signal Intensity Curve for selected ROIs in (a) parenchyma and (b) aorta.

Hepatobiliary-specific contrast agent such as gadoxetate disodium (Gd-EOB-DTPA,

Eovist or Primovist, Bayer HealthCare) allows data acquisition in the hepatocyte

phase at 20 minutes after injection of contrast agent in addition to the usual dynamic

phase examination. Figure 33 illustrates the signal intensity in time series for five

ROIs in the liver parenchyma and the aorta, which supplies the blood to the hepatic

artery. For a computation of the slope at the hepatobiliary phases (3-20 minutes), the

mean signal intensity points over the liver parenchyma are subtracted by the signal

intensity at the start of the hepatobiliary phase (3 minutes), and then normalized

with division by the peak of aorta signal as follows:

The normalized subtract intensity =
Sk − S3 min

Saorta peak

. (70)

The mean slope can be approximated as the hypotenuse of a rectangled triangular

geometry with the same area as the sum of trapezoidal areas, A1 through A4 time di-

vision as Equation (71). If the signal intensity increases monotonously, the computed

mean slope is positive. Otherwise, the computed mean slope is close to zero or less
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than zero.

The mean slope in hepatobiliary phases =

∑N
p∈Ω

{
2

(20−3)2
,
∑4

k=1Ak

}

N
(71)

where Ak is the area of k -th trapezoidal division in the signal intensity curve, which

is illustrated in Figure 34. p indicates the voxel in the liver parenchyma region and

N is the number of the voxels of interest.

Figure 34: Computation of mean slope in hepatobiliary phases (3-20 minutes).

5.1.1 Experimental results

For 14 real patients with known pathologic scores, the signal intensity curves were

compared and the mean slope was computed as well. As a result, in Figure 35, it is

deduced that functioning hepatocyte and excretion of the contrast agent through the

biliary pathway differs between healthy and unhealthy groups.

Quantitative results of the mean slope are shown in Figure 36 (a) where the

normal group, including the mild case, is differentiated from the abnormal group

based on the specific quantity. Student’s t-test analysis (b) with options of one-tailed

distribution, unpaired two-sample, unequal variance had the p-value of 0.0039 which

results in the rejection of the null hypothesis at the significance level of 0.05; this result

is statistically significant. Also, strong correlation (c) of 0.8186 was demonstrated
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between the mean slope and the degree of fibrosis, which indicates the usefulness of

assessing the progress of liver fibrosis.

(a)

(b)

Figure 35: Signal intensity curve of (a) a healthy group and (b) an unhealthy group

with CLD.
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(a)

(b)

(c)

Figure 36: Quantitative results of signal intensity analysis: (a) Distribution of mean

slope, (b) T-test between healthy and unhealthy groups, and (c) Correlation of the

degree of liver fibrosis and the mean slope.
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5.2 Texture Feature Analysis

Based on prior studies [72, 73], the magnitude of liver inflammation would corre-

late with the degree of abnormally increased enhancement at the arterial phase that

appears as irregular wedge-shaped liver patterns. Also, linear patterns of abnormal

enhancement at the interstitial phase would correlate with hepatic fibrosis. To ex-

tract those linear or wedge-shaped features on the MR image, we will use the Gabor

filter [74] to perform edge detection with frequency and orientation variabilities. The

complex Gabor function in the space domain is

g(x, y) = s(x, y)wr(x, y), (72)

where s(x, y) is a complex sinusoidal known as a carrier, and wr(x, y) is a 2D Gaussian-

shaped function known as an envelope.

The complex sinusoidal is defined as follows:

s(x, y) = exp (j (2π (u0x+ v0y) + P )) , (73)

where (u0, v0) and P denote the spatial frequency and the phase of a sinusoidal,

respectively. The Gaussian envelop is

wr(x, y) = K exp
(
−π

(
a2 (x− x0)

2
r + b2 (y − y0)

2
r

))
, (74)

where K scales the magnitude of the Gaussian envelope, (x0, y0) is the position in

which the envelop has a peak amplitude, a and b are scaling parameters of the envelop,

and r stands for a rotation operation. The Gabor filter is applied in eight different

orientations, and the combination of symmetric and anti-symmetric filtering yields

the Gabor energy. It is followed by non-classical receptive field inhibition [75] that

reduces influence of stimuli in the surroundings and enhanced the linear structure. A
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normalized weighting function wσ is defined as

wσ(x, y) =
1

‖H(DoGσ)‖1
H(DoGσ(x, y)), H(z) =







0, z < 0

z, z ≥ 0
(75)

where DoGσ(x, y) is the difference of Gaussian functions as follows:

DoGσ(x, y) =
1

2π(4σ)2
e
−x2+y2

2(4σ)2 − 1

2πσ2
e−

x2+y2

2σ2 . (76)

Anisotropic non-CRF inhibition was applied by computing an inhibition term for each

orientation as a convolution of the Gabor energy with the weighting function.

