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ABSTRACT

Free surface problems occur in a variety of processes important in the
manufacture of pulp and paper. Examples include black liquor spraying in a recovery
furnace, jets from head boxes, the forming section of a paper machine, condensate flow in

dryer cylinders, and finishing operations such as coating and polymer extrusion.

‘- The purpose of this work was to develop a computational fluid dynamics model
for the analysis of some of these free surface problems. Specifically, the features added
to an available computational technique have allowed the study of the instability of a thin
viscous sheet of fluid flowing through an inviscid vaporAphase. This problem has direct

application in the understanding of black liquor spraying.

In order to accurately solve the sheet instability problem, it was necessary to
accurately include the deviatoric normal stress in the liquid phase in the interfacial
boundary condition arising from a normal stress balance. The driving force for sheet
instability, variations in the vapor phase pressure must also be allowed. In this
computational technique, vapor phase pressure variations are determined by solution of
potential flow in fhe vapor phase coupled to the solution of the full Navier-Stokes
equations in the liquid phase through both the continuity of normal velocity at the

interface and the interfacial normal stress balance.

The accuracy of this computational technique is demonstrated through solution of
the lid-driven cavity problem for confined flows, the die-swell problem for free surface
flows (with and without surface tension), and the stability of a thin viscous sheet flowing
through a stagnant, inviscid vapor phase. Accurate solution of these test problems

indicates that the new features of this computational technique work properly. Additional
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problems studied include flows under the blade in a short dwell coater and condensate

flows in dryer cylinders.

Both temporal and spatial pressure variations can occur in the pond of a short
dwell time coating applicator. Since the flow under the blade is made up of a
combination of Couette and Poiseuille flows, these pressure variations upstream of the
blade effect the flow under the blade and the resulting coating thickness. The effects of

both temporal and spatial variations on film thickness are presented.

The heat transfer rate through the condensate layer in a dryer cylinder can limit the
paper drying rate. In this work, the film thickness and velocity variations expected within
the condensate layer are predicted. The resulting velocity profiles show a small boundary

layer accompanied by an “inviscid” core of relatively constant velocity.

In this dissertation, I have developed a computational technique based on the
volume of fluid technique for tracking the interface and a modified form of the SOLA |
solution algorithm for solution of the Navier-Stokes equations. This technique includes
third order accurate treatment of the advective terms in the Navier-Stokes equations, the
liquid phase deviatoric normal stress at the interface, and allows for pressure variation in
the vapor phase through solution of potential flow. This computational technique is
unique in its ability to solve the coupled problem of an initially stagnant, inviscid vapor
phase governed by potential flow and a moving liquid phase governed by the

incompressible Navier-Stokes equations.




INTRODUCTION

Many processing operations in the pulp and paper industry involve flows of fluids
with free surfaces. These operations include the spraying of black li_quor into a recovery
furnace, jets.leaving the headbox, the paper machine’forming section, condensate flows
inside dryer cylinders, coating application systems, and finishing operations such as

polymer film extrusion.

In the context of this thesis, free surface flows are defined as flows where at least :
a portion of a liquid phase of interest is bounded by a vapor phase rather than ‘a' solid Wall.
The presence of a free surface complicates solution of the flow equations by requiring
some means of tracking the location of the interface between the liquid and vapor phases
in addition to the already difficult task of solving for the pressure and velocity fields
within the flow. Specifically, this work focuses on developing a computation iool
suitable for studying the problem of sprayingr black liquor into a récovery furnace. [begin
by discussing the importance of black liquor Acombustion on the economic viability of the
Kraft pulping process, followed by a discussion of the desirable characteristics of a black

liquor spray.

THE KRAFT PULPING PROCESS

Wood, consisting primarily of cellulosic fibers held together by a “glue” called
lignin, is the primary raw material in the manufacture of paper. In order to manufacture
paper, individual fibers are required. The fibers can be separated from the lignin matrix

by a variety of means, with one of the most common being the Kraft pulping process.




In the Kraft process, wood chips and white liquor, an aqueous solution of sodium
sulfide and sodium hydroxide, are heated in a reaction vessel called a digester. The lignin
matrix is preferentially attacked by the inorganic pulping chemicals and breaks down into

soluble fragments freeing the individual fibers from the lignin matrix.

In order to recover the inorganic pulping chemicals, now primarily in the form of
sodium sulfate and sodium carbonate, the fibers are washed and sent on to bleaching or
papermaking operations. The filtrate from the washed fibers, termed weak black liquor
bécausé of its color, contains the inorganic chemicals that must be recovered and the

dissolved lignin fragments.

In order to make the Kraft pulping process economically viable, it is necessary to
recover the inorganic chemicals as well as the chemical energy contained in the lignin
fragments.!:2 These objectives are accomplished by combustion of the black liquor in a
reéovery furnace after concentration in multiple effect evaporators to 65-75% solids. The
concentrated black liquor is burned in a water-walled recovery furnace, with the energy
released used to produce high pressure steam for electricity generaﬁon and to provide
process steam for plant operation. The inorganic component of the black liquor is
recovered from the bottom of the furnace as a smelt of molten salts consisting primarily

of sodium sulfide and sodium carbonate.

The final step in the recovery of the inorganic pulping chemicals is the
causticizing step where the sodium hydroxide is renewed. First, the sodium éulﬁde and
sodium carbonate salts are dissolved in water. Next, lime (calcium oxide) is added to the
solution ‘precipitating calcium carbonate from a solution now consisting of sodium sulfide
and sodium hydroxide. Finally, the calcium carbonate is recovered and heated in a kiln to

drive off carbon dioxide yielding calcium oxide.




The general steps in the pulping and chemical recovery cycles are presented in -
Figure 2. As mentioned above, the economic viability of the Kraft pulping process is
determined by the recovery of the pulping chemicals and the chemical energy in the
dissolved lignin. Therefore, the operating characteristics of the recovery furnace are of

great importance to mill operations.

Water
Wood . Fibers, Lignin, , 4 . Further
~Chips Digester and inorganics Washers Fibers Processing
Pulping Chemicals Lignin and
(sodium sulfide and inorganics
sodium hydroxide) (weak black Liquor)
t?)l)l?g:elll(lml?l— . Causticizing ¢—Lime—  —Steam—» Evaporators [~Condensate
sodium sulfide and
sodium carbonate Strc1>ingu g]rack
solution ql
Dissolving - Molten salts Recovery Air
Tank Furnace
Water (I‘::slees Steam

Figure 1. General steps in the pulping and chemical recovery cycles.

CHARACTERISTICS OF A BLACK LIQUOR RECOVERY BOILER

A diagram of a typical black liquor recovery furnace is presented in Figure 2. The
recovery boiler is similar to other large industrial furnaces in that fuel is burned in the

combustion zone and steam is generated in the heat exchangers. The primary differences




are due to the presence of relatively large amounts of non-combustible inorganic species

in black liquor which are generally not present to the same degree in other fuels.

core of
rising gas

. |combustion
zone

Port =

Liquor_
Spray

Air
Ports

smelt removed

Figure 2. Diagram of a typical black liquor recovery furnace.

The presence of these inorganic species leads to fouling of heat transfer surfaces
by molten salts. In addition, the presence of the liquid smelt in the lower furnace is a
safety hazard due to the possibility of smelt-water explosions in the event of water tube

rupture. 12




In order to understand the implications of black liquor combustion on fuméce
operation, it is necessary to review the steps in black liquor combustion. These steps
actually occuf at overlaping times, but are usually discussed as occurring in series. The
first step is the drying phase where the remaining water in the droplets is evaporated.
This is followed by the gasification stage where combustible gases are given off through
pyrolysis. The final stage in the black liquor combustion process is char combustion
where residu_ai carbon in the char remainiﬁg aftér pyrolysis is burned and the molten

smelt formed.

* Ideally, the drying and combustion phases occur in the combﬁstion zone while the
char combustion step happens either inflight or on the char bed. In reality, each droplet ',
follows a different trajectory during its time in the furnace based on its size, initial
velocity, and the air flow patterns in the furnace. Thus, the actual locations in the furnace

where these steps occur varies from drop to drop.

Before discussing the probable fate of droplets with different initial sizes, I would
like to discuss the effect of droplet size on the rate of the different processes that the
droplet undergoes. Frederick3 reports that the drying time increases linearly with the
initial drop diameter. The time for pyrolysis increases with the initial drop size to the
five-thirds power.3 Finally, the time for inflight char combustion increases with the
initial drop diameter to the five-thirds -power.3 Thus, the time for all of these processes
increases with the drop diameter and the density of the droplet is expected to initiallyl
decrease during the drying phase, drop due to swelling4> in the pyrolysis phase, and

finally increase during the smelt formation step.

Industrial black liquor sprays are known to produce a distribution of droplet

sizes.6 In many combustion processes, smaller droplets are preferred because the overall




rates of the combustion steps increase with decreasing droplet size. The presence of the
relatively large inorganic component of black liquor means that drops which are either

too small or too large are undesirable.

A small droplet is expected to dry very rapidly and swell. Because small drops
have a higher syirface area to volume ratio than large drops,® the aerodynamic drag on
small droplets is relatively higher than that on large droplets making them more
susceptible to entrainment in the upward flowing central core. If the pyrolysis reactions
and char combustion phases are completed prior to a small droplet entering the heat
transfer regime, the droplét, now consisting of molten smelt, may be expected to drop to
the bbttom of the furnacé since the smelt has a much higher density and may be able to
overcome the aerbdynamié drag. Ih the event that the droplet remains in the gas stream, it
is expected to contribute to fouling the hea; exchangers in the upper part of the furnace,

reducing the efficiency of energy recovery.

Thus, we see that droplets that are too small are expected to lead to problems in
the heat transfer section due to fouling. Droplets that are too large' yield a different set of
problems. Efficient regeneration of the sodium sulfide pulping chemical in the lower part
of the furnace requires both high temperature and a reducing atmosphere. Droplets that
are too large may not dry completely prior to reaching the ;har bed, resulting in low char
bed temperature due to the energy reqﬁired to evaporéte the remaining water. In addition,
there are safety concerns, because the addition of water to the smelt bed can lead to an

explosive smelt-water interaction.!2



BLACK LIQUOR SPRAYING

Industrially, black _liquor is sprayed using either hollow cone swirl, v-jet, or
splash-plate type nozzles.9 All of these nozzle types share the characteristic that a sheet
of fluid is formed which »subsequently becomes unstable and breaks up into droplets.6

This is in contrast to jet-producing nozzles where a cylindrical strand of fluid is produced.

In his doctoral dissertation at the Institute of Paper Science and Technology,
Spielbauer® studied the mechanism of the breakup of a radially thinning sheet into
iﬁdividual droplets. He described the following sequenc'e of events leading to droplet
formation. First, the liquid sheet becomes unstable due to aerodynamic forces and
sinuous waves iﬁ the sheet are observed. Next, the sheet perforates due to an
undetermined process, but probably some combination of non-wettable particles, air
bubbles, impinging droplets or particles, and local thin spots due to multiple growing
wavelengths. Thirdly, the perforations in the sheet grow due to surface tension forces and
interact to form a “web” of strands. Finally, the strands become unstable and break up

into droplets.

The stochastic nature of the perforation mechanism yields strands of varying sizes,
which implies that the resulting droplets will be of various sizes. Thus, a distribution of
droplet sizes is expected from nozzles where this mechanism is active, in agreement with

experimental results.6

The growth of waves in the sheet of black liquor, to a large extent, determines the
distribution of droplets obtained from a nozzle. As a result, the primary purpose of this
work is to develop a computational tool capable of studying the growth of waves in a thin

viscous sheet of fluid flowing through an inviscid vapor phase.




I have discussed the importance of the black liquor recovery cycle and the

characteristics of the black liquor spray. One of the most important processes in black

liquor spraying is the instability of the sheet of black liquor prior to sheet breakup. This

instability leads to the thinning of the sheet which ultimately results in perforations and

sheet breakup. This effort to develop a tool suitable for the study of the liquid sheet

instability problem involved the following steps:

©

A mathematical description of the equations describing fluid flow.
A mathematical definition of a free surface.

A review of methods which have previously been used to solve free surface flow
problems.

Additional capabilities needed to study free surface flow problems affécting the pulp -
and paper industry (beyond those in existing techniques) and a problem statement.

A detailed description of a solution algorithm (SOLA) for the Navier-Stokes
equations coupled with the volume of fluid (VOF)8 method for tracking the location
of the free surface.

A discussion of the major additions to the SOLA-VOF® family of computational
techniques needed to solve the free surface problems studied in this work.

Several validation problems which prove the accuracy and capabilities of different
pieces of the IPST-VOF3D code.

Applications of the IPST-VOF3D computational technique to free surface problems
of interest to the paper industry, specifically three-dimensional flows under the blade
in a coating application and the flow of condensate inside a dryer cylinder.

Additional features that would be useful in the computational technique and areas for
future work.




DEFINITION OF THE FREE SURFACE PROBLEM

The ﬂéw .of incoinpressible, isothermal, Newtonian fluids can be described by the
Navier-Stokes equatibns (NSE) first derived by Névicr9 and Stokes10. The first equation,

Vau=o, - | )
derived from conservation of mass, is commonly referred to as the continuity equation.

The second equation,

du ' : 1

— + uVa = - =Vp -+ w4 S
i & p ¥ , @
inertial advective body forces pressure viscous

results from a momentum balance and consists of inertial, convective, gravitational or
body forces, and a surface force due to the normal stress consisting of pressure and
viscous contributions. Here, u is the velocity vector, g is the body force vector, p is

pressure, p is the fluid density, and v is the fluid kinematic viscosity.

In order to properly pose the problém,h appropriate boundary conditions must be
specified. These normally include some combination of no-slip walls, symmetry planes
(slip walls), continuative outlets, and periodic outlet conditions. Table 1 shows the
mathematicaﬁ descriptions for these boundary conditions on the left edée ofa -
computational domain (smallest value in the x-direction). Analogous condiﬁons may be
written for the remaining domain boundaries. Generé.lly, interior obstacles are tréatéd
either as slip or no-slip walls with the appropriate conditions applied in a manner similar
to the external boundaries. Numerically, boundary conditions for the pressure adjacent to
no-slip walls are required and are typicélly derived from the velocity boundary conditions
and the NSE. The specifics of the pressure boundary condition derivation for this
computational technique are presented below along with the discussion of the

implementation of the computational technique.
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Table 1. Boundary Conditions for confined flows.

Boundary Condition u v w P
Symmetry Plane or seo | 9. ow _ P_,
Frictionless Wall B ox ox ox
No-Slip Wall u=0 | v=0 [ w=0 o
du ov ow dp
inuati —= —=0 | —=0| —=0
Continuative Outlet 3. % 3% Ix
Periodic Condition U =Up | Vp=Vg | W =Wg | PL=Pr

- The presence of a free-surface yields an interface between two fluids of different
properties where the boundary is allowed to move as a function of time. Thus, the
addition of a free surface requires additional boundary conditions at the interface between
the two phases. These conditions for two general fluids, dérived from conservation of

normal velocity, normal stress, and tangential stress, respectively, arell

u, n=u, n, " (3)
p,—n'T, n=p,—N-T, D+CK, A 4)
n-t, s=n-T,-§, : (5)
and n-T,-t=n-1,-t (6)

where the subscripts £ and v refer to the liquid and vapor phases, respectively; n is the
unit vector normal to fhe interface; s énd t are unit vectors tangent to the interface that
form an orthogonal coordinate system with n; ¢ is the surface tension between the fluids;
K is the curvature of the interface; and 1 is the deviatoric stress tensor (the viscous
component of the total stress). For a Newtonian fluid, the deviatoric stress tensor is

defined as
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t=p[Vu+(Vu)'|, @
where L is the Newtonian viscosity.!!
The primary assumption used in deriving a free surface boundary condition from

the boundary conditions for a general interface just presented is that the vapor phase is

inviscid. This yields

p,—n-T,n=p,+0K (8)
nt,-s=0 . 9)
and n-1,-t=0 ' (10)

for the normal and tangential stress conditions at the interface with the normal velocity
condition remaining the same. Usually, the additional assumption of constant pressure in
the vapor phase is also made. This assumption simplifies the problem considerably by
eliminating the need to solve tHe NSE in the vapor phase. Further discussion of the
implications of the constant vapor phase pressure assumption are presented in the

literature review section below.

If the deviatoric stress in the liquid phase is also assumed to be small, the
tangential conditions vanish and the condition arising from the normal stress balance is
represented by Laplace’s formula,

Pe =Py +OK, : (11

where p, is the constant vapor phase pressure.

The unit vector normal to the interface, two mutually orthogonal unit vectors
tangential to the interface, and interfacial curvature can be defined in terms of the local
height of the interface above a plane,

H(x,y,z)=y-n(x,2)=0, (12)

where 1) is an auxiliary height function. The vector normal to the interface can be
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computed as the gradient of the H(x, y, z).!2 For Cartesian coordinates the normal vector

becomes

Ay=nix2)), Ay-nxz) ,, Ay=nlxa)
ox ay 0z (13)

-n,i+j-n,k

VH(x,y,z) =

where i, j, and k are the unit vectors in the coordinate directions, and subscripts denote
partial differentiation. To generate the unit normal, this vector must be scaled to unit

length yielding the unit normal vector,

"T]x ll+J nzk (148)

\/I+l+nz

The tangential vectors are derived from mutual orthogonality of the normal and tangential
vectors condition and by setting the i-component of s tangential vector to zero, yielding
_n j+k

RN

1+ +
i tenxse| n)i+n, j-n.n,k (14c)

\f+n J—+1+nz

for the unit tangential vectors.

(14b)

Finally, the surface curvature is defined as the negative divergence of the unit

normal vector!3

k=-V-n

. -n, _a 1 _a -n, (15)
) aX[\/nHHnZ} ay[\/niﬂmf} az[\/niﬂﬂﬁ]

which simplifies to
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M (t4nd)en, (n} +1)
(2+1+m2)”

(16)

These formulas for Cartesian coordinates can be rotated to apply to interfaces oriented

primarily in the x or z directions.

In cylindrical coordinates, the formulas vary depending on the orientation of the
interface. The formulas for each direction again begin with local height functions such as

R(r,0,z) =r—n(6,z). (17)
The unit normal and tangential vectors are derived using the gradient operator, here for
cylindrical ;:oordinates, in the same manner as that used above

p=Nr—m,6-mn, 2
yn?+n2+n'n’

) (18a)

s r+z

, (18b)
Ji+m2

("o r+n(1+n})6+ngn, 2

and = (18¢c)
S+ o +nd+min? -
Similarly, for the ©-direction the local fluid height function is .
o(r,0,z) =0-1(r,z) 19)
with the unit normal and tangential vectors
po M r+é-mz (20a)
Jrni+l+r'n]
s= rr]29+z , (20b)
J1+'n?
—{1+r™?)r-m, 8+1’n,n, z
and = ( nZ) m N4 . (20c)

- \/1+r2nf JrTnf +1+10'n’

Finally, for the z-direction the local height function is
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Z(r,0,z) =z—n(r,0), : .@2n

with the unit normal and tangential vectors

and

-mM, r—"M,0+rz
n= \/2 2 92 2 (224)
Mo+ Mg +r
_r0+m,z :
S—W’ (22b)
0
t=—(n§+r2)r+m,n99—r2nrz

22c
\/n§+r2\/?2nf+n§+r2 (22c)

With the definition of a free surface problem complete, I present a summary of the

primary difficulties in solving free surface problems numerically, quoted from Floryan

and Rasmussen. 14

1.

The interfacial boundary conditions are nonlinear and of a mixed type, and
they involve pressure which has to be evaluated accurately at the
boundary.

The field equations are nonlinear and boundary layers are possible.

. The solution domain has an irregular, constantly changing geometry; its

connectivity may change, e.g. breakup of a liquid droplet.

The interface may undergo large distortions and non-analytic cusp-like
interfaces are possible.

Crossing interfaces may occur when multiple interfaces are involved.

Tracking the shape of the interface, i.e., its curvature, demands high -
accuracy to account properly for the surface tension effects.

Presence of singularities at the contact points poses serious difficulties for
accurate determination of the location of the boundary.
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8. Several physical instabilities are known to occur at the interfaces, and,
therefore, several intrinsic temporal and spatial characteristic scales might
be involved. Knowledge of these scales is required in order to establish
the appropriate numerical step sizes.

This list of potential pitfalls in solving free surface problems implies that no
single numerical approach can be expected to accurately and efficiently treat all free

surface problems. Each approach may be expected to handle certain classes of problems

well, while potentially having great difficulty with other classes of problems.
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LITERATURE REVIEW,

The presence of a free surface and the accompanying need to track the location of
the moving interface fuﬁher complicates the already difficult task of solving the Navier-
Stokes equations. Detailed knowledge of the interface shapé and location is required to
accurately impose the highly non-linear interfacial boundary conditions presented abové.
In addition, the location and shape of the interface are often among the most impoﬁant

pieces of information obtained from a free surface problem solution.

This section presents a review of the literature describing techniques for solving
free surface problems. This is followed by a discussion of the stability of a thin viscous
sheet flowing through an inviscid vapor phase, the problem related to black liquor

spraying that has driven the development of this computational technique.

NUMERICAL TECHNIQUES FOR FREE SURFACE PROBLEMS

This review of numerical tec};niques for treating free surface flows will generally
follow the format of Floryan and Rasmussen,!415 who present more complete reviews of
moving boundary methods. Additional reviews related to this subject are presented:by
Yeung,16 Hyman,!7 Laskey et al.,!8 Crank,19 Bulgarelli et al.,20 Harlow,21 and Tseng

et al.22

Current techniques for computational analysis of free surface flows can be divided
primarily into Lagrangian and Eulerian approaches. I will describe and discuss mar;y of
the available techniques in each of these categories plus some hybrid techniques that do
not fit easily into either the Eulerian or Lagrangian classifications. Next, I will discﬁss in

greater detail the particular family of volume tracking Eulerian techniques used in this
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work which have advantages in a broad class of free surface ﬂow problems involving

large surface deformations.

Lagrangian Approaches

Lagfangian approaches are generally defined as those where the computational
mesh used in the numerical approxirnation'of the NSE is allowed to fnove with the flow.
This simplifies the imposition of the interfacial boundary conditions since the interface
lies along an edge of the computational domain. Unfortunately, Lagrangian techniques
have thevdisadvantage that, for flows with large surface deformation or locally large shear
rates, the local mesh can become distorted, leading to loss of numerical accuracy and,
potentially, numerical stability.!4 In some cases, the grid distortion can become so severe

that the mesh becomes entangled leading to failure of the numerical technique.

An example of a purely Lagrangiaﬁ approach can be found in the LINC
(Lagrangian incompressible) method presented by Hirt et al.23 and extended by Butler.24
In this technique, the vector quantities (position, velocity, and body accelerations) are
stored at the computational cell vertices and the scalar quantities (pressure and stress
tensor) at the cell centers. A Poisson equation for the pressure in a cell is derived from
the requirement of constant volume in a cell as a funétion of time. This technique |

generally suffers severely from the grid distortion problems outlined above.

In an effort to overcome the grid distortion problem, free Lagrangian approaches
have been developed.25:26:27.28 In the free Lagrangian approach, the computational grid
is reconstructed at each time step by choosing the nearest neighbors to each vertex. Thus,
the advantages of the Lagrangian representation are maintained, while the computation

grid is dynamically adjusted to prevent entanglement and maintain accuracy. The usual
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approach is again to have the vector quantities vertex centered and the scalar quantities
cell centered,25:26.27.28 but examples exist where all quantities are cell centered29,30,31

and where all quantities are vertex centered.32.33

‘An alternative to the free Lagrangian approach for removing the grid distortion
problem is to allow periodic rezoning of the computational grid. This process maintains
the integrity of the computational grid while keeping the advantage of allowing the
intérfaée to be represented by an edge of the computational domain. The rezoning
process has a side effect of introducing numerical diffusion as the information is
transferred between the corﬁputational grids. Examples of numerical techniques using
rezoning techniques are presented by Hirt et al.,34 Amsden et al.35 Addesio et al.,36 and
Bach and Hassager.37 As an example, the Arbitrary Lagrangian-Eulerian (ALE)
technique developed by Hirt et al.34 will be discussed in greater detail below as a hybrid

technique.

Eulerian Methods

| In the Eulerian approach, the computational mesh typically remains fixed or is
allowed to move in a prescribed manner. What makes these techniques an Eulerian
representation is that, in all of these methods, the fluid moves relative to the mesh. The
location of the interface is maintained either by some meansdf tracking the interface
location38,39,:40.41 or by tracking the location of the fluid itself, referred to as volume
tracking.8:42 It is possible to use any of the interface tracking techniques with both the

fixed and variable grid formulations.
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Fixed Grid Eulerian Methods

Fixed grid representations have the advantage that there is no possibility of the
mesh becoming entangled and thus large changes in the free surface can be tolerated. The
primary disadvantage with fixed grids versus Lagrangian and variable grid approaches is
a loss of precision in the knowledge of the interface location and shape. Interface
tracking in fixed grid methods are reviewed by Hyman!7 and Laskey!8 with additional
discussion presented by Hirt and Nichols.8 The two Primary examples of interface

tracking methods are the height function and line segment approaches.

Height fqnctions are probably the simplest methods for tracking a moving
interface. Thc interface location is stored as the height of the interface above an arbitrary
line (typically a coordinate axis) in two-dimensions or plane in three-dimensions. In this
instance, the local height functions used to compute the surface curvature discussed above

are the same as the interface tracking height functions.

As an example, if the interface remains relatively parallel to the x-z plane in three-
dimensions, the height function is expected to be a function of position and time such as
H =f(x,z,t). Problems can occur when the slope of the interface, oh/dx or dh/dz, is
greater than the local mesh aspect ratio, 8y/8x or 8y/8z.8 This technique is extremely
efficient in terms of storage and computations, but has problems with sharp gradients and
is limited to interfaces that are single valued. Examples of fixed Eulerian mesh
computational techniques using height functions include SOLA-SURF7 where the height
function is stored at the center of a column of computational cells and an approach

developed by Hill40:4! where the height function is stored at the computational cell edges.
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Movement of the interface is governed by the kinematic condition 'représenting'

the requirement that the interface must move with the fluid,

oh dh oh _ 4
E+U&“+W—a;—v. . (23)

The line segment approach overcomes the requirement that the interface remain
relatively flat and single valued by treating the interface as a collection of points
connected by line segments. For accuracy, the distance between the points must Be less. .
than the local grid spacing.8 Each point moves with the local fluid velocity maintaining
its position on the interface. In a sense, the line segments move in a Lagrangian manner
through the fixed Eulerian mesh. To maintain accufacy and computational efﬁciéncy of
the simulation, line segments can be added and deleted as nécessary. ExampAlves of fixed
Eulerian mesh methods based on the line segment approach are given by Nichols and

Hirt. 3943

The line segment method has difficulty in situations where- two interfaces intersect
or when an interface folds over on itself (e.g. wave-breaking).8 These difficulties are
compounded when the line segment te,chniqué is extended to three-dimensions with

additional problems arising when segments need to be added or deleted.

Volume tracking methods originated with the Marker and Cell (MAC) method,
the first generally successful free surface computational technique. This technique was
originally presented by Harlow and Welch?2:44 and modified by Viecelli,*3 among others.
In the MAC method, the location of the fluid within a fixed mesh is tracked by a set of
massless marker particles which are moved at the end of each time step in a Lagrangian

manner. The interface is assumed to lie somewhere within a cell containing marker
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particles and having an empty 4neighbor. Taking the limit as the number of marker

particles becomes infinite, it is possible to track the “fullness” of each computational cell.

The computational cell fullness concept leads to a number of vblume tracking
techniques which differ primadiy in the method used to reconstruct the interface from the
“fullness” data. Techniques include Simple Line Interface Calculation (SLIC),46 a
modification to SLIC,47 a method proposed by Chorin48 to fit an oscﬁlating circle with
the same properties as the local fluid éonﬁguration, and the Volume of Fluid (VOF)
concept.3’49. These finite difference techniques address the issue of how to take the
fullness of a computational cell and its neighbors and convert it into an accurate
representation of the interface location and local curvature as demonstrated in Figure 3.
The early volume tracking codes were all based on finite difference methods, however,

recent applications of the cell fullness concept have included finite element

analyses.50.51,52,53

Figure 3. Reconstruction of the interface using various volume tracking procedures from
left to right: (a) the actual form of the interface; (b) reconstruction based on a
marker-and-cell procedure (the interface is somewhere in the lined area);

(c) SLIC reconstruction;46 (d) improved SLIC reconstruction;*7 (¢) VOF
reconstruction.8
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A recent modification to the VOF approach which yields a more accurate
représentation of the surface tension component of the interfacial boundary condition has
been developed.!3.54.55 In this approach, termed the Continuum Surface Force (CSF),
the surface tension force is spread over a regioﬁ near the interface with dimensions on the
order of the local computational grid épacing. The resulting force is then treated as an
additional body force in the solution of the Navier-Stokes equations. A similar technique

for multi-fluid flows has been developed by Unverdi and Tryggvason.56:57

The majofity of the interface tracking methods and all of the volume tracking
methods apply Laplace’s formula (11) as the boundary condition at the interface. This is
a reasonable assumption for many flows, but the deviatoric normal stress is important in

certain problems such as die-swell40:4! and thin film instability.58

Adaptive Grid Eulerian Methods

In adaptive grid Eulerian techniques, after a new surface configuration ﬁas been
determined a new computational mesh is generated to cover the resulting computational
domain. This allows accuracy in applying the interfacial conditions along a domain
boundary while eliminating the problems in regions of high shear associated with the
Lagrangian methods discussed above. Unfortunately, the problems of mesh ehtanglement
and surface intersection remain. Reviews of adaptive grid methods can be found in

Tanner,59 Denn,60 Kistler,5! and Kheshgi.62

While most of the fixed grid techniques discussed above use the finite difference
method, adaptive grid techniques have been developed which use finite difference

methods,63.64.65 finite element methods,06:67,68,69,70,71 and spectral element methods.”?
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Mixed Lagrangian-Eulerian Methods

Several techniques.have been developed which are hybrids containing features of ‘
both Eulerian and Lagrangian methods. These include the ALE method mentioned
previously,34 the Particle in Cell (PIC) method,”3 and the Coupled-Eulerian-Lagrangian
(CEL) lmethod.74 Typically, these methods attempt to maintain the best features of the

Lagrangian approach coupled with the best features of the Eulerian approach.

