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SUMMARY

The curve complex of Harvey allows combinatorial representation of a surface mapping

class group by describing its action on simple closed curves. Similar complexes of spheres,

free factors, and free splittings allow combinatorial representation of the automorphisms of

a free group. We consider a Birman exact sequence for combinatorial models of mapping

class groups and free group automorphisms. We apply this and other extension techniques

to compute the automorphism groups of several simplicial complexes associated with map-

ping class groups and automorphisms of free groups.
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CHAPTER 1

INTRODUCTION

Ivanov’s Metaconjecture and Free Group Automorphisms

This thesis considers two parallel simplicial complexes. The first is the complex of curves

in a surface. The second is the complex of spheres in 3-space with wormholes. Both are

combinatorial models for their respective spaces: any symmetry of the graph comes from

a symmetry of the space itself.

Studies of the mapping class group of a surface make critical use of the curve complex.

The curve complex CS has homotopy classes of simple closed curves as vertices and with

simplices for disjoint collections of curves. Harvey first defined the curve complex CS

in [1] to describe a compactification of Teichmüller space and study the mapping class

group action. In the follwing years, the curve complex itself has become the space for

mapping class group actions. Harer demonstrated the curve complex is simply connected

[2], and Masur and Minsky showed that it is δ-hyperbolic [3], to the delight of Gromov-

enthusiasts. Ivanov showed that the curve CS is an exact combinatorial model for the

mapping class group; the automorphism group of CS is the mapping class group [4]. The

resulting literary explosion of curve-complex rigidity results led Ivanov to propose his now

infamous metaconjecture:

Metaconjecture 1. Every sufficiently rich object associated to a surface S has as its group

of automorphisms the mapping class group MCG± S. Moreover, this can be proved by a

reduction to the theorem about the automorphisms of the curve complex CS.

The first statement of the metaconjecture is reasonable, natural, and just vague enough

to leave no possibility of gainsay. The second part proved prophetic, as the literature has

flourished with rigidity results that rely on the underlying automorphism group of the curve
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complex. We refer to Brendle and Margalit for a survey of such results [5]. Brendle and

Margalit have made a heroic attempt to unify these results in [5]. There they show that the

class of “sufficiently rich objects” includes any normal subgroup of a surface mapping class

group containing an element with small support, and any connected simplicial complex of

regions in S that does not have pairs of “exchangable” vertices.

Less is known about automorphisms of free groups than is known about mapping class

groups, and some promising analogies between the two has translated geometric strategies

of Thurston and others into strategies tackling the algebraic monster OutF of outer auto-

morphisms of a free group F . Since finite graphs have a free group F as their fundamental

group, one analog suggests considering OutF as the mapping class of a graph, though ho-

motopy equivalences must substitute for diffeomorphisms. Just as the mapping class group

acts on the Teichmüller space of hyperbolic metrics, Culler and Vogtmann defined an outer

space of metrics of graphs [6]. There are several contenders for a curve complex analog.

Culler-Vogtmann outer space itself retracts to a spine whose simplicial automorphisms are

given by OutF [7]. Hatcher and Vogtmann suggested the poset of free factors [8], and

Hatcher also considered the complex of free splittings [9].

A more direct geometric analog of the curve complex is given by the complex of spheres

in 3-space with wormholes. By removing open balls of S3 and identifying boundary

spheres to form wormholes, we can obtain a manifold M with free fundamental group F .

According to Laudenbach the diffeomorphism of M (up to homotopy) contains OutF as

a finite index subgroup [10]. In fact the complex of free splittings of F is naturally isomor-

phic to the sphere complex S of M , with the spheres of M specifying conjugacy classes

of splittings of π1(M) = F via Van Kampen’s Theorem. Aramayana and Souto proved

that the automorphism group of the sphere complex S is in fact OutF [11], by showing

that automorphisms of S biject equivariantly to automorphisms of Culler-Vogtmann outer

space. The analog with curves of a surface can be seen more concretely by considering

a subsurface of M that tunnels through the wormholes. In minimal position, spheres are

2



specified by curves of the surface. This suggests a route to proof of OutF theorems and

an OutF analog to Ivanov’s metaconjecture: when a proof calls for curves of a surface S,

consider instead corresponding spheres of M .

This will be our major strategy. Here we advance the goal of an OutF analog to the

Brendle-Margalit theorem, considering the following question:

Question 1. What combinatorial objects associated to a free group F have as their group

of automorphisms the outer automorphism group OutFn, and when can this be proved by

a reduction to the theorem about the automorphisms of Culler-Vogtmann outer space?

The results herein all adhere to this reduction by passing through the complex S of

spheres in Mn. We consider this a particular incarnation of Margalit and Brendle’s gener-

alized metaconjecutre.

Metaconjecture 2. Suppose that X is a nice space. Every object naturally associated to

X and having sufficiently rich structure has Outπ1(X) as its group of automorphisms.

Outline of Results

The novel technical results presented here are largely OutF analogs to theorems regarding

the curve complex. We divide these results into three chapters. Chapter 3 considers the

role of point pushing and the Birman exact sequence in the complex of curves of a surface

and in the complex of spheres in M . Chapter 4 considers some subcomplexes of the sphere

complex whose automorphism group is OutF . Chapter 5 considers low complexity cases

for the complex of strongly separating spheres.

Birman Point Pushing

In Chapter 3 we consider how adding or removing punctures affects the curve complex or

the complex of spheres. In Section 3.1 we reprove the known result

3



Theorem 1.1. Let Sg,p be the orientable genus g surface with p punctures. If the natural

map

MCG± Sg,p → Aut CSg,p

is an isomorphism, then so is

MCG± Sg,p+1 → Aut CSg,p+1.

We do so by a new method considering the role of the Birman exact sequence for point

pushing in the complex of curves. The proof follows the following outline.

1. For each puncture q there is a puncture-forgetting projection map ρq : CSg,p+1 →

CSg,p that parallels the Birman exact sequence for the mapping class group MCGSg,p,

so that automorphisms which preserve the fibration of ρq must arise from mapping

classes.

2. The fibers of the projection ρq are subtrees of CSg,p, with the projection ρq collapsing

edges between curves that cobound punctured annuli.

3. The punctured annuli biject to an arc complex of Sg,p, which we show to be uniquely

colored (in the graph-theoretic sense) by the punctures of the surface Sg,p so that the

fibers of the projection ρq for various punctures q biject to the coloring partition of

the arc complex

4. Automorphisms of CSg,p act by automorphism on this arc complex, so that the arc

complex coloring, and thus the fibers of ρq, are maintained.

The main result of Section 3.2 uses an analogous proof. We show that

Theorem 1.2. The natural map Outn,p → AutSn,p is an isomorphism for n ≥ 3 and

p ≥ 0.

4



where Outn,p is a relative outer automorphism group and Sn,p is the complex of spheres

in the punctured manifold Mn,p with n “wormholes” and p punctures. The proof is fully

analogous to the surface case. Automorphisms of Sn,p are shown to respect the fibration

of a point-forgetting projection, so that the proof reduces to considering automorphisms of

the sphere complex S of M .

Further Out

In Chapter 4 we consider subcomplexes and associated complexes of the sphere complex.

The main technique of these proofs is to extend automorphisms from a subcomplex S ′ of

S to the full sphere complex by finding a combinatorial characterization of spheres absent

from S ′. Typically this is a sharing pair of spheres in S ′ that intersect in minimal position

to bound spheres of S. In Section 4.1 we prove

Theorem 1.3. The natural map Out(Fn)→ AutSsepn is an isomorphism for n ≥ 3.

The proof works by extending automorphism of the separating spheres complex to the

nonseparating spheres by observing that small separating spheres contain a unique nonsep-

arating sphere. In Section 4.2 we prove

Theorem 1.4. For n ≥ 3k, the natural map OutFn → AutSsep,kn is an isomorphism.

where Ssep,kn is the complex of spheres freely splitting the rank n free group π(Mn) =

Fn into factors of rank at least k. The proof is by a sharing pair extension proceeding

inductively on the rank k.

In Section 4.3 we prove the free factor complex FFn is also a combinatorial model.

Theorem 1.5. For n ≥ 3, the natural map OutFn → AutFFn is an isomorphism.

Strongly Separating Curves

In Chapter 5 we consider the complex of strongly separating curves. A curve is strongly

separating if it is separating but does not bound a twice punctured disk of Sg,p. In [12]

5



Bowditch shows that the automorphisms of CssSg,p are induced by the mapping class group

MCG± Sg,p in all but finitely many cases, and asks whether this is true of the remaining

few. In Section 5.1 we use the point-forgetting projection techniques of Chapter 3 to obtain

a few remaining cases. In Section 5.2 we give computational evidence for the undecided

cases.
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CHAPTER 2

PRELIMINARIES

Combinatorial Models

Our basic objects of study will be graphs and simplicial complexes. In general, by a com-

binatorial model for a group G, we mean any graph or simplicial complex whose automor-

phism group is naturally isomorphic to G.

Graphs and Simplicial Complexes

In the discussion below a graph will be a collection of vertices equipped with a collection of

edges that are unordered pairs of vertices. We will allow graphs to have multiple, parallel

copies of edges between a given pair of vertices, which we call multi-edges, as well as

edges vv for a single vertex v, which we call self-loops. We call any graph simple if it has

no multi-edges or self-loops. The simplification of any graph is the simple graph obtained

by removing any self-loops and identifying the parallel copies of each multi-edge into a

single edge. We say two vertices v and w are adjacent if vw is an edge, and we say two

edges are incident if they share a vertex, or else say an edge is incident to its two vertices.

We will typically consider a simplicial complex C purely combinatorially as a set of

vertices C(0) equipped with a set of simplices, so an n-simplex is a set of n + 1 vertices,

and the faces of the simplex are the nonempty subsets. The n-skeleton C(n) of the complex

C is the subcomplex of all k-simplices of C for k ≤ n. For any subset V of vertices, the

induced subcomplex on V contains a simplex of C if and only if it is a subset of V . By the

link of a vertex v, we mean the induced subcomplex of the vertices adjacent to v.

Occasionally we will abuse notation by failing to differentiate between a simplicial

complex and its geometric realization. In particular, dimensions, interior points of sim-
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plices, and homotopy properties all refer to the geometric realization of a graph or a com-

plex, rather than the combinatorial object itself.

Most of the simplicial complexes here considered are formed roughly like this:

1. Choose a space X .

2. Take as vertices of the complex all the homotopy classes of particular subspaces of

X of a particular topological type

3. Declare a collection of homotopy classes to span a simplex if they have representa-

tives that can be homotoped so that they are all mutually disjoint in S

Such a simplicial complex is typically flag, meaning that a set of vertices form a simplex if

and only if they span a clique in the 1-skeleton C(1). Since the one skeleton is a graph, we

will frequently refer to the 1-simplices of a flag complex as edges.

Just as it is convenient to reduce higher simplices to their edges, so too do actions on the

edges frequently determine actions on vertices. We recall Whitney’s Graph Isomorphism

Theorem [13], which states that the edge-incidence relation determines a simple graph,

with a single exceptional pair.

Theorem 2.1. An edge-incidence preserving bijection between two simple, connected graphs

is a isomorphism, provided neither is the complete graph K3.

There is an edge-incidence preserving edge bijection between the complete graph K3

and the complete bipartite graph K1,3.

Figure 2.1: The complete bipartite graph K1,3 and the triangle K3 are the only simple
graphs are not isomorphic yet have an incidence preserve bijection of edges.
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One classical consideration of graph theory is the problem of chromatic numbers: How

many colors are required to tag the vertices of a graph so that adjacent vertices have distinct

colors? We will require a slight generalization where each vertex instead requires a given

number of colors and adjacent vertices must share no color. One could replace vertices by

cliques and consider classical colorings, but this introduces additional automorphisms to a

graph, so we will instead consider colorings by disjoint sets of specified size.

Definition 2.2. A k, η-coloring of a graph G = (V,E) is an assignment to each vertex v

of a number of colors η(v) and a choice f(v) ⊂ {1, . . . , k} of η(v) colors such that two

adjacent vertices have no common colors. I.e. a function η : V → Z+ and f : V → 2{1,...,k}

so that |f(v)| = η(v) and

f(v) ∩ f(u) = ∅

if v is adjacent to u in G. Call G k, η-colorable if it admits a k, η-coloring, and uniquely

k, η-colorable if there is only one k, η-coloring up to bijection of the color set k. We will

abusively refer to a k, η-coloring as a coloring if k and η are clear in context.

We will see in Chapter 3 that complexes of based loops and spheres are uniquely col-

orable by the base points.

Putman’s Lemma

In [14] Putman outlines a clever and versatile argument for establishing the connectivity

of a simplicial complex that admits a group action. Putman points out that it suffices to

show that there is a special basepoint v0 whose orbit intersects every connected component,

and a special generating set H such that H · v0 has paths to v0. This trick reduces many

connectivity arguments to a few trivial checks—if the generating set can be chosen so that

most elements leave the base point v0 fixed or move it only a short distance. We will make

abundant use of the following Lemma.
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Lemma 2.3. Let group G have generating set H and act on simplicial set X . Fix a base-

point v ∈ X(0). If

1. for all v′ ∈ X(0) the orbit G · v intersects the connected component of v′ in X and

2. for all h ∈ H± there is some path from v to h · v

then X is connected.

Proof. By (1.) it suffices to show that there is a path from v to g ·v for every g ∈ G. Writing

g as a word of H we may factor g = hw · · ·h1 · v as a word of ∈ H±. By hypothesis there

is a path sj from v to hj · v Then

s1 (h1h2h
−1
1 · s2) . . . (h1 · · ·hk−1)hk(h1 · · ·hk−1)−1 · sk

is a path from v to g · v.

We suggest a modification of Putman’s Lemma that we will use to establish the unique-

ness of the coloring of a complex. Let Γ be a graph with sets V and V ′ of vertices. We say

that a set V forces a coloring on V ′ if for every k, η-coloring f of the induced subgraph of

γ with vertices V , the extension of f to γ restricts to the same coloring on V ′.

Lemma 2.4. Let group G with generating set H act on a graph X . Fix a collection V ⊂

X(0) of k vertices. If

1. for every vertex v ∈ X the orbit G · V forces a coloring on v, and

2. for all h ∈ H± we have V forces a coloring on h · V

then V forces a coloring on X , and in particular X is uniquely k, η-colorable.

Proof. Observe that forcing a coloring is a transitive relation on subsets of vertices. It

suffices to see that V forces a coloring on its orbit G · V , since the orbit forces a coloring

on X . Suppose that W and W ′ are vertex sets such that W forces a coloring on W ′. Let
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g ∈ G. Then g ·W must force a coloring on g ·W , or else we would have colorings f of W

and two distinct colorings f ′ and f ′′ of W such that f extends to colorings restricting to f ′

and f ′′, and these pullpack to colorings f ◦g ofW , and f ′◦g, f ′′◦g ofW ′ contradicting that

W forces a coloring on W ′. Then if g = hw · · ·h1 as a word of ∈ H± we have hj · · ·h1 ·V

forces a coloring on hj+1 · · ·h1 · V , so that V forces a coloring on g · V by transitivity.

Bass-Serre Theory

We refer the reader to Serre [15] and for a fuller treatment of the theory of groups acting

on trees. These trees provide an algebraic abstraction of covering spaces. In essence, if X

is a space with subspace Y , by considering all lifts of Y to the universal cover X̃ we can

form a tree whose vertices are the components of X̃ cut along all lifts of Y and equipped

with an action by π1(X) as the deck transformations of the cover X̃ .

A graph of groups Γ is a connected graph (V,E) together with a collection of ver-

tex groups {Gv}v∈V and a collection of edge groups {Ge}e∈E together with inclusions of

the edge groups into their incident vertex groups, that is for each edge e = uv there are

injections

Gu Ge Gv.iuv

ivu

Then for any spanning tree T of Γ the fundamental group π1(Γ, T ) is the group gener-

ated by {xe}e∈E and the vertex groups Gv for v ∈ V , together with the relations iuv(g) =

xeivu(g)x−1
e for all e = uv and g ∈ Ge, and xe = 1 for all e ∈ T .

The universal cover Γ̃ of the graph of groups Γ (with respect to π1(Γ, T )) is the tree

with vertices given by the left cosets of vertex groups in π1(Γ, T ). The edges are given by

the left cosets of edge groups in π1(Γ, T ). So if gGe is the left coset of edge group Ge with

g ∈ π1(Γ, T ) and edge e = uv, then gGe is an edge between the Γ̃ vertices gGu and gxeGv.

The quotient p : Γ̃→ Γ is given by gGx 7→ x for any vertex or edge. In fact Γ̃ is a tree, and
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is equipped with action of π1(Γ, T ) by left multiplication

h · (gGx) = (hg)Gx

for any g, h ∈ π1(Γ, T ). The action of π1(Γ, T ) on the tree Γ̃ thus has

stabπ1(Γ,T ) (gGx) = gGxg
−1

and respects the projection p and acts without inverting any edges of the tree. This tree

action is unique in the sense described by the Fundamental Theorem of Bass-Serre Theory:

Theorem 2.5. Let T be a tree with group G acting without inversions. If Γ is the quotient

graph of groups with T any spanning tree, then G is isomorphic to π(Γ, T ), and there is an

G-equivariant isomorphism betweeen T and the universal cover Γ̃ of Γ.

Surface Models

We refer the reader to Farb and Margalit [16] as the definitive treatment of surface topology

and surface group algebra, and to Hatcher [17] for theory and notation of homotopy, but

we here establish notation and recall some relevant results.

Let Sg,p be the orientable genus g surface with a set finite set P of p punctures. The

mapping class group is

MCG(Sg,p) = π0Diff+(Sg,p)

the group of isotopy classes of orientation preserving homeomorpisms of Sg,p. We will also

consider the extended mapping class group of orientation reversing homeomorphisms

MCG±(Sg,p) = π0Diff(Sg,p).

By a curve of Sg,p we mean the homotopy class of a simple closed curve, an embedded
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copy of the circle S1. We will frequently abuse notation by refering to a curve both as the

embedding S1 ↪→ Sg,p and its homotopy class, as dictated by context. The same will be

true of loops which we consider to be pointed embeddings (S1, s0) ↪→ (Sg,p, q) considered

up to homotopy of Sg,p fixing the basepoint q, and arcs which we consider to be embedded

intervals ([0, 1], 0, 1) ↪→ (Sg,p, q0, q1) considered up to homotopy of Sg,p fixing the end-

points q0 and q1 which we often allow to be punctures. We will often refer to what Farb and

Margalit call the change of coordinates principle: curves x and y lie in the same MCG orbit

if and only if their complements in Sg,p are homeomorphic. Thus the topological types of

curves are nonsepararing, and separating curves whose regular neighborhood complement

is Sg′p′ t Sg′′,p′′ where g = g′ + g′′ and p + 2 = p′ + p′′. For a separating curve x we

refer to the connected components of its complement as the sides of x, and the small side

as whichever has a less negative Euler characteristic.

The Curve Complex

Harvey defined the complex of curves CSg,p as follows [1]. Take as vertices all homotopy

classes of simple closed curves. A collection of curves forms a simplex if and only if they

are mutually disjoint. Farb and Margalit give an extensive treatment in [16].

The works of Ivanov [4], Korkmaz [18], and Luo [19], describe the automorphisms of

complexes of curves. Their theorem states that (except in a few low complexity cases) the

curve complex is a combinatorial model for the mapping class group.

Theorem 2.6. The natural map

MCG± Sg,p → Aut CSg,p

is surjective whenever the curve complex CSg,p has positive dimension 3g + p − 4 and

(g, p) 6= (1, 2), and an isomorphism if (g, p) /∈ {(1, 2), (2, 0)}.
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The Birman Exact Sequence

The Birman exact sequence describes the mapping class group of a punctured surface as a

fibration over the mapping class group of the unpunctured surface, where the fundamental

group is the fiber. Given a specified point q ∈ Sg,p and loop α : ([0, 1], 0, 1) → (Sg,p, q, q)

based at q we can construct a point pushing map that pushes q along the loop α. Construct

the push map by taking an isotopy H : [0, 1]× Sg,p → Sg,p that is the identity outside of a

neighborhood of α and so that H(t, q) = α(t) for all t ∈ [0, 1]. Then H(0, ·) and H(1, ·)

are isotopic homeomophisms of Sg,p relative to P , but are not isotopic relative P ∪ {q}.

This embeds the fundamental group in the mapping class group as a subgroup of point-

pushing maps in the group MCG±(Sg,p+1, q) of mapping classes fixing the point q. The

relationship is fully described by the following exact sequence due to Birman [20].

Theorem 2.7. Let q ∈ Sg,p be a puncture for negative Euler-characteristic Sg,p. The

surface inclusion Sg,p+1 = Sg,p − {q} ↪→ Sg,p induces the following short exact sequence

1→ π1(Sg,p, q)→ MCG±(Sg,p+1, q)→ MCG± Sg,p → 1.

Surprisingly, while the fundamental group of the surface is normal in the mapping class,

we will see in the next section that the extended mapping class group itself is never normal

in any supergroup, except as a direct product.

Mapping class group are only trivial normal subgroups.

In general, a fibration of groups is an exact sequence

1 A E B 1

and these are classified up to isomorphism by the outer automorphisms OutA of the fiber

A and the cohomologyH∗(B;Z(A)) of the baseB. We refer to Brown for a general theory
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[21]. But mapping class groups are centerless and out-less. We prove here centerless and

out-less fibers always make for trivial fibrations, so fibrations with MCG as the fiber are

always trivial for sufficiently complex surfaces. See Farb and Margalit [16] for centers of

mapping class groups.

Theorem 2.8. The center of MCG± Sg,p is trivial, unless

(g, p) ∈ {(0, 2), (1, 0), (1, 1), (1, 2), (2, 0)}

and in all these cases the center is isomorphic to Z/2.

The curve complex CSg,p plays a large role in the proof that Aut MCG± Sg,p ∼= MCG± Sg,p.

The work of McCarthy [22], Ivanov [4], Korkmaz [18] demonstrates the following theorem

showing that Out MCG± Sg,p = 1.

Theorem 2.9. Let (g, p) have g ≥ 2 and g + p ≥ 3, or g = 1 and p ≥ 3, or g = 0 and

p ≥ 5. Let G and G′ be finite index subgroups of MCG± Sg,p. Then any isomorphism

G→ G′ is induced by an inner automorphism of MCG± Sg,p.

Theorem 2.10. A centerless, out-less group always fibers trivially.