The first texture feature (f1) is obtained by computing the ratio of the number of

structure pixels to the total number of pixels, including the number of non-structure

pixels in the resulting image as follows:

linear structure ratio f1 =
NS

NS +NB

, (77)

where NS is the number of structure voxels and NB is the number of non-structure

voxels. Figure 37 illustrates the process of computing the linear structure.

Figure 37: Extracting linear or wedge-shaped structures using the Gabor filtering and

non-CRF inhibition.

The rest of texture features are generated from the grey level co-occurrence matrix

(GLCM) which is a popular statistical method examining textures that incorporate

85



Figure 38: GLCM calculation in 2-D image (courtesy of MATLAB).

the spatial relationship of neighboring pixels. The GLCM functions characterize the

texture of an image by calculating how often pixel pairs with specific values and in a

specified spatial relationship occur in an image.

The two-dimensional GLCM is computed with a radius of one to three pixels and

a set of 0, 45, 90, and 135 degrees from the central pixel of a 16×16 window moving

within the image, and then is used for computing local statistical measurements.

Next, they are applied with a Gaussian window centered on the centroid of the ROI

to obtain global statistics. Thereby, the remote points should have less influence than

points located near the center of the Gaussian window. The mean of twelve sets of

weighted GLCM is computed for each ROI. We independently ranked key features

by class separability criteria, such as fisher score, and the most significant features

among the second order statistics of interest are

Entropy f2 = −
∑

i

∑

j

p (i, j) log (p (i, j)) , (78)

Dissimilarity f3 =
∑

i

∑

j

|i− j| p (i, j) , (79)
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Inverse difference (homogeneity) f4 =
∑

i

∑

j

p(i, j)

1 + |i− j| , (80)

Sum average f5 =

2Ng∑

i=2

i ∗ px+y (i) , (81)

and variance f6 =
∑

i

∑

j

(i− µ)2 p (i, j) , (82)

where p is the normalized GLCM, px+y (k) =
∑

i

∑

j p (i, j) with i+ j = k, and Ng is

the number of grey levels.

5.3 Classification

Using six features described in 5.2, we will construct the supervised classifier using a

multivariate normal distribution model and a maximum a posteriori (MAP) decision

rule. The multivariate normal distribution model is the one-dimensional (univariate)

normal distribution generalized to higher dimensions (N) as follows:

p (x|wi) =
1

(2π)
N
2

∣
∣
∣Σ̂i

∣
∣
∣

1
2

exp

(

−1
2
(x− µ̂i)

T Σ̂i

−1
(x− µ̂i)

)

, (83)

where µ̂i is an N-vector, Σ̂i a symmetric and semi-definite N ×N covariance matrix,

and
∣
∣
∣Σ̂i

∣
∣
∣ the determinant of Σ̂i for the class wi. The parameters µ̂i and Σ̂i are

determined by using a set of training data with known output values, e.g., severity

degrees of fibrosis in our case. According to Bayes’ theorem, the posterior probability

can be represented as

p (wi|x) =
p (wi) p (x|wi)

p (x)
. (84)
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Because the denominator of Equation (84) is not dependent on the class wi, we can

simplify the equation as

p (wi|x) = p (wi) p (x|wi) . (85)

The logarithm of the MAP estimator using the multivariate normal distribution model

is computed as

îMAP (x) = argimax

{

ln (p (wi))−
N

2
ln (2π)− 1

2
ln

∣
∣
∣Σ̂i

∣
∣
∣− 1

2
(x− µ̂i)

T Σ̂i

−1
(x− µ̂i)

}

.

(86)

Next, we will validate this classifier by assessing the prediction accuracy. To reduce

variability, multiple rounds of a cross-validation, called a rotation estimation, will be

performed using different partitions, and the validation results will be averaged over

the rounds. One round of the cross-validation involves partitioning a sample of data

into complementary subsets, performing the analysis on one subset called the training

set, and validating the analysis on the other subset called the validation set or testing

set.

5.3.1 Experimental Results

It is known that the degree of liver fibrosis is a predictive factor for the occurrence

of hepatocellular carcinoma, so called HCC. The detection and accurate staging of

hepatic fibrosis or cirrhosis can be found by paying attention to the reticular enhance-

ment patterns over the liver parenchyma due to delayed enhancement on equilibrium

phase images. Figure 39 shows the computed linear structure ratio for selected ROIs

with true fibrosis scores, which resulted in a strong correlation between them.