In the ALE method34 the NSE are solved using the Lagrangian approach, but
rezoning is accomplished by convecting the computational nodes upstream at the end of
each time step. The level of rezoning can vary from none, yielding a purely Lagrangian
representation, to complete rezoning, effectively yielding an Eulerian representation. The
ALE approach allows accurate knowledge of the surface location in the Lagrangian frame
while reducing the potential for mesh tangling which is a problem with Lagrangian
methods. This is accomplished at the expense of a significant amount of numerical

diffusion' introduced by the rezoning process. 14

The PIC73 method uses Lagrangian particles to transport mass between cells in a
fixed Eulerian mesh. The pressure in each cell is determined through an equation of state

using the internal energy of the cell and is mass density of the particles.

The CEL74 method uses a fixed Eulerian mesh to store the velocity and pressure

fields. The fluid is tracked using a separate Lagrangian representation. Difficulties exist

t Numerical diffusion occurs when the error in a numerical approximation, in this case a
first order accurate finite difference scheme, contains second derivatives. The error in the
numerical approximation is superimposed on the physical diffusion term exaggerating the
magnitude of the diffusion. '
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in the program logic coupling the Eulerian and Lagrangian frames and this technique has

only been implemented for compressible inviscid flows. 14

Contact Between a Solid and Two Fluid Phases

Thus far, [ have discussed the equations to be solved and a number of methods for
tracking the interface between the two phases. The remaining problem to discuss is the
contact between two-fluid interface an a solid surface, termed the contact point (or line in
three-dimensions) depicted in Figure 4. Several theoretical analyses 6f this probiem have
been conducted,’5:76,77,78 but the question of the best way to numerically tréat the

contact point remains open.

Liquid Movement Liquid Movement _

Dynamic
- Contact
Point
Static
~Contact
Point

Figure 4. Description of static and dynémic contact points.

The primary difficulty results from a singularity in the stress at the contact point
or line.7® The typical method of treating this singularity is to allow slip in the region of
the dynamic contact line. This method, used by Torrey et al.80:81 and explained in greater

detail below, remains unchanged in the current computational technique. For static
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contact points, the no-slip condition can be applied and this optibn has been added to the

present computational technique as is discussed below.

The interfacial normal stress balance also requires modification in the region of a
contact point. Using Laplace’s formula, P, =P, + O X, as an example, the discontinuity
due to the surface tension is modified by an “adhesion” force between the fluid and the
wall. This requires a modified treatment of the normal stress discontinuity adjacent to the

contact point as is described below.

THE STABILITY OF A THIN VISCOUS SHEET

One of the stages in the black liquor spraying process is the generation of droplets
due to the breakup of a thin viscous sheet of black liquor ﬂowing through air. In an effort
to develop a tool suitable for studying this process, I have added the capability 'to solve
for potential flow in a vapor phase adjacent to a liquid phase where the full NSE are
solved. To test this capability, below I will sfudy the problem of a thin viscous sheet of

fluid flowing through a stagnant inviscid vapor phase.

This problem has been studied analytically by many workers with the most
complete analysis presented by Li and Tankin.’8 Their analysis begins with a flat sheet
moving through a stagnant vapor phase as shown in Figure 5. Superimposed on the sheet

is a sinusoidal disturbance of the form

€= SoewH-ikx (24)
where €, is the initial disturbance amplitude, ® = ®, + i, is the complex growth rate,

i =+/—1, and k is the wavenumber of the disturbance.
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As the fluid with a sinusoidal disturbance moves through the stagnant vapor
phase, a difference in pressure builds up along the surface between the crests of the waves
and the troughs. At the crest, the relative velocity between the liquid and the vapor is
high and, from a simplified analysis using Bernoulli’s principle, the pressure in the vapor
phase is expected to be low, while at fhe troughs, the relative velocity is low and the
pressure is expgctea to be high. Thus, the interface is pushed inward toward the fluid in
the troughs and expands outward into the vapor at the crests. For low wavenumbers
where waves are long, the pressure gradient is relatively small because the low and high
pressure fegions are relatively far apart, but for high wavenumbers this gradient is high

and the growth rate due to the vapor phase pressure is larger.

(A)

(B)

Figure 5. Schematic of the sheet instability problem for antisymmetric, (A), and
axisymmetric, (B), disturbances.




- -27-

Surface tension provides a competing force seeking to maintain a perfectly flat
sheet v;/hjch minimizes the surface energy. At small wavenumbers, the surface curvature _
is small and, thus, the surface tension force is weak. As the wave number is increased
and the curvature increases, the effect of the surface tension becomes more pronounced.
This competes with the force due to the pressure gradient in the vapor phase where the

magnitude of the gradient is expected to increase with the wave number.

In summary, at low wavenumbers the surface tension restoring force is small and
the pressure gradient in the vapor phase is also small, while at high wavenumbers the
magnitude of each of these forces is expected to increase. The relationships between the
magnitude of thése forces and wavenumber are nonlinear and both forces become

stronger at increasing wavenumber.

Li and Tankin>8 conducted a linear stability analysis of the problem outlined in
Figure 5. That is, the vapor phase was assumed to be inviscid, the liquid phase was
assumed initially to have flat surfaces and be moving at uniform velocity, and a
disturbance such as that in Equation (24) was imposed. Their anaiysis yields dispersion
relations between the wavenumber of a disturbance to its complex growth rate. In non-

dimensional form these relations are

0=(®, +4m?Z)@®, tanh(m)
’ (25)
+4m322[m tanh(m)+(m? + &, /Z)" tamh((m2 +&,/2)" )] +p®d* +m’

0=(®, +4m>Z)@®, coth(m)
and N PN (26)
+4m322[mcoth(m)+(m2 +@®,/Z) coth((m2 +@,/Z) )]+pm2 +m’

for antisymmetric and axisymmetric disturbances, respectively. Here, ® = @, +iWe &,

®, =®+iWe/’m; @, = w,(o/p[a3)-1/2; ®, =,(a/U,)m; a is the initial sheet half-
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thickness; m = ka is the dimensionless wavenumber; and U, is the initial sheet velocity.

The remaining parameters are the liquid phase Weber number, We, = p,U?a/c; the

Ohnesorge number, Z =L ,(p eao)_]/z; and the density ratio, p=p, /p,

It is possible to solve the disberéion relations, (25) and (26), for é given We 0 Z
and p to yield the complex growth rate, ®, as a function of the wave nuﬁber. Tﬁe ‘
computational techniq.ué and computer program used to solve tﬁis higﬁly nonlinear
equation in complex numbers are presented in Appendix VII. The real part of @ is

dimensionless growth rate of a disturbance with wavenumber m. Results from the

dispersion relations with We, =40, Z=0.1, and p = 0.1 are shown in Figure 6 for both

antisymmetric and axisymmetric disturbances represented by solid and dashed lines,

respectively.

25
2 27 TR
A~ P
£ 1571 ’
2
S 1+ Antisymmetric -
2 ; Li and Tankin
% 051/~ .
kS e U I Axisymmetric -
g 0 + + + Li and Tankin
E ’
A -0.5 W

-1

0 l 2 3 4 5

Dimensionless Wavenumber

Figure 6. Non-dimensional growth rate for We, =40, Z =0.1, and p = 0.1 obtained
from numerical solution of the Li and Tankin’s38 dispersion relations.
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‘Solutions of modiﬁéd forms of Li and Tankin’s dispersion relations illustrate the
importance of the deviatoric normal stress and surface tension components of the
interfacial boundary condition. In the absence of surface tension, the dispersion relation -
for antisymmetric disturbances becomes |

0=(®, +4m>Z)®, tanh(m)

1 1/2 27
+4m322[mtanh(m)+ (m?+@,/z)" tanh((m2 +®,/Z)" )]+ pod’. @D

Similarly, with the assumption of constant pressure in the vapor phase, the dispersion .
relation reduces to

0=(®, +4m’Z)®, tanh(m) .
' (28)

+4m3ZZ[rn tanh(m)+(m? +®, /Z)V2 tanh((m2 +@,/z)" )] +m’.

Finally, if Laplace’s formula is used as the interfacial boundary condition, neglecting the
liquid phase deviatoric normal stress in the interfacial boundary condition, the dispersion
relation becomes

0= ®? tanh(m)+p®* + m* - (29)
which readily reduces to the dispersion relation for two inviscid fluid derived by Squire82

and Hagerty and Shea83

m+/pWe, tanh(m)— m|p + tanh(m
b, - JpWe, h(m) = m{p+ tanh(m)] 0)
p + tanh(m)
‘Results from the solution of the modified dispersion relations presented in (26), (27), and
(30) are compared with results from the complete dispersion relation for antisymmetric

disturbances in Figure 7.
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Figure 7. Non-dimensional growth rate for We, =40, Z=0.1, and p = 0.1 obtained

from numerical solution of the Li and Tankin’s8 dispersion relations and
modified forms of the dispersion relation.

Significant deviations from the results obtained using the complete dispersion
relation are seen when any of the assumptions leading to the modified dispersion relations
are made. This means that it is important to include the liquid phase deviatoric normal
stress at the interface, the pressure discontinuity at the interface due to surface tension,
and the pressure fluctuations in the vapor phase to accurately predict the growth rate of a

wave in a viscous liquid sheet flowing through an inviscid vapor phase.
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PROBLEM ANALYSIS AND OBJECTIVES

The prifnary goal of this thesis is to develop a computationél technique for
analysis of three-dimensional free surface flow problems. Study of the stability of a thin
viscous sheet flowing through a stagnant vapor phase, a phenomenon associated with

sheet bieakup in black liquor spraying, has been the driving force for this work.

Many modeling techniques have been applied to free surface problems as outlined
above; however, all of the previous analyses suffer from limitations preventing their
direct application to the sheef instability pfoblem., The large deformations and potentially
~ discontinuous interfaces at sheet breakup suggest that the volume tracking technique; are

the most appropriate for this problem due to their simplicity in treating the interface.

Volume tracking methods in the past have almost universally implemented
Laplace’s formula, p, = p, +0 K, as the interfacial boundary condition, neglecting the
liquid phase deviatoric normal stress. In addition, currently available free surface
computational techniques typically assume constant pressure in the vapor phase, a
limitation that must be removed for accurate analysis of the liquid sheet instability
problem where presshre variations in the vapor phase are the driving force for wave

growth.

With these goals in mind, the principal objectives of this thesis are:

» Improve the accuracy of existing volume tracking techniques for free surface
flows at Reynolds numbers where the accuracy of the advective terms is

important.
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Implement the complete normal $tress boundary condition at the free surface
by extending Laplace’s formula to include the deviatoric normal stress in the

liquid phase at the interface.

Add the capability to simultaneously solve the coupled problem of flow.in a .-

viscous liquid phase and an inviscid vapor phase.

To demonstrate the applicability of this technique to additional problems of . .-
interest to the pulp and paper industry (e.g. three-dimensional flow under a

coating blade and flow of condensate in a dryer cylinder).
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NUMERICAL TECHNIQUE

In this section, I describe in detail the nurherical schemes usea in the
IPST-VOF3D computational téchnique to solve the incompressible Névier-Stokes
equations for flow problems having a free surface. I discuss the algorithm neglecting the
interfacial deviatoric normal stress in the liquid phase and assuming the pressure in the
vapor phase to be constant. In this form, thé computational techniqué is esséntially»the
NASA-VOF3D8! computationz_tl technique. In the following section, I describe the major
modifications necessary to include the effects of the deviatoric normal stress in the liquid
phase oﬁ the interfacial boundary condition and to allow vapor phase pressure variations.

through solution of the potential flow equations in the vapor phase.

I begin by presenting the continuity equation for incompressible flow in a
modified form. Since, in general, this computational technique can be used for either
Cartesian or cylindrical coordinates, I will‘ use the factors r and { to distinguish between
the coordinate systems. The factors r = 1 and { = 0 correspond to Cartesian coordinates,
while r = x and { = 1 correspond to cylindrical coordinates. Thus the continuity equation
becomes “ |

_1 d(rBu) +_1_ a(Ov) N J(Ow)
r ox r dy oz

V-(Ou) 0, 3D

where u, v, and w are the velocity components in the x, y and z directions, respectively
(orr, 0, ahd z which are represented as X, y, and z). The term © in Equation (31) arises
from a partial cell treatment and is used to account for interior obstacles that block only a
portion of a given computational cell.80 The partial cell technique, discussed in greater

detail below, allows more accurate simulation of interior obstacles with curved
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boundaries than the “stair-step” approach often used in finite difference computational

techniques.

Again using the r and { parameters, the momentum balance equations for

incompressible Newtonian flow can be written as

a_u+ §E+Vau+w§E_Cﬁ
dgt  dx rady oz r

‘ ' (32)
L YOI O (R
Ex p dx ox*> 1’ oy® Ttk 7P dy
ot " ay oz r
' (33)

2

rax > 1’ oy

N __l_la_p_'_v az-v+18v o*v . lﬂ_l+2au
B ox’ r?ay? oz’ ’

ot  ox r dy oz

d 34
o 1dp o*w ’w d*w .1 ow o 34)
_ v »
dy?

=g, ——— —t
&2 p 0z 3z’ rox

1
ox? r?

where g,, g,,-and g, are body forces in the x, y, and z directions, respectively.

The location of the liquid phase within the computational domain is tracked using
the VOF technique as described above. The VOF “fullness” function, F, is transported
through the domain by solution of the F-convection equatibn, :

3(OF)  13(rOFu) 13(Fv) _ 3(OFw)
o r ox r dy oz

(35)

Now that I have presented the forms of the equations to be solved, I present the
finite difference approximations of these equations. First, I describe the computational

mesh used including a brief description of the mesh generation method (see Appendix I
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documenting the code for more details). Next, I discuss the finite difference
approximations leading to an explicit guess for the new velocity field forming the first
step in-a two-step projection method used to step forward in time, with special attention
paid to the approximation of the advective terms in the NSE. This is followed by a
description of the correction step, the second step of the projection and the two methods,
Successive Over Relaxation (SOR) and the Conjugate Residual (CR) technique, available
for solving the resulting Poisson pressure equation. Finally, I discuss the type of donor-
acceptor differencing used to soive the F-convection equation which has remained

unchanged from the NASA-VOF3D computational technique.

THE COMPUTATIONAL MESH

The computational mesh is a three-dimensional orthogonal mesh representing
either Cartesian or cylindrical coordinates. For simplicity in the form of the equations,
the cylindrical coordinate system is modified touse X=r, y=r,__0, and Zz=zZ as the
mapping bétween_ the coordinate systems with the terms in the continuity equation, the

NSE, and the F-convection equation modified accordingly.

Solution is accomplished on a “staggered” grid where scalar quantities, such as
the “fullness” function, F, and the pressure, p, are located at the computational cell
centers and vector components such as the velocity components u, v, and w are located on
the cell faces as shown in Figure 8 for a two-dimensional mesh. In the x-direction, the
variable X(i) refers to the location of right side of the computational cell denoted x,, ; in
Figure 8. Similarly, XI(i) refers to the cell center, denoted x;, DELX(i) refers to the local
grid spacing, denoted Ax; = X X and the distance between cell centers is denoted

by Ax;,, =X;,, —X;. They and z directions are defined in an analogous manner. .
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Setup of the computational grid is accomplished through the input data:: Each-
coordinate direction is divided into zones having a left boundary, XL, a right boundary,
XR; a “focal” point, XC; the number of computational cells within the zone on either side

of the focal point, NXL and NXR; and the spacing of the cells adjacent to the focal point,
DXMN. If DXMN > DX,,, = (XL~-XC)/NXL, the cells are equally spaced with a -

spacing of DX .. Otherwise, the cell spacing varies with the smallest cell adjacent to

XC and the largest cells adjacent to XL and XR. The cell sizes are adjusted so that a

smooth transition between cell sizes is maintained and (DX, + DX,.) / 2=DX,,,. Care

must be taken to keep cells in adjacent zones of similar sizes and to maintain cell-aspect

ratios as close to unity as possible to maintain accuracy and stability.81

Vij+1/2
Yjs1r2 B
U172
Yy — — T - ®
P, E;
|
Yiar |
Xiiz | X2
- x.

1

Figure 8. Diagram of a two-dimensional computational cell.

The remaining portion of the corhputational grid setup to be discussed is the
partial cell treatment alluded to above. This computational téchhique uses a partial cell
treétment for interior obstacles that eliminates the need for stair-stepping curved or;

' diagonal boundaries as is often necessary in finite difference techniques. The basis of the

partial cell treatment is discussed by Torrey et al.80
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The partial areas open to flow, AR(i,j,k), ABK(i,j,k), and AT(i,j,k) representing
the right, back and top boundaries, respectivély, are stored at cell faces in the same
manner as the velocity components. The cell volume open to flow, AC(i,j,k), is stored at

the cell center in the manner of the scalar quantities F and P.

Values of AR, ABK, AT, and AC are set according to the interior obstacles
defined in the ‘input data. Assumingy or ) -direc'tion symmetry, a thrée—dimensional prism
or conic section, '

O(x,z)<ax+a,x> +b,z+b,z% +c, +é2xz, : (36)
is defined. An input flag determines whether the volume contained within (36) is opened
or closed to flow. Frmﬁ this function, the area of each cell boundary and the voiume of
the cell itself open or closed to flow may be éalculated. By combining a series of
obstacles, extremely complex geometries may be constructed, although cﬁrrently they
must be symmetric with respect to the y or 0 direction. This procedure is demonéfrated in

the input data shown for subsequent test and example pr(')blemé.:

EXPLICIT PROJECTION STEP

The first step in the two-step projection consists of solviﬂg the equations resulting
from explicit temporal finite differencing of the NSE. In vector form, the equatibn for the
provisional velocity field is :

" =u" +5t[g—VP“ +vVia" -u" -Vu"]. 37
Note that from here on, the variable P refers to the reduced pressure, p/p.

Specifically, this step consists of adding a body acceleration, a specific pressure -

acceleration, an advection term, and a viscous acceleration computed using the previous

velocity and pressure fields to the previous velocity field. These terms, computed in the
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subroutine. TILDE in the NASA-VOF3D program, will be explained below. In addition
to the advective differencing scheme used in the NASA-VOF3D computational
technique, three third order accurate finite difference schemes are presented below and

available as options in the IPST-VOF3D program.

With the terms defined in the subsequent subsections, the x, y, and z components

of the explicit projection step for the NSE become

By = g+ ACCKY,  ~ADVXY, L+ VIS, ], (38a)
Ve = l+%k+8t[ACCY‘"+%k ADVY“J+H+VISY,"J+“] | (38b)
and w2, =w, +8lacczy,  ~aDvze | +VISZ!, | (38¢)

where the body forces and specific pressure accelerations have been lumped together in

the terms ACCX, ACCY, and ACCZ.

Gravitational and Sn%:ciﬁc Pressure Acéelefé{ions
The body and_speciﬁc pressure acqelerqtions inthe x,y,and z directipns are
ACCX:, =g+ (Pl P Ak, (392)
accy;y,, =g, +(Pr,., ~P,)/ (ray W o)

and ACCZ;‘,j,k;} =g, + (Pil,‘j,kH ~Pl )/ AZH& ’ : - (39¢)

respectively. As above, the termr; is 1 for Cartesian coordinates and x; for cylindriéal
coordinates. In cylindrical coordinates the body accelerations in the r and 0 direction are

typically not constant, but a function of position.
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Viscous Acceleration

The viscous accelerations in the x-direction is computed as a second partial
derivative. Therefore, several first partial derivatives near the computational cell of
interest need to be comput\ed. These first partial derivatives for the u-component of

velocify, used here and below, are defined as:
(gu_x)lnjk = (uin+{-,j,k - u?—«},j,k )/AXI ’
(—5;):‘“ ik = (uln-&i-J k- uin+f,j,k )/AxiH >

( |+{,j+l,k n+a}]k)/( 1+{- J+{)’
% i+h -k =( Uitk ~ m}; lk)/( .+J[ )’
(ug

£

&l&

1+-} itk

Uirgjkn — .q ik )/ AZk+& ’

and - (%)m};k—% ( ?+s}.j.k—u?+{-,j.k—l)/Azk—f

Similarly the finite differences in the v velocity component are
> ),,q[ bk ( Viiepk ~ Vi ) / AX,y
(B3 = (g Vi) /5y
(2) = (Vi'f,ﬂ,k - Vi"_j-i,k)/ (ray;),

(%):jﬂ,k = (Vin.jh}.k - vin.j+{,k )/(riij+1 ),

¥y

@) ey = Ve = Vo) /A2,y

and(

&ly

):,j+-i,k—i = (vin,jul,k - vin,j+1},k—l )/Azk_% .

(40a)

(40b)

(40c)

(40d)

(40¢)

(40f)

(41a)

(41b)

(41¢c)

(41d)

(41e)

(41D
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Finally, the finite differences for the w velocity component are

.(3_1"):&4*“[ = (W = W) %, . . (42a)
._;m; (Vum ~ V] ke /AX_{,’ "(42Ab).
(3 ,MHf(w.,ﬂw W)/ (iby,,,). '- | N @2 .

() Wﬁ(wl,w Wi, H)/ (say,,), | (42d)

(20, =Wy =Wy )/ Az, | | (42¢)

and (3], = (W - W) fan, 420

From these definitions, the viscous accelerations are computed using second order

accurate finite difference formulas,

n
(@), -0, )

B (g_;) itk (%:—)“ﬁk”f i (%)i+ivivk‘%

VISX:L%J ) =v i+1,j,k i+ j+4k
Ax,, 4 Ay, Az,
(43a)
+C AXi (%;i):‘ﬂ,j,k + AXi+l (%%):Lk _ u?ﬁf'}.j,k Axi (%)Hl.j Kk AXH-I( ) ik
| X (Ax; +Ax,,,) Xiy x?%(Axi +Ax,,,) ’
VISY" =y (_g%)i%},j-f%,k (g;),_% J+% k (g" )I Lj+Lk (%_;‘)i,j.k + (%‘ZL)i,‘HJi,IH-% - (%)i,j%%,k——*
hivhk Ax, Ay, . Az,
. (43b)
L (%)Hé,j-&fk (%).-§ bk n,j+{-,k + uin+§,j+1,k + u?—s}.jd-l.k - u?+5,j.k - 'u;;f,j,k '
2 2 ’
2x; X; X; Aym[

and
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. aw)" _{ow n ow " . n n n
VISZ:‘J‘H\& —v ( ax )i+-§,j,k+f ( ox )i-g,j,k+§ + ( dy )i,j+§,k+* (8)’ )i,j~-},k+§ + (%)i‘j‘k"-l - (%‘;—)i,j,k
” Ax, Ay. Az

1 J : k+4

(43c)
L R
2x.

Advective Terms

For numerical stability, the advective terms in the NSE must be treated using
finite difference formulas with some level of upwind differencing, where the advective
differencés are weighted toward the local upstream side in some manner. Using central
differences that are equally weighted between the upstream and downstream values leads
to an unconditionally unstable numerical scheme and must be avoided.84 The original
implementations based on the SOLA formulation used a linear combination of first order
accurate upwind differenéing and second order accurate central differencing (from here
on this combination is termed SOLA differencing) to achieve a combination of the
numerical stability of the upwind scheme and the accuracy of the second order schefne.
Since the previous terms in the NSE, with the exception of the temporal differences, use
second order accurate finite difference schemes, the accuracy of a simulation at increasing
Reynolds number is limited by the formally first order accurate treatment of the advective
terms. In order to improve the accuracy of simulations at high Reynolds number while
maintaining numerical stability, I have implemented three different third order accurate
finite difference schemes for the advective terms; quadratic upwind differencing for
convcctilve kinematics (QUICK),? third order accurate upwind differencing (THIRD),86

and the method of Kawamura and Kuwahara (KANDK).87
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Here, 1 ciescribe the finite difference fepréséntations fof the advective term
differencing optioﬁs. The details of the derivations of the third order accurate schemes
can be found in Appendix II, Appendix III, and Appendix IV for QUICK, THIRD, and
KANDXK, respectively. First, I present the finite difference formulas for the advective
terms ih the NSE as implemented usiﬁg SOLA differencing. This is followed by
descriptions of the terms that are different when each of the third order accurate finite

difference schemes are used.

SOLA Differencing:

The x-direction advective term can be written as

2
n " n vl
ADVX], . = ( a—“) +L(va—“) +(wa—”) —ge (44)
. IX iy i Ty dy i+hjk 92 iy Xy
du' . (1 o)Ax (&) +(+e)ax,, (3] »
where | u— = Uik , : (45a)
X Jiskik b I (1-a)Ax, +(1+a')Ax,,, ‘
n - — v’ du n
(v-aﬂ) =v° . a)ij‘%("’y)w%.wk (H“)Ayﬂ%( )w%,j—%,k ., (45b)
O Jupe T (1-o)Ay,, +(1+0)Ay,,,
(w@_)n —w" (1 o )AZk %(az)”.,} e+ (1+(X. )Azk.,.,}(az),,r‘hk -4 (45(;)
i+4,j.k ’
ady ik 1 (1- oc)Azk_i+(1+oc)Azk+%
n Axi(v?+l,j+x},k+vn+lj }k)+Axl+1( |]+1}k+v11—{»k) 4
Vishjk = (Ax + Ax. ) ) (45d)
i+1

n Ax, (win+l.j,k+«} + W1+1 juk- 5) + Axm( iik+d + Win,j.k-,})
and W, ., = . (45¢)
s 2(Ax; + Ax;,,)
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As an example, I use the term

du) ui"”h.,k A ) ) . n
[U a—x)ih},j'k = —2 ! [(1 d 0 4 )(au/ax)m,j,k + (1 + (X‘ )(au/ax)i’j’k] , (46)

- here rewritten for a constant grid, to describe SOLA differencing. The parameter o’ is
derived from the fraction of upwind differencing, o,
o' =a sign(ui"+ ik ) ‘ (CY))

Thus, if u, bk 0 and o = 1, then (46) becomes

au " ' au' n
- = n A G-l A 48
(u ox )w},j.k u”*""‘(a" )""" (48)
which is pure first order accurate upwind differencing. Similarly, if ui“+ ik > Oando =0,
then (46) becomes
) R '[(ﬂ)" +(@)] 49)
O Sy - a0 o

which is second order accurate central differencing (an unstable numerical scheme).

Next, the y-direction advective term can be written as

- " " " u' v
ADVYinj«},k = (u EY-) +l(v Q‘_’) + (W ﬁ) _C Ljrd K hjrhk ’ (50)
, ay i,j+4k oz

ox

pirbk T Lj+dk X;
n [ o )" . , )"
where (ua_v) —u (1 o )Axi-,}(ax )i+§,j+&,k +(1+(X )Axm,(ax )i—s},j+s}.k (51a)
0% /i jupx 'd*f"_ (1-a)Ax, , +(1+o)Ax,,,
Y L |00y (B) | raay,(2)
v— =V ~ y ; (51b)
ay ij+‘},k (l_a‘)AyJ +(l+a )ijﬂ




2]
aZ i‘j+%'k |._|+{,k

Ay( 1+{-]+1 k +Ul -4.j+1, k)+ij+1(u?+-}_|k +u1~-}jk)
2(ij +AYj+1) ’

n —
ij+hk

u

ij (win,j+1,k+{

n —
wi,j+s},k -

and
Z(ij + AYj+1)

Finally, the z-direction advective term can be written as

| n S n
+W 5)"’ Ay (wi,j‘k& + Wi.j.k—&)

(l - )AZ,-%(az), bkt +(1+a )Azug(az), k-4 |
(1-a)Az_, +(1+0")Az,

b

-

ADVZLH%—(ugz) += ( aw) +(w§3) ,
ox Liked G dy ikt oz ik}
h ( aw)n o 2l o1E +%,j,k+%+(1+a )A"wi( 2.
where | u— =
OX Jijy (1-a)Ax,, +(1+a))Ax,,
n (11—’ ) w
(va_wj =v' (- )Ayi-%(ay )i,jf%vk %+(1+a)Ayl+*(a’)u-%k+%
9Y /i jxey hik+d (1-aNAy,, +(1+a)Ay,,
( aW)n (1 a)AZ ( ) k+1+(1+a)AZk+l(az)le
w—_— =W.. ’
0z Jijpey (1-o )Azk+(1+oc Az,
o = Azk(u?«{»f,j,k-{-l +u?—-},j,k+l)+Azk+l(u?+},Jk +ul J”k)
e 2o, +4,.) ’

Az, (V?,H,m Vi )"’ Az, (V?,H e Vi, k)
2(Azk + AZI(-H )

(51¢)

(51d)

. (51e)

(52)

(53a)

(53b)

(53¢)

(53d)

* (53e)
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QUICK Differencing:

For QUICK differencing, the situation is-a bit more complex. The finite
difference formulas for variable grids are derived in Appendix II; however, for simplicity,
only the constant grid formulas are presented here. The variable grid formula uses the

same velocities with weighting factors that depend on the local grid spacings.