Suppose that

1 A E B 1
ρ

is a short exact sequence of groups. If A has trivial center and outer automorphism group,

then E ∼= A×B.

Proof. Let B = 〈S|R〉 be a presentation for B. For each s ∈ S choose es ∈ E so that

π(es) = s. Note that A = ker ρ is normal in E. So the conjugation x 7→ esxe
−1
s restricts to

an automorphism of A. By hypothesis AutA = Inn A, so there must be as ∈ A such that

esxe
−1
s = asxa

−1
s for all x ∈ A. Since

ρ(es) = ρ(esa
−1
s ) = s
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we may replace es with esa−1
s so that esxe−1

s = x for all x ∈ A. So 〈es〉s∈S commutes

with A in E. But then if
∏

i si ∈ R is a relation of B, we have
∏

i esi ∈ A by the exact

sequence, so
∏

i esi ∈ Z(A) is in the center of A. But by hypothesis the center is trivial

Z(A) ∼= 1, so
∏

i esi = 1 in E. So s 7→ es extends to a homomorphism B → E that splits

the exact sequence, and whose image commutes with A. It must be that E ∼= A×B.

Corollary 11. The extended mapping class group has only trivial extensions. Let (g, p)

have g ≥ 2 and g + p ≥ 3, or g = 1 and p ≥ 3, or g = 0 and p ≥ 5. Suppose that

1 MCG± Sg,p E B 1

is an exact sequence of groups. Then E ∼= B ×MCG± Sg,p.

In particular the normalizerN of MCG± Sg,p in any group is a direct product MCG± Sg,p×

N/MCG± Sg,p.

Free Group Automorphism Models

We write Fn for the free group generated by n elements. The inner automorphisms given

by conjugation are denoted Inn Fn so that

OutFn =
AutFn
Inn Fn

We refer to Vogtmann for an excellent survery on what is currently known about OutFn

[23], but here recall some of the most relevant facts.

Let a1, . . . , an be a generating set for Fn. Elements of AutFn include

1. a permutation is an automorphism that permutes the generating set {a1, . . . , an}

2. an inversion at ai is an automorphism µi extended from µi(ai) = a−1
i and µi(aj) = aj

for j 6= i.
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3. a transvection is an automorphism τij extended from τij(ai) = aiaj and τij(ak) = ak

for k 6= i

Nielson [24] showed that AutFn can be generated by taking any basis a1, . . . , an of Fn and

taking an inversion, a transposition, and the permutations of {a1, . . . , an}.

Many results of OutFn are defined and proved analogously to results on surface map-

ping class groups. There are in fact several productive such analogies. The first considers

elements of OutFn as the mapping class group of graphs of rank n. Since the graphs are

one dimensional, to obtain OutFn the homotopy equivalences but be considered, rather

than homeomorphism. This is perhaps best explored by Culler and Vogtmann [6], who

define the outer space of metrics on a graph that functions for OutFn just as Teichmüller

space does for surface mapping class groups. Bridson-Vogtmann use techniques similar to

Ivanov to show that Out OutFn = Out AutFn = 1 [25].

A second analog instead considers OutFn as the mapping class group of a doubled han-

dlebody. Let Mn be the compact 3-manifold that is the connect sum #n (S1 × S2). Since

π1(Mn, x0) = Fn, the diffeomorphisms of Mn act on Fn and provide a model for OutFn.

The 3-manifold Mn makes an even closer analog to the surface Sg since one way to con-

struct Mn is to take two copies of a genus n handlebody and glue their boundary surfaces

by the identity map. To include boundary spheres, we let Mn,p is the compact 3-manifold

obtained from n copies of S1×S2 with the interiors of p disjoint balls removed. We take the

convention that M0,p is S3 with the interiors of p disjoint balls removed. Diff(Mn,p) is the

group of orientation-preserving diffeomorphisms ofMn,s. Then the mapping class group of

Mn π0Diff(Mn,p, ∂Mn,p) can provide a model for OutFn. The group π0Diff(Mn,p, ∂Mn,p)

contains a finite normal subgroup N generated by order 2 Dehn-twists about nonseparating

spheres. Laudenbach showed in [10] that

π0Diff(Mn)

N
∼= OutFn
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and
π0Diff(Mn,1, ∂Mn,1)

N
∼= AutFn

Since neither these groups nor the sphere complexes distinguish between removing a point

or a ball from Mn, we will abusively also refer Mn with a set P of p distinct points re-

moved as Mn,p where convenient, and refer to the set P as the punctures of Mn,p, since this

sometimes unifies notation with the surface case.

For p ≥ 1, discussion of relative free groups or free groups with boundary can be found

in Meucci [26] and Hatcher and Wahl [27].

Consider Fn+p with basis {a1, . . . , an, b1, . . . , bp}. Let Autn,p be the subgroup Autn,p <

Fn+p with φ ∈ Autn,p if φ preserves the conjugacy class of 〈a1, . . . , an〉 and φ(bi) is con-

jugate to bj for some j. Let Outn,p = Autn,p /Inn Fn+p. An immediate consequence of the

work of Hatcher and Vogtmann is that π0Diff(Mn,p)/N ∼= Outn,p [28]. In analogy with the

pure mapping class group we will write

POutn,p ∼= π0Diff(Mn,p, ∂Mn,p)/N

to be the subgroup POutn,p < Outn,p that is the quotient from the subgroup of Autn,p with

φ(bi) conjugate to bi for all i. So we have an exact sequence

1 POutn,p Outn,p Sym(p) 1

where Sym(p) is the symmetric group on p symbols. Similarly let Out(q)
n,p be the quotient

of the Autn,p subgroup with φ(bq) conjugate to bq, so

1 POutn,p Out(q)
n,p Sym(p− 1) 1

Hatcher and Vogtmann provide a Birman type exact sequence for Mn. Let P be p marked
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points in Mn and q ∈Mn − P . There is a fibration

Diff(Mn, P ∪ {q}) Diff(Mn, P )

Mn − P

where the projection is given by evaluation at q. The long exact sequence of homotopy

groups associated to the fibration yields a Birman-like short exact sequence

1 Fn π0Diff(Mn, P ∪ {q})) π0Diff(Mn, P )) 1

which after a quotient by the finite normal Dehn-twist subgroup yields an exact sequence

1 Fn Out
(q)
n,p+1 Outn,p 1.

So Outn,p is generated by

1. permutations of {a1, . . . , an}

2. permutations of {b1, . . . , bp}

3. an a-inversion at a1

4. an a-transvection τij with τij(ai) = aiaj and τij the identity on the other elements of

the generating set

5. a conjugation of bi by aj with γij(bi) = ajbia
−1
j and γij the identity on the other

elements of the generating set

With this model of OutFn the analog of the curve complex is the complex of embedded

spheres in Mn. Let Sn,p be the complex of spheres in Mn,p. The vertices of Sn,p are

homotopy classes of essential, embedded 2-spheres S2 ↪→ Mn,s in Sn,p. We will abuse

notation and say sphere to mean both a particular embedding S2 ↪→Mn,p and its homotopy
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Figure 2.2: The manifold Mn,p can be contained from S3 by deleting the interior of 2n+ p
balls then identifying n pairs of spheres via the antipodal map.

class, as dictated by context. A set of spheres forms a simplex if there are mutually disjoint

embeddings of the homotopy classes. Hatcher showed that the realization of Sn contains a

dense subspace homeomorphic to Culler-Vogtmann outer space [9]. Aramayona and Souto

showed that the sphere complex itself is a combinatorial model for OutFn [11].

Theorem 2.12. The natural map OutFn → AutSn is an isomorphism for n ≥ 3.

Figure 2.3: A maximal collection of disjoint curves bounding disks in the handlebody.
The prescribed doubling gives spheres of M3 specifying a maximal simplex of the sphere
complex S3.

Figure 2.4: A maximal collection of disjoint spheres of S3 with spheres removed. The
prescribed gluing gives spheres ofM3 specifying a maximal simplex of the sphere complex
Sn.
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There are two helpful diagramatic approaches to considering spheres in Mn, shown in

Figures 2.3 and 2.4. The first represents a sphere by considering a disk-bounding curve in

a genus n handlebody Hn,

x : (D2, S1) ↪→ (Hn, Sn).

Then x induces an embedding x : S2 ↪→ Mn by taking two copies of Hn and identifying

the boundary ∂Hn = Sn of the two copies

(D2, S1) D2 tS1 D2 S2

(Hn, Sn) Hn tSn Hn Mn.

This gives a surjection from homotopy classes of (D2, S1) in (Hn, Sn) to homotopy classes

of S2 in Mn, but this representation by disks is not unique. As in Figure 2.5, Dehn twists

about disk bounding curves intersecting x give distinct disks that glue up to give homotopic

spheres in Mn. The punctured manifold Mn,p is similarly obtained by gluing a handlebody

with p half balls removed along the surface Spn.

Figure 2.5: Identifying the two copies of a handlebody along their boundary obtains Mn

and glues disks into spheres. Disks differing by Dehn twists about curves bounding disks
in the handlebody glue to the same sphere.

A second diagramatic representation is to consider cutting Mn,p along a collection of n

disjoint nonsepating spheres to obtain S3 with 2n+p open balls removed. Label the result-
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ing boundary S2 spheres x+
a1
, . . . , x+

an and x−a1
, . . . , x−an and xb1 , . . . , xbp . Then identifying

x+
ai

and x−ai via the S2 antipodal map obtains Mn,p again. Then for any basepoint q ∈Mn,p

we have a basis for Fn ∼= π1(Mn,p, q) as a1, . . . , an with ai the loop disjoint from xaj for

j 6= i and intersecting xai once by traveling into x+
ai

and out of x−ai , which we defined to be

positive intersection. Diffeomorphisms of Mn, p realizing Outn,p can be described using

this model. By capping every boundary component of Mn,p with a copy of M1,1 we can in-

clude Outn,p ↪→ OutFn+p and consider diffeomorphisms of Mn+p,0 that preserve (setwise

and with orientation) the set of separating spheres where we glued the capping M1,1 and

the nonseparating spheres contained inside.

1. Permutations σ of {a1, . . . , an} can be realized by any diffeomorphism sending sphere

xai to xσ(ai)

2. Inversion ι1 : a1 7→ a−1
1 can be realized by cutting Mn along xa1 exchanging the

spheres x+
a1

and x−a1
and then regluing x+

a1
and x−a1

3. Transposition τ12 : a1 7→ a1a2 can be realized by cutting Mn along xa1 , pushing x−a1

along a loop that intersects xa2 once negatively and disjoint from xai with i 6= 1, 2,

and finally regluing x+
a1

and x−a1
We will also refer to this as the push of x−a1

through

x−a2
. See Figure 2.6.

4. Conjugation η : a1 7→ a1b1a
−1
1 can be realized by pushing xb1 along a loop that

intersects xa1 once negatively and is disjoint from xai for i 6= 1

By homotoping a sphere so that it is based at q, we obtain a splitting of π1(Mn, q) ∼= Fn,

and in fact conjugancy classes of splittings of Fn are in bijection with spheres of Mn. By

considering these splittings, Handel and Mosher show that Sn is δ-hyperbolic [29].

In [9] Hatcher shows Sn is contractible and describes a normal form for spheres embed-

ded in Mn. A maximal collection Σ of disjoint spheres has 3n− 3 spheres. (One could, for

example take the disks of a pants decomposition in the handlebody.) Cutting Mn along Σ
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Figure 2.6: Pushing x−a1
through x−a2

induces the transvection a1 7→ a1a2 on the fundamen-
tal group π1.

such a collection of spheres produces 2n−2 copies ofM0,3. Hatcher shows that any sphere

x of Mn can be homotoped so that x is parallel to a sphere of Σ or meets them tranversely

in a nonempty colleciton of circles splitting x into components xi such that

1. Each component xi meets any sphere of Σ in at most one circle.

2. No component xi is a disk isotopic by an isotopy fixing its boundary to a disk in a

sphere of Σ

Further the homotopy class of x is uniquely determined by the data of the components x

as a sphere parallel to a sphere of Σ, or else the components xi as a disk, annulus, or pair

of pants in each component of Mn cut along Σ, and the spheres of Σ that xi boundary

components intersect.

Just as in the case of curves of the surface, the spheres of a surface have a change

of coordinates principle: spheres x and y lie in the same Outn,p orbit if and only if their

complements in Mn,p are homeomorphic. Thus the topological types of spheres are non-
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Figure 2.7: The sphere for the splitting
〈
a−1

1 a4
2

〉
∗ 〈a2, a3〉 in Hatcher normal form with

respect to the maximal collection {a1, a2, a3, x, y, z} in M3.

separaring, and separating spheres whose complement isMn′p′tMn′′,p′′ where n = n′+n′′

and p + 2 = p′ + p′′. For a separating sphere x we refer to the connected components of

its complement as the sides of x, and the small side as whichever has a less negative Euler

characteristic. We refer to a sphere y on the small side of x as engulfed by x, or engulfed if

it lies on the large side of x.

Pandit has shown that the nonseparating spheres also constitute a combinatorial model

for OutFn [30]. That is let Snonsepn ⊂ Sn be the induced subcomplex spanned by nonsepa-

rating spheres. Pandit gives

Theorem 2.13. For n ≥ 3 the natural map

Out(Fn)→ Aut (Snonsepn )

is an isomorphism.
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CHAPTER 3

BIRMAN POINT PUSHING

In this chapter we consider the relationship of combinatorial models after adding or delet-

ing punctures. We will see in Section 3.1 how the Birman exact sequence appears in the

automorphisms of the curve complex. Section 3.2 follows a parallel outline to show that

adding punctures to Mn,p creates an analogous fibration of the sphere complex.

We recall the Theorem 2.6 of Ivanov [4], Korkmaz [18], and Luo [19].

Theorem 2.6. The natural map

MCG± Sg,p → Aut CSg,p

is surjective whenever the curve complex CSg,p has positive dimension 3g + p − 4 and

(g, p) 6= (1, 2), and an isomorphism if (g, p) /∈ {(1, 2), (2, 0)}.

Although their methods of proof are general and do not require separate consideration

of the closed and punctured cases, we will demonstrate that additional punctures of the

surface leave the isomorphism MCG± Sg,p → Aut CSg,p intact. We do so by attempting to

substitute this ismorphism into the Birman exact sequence. Recall Birman’s Theorem 2.7

Theorem 2.7. Let q ∈ Sg,p be a puncture for negative Euler-characteristic Sg,p. The

surface inclusion Sg,p+1 = Sg,p − {q} ↪→ Sg,p induces the following short exact sequence

1→ π1(Sg,p, q)→ MCG±(Sg,p+1, q)→ MCG± Sg,p → 1.

Curves and Punctures

Our goal in this section will be an independent proof of the following weaker version of

Theorem 2.6, in preparation for the free group analog in Section 3.2.

25



Theorem 1.1. Let Sg,p be the orientable genus g surface with p punctures. If the natural

map

MCG± Sg,p → Aut CSg,p

is an isomorphism, then so is

MCG± Sg,p+1 → Aut CSg,p+1.

Remark 1. Every simplex ∆ of CSg,p is a collection of disjoint curves that cuts up the

surface Sg,p into a number of connected components. This gives a Bass-Serre graph of

groups for π1Sg,p induced by the ∆ specified splitting. The underlying simple graph is

the adjacency graph studied in Margalit, Behrstock [31] and Shackleton [32]. These also

appear as graphs associated to pants decompositions in [33].

Definition 3.1. Let ∆ ⊂ CSg,p be a simplex. The region adjacency graph G∆ of ∆ is the

graph whose vertices are the connected components of the cut surface

Sg,p −
⋃
c∈∆

c

with an edge for every curve c incident to the regions it bounds.

We will also consider the graph simplification Gsimp∆ obtained from the (possibly looped,

multi-edged) graph G∆ by removing any self-loops and identifying multi-edges.

Automorphisms of the curve complex act naturally on the set of adjacency graphs by

isomorphism. Similar Lemmas are due to Margalit and Behrstock [31], though the graphs

considered are simple graphs without multiedges or loops.

Lemma 3.2. Curve complex automorphisms preserve the edge incidence of region adja-

cency graphs.

Let φ ∈ Aut CSg,p and let ∆ be a simplex of CSg,p with adjacency graph G∆. Then

ec, ec′ are incident edges of G∆ if and only if eφ(c), eφ(c′) are incident edges of Gφ(∆).
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Proof. We will argue that φ induces a bijection φ∗ : EG∆
→ EGφ(∆)

on the set of edges that

preserves the incidence and non-incidence of edges.

Let ec be an edge of G∆ given by curve c. Then φ∗(ec) = eφ(c) defines a bijection

between the edges of G∆ and Gφ(∆). We will show ec is incident to ec′ if and only if there

is a curve of CSg,n intersecting c and c′, but no other curve of ∆. Then eφ(c) is incident to

eφ(c′) if and only if there is a curve of CSg,n intersecting φ(c) and φ(c′), but no other curve

of φ(∆).

Suppose ec is incident to ec′ . Observe every region of Sg,p −
⋃
c∈∆ c contains an em-

bedded pair of pants S0,3. So if we consider regluing regions along c and c′, we obtain the

component R of Sg,p −
⋃
b6=c,c′ b with c, c′ ⊂ R. Then R must contain an embedded S0,5

or an S1,1. So R contains a curve c′′ intersecting c and c′, and since c′′ ⊂ R, it does not

intersect any other curve of ∆.

Suppose ec is not incident to ec′ in G∆. Then there is a multicurve ∆′ ⊂ ∆ that separates

c from c′ in Sg,p. But then every curve that intersects c and c′ must intersect a curve of

∆′.

Example 3. Edge incidence preservation is not always enough to guarantee a graph isomor-

phism.

Recall the Whitney Graph Isomorphism Theorem 2.1 states that for simple graphs an

edge bijection preserving incidence is an isomorphism, except in the case of K3. However,

for non-simple graphs, edge incidence can be preserved by swapping a loop with a multi-

edge. This is the case for some automorphisms of CS1,2 acting on region adjacency graphs.

Figure 3.1: An edge bijection preserving incidence may not be an isomorphism for multi-
graphs. A self-loop might swap with a multiedge if the multiedge is not incident to addi-
tional edges.
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Luo describes how a quotienting of S1,2 by a hyperelliptic involution gives an isomorphism

Aut CS1,2 → Aut CS0,5 [19]. An automorphism of CS1,2 bijects edges and preserves inci-

dence of the region adjacency graph, but may not induce an isomorphism. The correspond-

ing automorphism of CS0,5 induces an isomorphism of the region adjacency graph, as in

Figure 3.2.

Figure 3.2: (Top) Two nonisomorphic region adjacency graphs can be exchanged by an
automorphism of C1,2, though the edge incidence relation is preserved. (Bottom) Such an
automorphism of CS1,2 corresponds via hyperelliptic involution to a homeomorphism of
S0,5.

Corollary 4. Curve complex automorphisms induce isomorphisms of region adjacency

graphs of maximal simplices.

Suppose that 3g+p ≥ 5 and (g, p) 6= (1, 2). Let φ ∈ Aut CSg,p and let ∆ be a maximal

simplex of CSg,p. Then G∆ and Gφ(∆) are isomorphic graphs.

Proof. Any maximum simplex ∆ gives a pants decomposition of the surface Sg,p with

3g + p− 3 curves and 2g + p− 2 pairs of pants. So Gsimp∆ and Gsimpφ(∆) are simple, connected

graphs with the same number of vertices and the same edge-incidence relations. Then by

Whitney’s Theorem 2.1, Gsimp∆ is isomorphic to Gsimpφ(∆) .
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To see that self-loops are preserved, observe that as ∆ cuts Sg,p into pairs of pants,

every vertex of G∆ has degree at most 3. Then if ec is a self-loop at vertex vR, it is incident

to exactly one other edge ex that cannot be a self-loop, so ex is uniquely represented in

Gsimp∆ . If (g, p) 6= (1, 2), then ex is incident to another edge ey. Then eφ(x) is also uniquely

represented in the isomorphic graph Gsimp∆ and has a degree 1 vertex. Then in Gsimp∆ , eφ(x)

is incident to eφ(y), and eφ(c) is incident to eφ(x), but not eφ(y) or any other edge, so eφ(c)

must be a loop at the vertex that is degree 1 in Gsimpφ(∆) .

Lemma 3.5. Automorphisms of the curve complex preserve the sides and topological type

of curves.

Suppose that 3g + p ≥ 5 and (g, p) 6= (1, 2). Let φ ∈ Aut CSg,p and let x be a

curve. Then there is a homeomorphism of Sg,p exchanging x and φ(x). Furthermore, if x is

separating and y, y′ lie on the same side of x, then φ(y), φ(y′) lie on the same side of φ(x).

Proof. We will characterize each topological type of curve by a combinatorial property of

a corresponding region adjacency graph, and apply Lemmas 3.2 and 4.

· Nonseparating curves: Observe that a curve c is nonseparating if and only if there is a

maximal simplex ∆ such that ec is a self-loop in the region adjacency graph G∆.

· Separating curves: Observe that if curve x separates Sg,p

Sg,p = Sg′,p′ tc Sg−g′,p−p′+2

then the corresponding edge ex of the region adjacency graph G∆ is a cut edge. More

specifically, if

∆ = ∆+ ∪ {x} ∪∆−
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with ∆+ and ∆− the curves on each side of the separating curve c, then ex separates G∆

G∆ − {ex} = G∆+ t G∆−

into the components G∆+ , with 3g′+p′−3 edges and genus g′, and G∆− with 3(g− g′) +

p− p′ − 1 edges and genus g − g′.

Remark 2. For the closed surface Sg the inclusion Sg − {q} ↪→ Sg induces a well defined

puncture-forgetting projection map

ρq : CSg,1 → CSg.

by sending curves to their image. Since we do not allow peripheral curves in CSg,1, no

curve becomes nullhomotopic. However, in the case of multiple punctures P , the surface

Sg,p has curves bounding twice-punctured disks, that may become peripheral if a puncture

is forgotten. Excluding these curves gives a subcomplex C(Sg,p, q) ⊂ CSg,p where the

puncture-forgetting map is well-defined for puncture q.

ρq : C(Sg,p, q)→ CSg,p−1

Kent, Leininger, and Schleimer [34] show that this forgetful projection has fibers de-

scribed by Bass-Serre trees of the surface fundamental group so that there is a fibration of

the form

T → C(Sg,p, q)→ CSg,p−1.

