A Comparative Study of Distributed Shared Memory System

Design Issues*

Ajay Mohindra Umakishore Ramachandran
IBM T. J. Watson Research Center College of Computing
P. O. Box 704 Georgia Tech
Yorktown Heights, NY 10598 Atlanta, GA 30332-0280
ajay@watson.ibm.com rama@cc.gatech.edu

GIT-CC-94/35
August 1994

Abstract

In this research the various issues that arise in the design and implementation of distributed shared
memory (DSM) systems are examined. This work has been motivated by two observations: distributed
systems will continue to become popular, and will be increasingly used for solving large computational
problems; and shared memory paradigm is attractive for programming large distributed systems because
it offers a natural transition for a programmer from the world of uniprocessors. The goal of this work is
to identify a set of system issues in applying the shared memory paradigm to a distributed system, and
evaluate the effects of the ensuing design alternatives on the performance of DSM systems. The design
alternatives have been evaluated in two steps. First, we undertake a detailed measurement-based study
of a distributed shared memory implementation on the CLoups® distributed operating system towards
understanding the system issues. Second, a simulation-based approach is used to evaluate the system
issues. A new workload model that captures the salient features of parallel and distributed programs
is developed and used to drive the simulator. The key results of the research are that the choice of
the memory model and coherence protocol does not significantly influence the system performance for
applications exhibiting high computation granularity and low state-sharing; weaker memory models
become significant for large-scale DSM systems; the unit of coherence maintenance depends on a set of
parameters including the overheads for servicing data requests as well as the speed of data transmission on
the network; and the design of miscellaneous system services (such as synchronization and data servers)

can play an important role in the performance of DSM systems.

1 Introduction

Technological advances in recent years have spurred a trend towards workstation-oriented computing environ-

ments. Each workstation has computing power comparable to the mini-mainframes of the past. Availability
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of powerful computers connected via local (wide) area network has sparked interest in the area of distributed
computing systems. Current research is targeting its efforts in utilizing the available compute power in the
network for solving large problems through cooperative computing.

To facilitate the programming of distributed systems, two basic paradigms exist: shared memory, and
message-passing. These two paradigms have been used for interprocess communication and synchronization
in multi-process computations. The duality between the two paradigms for structuring computations is well-
known [LN79]. Nevertheless, shared memory has been an appealing paradigm from the point of programming
ease even in distributed systems. It is no surprise that several researchers [LH89, RAKS89, FP89, CBZ91]
have proposed system architectures that provide the abstraction of shared memory in a physically non-
shared (distributed) architecture. We refer to this abstraction as Distributed Shared Memory (DSM). Figure
1 shows the conceptual representation of a distributed shared memory system. In the system, a set of
nodes (computers) are connected via an interconnection network, and do not physically share memory. The
DSM mechanisms allow an application to access shared data not physically resident at that node. These

mechanisms are usually provided as a software layer either integrated with or on top of the operating system.

Figure 1: Distributed Shared Memory Abstraction

Another motivation for DSM arises from the structure of current distributed computing environments. A
typical distributed computing environment consists of compute servers® and data servers® interconnected by
a local area network. In such an environment, there are two tasks to be performed to execute a computation.
The first task involves selecting a compute server, and the second task involves bringing the code and data
from the data server to the selected compute server before executing the computation. The second task
requires a remote paging facility. If sharing of data is coupled with this remote paging, it could be seen that
DSM presents itself as a natural facility for combining the two.

In this work, we identify and evaluate the system issues (see Section 2) that need to be addressed for
designing distributed shared memory systems. The issues relate to questions such as, whether to integrate
DSM with virtual memory management, what type of memory model to provide, which protocol to use for
maintaining coherence of shared data, and what kind of impact technology factors have on the DSM system
performance. We evaluate these issues with respect to several proposed design alternatives. The evaluation

is done in two steps. First, we take measurements of an existing implementation of DSM (see Section 4).

2Nodes where computation is performed.

3Nodes that serve as repositories for data.



Second, we use a simulation-based study to evaluate the interaction among the system parameters. In Section
5, we describe the design of a simulator that models a distributed shared memory system. The measurements
are used to assign costs to the different system related activities of the simulator. A new workload model is
developed and used to drive the simulator. The workload model captures the salient features of distributed
and parallel programs. In Section 6, we discuss the results of the simulation study. The conclusions are
presented in Section 7.

The key contribution of this research is that it enumerates the system issues and specifies the design

parameters for addressing system issues for an efficient realization of a DSM system. The key results are:

e the choice of the memory model and coherence protocol does not significantly influence the system

performance for applications exhibiting high computation granularity and low state-sharing;
e weaker memory models become significant for large-scale DSM systems;

e the unit of coherence maintenance depends on a set of parameters including the overheads for servicing

data requests as well as the speed of data transmission on the network; and

e an efficient implementation of DSM requires a careful design of miscellaneous system services (such as

synchronization and data servers).

2 Issues in the design of DSM systems

Several system issues need to be addressed in the design of a DSM system. The choice of solutions to these
issues can significantly influence the overall system performance. In this section, we enumerate these issues

and discuss the design alternatives available for addressing them.

2.1 Virtual Memory and DSM

In a DSM system, the remote memory accesses have to be reconciled with the virtual memory (VM) man-
agement at each node. The DSM and VM management at each node would have to cooperate to ensure
that the semantics implemented by the DSM manager and the VM manager are not compromised. The
normal VM chores such as page replacement, swapping, and flushing have to be done in consideration with
the DSM algorithms. Similarly, in satisfying a remote memory request, the DSM would have to consult the
VM manager to get a page frame, etc. Upon release of a page, the DSM has to instruct the VM manager to
invalidate page table entries and take other related actions.

The effectiveness of the DSM paradigm depends crucially on how quickly a remote memory access request

is serviced, and the computation is allowed to continue, which in turn depends on several factors:

e the speed at which the VM system detects that a memory access fault (i.e. a page-fault) or a pre-

fetching request entails a remote access

e the software overhead involved in the DSM protocol (i.e. coherence mechanism) for servicing a remote

memory access request

e the software overhead involved in the communication subsystem (i.e. the basic transport protocol) for

effecting the inter-node message communication to service the request



e the speed of the communication medium (i.e. hardware).

2.2 Granularity

There are two dimensions to granularity: computation granularity and data grenularity. The former deals
with the amount of computation done between synchronization or communication points in a multi-process
computation. The latter deals with the amount of shared information processed during this computation
phase. While a computation to communication ratio of 100:1 may be reasonable in a tightly coupled shared
memory system (such as the KSR-1) [Res91], this ratio is usually in the 1000:1 range for a DSM system.

In a uniprocessor memory hierarchy, the processor-to-cache transfer time is in the tens of nanoseconds,
the cache-to-main memory transfer time is in the hundreds of nanoseconds, and the main memory-to-disk
transfer time is in the order of milliseconds. Correspondingly, the granularity of transfer that makes sense
are: byte or word between the processor and the cache, a block of several bytes between the main memory
and the cache, and a page ranging from 512 bytes to a several kilobytes between the main memory and the
disk. DSM systems add a new dimension to the memory hierarchy, namely remote memory access across the
network. The choice of the network plays a big role in determining the latency. Nevertheless, independent
of this choice, there is a fixed software overhead to be incurred depending on the choice of the data transfer
protocol on the network. Moreover, such remote memory accesses need to be integrated somehow with the
memory management at each node. This requirement often forces the granularity of access to be an integral
multiple of the fundamental unit of memory management (usually a page). However, it is possible to reduce
the network latency by transferring the page partially. The key point to note is that the data granularity
has to be sufficiently high to make the DSM paradigm viable.

2.3 Memory Model and Choice of Protocol

In a uniprocessor, correctness of execution is ensured by preserving the order of memory references generated
by a processor. Lamport [Lam79] has proposed sequential consistency (SC) as a memory model for ordering
shared memory accesses to ensure correct multiprocessor execution. Essentially, sequential consistency en-
sures that the view of the memory is consistent at all times from all the processors. There have been several
proposals for weakening the consistency requirements for shared accesses. Most of these proposals exploit
explicit synchronization in the parallel program [GLL*T90, LR91, KCZ92, AH93] to drive the consistency ac-
tions. Release Consistency (RC) [GLL190] is the most well-known among these models, which distinguishes
between two kinds of synchronization accesses, namely, acquire and release, establishing a consistent view of
shared memory at the release point. A few others [AHJ91] use causality [Lam79], as a fundamental event
ordering mechanism in distributed systems, to drive the consistency actions.