Many of the components of the advective terms remain the same as in the SOLA
differencing just presented and only the terms that vary are presented. With constant grid

spacings rebresented as Ox, Oy, and dz, the resulting formulas are

aU n _ ui+%,j,k (31]" +3u" —7u" +u" ) u” >0
( ua_) T gex ik T ik T Micgic T gk ik
X

, (54a)

i+h,j.k ui"

_ _ithik R n _ n _ n n
- 85x ui+a},j,k + 7ui+a}.j,k A3ui+-}.j,k 3ui—«},j,k) uw},j,k <0
n i+4.5,k n n n n n
du = (3ui+%,j+l,k + 3ui+%,j,k - 7ui+},j-1,k + ui+»},j—2,k) , vi+},j,k >0
v— 80y A
3 )i . (G4)
R i+%,'.k " n n n n n -
= J (_ui+§.j+2,k + 7ui+~},j+1,k - 3ui+~},j,k - 3ui+{-,j—1,k) Viegix < 0
80y
and
n i+4.j.k n n n n n
_aE =— (3ui+{-,j,k+l + 3ui+«},j,k —7ui+%,j,k—1 + ui+«},j,k—2) Wi+-},j,k >0
MY (540)
ithik  w'
H—L—,j,k n n n n n
= 85z (—ui+{-,j,k+2 + 7ui+4},j,k+1 _3ui+{,j,k - 3ui+s},j,k—l) Wi+{,j,k <0

with analogous formulas for the equations in the y and z-directions.




- 46 -

Third Order Accurate Upwind Differencing

The complete formulas for third order accurate upwind differencing with variable

grid spacing can be found in Appendix III. As with the quick differencing above, the

formulas presented here are for constant grid spacings only:

n

n u1+%] k n -
(U?—) - =T e 65x (2u1+e}_| k +3u|+-;-_| k 6u1 -+ k 1-—%,j,k) ui+»},j,k >0
X J. n ‘ ’
ik _ Yikik

- 68X l+‘%]k+6ul+%_|k 3ul+e}]k 2u1%_|k) |+%]k<0

n 1+{- 3 n n
(V?}—l‘) = 68;’ (2 1+% j+Lk 3u1+-%_| k 6u1+-}1 Lk + u1+»}1 2, k) Vi+=f,j,k >0
ay . n : >
i+45k v1+{-,',k n n
= : (_um} ok T 6ux+% 4Lk 3ul+s} ik 2u1+5, 1, k) Vi < 0
60y
and

’ n | wl+=},j,k |

(Wa_u) = 65z (2u|+%1k+1+3u1+-}1k 6u|+-%1k 1+u1+%_|k 2) |+%_|k >0
aZ i H n B
+hik _ Witix (

60z

n
i+hjk+2

+6u’ —-3u? ~2u

i+4,j,k+1 1+{-]kl) l+%_|k<0

i+4,j.k

with analogous formulas for the equations in the y and z-directions.

The Method of Kawamura and Kuwahara

(55a)

(55b)

(55¢)

Kawamura and Kuwahara’s technique presents an additional challenge due to the

nature of their derivation. For a constant grid they obtained the finite difference formula

presented below. Unfortunately, I was unable to reproduce their derivation exactly on a

variable grid. An approximate derivation of a variable grid version of Kawamura and

Kuwahara’s technique is presented in Appendix IV which is the numerical technique
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present in the IPST-VOF3D program. For a constant grid, the formulas derived in

Appendix IV reduce to these formulas of Kawamura and Kuwahara:

o

n u|+} .k n
(ug_l_l_) = 68)1( ( U7 2“,+;,k+9“ ehik 10u e F2u] ilk) ul, >0
X

4 ; (56a)
ithik ol
i+4i.k .
- 68:( (‘2“”;,1( Hou”*uk gu'“nk +2ul—hk n-i.j.k) Wik <0
A
n __i+hjk .
(Vgg) "~ 68y ( irginas 2u‘+’b“ ¥ 9“'*%1 k 10ul+%1 wt 2ul+%1-2 k) Viepix >0 (56b)
Y igix V" ’
i+h.jk .
= 68;’ (_2u1+s} j+2.k + 10u|+{- j+lk 9u1+-}Jk + 211”_}] Lk l+}.j-2,k) vi+«}.j.k <0
~ and

P n _ W1+<}.j.k ( n —2u 9 -10 2 ) n 0
(w-ﬂ) 6z Wirgjke2 ~ -+hk+1+ Uinpae TI0W e + 200 0] Wigin >
oz

i+hjk _ Wirtik (—2u
60z

(56¢)

-9’ +2u’ <0

+10U,+§,k+1 i+hik ikt T |+s}.j.k—2) W?H[.j.k

i+..k+2

with analogous formulas for the equations in the y and z-directions.

THE PRESSURE CORRECTION STEP

The correction step in the two-step projection method accomplishes an implicit
correction of the pressure field based on the explicit guess for the velocity field computed
in the first projection step. The velocity after a time step is defined as the provisional
velocity computed in the first projection step plus a correction for the pressure change
across ihe time step,

u™ = @&" -5t V(SP™). 57
Since the continuity equation must be satisfied at all times, the new velocity field cambe:

substituted into the continuity equation,
V-(eu™')=0, (58)
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resulting in a Poisson equation for pressure (PPE),

8t v V-[ev(sp™)]=v V- (ei), | _ (59)
where V is the volume of the computational cell needed to ensure a symmetric system of
equations.80 Below, two numerical schemes for the solution of the PPE are presented,

but first the pressure boundary condition adjacent to a no-slip wall must be derived.

The boundary condition for the pressure on a no-slip wall at the left edge (smallest
value of x) of the computational cell (2,j) with constant cell spacing, is derived from

Equation 57

5P2'f}" —5P,f‘j*‘ _ 1 (u
Ax ot

=6y ~ | (60
For a computational cell adjacent to the boundary, the two-dimensional finite difference

form of the PPE (assuming constant cell volume and all cells open to flow) is

(OB -GRT BRn-dR) 1 (8B -8R SRR -oRpYLY
Ax Ax Ax Ay, Ay Ly

(61),

T At Ax Ay

1 ﬁi,j ~O, + vz.j«} “{'2.:'—&
At '

Upon substitution of Equation 60 into Equation 61 it is apparent that the solution of the
PPE is independent of the value of 4,_, ;=1 3i 80 it can be set equal to u;:.' yielding the
boundary condition d(5P)/dx = 0.88.89 This condition can be applied to any domain
boundary since the only requirement is that solution of the PPE is independent of the
provisional velocity at the boundary. However, as Peyret and Taylor38 point out, “it must

be clear that this zero-derivative condition is purely numerical and does not imply that the

real pressure gradient is zero.”
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SOR Option for the Second Projection Step

The SOR option does not solve the PPE directly, but accomplishes the same
purpose. The conservation of mass at any time step is computed from Equation @BD. In

finite difference form this is represented as

D = 1 ri+%ARi+-},j,kui+{-,j,k _ri—{-ARi-%,j,kui—-},j,k
ij,k ~. ACl N riAxi i |
K (62)
+ ABKi,j+{tkvi,j+s},k - ABKi,j—x},kvi,j-i,k + ATi,j,k+%Wi,j,k+{- - ATi,j,k-%Wi,j,k-,} '
| rAy, - Az, '

where the divergence, D;;,, is the error in satisfying the continuity equation (ideally this

should be zero for incompressible flow).

With this definition in mind, an iteration procedure for updating the pressure and

the velocity components is described. First, the pressure after the iteration is defined as

Pitlj,k = RVJ_I: + 0P, it’j,k ] - @3)
where 8P, =-fD},,, (64;1)
l _ ot 1 ARw},j,k + ARi—«&,j,k + 4 ARi+»},j,k _ ARi—-},j,k
B AC;;, | Ax; Axi*% Axi_{r 2%, AXH% Axi_% ‘
and . .  (64b)
e i ABK&,H,& . ABKMH&R n 1 ! ATLJ.’H% N ATi,j_%‘k
T | L .
sdy; Ay, By y | Bz Az, Az,

Once the new value for the pressure has been determined from Equation (63), the

velocities are updated:

W, =o' +&t SPi‘,,j,k/Ax”l , ) (65a)

ik i3, jik 3

uy, = Uiv__;'_,-_k ~3t8P, /Axi_% , ' (65b)
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Vi‘:j+%,k = r:-%k + 5t 8Pi‘,lj,k / Ay el » L : . (65¢)
Viite = Vipas ~ OO fAy | (65d)
w;‘M = w;’;:ﬁ% +BtdPy; /Azk+%; A " (65€)
and w:j,k—% = Wiv,;,L—i"" B3P, / Az, .. | | (651)

This process is continued until the largest value of the divergence, computed from
Equation (62), is less than the user specified tolerance. This process can be accelerated
when P is multiplied by an over-relaxation parameter, 1.0 < ® < 2.0. Values on the order
of 1.8 are often used, but care must be taken not to use too large a value lest the iteration

become unstable.80

CR Option for the Second Projection Step

The second method preseht in IPST-VOF3D for accomplishing the correction step
in the two-step projection method is the conjugate residual technique. This technique,
which requires a symmetric positive definite system of equations for assurance of a

solution, is described in detail by Chandra.%0

- Here, The numerical steps needed to solve the system of equations using the CR
method are presented. To speed convergence, a preconditioned form of the conjugate
residual method is used based on diagonal scaling.90 ‘Preconditioning modifies the

condition number of the system of equations allowing a more rapid selution.

Beginning with a system of equations (in this case the PPE) in matrix form,
Ax=f, o (66)
which is assumed to be symmetric and positive definite, the conjugaté residual technique

seeks to minimize the function
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. B,(%)=[x-%,A°(x-%)], (67)
where [-,-] denotes an inner product and X is an approximation of the true solution x

(minimizing E, (i) = [x -%,A'(x- i)] yields the more widely known conjugate gradient
method). For solution of the Poisson pressure equation, minimizing E, is equivalent to

driving the divergence towards zero, thereby enforcing the continuity equation.80

As mentioned above, the computational technique uses a preconditioned form of
the conjugate residual method. First a preconditioning matrix, M, which is in some sense
ciose to A is chosen. In the case of diagonal scaling, M is the diagonal of the coefficient

matrix, A. Chandra presents the following algorithm for Preconditioned conjugate

residual method.90

Step 1: Choose x,
Compute 1, =f — Ax,
Solve Mr, =1,
- (68)
Setp, =T,
Compute the matrix / vector product Ar,

Set Ap, =Af, andi=0
Step 2: Solve the system Mgq; = Ap, (69)

Step 3: Compute
a, =[F,AL)/[Ap:.q;]
X,y =X, +a,p;

-~

g =0 —a4q;

1

b, = [F. AE, ]/[F. AR]

P, =L, +bp,
and Ap,,, = AL, +bAp,

(70

Step 4: If x,,, is sufficiently close to x, terminate the iteration process; o
Else set i =i+1 and go to Step 2. ' an
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After the Poisson equation for pressure is solved to yield the new pressure field,

the velocity field is updated using a finite difference form of Equation.(57):

u?:‘kl,jyk = ﬁ&{,j.k — &t (SPiZT.lj,k - SP.T; )/ AXM ) A - (72a)
V;‘;J[,k = V?_ itk T ot (Spi?jilx.\g - SPI"J"‘: )/ (ri Ay jﬂ) . A . . (72b)
and' W?,;LH; =W ey — O (SPi'.‘jTl:f-l — 8P} )/ Az,.\ . ._ (72c¢)

Free Surface Cell Boundary Conditions

Now that I have established a technique for solving the NSE, I turn my étténtion
to the treatment of boundary conditions at the interface between the liquid and vapor
phases. First, I present the algorithms used to compute the surface curvature, followed by
a description of the velocity boundary conditions near the interface. Finaliy, I discuss the
difficulties in applying the preséure discontinuity impoéed by the surface tension force at
the interface. In the following section, this discontinuity Will be modified to include the

deviatoric normal stress in the liquid phase and pressure variations in the vapor phase.

Surface Force Computation

For simplicity I will present the surface curvature finite difference formulas for
problems with constant grid spacing. The more complex formulas for variable grids are
presented by Torrey et al.8! and may be deduced from the source code listing presénted in
Appendix IX. Here, I present only the formulas for Cartesian coordinates (which were
not present in the NASA-VOF3D program), Torrey et al.81 present the cylindrical

coordinate formulas.
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Only the formula for the surface curvature at an interface with its normal most
nearly in the x-direction is presented. In Cartesian coordinates, the y and z direction
formulas are available by rotation. The discontinuity in the pressure at the interface due

to surface tension, PS, is computed from

1 H; _ H;
JI+HT +HY JIHEE +H )

i,j-1.k

ij+hk

(73)

R | .+ o m
x2 x2 x2 x2
\/1+Hy +H;, \/1+Hy +H;

Ljk+d i,j.k-4

where © is the surface tension divided by the liquid phase density (remember that the

pressure is also divided by the liquid phase density), H] refers to the y-direction

derivative of the height function in the x-direction, which is defined as

i+2

Hy, = > [1+AC,, (F,;, —1)]ax, . (74)

i'=i-2

The partial derivatives needed to compute the surface curvature use nine point
computational grids surrounding the surface point of interest. The resulting formulas for

the derivatives with respect to the y-direction are

;i’j%k=E48—y(H:j+,,k+,+22H"J+,k+H”+,k] HY,,., —22HY, ~HY, ), (75a)
;iH’k=Tgy(H§j,k+,+22H;jyk+H;j,k, HY e —22H:  -HY ), (75b)
§i,,-,k+f1—21g(7Hu+lk+l 8H o + H gy — Hjoy+ 8HY - ~TH: ), (750
and Hj _1218y(7H,*J+1k 8HY,, +H: , —H ., +8HY, —7TH ). (75d)
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Similarly, the derivatives with respect to the z-direction are

H;i,j,kh} = Z{S—;(Hl jrLk+l +22H:‘J k+! + H:‘J 1,k+1 Hxxﬁ»l k 22H:‘j k lJ -1, k)’ (763)
X 1 X X X
zi,jk-4 2452 (Hl Lk +22H i,j.k + HI] Lk Hl J+Lk=1 22Hi,j,k—l Ij 1,k- l)’ (76b)
x 1 X X X x
Hzn J+«}k = 128Z (7H1 JjHLk+l 8H| J+Lk + Hi,j+1,k 1 H| Jok+1 +8H| ik 7H1 Jok= I)’ (76C)
x 1 X X X X X X -
and zij-bk 12 52 (7Hx_|k+l 8Hi,j,k +Hi,j,k 1 H., 1k+1 +8H., 1k 7Hl] 1Lk— 1) (76d)

Treatment of a dynamic contact line

The formulation presented above for computing the pressufe discontinuity due to
surface tension is valid so long as the interface between the liquid and vapor phaseé does
not intersect a solid boundary. When this situation occurs, a contact point in two-
dimensions or line in three-dimensions occurs. This contact is typically classified as
ei.ther static or dynamic depending on the motion of the contact point or line relative to
the wall (Figure 4 above). The NASA-VOF2D80 and NASA-VOF3D8! programs contain
limited options for treating dynamic contact points, but make no pfovision for treating

static contact points or lines.

A method to treat dynamic contact points was developed by Torrey et al.80.81 The

terms in Equation (73) of the form

(13 /1vm7+m" ) | - an

1,)+%,k
are equivalent to the tension on a discrete “patch” of the interface in the y-direction on the
right side of the patch. If the free surface intersects a wall, this tenston must be replaced

with a wall adhesion force which is equal to the cosine of the user specified contact angle.
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Application of the surface pressure as a pressure boundary condition at the interface

So far I have outlined methods for computing the surface pressure discontinuity
due to the presence of surface tension or wall adhesion. In the following section, I
discuss additions to include the liquid phase deviatoric normal stress and relax the
assumption of constant vapor phase pressure. With the surface pressure determined, it is
necessary to interpolate (or extfapolate) the surface pressure from the location of the
interface to the center of the free surface cell. This is accomplished by making use of a
flag array indicating the adjacent computational cell to be used as an interpolation

neighbor. The interpolation factor 1} is computed from the distances shown in Figure 9,

n=Ax_/Ax. (78)
The pressure at the center of the free surface cell is then computed from

P, =(1-M)P,+nP, (79)
where P, is the pressure in the neighboring cell and P, is the pressure at the free surface

due to the surface tension or wall adhesion forces. As mentioned above, P, has been

expanded to include the vapor phase pressure and liquid phase deviatoric normal stress.

Surface
I Cell /

Interpolation
Neighbor

Figure 9. Definition of interpolation geometry.
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Solution of the F-Convection Equation

The donor-acceptor al gorithm used to solve the F-convection equation'is the same
as that used in the NASA-VOF2D and NASA-VOF3D computational techniques. First, I
state the principles used to derive this algorithm, followed by a discussion of its -

implementation. More detailed descriptions are presented by Torrey et a].80:81

“The convection algorithms use a form of donor-acceptor differencing
which is designed to (1) preserve the sharp definition of free boundaries,
which we denote here as fluid interfaces; (2) avoid negative diffusion
truncation errors; and (3) not flux more fluid, or more void, across a
computing cell interface than the cell losing the flux contains. The
algorithms also contain features designed to suppress the appearance of
spurious small wisps of fluid.”81

\

Generally, the F-convection equation (35) is solved using an expliéi{ finite

difference formulation,

n+i 1 n+i 1
, ] st | LaAR,. F 2ot o—r AR, FTE ut o
F.n,+;2‘ - Fn+5 _ 145 1+3.], i+3,) i+,), -3 1=-2:) =) 1=2:)

Jk i,jk -
" EOAC, r,Ax,

n+g 1 - n+d 1
ABK ., F'* v, —ABK , F % v,
Ltz kT Ltk itk Li-3 k" hj-pk gk

-+

r Ay, (80)

n+ - ntd
AT . ,E"2 w"™ AT ~E"7 w™'
Ljk+y Ljk+y ijk+y bjk-3 Ljk—y  ijk-3

Az,

+

where the F values are known at the half time steps becaﬁse of their position in the
iterative process. Since for volume of fluid function F is known at the cell centers but is
needed at the cell faces in Equation (80), some form of interpolation is required. If a
simple average is used, a second order accurate central difference scheme results tending .

to smear the interface.830:81
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‘Therefore, the flux of fluid across each boundary of the computation'ail cellis
determined from the ddnor—acceptor algorithm. First, the donor and acceptor cells, Fp
and Fp, respectively,:arc defined as the upstream and downstream cells based on the
velocity in the direction‘norrﬁal to the face of interesf. Next, the valﬁe of F at the
interface, F AD» is chosen to be either Fp or Fp by an algorithm which attempts to impose

the first two criteria above. Finally, F5p is modified to impose the third criterion above.

The choice of F5p is made by choosing Fp if the donor cell contains fluid or if the
donorv cell is nearly tangential to the local surface. If the cell is nearly normal to the o
interfacevor the acceptor cell is a void cell, Fp is chosen. This algorithm ensures that the_
donor cell is nearly full before fluid is:convected into an empty acceptor cell and assists in

limiting the generation of “spurious wisps” of fluid.81

Once Fpp has been chosen, corrections to limit the flux are imposed. As an

example, the formula at the right face of a computational cell becomes

£, V. =sgn(V,) MIN(E, |V, |+ CF, FD(xIm%—-xm %)) , " (81)
where V, =u]’} 3t : A : -~ (82a)
CF = MAX[(F)= Fo )V, |~ (F) = F, (x4 =%, 0.0] (82¢)
and  (F)=MAX(F,,F,,,,0.1) ' : | : (82b)

with Fpys defined as the upstream neighbor to Fpy.

The first two options for (F) increase the accuracy of the convection process
while the third limits convection by the CF term until the donor cell (or its neighbor) has
become at lease 10% full. This operation again helps to limit the formation of wisps of

fluid. Generally, the MIN statement in Equation (81) ensures that a cell does not give up
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more fluid than it contains, and the MAX statement in the definition of CF prevents more

void from being convected than is present.

Time Step Limitations

The; final step in describing the numerical algorithm used in the IPST-VOF3D
computational technique is to discuss the time step limitations. These lifnitations are
general guidelines; cases exist where they are both too restrictive and not restrictive
enougﬁ. ‘Care should be taken to remember the difference between numerical stability
and numerical accuracy. Just because a simulation is numerically stable does not mean

that it is an accurate representation of the physical problem.

Next, I describe three primary limiting conditions for the time step; a convective
limit, a diffusive limit, and a capillary limit. The absolute convective limit derives from
the Courant condition which implies that a particle of fluid may not be convected further

than one computational cell during a single time step,

8t <MIN[ o By 8, } | (83)

conv ? ?
Uil IViikl Wi

where MIN is the minimum value taken over the entire computational mesh. Typically, a

more restrictive limit, CON &t where CON = 0.4 (defined in subroutine DELTAD)J)

is required for numerical stability. This yields an additional constraint on the SOLA
upwind differencing parameter, o.. If SOLA differencing is used,
a>1.2CON=0.48 . - (84)

when CON = 0.4.81
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The diffusive stability limit,

ot = , 85
e 3v(ex2 + Sy + 8z;%) (83)

is often the most restrictive condition for problems at low Reynolds numbers.81 When
using the three-dimensional program to solve two-dimensional problems (normally done
using a “sandwich” domain with one fluid cell between two slip boundary cells) this

. limitation can be overly restrictive, so the two dimensional analogue,

1

Otyie = 2v(6x;2 +8z.2)

(86)

may be used (two-dimensional problems are currently only supported in the x-z and r-z

planes for Cartesian and cylindrical coordinates, respectively).

The final time step limitation is due to capillary forces. A capillary surface wave
must not be allowed to travel through more than one computational cell during a time
step. - This is approximated by the limitation

_P NHN(SXiv 8y 8Zk)
- 80

ot

cap

(87)

where, as above, the two-dimensional analogue does not include the y-direction cell

size.81
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MAIJOR ADDITIONS TO THE NUMERICAL TECHNIQUE

In addition to the third order accurate techniques for approximating the advective
terms in the NSE discussed earlier and the extension of the pressure discontinuity due to -
surface tension to Cartesian coordinates, there have been several other major additions to
the computational technique. These include a method for treating static contact points or
lines, inclusion of the liquid phase deviatoric normal stress to the interfacial boundary .
condition, solution of the potential flow in the vapor phase to relax the assumption of
constant vapor phase pressure, and replacement of the graphical output options.' These

modifications are described in detail in this section.

STATIC CONTACT LINE TREATMENT

Many free surface problems have a contact point or line where the vliquid, vapor,
and solid phases intersect. As described above, static contact is the intersection between
vapor, liquid, and solid phases where the point of contact is fixed relative to the solid
surface but the contact angle may vary. The varying contact angle is part of the solution
and may have a significant effect on the free surface shape. An example of a problem

where this phenomenon is important is the die-swell problem described below.

" Previous computational techniques using the VOF approach to track the fluid
within a fixed Eulerian mesh8.80.81 have handled the présence of a dynamic contact line
in the manner described in the previoué section. That is, the pressure discontinuity at the
interface between the liquid and vapor phases in the cell adjacent to the wall was
modified to account for the wall adhesion force based on a user specified contact angle.

If both the point (or line) of contact and the contact angle are specified in advance, then
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the mathematical model of the contact poiht (or line) is over specified. Thus, either the

location or the angle of contact may be specified for a given situation, but not both.

In my treatment of a static contact point (or line), the contact angle is computed
from the local fluid configuration and the known contact point (or line). The wall
adhesion force needed in the pressure discontinuity is then computed from this variable

contact angle in the same manner as for the dynamic contact model described above.

Additional modifications are required in the treatment of the velocity boundary
conditions in the region of the static contact povint."'o’41 With reference to Figure 10, the
velocity boundary condition in the computational cell upstream from the contact point is
the same as that for a no-slip wall, i.e. the fictitious velocity inside the die wall is adjusted
to enforce zero velocity at the wall. The velocity boundary condition for the downstream
computational cell is similar to that of a slip wall, i.e. the velocity inside the wall is set
equal to the fluid velocity. Thus, if the explicit projection step for the upstream cell, (i,)),

is being computed, the no-slip boundary condition,

Uiginn = Wiy _ (88)
is used. If the explicit projection step for the downstream cell, (i+1,j), is being computed
then the slip boundary condition, |

Uiipin = Uisg o (89)

is used. This separate treatment is necessary to reduce the effect of the stress singularity

in the interfacial boundary condition at the contact point.
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Figure 10. Velocity boundary conditions near a static contact point.

LIQUID PHASE DEVIATORIC NORMAL STRESS

" The majority of the volume tracking techniques for free surface flows use
Laplace’s formula, \
P,=P,+C K, ’ (90)
as the interfacial boundary condition arising from the normal stress balance. | have added
an option to include the effect of the liquid phase deviatoric stress in the interfacial

boundary condition.

The liquid phase deviatoric normal stress at the interface is computed from the

complete deviatoric stress tensor and the unit vector normal to the interface, n- T, -n. This

requires knowledge of the unit normal vector and all of the components of the deviatoric

stress tensor.

The local unit normal vector is computed in the manner used by Torrey et al.8!

during surface tension computations. Once the coordinate axis most nearly normal to the
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interface has been determined and the local height functions used to compute the surface
curvature have been determined, the unit vector normal to the interface is calculated from

the gradient of the height function.

Next, thé components of the deviatoric stress tensor are computed using the
provisional velocity field, @}, where only velocities within the liquid phase are included
in the finite difference formulas for the velocity gradients. For example, in two
dimensions with reference to Figure 11, the components of the deviatoric stress tensor,

assuming constant grid spacing, are computed as:

u ., .—u. . :
i+4.j i-4.j
Ty = 2H————, 91a
o= 2p ©12)
(2B v, 4By (1228 ),
=2p , (91b)
yy . 2Ay
u. ..+u. Nl | U 2 | A\ —V... -
and TX =1 = u i+}.j i—4.j i+4j-1 i-4,j-1 + i+1,j+4 i-1,j+4 - (910)
o 2Ay 2Ax

The deviatoric stress component most nearly normal to the interface is computed with a
finite difference forrnula that maintains second order accuracy at the location of the
interface anywhere within the free surface cell, Equation (91b). The remaining
components of the deviatoric stress are computed using finite difference formulas which
are at best second order accurate and at worst first order accurate. With the deviatoric
stress tensor and the unit normal vector available, the deviatoric normal stress is

computed,

deviatoric normal stress=n-T,-n (92)

and used in the free surface boundary condition.
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An alternative formulation for the computation of the deviatoric normal stress ‘was
developed and is presented in Appendix V. This formulation uses the continuity equation
and two zero tangential stress boundary conditions to eliminate three of the components
of the deviatoric stress tensor. I chose to use the full implementation because the
additional computational cost is small (only a few of the computaﬁonal cells are free

surface cells) and future extension of the computational technique to handle non-

Newtonian and turbulent flows is expected to be simpler with the full deviatoric stress.

@Ui-llz,jﬂ QUi+1/2,j+l
Vi-l,j+1/2 Vi,j»;l/z Vi+1,j+1/2
—0 ©

Uiin,j

Figure 11. Example configuration for interfacial deviatoric stress computation.

SOLUTION OF POTENTIAL FLOW IN THE VAPOR PHASE

Perhaps the single largest enhancement of the capabilities in the IPST-VOF3D
computational technique over previously available VOF-based computational techniques

is the relaxation of the constant vapor phase pressure assumption. For many free surface
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-problems of interest to industry, the physical st.ability of the interface between the liquid
and vapor phaSeS to dis'turbances is extremely important. In many cases, such as the
stability of a thin viscous sheet flowing through an mv1sc1d vapor phase, s8 variations in
pressure in the vapor phase is the prlmary driving force for the mstablhty Thus, in order
to accurately study the stability of these systems, it is necessary to allow the pressure in

the vapor phase to vary.

In keeping with the earlier aséumption that the vapor phase is inviscid and*adding
the asvsumption.that flow in the vapor phase is irrotational (this assumption is always
valid if the vapor phase is initially stationary and inviscid91), then the vapor phase can be
represented by potential flow. Thus, the vapor phase potential is defined as, | :

u, =Vo,, 5 ©3)
which, after substitution of the vapor phase velocity into the continuity equahon ylelds
Laplace’s equation for the vapor phase velocity potentlal | |

V2, =0. : - - S99
Under the inviscid and irrotational assumptions when the flow is governed By poteﬁtial

flow. Thus, the unsteady Bernoulli equation,

CLESYS. o - o9

ot P,
can be used to relate to vapor phase pressure, vapor phase velocity potential and the vapdr

phase velocity. After rearranging, the unsteady Bernoulli equation becomes

8(1),
o

which is used to compute the vapor phase pressure as a function of position and time.