More rigorously,

Theorem 3.6. Let ∆ ⊂ CSg,p be a simplex with interior point x ∈ ∆. Then the fiber

ρ−1
q (x) is π1 (Sg,p, q)-equivariantly homeomorphic to the tree T∆, the Bass-Serre tree for
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the splitting of π1 (Sg,p, q) determined by the multicurve ∆.

Remark 3. Observe that C(Sg,p, q) is not characteristic in CSg,p, since in general auto-

morphisms of CSg,p will permute the punctures. Let Aut(CSg,p, q) < Aut CSg,p be the

subgroup of Aut CSg,p that preserves the fibration C(Sg,p, q)→ CSg,p−1, that is

φ
(
ρ−1
q ρq(x)

)
= ρ−1

q ρq(φ(x))

for every x ∈ C(Sg,p, q).

If φ ∈ Aut C(Sg,p, q) then there is a well defined push-forward automorphism of the

less-punctured quotient CSg,p−1. Define ρ∗qφ ∈ Aut CSg,p−1 by

(
ρ∗qφ
)

(x) = ρq (φ(y))

for any choice of y ∈ ρ−1
q (x). This is well defined since if y′ ∈ ρ−1

q (x) = ρ−1
q ρq(y) then

φ(y′) ∈ φ(ρ−1
q ρqy) = ρ−1

q ρqφ(y)

by definition of Aut C(Sg,p, q). Then this gives a pushforward map

ρ∗q : Aut (CSg,p, q)→ Aut CSg,p−1

given by φ 7→ ρ∗qφ as above.

These automorphisms display the structure of the Birman exact sequence.

Lemma 3.7. This diagram commutes

1 π1(Sg,p−1, q) MCG±(Sg,p, q) MCG± Sg,p−1 1

1 π1(Sg,p−1, q) Aut C(Sg,p, q) Aut CSg,p−1 1

fq

α ρ∗q
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and has exact rows when ρq is surjective.

Proof. The pushforward ρ∗q : Aut C(Sg,p, q)→ Aut CSg,p−1 is defined by

(ρ∗qφ)(x) = ρq(φ(y))

where y ∈ ρ−1
q (x). This is well defined since if z ∈ ρ−1

q (x) then φ(z)) ∈ ρ−1
q ρq(φ(y)) by

definition of Aut C(Sg,p, q).

The map α is defined by the first square, so it certainly commutes. And α gives a

well defined injection, since for any nontrivial loop γ there is a nonseparating curve c that

intersects γ so that the point pushing map α(γ) moves c, and c ∈ C(Sg,p, q).

The second square must commute, since if [ψ] ∈ MCG±(Sg,p, q) is a mapping class

and c a curve of Sg,p, the homotopy class of ψ(c) is the same if we first allow homotopies

of the homeomorphism ψ which do not fix q, or if we first consider the homeomorphism ψ

up to homotopy fixing q, then homotope the curve ψ(c) forgetting q.

As in Theorem 3.6, the fiber ρ−1
q (x) of the projection ρq : C(Sg,p, q) → CSg,p for a

curve x is homeomorphic to the Bass-Serre tree Tx given by the splitting x specifies on

π1(Sg,p, q). Then the kernel ker ρq is a group acting faithfully on the tree T∆, so by the

Fundamental Theorem of BassSerre Theory 2.5, ker ρ∗q is isomorphic to the fundamental

group π1 of the quotient graph of groups, but the corresponding graph of groups is exactly

the Van Kampen splitting of π1 induced by x. Thus

ker ρ∗q = image α ∼= π1(Sg,p, q)

and the second row is exact.

We will show that, though curve complex automorphisms might not preserve the fibers

of ρq for any particular puncture q, they do permute the fibers of the puncture-forgetting

projections (ρq)q∈P . We do so by proving the unique colorability of an arc complex. Kork-
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maz’s proof of Theorem 2.6 utilizes a slightly more general arc complex allowing periph-

eral arcs [18] and simplices of arcs that share endpoints.

Definition 3.8. Define the pointed arc complex ASg,p to be the complex of homotopy

classes of embedded non-peripheral arcs in Sg,p with endpoints in P , where an arc is pe-

ripheral if it is a separating loop based at a single puncture and one of its sides is a punctured

monogon of Sg,p. Two arcs or disks are adjacent in ASg,p if their homotopy classes have

disjoint representatives and share no punctures as endpoints.

Remark 4. The pointed arc complex ASg,p has as vertices both arcs with two distinct end-

points and loops based at a single puncture. Since loops that are disjoint are always based

at distinct punctures, there is an obvious way to color (in the graph-theoretic sense) the

vertices of ASg,p that are loops: assign a color to each puncture and all the loops based

at that puncture. The arcs with distinct endpoints require two colors, however. We make

a slight generalization of k-colorings to allow a privileged set of vertices that that require

two colors.

Recall from Definition 2.2 that a k, η-coloring assigns to each vertex x a set of η(x)

colors from k options so that adjacent vertices have disjoint color sets.

Remark 5. Margalit in [35] discusses the trinion pants complex. Pants decompositions of

Sg,p are maximal simplices of CSg,p, with two such pants decompositions giving sharing an

edge in the pants complex if they differ by a single pair of minimally intersecting curves.

Hatcher and Thurston demonstrated the pants complex (which they call markings) of a

surface is connected and simply connected in [33]. We recall their result as the following

lemma.

Lemma 3.9. Let ∆,∆′ be maximal k-simplicies of CSg,p. Then there is a sequence ∆ =

∆0,∆1, . . . ,∆n = ∆′ of maximal simplices such that ∆i ∩ ∆i+1 is a k − 1 simplex and

the curves ci ∈ ∆i −∆i+1 and c′i ∈ ∆i+1 −∆i are contained in a single component R of

Sg,p −
⋃
x∈∆i∩∆i+1

x. Further, ci, c′i can be chosen to intersect once if R ∼= S1,1 and twice

if R ∼= S0,4.
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Remark 6. Lemma 3.9 in particular implies that for any two maximal k-simplicies ∆,∆′

contained in a k-colorable subgraph of CSg,p the simplex ∆ forces a coloring on ∆′. Bestv-

ina, Bromberg, and Fujiwara note bounds on the chromatic number of the curve graph

CSg,p in [36]. Gaster, Greene, and Vlamis further develop the theory of in [37], where they

additionally consider colorings of a related arc complex that contains ASg,p as a proper

subcomplex, albeit with many more edge relations

We will show that ASg,p is uniquely colorable.

Definition 3.10. Fix an ordering σ : P → {1, . . . , p} of the punctures and let x be a curve

of Sg. A σ-nest of curves parallel to x is the homotopy class in Sg,p of an embedding

N : S1 × I ↪→ Sg,p

such that N is a homotopic to x in Sg by homotopy forgetting the punctures, and image of

S1 × {σ(i)− 1/(p− 1)} is a loop based at puncture σ−1(i) that we refer to as the rib Ni.

The nest also gives a collection of p− 1 arcs. The ith vertebra of N is the arc from σ−1(i)

to σ−1(i+ 1) and given by

N

(
{s0} ×

[
σ(i)− 1

p− 1
,
σ(i+ 1)− 1

p− 1

])

for the basepoint s0 ∈ S1. We refer to N(s0 × I) as the spine of N .

Example 11. Observe that any nest N in Sg,p specifies a maximal simplex ∆N in ASg,p.

Further two σ-nests N,N ′ respectively parallel to disjoint curves x, x′ of Sg,p specify a

length p sequence from ∆N to ∆N ′ of maximal simplices intersecting in codimension one

faces as by replacing Ni with N ′i , as in Figure 3.3. So ∆N forces a p-coloring on ∆N ′ .

In fact even if x and y intersect ∆N forces a p-coloring on ∆N ′ if there are enough

punctures. Consider two paths of maximal simplices intersecting in codimension one faces

shown in Figure 3.4. First replace N1, N2 with the first vertebra α1,2 = N(s0× [σ(1)/(p−
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Figure 3.3: A color forcing path between nests parallel to disjoint curves.

1), σ(2)/(p − 1)]) between the punctures σ(1) and σ(2). Then iteratively we replace Ni

with the loop αi based at σ(i) and parallel to the boundary of a regular neighborhood

of αi−1 for i = 3 to i = p. Then replace αi with N ′i for i = p to i = 3 to obtain a

simplex {α2, N
′
3, . . . , N

′
p}. Starting from the other end of the spine we construct a similar

path with the puncture order reversed to obtain a simplex {N ′1, . . . , N ′p, αp−1,p}. Since

{α2, N
′
3, . . . , N

′
p} and {N ′1, . . . , N ′p, αp−1,p} together contain ∆N ′ , it must be that ∆N forces

a p-coloring on ∆N ′ .

We will use this technique to demonstrate that ∆N forces a coloring on all of ASg,p.

Lemma 3.12. The pointed arc complex is uniquely colored by the punctures.

Let 3g + p ≥ 6. The pointed arc complex ASg,p admits a unique p, η-coloring, up to

permutation of the colors, where η(x) is the number of endpoints of the arc x.

Proof. We will argue with a modification of the Putman trick 2.4. Observe that (since we

exclude peripheral arcs) every maximal simplex of ASg,p has an arc with an end at every

puncture. Observe that if p ≤ 2 the result is trivial, so we assume p ≥ 3. Let f be any

p-coloring of the arc complex ASg,p.

We first fix a collection X of curves. If g ≥ 1, then Sg,p has a nonseparating curve, and

we let X contain p parallel nonseparating loops based at the punctures as in Figure 3.5.

If g = 0 we take asX = {xi}pi=1 to be as in Figure 3.6 with p−4 parallel loops based at

p2, . . . , pp−2 and 4 additional curves x1, x2, xp−1, xp so that x1, x2 and x3 pairwise intersect
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Figure 3.4: Two paths of simplices forcing a coloring between nests parallel to intersecting
curves. “Pack” curves on one boundary component of the nest into curves surrounding
punctured disks, then unpack them parallel to a different curve of the unpunctured surface.
Repeat this with the other boundary component of the nest.

twice and are disjoint from all other curves of X , and similarly xp, xp−1, xp−2 pairwise

intersect twice and are disjoint from all other curves of X . We will argue that each loop of

X must be colored differently. Observe that there is an arc α12 from p1 to p2 that is disjoint

from all loops of X except x1 and x2. Similarly there is αp−1,p disjoint from all loops of

X except xp and xp−1. So the collection α12, x3, . . . , xp−2, αp−1,p require all p-colors to
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...

p1 2 ...

Figure 3.5: A base collection of parallel nonseparating loops, as in a nest.

1 2 3 ... p-1 pp-2

Figure 3.6: A base collection of mostly parallel loops in the punctured sphere.

paint, and it must be that f(x1)∪ f(x2) = f(α12) and f(xp−1)∪ f(xp) = f(αp,p−1). So X

requires p-colors to paint.

We may then assume, possibly after relabeling the colors, that f colors the arcs of X

by their punctures. Applying Lemma 2.4, we will show that the coloring on X forces the

coloring on all of ASg,p. Our technique will be to contruct paths with the group action of

MCGSg,p on ASg,p and show that f is determined along these paths. Let αi,i+1 be an arc

that is disjoint from all loops of X except xi and xi+1 and contained in the annulus they

bound if they are disjoint. Take as a generating set of MCGSg,p the Dehn half-twists along

the arcs αi,i+1 and the usual Humphrey’s generators of Dehn twists about nonseparating

curves that are disjoint from X , except for one curve z that intersects each loop of X

exactly once.

We now claim that for h ∈ H the coloring f is determined on the loops h · X by

the coloring on X . We must consider several cases depending on whether h is a twist or

half-twist, and how αi,i+1 intersects X . These cases are considered in Figures 3.7-3.10.

Observe that if g ∈ MCGSg,p we can write g = hn · · ·h1 with hi ∈ H . And if the

loops of hk · · ·h1 ·X are painted by their punctures, then so are the loops of hk+1 · · ·h1 ·X

by the above argument.

Observe in the case of g = 0 every curve is in MCGSg,p ·X . If g ≥ 1 then MCGSg,p ·X
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32 1 32

23 23

21 3

1 2

1

Figure 3.7: Case 1: The half-twist h is about an arc α in an annulus between xi and xi+1

and disjoint from the other loops of X , as in the top left. The lower right shows h(x1),
h(x2), and h(x3) = x3. Then if f(xi) = pi the sequence of curve replacements shows that
f(h(xi)) = pi.

1 2 3 1 2 3

Figure 3.8: Case 2: The half-twist h is about an arc α xi and xi+1 and disjoint from the
other loops of X , where xi and xi+1 intersect twice. We may assume the configuration on
the left and note that h(x2) = x3, so that f(h(x3)) must be p2.

1 2

1 2 3 4

1
24

3 1 2 3 4
14

1 2 3 4

1 42 4
13 23

14

23

24

13

3 4

Figure 3.9: Case 3: The half-twist h is about arc α between disjoint curves xi and xi+1,
and α intersects other curves of X . We may assume the configuration on the top left. Then
the image of h is shown in the bottom right. Note that by Case 1, f(h(x3)) = p3 and
f(h(x4)) = p4 so that we need only determine f(h(x1)) and f(h(x2)).
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1 2 p k p
12

... k-1

...
p-1,p

k1...k-1 ...
p-1,p

1

12
p... k p...12

... k-1

1... ...
p-1,p

k-1 k ...1 2 p

Figure 3.10: Case 4: The Dehn twist h = Tz about a nonseparating curve that links with
the loops of X . We may assume the configuration of X and z as in the top left. The image
Tz(X) is shown in the bottom right. In the top row: Replace x1 and x2 with α1,2 so that
f(α12) = {p1, p2}. Then iteratively replace xk with the loop yk separating α1,2, y3, . . . , yk−1

from the other punctures, so that f(yk) = pk for k = 3, . . . , p. Then replace yk with h(xk)
so that f(Tz(xk)) = pk for k = p, . . . , 3. A similar process reversing the order of the
punctures as in the bottom row shows f(Tz(xk)) = pk for k = 1, . . . , p− 2.

includes all nonseparating loops, and any separating loop x is disjoint from p− 1 mutually

disjoint loops x1, . . . , xp−1 so that the color f(x) is determined by the colors f(xi) and so

f(x) must be colored by its puncture.

Lemma 3.13. Curve complex automorphisms induce arc complex automorphisms.

There is a natural MCG± Sg,p equivariant map

Aut CSg,p → AutASg,p.

Proof. By Lemma 3.5 automorphisms of Sg,p preserve the class of two curves. Observe

that curves c, c′ of Sg,p bound a punctured annulus if and only if there is a maximal simplex

∆ ⊂ CSg,p containing c, c′ so that in the region adjacency graph G∆, the edges ec and ec′

are incident at a degree 2 vertex va. Then applying Lemma 4 φ(c) and φ(c′) must cobound

a punctured annulus.

Let φ ∈ Aut CSg,p and let a be an punctured annulus ASg,p with bounding curves c, c′.

If (g, p) 6= (1, 2) then c, c′ uniquely specify the annulus. Then φ(c), φ(c′) specify cobound

a punctured annulus φ∗(a).
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Finally a, a′ are disjoint arcs if and only if there is a maximal simplex ∆ ⊂ CSg,p such

that the bounding curves of regular neighborhoods of a and a′ are in ∆. Then a and a′ are

represented by distinct vertices va and va′ of G∆. So a and a′ are disjoint if and only if

φ∗(a) and φ∗(a′) are disjoint.

Thus φ∗ : ASg,p → ASg,p is an isomorphism.

Lemma 3.14. Curve complex automorphism permute puncture-projection fibers.

Let φ ∈ Aut CSg,p for 3g + p ≥ 6. Then if x, y are curves of Sg,p with ρq(x) = ρq(y),

then there is a puncture q′ ∈ P such that ρq′(φ(x)) = ρq′(φ(y)).

Proof. Consider the structure of ρ−1
q (ρq(x)). We have it is a subtree of CSg,p with x, x′ ∈

ρ−1
q (ρq(x)) adjacent if and only if they bound an annulus punctured by q. Then we have a

path x = x0, . . . , xn = y such that xi, xi+1 bound an annulus punctured by q. Using 3.13

we have φ(xi), φ(xi+1) bound an annulus punctured by some qi. Then since xi, xi+1, xi+2

bound annuli punctured by q that are the regular neighborhoods of loops ai, ai+1 ∈ ASg,p

based at q. Then φ(xi), φ(xi+1), φ(xi+2) bound annuli that are the regular neighborhoods of

loops φ∗(ai), φ∗(ai+1). By Lemma 3.12 φ∗(ai) and φ∗(ai+1) are based at a common point

q′.

Proof of Theorem 1.1. Assume that the natural map

MCG± Sg,p−1 Aut CSg,p−1
γ

is an isomorphism. Then by Lemma 3.7 the following diagram commutes

1 π1(Sg,p−1, q) MCG±(Sg,p, q) MCG± Sg,p−1 1

1 π1(Sg,p−1, q) Aut C(Sg,p, q) Aut CSg,p−1 1.

α

fq

β γ

ρq

and since γfq = ρqβ is a surjection we have that ρq is a surjection and the rows are exact.
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By the Five Lemma β is an isomorphism.

Let φ ∈ Aut CSg,p. We have that by Lemma 3.14 that φ permutes the fibers {ρ−1
q }, so

there is ψ ∈ MCG± Sg,p so that ψ ∈ Aut CSg,p is such that ψφ maintains the fibers ρ−1
q .

So ψφ ∈ Aut C(Sg,p, q). But then there is ψ′ ∈ MCG± Sg,p so that ψφ = ψ′. But then

φ = (ψ−1ψ′) is also induced by a mapping class we have the natural map

MCG± Sg,p Aut CSg,p

is an isomorphism.

Spheres and Punctures

The main theorem of this section is the following

Theorem 1.2. The natural map Outn,p → AutSn,p is an isomorphism for n ≥ 3 and

p ≥ 0.

The proof is directly analogous to our proof of Theorem 1.1. We will use a the structure

of the puncture forgetful map and induct on the number of punctures. A base, unpunctured

case is considered by the Theorem of Aramayona and Souto [11].

Theorem 2.12. The natural map OutFn → AutSn is an isomorphism for n ≥ 3.

We will show that automorphisms of the punctured sphere complex respect the fibration

induced by forgetting punctures, so that adding additional punctures expands the automor-

phism group of the complex of spheres according to a Birman exact sequence.

Theorem 3.15. If the natural map

Outn,p → AutSn,p
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is an isomorphism, then so is

Outn,p+1 → AutSn,p+1

Definition 3.16. As in Definition 3.1 for surfaces, if ∆ ⊂ Sg,p is a simplex the region

adjacency graph G∆ of ∆ is the graph whose vertices are the connected components of the

cut manifold

Mn,p −
⋃
x∈∆

x

with an edge ex for every sphere x and with the edge ex incident to the connected compo-

nents it bounds. We will also consider the graph simplification Gsimp∆ .

Lemma 3.17. Sphere complex automorphisms preserve edge incidence of region adjacency

graphs.

Let φ ∈ AutSn,p and let ∆ be a simplex of Sn,p with adjacency graph G∆. Then ex, ex′

are incident edges of G∆ if and only if eφ(x), eφ(x′) are incident edges of Gφ(∆).

Proof. We will argue that the induced bijection φ∗ between the edges of G∆ and the edges

of Gφ(∆) preserves incidence.

Let x, x′ ∈ ∆ be distinct spheres of Mn,p. Suppose that the associated edges ex and e′x

of G∆. It suffices to show that ex and ex′ are incident if and only if there is a third y ∈ ∆

with y intersecting x and x′ but no other sphere of ∆. In that case eφ(x) and eφ(x′) are

incident if and only if there is no third φ(y) ∈ φ(∆) with φ(y) intersecting φ(x) and φ(x′)

but no other sphere of φ(∆). So φ induces an incidence-preserving edge bijection between

G∆ and Gφ(∆).

Suppose that ex and ex′ are incident. Then there is a region R of Mn,p −
⋃
z 6=x,x′ z

containing x and x′, and since every region of Mn,p −
⋃
z∈∆ z contains at least an M0,3, it

must be that R contains an M1,2 or M0,5.
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If R contains an M1,2 the subcomplex of spheres in R contains a copy of S1,2 and so

must have infinite diameter. So there must be a sphere y in R that intersects both x and x′.

Since y is in R, it intersects no other sphere of ∆.

If R is simply connected then it must have a copy of M0,5 and x and x′ are essential and

separating in R. Then there are two boundary spheres y′, y′′ of R with a path α between

them that passes through both x and x′. Let y be the boundary of a regular neighborhood

of α∪ y′ ∪ y′′ in R. Then y intersects both x and x′, but since y is in R, y does not intersect

any other sphere of ∆.

Suppose that ex and ex′ are not incident. Then there is a collection of spheres ∆′ ⊂ ∆

that separate x from x′ in Mn,p. So any sphere intersecting x and x′ must also intersect a

sphere of ∆.

Corollary 18. Sphere complex automorphisms preserve the adjacency graphs of maximal

simplices.

Let 3n+ p ≥ 6. Let φ ∈ AutSn,p and let ∆ be a maximal simplex. Then G∆ and Gφ(∆)

are isomorphic.

Proof. Any maximum simplex ∆ contains 3n + p − 3 spheres and cuts Mn,p 2n + p − 2

copies of M0,3. So Gsimp∆ and Gsimpφ(∆) are simple, connected graphs with the same number of

vertices and the same edge incidence relations. So by Whitney’s Theorem 2.1, Gsimp∆ and

Gsimpφ(∆) are isomorphic.

To see that self-loops are preserved, observe that as ∆ cuts Mn,p into copies of M0,3,

every vertex of G∆ has degree at most 3. Then if ex is a self-loop at vertex vR it is incident

to exactly one other edge ex′ that cannot be a self-loop or have a parallel edge since vR is

degree 3. So eφ(x′) has a degree one vertex in Gsimpφ(∆) . Since 3n + p− 3 ≥ 3 we have Gφ(∆)

has at least 3 edges. So if both vertices of eφ(x′) are degree one in Gsimpφ(Delta), then Gφ(Delta)

has two vertices with a self loop at each. So eφ(x) is a self loop. If eφ(x′) has only one degree

one vertex in Gsimpφ(Delta), then eφ(x) is only incident to eφ(x′). So eφ(x) must be a self loop in

Gφ(∆).
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If φ preserves both the graph simplification and the self loops of G∆, it must be that φ

also preserves the multi-edges, and so φ induces a graph isomorphism.

Lemma 3.19. Sphere complex automorphisms preserve the topological type of spheres,

and the sides of the spheres.