The features, including the linear structure ratio and the GLCM features, are

sorted by the Fisher criterion in Table 9, and the most significant six features are

selected for building learning models.
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Figure 39: Reticular enhancement patterns related to the degree of liver fibrosis.
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Table 9: Supervised feature selection using Fisher score. The feature with asterisk

indicates the selected feature.

Features Fisher score

*Percentile of structure pixel 1.238
*Entropy 1.017

*Dissimilarity 1.014
*Inverse Difference 1.008

*Sum Average 0.946
*Variance 0.929
Energy 0.926

Max of bins in Hough transform 0.924
Difference entropy 0.914

Contrast 0.850

Figure 40 demonstrates numerical results of the cross-validation. The matrix

(a) shows detailed classification results in which diagonal elements correspond the

perfect matching between true grades and computed grades. The bar graph (b)

specifies a distribution of classification results with respect to a grade error allowance,

respectively. The MR image (c) demonstrates the selected regions of interest and their

true scores assigned by experts, which will be used as a set of training data in the

developed classifier. The colored MR image (d) represents automatically computed

fibrosis severity degrees ranging from 0 to 4 with a specified RGB colormap for every

pixel over the liver region, excluding a background and blood vessels. Using a MAP

classifier, we performed leave-one-out cross-validation which involves using a single

observation as the validation data, and the remaining observations as the training

data. This is repeated such that each observation in the sample is used once as the

validation data. For the 126 rounds of cross-validation, Figure (a) is the classification

matrix, and Figure (b) shows 55% matching with no error, 37% matching with score

error of 1, 8% matching with score error of 2, 0.8% matching with score error of 3.
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Figure (c) is the slice image on which the clinicians mark ROI and its score. Figure

(d) is the colormap which shows the fibrosis scores over the entire liver domain except

hepatic vein, artery or surrounding organs.
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(a) (b)

(c) (d)

Figure 40: Cross-validation results using a MAP classification. The matrix (a) denotes

the distribution between true grades and corresponding computed grades related to

fibrosis severities. The bar graph (b) is the distribution of matching percentiles with

respect to grade error allowances. The MR image (c) and (d) specify the true grades

scored by experts for the selected regions and a colormap representation of computed

grades, respectively.
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CHAPTER VI

CONCLUSION AND FUTURE WORKS

In this dissertation, we proposed novel image registration and segmentation algo-

rithms suitable for contrast-enhanced liver MRI and demonstrated a supervised learn-

ing method using image features. Image registration proposed in this dissertation is

the demons algorithm based on the local correlation coefficient that accounts for

changing, but correlated intensities between the reference and moving images. Em-

ploying bi-directional and parallel computing schemes is also proposed to accelerate

convergence without a loss of accuracy. Image segmentation introduced is an edge

function-scaled region-based active contour that coupled regional statistics and gra-

dient information in a straightforward way. Because of inhomogeneities of a static

magnetic field and a localized contrast uptake, an image volume was linearly sepa-

rated into multiple functioning partitions, in which local-based regional statistics was

computed, respectively.

In Chapter 3, a bi-directional local correlation coefficient (Bi-LCC) demons method

was introduced for motion correction of contrast-enhanced liver MRI with the poten-

tial for clinical applications. By introducing a bi-directional scheme, the Bi-LCC

demons, compared to the uni-directional LCC demons and simplified versions, could

achieve the fastest convergence to the steady-state and highest accuracy such that

the average error is subvoxel size. The GPU implementation of image registration

boosted performance considerably and proved that OpenCL is very competitive with

CUDA in popular. As another registration topic, registration of two-dimensional

liver histology and three-dimensional MRI is an important step required for opti-

mized analysis of the correlation between histologic tissue evaluation on specimens
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and corresponding ROIs of MRI. Manually selected multiple point landmarks initial-

ized a similarity transformation, and then the spatially-varying diffusion registration,

combining a liver mask and point landmarks, yielded the accurate alignment of his-

tology and MRI.

In Chapter 4, a novel edge function-scaled region-based active contour (ESRAC)

algorithm was presented to resolve the leakage-to-kidney, under-, and over-segmentation

problems. The automated linear multiple partitions, which approximates the Couin-

aud liver segments, was also applied to the computation of local regional statistics of

the ESRAC. The experimental results revealed that compared to other techniques,

the ESRAC model considerably reduced over-segmentation, including the leakage of

the kidney, and decreased the false-positive rate. Furthermore, its partitioned version

(p-ESRAC) significantly decreased under-segmentation. Based on further quantita-

tive metrics, the p-ESRAC is considered to be a promising automated technique for

liver MR imaging.

In Chapter 5, signal intensity changes and texture features were analyzed to assess

the level of remaining liver function and to estimate regional liver function. Using a

MAP classifier, leave-one-out cross-validation was performed, which resulted in 92%

matching within score error of one. The colormap representation of the measured

fibrosis score significantly facilitated the diagnosis of liver disease in the entire liver.