2

) (96)

=Py 5

v
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The boundary conditions for the vapor phase potential are derived from the vapor .
phase potential definition in Equation (93). Therefore, the condition at the boundaries of
the vapor phase are Neuman (derivative) conditions where the normal derivative of the
vapor phase velocity potential is equal to the normal velocity. On the fixed domain
boundaﬁes, this condition is easily iniposed; however, along the interface between the
liquid and vapor phases the Neuman boundary condition is more difficult to apply due to

the movirig curved boundaries.

A.A reasonable amount of work has been done previously on methods to accurately
treat Neuman or Robbins (nﬁxed constant and derivative) boundary conditions along
curved boundaries. Kantorovich and Krylov92 present a first order accurate method for
treating the Neuman boundary condition in two dimensions along a curved boundary. In
this formulation, the value of the bulk function, ¢, at an interface point of interest is
defined by-

.2
V normal +’zbi¢i o
0o = — , ' o7

2.0

i=1

where v, is the normal velocity at the interface and two points within the vapor phase

are required, one on either side of the normal vector. The coefficients in Equation (97),

b;, are determined by solution of the system of equations,

n, 0, b _[1 " , ©8)
t, t, b, [OF

where n, and t, in equation (98) are the distances between the surface point and the two
points within the domain in the directions normal and tangential to the interface,

respectively. Since I will be using a second order accurate approximation of Laplace’s
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equation for the vapor phase potential in the regions away from the interface and near the
fixed boundaries of the computational domain, a second order accurate method for

treating the Neuman boundary condition on a curved boundary is needed.

Bramble and Hubbard?3 present a second order accurate technique for solving
Poisson’s equation in a region with curved.boundaries and Robbins boundary conditions.
Our problem, solving Laplace’s equation in a region with curved boundaries and Neuman
boundary conditions, is merely a subset of Bramble and Hubbard’s more general problem.
They prove that it is possible, within certain constraints surrounding the grid size and
local curvature of the interface, to choose three points within the vapor phase which allow
computation of positive coefficients. Positive coefficients are necessary to ensure that the
resulting system of equations is positive definite and thus, the iterative scheme for solving

the system of equations will converge.

The coefficients for the second order accurate formula in two dimensions using

three interpolation points is

n, 1, n a 1 : '
t t, t, |a,|=|0] | (99)
t?—n? t2-n2 t2-nlla,| |O

With the proper choice of points to yield positive values for a;, the value of the vapor

phase potential at the interface is defined as

i

ov 3 2
1
V normal g:ma Zainiti +Zai¢i'
=1 i=1

0o = (100)

M.

a;
i=1

A similar technique that is third order accurate was developed by Van Linde%4.95-

but is not included in this computational technique. Since the bulk of the liquid phase
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differencing is only second order accurate in the spatial derivatives, the extra overhead
required for a third order accurate solution of the vapor phase velocity potential does not

seem warranted.

Techniques in the literature are available only for two-dimensions. Since I have
developed a three-dimensional computational technique for the other aspécts of the
problem, it was necessary to extend the method of Kantorovich and Krylov92 z;nd that of
Bramble and Hubbard®3 to three dimensions. The details of this process are presented in’

Appendix VI

The three-dimensional first order accurate formula derived in Appendix VI is

3
V normal +zb|¢| V ) .
0, = =l , ‘ (101)

>,
i=1

where three points within the vapor phase must be chosen and the coefficients are

obtained from solution of

n, n, n,|b 1
S, S, S3{b,|=]0}, (102)
t, t, t|lb,]| |O

where n,, s,, and t, are the distances from the surface point to the domain points in the
normal and two orthogonal tangential directions, respectively. The only requirement to
ensure positive coefficients in the first order accurate case is the three-dimensional
analogue of the two-dimensional criterion, that the normal vector must lie within the

volume enclosed by the vectors from the surface point to the vapor phase domain points.
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The second order accurate formula for three-dimensions is also derived in

Appendix VI and represented as

6 6 6
V normal +%zainisi ""avs;tmmzainiti +zai¢iv
0o = = 3 =t i=1 (103)

n, n, n, n, n n, Tal 1 17
S, S, S5 S, Sg Se a, 0
t, t, t, t, t, te las| {0
s?—n? si-n2 si-n} si-n? s2-n? si-nla,| |O (164
t?—n} ti-n; t;-n} t}-n? t2-n2 t2-nl|a,| (O
| st S,t, S5ty Saty Ssts Sets |36 | LO]

At this point, no proof has been developed that a collection of points must exist where the
coefficients are all positive. However, in practice it has been possible to determine an
appropriate set of points in the majority of cases. In the few cases where this has not been
possible, the algorithm reverts to the first order accurate formula just described. The
fraction of cells where the accuracy of the normal velocity approximation is reduced is
generally less than 1% of the interfacial cells and thus is not expected to affect the
accuracy of the overall solution. It has also been noted that, for most choices of grid
points, the sixth equation can be neglected because the sixth coefﬁcient is nearly zero and

approximately the same coefficients are obtained using only the first five equations.

OUTPUT OPTIONS

The choice of graphical and textual output options are controlled by the program

input variables LPR, PLTDT, and PRTDT. These and the remaining input variable are




0.

documented along with the program description in Appendix I. Input for LPR has integer
values from O to 3 yielding options: no output, plots only, plots and prints,'and prints
only, respectively. When the printing or plotting options are active, PLTDT and PRTDT

control the frequency of plotting and printing, respectively.

The printing option creates a text listing of the velocity components, pressure,
surface pressure, VOF function (F), cell orientation flags, SOR function (J), interpolation

function (1 of Equ. 76), and the divergence.

'1“he plotting option has been completély changed from the NASA-VOF2D80 and
NASA-VOF3D8! programs. These programs contained integrated graphics routines for
producing plots of the free surface location, velocity véctor, and pressure contour plots.
These routines called low level graphics libraries that were specific to the Los Alamos
computing environments. Ireplaced the graphics routines in the earlier programs with a
subroutine (DRAW) that prodﬁces data files suitable as input to the commercial scientific
visualization prograrh Data Visualizer™. Here, I present a brief djscussion of i)ata
Visualizer’s™ wave file format (a more complete description can be found in the Data

Visualizer™ programmer’s manual?6).
prog

The input into Data Visualizer™ is in the form of a set of grid points, a topology
connecting these grid points, and the data stored at these gﬁd points. There are several
different types of topologies possible ranging from structured evenly »-spaced,grids to

unstructured grids with extremely complex topology.

The principle output from the DRAW subroutine consists of two parts. Firsta
grid data file gives the grid, topology, and information that doesn’t vary with time (the

volume of each computational cell open to flow). Second, when graphical information is
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-~ desired, the simulation data is output including the three components of velocity, the
liquid phase pressure, the fraction of each computational cell containing fluid, and the
vapo}"ph!a'sé' potential. In order to produce a Data Visualizer™ input file, the variable

data file ié"jaf)‘p’ended to the grid file.

Additional graphical output can be obtained by periodically storing subsets of the
data in auxiliary storage files and using software such as a spreadsheet to plot the
resulting output. This is most easily accomplished through modification of the file .

draw.pat, the appropriate place to modify the DRAW subroutine.

fl;h_; final option for output is based on the restart file. The program, at a user
specified interyal, saves all of the contents of the common blocks to a data file. This
allows the program to be restarted from the saved data if a case needs to be run for a
longer time. It also serves as a useful method to “checkpoint” the program. This means
that the program can be restarted if it is interrupted during execution (e.g. the computer
has been shut down while the program is running). It is possible to write a simple
program that reads in a restart file and extracts the necessary data from. This requires a
main program that cails the RDTAPE subroutine to read in the restart file and then prints

G L L
the appropriate data.
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PRESENTATION OF RESULTS

One of the most important aspects of developing any computational techmque is
the process of validating the model to ensure that it produces accurate results for test
problems where either experimental or other computational results are available. Thus, |
the presentation of results in my computational work will include several validation -
problems testing the different features of the computational technique as well as some

problems where comparative data may not be available but the results are of interest.

The validation problems include the lid-driven cavity problem for testing the
numerical accuracy of the underlying NSE solver; the die-swell problem for testing the
free surface capability, the static contact point treatment, and the deviatoric normal stress
implementation; and the growth of distur_bances in a thin viscous sheet flowing through a
stagnant vapor phase. Additional problems studied include the flow under a blade in
short dwell coating application97:98 and rimming flow of condensate in a paper drying

cylinder.%9

In the next several sections, I present the results frorn each of the test problems
just described. Each test problem consists of a description of the problem studled a bnef
discussion of results available for comparison, any program modifications and mput data

necessary to run these cases, and the results themselves.

FLOW IN A TWO-DIMENSIONAL LID-DRIVEN CAVITY

The lid-driven cavity (LDC) problem is a classic test problem for any NSE
solution technique. This problem is often used because of its simple geometry having no

inflow or outflow boundary conditions with which to contend, while still having a
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complex flow field. The problem consists of a box filled with fluid having three

stationary walls with the top wall moving (Figure 12).

V

< W
Figure 12. Schematic of the lid-driven cavity.

The dimensionless parameters describing the lid-driven cavity, with reference to

Figure 12, are the Reynolds number,

Re=hV/v, (105)
and the cavity aspect ratio,
AR =h/W, (106)

where h is the height of the cavity, V is the velocity of the cavity lid, v is the kinematic

viscosity of the fluid filling the box, and W is the width of the cavity.

As a test of the accuracy of IPST-VOF3D and especially the third order accurate
techniques for the advective terms in the NSE, I studied the lid-driven cavity problem

with Re = 1000 and AR = 1. For comparison, the results of Ghia et al.100 are used which
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are among the most accurate available for this highly non-linear problem. Their results
were obtained using a multigrid technique on a computational grid with 128 cells in each
direction. Our results were obtained on two different computational grids with only 40
computational cells in each direction. The first grid used constant cell spacing while the
second was “graded” having smaller éells adjacent to £he walls and larger cells in the
center of the cavity. The variable grid spacing allows the mesh to be refined in the

regions of high gradients, while larger cells are used in regions of lower gradients.

| Each of the four differencing techniques for the advective terms in the NSE
(SOLA with o = 0.5, third order accu.rate upwind, QUICK differencing, and the method
of Kawamura and Kuwahara) were tested using both the constant and variable grids. The
results of the horizontal component of velocity along the vertical centerline (line AB in
Figure 12) and the vertical componeht of velocity along the horizontal centerline (line CD
in Figure 1-2) are presented in Figures 13 and 14, respectively. The data for these plots
was obtained by reading in the restart files and printing the velocity components along the

centerlines as discussed above.

The relative accuracy of the simulations is determined by analysis of the
reproduction of the local minimum in Figure 13 and the two local extrema in Figure 14.
The average error in rc_:producing these extrema is presented in Table 2. While using less
than 10% the number of computational cells as those used by Ghia et al.,!00 this
computational technique was able to get within 5% of their results. Al of the third order
accﬁrate techniques give acceptable results. Unfortunately, the method of Kawamura and
Kuwahara drops from best to worst of the third order accurate methods as the grid is
changed from constant to variable. This shift in position is attributed'to the inexact

nature of the derivation for the variable grid version of Kawamura and Kuwahara’s
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method. Overall, the third order accurate upwind differencing technique gives the most

accurate results for this problem.

SOLA Differencing QUICK Method
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Figure 13. Plots of the horizontal component of velocity along the vertical centerline
4 Ghia et al.,100 variable grid, and ~ ~ "~ - constant grid.
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Figure 14. Plots of the vertical component of velocity along the horizontal centerline
4 Ghia et al.,100 variable grid, and -~~~ " - constant grid.

Table 2.  Error for the LDC problem at Re = 1000.

Convective terms Grid
differencing scheme Constant | Variable
SOLA (. =0.5) 543% | 388%
QUICK 15.4 % 4.8 %
Third order accurate upwind | 13.0 % 4.2 %
Kawamura and Kuwahara 12.4 % 6.7 %

Using constant grid spacing, Kawai and Ando!0! compared the same three third

order techniques with the results from Ghia et al.100 Their approach used the
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streamfunction-vorticity formulation for the NSE and results were obtained on a 60 by 60
computational mesh. Comparison of Kawai and Ando’s results for the minimum
horizontal velocity component along the vertical centerline with results obtained using
IPST-VOF3D is presented in Table 3 with the minimum velocity of —0.3829 obtained by

Ghia et al.100 for comparison.

Table 3. Minimum Velocity along vertical centerline for LDC problem at Re = 1000.
Convective terms Kawai Grid
A differencing scheme and Ando | Constant | Variable
QUICK -0.3680 | —0.3340 | —0.3676
Third order accurate upwind | —0.3552 —0.3449 —0.3731
Kawamura and Kuwahara -0.3473 | -0.3576 | —0.3666

In Kawai and Ando’s analysis, QUICK differencing yielded the most accurate
result which is inconsistent with the IPST-VOF3D results. In this thesis, third order -
accurate upwind differencing was the most accurate for the variable grid and more
accurate than QUICK using either computatibnal grid. Kawai and Ando also indicate
that, for their formulation, QUICK differencing is the only third order scheme tested to

remain stable as the Reynolds number is increased above 1000.101

The choice of which third order accurate scheme (QUICK differencing or
Agarwal’s third order accurate upwind differencing) to use for subsequent simulations is
by no means clear. Both techniques give comparable accuracy for the lid-driven cavity
problem and I have discovered no numerical stability problems with either technique.
The majority of the simulations conducted in this thesis have been done using QUICK

differencing, primarily due to its reputation for stability and accuracy in the literature.
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Problem set up consists of making necessary modifications to the source code of
the program and specifying the appropriate input data. For the lid-driven cavity problem,
there are no modifications to the source code required and the sample input data for the
case with variable grid spacing using SOLA differencing are presented in Table 4.
Switching to the tﬁird order accurate differencing schemes is accomplished by setting the
variable ALPHA in the input data to 2, 3, and 4 for third order accurate upwind, QUICK,
and KaWamura and Kuwahara’s methods, respectively. The constant grid spaéing cases
are obtained by modifying the grid setup in Table 4 for the x and z directiéns to be

nkx=l; x1=0.0, 1.0, xc=0.5, nx1=20, nxr=20, dxmn=1.0,

and

nkz=1, z1=0.0, 1.0, zc=0.5, nzl=20, nzr=20, dzmn=1.0,

where the variables are defined as part of the input data in Appendix I and the mechanism

for setting up a computational grid was discussed previously.

Table 4. Input data for variable grid LDC with SOLA differencing.

$xput . . .

jnm=' vof3d7 ',name=' LDC with SOLA and variable grid', nfcal=1,
iequib=0, icsurf=0, idefm=1, rhof=1.0, cyl=0.0, delt=0.0005,
velmx=1.0, nu=0.001, isor=0, epsi=0.001, wi=0.0, ’
wl=2, wr=2, wt=2, wb=2, wf=1l, wbk=1l, utw=1.0,

sigma=0.0, lpr=1, cangle=90.0, isurft=0, alpha=1.0,
dtecrmx=0.05, flht=1.5, twfin=40.0, omg=1.3, pltdt=40.0,
prtdt=40.0, tddt=10.0, tlimd=0.0, td=-1, t=0.0,

$end : ' ‘

$meshgn

nkx=2, x1=0.0, 0.5, 1.0, xc=0.0125, 0.9875,

nxl=1l, 19, nxr=19, 1, dxmn=0.0125, 0.0125,

nky=1; y1=0.0, 1.0, yc=1.0, nyl=l, nyr=0, dymn=1.0,

nkz=2, z1=0.0, 0.5, 1.0, zc=0.0125, 0.9875,

nzl=1, 19, nzr=19, 1, dzmn=0.0125, 0.0125,

nobs=0,

$end
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THE DIE-SWELL PHENOMENON

When a fluid is pushed out of the end of die at a low speed it will tend to swell.
This die-swell phenomenon is a good test problem for algorithms to numerically study
free surface flows. As the Reynolds number of the flow is increased, the amount of
swellihg decreases until, ultimately, the fluid shrinks (commonly referred to as negative

die-swell).

In the die-swell phenomenon, the deviatoric normal stress component of the
interfacial boundary condition is extremely important as the fluid near the corner of the
die transforms from a no-slip condition inside the die to the zero shear stress condition
along the free surface.404! Thus, this problem serves as an excellent test problem for the
addition of the liquid phase deviatoric stress to the interfacial boundary condition. The
remaining features of the computational technique tested by the die-swell problem are the

static contact line treatment and the Cartesian coordinate surface tension algorithm.

Figure 15 shows a sample geometry for the die-swell problem which can be

characterized by two dimensionless groups, the Reynolds Number,

Re =2hV/v, (107)
and the Capillary number
Ca=Vy/o, (108)

where h is the slot half height, V is the average velocity of the liquid phase in the slot, v is
the liquid phase kinematic viscosity, p is the Newtonian viscosity of the liquid phase, and
G is the surface tension between the liquid and vapor phases. The final die swell is
defined by

% Die - Swell =100(h,,, /h—1). (109)

where H,; is the final half thickness of the liquid phase.
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Figure 15. Schematic of the die-swell problem.

Two test cases were studied, the first without surface tension to study the effect of
the deviatoric stress alone and the second adds the effect of surface tension. Specifically,
the first is Re = 300 and Ca = o while the second is Re = 75 and Ca = 0.5. The static
contact line additions are also tested in both cases. The first case examines the effect of
the velocity adjustments due to the no-slip to slip transition alone, while the second case
tests computation of the wall adhesion force at the static cohtact point, in addition to the

velocity adjustments.

As an example, the input data for the Re = 75, Ca = 0.5 case with domain length
of 20h and minimum cell spacing 0.03333h are presented in Table 5. The problem is set
up using a symmetry plane and having an entrance region within the die of 3.0h with a
parabolic inlet velocity profile. The average inlet velocity, the slot half height, and the
viscosity are all set to one, while the remaining parameters of density and surface ténsion
are computed from the Reynolds and capillary numbers. Longer domains are examined

by adding additional computational cells to the end of the existing computational domain.

Table 5. Sample input data for the die-swell problem at Re = 75 and Ca = 0.5.

$xput
jnm=' vof3d ', name=' die swell test case 12/20/91 ', nfcal=1,

iequib=0, icsurf=0, idefm=0, rhof=37.5, cyl=0.0, delt=0.005,
velmx=1.0, nu=0.0266666667, isor=0, epsi=0.001, wi=1.0,
sigma=0.0133333333, 1lpr=1, cangle=90.0, isurft=1, wt=3, wb=3,
alpha=3.0, flht=3.0, twfin=50.0, omg=1.0, pltdt=1.0,
prtdt=1.0, tddt=50.0, tlimd = 0.0, td=-1, t=0.0, dtcrmx=0.005,




-81 -

lvapor=0, rhog=0.0001, lvflag=0, islip=0, nfx=1, istress=1,
1fx(1)=32, kfx(1)=31, iorin(l,1)=2, iorin(2,1)=3, islp(1)=0,
$Send

$meshgn
nkx=1,x1=0.0,1.3, xc=1.0, nx1=30, nxr=9, dxmn=1.0,
nky=1,y1=0.0,1.0, vyc=1.0, nyl=1, nyr=0, dymn=1.0,
nkz=1,z21=0.0,20.0, zc=10.0, nzl=100, nzr=100, dzmn=1.0,
nobs=2,

0al=-1.0,0.0, 0a2=0.0,0.0, obl=0.0,-1.0, ob2=0.0,0.0,

0ocl=1.0,3.0, 0¢2=0.0,0.0, ioh=1,0,

$Send

$fluidgn

Send

Modifications to the source code are required in be.pat, draw.pat, setup.pat,

tilde1.pat, tilde2.pat, and surcart.pat presented in Tables 6 through 11, respectively. The
modifications in bc.pat impose the parabolic profile as an inlet boundary condition and '
the no-slip conditions along the interior boundaries. The addition in setup.pat provides
the parabolic velocity profile as an initial condition throughout the entrance region. The
changes in tilde l.pat and tilde2.pat allow the treatment of the upstream and downstream

boundary conditions in the region of the static contact point. Finally, surcart.pat contains

the treatment of the surface tension force at the static contact point.

Table 6. Modifications in bc.pat for the die-swell problem.

c *** inlet boundary conditions
do i=1,1ifx(1)-1
u(imax+i)=0.0d0
w(imax+1i)=wi

1 *1.5d0*(1.040- (xi(1i) *rx(ifx(1)-1))**2)
w{imax+i+11i5)=w(imax+1)
enddo

c *** die-edge boundary conditions

do k=1,kfx(1)-1
1ijk=1i5* (k-1) +imax+ifx (1)
w(ijk)=-w(ijk-1)*delx(ijk)*rdx(ijk-1)
u(ijk-1)=0.04d0

enddo

kkk=1i5* (kfx (1) -1)+imax

do i=ifx(1),iml
u(kkk+i)=u(kkk+i+ii5)
w(kkk+i)=w(kkk+i+1i5)
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enddo
u(iis*(kfx(1)-1)+imax+ifx(1)-1)=0.0d0
cce end addition

Table 7. Modifications in draw.pat for the die-swell problem.

cce addition to print out surface profile

write(2,'(/,'"' time='"', l1lpel2.4)') t
do k=2,kfx(1) _

write(2, '(16,3£15.10)') k, zk(k), x(ifx(1l)-1), x(ifx(2))
enddo

do k=kfx(1)+1,kml
temp4=0.0d0
do i=2,iml
ijk=imax+ii5*(k-1)+1i
if (nf(ijk).ge.l.and.nf(ijk).le.6) then
tempd=x(i-3)+delx(i-2)*£(ijk-2)+delx(i-1)*£(ijk~-1)

1 +delx (i) *£(ijk)+delx (i+1)*E£(ijk+1l)+delx(i+2)*f(1ijk+2)
go to 2121
endif
enddo
2121 continue
write(2,'(i6,3£f15.10)"') k, zk(k), temp4, temp2
enddo

ccc end addition
Table 8. Modifications in setup.pat for the die-swell problem.

ccc additon for parabolic initial condition
if (beta(ijk+1i5).gt.0.0d0.and.beta(ijk+ii5) .ne.1.040)
1 w(ijk)=wil *1.540*(1.0d0-(xi(i)*rx(ifx(1)-1))**2)

ccc end additon

Table 9. Modifications in tildel.pat for the die-swell problem.

cecc addition for singularity at the static contact points
do itempl = 1, nfx :
if (iorin(l,itempl).le.2) then
itemp2=-3+2*iorin(l, itempl)
itemp3=-3+iorin(2,itempl)
if (i.eqg.ifx(itempl)-itemp2.and.
1 k.eg.kfx(itempl)-itemp3) then
templ=wn (ijk+itemp2)
wn{ijk+itemp2)=wn{ijk)
if (islp(itempl) .eqg.0.and. (islip.eqg.0.0or.
1 (nf(ijk+itemp3*ii2) .eqg.0.and.islip.eq.1)))
2 wn(ijk+itemp2)=-wn{ijk)
endif
else
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itemp3=-7+2*iorin(1l,itempl)
itemp2=-1+iorin(2, itempl)
if (i.eq.ifx(itempl)-itemp2.and.

1 k.eq.kfx(itempl)-itemp3) then
‘templ=un(ijk+itemp3*ii2)
un(ijk+itemp3*ii2)=un(ijk)
if (islp(itempl).eq.0.and. (islip.eq.0.or.

1  (nf(ijk+itemp2).eqg.0.and.islip.eq.0)})
2 un(ijk+itemp3*ii2)=-un(ijk)
endif
endif
“enddo

cece end addition

Table 10. Modifications in tilde2.pat for the die-swell problem.

ccce addition for singularity at the static contact points
do itempl=1l,nfx
if (iorin(l,itempl).le.2) then
itemp2=-3+2*iorin(l, itempl)
if (i.eq.ifx(itempl)-itemp2.and.
1 k.eg.kfx(itempl)+3-iorin(2,itempl)) wn(ijk+itemp2)=templ
else -
itemp2=-7+2*iorin(1l, itempl)
if (i.eq.ifx(itempl)+l-iorin(2,itempl) .and.
1 k.eqg.kfx(itempl)-itemp2) un(ijk+itemp2*ii2)=templ
endif
enddo
cce end addition

Table 11. Modifications in surcart.pat for the die-swell problem.

¢ +++ addition for static contact point
if (i.eqg.ifx(l)-l.and.k.eq.kfx(1)+1l) then
if (nf(ijk).eq.l.or.nf(ijk).eq.2) then
afs=0.0d0
else if (nf(ijk).eqg.5.or.nf(ijk).eq.6) then
afe=0.040
endif
if (f£(ijk).1t.0.5d40) then
templ=2.0d40*f (ijk) *delz (k) *rdx (i)
csang=templ/dsqgrt(1.0d0+templ*templ)
else
temp2=2.0d40* (1.0d0-£(ijk)) *delx (i) *rdz (k)
csang=1.0d0/dsqrt (1.0d0+temp2*temp2)
endif
endif
c +++ end addition




-84 -

Die-Swell with Re = 300 and Ca = o

The results from the die-swell problem at Re = 300, Ca = oo are presented in
Table 12, where the computed die-swell ratio is recorded as a function of the length of the
computational domain and the size 6f the computational cells adjacent to the static
contact point. Since the deviatoric normal stress acting on the free surface is greatest near
the static contact point, the finest computational mesh is required in this region.' The
number of computational cells remains constant while the minimum cell spacing is
adjusted in the computational cell nearest to the die corner. This leads to the smallest
cells near the die and largest cells near the symmetry plane. Generally, the die-swell ratio
decreases as the minimum cell spacing decreases or the computational domain length
increases. An asymptotic value of —15.66% is reached, in good agreement with literature

results of —15.52% and —15.24% reported by Omodei®8 and FIDAP,’! respectively.

The actual surface profiles from several of the cases in Table 12 are presented in
Figure 16 where each chart consists of the surface profiles for the separate cases at a
given cell spacing. Only every tenth data point is presented to simplify the plots. The
initial portions of each figure are in good agreement, while small waves in the interfacial

position are seen as the domain length is increased.

Table 12. Results of solutions of the die-swell problem at Re = 300, Ca = oo.

Minimum Cell Spacing :

0.04h 0.03h 0.02h 0.01h-

20h | -14.48% | -14.92% | —15.20% | —15.12%
Domain |25h | —-1478% | —-15.08% | —15.52% | —15.37%
Length |30h | -15.05% | —15.14% | —15.62% | —15.53%
35h | -15.19% | -15.17% | —15.66% | —15.63%

40h | -1531% | -15.21% | —15.66% | —15.67%
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Figure 16. Surface profiles for domain lengths of 20H, 25H, 30H, 35H, and 40H with
minimum cell spacings of (a) 0.04H, (b) 0.03H, (c) 0.02H, and (d) 0.01H.
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Die-Swell with Re =75 and Ca=0.5

The die-swell problem with surface tension was studied in a slightly different
manner. Here, the length of the computational domain was held constant at 20H while
the number of computational cells perpendicular to the direction of flow and the
minimum cell spacing adjacent to the static contact point were varied. The results of
these simulations are presented in Table 13. Note that certain combinations of cell
spacing and number of computational cells are not possible as indicated. This results
because not that many célls with the minimum cell spacing will fit within the
computational domain (e.g. 36 cells with a cell spading of 0.0333H yields 1.2H for the
die half height which is greater than H). The results for this test problem show a good
deal more scatter, but a majority of the cases fall within the range on the literature values
which are —11.16%,7! —10.92%,102 and —10.48%.68 The surface profiles for the cases

along the diagonal of Table 13 are presented in Figure 17.

Table 13. Results of solutions of the die-swell problem at Re =75 and Ca = 0.5.

Minimum Cell Spacing
0.0333h | 0.0278h | 0.0222h |} 0.0167h
Y-Direction | 30 | -1099% | -11.61% | —11.38% | —11.26%
Computational 36 ko -11.62% | —11.43% | —11.53%
Cells 45 Hk *okx -1091% | -11.37%
60 kkk kk ok : ¥k ok _11'05%

*** combination not possible
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Flgure 17. Surface profiles for RE = 75 and Ca = 0.5 (a) 0.0333H with 30 cells,
' (b) 0.0278H with 36 cells, (c) 0.0222H with 45, and (d) 0.0167H with 60.

. The Effect of the Deviatoric Stress in the Interfacial Boundary Condition

The importance of including the deviatoric stress in the interfacial boundary
condition for accurate solution of the die-swell problem has been discussed previously.
Here, simulations of the two cases discussed above solved with and without the inclusion

of the liquid phase deviatoric stress in the interfacial condition are presented.

Figures 18 and 19 show the effect of the deviatoric stress on specific cases
outlined in the Tables above. As expected, at the higher Reynolds number, Figure 18, the
effect of the deviatoric stress is less import'ant than at the lower Reynolds number,

Figure 19. Regardless of the Reynolds number, the inclusion of the deviatoric s-tress in

the interfacial condition is necessary for accurate solution of the die-swell problem.