Let 3n + p ≥ 6. Let φ ∈ AutSn,p. Let x be a sphere of Mn,p. Then x and φ(x) have

the same topological type. Further if x is separating and y, y′ are spheres in the same

connected component of Mn,p − x, then φ(x) is separating and φ(y), φ(y′) are in the same

connected component of Mn,p − φ(x).

Proof. By Lemma 18 it suffices to characterise the topological type and sides of a sphere

in terms of the region adjacency graph of a maximal simplex.

· Nonseparating spheres: Observe that x is a nonseparating sphere if and only if there

is a maximal simplex ∆ in that the corresponding edge ex is a self-loop in the region

adjacency graph G∆.

· Separating spheres: Observe that if x separates Mn,p

Mn,p = Mn′,p′ txMn−n′,p−p′+2

if and only if the corresponding edge ex of the region adjacency graph G∆ is a cut edge.

More specifically, if

∆ = ∆+ ∪ {x} ∪∆−

with ∆+ and ∆− the spheres on each side of x, then ex separates G∆

G∆ − ex = G∆+ t G∆−

into the components G∆+ with 3n′ + p′ − 3 edges and rank n′, and G∆− with with 3(n−

n′) + p− p′ − 1 edges and rank n− n′.
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Remark 7. Consider the inclusion that ignores the puncture q

iq : Mn,p ↪→Mn,p−1.

Then for the homotopy class [x] of a sphere in Mn,p we have the class [iq(x)] in Mn,p−1

by forgetting the puncture q. Separating spheres of Mn,p bounding a copy of S3 contain-

ing only q and one other puncture will become non-essential in this inclusion, but other

homotopy classes of spheres have well defined essential representatives up to homotopy

forgetting q.

Let S(q)
n,p ⊂ Sn,p be the subcomplex for which the puncture forgetful map ρq : [x] 7→

[iq(x)] is well defined. So we have a surjective projection map

ρq : S(q)
n,p → Sn,p−1.

As in the case for surfaces, the fibers of this map are Bass-Serre trees. Let x be a sphere

of Sn,p−1. Homotope x in Mn,p−1 so that it is pointed at q. Then the two boundary spheres

of a regular neighborhood of x in Mn,p−1 gives a well edge of ρ−1
q (x) ⊂ Sn,p. Let Γ be the

corresponding be the graph of groups given by the splitting of Fn = π1(Mn,p−1, q). So the

vertices of Γ are the components of Mn,p−1 − x with vertex groups given by the π1 of the

component, and an edge with trivial edge group between two components if x is separating,

or a self-loop if x is nonseparating. Then there is a an isomorphism between ρ−1
q (x) and the

Bass-Serre tree Γ̃ given by associating every edge xx′ of ρ−1
q (x) with the edge of Γ̃ given

by uv if

stabπ1(Mn,p−1,q)(u) ∗ stabπ1(Mn,p−1,q)(v)

is the splitting specified by the pointed sphere at q whose regular neighborhood in Mn,p has

boundary spheres x and x′.
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Definition 3.20. Let Aut(Sn,p, q) < AutSn,p be the subgroup preserving the fibration of

the forgetful map ρp. That is φ ∈ Aut(Sn,p, q) if

φ
(
ρ−1
p ρp(x)

)
= ρ−1

p ρp(φ(x))

for all spheres x.

Lemma 3.21. This diagram commutes

1 π1(Mn,p−1, q) Out(q)
n,p Outn,p−1 1

1 π1(Mn,p−1, q) Aut(Sn,p, q) AutSn,p−1 1

fq

α ρ∗q

and has exact rows when ρq is surjective.

Proof. The map α is defined by the first square, so it commutes. The map α is injective,

since for any loop γ based at q, there is a nonseparating sphere x intersecting γ so that the

push map α(γ) acts non-trivially on x and so cannot be the identity on S(q)
n,p.

The second square must commute, since if [ψ] ∈ Out(q)
n,p is a mapping class of Mn,p

and x a sphere of Mn,p, the homotopy class of ψ(x) is the same if we first forget that the

homeomorphism ψ fixes q, or if we first allow ψ with q fixed then homotope the sphere

ψ(x) forgetting q.

A fiber ρ−1
q (x) of the forgetful map ρ∗q : S(q)

n,p → Sn,p−1 is isomorphic to the Bass-Serre

tree associated to the splitting. Then the kernel ker ρ∗q is a group acting on the tree T∆, so by

the Fundamental Theorem of BassSerre Theory 2.5, ker ρ∗q is isomorphic to the fundamental

group π1 of the quotient graph of groups, but the corresponding graph of groups is exactly

the Van Kampen splitting of π1 induced by x. Thus

ker ρ∗q = image α ∼= π1(Sg,p, q)
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and the second row is exact.

Remark 8. The edges of the fibers of the forgetful map are between two spheres that

cobound a S2 × I punctured by q. Such spheres are specified by the boundaries of reg-

ular neighborhoods of pointed spheres of Mn,p, so we consider the associated complex.

Definition 3.22. Let PSn,p be the pointed sphere complex defined as follows. Let the

vertices of PSn,p be either

(1.) pointed spheres in Mn,p, i.e. homotopy classes of maps (S2, s0) → (Mn,p, P ) where

s0 is a basepoint of the 2-sphere S2 or else

(2.) unpointed spheres that bound a twice punctured ball

A collection of pointed spheres in Mn,p span a simplex of PSn,p if they have disjoint

representatives, including the basepoints.

Definition 3.23. As in Definintion 3.10, fix an order σ : P → {1, . . . , p} let a σ-nest of

curves parallel to a sphere x as the homotopy class in Mn,p of an embedding

N : S2 × I ↪→ Sg,p

such that N is a homotopic to x in Sg by homotopy forgetting the punctures. The image

of S1 × {σ(i)/(p− 1)} is a pointed sphere based at puncture σ(i) that we refer to as the

pointed sphere Ni.

Lemma 3.24. The pointed sphere complex is uniquely colorable.

Let η(x) be 1 if x is a pointed sphere and 2 if x is an unpointed sphere that bounds

a twice punctured ball of Mn,p. There is a unique k, η-coloring of PSn,p given by the

puncture labels. Further it is the only k, η-coloring up to relabeling of the k colors.

Proof. The argument is by the color modified Putman Lemma 2.4. Observe that if p ≤ 2

or n = 0 the result is trivial, so we assume p ≥ 3 and n ≥ 1. Let f be any p, η-coloring of

the pointed sphere complex PSn,p.
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Choose a maximal collection of nonseparating spheres xa1 , . . . , xan of Mn,p and let

xb1 , . . . , xbp . Let H be the generating set of Outn,p consisting of the transpositions σai =

(aiai+1) and σbi = (bibi+1), the inversion ι1 at a1 if n = 1 or else the inversion ι2, the

transvection τ12 with a1 7→ a1a2 if n ≥ 2, and the conjugation γ11 with b1 7→ a1b1a
−1
1 .

Let V be the nest of p nonseparating spheres all parallel to xa1 so that vi is based at xbi

and separates x+
a1
, xb1 , . . . , xbi−1

from the other spheres of Mn,p cut along xa1 , . . . , xap , as

in Figure 3.11.

Figure 3.11: A nest of p pointed spheres requires p distinct colors.

Since they are all disjoint they form a p-clique that requires they must be distinctly

colored. We may assume, possibly after relabeling, that f colors each pointed sphere of V

by the label of its puncture; so V = {vi}i∈P and f(vi) = {i}.

We first show that V forces a coloring on h · V for all h ∈ H±. We consider the cases

of the different types of generators.

1. Transvection. Observe that the choice of transvection is realized by the push of x−a1

through x−a2
and along a path disjoint from v1, . . . , vp. So V = τ12 · V .

2. a Transposition σai . Only σa1 does not fix V . Let vi,j be the sphere separating xbi

and xbj from the other spheres xak and xb` for ` 6= j, k. Figure 3.12 shows two

sequences of forced colorings between k-colored simplices intersecting in k − 1-

colored simplices. The first sequence forces a coloring on {v1,2, σ
a
1v3, . . . , σ

a
1vp}.
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The first sequence forces a coloring on {σa1v1, . . . σ
a
1vp−2, vp−1,p}. So V forces a

coloring on σa1 · V .

Figure 3.12: A σ-nest forces a coloring on σb1σ nest for transposition σa1 .

3. b-transposition. Consider first the transposition σb1. Figure 3.13 shows a sequence of

forcing colorings σb1 The argument for σbi is similar.

4. Inversion. If n > 1 then the inversion ι2 leaves V fixed.

If n = 1 then Figure 3.14 shows a sequence of coloring forcing. The first sequence

forces a coloring on {v1,2, ι1v3, . . . , ι1vp}. The first sequence forces a coloring on

{ι1v1, . . . ι1vp−2, vp−1,p}. So V forces a coloring ι1 · V .

5. Conjugation. Figure 3.15 shows a sequences of forced colorings between k-colored

simplices intersecting in k−1-colored simplices. from V to τ12 ·V . The case for τ−1
12

is similar.

From this we have that V forces a coloring on its orbit Outn,p ·V .

Finally we argue that Outn,p ·V forces a coloring on Sn,p. Let Vk ⊂ PS(0)
n,p be the set of

all unpointed separating spheres bounding M0, 3 and pointed separating spheres bounding
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Figure 3.13: A σ-nest forces a coloring on σb1σ nest for transposition σb1.

M0,j for j ≤ k. If x ∈ V3, then we may find a collection of k − 2 pointed nonseparating

spheres that are disjoint from each other and from x. Then since Outn,p ·V contains all

pointed nonseparating spheres the coloring is determined on x. So Outn,p ·V forces a

coloring on V3. Inductively we have that Vk ∪ Outn,p ·V forces a coloring on Vk+1 ∪

Outn,p ·V . So V forces a coloring on Vp−1∪Outn,p ·V . Then if x is any pointed separating

sphere, there are p − 1 pointed curves or separating spheres bounding an M0,3 that are

mutually disjoint and disjoint from x. So Vp−1 ∪Outn,p ·V forces a coloring on x. Since x

was an arbitrary separating sphere, Vp−1 ∪ Outn,p ·V . The result then follow from Lemma

2.4.

Lemma 3.25. Sphere complex automorphisms induce automorphisms of the based sphere
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Figure 3.14: Two sequences together show the nest V forces a coloring on ι1V .

Figure 3.15: The nest V forces a coloring on τ12V .

complex.

There is a natural Outn,p-equivariant map AutSn,p → AutPSn,p.
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Proof. Let φ ∈ AutSn,p by an automorphism of the sphere complex.

According to Lemma 3.19 the automorphism φ preserves the class of separating spheres

boundingM0,3. Suppose that x is a pointed sphere ofMn,p. Then a regularR neighborhood

of x is an M0,3 with a puncture and bounded by two spheres x′, x′′ of Mn,p. Observe that

two spheres of Sn,p cobound an M0,3 with a puncture if and only if they are in a maximal

simplex ∆ such that the corresponding vertex in the region adjacency graph G∆ is degree

2. By Lemma 18 the adjacency graph Gφ(∆) is isomorphic to G∆, and φ(x′) and φ(x′′)

bound a regular neighborhood of a punctured sphere φ̂(x), and the map x 7→ φ̂(x) gives

an isomorphism of PSn,p. Further φ 7→ φ̂ is an injection since every sphere of Mn,p is a

boundary component for a regular neighborhood of some pointed sphere of Mn,p. Hence if

φ̂ is the identity, so must φ be.

Lemma 3.26. Sphere complex automorphisms permute the fibers of the puncture forgetful

map. Let φ ∈ AutSn,p and x ∈ Sn,p. Then

φ
(
ρ−1
q ρq(x)

)
= ρ−1

q′ ρq′(φ(x))

for some q′ ∈ P .

Proof. Observe that an edge of Sn,p in ρ−1
q ρq(x) specifies a punctured sphere of PSn,p

colored by q. If x, x′ ∈ ρ−1
q ρq(x) then we have a path x = x0, . . . , xn = y with xi−1, xi

cobounding an M0,3 that is the regular neighbodhood of punctured sphere yi. Then by

Lemma 3.25 φ induces an automorphism φ̂ ∈ PSn,p such that φ(xi−1), φ(xi) cobound a

neighborhood of φ̂(yi). By Lemma 3.24 PSn,p is uniquely colored by the punctures, so

since yi are all colored by q and φ̂ must permute the colors we have that φ̂(yi) are all punc-

tured spheres based at the same point q′ and give the edges for the path φ(x0), . . . , φ(xn)

in ρ−1
q′ ρq′(x).
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Proof of Theorem 3.15. Suppose that the natural map

Outn,p−1 AutSn,p−1
γ

is an isomorphism. Then according to Lemma 3.21 the following diagram commutes

1 π1(Mn,p−1, q) Out(q)
n,p Outn,p−1 1

1 π1(Mn,p−1, q) Aut(Sn,p, q) AutSn,p−1 1

fq

β

α ρq

and has exact rows since ρq is a surjection as γfq = ρqβ is. By the Five Lemma we have

β is an isomorphism. Let φ ∈ AutSn,p. By 3.26 φ permutes the fibers of the maps ρq, so

there is ψ ∈ Outn,p such that ψφ preserves ρ−1
q ρq. But then ψφ ∈ AutS(q)

n,p, and by the

exact sequence there is ψ′ ∈ Outn,p such that ψφ = ψ′. But then φ = ψ−1ψ′ is also in

Outn,p. It follows that the natural map

Outn,p AutSn,p
γ

is an isomorphism.
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CHAPTER 4

FURTHER OUT

In this chapter we advance the goal of an OutFn analog to the Brendle-Margalit Theorem

[5] by considering subcomplexes of the sphere complex Sn that are themselves combinato-

rial models. We will largely argue by extending automorphisms from subcomplexes of Sn

to automorphisms of Sn by finding a combinatorial characterization of any absent type of

sphere.

In Section 4.1 we consider the complex of separating spheres. In Section 4.2 we con-

sider the complex of separating sphere with sufficiently complex sides. In Section 4.3 we

consider the complex of coconnected spheres and its relation to the free factor complex.

Complex of Separating Spheres

Let Ssepn,p ⊂ Sn,p be the complex of embedded homotopy classes of separating spheres in

Mn,p. In this section we will aim to show that the complex of separating spheres is a

combinatorial model for Outn,p.

Theorem 1.3. The natural map Out(Fn)→ AutSsepn is an isomorphism for n ≥ 3.

We begin by computing the dimension.

Lemma 4.1. Ssepn,p is a flag complex of dimension 2n+ p− 4.

Proof. Ssepn,p is the induced subcomplex of Sn,p, which is known to be flag [11]. We show

by induction that any collection Σ of disjoint spheres in Mn,p is a subset of a maximal

collection of max(2n+ p− 3, 0) disjoint spheres.

Suppose for a base case that Σ = ∅. Any pants decomposition of the surface Sn,p =

∂Hn−P by curves surrounding disks in the handlebodyHn with punctures P has 3n−3+p
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curves with n of them nonseparating. Taking an identical copy of ∂Hn−P and gluing along

Sn,p promotes the pants decomposition of Sn,p into a decomposition of Mn,p into M0,3s. Of

these 3n− 3 + p spheres, n are nonseparating and 2n+ p− 3 are separating.

Assume that any collection of k or fewer disjoint spheres in Mn,p is a subset of a max-

imal collection of 2n + p − 3 disjoint spheres. Let Σ be a collection of k disjoint spheres

and let x be a sphere disjoint from all spheres of Σ. Then cutting Mn,p along x yields two

components homeomorphic to Mn′,p′ and Mn′′,p′′ where n′ + n′′ = n and p′ + p′′ = p + 2.

By inductive hypothesis, the set spheres of Σ in each component can extended to maximal

sets Σ1 and Σ2 of size 2n′+p′−3 and 2n′′+p′′−3 respectively. Then Σ∪{x} is contained

in the maximal set Σ1 ∪ Σ2 ∪ {x} of size

(2n′ + p′ − 3) + (2n′′ + p′′ − 3) + 1 = 2n+ p− 3.

Lemma 4.2. Ssepn,p is connected whenever it has positive dimension, except if (n, p) = (2, 1).

Proof. Consider first the case where n = 0. There is a deformation retraction of M0,s

away from the puncture ps to a wedge product
∨
i∈s−1 S

2
i of p − 1 copies of p2. We thus

have π2(M0,s) ∼= Zs−1. If x is an embedded sphere of M0,s separating the set of punctures

{pi1 , . . . , pik} from the other punctures, then the map

x M0,s

∨
i∈s−1 S

2
i S2

pk

is degree 1 if x separates pk from ps and 0 otherwise. (See degree theory of [17].) So there

are 2s−1 − 1 homotopy classes of spheres in M0,s, with each sphere totally determined by

its bipartition of the punctures. Let P be the punctures. So Ssep0,s is the isomorphic to the

complex of bipartitions of P with size with two bipartitions adjacent if their sides give

nested subsets of P . Then if p ≥ 5 there is a path in Ssep0,s between any two spheres made
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by moving elements between the partitions one at a time.

Consider the case where n ≥ 1. We make use of Putman’s Lemma 2.3 where G =

Outn,p and X = Ssepn,p . Fix a sphere v that bounds an embedded copy of M1,1 in Mn,p.

Note that Outn,p acts transitively on such spheres, and every separating sphere that does

not bound an embedded copy of M1,1 is disjoint from such a sphere. So the orbit Outn,p ·v

intersects the connected component of every separating, considered as a vertex of Ssepn,p .

Consider a free basis a1, . . . , an, b1, . . . , bs of the free group Fn+p with v disjoint from

the spheres representing the basis and v separating a1 from a2, . . . , an. Take as a gener-

ating set of Outn,p the transpositions of {b1, . . . , bs}, the transpositions and inversions of

{a1, . . . , as}, the transvection a1 7→ a1a
−1
2 , and the conjugation b1 7→ a1b1a

−1
1 .

Observe that transpositions of {b1, . . . , bs} and inversions of {a1, . . . , an} leave v fixed.

Further, transpositions of {a1, . . . , an} either fix a1 and thus v, or move v to a disjoint

separating sphere at distance 1 from v in Ssepn,p .

Consider the image v′ of v under the conjugation b1 7→ a1b1a
−1
1 , as shown in green in

Figure 4.1.

Then v′ and v are contained in a copy ofM1,2 bounded by b1 and the sphere u separating

a1 and b1 from a2, . . . , an and b2, . . . , bs. If n ≥ 2 or p ≥ 3 we have that u is essential and

this gives a length 2 path v to u to v′ in Ssepn,p . The inverse conjugation b1 7→ a−1
1 b1a1

similarly moves v distance 2 in Ssepn,p . Appealing to Putman’s Lemma 2.3, we conclude that

(a) The basepoint sphere v
separates a1 from a2, . . . , an
and b1, . . . , bs.

(b) The transvection a1 7→
a1a
−1
2 corresponds to pushing

a+
1 through a−2 .

(c) The conjugation b1 7→
a1b1a

−1
1 corresponds to push-

ing b1 through a+
1 .

Figure 4.1: Nontrivial Outn,p generator actions on the base sphere v move v at most dis-
tance 2 in Ssepn,p .
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Ssepn,p is connected for n = 1 and p ≥ 3.

Suppose n ≥ 2. Then generation of Outn,p also requires transvection. Consider the

image v′ of v under the diffeomorphism corresponding to the transvection a1 7→ a1a
−1
2 , as

shown in orange in Figure 4.1. Then v′ and v are contained in a copy of M2,1 bounded by

the sphere u separating a1 and a2 from a3, . . . , an and b1, . . . , bs. If n ≥ 3 or p ≥ 2 we have

that u is essential and this gives a length 2 path v to u to v′ in Ssepn,p . The inverse transvection

b1 7→ a1a2 similarly moves v distance 2 in Ssepn,p . Appealing to Putman’s Lemma 2.3, we

conclude that Ssepn,p is connected for n = 2 and p ≥ 2 or n ≥ 3.

Finally, we show that Ssep2,1 is disconnected. By capping the boundary component with

a sphere we obtain a map

φ :
(
Ssep2,1

)(0) →
(
Ssep2,0

)(0)

Observe that if u and v are disjoint spheres of Ssep2,1 then φ(u) = φ(v). So φ gives a surjective

simplicial map

Ssep2,1 → S
sep
2,0 .

But as Ssep2,0 is totally disconnected it must be that Ssep2,1 is disconnected.

We say that a sphere is Mn′,p′-bounding if it bounds an embedded copy of Mn′,p′ ⊂Mn,p.

Lemma 4.3. For k ≤ n/2, Mk,1-bounding spheres are characteristic in Ssepn for n ≥ 3.

Proof. Suppose that x ∈ Ssepn bounds an Mk,1. Observe the link of x is isomorphic to a

join Ssepk,1 ∗ S
sep
n−k,1. By Lemma 4.1 the dimensions of the sides of the join are 2k − 3 and

2n− 2k− 3, so any automorphism of Ssepn must send x to a genus k-bounding sphere.

Observe that M1,0 = S1 × S2 so that π2(M1,0, p) ∼= Z. Using the long exact sequence

of the pair (M1,1, ∂M1,1) we compute π2(M1,0) ∼= π2(M1,1, S
2), so M1,1 contains a unique

homotopy class of nonseparating sphere generating the second homotopy group.

Then for any automorphism φ ∈ Aut
(
Ssepn,p

)
we can extend φ to a map φ̂ : Sn,p → Sn,p.

If x is a separating sphere we assign φ̂(x) = φ(x). If a is a nonseparating sphere, then
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Figure 4.2: The sharing pair x and x′ bound M1,1 shown in yellow and orange. They are
contained in the green M2,1 bounded by y. The blue M1,1 is bounded by z. Observe an
M1,1-bounding sphere containing a1 can be represented by drawing two parallel copies a+

1

and a−1 and then connecting them by attaching a handle given by the regular neighborhood
of an arc from a−1 to a+

1 disjoint from a1. Fixing a1, the spheres x and x′ are determined by
their respective intersection numbers with a2.

there is there is an M1,1-bounding sphere x bounding an M1,1 that contains a. Then φ(x)

bounds an M1,1 by Lemma 4.3. We define φ̂(a) to be the nonseparating sphere in the M1,1

bounded by φ(x). We must first demonstrate that φ̂ is well defined.

Fix a nonseparating sphere a. Define a sharing pair {x, x′} (sharing a) to be M1,1-

bounding spheres x and x′ such that x and x′ each bound an M1,1 containing a and are

contained in a common M2,1 bounded by separating sphere y.