A related issue to the memory model supported by the DSM system is the choice of the coherence protocol
used for consistency maintenance. Consistency maintenance of distributed shared memory is similar to cache
coherence in shared memory multiprocessors with private caches. In shared memory multiprocessors with
private caches, the caches are kept consistent using either a write-invalidate policy or a write-update
policy [AB86]. In the former a writer acquires exclusive ownership of a cache block by invalidating all peer
copies before performing the write, while in the latter concurrent writes to the same cache block are possible
from several processors with the updates being sent to keep all the peer copies consistent. It is possible to

use direct association of locks governing the access to shared cache blocks [LR90]. This would allow the data



associated with the lock being sent to the requester along with the granting of the lock. Upon release of
a lock, the associated data is sent back (if modified) to the memory. We refer to such a protocol in which
coherence maintenance and synchronization are intertwined as a lock-based policy.

Combination of the memory model with a particular coherence strategy gives rise to a unique memory
system. In designing a page-oriented DSM system, however, not all combinations make feasible implementa-
tion sense. For example, it would be very expensive to track all writes to a page in such an implementation.
Thus using a write-update policy for supporting the SC memory model may not make feasible sense. With
a write-invalidate policy care has to be taken to avoid false-sharing wherein data that is not shared in
a programmatic sense appears shared from the point of view of coherence maintenance. Similarly, if a
write-invalidate policy is used in conjunction with the RC model, then it would limit the synchronization
concurrency and negate any advantage that the RC model has over the SC model in weakening the memory
consistency requirements. This is because of the false-sharing that is inherent in the write-invalidate policy
exacerbated by the page-oriented nature of DSM. However, a simple minded write-update policy is infeasible
to implement for the RC model both due to the difficulty in tracking writes as well as due to the enormous
overhead in terms of message traffic that this might generate. Buffering the writes locally and propagating
them to update peer copies prior to a release operation (as proposed in [LR91, CBZ91]) is a technique that
will solve both of these problems in a DSM implementation.

In distributed systems, the number of messages is a measure of protocol performance. From this stand-
point, the lock-based policy is expected to out-perform the other two, since coherence is maintained com-
mensurate with the semantics of sharing in the computation. Moreover, since locking could be integrated
with the data transfer, there is no need for any additional mechanisms for providing mutual exclusion for
shared write accesses. In both write-update and write-invalidate policies there is a need to provide synchro-
nization mechanisms on top of the coherence policy to assure mutual exclusion for multiple nodes requesting
to write to the same page. However, lock-based policy has its drawbacks: In particular it does not have the
generality of the other two policies. By decoupling memory coherence and synchronization, it is possible
to devise synchronization mechanisms independent of the coherence policy. The lock-based policy requires
explicit directives from the system software to know the semantics of sharing, while the other two do not

require any such directives.

2.4 Synchronization

Another issue is the way interprocess synchronization is achieved in such systems. Extending the analogy of
shared memory multiprocessors to DSM, it would seem that shared-memory style of synchronization would
be expected in DSM systems as well. However, the granularity of accesses in DSM systems precludes using
low-level primitives such as “Test-and-Set” on arbitrary memory locations. One possibility is to combine
synchronization with sharing as has been suggested in some multiprocessor cache protocols [LR90]. Another
possibility is to have an orthogonal set of primitives to achieve synchronization. This latter approach is
attractive since there could be situations where there may be very little sharing of data but independent
computation may have to synchronize with one another. For example, in compute-intensive applications,
such as the embarrassingly parallel kernel [BBLS91] and matrix multiplication, interprocess synchronization
is used only to indicate completion of computation. Some systems provide semaphore operations or lock

operations in addition to the shared memory primitives.



2.5 Hardware Technology

There are two sources of overhead in a DSM system: the first is the communication overhead associated with
the data transfer on the communication medium; and the second is the computational overhead associated
with servicing remote memory requests. The choice of the communication medium (Ethernet, optical fiber,
etc.) directly impacts the former, while the speed of the processor and any additional hardware support for
DSM affects the latter.

In this section, we have enumerated the issues that need to be addressed efficiently in the design of
distributed shared memory systems. These issues form the basis for the comparative study that is presented

in the subsequent sections.

3 Related Work

Apollo Domain [LLD%83] is one of the earliest systems that implements a single level store (represented as
a collection of shared objects) in a local area network of personal workstations and data servers. To assure
the consistency of the replicated copies of an object a two-level approach is adopted. The lower level detects
concurrency violations using a time-stamp based version number scheme for each object. The higher level
provides an object locking mechanism.

Ivy [LH89] is a distributed shared memory system implemented on Apollo workstations interconnected
by a token-ring network. It provides a shared virtual address space similar in concept to the Domain system
with the difference that the granularity of access is a physical page in Ivy as opposed to an object in Domain.
Ivy supports a SC memory model using a write-invalidate protocol. Mirage [FP89] is an extension of the Ivy
memory system which allows a reader or a writer of a page to retain access to the page for a fixed duration
of time regardless of pending requests. This is done to guarantee forward progress of the computation by
reducing thrashing of heavily shared data pages.

Croubps [DLAR9]] is a distributed operating based on passive objects. An object encapsulates data that
can be manipulated only from within the object. To allow concurrent execution of more than one computation
in the same object, shared-memory style synchronization primitives are provided by the operating system.
The collection of objects in CLOUDS represents a distributed shared virtual space. Pages are the units
of distribution. A lock-based protocol [RAK89] that unifies synchronization and data transfer is used for
consistency maintenance of the distributed shared memory. In this protocol lock requests (exclusive and
shared) result in the page associated with the lock being sent to the requester along with the granting of the
lock. Upon release of a lock, the associated page is sent back (if modified) to the server. Reads or writes
to shared data without explicit locking follow single-copy semantics that does not allow multiple-readers
or writers. Thus this protocol provides a sequential consistent view of the shared memory at well-defined
synchronization points. Ramachandran, et al. [RAK89] proposed this protocol which also supports a weaker
form of read that allows multiple-readers to access shared data (without locking) without any guarantee of
consistency.

The unique feature of the Munin [CBZ91] system is its ability to support multiple coherence protocols.
The program variables are annotated with their expected access patterns, and the runtime system chooses

the protocol best matched to the access pattern for each variable. The memory model supported by Munin is



Domain ‘ Ivy ‘ CLoups ‘ Mach ‘ Agora ‘ Memnet | Choices ‘ Mether ‘ Munin ‘ DASH ‘ KSR-1 ‘

Virtual Yes Yes Yes Yes No No Yes Yes No No Yes
Memory
Granu- Page Page | Page Page | Data 32- Page Page Data 16- 128-
larity struct. | bytes struct. | bytes bytes
Memory SC SC SC, SC UD SC SC UD RC, RC SC
Model UD UD
Coherence | Version | WI LBS WI WU WI WI WU WI, WI, WI
Protocol Num- and WU, WU

ber LBX and

based LBX
Synch. Yes No Yes No No No Yes No No Yes Yes
Dedicated No No No No No Yes No No No Yes Yes
Hardware

Legend:

SC : Sequential Consistency

RC : Release Consistency UD : User-defined

WI : Write Invalidate WU : Write Update

LBX : Lock-based (exclusive) LBS : Lock-based (exclusive and shared)

Table 1: Comparison of DSM systems

RC, and the write-update protocol provided by Munin buffers the writes to the shared pages and propagates
them at a release point to the relevant peer processors.

In recent years, several systems have been proposed that implement the distributed shared memory
abstraction in hardware. Two examples are the DASH multiprocessor [LLG*90], and the KSR-1 [Res91].
DASH uses a directory-based write-invalidate protocol to provide a release-consistent view of the shared
memory which is physically distributed among the processing nodes. KSR-1, which uses a ring interconnect,
provides a sequentially consistent view of the distributed shared memory with each node snooping on the
network packets to take appropriate coherence actions.