-88 -

0.96
0.92
0.88
0.84

0.8

Fluid Height

0 5 10 15 20 25 30 35 40

Position

——&—— With viscous terms —o—— Without viscous terms

Figure 18. The effect of the viscous terms in the interfacial boundary condition for the

Re =300, Ca = - case having a minimum cell spacing of 0.02 and a domain
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Figure 19. The effect of the viscous terms in the interfacial boundary condition for the

Re =75, Ca = 0.5 case having a minimum cell spacing of 0.02 and 50
computational cells in the fluid half-height.

In summary, these results indicate that accurate solution of the die-swell problem

is possible provided the liquid phase deviatoric normal stress is included in the interfacial

boundary condition and there is proper treatment of the surface tension and velocity

boundary condition at the edge of the die. The deviatoric stress in the interfacial

boundary condition becomes increasingly important as the Reynolds number decreases.
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STABILITY OF A THIN TWO-DIMENSIONAL VISCOUS SHEET

As discussed above, the stability of a thin viscous sheet of fluid flowing through a
stagnant inviscid vapor phase is the problem driving the requirements for this
computational technique. Thus, the final test problem for the computational technique is
the accurate prediction of the growth rates of waves in the viscous sheet. In order fér
accurate solution of this broblem to be poésible,‘ all of the added features of the
computational technique must be working properly and accurately with the exception of

the static contact line treatment which is not tested by this problem.

Simulations at We, =40, Z = 0.1, and p = 0.1 have been conducted for both

antisymmetric and axisymmetric disturbances at wavenumbers of 1, 2, and 3 with both
the top and the bottom surfaces simulated and including both vapor phase regions.
Solutions at m = 1 were obtained on a computational domain §vith 27a in the primary -
direction of flow and 8a perpendicular to the flow. This problem was discretized on a
computational grid with 360 constantly spaced cells in the direction of flow and 100
graded cells perpendicular to the primary direction of flow. The grading was done so that
regions of constant cell spacing were maintained adjacent to the interfaces. Problems
with larger wavenumbers used the same computational grid with shorter computational
domains to keep the number of computational cells per wavelength constant. A
computational domain with periodic boundary conditions was used allowing the traveling
waves to leave the domain while reentering it from the opposite side. The input data for
the antisymmetric case with m = 1 are presented in Table 14. The code modifications
needed are the imposition of the initial surface perturbation and the surface position
output. These modifications, shown in Tables 15 and 16 are included of the SETVEL

subroutine and draw.pat, respectively.
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Table 14. Input data for antisymmetric wave growth problem with m = 1.

Sxput

name=' antisymmetric wave growth m = 1 - Z=0.1, We=4.0, Rv/R1=0.1"',
rhof=63.24555321d0, rhog=0.140, sigma=0.025d0, nu=0.0158113940,
wi=1.0d0,

jnm=" vof3d7 ', nfcal=1l, iequib=0, icsurf=1, idefm=1, cyl=0.0d40,
delt=0.0001d0, velmx=1.0d0, isor=1, epsi=1.0d-4, lpr=1, cangle=90.0d0,
isurft=1, wt=4, wb=4, alpha=3.0d40, flht=0.0d40, twfin=30.0d40,
omg=1.7540, '

pltdt=0.540, prtdt=1.0d40, tddt=30.040, tlimd=0.0d40, td=-1, t=0.0d0,
dtcrmx=0.005d0, islip=1, nfx=0, epsiv=1.0d-4, autot=1l,

ifx(1)y=72, kfx(1)=2, ifx(2)=31, kfx(2)=2,

istress=1, lvapor=1l, lvflag=1l, vomg=1l.65d0,

nvfr=2,; ivfr=2,101, jvir=2,2, kvfr=2,2, ivwl=l, ivwr=1l, ivwb=2, ivwt=2,
Send

$meshgn .

nkx=4, x1=0.40, 5.01d40, 6.40, 6.9940, 12.d0,

xc=4.6140, 5.41d40, 6.5940, 7.3940,

nx1=20, 10, 10, 10, nxr=10, 10, 10, 20,

dxmn=0.0240, 0.02d40, 0.02d0, 0.0240,

nky=1, yl1=0.0d40, 1.0d0, yc=1.0d0, nyl=1, nyr=0, dymn=1.0d0,

nkz=1, z1=0.0d0, 6.283185307d0, =zc=3.141592654d0, nzl=160, nzr=160,
dzmn=1.040,

Send .

$fluidgn

ngbs=2, )
gal=1.0d40, 1.0d40, ga2=0.0d40, 0.0d40, gbl=0.0d40, 0.0d0, gb2=0.0d0, 0.0d0,
gcl=-7.0d0, -5.0d0, gc2=0.0d40, 0.0d0, igh=1, O,

$end

Table 15. Initial perturbation for antisymmetric wave growth with m = 1 in.setvel.f.

subroutine setvel
include 'vof3dcom'

le:
integer k, kkk .
real*8 mm, kk, templ, aaa

c
mm=1.0d0
aaa=0.5d0* (xi(ifx (1)) -xi(ifx(2)))
kk=mm/aaa

c

do k=2, kml
kkk=1i5* (k-1) +imax
templ=zeta*rdx(ifx(1l))*dsin(kk*zk(k))
f(kkk+ifx(1))=f(kkk+ifx(1l))+templ
f(kkk+ifx(2))=£f(kkk+ifx(2))-~-templ
enddo
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c
call dcopy(lvec, £, 1, fn, 1)
call dcopy(lvec, fn, 1, fnn, 1)
c
return
end

Table 16. Modifications to draw.pat for the wave growth problem.

c
write(2,290) t
do k=2, kml
do i=imax/2,2,-1
ijk=imax+1i5* (k-1)+1i
if (nf(ijk).ge.l.and.nf(ijk).le.6) then
temp2=x(i+2)—(delx(i—2)*f(ijk—2)+delx(i—l)*f(ijk¥1)

-1 +delx (i) *£(ijk)
2 +delx (i+1)*£(ijk+1)+delx(i+2) *f(1jk+2))
go to 1212
endif
enddo

1212 continue
do i=imax/2+1,iml
ijk=imax+ii5* (k-1)+1i
if (nf(ijk).ge.l.and.nf(ijk).le.6) then
tempd=x(i-3)+(delx(1-2)*£(ijk-2)+delx(1-1)*f(ijk-1)

1 +delx (i) *£(ijk)
2 +delx(i+1)*f(ijk+1)+delx(i+2) *f(ijk+2))
go to 2121
endif
enddo

2121 continue
write(2,300) k, zk(k), tempd, temp2

enddo
c
290 format (/,' time=', 1lpel2.4)
300 format (i6,3f15.10)
c

Figure 20 presents a plot of the Ln(amplitude) as a function of time for a specific
case as an example. The displacement is computed as the average of the displacement of
one crest and one trough on each interface, where the same crests and troughs are
followed as they move through the computational domain. Since from linear stability
analysis the growth is expected to be exponential, the plot in Figure 20 is expected to be a

straight line, which after an initial transient region, it is. The dimensionless growth rate
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determined from the slope of the linear portion of this curve combined with the slopes for
additional cases at wavenumbers 1 and 3 and axisymmetric cases at wavenumbers 1, 2,
and 3 are presented in Figure 21. These resuits show very good agreement between the

theoretical and computed growth rates in the linear growth rate regime.

0.01
o
]
2
g 1
g 0.001 T
<
=
=
0.0001 ' T ‘: v L] T
0 2 4 6 8 10 12 14 16
Time

Figure 20. Wave growth results for antisymmetric case for We, =40,Z=0.1,p=0.1,
and m = 2.
The results presented in Figure 21 imply that, given sufficient grid resolution, the
physics associated with the treatment of boundary conditions at the interface between a

liquid phase and a vapor phase governed by potential flow are reasonably treated.
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Figure 21. Non-dimensional growth rate for We, =40, Z =0.1, and p = 0.1 obtained

from numerical solution of the Li and Tankin’s>8 dispersion relations. Closed
circles and open triangles represent results from computational analysis.

Thus, with the solution of the lid driven cavity problem, the die-swell problem,
and the accurate prediction of the growth of waves in a thin viscous sheet of fluid, I have
demonstrated the accuracy of the treatment of the interfacial boundary conditions. I now
go on to discuss applications of this computational tool to specific problems that are of

interest to the pulp and paper industry.
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THE EFFECT OF CROSS MACHINE DIRECTION PRESSURE VARIATIONS ON
COAT-WEIGHT NON-UNIFORMITIES

Non-uniformities in the coated surface of paper is a problem that becomes more
pronounced as the speed of coating operations increases. Specifically, in short dwell time
coaters, an uneven coat-weight profile appears characterized by streaks of 1 to 3 cm wide
running along the machine direction (MD). In general, these streaks are approximatelif
15 to 50 % thinner than other coated regions of the sheet, and their scale, ~1 cm, is much
larger than the blade gap (~30-50 um). The magnitude of these streaks is in contrast to
other coating defects such as streaks due to solid parﬁcles blocking the blade gap or skip

coating where the streaks have essentially no coating.97

In addition, wet streaks occur when the coating speed is increased above a critical
limit for a given coating formulation. Pilot trials by Triantafillopoulos and Aidun!93 and
Lil04 indicate that the limiting speed decreases with increasing percentage solids and,

consequently, the low-shear viscosity of the coating color.97

There have been three primary mechanisms (Figure 22) proposed for the
formation of wet streaks.97 The first is air entrainment at the dynamic contact line!105
which occurs as the contact line becomes unstable. The second and third proposed
mechanisms are due td hydrodynamic instability in tﬁe flow within thg‘pond of the short
dwell coater. Instability in these three-dimensional flows can lead to cross-machine
direction pressure variations in the coating entering the blade gap. Finally, the presence
of the deformabile blade and substrafe can allow for variation in the blade gap and, thus,

the coating thickness.
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Figure 22. Summary of mechanisms which may lead to wet streaks.97"

In this thesis, results from study of the second mechanism, the effect_ of pressure

variations upstream of the blade on the thickness of the coating léyer in the absence of the

air entrainment and blade gap fluctuation mechanisms are presented.

Here, I discuss the results obtained by Miura and Aidun,%7 using an early version
of the IPST-VOF3D program, in their study of the effects of pressure variations upstream

of the blade on the thickness of the coating leaving the blade fegion. First, I present their

results from the study of the temporal pressure variations. This is followed by an

extension of Miura and Aidun’s spatial fluctuation results.98
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Two-Dimensional Base Case

The initial condition for all of the cases discussed below is a two-dimensional
steady-state simulation. Since the computational technique developed in this dissertation
is transient, the norfnal method for obtaining a steady state solution is to choose a
reasonable initial condition and march forward in time until the solution ceases to vary
with time. The results of the steady-state two-dimensional simulatiqn yield a better initial
guess for the three-dimensional simulations performed beloW, potentially reducing the
time needed to reach steady-state. The 2D-SS problem solved is shown in Figure 23.. All
of the results are presented in nondimensional form with the blade gap and the substrate

velocity used as characteristic length and velocity, respectively.

Free
Static Surface

Contact
Point

Figure 23. Schematic of the two-dimensional steady-state coating problem.

The inlet boundary condition assumes that the fluid is adjacent to the upstream
edge of the blade and the flow is a linear combination of shear-driven (Couétte-ﬂow) and
pressure-driven (Poiseuille-flow).97:106,107 Thus, the nondimensional inlet velocity

profile is given as




-97.

1 . . S
w(x,y,t)=1—x+5‘j—‘z’(y,t)x(x—-1) at z=0 110y
where the pressure gradient, 4 (y, t), will later be allowed to vary with span wise

position, y, and time, t. Results are to be presented in terms of the Reynolds number,

Re = phwsubstrate /u ’ | . oL (1 l 1)
and Capillary number, - .
Ca =W, /O, | (112)

where W e 18 the web speed, p is the density of the coating color, W is the viscosity
(assumed to be constant with a value appropriate for the conditions under the blade),97
h is the blade gap, and © is the surface tension. The details of the two-dimensional
steady-state simulations and demonstration of the solution grid independence are

presented by Miura and Aidun?’ and Miura et al.98

Example input data for the two-dimensional steady-state simulation are presented
iﬂ Table 17. The input data are entered in dimensional units in the mks system. The éode
modifications required are the same as those for the die-swell problem discussed above
except that different velocity profiles are required for the inlet and initial coﬁditions. The
temporal instability problem discussed here and the three-dimensional problem discussed
below require adjustments in bc.pat and setup.pat for the velocity profiles which are
presented in Tables 18 and 19, respectively. The modifications for the treatment of the
static contact point and the display of the interface profile are accomplished in the same
manner as those used for the die-swell problem discussed above. Notice that temporal
and spatial fluctuations in the inlet pressure gradient can be imposed by adjusting the

comments in front of specific lines in bc.pat presented in Table 18.
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Table 17. Input data for the two-dimensional steady state simulation of flow under a
o short dwell coater blade.

$Sxput -

jnm=' QUICK ',name='50 cps 03/20/92 ', nfcal=2, )

iequib=0, icsurf=0, idefm=1, rhof=1.2, cyl=0.0, delt=0.000000001,"
velmx=1000.0, nu=0.4167, isor=0, epsi=0.005, wi=0.0, wlw=1000.0,
sigma=41.67, lpr=1, cangle=90.0, isurft=1, autot=1.0, wl=2, wt=3,
wb=3, wf=1, wbk=1l, alpha=3.0, dtcrmx=0.0000005, £lht=0.1,
twfin=0.0005, omg=1.0, pltdt=0.0001, prtdt=0.0001, tddt=0.0005,
£limd=0.0, td=-1, t=0.0, islip=0, nfx=1, ifx(1)=20, kfx(1l)=31,
iorin(l,1)=2, iorin(2,1)=3, islp(l)=0, istress=1,

Send
$meshgn . .
nkx=1, x1=0.0, 0.005555555556, xc¢=0.005, nxl1l=18, nxr=2, dxmn=1.0,
nky=1, y1=0.0, 1.0, yc=1.0, nyl=1l, nyr=0, dymn=1.0,

nkz=1, z1=0.0, 0.4, zc=0.1, nzl=30, nzr=90, dzmn=0.0005,

nobs=2,

ocal=-1.0, 0.0, oca2=0.0, 0.0, obl=0.0, -1.0, ob2=0.0, 0.0,
0cl1=0.005, 0.1, oc2=0.0, 0.0, ioh=1, O, :

Send

$fluidgn

$end

Table 18. Modifications to bc.pat for the flow under a short dwell blade.

¢ *** blade-edge boundary conditions
do j=2,3ml

jjj=imax*(j-1)

do k=1,kfx(1)-1
ijk=1i5*(k-1)+jjj+ifx(1)
w(ijk)=-w(ijk-1)*delx(ijk) *rdx(ijk-1)
u(ijk-1)=0.040

enddo _

kkk=11i5* (kfx(1)-1)+3j]

do i=ifx(1l),iml
u (kkk+i)=u(kkk+i+1ii5)
wikkk+i)=w(kkk+i+1ii5)

enddo
u(iis* (kfx(1)-1)+jjj+1ifx(1)-1)=0.0d40 -
enddo
c
c set specified inflow velocities for designated inflow cells
c

do j=2,jml
jij=imax* (j-1)
do i=2,ifx(1)-1
19k=93i+i
u{ijk) = 0.0
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v(ijk) = 0.0

--- parabolic profile ---
w(ijk)=wi*1.5*(1.0-(xi(1i)*rx(ifx(1)-1))**2)

-—- inflow setting : couette & poiseuille flow ---

- templ is pressure gradient : dp/dz (dyn/cm”™2/cm)

" templ = -1.60e8

--- time periodic pressure fluctuation

-— prtdt is the period of the fluctuation

if (t.le.2.0d0*prtdt) then

temp2=1.04d0+0.5d0*dsin(2.0d40*pi*t/prtdt)

--- CD pressure fluctuation

full-wave fluctuation ? ---

A temp2=1.0d40+0.5d0*dcos (2.040*pi*yj(j)/yl(2))

--- or half-wave fluctuation ? ---

temp2=1.0d40+0.5d0*dcos (1.0d0*pi*y3j(3)/y1l(2))
w{ijk) = wwl*(1l-xi(i)*rx(ifx(1)-1))+

1 templ*temp2/(2.0*nu*rhof) *xi (i) *(xi(i)-x{ifx(1)-1))

0000

(o 2o T o TN o N ¢ N o N ¢ T ¢ B @ B 0]
|
|
|

Table 19. Modifications to setup.pat for the flow under a short dwell blade.

¢ --- modified for blade coating simulation by Miura 06/04/91 ---
¢ --- inflow setting : couette & poiseuille flow ---
c -1.6e8 is pressure gradient in md : dp/dz (dyn/cm”~2/cm)
’ w(ijk) = wwl*(1.0d0-x1i(i)*rx(1fx(1)-1))+
1 "~ (-1.60e8)/(2.0*nu*rhof) *xi(i)* (xi(i)-x(ifx(1)-1))

Results from the two-dimensional steady state base case problem are presented in

Figure 25 for the coarse and fine computational grids diagrammed in Figure 24.

The slight discontinuities or “kinks” in Figure 23 result from a combination of
three factors. First, the position of the interface is computed using only a local height
function in the y-direction. As the computational grid is refined, even though it remains
skewed, the magnitude to the kinks decreases and the surface becomes smoother, in part
because the y-direction height function becomes more accurate. The second factor

contributing to the kinks is the highly skewed grid structure which reduces the accuracy
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of the surface shape computation. For example in the coarse grid simuvlation the y-
direction grid spacing is 0.1 while the x-direction grid spacing is 0.25 yiclding a grid
aspect ratio of 2.5 to 1 versus the ideal 1 to 1 ratio. The final factor affecting the rough
appearance of the interface is the scaling of the y-axis, which is magnified over 7 times

contributing to the apparently large size of these kinks.
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Figure 24. Illustration of the (a) coarse and (b) fine grid systems for the two-dimensional
computations (number inside the arrow indicates the number of cells).
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Figure 25. Comparison of the free surface computations using the fine and coarse grid
systems.

Next, I focus on the results of Miura and Aidun’s simulations. First, I discuss
their study of time periodic pressure fluctuations in two-dimensions, followed by
presentation and extension of three-dimensional steady-state simulations with span wise

pressure variations.

Time-Periodic Pressure Fluctuation

In addition to wet streaks, which are coat-weight non-uniformities in the span
wise direction, the film thickness can also develop a 2-D wavy profile due to temporal
fluctuation in the pressure upstream of the blade. Thus, the effect of the time-dependent

fluctuation of static pressure at the blade entrance on the film thickness was investigated.
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A sinusoidal pressure fluctuation lasting for two periods is given by -

2 (t) = (£)[1+0.5sin(2nt/T)], 0<t<2T
(113)
where (%’) indicates the steady-state pressure gradient and T is the period of fluctuation.

Notice that the amplitude of the pressure varies by +50% from the steady-state value.

With the addition of the time periodic inflow condition, all other boundary
conditions remain the same as the steady-state simulation discussed above, which was
used as the initial condition. The blade gap was maintained at 50 mm and the substrate
speed varied from 10 m/s for Re = 12 to 25 m/s for Re = 30. The flow parameters in

dimensional and dimensionless form are presented in Table 20.

Table 20. Physical parameters used in temporal pressure variation study.

Parameter Dimensional Dimensionless
Blade gap, h 5x105 m 1

Blade thickness, T 1x103 m 20

Density, p 1200kg/m3 | —

Viscosity, v ‘ 0.05 Pa-s —

Machine Speed, W .10 m/s 1 ‘
Average Pressure Grad., (%} -100 MPa/m 0.5 (Re=12)
W : 15 m/s 1

) -| -150 MPa/m 0.5 (Re=18)
w ‘ : 20 m/s 1

(<) -200 MPa/m -0.5 (Re =24)
w 25 m/s 1 '

(42 -250 MPa/m -0.5 (Re =30)
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Figure 26. Variation in surface thickness due to temporal pressure fluctuation at the blade
entrance after two periods of variation.
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Figure 26 shows the film thickness as a function of position after two periods of
disturbance. The variations in thickness are small, which is to be expected since more
than 91.7% of the mass flow through the gap in this case is shear driven.%7 Thus, a 50%
variation in pressure could be expected to yield ~4% variation in film thickness. Thié
film thickness varjation from the steady-state value is plotted in Figure 27. Npti’ce that
the computed film thickness variations are less than 1%, much smaller than the 4%

variation expected from the simple linear analysis.

003 1 |t..
= |
= 002 1 |1
= 00271 |!. _
5 \:i Re =12
Q '
P . — — — Re=18
<
Z 0 A A A e | Re =24
=
E — - — - Re=30
=

Figure 27. Film thickness deviation from the steady state outlet value.

Cross-Machine Pressure Fluctuation

Here we study the effects of cross machine pressure variations on the steady-state
coating profile downstream of the blade. Various types of flow instability in the pond are

expected to yield pressure variations with wavelengths from 1 mm to greater than 1 cm.%7
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Film thickness non—uniformiiies become even more important in light weight
coated applications where the blade gap may be reduced to 30 um from the 50 um studied
in the temporal instability. The dimensional and dimensionless flow parameters used in
the three-dimensional simulations are presented in Table 21 where the Reynolds and
capillary numbers fall within the range of actual operating conditions. Paper coating
fluids are typically shear thinning, but for these simulations a constant viscosity with the
value expected in the shear rates under the blade is used. The pressure gradient is
estimated from the results of Pranckh and Scriven!06 which is currently the most

complete two-dimensional analysis of blade coating.

The pressure variation is assumed to be a sinusoidal disturbance given by

£ (y) =|4{[1+0.5cos(ny/v)] (114)

where |%| is the average pressure gradient and y is the pressure fluctuation wavelength.

Kilid
dz

The boundary conditions remain the same as in the previous simulations with the
exception of the inlet condition and the additional constraints of symmetry conditions,

_du _ dw 8P_O

= =—=—= t =+v/2. 115
Y=oy Ty ay a y=zty/ (115)

Miura and Aidun®7 studied the effect of dimensionless span wise wavelengths
from 33.3 to 400, corresponding to dimensional disturbances from 1 mm to 1.2 cm.
Here, this analysis has been extended to dimensionless wavelengths of 800 and 1200

corresponding to dimensional disturbances of 2.4 cm and 3.6 cm, respectively.
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Table 21. Physical parameters used in three-dimensional spatial pressure variation study.

Parameter Dimensional Dimensionless

Substrate speed, W 20 m/s 1
Blade gap, h 3x105m 1
Blade thickness, T 1x10-3 m 20
Density, p _ 1200 kg/m3 —
Viscosity, v 0.05 Pa-s | —
Surface Tension, ¢ 0.05 N/m —
Average Pressure Grad., [98| | -1.6x10° Pa/m | -1.44
Reynolds number, Re. — 14.4
Capillary number, Ca —_ 20

With no CD pressure variations, the steady-state film thickness can be computed
by integrating Equation (110). This indicates that the average contributions to the
dimensionless film thickness from Couette-flow and Poiseuille-flow are

0.5 + 0.12 = 0.62
_ Couette — flow Poiseuille ~ flow Total

(116)
A simple linear analysis predicts that a CD pressure fluctuation of 50 % will lead to 50 %
Poiseuille flow fluctuations and dimensionless film thickness variations from 0.56 to
0.68. As can be seen in Figure 28, when the wavelength of the disturbance is large, the

amplitude coat weight variations agrees with the simple linear analysis, but when the

wavelength is very small, the amplitude of the surface profile is also very small.

Miura and Aidun97 present the following discussion of the physical mechanism

leading to the variation in film thickness as a function of disturbance wavelength:

Considering the y-component of the Navier-Stokes Equation and noting
that the length and velocity scale in the x-direction is small, that is O(d), it
is easy to show from order of magnitude analysis that the pressure gradient
term is balanced mainly by ‘

dp/dy = d>v/ox>.
When we compute the RHS term from the computational results, we
observe that its magnitude does not greatly vary between the cases
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considered in this study. Therefore, the value of dp/dy is also of the same
‘order for y between 1 mm and 12 mm. This implies that as the
wavelength of the pressure fluctuation, i.e., the magnitude of the

denominator, dy, increases, the magnitude of the pressure gradient, i.e., the

magnitude of the numerator, dp, will increase to keep dp/dy relatively

constant. As we mentioned above, however, at a critical wavelength the

value of the pressure gradient will approach a plateau with a further
.increase in y. '

0.68
0.66 — 333

é 0.64 — O iOO

5

E 0.62 —o—— 200

E.E‘ 0.6 —o— 400
0.58 —e—— 800
0.56 —— 1200

-600 400 -200 0 200 400 600

Figure 28. Comparison of the span wise film thickness profile for pressure variations
having varying wavelength. Cases with wavelength of 33.3, 100, 200, and
400 by Miura and Aidun.9’

These results and analysis indicate that the second proposed mechanism in
Figure 22, that of pressure fluctuations upstream of the blade, is indeed a plausible
mechanism for wet streaks. For the case studied, a 50% cross machine direction pressure
fluctuation on the order of 1 to 3 cm in side yields a coat weight variation on the order of

10%. Disturbances with smaller cross machine fluctuations yield smaller coat weight

variations which may not be perceived as wet streaks.
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This is not expected to be the complete story of the wet streak phenomenon. This
analysis does not include the compressibility of the substrate or the deflection-of the
blade, two results that are also expected to contribute to coat weight variations via a non-

uniform blade gap (mechanism 3 in Figure 22).
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CONDENSATE FLOW INSIDE DRYER CYLINDERS

In this sectiori, results obtained by applying this computational technique to the
study of condensate flow within dryer cylinders are discussed. In this problem, a constant
volume of fluid is contained in a rotating horizontal cylinder. No attempt was made to
include the effects of steam condensation, variation of properties with temperature, or the -
siphoning process used to remove condensate from the cylinder. The focus of this study
was to determine the velocity profiles within the condensate layer and to understand the

implicationé of these profiles on the heat transfer through the condensate layer.

A schematic of the condensate flow problem is presénted in Figure 29. it is
shown as a two-dimensional problem, although a three-dimensional computational(
domain was required for solution. Simplifications are present in the IPST-VOF3D _
program to improve the computational efficiency in the study of tv'vo-dimens'ional‘
problems; however, it is currently only possibie to treat two-dimensional problems in the
X-z or 1-z planes in this manner. Since this two-dimensional problem is defined in the r-0
plane, a domain with two fluid cells and two fictitious cells in the z-direction was used,
combined with symmetry boundary conditions in the z-direction to simulate a two-

dimensional computational domain.

The condensate flow problem is characterized by the dimensionless groups Reynolds
number,

Re = pob® /u, (110)
(sometimes defined as Re = poR’ / U in the literature); the Froude number,

Fr = ®*R/g; (111)
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the Capillary number,

Ca = poR/c; : (112)
and the film thickness ratio, |

5 =b/R. A (113)
Here, R is the radius of the inside wall of the cylinder, ® is the angular velocity of the
rotating cylinder, b is the average condensate film thickness, g is the acceleration due to
gravity (acting downward in Figure 29), p is the condensate density, [ is the condensate

viscosity, ¢ is surface tension of the condensate.

Bl Cylinder shell

Condensate layer

Figure 29. Schematic of the condensate flow problem.

Earlier studies of this problem have been conducted by Deibler and Cerro!08 as
well as by Orr and Scriven.!99 Deibler and Cerro used an order of magnitude analysis to

generate a simplified form of the NSE for this problem,

(114)

dVy, V, dV, cos® 82 9 [ 1 9(Rv,)
v e, Yo OV, €085, 0 9| Tl
TR R o6 Fr RedR|R IR

where V, = v, /oR, V, =v,/0R, and R =1/R. This equation, essentially a boundary

layer equation in cylindrical coordinates, was solved numerically in transformed
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coordinates for Reynolds numbers from 0.05 to 456, for Froude numbers from 0.1 to 16,

and for film thickness ratios from 0.05 to 0.0004.

Orr and Scriven!! studied the rimming flow problem using a finite element
technique to solvé the full incompressible NSE for flow in the liquid layer. In comparing
their results, it is important to note that they-have defined the Reynolds number using the
radius of the éylinder as a length scale rather than the average film thickness as was done
by Deible; and Cerro. Thus, the dimensionless groups used by Orr and Scriven are the
Reyﬁolds number, Re,, =pwR?/|L; the Weber number, We,,, = 6/pw’R*; the inverse of
the Froude number, G, = I/Fr =g/®’R; and the ratio of the surface radius to the

cylinder radius, f, =1-8 =(R-b)/R.

Although the Reynolds number and Froude number ranges studied by Orr and
Scriven are similar,» when expressed in the same dimensionless parameters, the film
thickness ratios studied by Orr and Scriven are much larger. Orr and Scriven looked at
film thickness ratios of 8 = 0.5 and 8 = 0.2 while we are interested in thickness ratios

closerto 8 =0.01.

We have studied flow inside a cylinder with a range of Reynolds numbers from
100 to 3000, and a range of Froude numbers from 14 to 85. The Capillary number was
not directly controlled as a parameter but was allowed to vary with the angular velocity of
the cylinder (the physical properties and R remained constant throughout). For a typical
dryer cylinder radius of 0.75 m, the range of Froude numbers studicd correspond to paper

machine speeds from 400 to 1500 m/min.