Lemma 4.4. If {x, x′} is a sharing pair, then {φ(x), φ(x′)} is a sharing pair for any auto-

morphism φ ∈ Aut (Ssepn ).

Proof. Let a1 be a nonseparating sphere of Mn,p and let {x, x′} be a sharing pair for a1.

Then x and x′ are adjacent to an M2,1-bounding sphere y, but not each other in Ssepn . Let

a2 be a nonseparating sphere disjoint from a1 in the M2,1 bounded by y. Observe further

we may find an M1,1-bounding sphere z that intersects y, but not x or x′. Then, appealing

to Lemma 4.4, φ(x) and φ(x′) must be intersecting M1,1-bounding spheres. Let A be the

M2,1 bounded by φ(y). φ(z) is disjoint from φ(x) and φ(x′), but not φ(y). Consider the
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image of φ(z) in the A. If φ(z) bounded a region containing a nonseparating sphere in

A, there would only be one class of separating sphere in A disjoint from φ(z). Then φ(z)

must bound in A a handle given by the boundary of a regular neighborhood of an arc of

π1(A, ∂A) that must pass through a nonseparating sphere a of A. But then φ(x) and φ(x′)

must both bound the nonseparating sphere of A disjoint from a. So {φ(x), φ(x′)} is a

sharing pair.

Let a be a nonseparating sphere of Mn. We will show that any two M1,1-bounding

spheres that contain a on their M1,1-side are connected by a sequence of sharing pairs. Let

Pa be the sharing pair graph defined as follows. The vertices of Pa are genus 1-bounding

separating spheres of Mn that bound an M1,1 containing a. Two vertices of Pa are adjacent

if they form a sharing pair for a.

Lemma 4.5. The sharing pair graph Pa is connected.

Proof. We appeal to Putman’s Lemma 2.3 using the graph X = Pa and the group G ≤

Outn fixing a setwise. Let a1, . . . , an be a basis for Fn. Then G is generated by diffeomor-

phisms corresponding to permutations of {a2, . . . , an}, inversions, and the transvections

a1 7→ a1a
−1
2 and a2 7→ a2a

−1
3 .

Observe that G acts transitively on M1,1-bounding spheres that contain a on their genus

1-side. Let v be the sphere separating a1 from a2, . . . , an. Observe that of the chosen

generators only the transvection φ : a1 7→ a1a
−1
2 has nontrivial action on v. But, as can be

seen in figure 4.1, v and φ(v) are contained in an M2,1 so that {v, φ(v)} is a sharing pair.

It follow by Putman’s Lemma 2.3 that Pa is connected.

The previous Lemma shows that φ̂ is well defined. If a is a nonseparating sphere of Mn

and x and x′M1,1-bounding sphere bounding an M1,1 containing a, then as Pa is connected

there is a sequence of sharing pairs from x to x′. By Lemma 4.4 this gives a sequence of

sharing pairs from φ(x) to φ(x′). But then φ(x) and φ(x′) share the same nonseparating

sphere so that φ̂(a) is well defined.
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Certainly φ̂ is simplicial. If a and a′ are disjoint nonseparating spheres then there are

disjoint M1,1-bounding spheres x and x′ bounding disjoint copies of M1,1 separating a

and a′, respectively. Since φ(x) and φ(x′) are disjoint M1,1-bounding spheres, φ̂(a) and

φ̂(a′) are also disjoint. If y is a separating sphere disjoint from a, then either there is an

M1,1-bounding sphere separating a from y or y is an M1,1-bounding sphere, so that φ̂(a) is

disjoint from φ̂(y) = φ(y).

Proof of Theorem 1.3. The map constructed above

Φ : Aut (Ssepn )→ Aut (Sn)

with φ 7→ φ̂ is an isomorphism with the map simply restricting automorphisms

Aut (Sn)→ Aut (Ssepn )

giving an inverse to Φ. Then the result follows from Theorem 2.12.

Complexes of High Genus Separating Spheres

For k ≤ n/2, we call a sphere x : S2 ↪→Mn,p k-separating if both components of Mn,p−x

contain either a boundary component or at least k disjoint separating spheres. If x bounds

a copy of Mj,1 with j < n/2, we refer to it as to as xin, or the inside of x. We will also

describe objects disjoint from and inside of x as engulfed by x, and disjoint objects on the

outside as exgulfed by x.

Let Ssep,kn,p ⊂ Ssepn,p be the subcomplex spanned by homotopy classes of essential k-

separating spheres. In this section we show that Ssep,kn,p is a combinatorial model for Outn,p.

Theorem 1.4. For n ≥ 3k, the natural map OutFn → AutSsep,kn is an isomorphism.

Observe that for k > 1, Ssep,kn,p does not have a uniform dimension. For example, in the

case with no boundary components, p = 0, we can construct a maximal (with respect to
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inclusion) simplex of maximal dimension n− 2k as in Figure 4.3. If we write n = qk + r

with q = bn/kc and 0 < r < k, then we can construct maximal (with respect to inclusion)

simplices of smaller dimension 2q + r − 4 as in Figure 4.4.

If there are boundary spheres we can construct a maximal dimension simplex similar to

Figure 4.3 by replacing the Mk,1-bounding spheres with boundary spheres. Similar linear

nesting shows any k-separating sphere can be contained in a maximum dimension simplex

of dimension for k > 1

max
n

{
∆n ↪→ Ssep,kn,p

}
=


n− 2k if p = 0

n− k if p = 1

n+ p− 3 if s ≥ 2

.

Figure 4.3: A maximal dimension maximal simplex of Ssep,kn for k > 1 is spanned by
n − 2k + 1 spheres and cuts Mn into 2 copies of Mk,1 and n − 2k copies of M1,2. The
corresponding graph of Mn components is an unbranched tree with 2 leaves of weight k
and n− 2k internal vertices of weight 1.

Figure 4.4: A minimal dimension maximal simplex of Ssep,kn for k > 1 is spanned by
2q+ r− 3 spheres and cuts Mn into q copies of Mk,1 and r copies of M1,2 and q− 2 copies
of M0,3. The corresponding graph of Mn components is a tree with q leaves of weight k
and q − 2 internal vertices weight 0 and r internal vertices of weight 1.
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Lemma 4.6. For 1 < k < n/2, the complex of k-separating spheres Ssep,kn,p is connected

whenever it has positive dimensional simplices if p = 0, and whenever it has 2 dimensional

simplices if p > 0.

Proof. The proof is by Putman’s Lemma 2.3 with the group Outn,p.

Consider first the case with p = 0 and suppose that Ssep,kn,p has positive dimensional sim-

plices. So n > 2k, and in particular there are Mk,1 and Mk+1,1-bounding spheres in Ssep,kn,p .

Choose a sphere v to be an Mk,1-bounding sphere. Observe that every k-separating sphere

is disjoint from a Mk,1-bounding sphere, and the Mk,1-bounding spheres are exactly the

Outn orbit of v. Let a1, . . . , an be a maximal collection of disjoint nonseparating spheres

of Mn with a1, . . . , ak engulfed by v. Consider as a generating set for Outn the transpo-

sitions and inversions of a1, . . . , an and the transposition diffeomorphism t corresponding

to a1 7→ a1a
−1
k+1. Observe that every inversion fixes v. Observe that a transposition φ ei-

ther fixes v, in the case it swaps spheres on the same side of Mn − v, or φ(v) and v are

contained in a common Mk+1,1-bounding sphere that is k-separating, as in Figure 4.5a.

Finally, v and t(v) are contained in a common Mk+1,1-bounding sphere as in Figure 4.5b.

The connectivity then follows by Putnam’s Lemma.

Consider the case with p > 0. If p = 1 then to have dimension 2 simplices n ≥ k + 2,

and M2,2-bounding spheres are k-separating. If p > 1 then to have dimension 2 simplices

n + p ≥ 5. If p = 1 then n ≥ 4 so that M2,2-bounding spheres are disjoint from a

(a) Transpositions move Mk,1-
bounding spheres distance 2.

(b) Transvections move Mk,1-bounding
spheres distance 2.

Figure 4.5: Nontrivial Outn generator actions on the base sphere v move v at most distance
2 in Ssep,kn,p .
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Mk,1-bounding sphere and must be k-separating. If p > 1 then n ≥ 4 so that M1,3 and

M2,2-bounding spheres are disjoint from a M1,2 or Mk,1-bounding sphere and must be k-

separating.

Choose a sphere v to be an M1,2-bounding sphere. Observe that every k-separating

sphere is disjoint from a M1,2-bounding sphere, and the M1,2-bounding spheres are exactly

the Outn,p orbit of v. Let b1, . . . , bs be the bounding spheres and let a1 be a nonseparating

sphere engulfed by v and a2, . . . , an disjoint nonseparating spheres disjoint from v and a1.

Consider as a generating set for Outn,p diffeomorphisms corresponding to transpositions

of a1, . . . , an, transpositions of b1, . . . , bs, t the transvection a1 7→ a1a
−1
2 , and u the b1 push

corresponding to conjugation b1 7→ a1b1a
−1
1 . Observe first that u leaves v fixed. Observe

that φ a transposition of a1, . . . , an either leaves v if it fixes a1, or swaps a1, and then

φ(v) and v are engulfed by an M2,2-bounding sphere as in Figure 4.6a. Observe that ψ a

transposition of b1, . . . , bs either leaves v if it fixes b1, or swaps b1, and then ψ(v) and v are

engulfed by an M1,3-bounding sphere as in Figure 4.6b. Finally, v and t(v) are engulfed

by an M2,2-bounding sphere as in Figure 4.6c. The connectivity then follows by Putnam’s

Lemma.

Lemma 4.7. Let n ≥ 3 and φ ∈ Aut
(
Ssep,kn

)
. For n/2 > j ≥ k, if x is a Mj,1-bounding

spheres engulfing a sphere y, then φ(x) is a Mj,1-bounding spheres engulfing the sphere

φ(y).

(a) a-Transposition (b) b-Transposition (c) Transvection

Figure 4.6: Nontrivial Outn,p generator actions on the base sphere v move v at most dis-
tance 2 in Ssep,kn,p .
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Proof. Suppose that x bounds an Mj,1 in Ssep,kn . Consider the subcomplex Ex spanned by

spheres engulfed by x and the subcomplex Fx spanned by spheres disjoint but not engulfed

by x. The link of x is a join Ex ∗ Fx and Ex ∼= Ssep,kj,1 and Fx ∼= Ssep,kn−j,1. Then according

to Lemma 4.6, Ex and Fx have simplices with maximal dimension j − k and n − j − k,

respectively. So the link of φ(x) must have the same structure and φ(x) must be Mj,1-

bounding. Note that since

φ (Ex) = Eφ(x)

any sphere y engulfed by x has φ(y) engulfed by φ(x).

We hope to extend automorphisms of Ssep,kn to automorphisms of Ssep,k−1
n by a combi-

natorial characterization of Mk−1,1-bounding spheres in Ssep,kn .

This is the direct analog of handle pairs of Brendle-Margalit [5].

Definition 4.8. If x is an Mk,1-bounding sphere engulfed by Mk+1,1-bounding sphere y we

say that a pair v, w of Mk,1-bounding spheres carve x from y if

(1) Each pair of v, w, y intersects, but v, w, y are all disjoint from x.

v x y

w

(2) The Mk,1-bounding sphere x is the unique sphere engulfed by y and disjoint from both

v and w.

(3) There is more than one Mk,1-bounding sphere engulfed by y and disjoint from v but

not w.

(4) There is more than one Mk,1-bounding sphere engulfed by y and disjoint from w but

not v.
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It follows immediately from this combinatorial definition and Lemma 4.7 that carving

is characteristic. The following Lemma shows additionally that there is a unique nonsepa-

rating sphere that was “carved away” from y.

Lemma 4.9. Let φ ∈ AutSsep,kn . If v, w carve x from y, then

(1) φ(v), φ(w) carve φ(x) from φ(y)

(2) One of the spheres v or w contains a disk or annulus p with ∂s ⊂ y whose image in

yin/y is homotopic to a nonseparating sphere.

(3) There is an arc α with endpoints on y such that v and w separate α from x.

(4) x is the unique Mk,1-bounding sphere engulfed by y and disjoint from p and α.

Proof. (1) follows from Lemma 4.7 and the combinatorial definition of carving.

(2) Fix representatives for v, w, x, and y that intersect minimally and transversely. Then

w ∩ yin is a collection of disks and annuli with boundary on y. No component disk or

annulus of w ∩ yin can be separating, or else there would be at most Mk,1 in yin disjoint

from w. Similarly v ∩ yin is a collection of disks and annuli, no one of that separates yin.

Let β be any nontrivial loop in yin − xin and based at a point on x. Then β must intersect

either v or w, or else the pushes of any nonseparating sphere of x about α would yield

infinitely many Mk,1-bounding spheres engulfed by y and disjoint from v and w, contrary

to the hypothesis. Since no such β exists, there must a component p of v ∩ yin or w ∩ yin

whose image in the quotient yin/y is homotopic to a nonseparating sphere.

(3) Let a be a nonseparating sphere engulfed by y and exgulfed by x and disjoint from the

nonseparating component p as above. If v∩yin or w∩yin have a component that intersects

a, then as v andw are separating there must be an arc intersecting awith endpoints on y that

they separate from x. Suppose that v and w are disjoint from a. If there is a loop γ based at

a that winds through a noseparating sphere engulfed by x and is disjoint from v and w, then

the pushes of a along γ leave v and w unchanged, but the images of x give infintely many
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Mk,1-bounding spheres engulfed by y and disjoint from v and w, in contradiction with the

definiton of carving. Then v and w must separate a from x in y, and there is an arc α with

end points on y that intersects a once and so must be separated from x by v and w.

(4) Assume to the contrary there is some x′ engulfed by y, distinct from x, and disjoint

from p and α. Then there must be some nonseparating sphere a engulfed x′ but not x. Note

that yin − xin ∼= M1,2 and consider the components of a ∩ (yin − xin). If a ∩ (yin − xin)

has a nonseparating disk, it must intersect α. If a ∩ (yin − xin) contains a nontrivial arc, it

must intersect p. So a must be engulfed by x.

Definition 4.10. Define an Mk−1,1-sharing pair {x0, x1} to be a pair of Mk,1-bounding

spheres x0, x1 ∈ Ssep,kn such that:

(1) There are Mk,1-bounding spheres x2, x3 and a Mk+1,1-bounding sphere y such that the

induced subgraph of Ssep,kn on y, x0, x1, v0, v1, w0, w1 is exactly

x0 y x1

v0 v1

w0 w1

and

(2) For i = 0, 1 the spheres vi, wi carve xi from yi.

(3) For z0 ∈ {v0, w0} and z1 ∈ {v1, w1}, there is no Mk,1-bounding sphere engulfed by y

and disjoint from both z0 and z1.

Lemma 4.11. The spheres of an Mk−1,1-sharing pair uniquely engulf a Mk−1,1-bounding

sphere in Mn.

Proof. Let {x0, x1} be a sharing pair with y, v0, w0, v1, w1 as above. Let pi and αi be as

specified in Lemma 4.9, so that, without loss of generality, pi is a component of vi ∩ yin
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that is nonseparating in y. And αi is a loop with endpoints on y that vi and wi separate

from xi. But as v0 and v1 are disjoint, so are p0 and p1.

Since there is no Mk,1-bounding sphere disjoint from both v0 and v1, it must be no

Mk−1,1-bounding sphere is disjoint from both p0 and p1 or from both α0 and α1.

Then α1 must intersect x0, and there are k−1 disjoint nonseparting spheres a1, . . . , ak−1

engulfed by x and disjoint from α1.

Consider the images in yin/y ∼= Mk+1,1. Then the images of p0 and s1 are distinct

nonseparating spheres in yin/y. Further since there is no Mk,1-bounding sphere disjoint

from both, forgetting the basepoint y/y in yin/y gives distinct, disjoint spheres s0 and s1

of yin. Let Σ be a system of n− k − 1 disjoint spheres exgulfed by y.

The let z be the unique sphere separating a1, . . . , ak from s0, s1, and Σ. Then z is

Mk−1,1-bounding and uniquely engulfed by both x0 and x1.

Lemma 4.12. Sharing pairs are characteristic.

If {x0, x1} is an Mk−1,1-sharing pair with x0, x1 ∈ Ssep,kn and φ ∈ AutSsep,kn , then

{φ(x0), φ(x1)} is an Mk−1,1-sharing pair.

Proof. Let y, x0, v0, w0, x1, v1, w1 be as in Definition 4.10. By Lemma 4.7 φ(x0), . . . , φ(x3)

are Mk,1-bounding and φ(y) is Mk+1,1-bounding. The φ image of the induced subgraph on

y, x0, v0, w0, x1, v1, w1 is an isomorphic graph. Property (2) is preserved by Lemma 4.9.

Property (3) of Definition 4.10 is preserved by its combinatorial definition.

Remark 9. Every Mk−1,1-bounding sphere x admits an Mk−1,1-sharing pair in Ssep,kn en-

gulfing x, provided n ≥ 3k. By a change of coordinates the, arrangement in Figure 4.7

shows a possible pair sharing x.

We call three spheres anMk−1,1-sharing triple if the spheres pairwise form sharing pairs

and all engulf a common Mk−1,1-bounding sphere.

Lemma 4.13. Sharing triples are characteristic.

If {x0, x1, x2} is an Mk−1,1-sharing triple with x0, x1, x2 ∈ Ssep,kn and φ ∈ AutSsep,kn , then
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Figure 4.7: A sharing pair and the requisite carvings. The pair {x0, x1} is shown bounding
dark and light orange, respectively. The pair shares the Mk−1,1-bounding sphere x shown
bounding red. The pair is engulfed by Mk+1,1-bounding sphere y shown in yellow. Dark
orange x0 is carved by v0 and w0 shown in dark green and blue. Light orange x1 is carved
by v1 and w1 shown in light green and blue.

{φ(x0), φ(x1), φ(x2)} is an Mk−1,1-sharing triple.

Proof. According to Lemma 4.12 if x0, x1, x2 pairwise form sharing pairs, then so do

φ(x0), φ(x1), φ(x2). It remains only to see that φ(x0), φ(x1), φ(x2) all engulf a common

Mk−1,1-bounding sphere, rather that a distinct Mk−1,1-bounding sphere for each pair. We

reduce the proof to showing φ(x0), φ(x1), φ(x2) all engulf a common Mk−1,1-bounding

sphere if and only if there is no Mk+1,1-bounding sphere y engulfing φ(x0), φ(x1), and

φ(x2). Then if there were a y engulfing φ(x0), φ(x1), and φ(x2), we would have φ−1(y)

engulfs x0, x1, x2, which would contradict that {x0, x1, x2} is a sharing triple.

Observe that, as in the proof of Lemma 4.12, since φ(x0), φ(x1), φ(x2) are pairwise

sharing pairs, there are three pairwise-disjoint M1,1-bounding spheres z0, z1, z2 such that

zi is uniquely engulfed by φ(xi) and disjoint but not engulfed by φ(xi+1), for i ∈ Z/3.

The sphere shared by {φ(xi), φ(xi+1)} is in φ(xi)
in− zini . If φ(x0), φ(x1), φ(x2) all engulf

a common Mk−1,1-bounding sphere x, then any sphere engulfing φ(x0), φ(x1), φ(x2) con-

tains x, z0, z1, and z2 so must be Mj,1-bounding for j ≥ k + 2. If φ(x0), φ(x1), φ(x2) do

not engulf a common Mk−1,1-bounding sphere, then for i ∈ Z/3 we have a distinct Mk−1,1-

bounding sphere shared by {φ(xi), φ(xi+1)} and that engulfs zi−1. But then φ(x0), φ(x1), φ(x2)

do all engulf a common Mk−2,1-bounding sphere x such that φ(xi) engulfs x and zi and

zi+1. Then the same Mk+1,1-bounding sphere y fits into the defining pentagon of Definition

4.10 for all three sharing pairs.
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Let x be anMk−1,1-bounding sphere. We will show that any two sharing pairs engulfing

x are connected by a sequence of sharing triples. Let Px be the sharing pair graph defined

as follows. The vertices ofPx areMk−1,1-sharing pairs in Ssep,kn engulfing x, where n ≥ 3k.

Two vertices {x0, x1} and {x1, x2} of Px are adjacent if the pairs have a common member

and the three spheres form an Mk−1,1-sharing triple engulfing x.

Lemma 4.14. The sharing pair graph Px is connected for n ≥ 3k and k ≥ 2.

Proof. We appeal to Putman’s Lemma 2.3. Fix an Mk−1,1-bounding sphere x and an

Mk−1,1-sharing pair v = {x0, x1} engulfing x with x0 and x1 having geometric intersection

1. Let G ≤ Outn be the subgroup fixing xin, so that G ∼= Outn−k+1,1.

Observe that if two x-sharing pairs {x0, x1} and {x1, x2} contain a common member

x1 and with all three spheres engulfed by a common Mk+1,1-bounding sphere y, then we

can find a length 2 path in Px by choosing x3 with intersection 1 with y and engulfing

an M1,1-bounding sphere that is disjoint from y. Then {x0, x1, x3} and {x1, x2, x3} are

sharing triples, since they are pairwise sharing pairs and all engulf x. So if y0 is theMk+1,1-

bounding sphere engulfing v = {x0, x1}, and {x′0, x′1} is any sharing pair engulfed by y′0,

then there is g ∈ G such that g(x1) = x′1 and g(y0) = y′0. So the orbit G · v is at most

distance 2 from any sharing pair vertex of Px. This completes the first criterion of Putnam’s

Lemma 2.3.

Fix a system of nonseparating spheres a0, . . . , an−k disjoint and not engulfed by x

with a0 but not an−k engulfed by x0 and an−k but not a0 engulfed by x1. Then G ∼=

Aut〈a0, . . . , an−k, 〉 is generated by diffeomorphism classes corresponding to inversions of

a0, . . . , an−k (though these always fix v), transpositions of a0, . . . , an−k the transvection

t′ : a0 7→ a0a
−1
1 .

Consider first the action of transpositions t on the sharing pair v ∈ Px. If neither a0 nor

an−k are swapped by t, then the sharing pair v is fixed. If both a0 and an−k are swapped by

t, then x0 and x1 are swapped, so that the sharing pair v = {x0, x1} is still fixed. If exactly

one of a0 or an−k is swapped by t transposition then exactly one of x0, x1 are exchanged
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from the sharing pair, so that the transposition action moves the sharing pair v distance 1

in Px, as shown in Figure 4.8.