Mach [RTY*87], Agora [BF88], Memnet [DSF88], Choices [SMC90] and Mether [MF90] are other DSM
systems that have been proposed in the literature.

Though these systems have not been described here in complete detail, their features with respect to the
issues outlined in Section 2 are summarized in Table 1. For more details, the reader is referred to [Moh93].

A similar survey can also be found in [NL91].

4 Distributed Shared Memory in CLouDS: A Case Study

In this section, we summarize the measurements taken on the CLOUDS distributed shared memory. These
measurements serve two purposes: First, it would help us better understand the interaction between various

issues in a real environment; Second, they can be used for assigning costs to different components of the



simulator, which is used for the simulation study (see Section 5).

The unit of sharing in CLouDs DSM is a segment. Associated with each segment is a node called the
owner where the segment resides on stable storage. The DSMServer* at the owner node is responsible for
maintaining the consistency of the segment. CLoUuDs DSM uses a lock-based scheme to provide coherence
of shared data. It supports two primitives for acquiring and releasing data: get and discard.

The request for a data segment is sent to the segment’s DSMServer. If the requesting mode is compatible
with the current mode for the segment, the DSMServer grants the request. Otherwise, the request is queued.
Servicing a request may entail forwarding the request to the current keeper of the segment with instructions
to immediately service the request. The DSMServers implement a First-Come-First-Served queue discipline
for processing remote segment requests. The low-level communication protocol used in the CLOUDS operating

system to support DSM is called RaTP [Wil89]. It provides reliable transfer of data between nodes.

4.1 Methodology

CLOUDS operating system is implemented on a configuration of Sun 3/60s connected by a 10Mbit/sec
ETHERNET. The timing measurements are done using a microsecond timer [DM90]. Each call to read
the timer has an overhead of 20 microseconds. The times reported in the next subsection are an average of
number of such readings. A page refers to 8 Kbytes. We briefly report the performance results for three
categories of experiments. More details about this study can be found in [AMMR92].

4.2 Performance Measurements

Table 2 summarizes the basic system times for the three categories of experiments. The network communi-
cation times shown in Table 2 are between two compute servers. A page transfer takes 12.3 milliseconds at
the RaTP level as it breaks up an 8 Kbytes message into 6 packets. Note that Ethernet allows a maximum
packet size of 1532 bytes [SDRC82].

The second category of experiments exercises the DSM subsystem. A get from a data server takes 15.5
milliseconds. Comparing the DSM and RaTP timings for a page transfer (rows 3 and 4), it can be seen that
the DSM protocol has an overhead of 3.2 milliseconds. This overhead includes updating state information
for the shared segment and coherence maintenance.

The third category of experiments deals with the servicing of page-faults. In the case of remote page-
faults, there is no disk access involved (i.e. page is in memory at the remote server). The segment is
currently with the data server that owns it. The DSMServer on a compute server requests a page from that
segment while servicing a page-fault. The average time for servicing such a page-fault is 16.3 milliseconds.
It should be noted that the VM overhead of installing a page, once a DSM get request completes, is only

0.800 milliseconds (difference between rows 4 and 5).

4.3 Analysis

Based on these measurements, Figure 2 shows the breakdown of the total time spent in each subsystem
associated with servicing a DSM page-fault on CLouDs. The total page-fault servicing time can be expressed

as a sum of two types of costs: fixed cost and variable cost. The fixed cost consists of the overhead associated

“Process/thread that handles DSM related requests.



Basic System performance Time (in milliseconds)

1 | Ethernet wire overhead (64 bytes, computed) 0.051

2 | Ethernet wire overhead (8 Kbytes + headers, computed) 6.794

3 | Transfer time at RaTP level (64-byte request one-way, 8 Kbytes other- 12.300
way)

4 | DSM get from a data server (no forwarding) 15.500

5 | Page Fault Service 16.300

Table 2: Summary of basic system timings on CLOUDS

DSM (3.200 ms)

RaTP(5.506 ms)

VM (0.800 ms)

Ethernet (6.794 ms)

Figure 2: Cost associated with each subsystem in servicing a DSM page-fault. Total = 16.3 ms

with the VM subsystem and the cost of sending a data request to the data server while the variable cost
consists of the cost of sending the data to the requester. The variable cost controls the latency of data as
seen by an application process because the application process cannot start processing the data until the
entire data page has been transferred. Ideally, in a DSM system, one would like to keep the fized cost per

byte (see equation 1) and latency per byte (see equation 2) low.

VM overhead + data request cost

fized cost per byte = PageSize (1)
PageSi

latency per byte = (server proc. cost) * PageSize + Medi;gl)ZnZ;idth (2)

Total overhead per byte = fized cost per byte + latency per byte (3)

Equation 1 implies that systems that incur high VM overhead and high cost for sending a request can
minimize fized cost per byte by increasing the page-size. However, equation 2 dictates that the page-size
should be kept small for keeping the latency per byte low. Ideally, one would like minimize the total overhead
per byte as given in equation 3. We use these equations in Section 6 for deriving values for the page-size
parameter for different system configurations.

Another point to note from Figure 2 is that the majority of the total time is spent in the communication

subsystem (communication protocol and data transmission). This observation indicates that for an efficient



implementation of distributed shared memory, the cost of data transfer has to be reduced. Some techniques to
bring this cost down is through using an improved communication protocol that has a relatively low overhead;
using a faster communication medium to cut down the time spent on raw data transfer; data compression
techniques for faster data transfer; and using additional hardware to improve processing overhead associated
with the DSMServer.

These measurements are the first step in our evaluation process for understanding system issues in DSM
design. The breakdown of costs associated with various components of distributed shared memory system

are later used in the simulator that has been designed to evaluate the DSM system issues (Section 5).

5 Simulation Studies

Experimental study of different DSM implementations in the context of specific applications is one possible
approach to evaluating the performance implications of some of the design issues. We did one such study
for six different applications [AJM*93]. Unfortunately, it is difficult to glean insight regarding the impact of
application characteristics and system parameters on the DSM design from such an experimental study. For
instance, we would like to ask the question “What is the impact on performance when the degree of sharing
in the application is changed?”, or “What is the impact when the speed of the communication medium is
changed?”, etc. For this purpose, we use a simulation-based approach rather than an experimental approach
because the latter approach places constraints on the study by limiting the choice of alternatives that can
be studied. A simulation-based approach offers the flexibility to easily model different system configurations
by tweaking the parameters of the simulator. The validity of the simulation results depends on the accuracy
of costs assigned to different activities in the DSM system, and the accuracy of the workload used to drive
the simulator. To this end we do two things: First, the costs are assigned to the different components of the
simulator directly from the measurements of the CLOUDS implementation. Second, we validate the workload

model, used to drive the simulator, against our experimental results described in [AJM*93].

5.1 Simulator

The simulator is written in CSIM [Sch86], a process oriented simulation language. The distributed system
modeled by the simulator consists of a collection of nodes interconnected by a local area network. In the
simulator, each node is modeled as a set of three CSIM processes: a compute engine, a DSM server, and
a media server. The interconnection network is modeled as a CSIM facility. The compute engine models
a processor with associated local memory. Shared references which are not currently encached in the local
memory are communicated to the DSM server by the compute engine. The DSM server simulates the
appropriate coherence protocol. The media server models the communication subsystem of a node. It
differentiates between two types of messages: CONTROL and DATA. Each control message is 64 bytes long
while the size of the data message is determined by the page-size parameter used in the simulation. The
media server models the bandwidth characteristics of Ethernet and an optical fiber. It models the contention
aspects of using a shared broadcast medium without modeling the collision and back-off aspects that are
inherent in an Ethernet type of protocol. In addition to these three per node CSIM processes, a CSIM

process serves as a centralized lock server. Figure 3 shows the conceptual picture of the simulator.
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Figure 3: Conceptual picture of the simulator

5.2 The Workload Model

The workload model is a crucial component of any simulation study. Trace-driven, execution-driven, and
probabilistic are the three methods of generating the workload for the simulation. Each has its merits and
demerits. In terms of resource requirements (both space and time), and flexibility of varying the modeled
application characteristics, probabilistic workload has some definite advantages over the other two. The main
drawback in using such models is that the workload may not represent any real application. In our study,
we develop a novel probabilitic workload model that captures the salient interactions that occur in parallel
and distributed programs. Further, we show that by choosing the parameters of the model appropriately
it is possible to replicate the results of some real applications which we have implemented on the CLOUDS
DSM platform.