The initial condition used was to evenly distribute the fluid as a film along the

edge of the cylinder rotation with the constant angular velocity. This initial condition
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corresponds to a “solid body” rotation and is equivalent to a-case with zero gravity. In
early cases, the gravitational field was impulsively enforced at t = 0, which led to large
oscillations in the surface position resulting in long simulation times for these oscillations
to damp-out and steady-state to be ;eachéd. Later simulations have beén conducted using
a modified gravitational force | | I |

g(t) = gmin(1, ot) ' | o a1s)
where g is the steady state acceleration due to gravity, and o is a proportionality factor
controlling the rate of change in the gravitational field. This.approachr is similar to Ihat
used by Orr and Scriven!99 to achieve convergence in their Finite Element simulations.
The modifications needed for the gravitational force are accomplished through the use of
the tildel.pat and tilde2.pat shown in Tables 22 and 23, respectively. The sufface p;oﬁle
is stored using an addition to draw.pat similar to those used in the die-swell problem and

the coating problems discussed above.

Table 22. Modification to tildel.pat for variable gravitational force in dryer cylinder.
templ=gxa(j)
gxa(j)=templ*dminl (1.0d40,t*0.5d40)
temp2=gya(j)
gya(j)=temp2*dminl(1.040,t*0.5d0)
Table 23. Modification to tilde2.pat for variable gravitational force in dryer cylinder.
gxa(j)=templ
gya(j)=temp2
The boundary conditions are no-slip along the outer wall of the cylinder, periodic

conditions between 0 and 27 in the O-direction, Laplace’s formula at the interface, and

symmetry conditions on the front and back walls.
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Determination of Grid Independence '

The case at RE = 3000 and Fr = 85 was used to test the dependence of the solution
on the size of the computational grid. Iﬁitially, 25 cdmputﬁtional cells were used in the r-
direction and 100 equally spaced computational cells were used in the 8-direction as
indicated in the input data presented in Table 24. In order to obtain adequate resolution:
of the viscous sublayer, the minimum cell spacing in the r-direction adjacent to the wall
of the cylinder was maintained as 1% of the average film thickness. A similar case was

studied with 50 and 200 computational cells in the r and 8-directions, respectively.

Table 24. Input data for condensate flow problem with Re = 3000 and Fr = 85.

$xput
name=' Condensate flow in a rotating cylinder. Re=3000 Fr=85',
jnm="' test ', nfcal=1, iequib=0, idefm=1, cyl=1.0d0,

velmx=1.040, isor=0, epsi=1.0d4-3, 1lpr=1, cangle=90.0d0,

isurft=1, istress=1, alpha=0.5d0, flht=0.0d4d0,

omg=1.0d0, autot=0, icsurf=1, vi=25.0077488d0, gy=-9.81,
prtdt=1.0d4d0, tlimd=0.0d0, td=-1, t=0.0d4d0, dtcrmx=0.0005d0,

wf=4, wbk=4, wr=2, wl=2,

rhof=958.4d40, sigma=0.000062640, nu=0.000000029440,
vrw=25.007748840,

delt=0.0005d40, pltdt=0.0471093d0, twfin=18.8437153d0, tddt=9.421858d0
Send

$meshgn

nkx=1,x1=0.739738d40, 0.75d0, xc=0.0.749948569d0, nx1=24, nxr=1,
dxmn=.000051431d0,

nky=1,y1=0.040, 4.7124d40, yc=2.3562d0, nyl=50, nyr=50, dymn=1.0d0,
nkz=1,2z1=0.040, 0.01d0, zc=0.005d0, nzl=1l, nzr=1, dzmn=1.0d0,
$end :

$fluidgn

ngbs=1, gal=-1.0d40, ga2=0.0d40, gbl=0.0d0,

gb2=0.0d0, gcl1=0.7448569d40, gc2=0.040, igh=1,

$end

. Figure 30 shows a comparison of the results from the coarse and fine grid
simulations in the viscous sublayer region adjacent to the cylinder wall at Re = 3000,

Fr = 85. The ordinate and abscissa are non-dimensional quantities defined as a
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dimensionless film thickness, , o -
n=(R-r)Jo/2v, (116)

and the velocity deviation from the solid body rotation scaled by the Froude number,

&=(v,/(Rw)-1)Fr, (117)
respectively. The coarse grid results are in extremely good agreement with the results
obtained using the fine grid, indicating that the coarse grid contains sufficient resolution
for this problem. Therefore, computational grids with 25 by 100 computational cells

were used in all subsequent simulations.

4 25x 100 cells —C—— 50 x 200 cells

Figure 30. Comparison velocity profiles in the viscous sublayer at Re = 3000 and Fr = 85
results on different computation grids.
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The velocity proﬁleé shown in Figure 30 present‘ only the viscous sublayer. The
complete profiles from the wall to the interface are presented in Figure 31. Notice that
the complete flow is made up of the viscous sublayer and a fairly large constant velocity

region termed the inviscid core.

25

90° 45° || 135° 0° [|180° 315° {225° 270°

15

10 }

0 4 i

Figure 31. Complete velocity profiles at Re = 3000 and Fr =385 (25 x 100 cells).

The Effect of Froude Number

Once a computational grid with sufficient resolution for accurate solution of the:
flow patterns was determined, a variety of cases were studied. First, I present a
comparison of surface profile deviations from the solid body rotation for Re = 3000 as a

function of Froude number (Figure 32). As the Froude number (the ratio of centrifugal
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and gravitational forces) decreases, the free surface profile departs more and more from

the solid body rotation, which is equivalent to Fr = oo,

Deviation from mean film thicknes (%

0 45 90 135 180 225 270 315 360

Figure 32. The cffect of Froude number on condensate film thickness variation.

The remaining question is the effect of decreasing Froude number on the velocity
profiles. For Fr = oo, the velocity profiles are flat and constant as a function of position.
As is shown in Figurc 30 above, cven at Fr = 85 there is significant deviation from the
solid body solution. In Figure 33 we present velocity profiles for cases with Re = 3000

and Froude numbers of 85, 38, 24, and 13 at 0°, 45°, 90° and 135°.
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Figure 33. Comparison of velocity profiles for Re = 3000 at various Froude numbers.

The Effect of Reynolds Number

A similar comparison to that made in Figure 33 is possible to study the effect of

Reynolds number at a specific Froude number. Figure 34 shows the effect of varying,

Reynolds number on velocity profiles at a constant Froude number. At a

given Froude

number the only parameter that was varied when the Reynolds number changes is the

average film thickness. The results in Figure 34 show that the velocity profiles in the

viscous sublayer remain constant as a function of Reynolds number at a given Froude

number. Thus, increasing the Reynolds number (which is equivalent to increasing the

average film thickness) does not affect the flow in the viscous sublayer, but only adds

fluid to the inviscid core.
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Figure 34. Comparison of velocity profiles for Fr = 85 at various Reynolds numbers.

Comparison with Experimental Results

As a further test of the accuracy of the computational technique for analysis of
condensate flows is to compare the computational results with those from experiment.
Limited experiments using an ultrasonic film thickness technique were performed at the
University of Lund in Sweden.!!0 Presented in Figures 35 and 36 are comparisons of the
computed surface profiles with the experimentally measured film thickness for case at
Re =763, Fr = 6 and Re = 1107, Fr = 13, respectively. The cxperimental data are
presented as a series of three points recorded every 45° around the cylinder. No error bars
were available, so the reported maximum and minimum values represent the range of

recorded thicknesses with the middle point representing the average reading. The trends
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in the film thickness and the general magnitude of the deviations from the Asolid'bodyv

rotation show good agreement between the computed and experimental results.

13
12 1

11 7

Thickness (mm)

0 45 90 135 180 225 270 315 360
Angle (degrees)

Figure 35. Comparison of computed and experimental!10 for Re = 763 and Fr = 6.
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Figure 36. Comparison of computed and experimental! 10 for Re = 1107 and Fr = 13.
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Implications for Heat Transfer

The flow in the condensate laye'f is characterized as érelatively'small viscous
sublayer supporting a much larger invisci-d core having a nearly constant velocity profile.
From Figure 33 it is clear that as the machine speed, and thus the Froude number, is
increased, the velocity profiles approach the solid body rotation. Accompanyihg'_t_his isa

shift towards a constant film thickness seen in Figure 32.

Since there is no mixing within the condensate layer, the heat traﬁsfer me%ihanism
through the condensate layer is expected to be by conduction. In general, convecéon is
superior to conduction as a heat transfer mechanism, so some means of introducing
mixing and thus increasing convection is expected to have a significant effect on the heat

transfer rate through the condensate layer.

There are several ways to opt’imiz»e‘ the lheat transfe¥ through the ;:ondensate layer.
Decreasing the thickness of the condensate layer to reduce the distance through which the
heat must be conducted is one approach. Perhaps the most cost-effective method of
increasing the heat transfer rate through the condensate layer is to promote mix‘ing- and
thus convection within the condensate layer. "An example of this is the use of axial bars
on the inner surface of the dryer cylinder. Pulkowski and Wedel!!! present examplés of

the dramatic effect these “spoiler” bars can have on the heat transfer rate.
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CONCLUSIONS

“Free surface flows exist in a number of pulp and papermaking unit operations
including the spraying of black liquor into a recovery furnace, jets leaving the headbox,
the paper machine forming section, condensate flows inside dryer cylinders, coating
- application systems, and finishing operations such as polymer film extrusion.
Specifically, this work has been motivated by the study of the stability of a thin viscous
sheet flowing through a stagnant inviscid vapor phase. This problem is directly related to

black liquor spraying, an important part of the operation of a recovery furnace.

In the course of this work, a computational fluid dynamics model for transient
three-dimensional free surface flows has been developed with capabilities beyond
previously existing computational techniques. This was accomplished by enhancing and
extending the capabilities of the SOLA-VOF computational technique in the following

manner:

e Improved accuracy of the advective terms in the NSE through the addition of
three third-order accurate finite differencing schemes.

e The capability to treat static contact points (or lines) by treating both the wall
adhesion force due to surface tension and velocity boundary conditions in the
region of the static contact point (or line).

e Modification of the free surface boundary condition arising from the normal stress
balance to include the liquid phase deviatoric normal stress at the interface.

e Added a computational technique to allow the pressure in the vapor phase to vary
when the vapor phase is assumed to be inviscid and irrotational and thus governed
by potential flow.

Each of these enhancements to the computation technique was tested and

compared with results from the literature. First, the lid-driven cavity problem
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demonstrated the accuracy of the third-order accurate differencing schemes for the
advective terms in the NSE. Next, the die-swell problem tested the accuracy of the static
contact line treatment and the inclusion of the liquid phase deviatoric normal stress in the
interfacial boundary condition. Finally, study of the growth of waves in a thin viscous
sheet of liquid flowing through a stagnant inviscid vapor phase showed the accuracy of

the numerical technique for allowing the pressure in the vapor phase to vary.

| i/_‘\dditional applications of the computational technique .to problems of iiiterest to
the pulﬁ and i)aper have been demonstrated. First, analysis of the effects of temporal and
spatial pressure ﬂuctuatioris upstream of a coating blade on the thickness of the coating
layer was accomplished. Second, the effect of varying Froude number and Reynolds
number on the flow of condensate in a paper dryer cylinder was analyzed. These
applications demonstrate that the IPST-VOF3D computational technique in its current
form can assist in understanding phenomena of practical interest to the pulp and paper

industry.

With the development of IPST-VOF3D, a general computational technique is
available to solve three-dimensional free surface prdblems involving complex geometries
and potentially intersecting free surfaces. Example problems have been presented
demonstrating the accuracy and capabilities of the computational technique. The
IPST-VOFBD computiltional technique is unique in its ability to accurately solve the

coupled problem of an initially stagnant, inviscid phase and moving viscous phase.

In summary, Table 25 compares the features of IPST-VOF3D with the features of -
two commercially available computational fluid dynamics programs having free surface

capabilities, FIDAP7! and NEKTON.72
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Table 25. Features of the IPST-VOE3D, FIDAP, and NEKTON programs.

Feature IPST-VOEF3D FIDAP 7.0 NEKTON 2.85
Interface tracking VOF (can handle | Method of Spines’ | Mapping
large interface Local perturbation
A deformation) (new in 7.0)
Two fluids yes (if one fluid is | yes (limitations yes (if fluid
" governed by not known to densities are
, potential flow) author) similar)
Turbulence no mixing length mixing length
k-€ ' k-g
Three-dimensional yes yes (new in 7.0) yes
Transient yes | yes yes
Energy equation no yes yes
Phase change no - liquid-solid liquid-solid
Non-Newtonian no Bingham Fluid User Supplied
- ' Power law
. . : Carreau Model
Variable surface tension | no yes yes
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AREAS FOR ADDITIONAL WORK..

In this section I discuss areas for additional’@ork directly reéﬁlting from this
thesis. Specifically, 1 outline addltlonal features that should be added to the IPST VOF3D
computational technique to enhance its capabilities. These addmons are prlrnarlly
motivated by paper industry free surface flow problems that cannot be properly addressed .

with the current capabilities of the IPST-VOF3D computationa) technique.

Many paper indusfry problems éonsist of non-Newtonian ﬂows,. inciuding cbating ,
flows and pulp suspensions. Thus, thé< addition of options for non-Newtoniah fluids
would be of great use. Several of the chéi‘ces made in the cofnputational technidue
development have been made with this in mind, e.g., the choice to use the full dev1atorlc A

stress at the interface rather than the 51mp11f1ed formula derived in Appendlx V.

One of the most important free surface flows in the papermaking process is the
turbulent jet issuing from the headbox. Therefore, an extremely important extension to
the IPST-VOF3D computational technique is the addition of a turbulence modeling

capability.

Currently, the computational technique assumes that all flows are isothermal and
that the fluid properties are constant. More complete analysis of problems, such as the
flow of condensate in a dryer cylinder, can be accomplished through the addition of the
energy equation and physical properties that vary with temperature. This may also
require modification of the boundary conditions at the interface between the liquid and
vapor phases, since the assumption of zero tangential stress may no longer be valid when
the surface tension is allowed to vary. A mechanism for treating phase change would also

enhance the ability of this computational technique to address heat transfer problems.
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An additional area in need of study is extension of the continuum surface force

(CSF) model for treating surface tension.13 As discussed above, this technique converts
the discontinuity in pfessure at the interface caused by the surface tension into an
equivalent localized body force. This procedure allows more accurate treatment of the
force due to surface tension, but has currently only been implemented for flows where the

boundary condition can be governed by Laplace’s formu]a, 1.e., without the l.iq.uid phase
deviatoric normal stress. Thus, even if the surface tension force is included using thé
CSF model, a discontinuity is still required due to the presence of the liquid phase
deviatoric normal stress. It may be possible to formulate an analogy to the CSF model

that would include the effects of the deviatoric stress as a localized body force. -

The final addition to the code that is warranted is the extension of the vapor phase
potential solution to cylindrical coordinates. This is necessary for study of the stability of
radially thinning viscous liquid sheets flowing through a stagnant vapor phase, a problem

directly applicable to the process of black liquor spraying.

x
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NOMENCLATURE

VECTORS AND TENSORS

A ON DS ™ ©» g o =

body force vector (includes gravitational forces)
x-direction unit vector in Cartesian coordinates

‘x-direction unit vector in Cartesian coordinates

x-direction unit vector in Cartesian coordinates

unit vector normal to the interface

r-direction unit vector in cylindrical coordinates

unit vector tangent to the interface and tangent to the t

unit vector tangent to the interface

velocity vector (in Cartesian or cylindrical coordinates)

explicit guess for velocity vector

z-direction unit vector in cylindrical coordinates

O-direction unit vector in cylindrical coordinates

deviatoric stress tensor (viscous component of the total stress tensor)

SCALARS

a

AR

b

g

M UT g R = T 5 T

initial sheet half-thickness in wave growth problem
aspect ratio: defined as needed

average film thickness

capillary number: defined as needed

divergence: D=V v

VOF function, fraction of a computational cell containing fluid
Froude number

acceleration due to gravity

dimension of problem: defined as needed
interfacial position function

imaginary number i = V-1

x or r-direction index

y or O-direction index

wavenumber of disturbance

z-direction index

dimensionless wavenumber: m = ka

pressure

reduced pressure: P=p/p

x-direction component in cylindrical coordinates

or scale factor: r=1 in Cartesian coordinates and r=x in cylindrical coordinates
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or

or

or

or
or

or

or
or
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r-direction interfacial posmon functlon
radius of a cylinder ‘
Reynolds number: defined as needed
time

velocity component in the x or r-direction
initial sheet velocity

velocity component in the y or 8-direction
characteristic velocity: defined as needed
velocity component in the z-direction
width of lid driven cavity

characteristic velocity: defined as needed
Weber number: We, =p,U2a/c

x or r coordinate direction or position

y or 8 coordinate direction or position

z coordinate direction or position
z-direction interfacial position function
Ohnesorge number: Z =, (p,ac)”’

fraction of upwind differencing '
modified upwind differencing fraction: a’ = o sign(local veloc1ty)

SOR factor

time step

local computational cell width

local computational cell depth

local computational cell height
perturbed interface position

local height function

interpolation factor

dimensionless position

total curvature of the interface between two fluids
kinematic viscosity

viscosity

y-direction component in cylindrical coordinates
0-direction interfacial position function
partial cell function

density

Density ratio: p=p, /p,

surface tension between two fluids
wave growth rate

SOR acceleration factor

angular rotation of a cylinder
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1/2

® dimensionless growth rate: ® = ®, +i We,/“0,
®, modified dimensionless growth rate: &, = ®+iWe!’m
~ R . . /2
®, real part of dimensionless growth rate: @, = mr(s/ pa ) /
O, imaginary part of dimensionless growth rate: @, = (oi(a/Uo)m
§ dimensionless velocity :
€ scale factor: {=0 in Cartesian coordinates and =1 in cylindrical coordinates
SUBSCRIPTS
0 constant or base condition
i imaginary part of growth rate
or X or r-direction index
j y or O-direction index
k z-direction index
£ liquid phase
L left side of computational domain (smallest position in x-direction)
n neighboring cell
r derivative with respect to the r-direction in cylindrical coordinates
or real part of growth rate :
R right side of computational domain (largest posmon in x- dlrectlon)
s surface
\% vapor phase :
X derivative with respect to the x-direction in Cartesian coordlnates
y derivative with respect to the y-direction in Cartesian coordinates
z derivative with respect to the z-direction in Cartesian or cylindrical coordinates
0 derivative with respect to the 8-direction in cylindrical coordinates
SUPERSCRIPTS

< N« »x 2

time step :
height function normal to the x-direction

height function normal to the y-direction

height function normal to the z-direction

iteration
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APPENDIX 1

_ DESCRIPTION OF THE PROGRAM IPST-VOF3D

This appendix describes the operation of the IPST-VOF3D computational fluid
dynamics program. This process will occur in four major steps. First, the general
execution procedure of the program is outlined with an accompanying flow diagram.
Next, the individual subroutines included in or called by the program are listed with a
brief description, a list of the routines that call the subroutine, a list of the subroutines that
are called by the subfoutine, and a list of any files that are included in the subroutine.
Third, the variables in common are documented (excluding any variables used as input
data) with separ:ite sections for the array and the scalar variables. This documentation
includes a list of subroutines that modify the variable, other routines that use the variable, -
and the common include file and common block where the variable is defined. Finally,
the input data are described with separate sections for each namelist. The input data are

documented as to their modification, use, and default values.
OUTLINE OF PROGRAM EXECUTION

The IPST-VOF3D program consists of two major pieces as shown in Figure 1.
Program execution begins in a primary controlling routine (CONTROL) which opens
input and output files, calls initialization rou_tines, and calls the main calculation routine

SOLA.

Within SOLA execution continues in the same general manner as that outlined in
the description of the numerical method found earlier. First, and explicit guess for the

new velocity field is computed using either TILDE, THIRD, QUICK, or KANDK.
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Next, after imposition of the boundary é(;ndilioﬁs, 'the pressure equation is solved using
cither the Conjugate Residual technique (PRESCRY) or an SOR solver (PRESSIT). Both
of these routines call VISC3D to compute the deviatoric normal stress at the interface as
required. In addition PRESSIT calls VAPORI to compute the préssure in the \}a'ipor
phase at the interface if needed (at the present time the conjugate residual solver will not

work if the vapor phasé option is used).

After the boundary conditions have again been imposed, the VOF function is
convected through the domain yielding a new surface configuration. This is
accomplished using a form of donor-acceptor differencing to maintain a sharp interface
between the two fluids. The boundary conditions are again updated and the surface

physics routines are called.

The surface physics routines, overseen By PETACAL includes PCAL to coﬁpute
-preliminary surface orientations (calls LAVORE to identify separétcd'vbid regions asA
needed), PETASET to compute the pressilre interpolation factors, PRESCK to reset the’
pressure in all non-fluid cells, and either SURCART (Cartesian coordinates) or
SURF1ON (cylindrical coordinates) to compute the surface tension fdi‘cé as needed, The
surface physics related task is solution of the vapor phase potential which, when required,
is accomplished (after the boundary conditions are updated) by either VAPOR (two-
dimensions) or VAPOR3D (three-dimensions). Next, required output prints and plots are
_ performed, the values are advanced to the next time step, and the time and cycle are

incremented. This completes the main calculation loop and the process begins again.

Several details of the solution procedure have been omitted in the interest of
clarity. For instance, there is an initial startup section in SOLA that includes VFCONYV,

the surface. physics routines in PETACAL, and the vapor phase routines VAPOR or
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VAPOR3D as needed. The details of the algorithms used in the pressure equation
solvers (PRESCR and PRESSIT), vapor phase solvers (VAPOR or VAPOR3D), and
the surface tension subroutines (SURF10N or SURCART) can be found by looking at

the inline documentation contained in each subroutine.




CONTROL

Initialization

- 142 -

RINPUT

MESHSET
MESHX
MESHY
MESHZ
ASET

Execution

SETUP
BETACAL
EQuIB
SETFS
SETVEL

SOLA

' EXIT

.

SOLA |
From To 7 \
Control - ‘ Control+
. No
l : Advance
U, Vv, w,
T=T + At P,and F
CYCLE=CYCLE+1 [ €S values to
next time
step
No
ALPHA=2 No Print and
Yes plot as -
. ALPHA=3 necessary
TILDE Yes
w
THIRD _Ygs
No | vAPOR
QUICK or
No
VAPOR3D
BC KANDK ?
Yes
ISOR=1 Yes—l LVAPOR=1
No PRESSIT
s || Ve, ~
VISC3D BC
BC T
PETACAL
PCAL
LAVORE
VFCONV BC PETASET -
PRESCK
SURF10N
or SURCART

/ .

Figure I-1. Flow chart for IPST-VOF3D.
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SUBROUTINE DOCUMENTATION

This section contains documentation of the subroutines that make up the program
IPST-VOF3D. Each subroutine is documented by a brief description of its purpose, a list
of the subroutines that call it, a list of the subroutines that it calls, and any files that must

be available to be included at compile time.

AFACE1 (2D vapor phase) Treats the case where only one face is closed to the

vapor phase.

Called by VAPOR
Calls " MATRIX2
includes ~ none

Added by John McKibben at IPST

AFACE2A (2D vapor phase) Treats the case where two adjacent faces are closed to
the vapor phase.
Called by VAPOR
Calls MATRIX2
includes none
Added by John McKibben at IPST

AFACE2B (2D vapor phase) Treats the case where two opposing faces are closed to
the vapor phase. ' '
Called by VAPOR
Calls MATRIX2
" includes none

Added by John McKibben at IPST

AFACE3 (2D vapor phase) Treats the case where three faces are closed to the vapor

" phase.
Called by VAPOR
Calls MATRIX2
includes none

Added by John McKibben at IPST
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(geometry setup) Sets up interior obstacles. Obstacle data read from
namelist MESHGN in MESHSET - - '

Called by MESHSET

Calls none

Includes 'vof3dcom' .

(boundary conditions) Sets boundary conditions at the edges of the
computational domain. Slip (symmetry), no-slip, continuative outflow,

-and periodic options are available. Calls BCFS to update the boundary*

conditions at the free surface. Modlfxcatlons should be made in the patch

file be.pat.

Calledby . PRESCR, PRESSIT, SOLA
Calls = BCFS |
Includes 'vof3dcom' and 'be.pat'

(boundary conditions) Sets the velocities in the cells adjacent to the free
surface. .

Called by BC

Calls none

Includes 'vof3dcom'

(B for the mesh interior) Calculates BETA for non- -obstacle cells.
(Includes effects of over-relaxation parameter ® when SOR is used.)
Called by SETUP

Calls none

Includes 'vof3dcom'

(controlling main program) Performs setup operations and reads restart
tape as necessary. Main computations are performed under the control of
SOLA. Normal program completion is accomplished here. .
Called by This is the MAIN program

Calls RINPUT, MESHSET, SETUP, SOLA, EXITA
Includes 'vof3dcom'

(utility) Gets the cpu time used by the program thus far.
Called by RDTAPE and SOLA

Calls system dependent functions

Includes none

Added by John McKibben at IPST
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(utility) Gets the current date and time in the array NOW. -
Called by MESHSET and RDTAPE
Calls LTIME_ (system dependent function)

- Includes none

DCOPY

DELTADJ

DRAW

DSWAP

EQUIB

Added by John McKibben at IPST

(BLAS) Basic Linear Algebra Subroutine to copy one double precision
vector to another.

Called by DELTADJ, SETVEL, and SOLA

Calls none

"Includes none

(time step control) Adjusts the time step, if enabled with the AUTOT flag,
to ensure numerical stability and a reasonable number of iterations for the
pressure equations. Recomputes BETA as needed if SOR is used.

Called by SOLA

Calls DCOPY

Includes 'vof3dcom'

(graphics output) Replaces the graphics subroutines in the NASA-VOF3D
program with a dump to an ASCII data file in the format needed by the
Data Visualizer™ program. The data output are grid point locations XI(i),
YJ(j), and ZK(k); the obstacle data AC(i,j.k); the VOF function F; the
velocities at the center of each cell U,ye(1,j,k), Vaye(i,j:K), and W,(1,j,k);
the pressure P(i,j,k); and the vapor phase potential PRV(i,j,k). Subsets of
the data can be output by changes in the patch file 'draw.pat". '
Called by ,SOLA, VAPOR, and VAPOR3D

Calls SYSTEM (system dependent)

Includes 'vof3dcom’, 'draw.pat' and 'vaporcom'

Rewritten by John McKibben at IPST

(BLAS) Basic Linear Algebra Subroutine to swap two double precision
vectors. :

Called by SOLA

Calls none

Includes none

(equilibrium surface) Solves two-point boundary value problem to obtain
(cylindrically symmetric) equilibrium shape of initial free surface and
returns to SETUP.

Called by SETUP

Calls EXITA

Includes none
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(utility) Prints message and aborts the program.

Called by

Calls
Includes
Added by

CONTROL, EQUIB, PRESCR, RDTAPE, VAPOR
VAPOR3D, and VFCONV

none

none

John McKibben at IPST

(3D'Vap'or phase) Treats case where only one face is closed to the vapor

phase.
Called by
Calls
Includes
Added by

VAPQOR3D

MATRIX

none

John McKibben at IPST

(3D vapor phase) Treats case where two adjacent faces are closed to the

vapor phase.
"Called by

Calls
Includes
Added by

VAPOR3D
MATRIX
none

. John McKibben at IPST

(3D vapor phase) Treats case where two opposing faces are closed to the

vapor phase.

Called by
Calls -
Includes
Added by

VAPOR3D

MATRIX

none

John McKibben at IPST

(3D vapor phase) Treats case where three adjacent faces.(forming a
corner) are closed to the vapor phase.

Called by
Calls

Includes
Added by

VAPOR3D

MATRIX

none ,
John McKibben at IPST

(3D vapor phase) Treats case where two opposing faces and one
connecting face are closed to the vapor phase.

Called by
Calls
Includes
Added by

VAPCOR3D

MATRIX2 and MATRIX
none

John McKibben at IPST
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(3D vapor phase) Treats case where two opposing faces and one
connecting face are closed to the vapor phase. (different orientation than
FACE3B)

Called by VAPOR3D

Calls MATRIX2 and MATRIX

Includes none

Added by John McKibben at IPST

(3D vapor phase) Treats case where only two adjoining faces are open to

" the vapor phase.

Called by VAPOR3D

Calls MATRIX2 and MATRIX
Includes none

Added by - John McKibben at IPST

(3D vapor phase) Treats case where only two opposing faces are open to
the vapor phase.

Called by VAPOR3D

Calls MATRIX2

Includes none

Added by =~ John McKibben at IPST

(3D vapor phase) Treats case where only one face is open to the vapor

phase.

Called by VAPOR3D
Calls MATRIX
Includes none

Added by John McKibben at IPST

(Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using an approximate variable grid version of
Kawamura and Kuwahara's third order accurate technique for treating the
convective terms in the Navier-Stokes equations. Called if ALPHA =4.0.
(The 'tilde1.pat’ and 'tilde2.pat’ files are used to treat the singularity at the
static contact line.)

Called by SOLA

Calls none

Includes 'vof3dcom’, 'tilde.pat’, and 'tilde2.pat’

Added by John McKibben at IPST
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(vapor phase identification)- Algorithm, modified from the NASA-VOF2D
program to define each separate vapor phase region with it$ one NF value
greater than 7. Needed so that the potential in each vapor phase region is
treated separately.