Finally consider the transvection action t′ : a0 7→ a0a
−1
1 on Px. Then t′(x0) (shown in

yellow in Figure 4.9) intersects x0 (shown in orange) twice and t′(x1) = x1 (shown in light

green). Since n− k ≥ 4 there is a nonseparating sphere a2 disjoint and not engulfed from

x0, x1, t
′(x0). So there is an Mk,1 bounding sphere x2 (shown in dark green) engulfing a2

and such that {t′(x0), x1, x2} and {x0, x1, x2} are sharing triple— let x2 be the image of x1

under the transposition (a2an−k). Then we have a length 2 path of in Px from t′(v) to v:

{t′(x0), x1} → {x1, x2} → {x0, x1}.

It follows from Putman’s Lemma 2.3 that Px is connected.

We define a map AutSsep,kn → AutSsep,k−1
n as φ 7→ φ̂ by extending φ ∈ AutSsep,kn to

Mk−1,1-bounding spheres via Mk−1,1-sharing pairs. More explicitly, if x ∈ Ssep,k−1
n is an

Mk−1,1-bounding sphere there is an Mk−1,1-sharing pair {x0, x1} that engulfs x uniquely.

Then by Lemma 4.12, {φ(x0), φ(x1)} is a sharing pair. We define φ̂(x) as the Mk−1,1-

bounding sphere engulfed by {φ(x0), φ(x1)}. By Lemma 4.14 any other choice {x′0, x′1} of

x-sharing pair is connected by a sequence of sharing triples, which by Lemma 4.13 gives

a sequence of sharing triples from {φ(x0), φ(x1)} to {φ(x′0), φ(x′1)}, so that both share the

Figure 4.8: The sharing pair v is formed by the green x1 and orange x0 spheres. Transpo-
sitions move the sharing pair v either distance 0 in Px, by swapping orange and green, or
distance 1, by, for example, swapping orange and yellow. Observe that the orange, yellow,
and green Mk,1-bounding spheres form a sharing triple for the blue sphere x.
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Figure 4.9: The chosen transvection moves v distance 2 in Px. Observe that x0 orange,
x1 light green, x2 dark green, and t′(x0) yellow can be organized into two sharing triples:
orange with the greens and yellow with the greens.

same Mk−1,1-bounding sphere φ̂(x), which is thus well defined.

Certainly φ̂ is simplicial. To see that observe that if x and x′ are disjoint Mk−1,1-

bounding spheres, then n ≥ 3k so there are disjoint Mk−1,1-sharing pairs that φ takes to

disjoint sharing pairs. Then φ̂(x) is disjoint from φ̂(x′). If y ∈ Ssep,kn is disjoint from x,

then y is Mj,1-bounding with j ≤ n
2

so there is an x-sharing pair disjoint from y, with its

φ-image disjoint from φ(y).

Lemma 4.15. For n ≥ 3k and k ≥ 2, the natural restriction map AutSsep,k−1
n →

AutSsep,kn is an isomorphism.

Proof. We claim that the constructed map extension AutSsep,kn → AutSsep,k−1
n given by

φ 7→ φ̂ is the inverse homomorphism to the restriction AutSsep,k−1
n → AutSsep,kn with

ψ 7→ ψ|k. By definition the restriction of φ̂ to Ssep,kn is φ. So the extension is injective

and restriction is surjective. But restriction must also be injective, since if ψ ∈ Ssep,k−1
n

restricts to the identity, then for any Mk−1,1-bounding sphere x there is an x-sharing pair

{x0, x1} that ψ fixes. But then ψ(x) = x is the unique Mk−1,1-bounding sphere engulfed

by {x0, x1}.

Proof of Theorem 1.4. The proof is by induction on k using Lemma 4.15. Theorem 1.3

provides the base case.
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The Free Factor Complex

The free factor complex FFn is the simplicial complex with a k-simplex given by conju-

gacy classes of length k+ 1 chains of proper free factors. Bestvina and Bridson announced

that the free factor complex is a combinatorial model for OutFn, though as of this writing

the result remains unpublished [38].

Theorem 1.5. For n ≥ 3, the natural map OutFn → AutFFn is an isomorphism.

We proceed by proving first that the complex of coconnected spheres of Mn has au-

tomorphism group OutFn. The complex of coconnected spheres, that was introduced by

Hatcher and Vogtmann to prove homological stability results for OutFn in [28], and the

complex of nonseparating spheres [30]. This complex is a fibration over the free factor

complex.

Definition 4.16. If Fn can be expressed as the internal free product of subgroups A,B 6

Fn, then A and B are free factors of Fn. The free factor complex has as vertices the

conjugacy classes of free factors of Fn. A collection of A1, . . . Ak of free factors spans a

simplex if there is are free factors A′1 < · · · < A′k such that Ai is conjugate to A′i. We

will frequently abuse notation and refer to both a free factor and its conjugacy class as a

free factor, as dictated by context. The distinction is rarely relevant since the free factor

complex is known to be flag [8].

Hatcher [8] characterized the free splitting complex as a complex of spheres in Mn. We

define the following three simplicial complexes related to the free factor complex:

· Let Snonsepn be the simplicial complex with k-simplices specified by k + 1 disjoint non-

separating spheres in Mn.

· Let Scocn be the subcomplex of Snonsepn with simplices given by collections of spheres that

are coconnected (i.e. have connected complement) in Mn.
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· Let SFn be the barycentric subdivision of the (n− 2)-skeleton of Scocn . Thus vertices of

SFn are coconnected sets of at most n− 1 spheres, and simplices are given by chains of

proper subsets.

For a simplex Σ0 ⊂ · · · ⊂ Σk of SFn, we obtain a corresponding simplex of FFn by the

(conjugacy class of) free factors

π1(Mn − Σk, x0) 6 · · · 6 π1(Mn − Σ0, x0)

so we obtain a surjection of posets

SFn → (FFn)op.

A single nonseparating sphere of Mn corresponds to a rank n−1 free factor of Fn. The

fiber over a rank k free factor corresponds to all choices of collections n−k factors of rank

n− 1 any j of that intersect in a rank j free factor.

We begin by showing

Theorem 4.17. For n ≥ 3 the natural map

OutFn → AutSFn ∼= AutScocn
∼= AutSnonsepn

is an isomorphism.

The result relies on the following theorem of Pandit [30].

Theorem 4.18. For n ≥ 3 we have AutSnonsepn
∼= Out(Fn).

Our first goal is to show that AutSFn ∼= AutScocn .

Let Mn,p be the manifold Mn with interiors of p disjoint closed balls removed. We call

n the genus of Mn,p. If Σ is a set of disjoint embedded spheres of Mn,p, we will denote by

Mn,p|Σ the manifold Mn,p cut along Σ.
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Lemma 4.19. Automorphisms of SFn preserve the cardinality of sets of spheres.

Proof. We induct downward on the cardinality of sets of spheres. We claim as a base case

that a set of spheres Σ ∈ SF (0)
n has n − 1 spheres if and only if it is adjacent to finitely

many sets of spheres in SFn, namely, the proper subsets of Σ. If Σ ∈ SF (0)
n has fewer than

n − 1 spheres, then Mn|Σ has genus k ≥ 2. The complex of coconnected nonseparating

spheres of Mn|Σ is isomorphic to Scock , which is infinite. Choose any nonseparating sphere

a of Mn|Σ. Then Σ ∪ {a} is coconnected in Mn and adjacent to Σ in SFn.

Assume that automorphisms of SFn preserve the size of sets of spheres with at least

k + 1 spheres. Let Ak ⊂ SF (0)
n be the sets of spheres of SFn with k or fewer spheres. A

set of spheres Σ ∈ Ak has k spheres if and only if link(Σ) ∩ Ak is finite. By hypothesis

automorphisms of SFn preserve Ak and its complement, so must preserve the class of sets

of k spheres.

We now prove the first isomorphism of Theorem 4.17.

Lemma 4.20. For n ≥ 3 we have AutSFn ∼= AutScocn .

Proof. As SFn is the barycentric subdivision of the n − 2 skeleton Scocn
(n−2), there is a

natural map

Φ : AutScocn → AutSFn.

We will construct the inverse. Let φ ∈ AutSFn. The vertices of SFn are the simplices of

Scocn with dimension n− 2 or less. Then φ induces a bijection φ∗ of simplices of Scocn
(n−2).

By Lemma 4.19 we have φ∗ preserves the dimension of simplices, so φ∗ is an automorphism

of Scocn
(n−2).

It remains to see that φ∗ also preserves n− 1 simplices. To see this we will show that a

collection of n disjoint separating spheres Σ form a simplex in Scocn if and only if

Scocn ∩

(⋂
x∈Σ

link(x)

)
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is finite. Note that if Σ is a coconnected set of n spheres, then Mn|Σ is homeomorphic to

M0,2n. Then π2(Mn|Σ) is the free abelian group generated by any 2n− 1 of the balls, and

an embedded sphere must be degree at most 1 over any generator. There are thus finitely

many embedded spheres of Mn|Σ. Then
⋂
x∈Σ link(x) contains finitely many vertices of

Scocn . Conversely suppose Σ is a non-coconnected set of n disjoint spheres. Then Mn|Σ

has a component M ′ with genus at least one and at least two boundary spheres. Choose a

nonseparating sphere x of M ′, a boundary sphere y, and a loop α based at y intersecting

x once. The push map of x along α produces a collection A of infinitely many spheres of

Mn. Each a ∈ A is nonseparating in M ′ ⊂ M |Σ, so {a, x} is coconnected for any x ∈ Σ.

Then A ⊂
⋂
x∈Σ link(x). Thus φ∗ must also preserve n−1 simplices and gives a simplicial

automorphism of Scocn . Then φ 7→ φ∗ gives the inverse homomorphism to Φ.

Call a collection of m disjoint spheres Σ ⊂ Scocn
(0) a bounding m-tuple (pair, triple,

etc.) if Σ is not coconnected but every proper subset of Σ is. The genus of the bounding

tuple is the smaller of the genera of the two components of Mn|Σ. The following lemma

shows we can detect the genus combinatorially.

Lemma 4.21. The link of a genus k bounding m-tuple of Scocn is isomorphic to the join

Scock ∗ Scocn−k−m+1.

Proof. Consider Σ ⊂ Scocn
(0) a bounding m-tuple with genus k. Then Mn|Σ has two

components, R1
∼= Mk,m and R2

∼= Mn−k−m+1,m. Let Vi be the complex of coconnected

nonseparating spheres in Ri. So V1
∼= Scock and V2

∼= Scocn−k−m+1. We claim that link(Σ) is

the join V1 ∗ V2. Certainly link(Σ) ⊂ V1 ∗ V2. Consider sets of spheres Σi giving simplices

of Vi. The Ri|Σi are connected. Mn|(Σ1 ∪ Σ2) is R1|Σ1 and R2|Σ2 glued along Σ, and

hence connected. So Σ1 ∪ Σ2 must be coconnected in Mn and the join Σ1 ∗ Σ2 lies in

link(Σ).

We now prove the second isomorphism of Theorem 4.17.
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Lemma 4.22. For n ≥ 3 we have AutScocn
∼= AutSnonsepn .

Proof. Restriction gives a natural map

Φ : AutSnonsepn → AutScocn .

We will construct the inverse. Observe that since Scocn
(0) = Snonsepn

(0) any φ ∈ AutScocn

induces a set map φ∗ of Snonsepn
(0). If φ∗ is a simplicial automorphism, then φ 7→ φ∗ is

the inverse homomorphism to Φ. As Snonsepn is a flag complex (Lemma 3 of [11]), it will

suffice to show that φ∗ sends pairs of disjoint spheres to pairs of disjoint spheres. Disjoint

nonseparating spheres form a bounding pair if and only if they are not adjacent in Scocn .

So it suffices to show that φ preserves bounding pairs of Scocn . We will demonstrate this

through the stronger result that φ preserves the set of genus k bounding m-tuples.

Case 1. Suppose Σ is a genus k bounding m-tuple with m > 2. Any Σ′ ⊂ Scocn
(0) is a

bounding m-tuple if and only if Σ′ does not span a simplex in Scocn , but every proper subset

of Σ′ does. Hence if φ ∈ AutScocn , then φ(Σ) is a bounding m-tuple. By Lemma 4.21,

link(Σ) is isomorphic to Scock ∗ Scocn−k−m+1. We can determine k by the maximal simplex

dimension on the sides of the join. Then φ(Σ) is also genus k.

Figure 4.10: The manifold Mn|{ai}ni=1 is a 3-sphere with 2n balls removed. We obtain Mn

by again identifying the spheres with + and − labels via a vertical reflection. The spheres
Σ′ = {xi, yi}4

i=1 are such that Mn|Σ′ contains x and y in disjoint copies of M0,4. The M0,4

containing x (identify x+ and x−) is shaded. The M0,4 containing y is the exterior of y2

and y3.
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Case 2. Suppose Σ = {x, y} has m = 2 spheres. Choose a collection Σ′ of disjoint non-

separating spheres such that there are two separate components of Mn|Σ′ homeomorphic

to M0,4 and containing x and y respectively. We can construct Σ′ as follows. Mn|Σ has two

components, homeomorphic to Mk,2 and Mn−k−1,2. So we have a set of spheres {ai}ni=1

coconnected in Mn disjoint from y with ak+1 = x. Choose x2, x3, y2, y3 as shown in fig-

ure 4.10 and relabel a1 = y1, x1 = ak, x4 = ak+2, y4 = an. Then {x1, . . . , x4} (resp.

{y1, . . . , y4} are the boundary spheres of a component of M |Σ′ homeomorphic to M0,4 and

containing x (resp. y). Further {x, x1, x2} and {x, x3, x4} are genus 0 bounding triples.

Let Σ′ = {xi, yi}4
i=1.

By Case 1 we have that {φ(x1), . . . , φ(x4)} is a genus 0 bounding 4-tuple and {φ(x), φ(x1), φ(x2)}

and {φ(x), φ(x3), φ(x4)} are genus 0 bounding triples. So {φ(x1), . . . , φ(x4)} define a

component of M |Σ′ homeomorphic to M0,4 and containing φ(x).

If {x1, . . . , x4} 6= {y1, . . . , y4} then φ(x) and φ(y) lie in disjoint M0,4 homeomorphic

components of M |φ(Σ′). Then φ(x) and φ(y) are are disjoint. They are also not adjacent

in Scocn , so they are bounding a pair.

Suppose {x1, . . . , x4} = {y1, . . . , y4}. Then n = 3 andM3|{xi}4
i=1 is homeomorphic to

two copies of M0,4. As x, y form a bounding pair, the bounding triples must be {x, x1, x2},

{x, x3, x4}, {y, x1, x2}, and {y, x3, x4}. Then the φ image of these triples are bounding

triples giving φ(x) and φ(y) contained in disjoint M0,4. Then φ(x) and φ(y) are disjoint

and must form a bounding pair.

Dyer and Formanek gave an algebraic proof of the fact that automorphisms of auto-

morphisms of free groups are simply automorphisms of free groups [39]. Vogtmann and

Bridson gave a more recent geometric proof [25].

Theorem 4.23. The natural maps

AutFn → Aut AutFn
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and

OutFn → Aut OutFn

are isomorphisms for n ≥ 3. In particular Out OutFn = 1 and the center of OutFn is

trivial.

Lemma 4.24. Automorphisms of the free factor complex preserve the rank of free factors.

Let φ ∈ AutFFn and let A be a free factor of Fn. Then A and φ(A) have the same

rank.

Proof. Suppose that A is a free factor of FFn. Then the link of A is a join

linkA ∼= span{B ∈ FFn(0) | B < A} ∗ span{B ∈ FFn(0) | A < B}

between the sub- and super-factors of A. So if A is rank k then {B ∈ FFn(0) | B < A}

spans a dimension k−2 subcomplex isomorphic toFFk and similarly {B ∈ FFn(0) |A <

B} spans a dimension n− k− 2 subcomplex isomorphic to FFn−k. If φ ∈ AutFFn then

φ preserves this join and φ(A) must be either rank k or n− k.

Let G be the subcomplex of FFn spanned by rank 1 and rank n− 1 free factors. Then

G is a connected and bipartite with the rank 1 and rank n − 1 factors forming the parts

of the bipartition. Then if A,A′ ∈ G(0) are free factors the same rank, the free factors

φ(A), φ(A′) must have the same rank for any φ ∈ AutFFn. Assume to the contrary that

there is φ ∈ AutFFn an automorphism and a rank n − 1 free factor A with φ(A) rank 1.

Then φ must swap the bipartition of G. In fact, there is a map AutFFn → Z/2 taken by

sending φ′ ∈ AutFFn to the generator of Z/2 if φ′ swaps the bipartition on G. Then if

G = 〈φ,OutFn〉 ≤ AutFFn is the subgroup generated by OutFn and the automorphism

φ we have an exact sequence

1 OutFn G Z/2 1
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But by Theorem 4.23 we know OutFn is centerless and Out OutFn = 1, so we may apply

Lemma 2.10 to conclude thatG ∼= OutFn×Z/2. Then there is an order two automorphism

t of FFn that swaps the bipartition of G and commutes with OutFn. Then there is rank

one free factor 〈b〉 and free factor A with rank n− 1 such that t(〈b〉) = A. Let A have free

basis a1, . . . , an−1 with b = an−2 if b ∈ A. Then the transvection φ′′ with b 7→ ba1 and

ai 7→ ai is an outer automorphism acting on the free factors with

A = φ′′(A) = φ′′t(〈b〉) = tφ′′(〈b〉) = t(〈ba1〉)

but this contradicts that t is injective. It must be that for any automorphism φ ∈ FFn the

rank of A and φ(A) are the same if A is rank 1 or rank n− 1.

But then if A is a rank k free factor, the link of A is a join with sides of dimension k−2

and n−k−2, and any rank n−1 free factor B containing A is on the dimension n−k−2

side. So the link of φ(A) is isomorphic to FFk ∗ FFn−k with φ(B) the rank n − 1 free

factor on the dimension n− k − 2 side. But then φ(A) must be rank k as well.

Theorem 1.5. For n ≥ 3, the natural map OutFn → AutFFn is an isomorphism.

Proof. Let A be a free factor of rank n − 1. Recall the bijection between the conjugacy

classes of rank n − 1 free factors and homotopy classes of nonseparating spheres of Mn.

There is a unique nonseparating sphere z in Mn specifying the conjugacy class of a free

factor Ax in π1(Mn − x, q). So if φ ∈ AutFFn we define a map of spheres by defining

φ̂(x) to be the sphere specifying the free factor φ(Ax) for any nonseparating sphere x. If

Σ is a coconnected set of k spheres then we have the conjugacy class representatives of

free factors Ax for x ∈ Σ such that
⋂
x∈Σ′ Ax′ is a free factor of rank n − |Σ′| for any

Σ′ ⊂ Σ. Coversely, if A1, . . . , A` are rank n − 1 free factors bijecting to nonseparating

spheres x1, . . . , x` such that
⋂
j∈sAj a rank n− |s| free factor for any s ⊂ {1, . . . , `} then

it must be that

Fn =
⋂̀
j=1

Aj ∗ 〈a1〉 ∗ · · · ∗ 〈a`〉
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for some aj ∈ Aj so that {xj}`j=1 must be coconnected nonseparating spheres.

Then by Lemma 4.24 this property is preserved by φ, so that we have a well defined

simplicial map φ̂ : SFn → SFn with φ̂(Σ) = {φ̂(x) | x ∈ Σ}. This gives us homomor-

phisms
OutFn AutFFn AutSFn

φ φ̂

·̂

If φ̂ fixes every coconnected set of sphere then φ must fix every free factor, so these homo-

morphisms are in fact isomorphisms.
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CHAPTER 5

COMPLEX OF STRONGLY SEPARATING CURVES

The content of this chapter is joint work with Alan McLeay at the University of Glasgow.

The complex of strongly separating spheres CssSg,p ⊂ CSg,p is the induced subcomplex

whose vertices are separating curves in the genus g, n-punctured surface Sg,p such that both

components have complexity 3g′ + p′ − 3 > 0. In particular

CssSg,p = CsepSg,p

is the complex of separatng curves whenever p ≤ 1, and otherwise CssSg,p ⊂ CsepSg,p is

the subcomplex discarding curves bounding pairs of pants.

In [40, 41] Bowditch demonstrates that if Aut CssSg,p is the mapping class group, then

every quasi-isometry of the Weil-Petersson metric on Teichmüller space associated to Sg,p

is induced by a mapping class of Sg,p. In [12] Bowditch completes the reduction by showing

that Aut CssSg,p is the mapping class group in all but finitely many cases.

Theorem 5.1. If g + p ≥ 7, then the natural map

MCG± (Sg,p)→ Aut (Css(Sg,p))

is an isomorphism.

Bowditch asks which of the remaining low complexity g+p ≤ 6 cases have Aut CssSg,p

given by the mapping class group. In this chapter we provide an independent proof of

Bowditch’s result that settles some of these low complexity cases and provide evidence

that the remaining unknown cases of Aut Css are themselves mapping class groups. The

goal of this chapter is to prove the following theorem.
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Theorem 5.2. The natural map

MCG± (Sg,p)→ Aut (Css(Sg,p))

is an isomorphism for the green entries in the table below.

g \ p 0 1 2 3 4 5 6

0 × × × × × × ×

1 × × × × ? ? [12]

2 × × × ? X [12] [12]

3 [42] [43] X X [12] [12] [12]

4 [42] [43] X [12] [12] [12] [12]

5 [42] [43] [12] [12] [12] [12] [12]

6 [42] [43] [12] [12] [12] [12] [12]
We also show that in the unsettled cases of CssS1,4, CssS1,5, and CssS2,3, any automor-

phisms with respect the fibers of the point-forgetting projection arise from mapping class

groups, and that if CssS1,4 is a mapping class combinatorial model, so is CssS2,3.

Point-Forgetting Projection

Notice that to have any edges at all in the graph CssSg,p it must be that

3g + p ≥ 7.

As we have seen in Chapter 3, the puncture forgetting map

CssSg,p CsepSg

is a simplicial quotient map for p ≤ 2. In particular CssS2,1 and CssS2,2 have quotients onto

CsepS2, which is disconnected. All of these disconnected complexes have automorphisms
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permuting the connected components, so that their automorphism groups contain an infinite

symmetric group. We conjecture that the strongly separating curve complex CssSg,p is rigid

whenever it is connected.

Lemma 5.3. Automorphisms of the strongly separating curve complex induce isomor-

phisms on region adjacency graphs.