Archibald and Baer [AB86] have proposed a simple memory reference generator based on a probabilistic
approach to evaluate cache coherence schemes in a shared memory multiprocessor. In their model, each
processor generates a memory reference stream. A memory reference (read or write) could either be to
private or shared blocks; locality of references to shared blocks is modeled by increasing the probability
for accesses to recently used shared blocks. The interaction between the memory reference streams of the
different processors is simulated for different coherence protocols. A synthetic reference generator is used by
Kessler and Livny [KL89] to evaluate distributed shared memory algorithms, in which the main difference
from Archibald and Baer’s model is that the memory reference stream of each processor is a sequence of
shared and private phases. During a private phase the accesses are strictly to private memory, while both
shared and private memory may be referenced during a shared phase. Each phase is characterized by length,
placement, locality, read to write ratio, and type (private or shared).

Synchronization is an important aspect of any parallel program design, and the memory reference streams

of processors executing a parallel program will consist of synchronization accesses and normal read/write
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accesses. The workload model, described in the next section, captures such synchronization aspects of a

program, a feature absent in other probabilistic workload models.

5.2.1 Structure of the Workload Model

The workload described in this section models a class of applications that belong to the single-program-
multiple-data (SPMD) style of programming. In a SPMD program, individual processors execute the same
piece of code, albeit on possibly disjoint sets of data items. Processors synchronize with each other using
semaphores, locks (shared or exclusive), or barriers. Semaphores and locks are used for protecting pieces of
shared data, while barriers are typically used to indicate the end of a computation phase, or the computation
itself.

A parallel program in our workload model is represented as a collection of tasks. The inter-relationship
between these tasks is captured by a task dependency graph, that suggests a partial execution order for the
tasks that constitute the parallel program. A task is ready for execution when all tasks that precede it in
the dependency graph have been completed. A work queue is maintained that contains the set of tasks that
are ready for execution. Tasks are inserted into this queue honoring the dependencies in the task graph. A
processor accesses the work queue to acquire a task to be executed next. When the work queue becomes
empty and all the tasks have terminated, the parallel program is said to have completed.

Each task is a memory reference stream of finite length (specified by a parameter) and is composed
of a sequence of compute and synchronization phases. During a compute phase, the processor generates
references (reads or writes) to private and shared data. A compute phase is characterized by the following
parameters: the number of memory references, read to write ratio, probability for shared and private data
accesses, and the degree of locality within the phase. The compute phase is similar to the shared phase as
defined by Kessler and Livny [KL89]. A synchronization phase consists of read/write data accesses (both
private and shared), with a percentage of the shared data accesses being done under the control of explicit
synchronization. Thus, a compute phase corresponds to a phase in a SPMD program in which computation
is performed, while a synchronization phase corresponds to a phase in which shared data is manipulated
under the control of some synchronization variable. Figure 4 shows the composition of the the two phases
within a task (the associated parameters are given in parentheses).

The degree of locality within a phase defines the spatial locality for references within a page. In addition
to this, the workload model allows designating distinct and disjoint regions of the shared address space to each
task; and there is a parameter, called InterTaskRefProb, that governs the fraction of shared references of a
task that are directed to other tasks’ as opposed to its own region. This feature of the workload model cap-
tures the SPMD style of programming, wherein individual processors primarily operate on distinct portions
of shared data, with occasional references to other portions of shared data. To capture effects of false-sharing,
we provide the FalseSharingRefProb parameter. Another parameter, called SynchReferenceProb, controls
the percentage of accesses to shared regions that are performed under the control of explicit synchronization

(shared or exclusive). This parameter models the number of critical sections in the SPMD program.

5.2.2 Domain Specific Models

By assigning proper values to the parameters shown in Figure 4, we can generate domain specific workload
models. In our experiments, we used three different types of workload models representing three kinds of

parallel programs.
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Synchronization Computation

phase phase
Shared reference Private reference Shared reference Private reference

—— References within —— References within a

task’s region (SelfRegion) task’s region

L. SelfRegi
—— under synchronization (SynchRef) (SelfRegion)
L—— without synchronization —— References to other
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tasks’ region (OtherRegion)

—— under synchronization (SynchRef)

L—— without synchronization

Figure 4: Reference parameters within a task

1. Transaction model: This workload model reflects a transaction processing system wherein all refer-
ences to shared data are made under the control of either shared or exclusive locks. Thus, each task is
composed of only synchronization phases, and all shared accesses are performed only under the control

of explicit synchronization. (SynchRef = 1).

2. Iterative Model: Iterative algorithms such as linear equation solvers, have the characteristic that
shared data is not modified except at well defined synchronization points (such as a barrier). Such a
data access pattern would allow a task to access the shared data without acquiring any locks for the
purposes of reading. The iterative model captures this characteristic by allowing some percentage of
the shared references (only reads) to be directed to other tasks’ regions. (In the computation phase,

OtherRegion # 0, 0.05 in our experiments).

3. Asynchronous Model: In this model, tasks that comprise a computation do not synchronize with
one another explicitly. In terms of the workload model this feature would translate to tasks reading
and writing to shared memory without explicit synchronization. However, an implementation of this
model in a shared memory environment may involve the use of locks to govern access to mailboxes that
may be used for asynchronous communication among the tasks. This workload model is similar to the
data access patterns of asynchronous algorithms that rely on some other property such as convergence
for correctness and termination [Bau78]. In terms of task parameters, some percentage of the shared
references (both reads and writes) are directed to other tasks’ regions. (In the computation phase,

OtherRegion # 0, 0.05 in our experiments).
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| Type of model | Parameter variable | Default values |

Transaction Model PvtProb 0.70
OtherRegion 0.20
SynchRef 1.00
InterTaskRefProb 0.00
Iterative Model PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadInterTaskRefProb 1.00
Asynchronous Model | PvtProb 0.70
OtherRegion 0.20
SynchRef 0.20
InterTaskRefProb 0.05
ReadInterTaskRefProb 0.80

Table 3: List of parameters for domain specific workload models

Table 3 summarizes the default values for the parameters that define the three domain specific workload

models. Table 4 shows the default values for the other parameters used in the simulator.

5.2.3 Validation of the Workload Model

We validate our workload model against the experimental results reported in a companion paper [AJM*93].
For completeness, we describe the two applications used in the validations here. The purpose of validation
is to allow us to identify meaningful values for the parameters so that each workload (domain specific)
corresponds to some “real” application. The performance of an application is measured from the experimental
implementation. Using the program code as the basis, we determine the values for the key parameters of
the workload model. We compare the simulation results obtained from the resulting workload model against

the measurements on the real system. We show the results of this validation for Integer sort and SCAN.

Integer Sort

The integer sort kernel [BBLS91] is used in “particle-in-cell” applications. The problem statement for the
integer sort benchmark requires that A" keys be sorted in parallel. The keys are generated by a prescribed
sequential key generation algorithm, and are stored contiguously in shared memory. The benchmark requires
computing the rank for each key in the input sequence.