Called by PCAL

Calls none

Includes 'vof3dcom'

Added by John McKibben at IPST

(output) Performs specified output of data to files. Options are
determined by the flag LPR.

Called by SOLA

Calls none

Includes ‘vof3dcom'

(output) Entry point in LPRT.
Called by PRESSIT and SOLA
Calls none

Includes 'vof3dcom’

(utility) From Numerical Recipes. Solves a system of equations by back-
substitution with the LU decomposition.

Called by MATRIX

Calls none

Includes none

Added by John McKibben at IPST

(utility) From Numerical Recipes. Computes matrix LU decomposition.
Called by MATRIX

Calls none

Includes none

Added by John McKibben at IPST

(vapor phase) Compute coefficients for Neuman boundary condition on a

curved boundary given the location of the points and the normal vector at

the surface. Uses points in three-dimensions and calls subroutines from

Numerical Recipes to invert the matrix.

Called by FACEL, FACE2A, FACE2B, FACE3A, FACE3B,
FACE3C, FACE4A, and FACES

Calls LUDCMP and LUBKSB

Includes none

Added by John McKibben at IPST
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(vapor phase) Compute coefficients for Neuman boundary condition on a

curved boundary given the location of the points and the normal vector at

the surface. Uses points in two-dimensions and inverts matrices

analytically. -

Called by AFACE], AFACE2A, AFACE2B, AFACE3, FACE3B,
' FACE3C, FACE4A, and FACE4B

Calls none

Includes none

Added by John McKibben at IPST

(mesh generator) Generates computing mesh, the fractional volumes and
areas open to flow, and geometric information about the mesh. Reads in
the mesh and obstacle data from namelist MESHGN.

Called by CONTROL

Calls ASET, MESHX, MESHY, MESHZ, and DATIM
Includes ‘vof3dcom’

(mesh generator) Computes x-coordinate values and their reciprocals.
Called by MESHSET

Calls none

Includes 'vof3dcom'

(mesh generator) Computes y-coordinate values and their reciprocals.
Includes special treatment of case with only one non-“fictitious” cell.
Called by MESHSET

Calls none

Includes 'vof3dcom’

(mesh generator) Computes z-coordinate values and their reciprocals.
Called by MESHSET

Calls none

Includes ‘'vof3dcom’

(surface physics) Calculates preliminary values of NF array and supplies
them to PETACAL.

Called by PETACAL

Calls LAVORE

Includes ‘'vof3dcom’
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(surface physics) Determines preliminary values of surface orientation
index NF and of interpolation parameter 1| (PETA).

Calledby - SOLA '

Calls PETASET, PCAL, PRESCK, SURCART and SURF10N
Includes ‘vof3dcom’

(surface physics) Calculates PETA in neighboring interpolation cells.
Called by PETACAL

Calls none

Includes ‘vof3dcom’

(surface physics) Resets pressure in surface cells, obstacle cells, void cells
and isolated fluid cells.

Called by PETACAL

Calls none

Includes ‘vof3dcom'

(conjugate residual) Increments pressures and velocities by conjugate
residual technique, as in NASA-VOF2D and NASA-VOF3D programs.
Currently does not work when the vapor phase option is turned on.
Called by SOLA

Calls BC, EXITA, and VISC3D

Includes 'vof3dcom' and 'vaporcom'’

(successive-over-relaxation) Increments pressures and velocities by
successive-over-relaxation technique

Called by SOLA

Calls BC, LPRT2, VAPORY, and VISC3D

Includes 'vof3dcom'’

(Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using a variable grid version of Leonard's
Quadratic Upstream Interpolation for Convective Kinematics (QUICK)
technique for treating the convective terms in the Navier-Stokes equations.
Called if ALPHA =3.0. (The 'tildel.pat' and 'tilde2.pat' files are used to
treat the singularity at the static contact line.)

Called by SOLA

Calls none

Includes 'vof3dcom', 'tildel.pat’, and 'tilde2.pat’

Added by John McKibben at IPST
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(read restart tape) Reads restart data from tape.
Called by SOLA
Calls CPUTIME, DATIM, EXITA, and RINPUT

Includes 'vof3dcom’

(read input data) Sets default values, reads input data from namelist
XPUT, and echoes input data to output file.

Called by CONTROL and RDTAPE

Calls none

Includes - ‘vof3dcom'

(initial conditions) Generates initial configuration of fluid from data in
namelist FLUIDGN.

Called by SETUP

(initial conditions) Calculates problem parameters, geometry, initial
arrays, fluid configuration, and velocities. User modifications in the initial
velocity fields are incorporated through 'setup.pat' and modifications to the
initial fluid configuration are incorporated through 'setupl.pat'.

Called by CONTROL

Calls BETACAL, EQUIB, SETFS, and SETVEL

Includes ~ 'vof3dcom', 'setup.pat’, and 'setupl.pat’

(initial conditions) Additional subroutine to set up the perturbations
needed in instability studies. This also ensures that the FN array is filled
in to ensure proper startup of vapor phase computations.

Called by SETUP :

Calls DCOPY

Includes 'vof3dcom'

Added by John McKibben at IPST

(main calculational routine) Increments pressures, velocities, volume of
fluid, and vapor phase potential by one time step dt.

* Called by CONTROL

Calls BC, CPUTIME, DCOPY , DELTADJ, DRAW,
DSWAP, KANDK, LPRT, LPRT2, PETACAL,
PRESCR, PRESSIT, QUICK, RDTAPE, THIRD,
TILDE, VAPOR, VAPOR3D, VFCONV, and WRTAPE
Includes 'vof3dcom'
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(surface physics) Gives final NF values and calculates surface tension
effect for Cartesian coordinates only (cylindrical coordinates are handled
in SURF10N). Appropriate place for wall adhesion modifications.
Patches needed for static contact points are included from 'surcart.pat'.
Called by PETACAL

Calls none

Includes 'vof3dcom' and 'surcart.pat’

Added by John McKibben at IPST

(surface physics) Gives final NF values and calculates surface tension
effect for cylindrical coordinates only (Cartesian coordinates are handled
in SURCART). Appropriate place for wall adhesion modifications.
Called by PETACAL ‘

Calls none

Includes ‘vof3dcom’

(Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using an variable grid version of Agarwal's third
order accurate upwind differencing technique for treating the convective
terms in the Navier-Stokes equations. Called if ALPHA = 2.0. (The
'tilde1.pat’ and 'tilde2.pat' files are used to treat the singularity at the static
contact line.) '

Called by SOLA

Calls none :

Includes 'vof3dcom’', 'tildel.pat’, and 'tilde2.pat’

Added by John McKibben at IPST

(Provisional velocity field) Calculates explicitly a set of approximate
velocity increments. Used if 0.0 < ALPHA < 1.0, otherwise THIRD,
QUICK, or KANDK is used.: (The 'tilde1.pat' and 'tilde2.pat’ files are
used to treat the singularity at the static contact line.)

Called by SOLA

Calls none .

Includes ‘'vof3dcom’', 'tildel.pat’, and 'tilde2.pat’
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(2D vapor phase) Computes the vapor phase velocity potential for two- -
dimensional problems with Neuman Boundary conditions on curved
boundaries using the method of Bramble and Hubbard. Loops through

~ each vapor phase region based on the identifying region number from

LAVORE at the reference location.
Called by SOLA

Calls AFACEL, AFACE2A AFACE2B, AFACE3 DRAW,
and EXITA
Includes ‘'vof3dcom’ and 'vaporcom’

~Added by John McKibben at IPST

(surface physics) Computes the vapor phase pressure at the interface from

_ the vapor phase potential computed in either VAPOR or VAPOR3D.

Calledby - PRESSIT

Calls none

Includes ‘vof3dcom'

Added by John McKibben at IPST

(3D vapor phase) Computes the vapor phase velocity potential for three-
dimensional problems with Neuman Boundary conditions on curved
boundaries using the method of Bramble and Hubbard. Loops through
each vapor phase region based on the identifying reglon number from
LAVORE at the reference location.

Called by SOLA B

Calls FACEL1, FACE2A, FACE2B, FACE3A, FACE3B,

FACE3C, FACE4A, FACE4B, FACES, DRAW, and
EXITA
Includes 'vof3dcom' and 'vaporcom'

Added by John McKibben at IPST

(void volume) Computes the volume of disjoint void (F = 0.0) reglons
Called by VFCONV

Calls none

Includes ‘'vof3dcom’

(F increment) Computes the advective fluxes of F from the newly
determined velocity field using Donor-Acceptor differencing and updates -
the F array. Patches needed for inlet boundaries (to ensure that fluid
continues to enter the domain) are added in the file 'vfconv.pat.

Called by SOLA

Calls VFCONY and EXITA

Includes 'vof3dcom' and 'vfconv.pat'
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VISC3D (surface physics) Computes the deviatoric stress component of the
interfacial boundary condition. This is accomplished by computing the
local rate of strain at the interface (using only velocities known within the
liquid) and combining this with knowledge of the normal vector to
compute 2jie;nin;.

Called by PRESSIT and PRESCR
Calls none

Includes ‘'vof3dcom’

Added by John McKibben at IPST

WRTAPE  (output) Writes restart data to output file.
~ Called by SOLA
Calls : none
Include 'vof3dcom'

COMMUNICATION AMONG THE SUBROUTINES

In large part communication among the subroutines that make up IPST-VOF3D is
accomplished through variables in common. The majority of these variables are
contained in the file 'vof3dcom' referred to in the includes lists above. There are a few

additional variables listed in 'vaporcom' which define a shared pool of temporary storage

for use in VAPOR, VAPOR3D, PRESCR, and DRAW.

First I will describe the arrays in common (excluding input data) and their primary
functions. This will be followed by a similar discussion of the scalar variables in
common (excluding iriput data) and their functions. A few variables will occur both here
and in the input data listing because these input variables are regularly updated as the

simulation precedes.

Documentation consists of identification of the variables type, a brief description
of its purpose, the subroutines where its value is modified, other subroutines that use it,

and file and cémmon block where it is defined.
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Parameters in COMMON

IBASC

LSCR

MAXCOEF

MXV

MYV

MZV

NVOR

(INTEGER) Maximum number of computational cells. Must be greater

than IMAX*IMAX*KMAX
File ‘vof3dcom’
Default = 100000

(INTEGER) Scratch storage space Iscr=ibasc*maxcoef
File ‘vaporcom’
Default = 1100000

(INTEGER) Number of columns in “scratch” arrays
File ‘vaporcom’
Default =11

(INTEGER) Maximum number of cells in the x-direction must be greater
than IMAX

File ‘vof3dcom’

Default = 500

(INTEGER) Maximum number of cells in the x-direction must be greater
than IMAX

" File ‘vof3dcom’

Default = 500

(INTEGER) Maximum number of cells in the x-direction must be greater
than KMAX

File ‘vof3dcom’

Default = 500

(INTEGER) Maximum number of void regions. Set larger than expected
due to needs of the region numbering algorithm in LAVORE.
File ‘vof3dcom’

" Default = 5000
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Arrays in COMMON

ABK(,j.k) (DOUBLE PRECISION) Fractional area open to flow in back wall of
cell (1,j,k)
Modified in ASET
Used in BCFS, BETACAL, KANDK, PCAL, PETASET,
PRESCR, QUICK, SETUP, SURCART, SURFION
THIRD, TILDE, VFCONY, and VISC3D
In common  ‘vof3dcom’ /SLCM4/ ’

AC(1,5,k) (DOUBLE PRECISION) Fractional volume open to ﬂow in cell (1,] k)
’ Modifiedin ASET
Used in BETACAL, DRAW, KANDK, PCAL, PETASET,
PRESCK, PRESCR, QUICK, SURCART, SURF10N,
THIRD, VCHGCAL, VFCONY, and VISC3D
In common vof3dcorn /SLCM4/ '

AR(,j,k) (DOUBLE PRECISION) Fractional area open to flow in nght wall of
cell (i,j,k)
Modified in ASET
Used in BCFS, BETACAL, KANDK, PCAL, PETASET,
PRESCR, QUICK, SETUP, SURCART, SURF10N,
THIRD, TILDE, VFCONYV, and VISC3D
Incommon  ‘vof3dcom’ /SLCM4/ -

AT(,j,k) (DOUBLE PRECISION) Fractional area open to flow in top wall of
cell (1,j,k)
Modified in ASET
Used in BCEFS, BETACAL, PCAL, PETASET, PRESCR
SETUP, SURCART, SURF10N, VFCONYV, and
VISC3D
Incommon  ‘vof3dcom’ /SLCM4/

BETAC(,j,k) (DOUBLE PRECISION) Pressure iteration relaxation factor in cell (i,j,k)
' Modified in ASET, BETACAL, and DELTADJ
Used in BCFS, KANDK, LPRT, PCAL, PETACAL, PETASET,
: PRESCK, PRESCR, PRESSIT, QUICK, SURCART,
SURF10N, THIRD, TILDE, VCHGCAL, and VFCONV
Incommon  ‘vof3dcom’ /SLCM?2/
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(DOUBLE PRECISION) Cosine of 0 (at cell center) = Cos(Y]J (j)/X(IMl))
Modifiedin MESHSET

" Used in BC and SETUP
" Incommon  ‘vof3dcom’ /SSCM4/

(DOUBLE PRECISION) Cosine of 0 (at cell back) = Cos(Y(j)/X(IM1))
Modifiedin MESHSET

Used in BC, SETFS, and SETUP

In common  ‘vof3ddcom’ /SSCM4/

(DOUBLE PRECISION) The residual (V -u) for cell (i,j,k) after
convergence of the pressure iteration

Modified in PRESCR, PRESSIT, and SETUP

Used in VFCONVY

In common  ‘vof3dcom’ /SLCM4/

(DOUBLE PRECISION) Mesh spacing of the i-th cell along the radial (x)

coordinate

Modifiedin MESHX

Used in ASET, DELTADJ, KANDK, MESHSET, PETACAL,
PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF10N, THIRD, TILDE, VAPOR, VAPOR1,
VAPOR3D, VCHGCAL, VFCONYV, and VISC3D

Incommon  ‘vof3dcom’ /SSCM1/

(DOUBLE PRECISION) Mesh spacing of the j-th cell along the
azimuthal (y) coordinate at the maximum R(x) mesh value

. Modified in MESHY

Used in DELTADJ, KANDK, MESHSET, PETACAL,
PRESCR, QUICK, SETFS, SURCART, SURF10N,
THIRD, TILDE, VAPOR1, VAPOR3D, VCHGCAL,
VFCONV, and VISC3D

In common  ‘vof3deom’ /SSCM1/

(DOUBLE PRECISION) Mesh spacing of the k-th cell along the axial (z)

coordinate

Modifiedin MESHZ

Used im ASET, DELTADJ, KANDK, MESHSET, PETACAL,
PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF10N, THIRD, TILDE, VAPOR, VAPOR]1,
VAPOR3D, VCHGCAL, VFCONYV, and VISC3D

In common  ‘vof3dcom’ /SSCM1/
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(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at

time level n+1

Modifiedin BC, BCFS, DELTADJ, SETFS, SETUP, VCHGCAL,
and VFCONV

Used in DRAW, KANDK, LPRT, PCAL, PETACAL, PRESCR,
QUICK, SOLA, SURCART, SURF10N, THIRD,
TILDE, VAPOR, VAPOR1, VAPOR3D, and VISC3D

In common  ‘vof3dcom’ /SLCM2/

(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at
time level n

Modifiedin SETUP and SOLA

Used in DELTADJ, VAPOR, VAPOR3D, and VFCONV
Incommon  ‘vof3dcom’ /SLCM2/

(DOUBLE PRECISION) Radial component of acceleration due to applied
body force for cell (i,j,k) .

Modified in SETUP

Used in KANDK, QUICK, THIRD, and TILDE

Incommon  ‘vof3dcom’ /SSCMS/

(DOUBLE PRECISION) Azimuthal component of acceleration due to
applied body force for cell (1,j,k)

Modifiedin SETUP

Used in KANDK, QUICK, THIRD, and TILDE

In common ‘vof3dcom’ /SSCMS/ .

(INTEGER) Index value of plane opposnte j-th J plate (appropnate for
CYL = 1.0 only)

Modified in MESHSET .

Used in BC, PCAL, and SURF10N

In common  ‘vof3dcom’ /SSCM4A/

(INTEGER) Flag indicating cell type at time level n+1

Modifiedin  BC, LAVORE, PCAL, PETACAL, SETUP, and
SURF10N , N

Used in BCES, DELTADJ, DRAW, KANDK, LPRT,
PETASET, PRESCK, PRESCR, PRESSIT, QUICK,
THIRD, VAPOR, VAPOR1, VAPOR3D, VFCONYV,
and VISC3D '

Incommon  ‘vof3dcom’ /SLCM3/




NFO(i,j.k)

NFP(i,j,k)

NFS(i,j,k)

P(1,j,k)

PETA(i,j k)

PN(i,},k)

PR(NVOR)
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(INTEGER) Flag indicating cell type at time level n
Modifiedin PETACAL

Used in LPRT and PRESCK

In common  ‘vof3dcom’ /SLCM3/

(INTEGER) Flag indicating provisional cell type at time level n+1 (from
fluid surface height function)

Modified in PCAL and PETACAL

Used in LPRT

Incommon  ‘vof3dcom’ /SLCM3/

(INTEGER) Flag indicating provisional cell type at time level n+1 (from
fluid surface slope function)

Modified in PETACAL, SURCART, and SURF10N

Used in LPRT

Incommon  ‘vof3dcom’ /SLCM3/

(DOUBLE PRECISION) Pressure in cell (i,j,k) at time level n+1 divided

by the liquid phase density

Modifiedin BC, BCFS, PETACAL, PETASET, PRESCK,
PRESCR, PRESSIT, and SETUP

Used in DRAW, KANDK, LPRT, QUICK, SOLA, THIRD, and
TILDE

Incommon  ‘vof3dcom’ /SLCM?2/

(DOUBLE PRECISION) Pressure interpolation factor for cell (i,j,k)
Modifiedin BC, PETACAL, PETASET, and SETUP

Used in LPRT, PRESCK, PRESCR, and PRESSIT
Incommon  ‘vof3dcom’ /SLCM2/

(DOUBLE PRECISION) Pressure in cell (i,j,k) at time level n divided by
the liquid phase density

Moadifiedin BC, PRESCR, SETUP, SOLA, SURCART, and

SURF10N
Used in PRESCK
Incommon  ‘vof3dcom’ /SLCM2/

(DOUBLE PRECISION) Pressure in void region I (nominally = 0)
Modified in SETUP ,

Used in PETASET, PRESCK, PRESCR, and PRESSIT
Incommon  ‘vof3dcom’ /SSCM4/ :




PS(i,j.k)

RDX(i)

RDXP(i)

RDY(j)

RDYP()

RDZ(k)
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(DOUBLE PRECISION) Surface pressure in cell (i,j,k) computed from
surface tension forces

Modifiedin BC, PETACAL, SURCART, and SURF10N

Used in LPRT, PRESCK, PRESCR, and PRESSIT
Incommon  ‘vof3ddcom’ /SLCM4/

(DOUBLE PRECISION) Reciprocal of DELX(i)

Modified in MESHX

Used in BCFS, BETACAL, KANDK MESHSE']I‘ PETASET,
PRESCR, PRESSIT, QUICK, SURF10N, THIRD,
TILDE, VFCONYV, and VISC3D

Incommon  ‘vof3dcom’ /SSCM2/ |

(DOUBLE PRECISION) 2.0/(DELX(i)+DELX(i+1))

Modified in MESHX

Used in BETACAL, DELTADJ, KANDK, PETASET,
PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPOR, VAPORI1, VAPOR3D, and VISC3D

Incommon  ‘vof3ddcom’ /SSCM2/ ‘

(DOUBLE PRECISION) Reciprocal of DELY(j) -
Modified in MESHY
Used in BCFS, BETACAL, KANDK, MESHSET, PETASET,
PRESCR, PRESSIT, QUICK, SURF10N, THIRD,
TILDE, VFCONV, and VISC3D
Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) 2.0/(DELY(j))+DELY(j+1))

Modified in MESHY

Used in BETACAL, DELTADJ, KANDK, PETASET,
PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPORI1, VAPOR3D, and VISC3D

Incommon  ‘vof3ddcom’ /SSCM2/

(DOUBLE PRECISION) Reciprocal of DELZ(k)

Modifiedin MESHZ

Used in BCFS, BETACAL, KANDK, MESHSET, PETASET,
PRESCR, PRESSIT, QUICK, SETUP, SURF10N,
THIRD, TILDE, VFCONYV, and VISC3D

In common  ‘vof3dcom’ /SSCM2/




RDZP(k)

RR(1)

RRI(i)

RX(1)

RXI(1)

RY()

RYI(j)
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(DOUBLE PRECISION) 2.0/(DELZ(k)+DELZ(k+1))
Modifiedin MESHZ

Used in BETACAL, DELTADJ, KANDK, PETASET,

PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VISC3D
In common  ‘vof3dcom’ /SSCM?2/ .

(DOUBLE PRECISION) =1.0if CYL = 0.0; =X(IM1)/X(i) if CYL =1.0
Modifiedin MESHSET

. Used in. BC, BCFS, KANDK, PRESCR, QUICK, THIRD,

TILDE, VFCONY, and VISC3D
In common ‘vof3dcom’ /SSCM6/

(DOUBLE PRECISION) =1.0if CYL =0.0; =X(IM1)/X1(i) if CYL =1.0

Modifiedin MESHSET

Used in BCFS, BETACAL, DELTADJ, KANDK, PETASET,
PRESCR, PRESSIT, QUICK, SETFS, SURF10N,
THIRD, TILDE, VCHGCAL, VFCONYV, and VISC3D

In common  ‘vof3dcom’ /SSCM6/

(DOUBLE PRECISION) Reciprocal of X(i)

Modified in MESHX

Used in BETACAL, DRAW, KANDK, MESHSET, QUICK
SETUP, SURCART, SURF10N, THIRD, and TILDE

Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Reciprocal of XI(i)

Modified in MESHX

Used in BC, KANDK, MESHSET, QUICK, SURF10N, THIRD,
and TILDE

Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Reciprocal of Y(j)
Modifiedin MESHY

Used in SURCART

Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Reciprocal of YJ(j)
Modified in MESHY

Used in MESHSET

Incommon  ‘vof3dcom’ /SSCM2/




RZ(k)

RZK(k)

STHI(j) |

STHIBK(j)

U(i.j,k)

UN(i,j.k)

V(i,j.k)

VN(1,j,k)
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(DOUBLE PRECISION) Reciprocal of Z(k)
Maodifiedin MESHZ

Used in SURCART

Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Reciprocal of ZK(k)
Moadified in MESHZ

Used in MESHSET

Incommon  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Sin of 0 (at cell center) —Sm(YJ(])/X(IMl))
Modified in MESHSET

Used in BC and SETUP

Incommon  ‘vof3dcom’ /SSCM4/

(DOUBLE PRECISION) Sin of 0 (at cell back) =Sin(Y(j)/X(IM1))
Modified in MESHSET

Used in BC, SETFS, and SETUP

Incommon  ‘vof3dcom’ /SSCM4/

(DOUBLE PRECISION) x-direction velocity in cell (i,j,k) at time

level n+1

Modified in BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT,
QUICK, SETUP, THIRD, and TILDE

Used in DRAW, LPRT, SOLA, VFCONYV, and VISC3D

Incommon  'vof3dcom' /SLCM1/

(DOUBLE PRECISION) x-direction velocity in cell (i,j,k) at time level n
Modified in  SOLA

Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE
Incommon ‘'vof3dcom'/SLCM1/

(DOUBLE PRECISION) y-direction velocity in cell (i,j,k) at time

level n+1

Modified in  BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT,
QUICK, SETUP, THIRD, and TILDE

Used in DRAW, LPRT, SOLA, YFCONYV, and VISC3D

In common  'vof3dcom' /SLCM1/

(DOUBLE PRECISION) y-direction velocity in cell (i,},k) at time level n
Modified in SOLA

Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE

In common  'vof3dcom' /SLCM1/




W(,3,k)

WN(,j.k)

X()

X1(i)

YQ)

YIQ)
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(DOUBLE PRECISION) z-direction velocity in cell (i,j,k) at time
level n+1

Modifiedin  BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT, .

QUICK, SETUP, THIRD, and TILDE

Used in V DRAW, LPRT, SOLA, VFCONYV, and VISC3D
In common 'vof3dcom' /SLCM1/

(DOUBLE PRECISION) z-direction velocity in cell (i,j,k) at time level n
Modifiedin SOLA _
Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE

"Incommon 'vof3dcom' /SLCM1/

(DOUBLE PRECISION) Location of the right-hand boundary of the i-th

cell along the x-axis

Modified in MESHX

Used in ASET, BCFS, KANDK, MESHSET, QUICK, SETFS,
SETUP, SURF10N, THIRD, and TILDE

Incommon 'vof3dcom' /SSCM?2/

(]\)OUBLE PRECISION) Location of the center of the i-th cell along the

X-axis ’

Modifiedin MESHX :

Used in BC, DRAW, KANDK, MESHSET, QUICK, SETUP,
SURF10N, THIRD, VAPOR, VAPOR1, VAPOR3D,
and VISC3D '

In common  'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Location of the back boundary of the j-th cell
along the y-axis

Modifiedin MESHY

Used in 'MESHSET, SETFS, and SURF10N

In common  'vof3dcom' /SSCM2/

" (DOUBLE PRECISION) Location of the center of the j-th cell along the

y-axis
Modifiedin MESHY ,
Used in DRAW, KANDK, MESHSET, QUICK, SURF10N,

THIRD, VAPOR1, VAPOR3D, and VISC3D
In common 'vof3dcom' /SSCM2/




Z(k)

ZK(k)
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(DOUBLE PRECISION) Location of the top boundary of the k-th cell -

along the z-axis
Modifiedin MESHZ

" Usedin ASET, MESHSET, SETFS SETUP and SURF10N

In common 'vof3dcom' /SSCM2/ .-

(DOUBLE PRECISION ) Location of the center of the k-th cell along the

Z-axis _ .

Modified in MESHZ

Used in DRAW, KANDK, MESHSET, QUICK THIRD,
VAPOR, VAPOR1, VAPQOR3D, and VISC3D

Incommon  'vof3dcom' /SSCM?2/

Additional variables in COMMON added by John F. McKibben at IPST

ASCR(i)

DIV(ij.k)

DPS(i,j.k)

DVMAX(n)

(DOUBLE PRECISION) Scratch array for storing vapor phase potential

coefficients in VAPOR and VAPOR3D, conjugate res1dual storage arrays

in PRESCR, and temporary storage in DRAW.

Modifiedin VAPOR and VAPOR3D

Used in DRAW and PRESCR . :

Incommon  ‘vaporcom’ /PRESVAP/ : .

(DOUBLE PRECISION) Stores the divergence in VAPOR, VAPOR3D,
and PRESCR '

Modifiedin PRESCR, VAPOR, and VAPOR3D

Used in

Incommon  ‘vaporcom’ /PRESVAP/

(DOUBLE PRECISION) Stores the correction to PS(i,j,k) due to the
deviatoric stress (VISC3D) and the vapor phase pressure (VAPOR1)
Modified in PRESCR, PRESSIT, VAPOR], and VISC3D

Used in LPRT and PRESCK

Incommon  ‘vof3dcom’ /SLCMS/

(DOUBLE PRECISION) Maximum relative error in vapor reglon (n)
Modifiedin VAPOR and VAPOR3D
Used in PRESSIT and SOLA

Incommon  ‘'vof3dcom' /MCKIB/




FNN(,j.k)

ISCR()

IMFL.(ibasc)

IVITER(n)

NR(n)

PRV(i,j,k)

PRVN(i,j.k)

- 165 -

(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at
time level n-1 ' -
Modified in SOLA

- Used in

Incommon  ‘vof3dcom’ /SLCM2/

(INTEGER) Scratch storage for pointer array for solution of vapor phase
potential in VAPOR and VAPOR3D
Modified in VAPOR and VAPOR3D

Used in
"Incommon  ‘vaporcom’ /PRESVAP/
(INTEGER)
Modifiedin PRESCR, VAPOR, and VAPOR3D
Used in " :

In common  ‘vaporcom’ /PRESVAP/

(INTEGER) Iterations required for vapor region (n)
Modifiedin VAPOR and VAPOR3D

Used in PRESSIT and SOLA

In common  'vof3dcom' /MCKIB1/

(INTEGER) Void region number
Modified in LAVORE

Used in :

In common  'vof3dcom' /MCKIB1/

(DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n+1
Modifiedin VAPOR and VAPOR3D '
Usedin ~ DRAW, PRESCR, SOLA, and VAPOR1
Incommon  ‘vof3dcom’ /SSLCMS5/

(DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n
Modifiedin  SOLA, VAPOR, and VAPOR3D

Used in PRESCR and VAPOR1

Incommon  ‘vof3dcom” /SSLCM5/

PRVNN(i,j,k) (DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n-1

Modified in
Used in
In common  ‘vof3dcom’ /SLCMS/
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PRVT(ibasc) (DOUBLE PRECISION) Temporary storage array

Modifiedin VAPOR and VAPOR3D
Used in
In common  ‘vaporcom’ /PRESVAP/

Scalar Variables in COMMON

AVE

CLK

CSANG

CYCLE

DAT

DELMN

(DOUBLE PRECISION) Second-order accurate option parameter
Modifiedin SOLA

Used in TILDE

In common  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) System furnished time of day for run
identification

CLK
Modified in LPRT .
Usedin -~ MESHSET

In common 'vof3dcom' /SSCMI1B/

(DOUBLE PRECISION) Cosine of contact angle
Modified in RINPUT and SURF10N

Used in SURCART

In common 'vof3dcom' /SSCM4/

(INTEGER) Calculational time cycle number

Modifiedin DELTADJ, SETUP, and SOLA

Used in LAVORE, LPRT, PETACAL, PRESCR, PRESSIT,
VAPOR, VAPOR3D, and VFCONV

In common  'vof3dcom' /SSCMI1A/

(CHARACTER*8) Date furnished by system for run identification
Modifiedin LPRT -

Used in MESHSET

Incommon  'vof3dcom’' /SSCM1B/

(DOUBLE PRECISION) Smallest cell dimension in problem
Modified in MESHSET

Used in .