Let φ ∈ Aut CssSg,p and let ∆ be any simplex of CssSg,p. Then φ induces an isomor-

phism between the region adjacency graphs G∆ and Gφ(∆).

Proof. The proof of 3.2 shows in particular that φ induces an incidence preserving bijection

between the edges of G∆ and Gφ(∆). But since every sphere of CssSg,p is separating, every

simplex k− 1 simplex ∆ gives an adjacency graph G∆ that is a tree with k edges and k+ 1

vertices. But then by Whitney’s Theorem 2.1 an incidence preserving bijection between

G∆ and Gφ(∆) must be an isomorphism.

Definition 5.4. We call a region adjacency graph linear if it is a tree with exactly 2 leaves.

Recall that a leaf is a degree 1 vertex of a tree.

Lemma 5.5. Automorphisms of the strongly separating curve complex preserve the topo-

logical type of curves.

Let φ ∈ Aut CssSg,p and supposed that Aut CssSg,p is connected. Then for any curve x

in CssSg,p there is a homoemorophism ψ of Sg,p such that ψ(x) = φ(x).

Proof. We will consider adjacency graphs and consider several cases depending on the

genus of the surface. In each case we will utilize a combinatorial characterization of the

curve in terms of the region adjacency graph of a maximal simplex and apply Lemma 5.3.

Case 1. Suppose that g = 0.

Let x be a separating curve of S0,p. As in Figure 5.1 we may choose a maximal simplex

∆ of CssSg,p containing x so that the region adjacency graph G∆ is linear. Then the curve

x bounds an S0,p′ if and only if the edge ex is distance p′ − 3 from a leaf of G∆. The result

then follows from Lemma 5.3.
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Figure 5.1: A maximal simplex and the region adjacency graph.

Figure 5.2: A maximal simplex and the region adjacency graph.

Case 2. Suppose that g ≥ 2.

Suppose that x is a separating curve with sides Sg′,p′ and Sg′′,p′′ with both g′, g′′ > 0.

As in Figure 5.2 we may choose a maximal simplex ∆ of CssSg,p containing x that has

no curves bounding a 3-punctured disk. Note that the adjacency graph G∆ of a maximal

simplex ∆ is a tree with vertices at most degree 3. Then ∆ has a curve bounding a 3-

punctured disk if and only if with the tree G∆ has exactly g leaves and g+p−2 non-leaves.

Then ex is a cut edge of the tree G∆ separating G∆ into two trees with with g′ and g′′ leaves,

respectively, and g′ + p′− 2 and g′′ + p′′− 2 non-leaves, respectively. Then by Lemma 5.3

φ(x) is such a cut edge in the isomorphic tree Gφ(∆) so that the sides of φ(x) must be an

Sg′,p′ and an Sg′′,p′′ .

If instead x has an S0,p′ side, then any maximal simplex ∆ containing x has a region

adjacency graph G∆ with greater that g leaves. We may choose a simplex ∆ as in Figure 5.3

containing x and with a a region adjacency graph G∆ that has g + 1 leaves and x separates

one leaf v representing a 3-punctured disk from the other leaves, and the component of the

leaf v in the cut tree G∆− ex has p′− 3 edges. Then by Lemma 5.3 φ(x) is such a cut edge

in the isomorphic tree Gφ(∆), and by the previous subcase the g leaves φ∗(w) of Gφ(∆) for
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Figure 5.3: A maximal simplex and the region adjacency graph.

w 6= v represent curves bounding S1,1s so that φ(v) must represent a 3-punctured disk and

its component in the cut tree Gφ(∆) − eφ(x) specifies an S0,p′ bounded by φ(x).

Case 4. Suppose that g = 1.

Figure 5.4: A maximal simplex and the region adjacency graph.

Let x be a strongly separating curve of S1,p. As in Figure 5.4 we may choose a maximal

simplex ∆ of CssSg,p containing x so that the region adjacency graph G∆ is linear. Then by

Lemma 5.3 we have that φ induces an automorphism of G∆. Let x0 and x1 be the curves

of ∆ with x0 bounding the S1,1 and x1 bounding the 3-punctured disk. We can be sure that

φ(x0) and φ(x1) each bound either a 3-punctured disk or an S1,1, since a leaf of G∆ must be

either S1,1 or S0,4. A strongly separting curve x bounds a k-punctured disk if and only if ex

is distance k− 3 from a leaf v in an adjacency region graph G∆′ for some maximal simplex

of maximal dimension ∆′ such that v represents a 3-punctured disk. It then suffices to show

that φ(x1) bounds 3-punctured disk.

Suppose that p ≥ 6. Observe that a maximal dimension simplex has exactly one curve

that bounds a 3-punctured disk, and simplices with multiple curves bounding 3-punctured

disks may be maximal with respect to inclusion, but do not have maximal dimension. Ob-
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Figure 5.5: (Top) A maximal simplex of submaximal dimension has multiple curves bound-
ing 3-punctured disks. (Bottom) Replacing curves bounding a 3-punctured disk with a pair
of curves results in a simplex of higher dimension.

serve that if x bounds a 3-punctured disk then as in Figure 5.5 (top) we may choose a

maximal (with respect to inclusion) simplex ∆ of CssS1,p such that the region adjacency

graph G∆ has 3 leaves, and the edge ex representing x in G∆ is incident to a degree 3 vertex.

Then by replacing x with a pair y, y′ of curves as in Figure 5.5 we would obtain a maximal

simplex of maximal dimension

∆′ = ∆ ∪ {x} − {y, y′}.

This shows a separating curve x bounds a 3-punctured disk if and only if x is contained in a

maximal simplex ∆ of submaximal dimension such that ∆−{x} is contained in a maximal

simplex of maximal dimension. But then if x bounds a 3-punctured disk, so does φ(x) for

any φ ∈ Aut CssS1,p.

Suppose that p = 4 or 5. Note that in this case any two distinct curves of the same type

intersect, so that CssS1,p is colorable by curve type and in particular the “extremal curve”

subcomplex E of curves bounding 3-punctured disks and p-punctured disks is connected

and bipartitie. Assume to the contrary that there is x bounding a 3-punctured disk such that

φ(x) does not represent a 3-punctured disk for some automorphism φ ∈ CssS1,p. Then φ

must swap the bipartition of E Let G < Aut CssS1,p be the subgroup generated by φ and

MCG± S1,p. We obtain a map ρ| : G→ Z/2 with ρ|(g) the generator of Z/2 if g exchanges
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the bipartition of E . Then AutG∆
∼= Z/2 so that we have an exact sequence

1 MCG± S1,p G Z/2 1

Then by Corollary 11 it must be that G ∼= Z/2 × MCG± S1,p. Then there an automor-

phism φ′ ∈ Aut CssSg,p that is order 2 and commutes with MCG± S1,p. If x0 and x1 are

disjoint curves bounding a 3-punctured disk and a 4-punctured disk respectively, then there

is a mapping class ψ such that ψ(x0) = x0 and ψ(x1) 6= x1, for example the half twist

exchanging punctures on either side of x1 along an arc disjoint from x0. But this gives a

contradiction:

x1 = φ′(x0) = φ′ψ(x0) = ψφ′(x0) = ψ(x1) 6= x1.

It can only be that every automorphism preserves the type of curve.

Remark 10. Let q be a puncture of Sg,p. Observe that the we have the projection

ρq : C(Sg,p, q) CSg,p−1

restricts to the projection

ρ|q : CssSg,p CsepSg,p−1

since CssSg,p does not contain any curves bounding 2-punctured disks. So if x is a sep-

arating curve of Sg,p−1 the fiber ρ|−1
q

(x) ⊂ CssSg,p is isomorphic to a subforsest of the

Bass-Serre tree Tx given by the x splitting of π1(Sg,p−1, q), though ρ|−1
q
ρ|q(x) ⊂ CssSg,p is

not connected if ρ|q(x) is curve bounding a 2-punctured disk of Sg,p−1.

Definition 5.6. Let Aut(CssSg,p, q) < Aut CssSg,p be the subgroup preserving the con-
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nected fibers of ρ|q, so that φ ∈ Aut(CssSg,p, q) if

φ
(
ρ|
−1
q
ρ|q(x)

)
= ρ|

−1
q
ρ|q(φ(x))

for all x such that ρ(x) does not bound a 2-punctured disk.

We recall the computation of the automorphism group of the separating curve complex

due to Brendle, Margalit, and Kida in [43] and [42].

Theorem 5.7. The natural map

MCG± Sg,p → Aut CsepSg,p

is an isomorphism if g = 0, p ≥ 5 or g = 1, p ≥ 3 or g = 2, p ≥ 2 or g ≥ 3.

We show that automorphisms preserving the fibers of point forgetting projection ρ|q are

in fact mapping classes.

Lemma 5.8. The natural map

MCG±(Sg,p, q)→ Aut Css(Sg,p, q)

is an isomorphism if g = 0, p ≥ 6 or g = 1, p ≥ 4 or g = 2, p ≥ 3 or g ≥ 3.

Proof. Consider action by the Birman exact sequence.

1 π1(Sg,p−1, q) MCG±(Sg,p, q) MCG± Sg,p−1 1

1 π1(Sg,p−1, q) Aut Css(Sg,p, q) Aut CsepSg,p−1 1

fq

β γ

α
ρ|
∗
q

The diagram commutes by Lemma 3.7, so we need only consider the exactness of the

second row. Certainly any point push must move some strongly separating curve, so α is
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injective. By Theorem 5.7 we have fqγ = ρ|
∗
q
β is surjective, so that ρ|∗q must be surjective.

As in the proof of Lemma 3.7, image α ⊂ ker ρ|
∗
q
, since maps point pushing q around loops

of Sg,p−1 act on the fibers of ρ|q.

Let φ ∈ ker ρ|
∗
q
. Suppose that x ∈ CsepSg,p−1 is a curve that does not bound a 2-

punctured disk. Then

x = (ρ|
∗
q
φ)(x) = ρqφ(y)

for any y ∈ ρ|
−1
q

(x). Then φ(ρ|
−1
q

(x)) = ρ|
−1
q

(x) so that φ is determined by its action

on each ρ|−1
q

(x). But ρ|−1
q

(x) is π1(Sg,p−1, q) equivalently isomorphic to the Bass Serre

tree Tx, and since ker ρ|
∗
q

acts on Tx it follows by Theorem 2.5 that ker ρ|
∗
q

acts on Tx as

π1(Sg,p−1, q). Then we may compose φ with a push map to assume that φ(y) = y for

any strongly separating curve y in Sg,p that bounds a 3-punctured disk containing q. Then

if y in Sg,p bounds a 3-punctured disk containing q. Let Σ be any collection of curves

disjoint from y such that y bounds the only 3-punctured disk disjoint from every curve of

Σ. No curve of Σ bounds a 3-punctured disk containing q, so φ fixes Σ, and it must be that

φ(y) = y. But then

image α = ker ρ|
∗
q
.

Then the rows of the commutative diagram are exact and by the Five Lemma the map β is

an isomorphism.

Definition 5.9. Let Autρ| CssSg,p < Aut CssSg,p be the subgroup that permutes the con-

nected fibers of the point forgetting map, so φ ∈ Autρ| CssSg,p if there is a permutation σ

of the punctures P such that

φ
(
ρ|
−1
q
ρ|q(x)

)
= ρ|

−1
σ(q)

ρ|σ(q)
(φ(x))

for every puncture q ∈ P and curve x ∈ CssSg,p such that x does not bound a 3-punctured

disk containing q.
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Corollary 10. The natural map

MCG± Sg,p → Autρ| CssSg,p

is an isomorphism if g = 0, p ≥ 6 or g = 1, p ≥ 4 or g = 2, p ≥ 3 or g ≥ 3.

Proof. Let φ ∈ Autρ| CssSg,p and let σ be the associated permutation of the punctures.

Then there is ψ ∈ MCG± Sg,p such that ψ−1(q) = σ(q) for every puncture q ∈ P . So ψφ

preserves ρ|−1
q
ρ|q(x) for every x ∈ CssSg,p and some q ∈ P . Then ψφ ∈ Aut Css(Sg,p, q)

so by Lemma 5.8 it must be that φ is induced by a mapping class.

Remark 11. We will use a similar technique to Chapter 3 to show that Aut CssSg,p always

permutes the fibers of the puncture forgetting map ρ| if Sg,p has sufficiently high complexity

by showing Aut CssSg,p permutes the coloring of an arc complex associated to the fibers of

ρ|.

Definition 5.11. Define the strongly separating pointed arc complex AssepSg,p to be the

complex of homotopy classes of 3-punctured disks and pointed loops in Sg,p whose regular

neighborhood is bounded by strongly separating curves. Two loops or punctured disks are

adjacent in AssepASg,p if their homotopy classes have disjoint representatives including

endpoints.

Lemma 5.12. Automorphisms of Aut CssSg,p induce automorphisms of AssepSg,p.

There is an MCG± Sg,p equivariant homomorphism

Aut CssSg,p → AutAssepSg,p.

Proof. The proof is similar to that of Lemma 3.13. Suppose that φ ∈ Aut Css.

If x is a strongly separating loop, then the boundary of a regular neighborhood of x

is two strongly curves y, y′ that cobound a punctured annulus of Sg,p. The curves y, y′

cobound a punctured annulus if and only if there is a maximal dimension simplex ∆ of

90



CssSg,p such that in the adjacency graph G∆, the edges corresponding to y and y′ are incident

to the same degree 2 vertex vx. Lemma 5.3 guarantees that φ(y) and φ(y′) cobound a

regular neighborhood of a strongly separating loop that we define to be φ̂(x).

If x is a 3-punctured disk, then Lemma 5.5 guarantees that its bounding curve y has

φ(y) bound a 3-punctured disk φ̂(x).

Then φ̂ is simplicial since loop or 3-punctured disk of Sg,p are disjoint if and only if

their above characterizing-curves span a simplex in CssSg,p. So we have a homomorphism

by φ 7→ φ̂.

Lemma 5.13. AssepSg,p is uniquely colorable for g ≥ 3 or g ≥ 2, p ≥ 4.

Proof. The proof is similar to the proof of Lemma 3.12, though the arc complex has only

strongly separating loops and 3-punctured disks, so the similar argument requires a higher

complexity surface.

Again we argue that there are color forcing paths between nests, as in Example 11. But

if V and V ′ are nests respectively parallel to curves that intersect, the argument in Example

11 would require at least 6 punctures. We consider the cases of different complexities

separately. Since connected bipartite graphs are uniquely colorable we assume that p ≥ 3.

Case 1. Assume that g ≥ 3.

Fix a puncture order σ : P → {1, . . . , p} and a separating curve x of Sg and let N be

a σ-nest of Sg,p parallel to x. Let V = {Ni}pi=1 be the corresponding clique of CssSg,p.

Let z be a regular neighborhood of the spine of N , so that z is p-punctured disk whose

bounding curve intersects each rib Ni of the nest with geometric intersection 2. Choose

any collection Σ of nonseparating curves whose Dehn twists generate MCG±(Sg,p, z), the

mapping classes fixing z pointwise. Then let H be the generating set for MCG± Sg,p given

by twists about the curves of Σ and the half-twist about the vertabrae of the nest N .

Figure 5.6 shows a color forcing sequence between the ribsNi andNi+1 and their image

under the half-twist about a vertebra of N .
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1 2 1 2 21 1 2 1 2

Figure 5.6: A color forcing sequence between two parallel loops and their braid.

If x, x′ are disjoint strongly separating spheres then as in 11 these is a color forcing

sequence between σ-nests parallel to x and x′. It must be that V forces a coloring on its

orbit MCG± Sg,p ·V . Observe that any 3-punctured disk of Sg,p is disjoint from p−3 loops

in MCG± Sg,p · V . Then a V also forces a coloring on every 3-punctured disk. A coloring

on a loop bounding a k-punctured disk is determined by p − k loops of MCG± Sg,p · V

and loops bounding k − 1-, k − 2-, . . ., and 4-punctured disks and a 3-punctured disk. We

conclude by induction that V forces a coloring on AssepSg,p.

Case 2. Assume that g = 2 and p ≥ 4.

31 2 p...

Figure 5.7: A base nest of strongly separating curves.

Fix a nest as in Figure 5.7. Let V = {Ni} be the corresponding simplex of AssepSg,p.

Certainly V requires p colors to color. Let H be the generating set for MCGSg,p consisting

of the braids about the vertebrae of N and the Dehn twists about the nonseparating curves

shown in Figure 5.8.

We first show V forces a coloring on Tvi ·V for a half-twist Tvi about the ith vertebra vi

of nest N . Figure 5.9 (left) shows that Ni, . . . , Ni+3 force a coloring on vi ·Ni, vi ·Ni+1. A

similar arugment concludes Ni, . . . , Ni+3 force a coloring on vi+2 ·Ni, vi+2 ·Ni+1. Figure

5.9 (right) shows that Ni, . . . , Ni+3 force a coloring on vi+1 ·Ni, vi+1 ·Ni+1.
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31 2 4p...

Figure 5.8: The mapping class group is generated by Dehn twists about these nonseparating
curves and braiding about the vertebrae of the nest, shown in red.

31 2 4

1
234

1
234

1 2 43

1 2 43

31 2 4

134

21

134
2

2

3 4

21 3 4

1 3 42

Figure 5.9: A nest forces a coloring on its image under braids about the vertebrae of the
nest.

It remains only to be seen that V forces a coloring on its image under Dehn twists ofH .

Of the Dehn twists described by Figure 5.8 only one, say Tα, fixes fewer than p − 1 loops

of V . As in Example 11, V forces a coloring on loops parallel to punctured disks that are

the regular neighborhoods of vertebrae and half-twists of vertebrae, that force colorings on

p− 3 size subsets of Tα · V . Since p− 3 size subsets of Tα · V cover Tα · V , we have that

V forces a coloring on Tα · V . So V forces a coloring on AssepS2,p by Lemma 2.4.

Remark 12. The unique coloring of AssepSg,p fails for the lowest complexity cases. In
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31 2 4

23...p

1

12...p-1
4 42

21 43 1 432p...

p
...

p... p...

p...

13...p

23...p

p...

Figure 5.10: The loops of V force a coloring on their image Tα · V under the Dehn twist
Tα by considering color forcing sequence passing through loops contained in p-punctured
disks of S2,p.

particular the loops of AssepS2,3 and AssepS1,4 are disconnected, and AssepS1,5 may be

colored by 3 topolocial curve types, rather than the 5 punctures.

Proof of Theorem 5.2. We consider only the cases

(g, p) ∈ {(2, 4), (3, 2), (3, 3), (4, 2)}

which are undecided in [12] By Lemma 5.12 any automorphism φ ∈ Aut CssSg,p induces

an automorphism φ∗ of AssepSg,p, so by Lemma 5.13 there is some permutation σ of the

punctures such that φ permutes the puncture-coloring of AssepSg,p by σ. By composing φ

with a mapping class permuting the punctures by σ−1, we may assume that φ∗ fixes the

puncture-coloring of AssepSg,p.

Suppose that x′ ∈ ρ−1
q ρq(x) for x ∈ CssSg,p such that x does not bound a 3-punctured

disk containing q. Then ρ−1
q ρq(x) is isomorphic to the Bass Serre tree Tx and in particular

connected. Then there is a path x = x0, . . . , xn = x′ with xi and xi+1 cobounding an annu-
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lus punctured by q. But then φ(x0), . . . , φ(xn) is a path of curves with φ(xi) and φ(xi+1)

cobounding annuli punctured by q. So φ(x′) ∈ ρ−1
q ρq(φ(x)). But then φ ∈ Autρ| CssSg,p.

From Corollary 10 we conclude that φ is induced by a mapping class.

The Low Complexity Cases

Remark 13. In [5] Brendle and Margalit demonstrate that automorphisms of subgraphs of

the curve complex CSg can often be extended to the full complex CSg by sharing pairs

where two curves bound subsurfaces that intersect to give a third curve. The action of

automorphisms on the sharing pair is then used to extend the automorphism to the shared

curve.

In light of Theorem 5.7 automorphisms of CssSg,p need only be extended to curves

bounding 2-punctured disks. Brendle and Margalit give a combinatorial characterization

of sharing pairs in terms of five additional curves beyond the sharing pair. Their technique

can also be used to verify that Aut CssSg,p is the mapping class group in all high genus

cases, but in low complexity cases there simply is not enough room to use their techniques

to demonstrate if sharing pairs are preserved. However, a similar technique allows us to

give reductions between computations of Aut CssSg,p for different genus g and number of

punctures p.

Definition 5.14. Let z be curve bounding a 2-punctured disk. When p ≥ 4 define a shar-

ing pair of Sg,p for z to be a pair of curves {x, x′} both of that bound 3-punctured disks

containing z and such that x and x′ have geometric intersection 2. If p = 3 we instead

demand that x and x′ have geometric intersection 4. If p = 2 we instead demand that x

and x′ bound S1,3s containing z and have either geometric intersection 2, or x and x′ have

geometric intersection 4 and there is a curve x′′ that bounds an S1,1 on the same side as z

of x and x′.

Let P ′z be the sharing pair graph defined as follows. Let the vertices of P ′zSg,p be the

sharing pairs for z. Two sharing pairs for z are adjacent if there is a curve y bounding an
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S1,1 that lies on the opposite side of z for each curve in each sharing pair.

Lemma 5.15. Let z be a curve bounding a 2-punctured disk in Sg,p. The sharing pair

graph P ′z is connected if g ≥ 1, p ≥ 5, or g ≥ 2, p ≥ 3, or g ≥ 3, p ≥ 2.

Proof. We appeal to Putman’s Lemma 2.3 using MCGSg,p and considering cases based

on the genus and number of punctures, since our definition of sharing pairs is surface

dependent. Since in every case MCGSg,p acts transitively on the sharing pairs of Sg,p

(except for p = 4), it suffices to choose a generating set H and sharing pair v for the 2-

punctured disk z and show that for each h ∈ H there is a sequence of sharing pairs {xi, x′i}

from h · v to v such that for each i there is an S1, 1 disjoint from xi, x
′
i, xi+1, and x′i+1.

Case 1. Consider g ≥ 1 and p ≥ 5.

Figure 5.11: (Left) A sharing pair. (Right)Curves for twists generating MCG.

Figure 5.12: (Left) Braiding points about a minimally intersect arc β moves v disjointly
from an S1,1. (Right) A twist about a nonseparating arc intersecting one curve of the sharing
pair. The resulting sharing pair is distance 2 from v.