The application uses the bucket sort algorithm, partitioning the input key sequence among the available
number of processors. Each processor maintains a local copy of the buckets and accumulates the bucket
counts for its data partition without any communication with the other processors. The local buckets are
merged into global buckets using a parallel-prefix sum algorithm. The final assignment of ranks is also done in
parallel for the partition assigned to each processor. The implementation has been adapted from [RSRM93],
has been shown to perform well on KSR-1, a tightly coupled shared memory machine. The program sorts
N = 220 keys into 2048 buckets.
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Parameter Parameter Default
variable meaning values
PvtProbInSynch Probability of access to private data during a synch. phase 0.70
PvtProbInCompute Probability of access to private data during a compute phase 0.70
SynchReferenceProb Probability that the next phase is a synch. phase 0.20
AvgTaskLength Average task length (number of references) 100,000
MaxLockRefRange Granularity of synch. phase (number of references) 3000
MaxShdRefRange Granularity of the compute phase (number of references) 3000
ReadLockProb Probability of acquiring a read lock for a synch. phase 0.80
WriteLockProb Probability of acquiring a write lock for a synch. phase 0.20
ReadProb Probability that access to a memory location is a read 0.80
InASynchPhaseSynchRefProb Probability that the shared reference is to locked data 0.50
LocalityProb Probability that the next shared reference would be in the neigh- 0.80
borhood of the current reference
LocalityDistribution The function that specifies the probability distribution for shared | +/- 80 bytes
data access
InterTaskRefProb Probability that a task accesses shared data outside its domain 0.05
ReadInterTaskRefProb Probability of a read access for inter-task references 0.80
FalseSharingRefProb Models degree of false-sharing 0.00
Shared AddressSpace Total size of the shared address space 1 Mbytes
NumberOfTasks Total number of tasks in the parallel program 50
NumberOfNodes Number of processors in the system 8
BlockSize Amount of data transferred upon request for shared memory 8192
MediaSpeed Speed of the network 10 Mbps

Table 4: List of parameters for the simulator along with the default values

SCAN

The SCAN benchmark [Ano85] specifies a sequential scan of a file, reading and updating records. Such scans
are typical of end-of-day processing in on-line transaction processing systems. The benchmark requires
that each record be locked, read, modified, updated, and unlocked. In the parallel implementation of the
algorithm, the data is partitioned among available processors, and each processor performs a sequential scan

of its portion of the database.

Table 5 show the results for the two applications for a memory system using SC memory model and
a write-invalidate protocol. The values within parentheses are reported at 90% confidence level. As can
be seen from the table, the simulation results agree quite well with the real results. Comparing the results
using the t-test indicates no difference between the results obtained via the two techniques (The confidence
intervals contain zero). The parameters for the workload models yielded by the validation are used for the

simulation results of Section 5.4.

5.3 Parameters for the Simulation

We have designed a set of experiments to study the effects of the various design alternatives presented earlier.
The approach we take is as follows: we use a set of compute nodes (3 MIPS CPU) connected by 10 Mbps

Ethernet as the baseline system. We then designed our experiments to evaluate the effects of each issue on
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Integer Sort for 21° elements SCAN bonchmark for 10000 records
Measured Simulated No. of Measured Simulated
Proc Time | Conf. Interval | Time | Conf. Interval Pros. Time | Conf. Interval | Time | Conf. Interval
1 6.51 (6.42, 6.57) 6.56 (6.56, 6.57) 1 23.91 (23.90, 28.92) | 23.18 (23.08, 23.21)
2 6.83 (6.76, 6.89) 6.85 (6.73, 6.98) 2 12.20 (12.16, 12.25) 11.59 (11.58, 11.60)
3 8.41 (8.01, 8.82) 8.06 (7.93, 8.20) 3 8.45 (8.28, 8.62) 8.80 (8.80, 8.81)
4 13.02 (12.35, 13.69) 13.23 (12.85, 13.61) 4 6.43 (6.36, 6.50) 6.47 (6.47, 6.48)

Table 5: Comparison of results obtained via simulation with actual measurements for the two benchmarks

| Issues | Alternatives Studied |
Data granularity (page size) 512, 1024, 2048, 4096, or 8192 bytes
Memory systems SCinv, SCsynch, RCupdate
Communication medium 10 Mbps (Ethernet-like), or 1 Gbps (Fiber-like )
Processor Speeds 3 MIPS, 25 MIPS
Number of nodes 4, 8,16

Table 6: List of alternatives evaluated using simulation

the performance of the overall system as compared to the baseline system. The system issues are evaluated
with respect to three memory systems: first is based on a variant of the release consistency memory model
and uses a write-update protocol for cache coherence, and we refer to it as RCupdate; the second is based
on sequential consistency and uses a write-invalidate protocol for cache coherence, and we refer to it as
SCinv; and the third is special in that it restores sequential consistency for only the data governed by the
associated locks at well-defined lock release points using a lock-based protocol (see Section2), and we refer to
it as SCsynch. As can be seen each is a combination of a particular memory model together with a specific
coherence protocol chosen to implement it. As we pointed out earlier (see Section 2), not all combinations
of memory models and coherence protocols make sense from an implementation standpoint and hence the
choice of these three memory systems for this study.

All three memory systems are page-oriented. For the sake of fairness in comparison, all three memory
systems are assumed to have the same unit of granularity for concurrency, namely, a logical segment. In the
simulation a segment is fixed to be 8 KBytes, and is also the unit of coherence maintenance for the SCsynch
memory system which combines synchronization with data coherence. A physical page is the unit of data
transfer on the network for all three memory systems; page-size (data granularity) is specified as an input
parameter and a logical segment is made up of (8KBytes/page-size) number of pages. A page is also the
unit of coherence maintenance for the SCinv and RCupdate memory systems. We fixed the size of a logical
segment to be 8 KBytes to match the physical page size used in the Clouds DSM implementation, since the
costs associated with various components of distributed shared memory system have been assigned in the
simulator from this implementation. It is assumed that the program level locks generated by the workload
model map exactly to the unit of concurrency in the system, i.e., a logical segment. This assumption
essentially ensures that none of the three memory systems will experience limited concurrency due to lock
granularity and data transfer granularity mismatch. Table 6 summarizes the system parameters that are
varied for this simulation study.

The experiments have been conducted for the three workload models described in Section 5.2.2. An
application is modeled as a 4-level deep task dependence graph, with 16 tasks at each level, yielding a total

of 64 tasks. A task on level ¢ + 1 is not executed until all tasks at level : have been completed. Each task
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generates 100, 000 references. The lengths of the compute and the synchronization phases are specified as
input parameters. The shared address space is 1 Mbytes divided into 128 logical segments of 8 Kbytes each.

In all our experiments, we fix the following parameters to be unchanged: 70% private data references,
80% reads, and 20% of shared references performed under explicit synchronization in the iterative and

asynchronous workload models. We use completion time as the metric for comparison.

5.4 Simulation Results and Discussion

We discuss here only the results for the effects of granularity of data transfer, and the choice of the three
memory systems with respect to the three workload models. The results for the impact of the hardware

technology on performance can be found in [Moh93].

5.4.1 Transaction Model

One would expect that larger data granularity would reduce the number of messages in the system as
fewer data requests are generated, and would increase spatial locality. However, larger data granularity
also increases the potential for contention of shared data due to false sharing, thereby degrading system
performance. Figures ba, 6a and 7a show the performance for a 4-, 8-, and 16-node system connected via
a 1Gbps communication medium. In the transaction workload model (see Figure ba), we observe that the
performance improves as the data granularity is increased for all three memory systems. False sharing is
not an issue for this workload since all shared data references are performed under the control of a lock and
since we assume lock granularity is a segment.

The SCsynch memory system is expected to incur a lesser number of messages on synchronized data
accesses since it combines data transfer with synchronization. However, in this memory system pages asso-
ciated with the lock are always shipped to the requester along with the granting of the lock irrespective of
whether the requester has a valid copy or not. As can be seen in Figure ba, SCsynch performs poorly at low
data granularity compared to the other two. The reason is because at low data granularity more number of
messages are required to bring in the entire segment associated with the lock. The SCinv and the RCupdate
memory systems may not have to incur this message overhead if the data is valid at the requester. However
at higher data granularity the SCsynch memory system performs better since the number of messages per
lock request reduces significantly. Overall the RCupdate memory system performs better than either the
SCinv or SCsynch memory systems (see Figure 5a), although at large data granularity, the difference be-
tween the SCinv and the RCupdate memory systems is statistically insignificant. In the RCupdate memory
system, only the updates are sent to the server at synchronization points, and further it does not incur the
overhead of invalidation messages. It is interesting to note for larger systems (8 and 16 nodes) SCsynch
performs much better than the other two memory systems for large data granularity (see Figures 6a and 7a).
For the SCinv memory system, the probability of the data associated with a lock being valid decreases due
to the increased concurrent activity over the same number of shared segments. Similarly, for the RCupdate
memory system the updates are sent to the current set of potential readers and all of them may not actually
use it in the future. On the other hand, the SCsynch memory system incurs exactly the minimum number of
messages required to get the lock and data. As we increase the number of nodes in the system, the number
of messages becomes an important factor (due to contention for the communication medium) in determining

the system performance.
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In contrast, if one considers a system with Ethernet as the communication medium then the results for
the transaction workload model are completely different. Figures bb, 6b, and 7b show the results for the
transaction workload model on a 4-node, 8-node, and 16-node system connected via a 10Mbps Ethernet.
Unlike the earlier results, the SCsynch memory system performs considerably worse than either the RCupdate
or the SCinv memory systems. The cost associated with the data transmission upon lock grant becomes

dominant with the slower Ethernet medium, resulting in poor performance for the SCsynch memory system.