The proposed image registration and segmentation algorithms are highly suitable

for contrast-enhanced liver MRI. Furthermore, the methods can be potentially ap-

plicable in contrast-enhanced imaging of other organs. For example, MR perfusion

imaging of the brain is often used to evaluate brain function via assessment of func-

tional parameters describing passage of blood through the brain’s vascular network.

Dynamic sequences must be fast to capture the rapid first-pass transit of a bolus of

contrast agent through the brain, which is on the order of less than 20 seconds. Image
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registration of dynamic images are required for the accurate assessment of the param-

eters, and the proposed registration method will be beneficial in this regard. For the

heart, cine imaging is often acquired to depict the motion of the heart over multiple

phases of the cardiac cycle and dynamic contrast enhanced MRI are often used to

image perfusion. The LCC demons algorithm can be applied to register cardiac cine

images for quantitative analysis.

The registration method developed here is applicable in a variety of circumstances

in medical imaging. If the similarity measure used in the demons framework is

changed to normalized mutual information, registration of other modalities (PET-

MRI, CT-MRI, etc) are possible. The acceleration of our algorithm by GPU is

important in time sensitive clinical applications. For instance, interventional pro-

cedures are traditionally supported by intra-operative imaging (X-ray fluoroscopy,

ultrasound). There is real time feedback, but the images provide limited informa-

tion. Surgical procedures are traditionally supported with pre-operative images (CT,

MRI). But a link between images and patient for the duration of operation needs

to be established with registration. For both cases, image registration can play an

essential role augmenting intra-operative images with preoperative ones. With such

an approach, image guidance can draw upon a combination of pre-operative and

intra-operative imaging together with magnetic or optical tracking systems, enabling

precise minimally invasive procedures.
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[53] O. Škrinjar, “Point-based registration with known correspondence: Closed form

optimal solutions and properties,” Biomedical Image Registration, pp. 315–321,

2006.

102



[54] K. Rohr, P. Cathier, and S. Worz, “Elastic registration of electrophoresis images

using intensity information and point landmarks,” Pattern recognition, vol. 37,

no. 5, pp. 1035–1048, 2004.

[55] P. Cachier and N. Ayache, “Isotropic energies, filters and splines for vector field

regularization,” Journal of Mathematical Imaging and Vision, vol. 20, no. 3, pp.

251–265, 2004.

[56] A.S. Frangakis and R. Hegerl, “Noise reduction in electron tomographic recon-

structions using nonlinear anisotropic diffusion,” Journal of structural biology,

vol. 135, no. 3, pp. 239–250, 2001.

[57] U. Vovk, F. Pernus, and B. Likar, “A review of methods for correction of intensity

inhomogeneity in mri,” Medical Imaging, IEEE Transactions on, vol. 26, no. 3,

pp. 405–421, 2007.

[58] T. Heimann, B. Van Ginneken, M.A. Styner, Y. Arzhaeva, V. Aurich, C. Bauer,

A. Beck, C. Becker, R. Beichel, G. Bekes, et al., “Comparison and evaluation

of methods for liver segmentation from ct datasets,” Medical Imaging, IEEE

Transactions on, vol. 28, no. 8, pp. 1251–1265, 2009.

[59] D. Kainmüller, T. Lange, and H. Lamecker, “Shape constrained automatic seg-

mentation of the liver based on a heuristic intensity model,” in Proc. MICCAI

Workshop 3D Segmentation in the Clinic: A Grand Challenge, 2007, pp. 109–

116.

[60] K.A. Saddi, M. Rousson, C. Chefdhotel, and F. Cheriet, “Global-to-local shape

matching for liver segmentation in ct imaging,” in MICCAI 2007 Workshop

Proceedings of the 3D Segmentation in the Clinic: a Grand Challenge, 2007, pp.

207–214.

103



[61] P. Slagmolen, A. Elen, D. Seghers, D. Loeckx, F. Maes, and K. Haustermans,

“Atlas based liver segmentation using nonrigid registration with a b-spline trans-

formation model,” in MICCAI 2007 Workshop Proceedings of the 3D Segmenta-

tion in the Clinic: a Grand Challenge. Citeseer, 2007, pp. 196–206.

[62] L. Rusko, G. Bekes, G. Németh, and M. Fidrich, “Fully automatic liver segmen-

tation for contrast-enhanced ct images,” MICCAI Wshp. 3D Segmentation in

the Clinic: A Grand Challenge, vol. 2, no. 7, 2007.

[63] Y. Boykov and G. Funka-Lea, “Graph cuts and efficient nd image segmentation,”

International Journal of Computer Vision, vol. 70, no. 2, pp. 109–131, 2006.
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