Fix a sharing pair v = x0, x
′
0 as in Figure 5.11 left. Let H be the generating set for

MCG(Sg,p, z) given by Dehn twists about the curves shown in Figure 5.11 right. In partic-

ular H may be taken to consist of Dehn twists about curves disjoint from the sharing pair
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v, the twist Ta about a nonseparating curve a intersecting x0 twice and x′0 zero times, the

twist Ta′ about a curve a′ intersecting x′0 twice and x0 zero times, the half twist Tα such

that T 2
α is the Dehn twist about the boundary of the 4-punctured disk containing v (shown

in green in Figure 5.11), and a half twist Tβ swapping a puncture in x0 with a puncture out

of v about an arc β intersecting x0 once and x′0 zero times. Then Tα swaps x0 and x′0, but

fixes v. In Figure 5.12 (left) we see that the half twist Tβ has Tβ · v = {x′0, Tβx0} that is

contained in a 5-punctured disk with v so that v and Tβ · v are distance 1 in P ′z. In Figure

5.12 (right) we see that Ta · v = {x′0, Tax0} that is contained in a 5-punctured disk with

Tβv so that v and Ta · v are distance 2 in P ′z. The case of Ta′ is similar.

Case 2. Consider p = 4 and g ≥ 2.

Figure 5.13: (Left) A half twist about the green curve and twists about the blue generate
MCGSg,p. (Right) Any two of these are a sharing pair.

When there are 4 punctures we have two topological types of sharing pairs: those with

intersection 2 and those with intersection 4. But as in Figure 5.13 any intersection 4 pair

is contained with an intersection 2 pair in an S1,4 disjoint from an S1,1. So all of P ′z is

connected to the orbit of v. We may generated MCGSg,p by a half-twist exchanging the

non-z punctures, but fixing v and Dehn twists about a set separating curves as in Figure

5.13. The twist of xforthethe0 about a separating curve disjoint from x′0 and intersecting

x0 twice is also contained with x0 and x′0 in the complement of an S1,1.

Case 3. Consider p = 3 and g ≥ 2.

The case is similar. By choosing a generating set H for MCG(Sg,p, z) consisting of

Dehn twists about nonseparating curves that intersect the sharing pair minimally as in Fig-

ure 5.14, we can ensure that h · v is always distance 1 from v.
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Figure 5.14: (Top) A sharing pair and a generating set. (Middle,Bottom) The images of
sharing pair v under generators are contained with v in the complement of an S1,1.

Case 4. Consider p = 2 and g ≥ 3.

Figure 5.15 shows a base sharing pair v and a set of nonseparating curves whose Dehn

twists H generate the mapping class group fixing z. Figure 5.16 shows a length 5 path in

P ′z that contains the image of v under H . for the the

The case is similar to Case 2, but the paths in P ′z are longer. Figure 5.15 gives a base

sharing pair v and a generating set. Figure 5.16 shows a path in P ′z containing the image of

v under the generating set.

Lemma 5.16. If the natural map

MCGSg−1,p+1 → Aut CssSg−1,p+1
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Figure 5.15: (Right) A set of nonseparating curves whose Dehn twists generate the mapping
class group fixing z. (Left)A sharing pair.

Figure 5.16: A length 5 path in P ′z that contains the image of v under H . In the top row
there are sharing pairs, giving vertices of P ′z. In the bottom row are S1,1s disjoint from both
sharing pairs above, giving edges of P ′z.

is an isomorphism, then so is

MCGSg,p → Aut CssSg,p

provided g ≥ 1, p ≥ 5, or g ≥ 2, p ≥ 3, or g ≥ 3, p ≥ 2.

Proof. Assume that Aut CssSg−1,p+1
∼= MCGpmSg−1,p+1. Let φ ∈ CssSg,p. Let z be
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a curve bounding a 2-punctured disk of Sg,p. Let {x, x′} be a sharing pair for z with

x, x′ ∈ AutCssSg,p. Then there is a curve y ∈ Aut CssSg,p on the large side of x and x′

and such that y bound an S1,1 and an Sg−1,p+1 that contains x and x′. By Lemma 5.5 φ(y)

also bounds an S1,1, so without loss of generality we may compose φ with a mapping class

so that φ fixes y = φ(y). Then considering y as if it were puncture for the large side of its

complement, note that the link of y contains a subcomplex

Ly ∼= CssSg−1,p+1

Then by hypothesis φ acts on Ly as a mapping class, so there is ψ ∈ MCG± Sg,p such that

ψ(y′) = φ(y′)

for every y′ ∈ Ly. In particular the φ(x), φ(x′) are the homeomorphic image of x, x′ so that

φ(x), φ(x′) must be a sharing pair for a 2-punctured-disk-bounding curve we denote φ̂(z).

Further if {x̂, x̂′} is another sharing pair for z, then there by Lemma 2.3, the sharing pair

complex P ′z is connected so there is a sequence {x0, x
′
0}, . . . , {x`, x′`} of sharing pairs such

that xi, x′i, xi+1, x
′
i+1 all share z and such that an S1,1 bounding curve y′ lies on their large

sides. But then φ(xi), φ(x′i), φ(xi+1), φ(x′i+1) is the homeomorphic image xi, x′i, xi+1, x
′
i+1

so the sharing pairs φ(xi), φ(x′i) and φ(xi+1), φ(x′i+1) must share the same 2-punctured

disk.

It follows there is a well defined extension φ̂ ∈ Aut CsepSg,p of φ ∈ Aut CssSg,p given

by z 7→ φ̂(z) if z bounds a 2-punctured disk and x 7→ φ(x) otherwise. By Theorem 5.7 it

must be that φ̂ is induced by a mapping class. But then φ is induced by a mapping class.

Remark 14. According to Lemma 5.16 we can reduce considering CssS2,3 to considering

CssS1,4.
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The Four Punctured Torus

The strongly separating curve complex CssS1,4 may be considered the graph with vertices

3-punctured and 4-punctured disks of S1,4 and an edge between a 3-punctured and a 4-

punctured disk if the 3-punctured disk is contained in the 4-punctured disk. In particular

note that CssS1,4 is bipartite.

Lemma 5.17. CssS1,4 has no cycles smaller than octagons.

Proof. Certainly if two 3-punctured disks are contained in a 4-punctured disk, then it is

unique. So there are no 4-cycles. Suppoose to the contrary that

x0, y0, x1, y1, x2, y2

is a hexagon in CssS1,4 with xi a 3-punctured disk and yi a 4-punctured disk. Without loss

of generality we may assume that x0 has punctures p0, p1, and p2 and that x1 has p0 and p1

and that x2 has p0 and q, where q is either p1 or p2. If x0, x1, x2 are not all contained in the

same 4-punctured disk, then they contain

· a0 arc from p0 to p1 in x0

· a′0 arc from q to p0 in x0

· a1 arc from p1 to p0 in x1

· a2 arc from p0 to q in x2

Such that a0a1a2a
′
0 is a nontrivial loop of the torus. We have a0a1 is contained in the

4-punctured disk y0 so it is null-homotopic in the unpunctured torus. Similarly a2a
′
0 is

contained in the 4-punctured disk y2 so it is null-homotopic in the unpunctured torus. But

then a0a1a2a
′
0 is nullhomotopic. It must be that x0, x1, x2 are contained in the same 4-

punctured disk.
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Definition 5.18. Let O = (xi, yi)i∈4 be an octogon of CssS1,4 with xi a 3-punctured disk

and yi a 4-punctured disk. Let P (xi) be the punctures of xi. The point configuration of the

octogon O is the sequence of the punctures not in xi, so P (O) = (P − P (xi))i∈4.

Lemma 5.19. Up to relabeling the points, the point configuration P (O) of an octagon O

of CssS1,4 is one of the following: (p0, p1, p2, p3) or (p0, p1, p0, p1) or (p0, p0, p1, p1).

Proof. Fix minimally intersecting representatives of the homotopy classes of octagon (xi, yi)i∈4.

Case 1 (p0, p0, p1, p1).

Suppose that xi and xi+1 contain the same 3 points. We may assume that x0 and x1

both contain p1, p2, p3. Consider the image of x1 in the x0 complementary region S1,4−x0.

Since x0 and x2 have two points in common we may assume without loss of generality that

p1, p2 ∈ x2 Let a1 be an arc from p1 to p2 in x2 and let a2 be an arc from p2 to p1 in x1. If

a1 is not contained in y0, we would have a1a2 a nontrivial loop in the torus, since a2 is in

y0. But this contradicts that x2 and x1 lie in the 4-punctured disk y1. So the arc a1 must be

in y0. Assume to the contrary that p0 /∈ P (x2). Then there is an arc a3 from p1 → p3 in x2,

but by an argument similar to the above a3 is in y0. But if a1 and a3 are in y0, then it must

be x2 is in y0, a contradiction. We have that x2 contains the points p0, p1, p2. By a similar

argument x3 contains the same points.

Figure 5.17: Two 3-punctured disks in a 4-punctured disk that share all three punctures.
The 3-punctured disk x1 has arcs outside of the 3-punctured disk x0 parallel to the boundary
of y0.

Case 2 (p0, p1, p0, p1). Suppose that xi and xi+2 contain the same points. We may

assume that x0 and x2 contain p1, p2, p3. As x0 and x2 are not contained in the same 4-disk
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there must be two points, say p1 and p3, and arcs a0 in x0 from p1 to p3 and a2 in x2 from p3

to p1 such that a0a2 is a nontrivial curve in the unpunctured torus. Assume to the contrary

that p1 and p3 are both in x1, then there is an arc a1 in x1 from p3 to p1. Since a0a1 ⊂ y1,

we have a0a1 is nullhomotopic in the unpunctured torus. But then a0a2 = ~a1a2 is nontrivial

in the unpunctured torus so not contained in y2, a contradiction. It must be that either p1 or

p3 not in x1. We may assume that p3 /∈ P (x1).

A similar argument forces p1 or p3 /∈ P (x3). Suppose that p3 ∈ P (x3). Consider an

arc b3 ⊂ x3 from p2 to p3. All arcs from p1 to p2 in x0, x1, and x2 must lie in a common

4-curve by the above argument. But then the arcs from p2 to p3 in x0 and x2 cannot lie in a

4-disk, but this contradicts that p2 to p3 in x3 lies in both. It must be that p3 /∈ P (x3).

Remark 15. All of these point configurations are realized by octagons of CS1,4 as we can

see in Figures 5.21, 5.22, and 5.23. However we claim that on the basis of computational

evidence that the octagon with point configuration (p0, p1, p2, p3) is unique up to homeo-

morphism of S1,4, as discussed in Section 5.4.
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Figure 5.18: The standard octagon in CssS1,4. The octagon consists of the 8 punctured
disks around the outside. Representing arcs are shown in the middle.
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Conjecture 20. Any octagon of CssS1,4 that has the point configuration (p0, p1, p2, p3) is

homeomorphic to the standard octagon shown in Figure 5.18.

Lemma 5.21. If Conjecture 20 is true then automorphisms of CssS1,4 preserve the standard

octagons.

Proof. Assume that Conjecture 20 is true. We will show that an octagon has point con-

figuration (p0, p1, p2, p3) if and only if the pairs of 4-punctured disks at distance four have

infinitely many distinct length 4 paths in CssS1,4, and the pairs of 3-punctured disks at

distance four have finitely many distinct length 4 paths in CssS1,4

Let O = (xi, yi)i∈4 be a standard octagon. In light of Conjecture 20 there is an arc α

between the two punctures P (xi) ∩ P (xi+1) that is in yi−1, xi, yi, xi+1, yi+1. Then the half

twist Tα fixes yi−1, xi, yi, xi+1, yi+1, but does not fix xi+2, yi+2, xi−1 so that

yi−1, T
n
αxi, T

n
α yi, T

n
αxi+1, yi+1

is a distinct length 4 path of CssS1,4 for every n.

We further claim that there are finitely many paths of length 4 between x0 and x2, and

similarly between x1 and x3. Let

x0 → y0,n → x1,n → y1,n → x2

be a distinct path in CssS1,4 for every n ∈ Z. Then there are two integers n, n′ such that

P (x1,n) = P (x1,n′), but then these paths would give an octagon with point configuration

(p0, p1, p2, p1) or (p0, p3, p2, p3) which would contradict Lemma 5.19. It must be that there

are exactly two paths of length 4 between x0 and x2 in CssS1,4. Similarly there are exactly

two paths of length 4 between x0 and x2 in CssS1,4.

Suppose that O = (xi, yi)i∈4 is an octagon with point configuration (p0, p0, p1, p1).
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Assume to the contrary that there are infinitely many distinct paths

y3 → x0,n → y0,n → x0,n → y1

for n ∈ Z. Then since

y3 → x0,n → y0,n → x1,n → y1 → x2 → y2 → x3

is an octagon so by Lemma 5.19, it must be that the point configurations are equal P (x0,n) =

P (x1,n). But then since there are infinitely many length four paths y3 to y1, so there must be

two integers n, n′ such that P (x0,n) = P (x0,n′). But then those paths together give an oc-

tagon with point configuration (p0, p0, p0, p0) or (p1, p1, p1, p1) in contradiction to Lemma

5.19.

Suppose that O = (xi, yi)i∈4 is an octagon with point configuration (p0, p1, p0, p1). Let

αi be an arc of xi between p2 and p3. Then the loop αi ~αj , for the reversed arc ~α, is contained

in a 4-curve so it is trivial in the unpunctured torus. The x2 is determined by one additional

arc α′ from p1 to p2, so that x0 and x2 do not fill the torus. There must be a nonseparating

loop β of the torus based at p0 which is disjoint from both. Let ψβ be the point pushing

map pushing p0 along β. The loop β intersects the four curves, so Then

x0 → ψnβy0 → ψnβx1 → ψnβy1 → x2

for all n ∈ Z gives infinitely many distinct length 4 paths from x0 to x2 in CssS1,4.

Definition 5.22. Let z be a 2-punctured disk. Define the octagon sharing pair graph Poz to

be the graph defined as follows. The vertices of Poz are sharing pairs for z in CssS1,4. Define

two sharing pairs for z to be adjacent in Poz if they are contained in two standard octagons

O,O′ of CssS1,4 such that the subgraphO∩O′ is two edges incident at a 4-punctured disk.

Lemma 5.23. The sharing pair graph Poz is connected.
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Proof. We appeal to Putman’s Lemma 2.3. Observe that any standard octagon (xi, yi)i∈4

can be uniquely represented by disjoint arcs (ai)i∈4 with ai in xi and xi+1 from puncture

pi+2 to pi+3 for i ∈ Z/4. Let two sharing pairs {x0, x1} and {x′0, x′1} be adjacent in

Poz . Then without loss of generality x0 = x′0 and there are two octagons (xi, yi)i∈4 and

(x′i, y
′
i)i∈4 with representing arcs (ai)i∈4 and (a′i)i∈4 respectively such that ai = a′i for

i = 3, 0, 1 and z is a regular neighborhood of a0.

Fix a sharing pair {x0, x1} and let (ai)i∈4 be the arcs representing an octagon that con-

tains x0 and x1. The pure mapping class subgroup fixing the 2-punctured disk z acts tran-

sitively on sharing pairs. By Putman’s Lemma it suffices to see that there is a generating

set H for that we can move from {x0, x1} to {hx0, hx1} in Pz. Let (αi)i∈4 be the disjoint

nonseparating curves such that αi geometric intersection 1 with ai. Let β be the nonsep-

arating curve disjoint from every ai. Let γ be the separating curve that the bounds the

regular neighborhood of a0a1. Take as a generating pure mapping class subgroup fixing

the 2-punctured disk z the Dehn twists H = {Tα1 , Tα2 , Tα3 , Tβ, Tγ}. But since each gen-

erated fixes either a3 or a1, we have that {x0, x1} is adjacent to {hx0, hx1} in Poz for all

h ∈ H .

Proposition 24. If Conjecture 20 is true then the natural map MCG± S1,4 → CssS1,4 is an

isomorphism.

Proof. Assume that Conjecture 20 is true. Extend φ ∈ Aut CssS1,4 to φ̂ ∈ Aut CsepS1,4

and apply Theorem 5.7. We need only define φ̂ on 2-punctured disks.

If z is a two punctured disk let {x0, x1} be a sharing pair for z. Choose a standard

octagon O containing {x0, x1} as distance 2 3-punctured disks. Then by Lemma 5.21

φ(O) is a standard octagon and by Lemma 5.5 φ(x0) and φ(x1) are 3-punctured disks.

So {φ(x0), φ(x1)} must also be a sharing pair and we define φ̂(z) as the 2-punctured disk

shared by {φ(x0), φ(x1)}.

It remains only to see that φ̂(z) is well defined. Suppose that {x′0, x′1} is another sharing

pair sharing z. By Lemma 5.23 there is sequence of standard octagons (O)`i=1 with {x0, x1}
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in O1 and {x′0, x′1} in O` such that the subgraph Oi ∩O′i+1 is two edges of CssS1,4 incident

at a 4-punctured disk. That is Oi ∩ O′i+1 have in common 3-punctured disks x0,i and x1,i

and a 4-punctured disk yi adjacent to them in CssS1,4, and {x0,i, x0,i+1} is a sharing pair for

z for all i. But then {φ(x0,i), φ(x0,i+1)} are 3-punctured disks in the sequence of standard

octagons (O)`i=1 {φ(x0,i), φ(x0,i+1)} and {φ(x0,i+1), φ(x0,i+2)} sharing pairs for the same

2-punctured disk. So φ̂ is well defined.

Computational Evidence

In this section we examine computational evidence for Conjecture 20, which says that

any octagon of CssS1,4 with a point configuration that is a permutation of (p0, p1, p2, p3) is

homeomorphic to the standard octagon shown in 5.18.

Computations in the curve complex can be performed by representing curves by their

intersection numbers with the arcs of a triangulation of S1,4. We take as our triangulation

p0 p1 p2 p3 p0

p0 p1 p2 p3 p0

e0 e3 e6 e9

e0

e1 e2
e3

e4 e5
e6

e7 e8
e9

e10 e11
e1

with oriented edges E = {ej}j∈12. With this convention any multicurve x is uniquely

1 2 3 0

1 2 3 0

0

0

Figure 5.19: A traingulation of the surface S1,4.

represented by a tuple in ZE≤0 giving the geometric intersection number |i|(ej, x). We refer

the reader to [44] for details on these normal coordinates. Normal coordinates uniquely

determine a number of line segments at each angle of each triangle, so that any tuple ZE≤0
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is a multicurve if and only if it satisfies a triangle inequality for each triangle:

|i|(ej, x) ≤ |i|(ek, x) + |i|(e`, x)

if ej, ek, e` form a triangle and x a multicurve.

From the normal coordinates of a surface we can also compute a nonunique represen-

tation of the curve as a cyclically reduced word w(x) on the alphabet E = {ej}j∈12 by

choosing a parametrization of x and listing the edges in the order that they are crossed. In

these coordinates the Dehn twist Ty(x) of x about y is easy to compute essentially by re-

placing subwords of x crossing y with an appropriate w(y), and fast algorithms are known

[45]. Hamidi-Tehrani [46] comptues geometric intersection number |i|(x, y) by showing

that

|i|(T n+1
y x, ej)− |i|(T ny x, ej) = |i|(x, y)|i|(y, ej)

for sufficiently large n.

Large finite subgraphs of CssS1,4 are made easier to compute by the fact that the map-

ping class group acts transitively on the edges of CssS1,4. We have computed a subgraph

CssS1,4 by iteratively applying a generating set to the edge shown in 5.20. This is vastly

more efficient than computing intersections between known curves to look for disjoint

curves, as the curve complex is δ hyperblic so that finite subgraphs C of CssS1,4 are sparse.

Figure 5.20: The curves (1,0,1,0,2,2,0,2,2,1,2,1) and (0,2,2,0,2,2,0,2,2,2,2,2) are disjoint
so span an edge of CssS1,4.

Using this we have examined a subgraph C of CssS1,4 with 105278 edges. Using stan-
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Figure 5.21: The standard octagon represented in normal coordinates.

Figure 5.22: An octagon with point configuration (p0, p3, p0, p3) represented in normal
coordinates.

dard graph algorithms we compute 5255 octagons based at the curve (1,0,1,0,2,2,0,2,2,1,2,1).

Of these 918 octagons have point configurations given by permutations of (p0, p1, p2, p3).

By computing the
(

8
2

)
pairwise intersections of the 8 curves, we can verify that these are

indeed homeomorphic to standard octagons, in support of Conjecture 20.
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Figure 5.23: An octagon with point configuration (p3, p3, p2, p2) represented in normal
coordinates. Note the top-left three curves and the bottom-right three curves differ by the
Dehn twist T 2

e6
.

110



REFERENCES

[1] W. J. Harvey, “Boundary structure of the modular group,” in Riemann surfaces and
related topics: Proceedings of the 1978 Stony Brook Conference (State Univ. New
York, Stony Brook, N.Y., 1978), ser. Ann. of Math. Stud. Vol. 97, Princeton Univ.
Press, Princeton, N.J., 1981, pp. 245–251.

[2] J. L. Harer, “Stability of the homology of the mapping class groups of orientable
surfaces,” Ann. of Math. (2), vol. 121, no. 2, pp. 215–249, 1985.

[3] H. A. Masur and Y. N. Minsky, “Geometry of the complex of curves. I. Hyperbolic-
ity,” Invent. Math., vol. 138, no. 1, pp. 103–149, 1999.

[4] N. V. Ivanov, “Automorphism of complexes of curves and of Teichmüller spaces,”
Internat. Math. Res. Notices, no. 14, pp. 651–666, 1997.

[5] T. Brendle and D. Margalit, “Normal subgroups of mapping class groups and the
metaconjecture of Ivanov,” ArXiv e-prints, Oct. 2017. arXiv: 1710.08929 [math.GT].

[6] M. Culler and K. Vogtmann, “Moduli of graphs and automorphisms of free groups,”
Invent. Math., vol. 84, no. 1, pp. 91–119, 1986.

[7] M. R. Bridson and K. Vogtmann, “The symmetries of outer space,” Duke Math. J.,
vol. 106, no. 2, pp. 391–409, 2001.

[8] A. Hatcher and K. Vogtmann, “The complex of free factors of a free group,” Quart.
J. Math. Oxford Ser. (2), vol. 49, no. 196, pp. 459–468, 1998.

[9] A. Hatcher, “Homological stability for automorphism groups of free groups,” Com-
ment. Math. Helv., vol. 70, no. 1, pp. 39–62, 1995.

[10] F. Laudenbach, “Sur les 2-sphères d’une variété de dimension 3,” Ann. of Math. (2),
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