Transaction workload on a (4-node, 3 MIPS, 1 Gbps) system Transaction workload for a (4-node, 3 MIPS, 10 Mbps) system
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performance on 8 nodes

5.4.2 Iterative Model

Recall that the iterative workload model (see Section 5.2.2) allows a task to access shared data for reading

without explicitly acquiring read-locks. For this model, increasing data transfer granularity improves system
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Figure 7: Transaction workload model’s performance on 16 nodes

performance for the SCsynch and the RCupdate memory systems (see Figure 8a). However, for the SCinv
memory system, the performance benefit due to the reduced number of messages (at larger data granularity)
is offset by an increase in false sharing, thus resulting in system performance degradation. Since read-shared
copies are invalidated upon a write, the cost of re-reading a new valid copy increases with increasing data
granularity for a given sharing pattern. The problem becomes even more acute when more nodes are added
to the system, as now it is more likely that read-shared data pages may become invalid (see Figure 8b).
Since false sharing is not an issue with either the SCsynch or the RCupdate memory systems, we do not see

a similar performance degradation with either of these memory systems.
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Figure 8: Iterative workload model’s performance

Since both the SCsynch and the RCupdate memory systems allow the copies of shared data to remain

inconsistent between synchronization points, these two are expected to perform better than SCinv for the
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iterative workload model. Figures 8a and 8b confirm this hypothesis. However it is surprising that the
RCupdate memory system does not do as well as SCsynch. In the RCupdate memory system, updates for
all modified pages are sent at the end of each synchronization epoch. This set of pages could potentially
include ones that are unrelated to this particular epoch. As a result this memory system could incur more
overhead than entirely called for in the iterative workload model. The SCsynch memory system by associating
locks with segments does not have to incur this unnecessary overhead. This effect is more apparent at low
data granularities (small page sizes). In fact, as can be seen even SCinv performs better than the RCupdate
memory system at sufficiently small data granularity since the need for unnecessary updates in the latter
over-shadows the ill-effect of false-sharing in the former. At higher data granularities, the distinction between
SCsynch and RCupdate is less.

The results for the iterative workload model do not change if the communication medium is replaced by
a 10Mbps Ethernet because only 20% of the data accesses are made under the control of a lock. Hence, the
performance degradation as a result of shipping data with the lock is not very significant for the SCsynch

memory system.

5.4.3 Asynchronous Model

In this model, unsynchronized write-sharing of data is allowed. Further the domain of write-shared data is
the entire shared data space. Thus the model itself has a high built-in overhead (as compared to the iterative
model) for both the SCinv and the RCupdate memory systems. In the former, invalidations may have to
be sent to all the nodes while in the latter updates may have to be sent to all the nodes. This is evident
by comparing absolute completion times for the same amount of total work (in terms of number of memory
references) for the two workload models (see Figures 8a and 9b). As can be seen from Figure 9b increasing
the data granularity helps both the memory systems. The positive effect of reducing the number of messages
at larger data granularities seems to dominate the negative effect of false-sharing for the SCinv memory
system. The SCsynch memory system (owing to its assumption that computations obey a synchronization
model) is basically incompatible with this asynchronous workload model. Owing to the SCsynch memory
system allowing exactly one-copy of a segment (regardless of the data granularity) for such asynchronous
accesses it performs consistently worse than the other two for all data granularities (see Figure 9a). However
due to lesser number of messages at larger granularities the performance of the SCsynch memory system
approaches that of the other two.

The results for the asynchronous workload model do not change if the communication medium is replaced
by a 10Mbps Ethernet because only 20% of the data accesses are made under the control of a lock. Hence,
the performance degradation due to shipping of data with the lock is not very significant for the SCsynch

memory system.

We conducted several experiments to determine the effects of new technology on the overall performance.
We briefly summarize the findings here. When the communication medium in the baseline system is replaced
with a faster medium, the impact of communication speed on the performance becomes more significant as
the data granularity is increased because at low data granularity the access to the medium is the primary
source bottleneck (due to large number of messages). In contrast, when the processor in the baseline system
is replaced with a faster processor, the impact of the processor speed on the performance is more significant

at low data granularity. This is because for low data granularity, more number of data requests are generated,
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thereby increasing the computation requirements associated with page-fault handling and DSM related state
maintenance; as a result, the processor speed has a significant impact on the performance than for large data

granularity.

6 Discussion

We started out this research with the goal of evaluating the system issues in the design of distributed shared
memory systems. We first identified a set of system issues along with the possible design alternatives available
for addressing them. We re-visit these issues in the light of the simulation results presented in the previous

section and present our observations.

6.1 Virtual Memory and DSM

There are two ways in which the distributed shared memory abstraction can be provided in a system:
One, integrate the distributed shared memory mechanisms with the operating system; Second, provide
the abstraction as a set of library functions accessible from the user-level. We call the first approach as the
integrated-approach to DSM, and the second approach as the library-approach to DSM. The implementation
of DSM considered in our study uses the integrated-approach. The advantage of using this approach is that
the overheads associated with servicing DSM page-faults are very low, as all DSM related processing is
done inside the operating system. In CLOUDS, the integrated-approach incurs an overhead of approximately
800 wsec per page-fault. As a result, the overall performance of DSM is very good. On the downside,
the integrated-approach is quite inflexible as any minor change to the distributed shared memory system
requires modifications to the operating system. The library approach to DSM, on the other hand, is quite
flexible to deal with, as only the library needs to be modified. However, it would perform quite poorly

due to the overheads associated with context-switching, crossing user-to-kernel address boundaries, etc. As
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DSM deals with physical pages as units of data, a system designer implementing the library-approach would
also have to modify the operating system to provide hooks for manipulating data pages (such as installing
and invalidating) from the user-level. Some operating systems, such as MacH, do provide such hooks (via
external pagers), thereby simplifying the implementation of the library-approach. Table 7 summarizes the

advantages and disadvantages of the two approaches.

Approach
Integrated Library
1 | low overheads, O(usec) high overheads, O(msec)
inflexible flexible
transparent to the user provide hooks in the operating system for in-
stalling, invalidating pages

Table 7: Integrated vs Library: Comparison of the two approaches

6.2 Granularity

There are two aspects to the issue of granularity: computation granularity, and data granularity. As men-
tioned earlier, computation granularity is the amount of computation a process has to do between synchro-
nization and communication points in a multi-process computation, while data granularity deals with the
amount of shared information processed during a computation phase.

e Effects of computation granularity: In distributed systems connected via a local area network, network
latencies are high. Therefore, any problem that has to be solved in a distributed environment (through coop-
erative computing) should have sufficiently high computation granularity to justify the added communication

costs. The goal is to have a high CGRatio in equation 4.

Time spent in the computation
CGRatio = P P (4)

Time spent in requesting data for the computation

Figure 10 shows the plot for a curve with CGRatio = 1. In order to achieve good speedups, the CGRatio for
an application should fall in the shaded region for a given DSM implementation (CGRatio > 1). The vertical
lines on the chart indicate the minimum time that is spent in transferring a unit of data between two nodes
in a particular DSM implementation. For example, in CLOUDS, at least 16 msec is spent in transferring data
between two nodes. This is because during each transfer a minimum of 8-Kbytes is transferred. Values for
other systems differ depending on the size of the unit of data transfer, speed of the communication medium,
and other overheads associated with the transfer. To achieve good speedups on a particular implementation,
the CGRatio for an application should fall in the shaded region to the right of the vertical line for that
system. Table 8 classifies the systems surveyed in Section 3, based on the relative grain of computation
needed to achieve good performance. A system designer can calculate the computation requirements for a
DSM design by matching the minimum communication time for the system with those shown in the chart
(see Figure 10).

e Effects of data granularity: The issue of data granularity can be related to the amount of data exchanged
between nodes at the end of a computation phase because it is this data that will be processed in the next

computation phase. On page-based systems, regardless of the amount of sharing, the amount of data
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Computation Granularity

Large Medium Small
Domain, Ivy, Croups, Mach, Agora, | Memnet DASH, KSR-1
Choices, Mether, Munin

Table 8: Computation granularity requirements

exchanged between nodes is usually a multiple of the physical page-size of the underlying architecture.
Problems arise when applications that exhibit very small data granularity are run on systems that support
very large physical pages (8 Kbytes). If the shared data is stored in contiguous memory locations then
most data can be stored in few physical pages. This strategy often gives rise to the problem of false-sharing
wherein disjoint pieces of shared data, operated upon by distinct processors, reside on the same physical
page. As a result, the system performance degrades as the common physical page thrashes between different
processors. The problem further exacerbates as more nodes are used for solving the problem. One way to
reduce the problem of false-sharing is by partitioning the shared data structures on to disjoint physical pages.
For systems with a large physical page-size, such partitioning of data can result in significant wastage of the
virtual address space. Such wastage can be reduced if the distributed shared memory system is implemented
on architectures which support a smaller physical page-size.

Another factor that affects the value for the page-size is the total overhead per byte associated with
fetching a data-page. Recall, in Section 4 we computed the value for fotal overhead per byte as the sum of

the fized cost per byte and latency per byte (see equations 1, 2, and 3).

VM overhead + data request cost
PageSize

Total overhead per byte =

PageSize
Media bandwidth

Using the values for different components of the distributed shared memory system, one can compute

+ (server proc. cost) x PageSize +

the effect of increase in page-size on the total overhead per byte for a particular system. Figure 11 shows
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the expected overhead per byte for the CLOUDS implementation of DSM using a 10 Mbps Ethernet. In the
plot, we assume that the VM overhead is 0.800 msec, cost of sending a data request is 3 msec, and server
processing cost is 0.200 msec/Kbyte of data. As can be seen from the figure, the minimum occurs somewhere
between 1 - 2 Kbytes. For page-size values larger than 2 Kbytes, the latency per byte dominates the total
overhead per byte while for values less than 1 Kbytes, the fized cost per byte dominates the total overhead
per byte. Table 9 lists values for the page-size parameter for different values of the VM overhead, server
processing overhead, and data transmission cost. The values listed in Table 9 indicate the optimum value
of page-size; and are obtained by differentiating the total overhead per byte with respect to the page-size

parameter and solving for page-size (see equation 5).

Media bandwidth(V M overhead + data request cost)

PageSi = 5
ageotze (Media bandwidth) * (Server proc. cost) + 1024 (5)
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Figure 11: Total overhead per byte for DSM on CLOUDS

VM ovhd Data req cost Server proc. Media Speed Page-size
1 | 0.80 msec 3.00 msec 0.20 msec/K 10 Mbps 1 - 2 Kbytes
2 | 10.0 msec 3.00 msec 0.20 msec/K 10 Mbps 3 - 4 Kbytes
3 | 0.80 msec 1.00 msec 0.20 msec/K 1 Gbps 2 - 3 Kbytes
4 | 10.0 msec 1.00 msec 0.20 msec/K 1 Gbps 7 - 8 Kbytes
5 | 0.005 msec 0.02 msec 0.05 msec/K 8 Gbps 0.7 Kbytes

Table 9: Optimal value of page-size for different system configurations

Table 9 indicates that a single value of the page-size parameter is not appropriate for all types of DSM
system designs. The value should be decided based on the other design decisions, such as approach to

DSM, expected server processing overheads, and cost of data transmission. For example, a page-size of 1 - 2
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Kbytes is appropriate for a software implementation of DSM using the integrated-approach and Ethernet-like
communication medium. Systems such as CLOUDS that have similar characteristics but are implemented on
architectures with 8-Kbyte page-size pay a high penalty for latency per byte. On the other hand, systems
that provide hardware support for DSM (indicated by small VM and server processing overheads), and faster
communication medium can utilize smaller page-sizes (see entry 5 in Table 9). KSR-1 is an example of such
a system that uses a 128-byte sub-page as the unit of data transfer and coherence maintenance. As the value
for the page-size is usually tied to the system architecture used for the implementation, a system designer

should carefully analyze his design decisions before selecting the architecture for implementation of DSM.

6.3 Memory Model and Coherence Protocol

The memory model presented to the programmer by the DSM system and the choice of protocol used for
maintaining coherence of shared data are closely related. We have analyzed through simulation three memory
system, namely, SCinv, SCsynch, and RCupdate. It should be understood that the discussion is with respect
to these three memory systems each of which is a combination of a particular memory model together with

a specific coherence protocol chosen to implement it.

Application Rank
High CGRatios (1) RCupdate, SCinv

Medium CGRatios (1) RCupdate
(2) SCinv
Small CGRatios (1) SCinv

(2) RCupdate
Transaction Workload (1) SCsynch
(2) RCupdate
(3) SCinv
Iterative Workload (1) SCsynch
(2) RCupdate
(3) SCinv
Asynchronous Workload (1) RCupdate
(2) SCinv

(3) SCsynch

Table 10: Ranking of the three memory systems

Table 10 ranks the performance of the three memory systems for the three workload models that we
studied. Interestingly, for applications that exhibited high CGRatios, the choice of memory system does
not make a significant difference on the performance of the application. The main reason is that the appli-
cation’s communication and synchronization requirements are very low such that it does not matter which
memory system is used. For medium-grained applications, the RCupdate memory system performs well
because it supports concurrent writes to heavily shared data pages (which shuttle back and forth due to the

write-invalidate protocol). The SCinv memory system performs poorly because it pays a high overhead for
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maintaining consistency of heavily shared data pages. For small-grained applications, the RCupdate mem-
ory system performs poorly compared to SCinv because the former incurs high overheads at synchronization
points. These overheads negate any gains of using a weaker memory model for the RCupdate memory
system. For our simulation studies, we considered a wide range of workload models, and weaker memory
systems perform well for configurations with large number of processors (SCsynch for iterative, RCupdate
for asynchronous; see Section 5.4). The SCinv memory system did not perform well due to the increase in
overhead for maintaining coherence of data in large configurations.

Even though the unit of coherence is different in SCsynch from SCinv and RCupdate, the results pre-
sented in this study will not significantly change for the transactional and the iterative workloads because
none of these workloads do extensive asynchronous shared writes to a segment. For the asynchronous work-
load, however, the difference in unit of coherence gives a slight disadvantage to the SCsynch memory system
by reducing the degree of concurrency for asynchronous shared writes to distinct pages of a segment. Nev-
ertheless, even with the same unit of coherence for the three memory systems, the qualitative results for the
asynchronous workload will not change since the source of the problem for the SCsynch memory system (for
the asynchronous workload) is the one-copy semantics for unsynchronized access to a segment.

Other factors that can influence the choice of the memory system are the ease of programming, and

system scalability.

Programming Ease

It is easier to design and reason about distributed programs developed using the SCinv memory system.
However, since most parallel applications are developed with explicit synchronization the programming
effort for the RCupdate memory system is expected to be no more difficult. The SCsync memory system
requires explicit association of shared data with the lock variables that govern their access and hence is
expected to require more programming effort than the other two though not significantly more.

Since in a distributed system an update-based protocol with the SC memory model does not make sense,
an invalidation-based protocol is the only choice. In this case, to achieve good performance, the programmer
(or the compiler) has to do a good job of data placement to avoid false-sharing. As mentioned earlier,
performance degradation due to false-sharing magnifies in systems with large page-sizes since it results
in limiting synchronization concurrency. Although, for RC memory model it is conceivable that either
invalidation- or update-style protocol may be used, an update-based scheme is better suited in a distributed
setting since it enhances synchronization concurrency in the presence of false sharing. As in the case of SC,
if an invalidation-based protocol is used for RC then false-sharing will need to be addressed similarly.

Our simulation results (which are also corroborated in our experimental studies reported in [AJM*93])
show that there is no clear choice of a memory system that performs well across a variety of applications.
A logical question then is whether a memory system that allows multiple coherence protocols to co-exist a
la Munin [CBZ91] is the right approach to realizing efficient DSM systems. Though from the performance
standpoint the answer is ‘yes’, such a system places a substantial burden on the programmer to specify
the access patterns for the shared variables so that the correct protocol may be chosen by the system. It
appears that from the point of view of minimizing the programming effort and application portability, a
memory system that implements a well-defined memory model to the programmer is the right approach.
Any optimization at the lower level (such as multiple protocols) should be transparent to the programmer

and be done in the compiler, runtime, or the operating system.
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System Scalability

By system scalability, we mean how many nodes can be added to a DSM implementation without incurring
significant performance degradation. One measure of system scalability is the number of messages required
for maintaining coherence of shared data. Table 11 shows the number of messages generated in the three
memory systems (with and without multi-cast). If no multi-casting is used then one can see that both the
RCupdate and SCinv memory systems can potentially generate a number of messages proportional to the
number of nodes participating in the computation (r — A”). On the other hand, the SCsynch memory system
is insensitive to the number of nodes participating in the computation. However, in both the SCsynch and
RCupdate memory systems the number of messages increases as the degree of sharing is increased (number

of messages is a function of the degree of coherence, c).

Number Of Messages
Memory System Without multi-cast With multi-cast (r=1)
RCupdate S(5 + 2rw) + 2P(1-h) S(5 + 2w) + 2P(1-h)
SCinv S(5 + 2rwe + c(1-w)) + S(5 + 2we + c(1-w)) +
P(Lh)(2+ o(w(5 + 21) + 1)) P(1h)(2+ (T + 1))
SCsynch 38 + P(1-h)(2 + ¢) 38 + P(1-h)(2 + ¢)

Number of synchronization phases
Amount of memory operated by a processor during a computation phase
Probability that an access is a write operation

Hit ratio

(¢}

Probability that an access read/write will cause coherence messages
to be sent to other nodes
N Number of nodes participating in the computation
Number of nodes involved in receiving coherence messages. r < A
Unit of data transfer

M

Number of messages needed to bring in M bytes of memory. P = &

—

N Q

Table 11: Number of messages generated in the three memory systems

Table 12 rates the scalability of the three memory systems based on different parameters values, assuming

no multi-cast. We analyze each of the four cases below.

1. If an application does not require any coherence to be enforced (¢ = 0) then the SCsynch memory system
will generate a fewer number of messages because it combines data transfer with synchronization. One
example of such an application is an implementation of TSP that allows the nodes to use their local
copies of the best tour-value. Only when a processor needs to update the global best tour-value, it does
so under the control of a lock. This application does not need any coherence activity to be performed
during computation of the best tour-value. The other two memory systems will generate equal number
of messages, albeit more than SCsynch, because separate messages are needed for acquiring/releasing

locks during the computation.

2. For applications that access data under the control of a synchronization, the SCsynch memory system

generates fewer number of messages than the other two memory systems because it combines data
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Condition Order
1 | No coherence needed, ¢ = 0 (1) SCsynch
(2) SCinv, RCupdate®
2 | No computation phase, M = 0 (1) SCsynch
=P=0 (2) RCupdate
(3) SCinv
3|r—-WN (1) SCsynch
(2) RCupdate
(3) SCinv
4 | Number of synchronization phases (1) RCupdate
tend to 0, § — 0 (2) SCsynch
(3) SCinv

2Provided the reader turns off receipt of updates

Table 12: Scalability of the three memory systems without multi-cast

access with synchronization. The RCupdate memory system generates fewer messages than SCinv
because the former supports concurrent writers to the same physical page while the latter does not.

The ScAN benchmark is one example of such an application.

3. If the number of nodes for which memory consistency needs to be enforced reaches A" then the number
of messages generated for the SCinv memory system increases more rapidly than for the RCupdate
memory system because the former enforces memory consistency during the synchronization and com-
putation phase while the latter enforces memory consistency only at the end of the synchronization
phases. The SCsynch system scales better than the other two because the number of messages is

independent of the number of nodes participating in the computation.

4. If an application has very few synchronization phases then the benefits of the SCsynch memory system
in combining data access and synchronization become negligible. As a result, the RCupdate memory
system scales better than the other two because it does not generate messages to enforce memory

coherence during computation phases.

A system designer can analyze the target set of applications that will run on the DSM system to see
which type of applications will be more often used. The designer should then select the memory system

accordingly by comparing the number of messages using Table 11.

6.4 Synchronization

We discuss the issue of providing synchronization with DSM under a broader category of miscellaneous system
services. Simulation studies (see Section 5) have been performed under the assumption that miscellaneous
system services (such as acquiring/releasing locks and barriers) incur negligible cost; therefore the results of

the studies do not show significant effect of these services on the performance.
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In a companion paper [AJM*93] we report on experimental studies of DSM systems that we carried out
on CLOUDS in which we observed that these services play a key role in determining the overall performance
of the application. Most applications that we considered in that study belong to the class of SPMD programs
with approximately equal amounts of computation being performed at each node. As a result, the processors
have a tendency to reach a synchronization point in the program at about the same time, causing bursts
of synchronization activity. Such bursts of activity caused the (central) synchronization server to become
overloaded, resulting in severe performance degradation especially for large number of processors. Similar
performance degradation due to the data server becoming a bottleneck was observed for the RCupdate
memory system. At a release point, each processor identifies the modified shared data and sends it to the
data server. As all processors reach the synchronization point at approximately the same time, the data
server became the bottleneck at synchronization points. The performance deteriorated further as more nodes
are added to the system.

One approach to alleviating the synchronization overhead is to reduce the number of messages by com-
bining data transfer with synchronization as is done in the SCsynch memory system. This point is supported
by the simulation studies for the transaction workload model (see Section 5.4.1). Using distributed servers

for providing miscellaneous services is another approach to reducing these overheads.

6.5 Summary

Emerging trends in processor and communication technology (faster RISC-based processors, fiber-optic and
ATM networks) indicate that newer technology might alleviate the performance related problems of large-
scale loosely coupled DSM systems. Faster processors would reduce DSM related processing overheads,
while better communication technology will reduce data latency. To improve the scalability of the systems,
it is imperative that the number of messages generated for coherence maintenance does not increase dispro-
portionately as more nodes are added to the system. In this sense, both SCsynch and RCupdate memory
systems have an edge over SCinv in that they require fewer messages for coherence maintenance. Further,
RCupdate memory system does not exhibit the ill-effects of false-sharing (provided receipt of unnecessary
updates is turned-off). Therefore, this memory system may be the best candidate for architectures with

large physical page-sizes.

7 Concluding Remarks

The paper starts with the premise that distributed shared memory is a viable programming paradigm for
programming large distributed systems. Based on this premise, we have investigated several issues that arise
in the design of such systems, and tried to answer the question whether we can identify a set of issues, along
with the design parameters, that define an efficient implementation of distributed shared memory systems.

First, we have identified a set of system issues that form the core of a distributed shared memory system
design. These issues include integration of distributed shared memory with virtual memory management,
granularity of computation and data, choice of memory model, choice of the coherence protocol, and tech-
nology factors. We have also identified a set of possible design alternatives that are available for addressing
each of these issues.

Second, we have analyzed the performance of an implementation of distributed shared memory on the

CLouDs distributed operating system. The study has provided us with timing measurements associated
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with individual components of the DSM subsystem, which are later used to assign costs to the different
components of the simulator.

We studied the issues using a simulation model. To drive the simulator, we designed a workload model
that captures the salient features of programming parallel and distributed systems. The simulator is used
to analyze system performance with respect to data granularity, memory models and coherence protocols,
effect of communications media, and any additional hardware support. Some of the key results of the study
indicate that the choice of coherence protocol does not matter for applications that exhibit high computation
granularity and low state sharing; weaker memory models and update style protocols become important in
large distributed shared memory systems; the unit of data granularity (page-size) depends on the overhead
associated with servicing data requests and cost of data transmission; and miscellaneous system services,
such as the synchronization server, and the data server, play a significant role in influencing the performance

of an application.
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