In common 'vof3dcom' /SSCM1/




DELT

DELXRL

DELXRR

DELYRBK

DELYRF -

DELZRB

DELZRT
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" (DOUBLE PRECISION) Time step (also in input namelist XPUT)

Modified in DELTADJ and RINPUT

Used in BETACAL, KANDK, LPRT, PETASET, PRESCR,
PRESSIT, QUICK, SETUP, SOLA, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VFCONV

In common  'vof3dcom'/SSCM1/

~ (DOUBLE PRECISION) Ratio of cell spacing on left side of mesh

(=DELX(1)/DELX(2))

Modifiedin MESHSET

Used in BC

In common  'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Ratio of cell spacing on right side of mesh
=DELX(IMAX)/DELX(IM1))

Modified in MESHSET

Used in BC

Incommon 'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Ratio of cell spacing on back side of mesh
(=DELY(1)/DELY(2))

Modifiedin MESHSET

Used in BC

Incommon  'vof3dcom'/SSCM1/

(DOUBLE PRECISION) Ratio of cell spacing on front side of mesh
(=DELY(JMAX)/DELY(JM1))

Modified in MESHSET

Used in BC

Incommon 'vof3dcom'/SSCM1/

(DOUBLE PRECISION) Ratio of cell spacing on bottom side of mesh
(=DELZ(1)/DELZ(2))

Modified in MESHSET

Used in BC

In common ‘'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Ratio of cell spacing on top side of mesh
(=DELZ(KMAX)/DELZ(KM1))

Modifiedin MESHSET

Used in BC

Incommon  'vof3dcom' /SSCM1/




DTVIS

EM6

EMF

EMF1

FLG

FLGC

FNOC
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(DOUBLE PRECISION) Maximum DELT value allowed by the viscous
forces stability criterion : -

Modifiedin SETUP

Used in .DELTADJ

Incommon  'vof3ddcom' /SSCM1/

(DOUBLE PRECISION) 106

Modifiedin ASET ] o

Used in BC, BCFS, KANDK, PETASET, PRESCK, PRESCR,
QUICK, RINPUT, SURCART, SURF10N, THIRD,
TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Small value used to negate round off error

effects in F convection (=10-6) ‘ '

Modified in SETUP

Used in KANDK, PCAL, QUICK, SURCART, SURF10N,
THIRD, TILDE, VCHGCAL, VFCONY, and VISC3D

In common  'vof3ddcom' /SSCM4/

(DOUBLE PRECISION) 1.0-EMF

Modified in SETUP

Used in PCAL, PRESCR, and VCHGCAL
Incommon  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Pressure iteration convergence indicator
(=0.0 converged) _

Modified in PRESSIT, SETUP, and SOLA

Used in BCFS

Incommon  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Volume of fluid convection limit indicator
Modified in SETUP and VFCONV

Used in DELTADJ and SOLA

In common  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Pressure convergence failure indication
Modified in  PRESSIT, SETUP and SOLA

Used in DELTADJ

In common  'vof3dcom' /SSCM4/




IBAR

o

111

13

114

15
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(INTEGER) Number of real cells in x-direction (excludes fictitious cells)'
Modifiedin MESHX
Used in MESHSET, THIRD, VAPOR, and VAPOR3D

"Incommon  'vof3dcom' /SSCMI1A/

(INTEGER) Data storage parameter (=IBAR)
Modified in MESHSET '

Used in BC

In common  'vof3dcom' /SSCMI1A/

" (INTEGER) Data storage parameter (=IMAX)

Modified in MESHSET

Used in . BCFS, PCAL, SURCART, SURF10N, TILDE,
VAPOR1, and VAPOR3D, VISC3D

In common  'vof3dcom' /SSCMIA/

(INTEGER) Data storage parameter (=IMAX*JMAX)

Modifiedin MESHSET

Modified in MESHSET

Used in BCFS, PCAL, SURF10N, THIRD, TILDE, and VISC3D
In common  'vof3dcom' /SSCM1A/

(INTEGER) Data storage parameter (=IMAX*JBAR)
Modified in MESHSET

Used in BC

In common  'vof3dcom' /SSCM1A/

(INTEGER) Data storage parameter (z=IMAX*IMAX*KBAR)
Modified in MESHSET -
Used in BC, PRESCR, VAPOR, and VAPOR3D

In common  'vof3dcom'/SSCMI1A/

(INTEGER) Data storage parameter (=<IMAX*JMAX).

Modified in MESHSET :

Used in ASET, BC, BCFS, DELTADJ, DRAW, KANDK,
LAVORE, LPRT, PCAL, PETACAL, PETASET,
PRESCK, PRESCR, PRESSIT, QUICK, SETFS,
SETUP, SURCART, SURF10N, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, VCHGCAL,

: VFCONYV, and VISC3D
Incommon 'vof3dcom' /SSCMI1A/ -




116

7

IM2

IMAX

ITER
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(INTEGER) Data storage parameter (=IMAX*JBAR)
Modified in MESHSET

Used in ASET and PRESCR

In common  'vof3dcom' /SSCM1A/

(INTEGER) Data storage parameter (=IMAX*JM1)
Modified in MESHSET '

Used in ASET, DRAW, and PRESCR

In common  'vof3dcom' /SSCM1A/

(INTEGER) Value of the index I at the last real cell in the x-direction

(=IMAX-1)
Modified in MESHSET
Used in ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,

KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETFS, SETUP,
SURCART, SURF10N, THIRD, TILDE, VAPOR,
VAPORI1, VAPOR3D, VCHGCAL, VFCONY, and
VISC3D

In common  'vof3dcom' /SSCMI1A/

(INTEGER) Value of the index I at the next to the last real cell in the x-

direction (=IMAX-2) :

Modified in MESHSET

Used in KANDK, QUICK, SURCART, SURF10N, VAPOR, and
VISC3D

In common  'vof3dcom' /SSCMI1A/

(INTEGER) Total number of cells in x-direction (=IBAR+2)

Modified in MESHSET

Used in ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,
KANDK, LAVORE, LPRT, PCAL, PETACAL, -
PETASET, PRESCK, PRESCR, PRESSIT, QUICK,
SETFS, SETUP, SURCART, SURF10N, THIRD,
TILDE, VAPOR, VAPOR1, VAPOR3D, VCHGCAL,
VFCONYV, and VISC3D

Incommon  'vof3dcom' /SSCMI1A/

(INTEGER) Pressure iteration counter

Modified in PRESCR, PRESSIT, SETUP, and SOLA
Used in BC, BCFS, DELTADJ, LPRT, and VFCONV
Incommon  'vof3dcom' /SSCM1A/




JBAR

JC2P1

IM2

KBAR
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(INTEGER) Number of real cells in y-direction (=JIMAX-2)
Modifiedin MESHY

Used in BC, MESHSET, SURFION? THIRD, and VAPOR3D

In common. ‘vof3dcom' /SSCM1A/

(INTEGER) Indicator of 360 degree geometry (CYL = 1.0)
Modified in MESHSET "

Used in SURF10N

Incommon  'vof3dcom'/SSCM4A/

(INTEGER) Value of the index J at the last real cell in the y-direction

(IMAX-1)
Modified in MESHSET
Usedin  ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,

KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETUP, SOLA,
SURCART, SURF10N, THIRD, TILDE, VAPOR,
VAPORI1, VAPOR3D, VCHGCAL, VFCONYV, and
VISC3D

In common  'vof3dcom'/SSCMI1A/

(INTEGER) Value of the index'J at the next to the last real cell in the y-
direction (JMAX-2)
Modified in MESHSET
Used in KANDK, QUICK, SURCART, SURF10N, VAPOR,
: VAPOR3D, and VISC3D
Incommon  'vof3dcom' /SSCM1A/

(INTEGER) Total number of cells in y-direction (=JBAR+2)

Modified in MESHSET

Used in ASET, BC, DRAW, KANDK, LAVORE, LPRT, PCAL,
PETASET, PRESCR, QUICK, SETFS, SETUP,
SURCART, SURF10N, THIRD, VAPOR, VAPOR3D,
and VFCONV '

In common  'vof3dcom' /SSCM1A/

(INTEGER) Number of real cells in z-direction (=KMAX-2)
Modified in MESHZ

Used in MESHSET, THIRD, VAPOR, and VAPOR3D
Incommon  'vof3dcom' /SSCMI1A/




KMI1

KM2

KMAX

NFLGC

NOCON

NUMTD
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(INTEGER) Vqlue of the index K at the last real cell in the z-direction

(KMAX-1)
Modified in MESHSET B
Used in ASET, BCFS, BETACAL, DELTADJ, DRAW,

KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETFS, SETUP,
SURCART, SURF10N, THIRD, TILDE, VAPOR,
VAPOR1, VAPOR3D, VCHGCAL, VFCONYV, and
VISC3D

Incommon  'vof3dcom'/SSCMI1A/

(INTEGER) Value of the index K at the next to the last real cell in the z-

direction (KMAX-2)

Modifiedin MESHSET

Used in ASET, KANDK, QUICK, SURCART, SURF10N, and
VISC3D

In common  'vof3dcom'/SSCMI1A/

-(INTEGER) Total number of cells in z-direction (=KBAR+2)

Modified in MESHSET ,

Used in ASET, B, DRAW, KANDK, LPRT, PCAL, PETASET,
PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF10N, THIRD, VAPOR, VAPOR3D, and VFCONV

In common  'vof3dcom' /SSCM1A/

(INTEGER) Accumulated F convection. limit excesses
Modified in DELTADJ and SETUP

Used in SOLA

Incommon  'vof3dcom' /SSCM4A/

(INTEGER) Accumulated pressure convergence failures
Modified in PRESSIT and SETUP

Used in SOLA 4

In common 'vof3dcom' /SSCM4A/

(INTEGER) Restart tape dump counter
Modifiedin SETUP

Used in

In common  'vof3dcom' /SSCM2A/
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RIJK

SANG

STIM

TANCA

TD
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(DOUBLE PRECISION) =3.141592654
Modified in SETUP '

-Used in
“In common 'vof3ddcom' /SSCM4/

(DOUBLE PRECISION) Reciprocal of the number of real non-obstacle
cells on computational mesh '

Modifiedin BETACAL

Used in SOLA

In common  ‘vof3dcom’ /SSCM2/

(DOUBLE PRECISION) Sine of the contact angle -
Modified in RINPUT and SURF10N

" Usedin  SURCART

Incommon 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) System clock time when problem commences -

Modifiedin SOLA
Used in
In common  'vof3dcom' /SSCM?2/

(DOUBLE PRECISION) Current program time (initialized in input
namelist XPUT) 4 : -
Modified in DELTADJ, RINPUT, SETUP, and SOLA

Used in DRAW, LPRT, and VFCONV

In common  'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Tangent of contact angle
Modified in RINPUT

Used in

In common 'vof3dcom' /SSCM4/

(INTEGER) Tape dump number (initialized in input namelist XPUT)
Modified in RINPUT ‘

Used in SOLA

Incommon 'vof3dcom' /SSCM2A/

(CHARACTER*8) Problem control parameter (currently not used)
Modified in

Used in

In common 'vof3dcom' /SSCM2/
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TWPRT

TWTD

UDUM

VCHGT

VDUM

VOFTOT

WDUM
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(DOUBLE PRECISION) Problem time for next plot and/or data print to
be sent to film

Modifiedin SETUP and SOLA

Used in _

Incommon ‘'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Problem time for next paper data print to be sent
to output .

Modifiedin  SETUP and SOLA

Used in

In common  'vof3dcom'/SSCM2/

(DOUBLE PRECISION) Problem time for next restart tape dump
Modifiedin SOLA

Usedin

In common  'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Temporary storage for U component of velocity

Modifiedin TILDE
Used in
Incommon 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Accumulated fluid volume change in mesh
Modifiedin SETUP and VCHGCAL

Used in SOLA

In common 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Temporary storage for V component of veloc1ty
Modified in  TILDE

Used in

In common  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Total fluid volume change in mesh
Modifiedin VCHGCAL

Used in SOLA

Incommon  'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Temporary storage for W component of velocity
Modified in TILDE

Used in o

In common - 'vof3dcom' /SSCM4/

Additional variables in COMMON added by John F. McKibben at IPST




DELTN

DELTNN

LVEC
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(DOUBLE PRECISION) Old value of DELT

‘Modifiedin DELTADJ and RINPUT
~ Used in PRESCR, VAPOR, VAPOR1, and VAPOR3D

In common 'vof3dcom' /MCKIB/

(DOUBLE PRECISION) Old value of DELT
Modifiedin DELTADJ and RINPUT
Used in

In common  'vof3dcom' /MCKIB/

(INTEGER) Total number of computational cells in simulation

=IMAX*JMAX*KMAX

Modifiedin CONTROL

Usedin ~ DELTADJ, DRAW, PETACAL, PRESCR, PRESSIT,
SETUP, SOLA, SURCART, VAPOR, and VAPOR3D

Incommon 'vof3dcom' /MCKIB1/

NAMELIST DOCUMENTATION

Variables in Namelist XPUT read in RINPUT

ALPHA

(DOUBLE PRECISION) Controls the accuracy of the differencing of the

convective terms in the Navier-Stokes equation.

0<ALPHA<! Determines the portion of first order accurate upwind
differencing used in TILDE.

ALPHA =2 Uses third order accurate upwind differencing in THIRD.

ALPHA =3 Uses quadratic upstream interpolation for convective
kinematics in QUICK.

ALPHA =4 Uses an approximate variable grid version of Kawamura

' and Kuwahara's differencing scheme in KANDK.

~Modified in RINPUT, SETUP, and SOLA

Used in TILDE
In common  'vof3ddcom' /SSCM1/
Default = 1.0



AUTOT

CANGLE

CYL

DELT

EPSI
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(DOUBLE PRECISION) Automatic time stepping flag
AUTOT = 0.0 Use constant time step. .

. AUTOT = 1.0 Automatically adjust time step to maintain stability and a

reasonable number of iterations for the pressure equation.
Modified in RINPUT

Used in DELTADJ
In common  'vof3dcom' /SSCM1/
Default = 1.0

(DOUBLE PRECISION) Contact a.ngle in degrees between the fluid and a
wall.
Modified in  RINPUT

Used in SETUP
In common  'vof3dcom' /SSCM4/-
Default = 0.0

(DOUBLE PRECISION) Cylindrical coordinates flag

CYL =00  Use Cartesian coordinates.

CYL=1.0  Use cylindrical coordinates.

Modified in RINPUT and SETUP

Used in BC, BCFS, BETACAL, DRAW, KANDK, MESHSET,
PCAL, PETACAL, QUICK, THIRD, TILDE, and

VISC3D
In common  ‘vof3dcom' /SSCM1/
Default = 0.0
(DOUBLE PRECISION) Initial time step. Becomes the transient time
step later. .
Modified in DELTADJ and RINPUT
Used in BETACAL, KANDK, LPRT, PETASET, PRESCR,

PRESSIT, QUICK, SETUP, SOLA, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VFCONV
Incommon  'vof3dcom' /SSCM1/
Default = 0.02

(DOUBLE PRECISION) Pressure iteration convergence criterion.
Modified in PRESCR and RINPUT

Used in PRESSIT and SOLA

In common  'vof3dcom' /SSCM1/

Default = 0.001




FLHT

GX

GY

GZ

ICSURF

IDEFM
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(DOUBLE PRECISION) Initial fluid height in computing mesh (if
appropriate).
Modified in RINPUT and SETUP

- Used in

Incommon 'vof3dcom' /SSCM4/
Default = 1.0

(DOUBLE PRECISION) Body acceleration in the positive x-direction
Modified in RINPUT
Used in SETUP

"Incommon  'vof3dcom' /SSCM1/

Default = 0.0

(DOUBLE PRECISION) Body acceleration in the posmve y-direction
Modifiedin RINPUT

Used in SETUP
In common  'vof3dcom’' /SSCM1/
Default = 0.0

(DOUBLE PRECISION) Body acceleration in the positive z-direction
Modified in RINPUT

Usedin KANDK, PRESCR, QUICK, SETUP, THIRD, and
TILDE

Incommon  'vof3dcom' /SSCM1/

Default = 0.0 '

(INTEGER) Flag for the initial fluid configuration generator.

ICSURF =0 Horizontal or equilibrium surface. : 7
ICSURF =1 Axisymmetric free surface (see namelist FLUIDGN)
ICSURF =2 Non-axisymmetric free surface (see namelist FLUIDGN)
Modified in RINPUT _

Used in SETFS and SETUP
Incommon  'vof3dcom' /SSCM4A/
Default = 0

(INTEGER) Defoamer flag

IDEFM =0  Defoamer off

IDEFM =1 Defoamer on

Modified in RINPUT

Used in PRESCR and VFCONV
In common 'vof3dcom'/SSCMI1A/
Default = 0




IEQUIB

IORDER

ISOR

ISURFT

INM
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(INTEGER) Equilibrium surface computation flag (reqmres ICSURF =0
to be active).

IEQUIB =0 Do not generate equilibrium surface.

IEQUIB =1 Generate equilibrium surface.

Modified in RINPUT

Used in SETUP

Incommon  'vof3dcom' /SSCM4A/

Default =0

(INTEGER) Flag for second order accurate option for the convective
terms. (Does not seem to work in the code as received from Los Alamos).
Modified in RINPUT

Used in SETUP and SOLA
Incommon  'vof3dcom' /SSCM4A/
Default = 1

(INTEGER) Pressure equation solution flag
ISOR =0 Use the Conjugate gradient method

ISOR =1 Use Successive-Over-Relaxation
Modified in RINPUT

Used in BC, BCFS, DELTADJ, and SOLA
In common  'vof3dcom' /SSCMI1A/

Default = 0 .

(INTEGER) Surface tension computation flag

ISURFT =0 No surface tension computations are performed

ISURFT =1 Surface tension forces computed using either SURF10N
(cylindrical coordmates) or SURCART (CarteSIan

: coordinates)
Modified in RINPUT
Used in PETACAL

Incommon  'vof3dcom' /SSCM4A/
Default = 0 '

(CHARACTER#*8) Job identifier
Modifiedin RINPUT

Used in LPRT

Incommon 'vof3dcom' /[SSCMI1B/
Default = 'run I’ '




LPR

NAME

NECAL

NOWALL

NU
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(INTEGER) Output flag
LPR=0 No prints or plots

LPR=1 Plots only

LPR=2 Plots and prints

LPR=3 Prints only

Modified in RINPUT

Used in LPRT, MESHSET, SETFS, and SOLA
Incommon 'vof3dcom' /SSCMI1A/

Default = 2

(CHARACTER*64) Job name
Modified in RINPUT

Used in LPRT

In common  ‘'vof3dcom' /SSCMI1B/
Default = 'prob. no name'

(INTEGER) Flag to determine NF computation algorithm

NFCAL =1 Use provisional value

NFCAL =2 Use slope value

NFCAL =3 Use decision-making algorithm to decide between
provisional and slope values

Modifiedin RINPUT

Used in SURCART and SURF10N
Incommon  ‘vof3dcom' /SSCM2A/
Default = 3

(INTEGER) Wall adhesion indicator
NOWALL = 0 Wall adhesion

NOWALL = 1 No wall adhesion

Modified in RINPUT

Used in SURCART and SURF10N
In common . 'vof3dcom' /SSCM4A/

- Default=0

(DOUBLE PRECISION) Coefficient of kinematic viscosity

Modified in RINPUT

Used in KANDK, QUICK, SETUP, THIRD, TILDE, and
VISC3D : :

Incommon  ‘vof3dcom' /SSCM2/

Default = 0.0 :



-OMG

PLTDT

PRTDT

RADPS

RHOF

SIGMA
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(DOUBLE PRECISION) SOR accclcrauon pdrdmeter
Modified in  RINPUT

Used in BETACAL and PETASET
Incommon  'vof3dcom' /SSCM?2/ '

Default = 1.0

(DOUBLE PRECISION) Time increment between data plots (if
operative)

Modifiedin RINPUT

Used in SETUP and SOLA

In common  'vof3dcom' /SSCM2/

Default = 1.0

(DOUBLE PRECISION) Time increment between ddta prmts @if

operative)

Modified in RINPUT

Used in SETUP and SOLA
In common  'vof3dcom' /SSCM2/
Default = 1.0

(DOUBLE PRECISION) Constant angular rotation velocnty
Modified in RINPUT

Used in KANDK, QUICK, THIRD, and TILDE
Incommon  'vof3dcom' /SSCM5/

Default = 0.0

(DOUBLE PRECISION) Fluid Density
Modified in  RINPUT

Used in

Incommon 'vof3dcom' /SSCM4/

Default = 1.0

(DOUBLE PRECISION) Fluid surface tension divided by the fluid
density '

Modified in RINPUT

Used in SETUP, SURCART, and SURF10N

Default = 0.0

(DOUBLE PRECISION) Problem time

Modified in DELTADJ, RINPUT, SETUP, and SOLA
Used in DRAW, LPRT, and VFCONV

In common 'vof3dcom' /SSCM2/

Default = 0.0




TD

TDDT

TLIMD

VELMX
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(INTEGER) Dump number for restart if greater than zero
Modified in RINPUT
Used in SOLA

-Incommon  'vof3dcom’' /ISSCM2A/

Default = -1.0

(DOUBLE PRECISION) Time increment between restart tape dumps
Modified in RINPUT

Used in SETUP

In common 'vof3dcom' /SSCM2/

"Default = 1.0el10

(DOUBLE PRECISION) Problem run parameter (currently not
implemented)

Modified in RINPUT

Used in

In common  'vof3dcom' /SSCM2/

Default = 1.0

(DOUBLE PRECISION) Problem time to end calculation
Modified in RINPUT

Usedin SOLA :

Incommon  ‘'vof3dcom' /SSCM2/

Default = 10.0

(DOUBLE PRECISION) Initial x-component of velocity for fluid cells
Modified in RINPUT

Used in SETUP
Incommon  'vof3dcom' /SSCM?2/
Default = 0.0

(DOUBLE PRECISION) Maximum velocity expected (artifact from
removed graphics routines)

Modifiedin RINPUT

Used in

In common  'vof3dcom' /SSCM?2/

Default = 2.0

(DOUBLE PRECISION) Initial y-component of velocity for fluid cells
Modified in RINPUT

Used in SETUP

In common  'vof3dcom' /SSCM2/

Default = 0.0




WB

WBK

WF

(INTEGER) Bottom wall boundary condition flag

WB =1 Slip wall (symmetry planc)

WB =2 No-slip wall with specified velocity

WB =3 Continuative outlet boundary with all zero normal gradients
WB =4 Periodic boundary condition

Modified in  RINPUT

Used in ASET, BC, DRAW, VAPOR3D, and VISC3D

In common  'vof3dcom' /SSCM2A/
Default = 1

(INTEGER) Back wall boundary condition flag

WBK = 1 Slip wall (symmetry plane)

WBK =2 No-slip wall with specificd velocity

WBK =3 Continuative outlet boundary with all zero normal gradients

WBK =4 Periodic boundary condition

Modified in RINPUT

Used in ASET, BC, DRAW, PRESCR, SETFS, SURFI0N, and
VISC3D

In common  'vof3dcom' /SSCM2A/

Default = 1

(INTEGER) Front wall boundary condition flag

WF = | Slip wall (symmetry plane)

WF =2 No-slip wall with specified velocity

WEF=3 Continuative outlet boundary with all zero normal gradients

WF =4 Periodic boundary condition

Modified in  RINPUT '

Used in ASET, BC, DRAW, SETFS, SURF10N, VAPOR,
VAPOR3D, and VISC3D

Incommon  'vof3dcom' /SSCM2A/
Default = 1

(DOUBLE PRECISION) Initial z-component of velocity for fluid cells
Modified in  RINPUT

Used in SETUP

Incommon  'vof3dcom' /SSCM?2/

Default = 0.0



WR

WT
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(INTEGER) Left wall boundary condition flag

WL=1 Slip wall (symmetry plane)

WL =2 No-slip wall with specified velocity

WL=3  Continuative outlet boundary with all zero normal gradients

WL =4 Periodic boundary condition

Modified in RINPUT :

Used in ASET, BC, DRAW, VAPOR, VAPOR3D, and VISC3D

Incommon  'vof3dcom' /SSCM2A/

Default = 1

(INTEGER) Right wall boundary condition flag

WR =1 Slip wall (symmetry plane)

WR=2 No-slip wall with specified velocity

WR=3  Continuative outlet boundary with all zero normal gradients

WR =4 Periodic boundary condition

Modified in " RINPUT

Used in ASET, BC, DRAW, VAPOR, VAPOR3D, and VISC3D

In common  'vof3dcom' /SSCM2A/

Default = 1

(INTEGER) Top wall boundary condition flag

WT=1 - Slip wall (symmetry plane)

WT =2 No-slip wall with specified velocity

WT =3 Continuative outlet boundary with all zero normal gradients

WT =4 Periodic boundary condition

Modified in RINPUT .

Used in ASET, BC, DRAW, PRESCR, VAPOR, VAPOR3D, and -
VISC3D

Incommon  'vof3dcom' /SSCM2A/

Default = 1

Additional variables in XPUT added by John F. McKibben at IPST

DTCRMX

" (DOUBLE PRECISION) Arbitrary time step limit to ensure stability

Modifiedin RINPUT

Usedin - DELTADJ]

In common 'vof3dcom' /MCKIB/
Default = 1.0el10




EPSIV

IFX(n)

IORIN(m,n)

ISLIP

ISLP(n)
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(DOUBLE PRECISION) Vapor phase convergence eriterion
Modified in RINPUT ' ‘
Usedin  VAPOR and VAPOR3D

Incommon ‘vof3dcom’' /MCKIB/

Default = 0.00001

(INTEGER) I-coordinate locatxon of the msxde of a comer at static contact

point (n)

Modified in RINPUT

Used in VFCONV

In common  'vof3dcom' /MCKIB1/
Default =0

Flags the orientation of the fluid flowing past a static contabt point (see
sample problem studying the die-swell problem)
IORIN(1,n) defines the side of the cell adjacent to the ﬂu1d

- IORIN(2,n)  defines the side of the cell adjacent to the vapor

Modified in - RINPUT

Used in

Incommon  'vof3dcom' /MCKIB1/
Default =0 '

(INTEGER) Simple-minded attempt to treat a dynamic contact line
ISLIP=0 No-slip at the contact line

ISLIP =1 Allow slip in the cell at the contact line

Modified in RINPUT

Used in

Incommon  'vof3dcom' /MCKIB1/

Default = 0

(INTEGER) Flag for slip along the wall leading up to the static contact
point

ISLIP(n) =0 No-slip

ISLIP(n)=1 Slip

Modified in RINPUT

Used in

In common  'vof3dcom' /MCKIBI/

Default =0
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ISTRESS (INTEGER) Deviatoric normal stress flag
' ISTRESS =0 Do not compute
“ISTRESS =1 Compute
'Modified in RINPUT

Used in VISC3D
In common - 'vof3dcom' /MCKIB1/
 Default=0

IVFR(n) ~ (INTEGER) I-coordinate of the reference cell for vapor region (n)
Modifiedin RINPUT

" Used in VAPOR and VAPOR3D
Incommon ‘'vof3dcom'/MCKIB1/
. Default = 2
IVWB - (INTEGER) Bottom face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in -
In common ‘'vof3dcom' /MCKIB1/
Default = ~
IVWF (H\ITEGER) Front face vapor phase boundary flag (currently not ‘
implemented)
Modified in RINPUT
Used in
In common  'vof3dcom' /MCKIB1/
Default = 0
IVWK - (INTEGER) Back face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common ‘vof3dcom' /MCKIB1/
Default =
IVWL (INTEGER) Left face vapor phase boundary flag (currently not
" implemented)
Modified in  RINPUT
Used in

> Incommon  'vof3dcom' /MCKIB1/ |
Default = 0
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IVWT

JVFR(n) |

KFX(n)

KVFR(n)

LVAPOR
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(INTEGER) Right face vapor phase boundary flag (currently not

implemented)

Modified in RINPUT

Used in

Incommon  'vof3dcom' /MCKIB1/
Default =0

(INTEGER) Top face vapor phase boundary flag (currently not
implemented)

Modified in RINPUT

Used in

Incommon  ‘'vof3dcom' /MCKIB1/
Default =0

(INTEGER) J-coordinate of the reference cell for vapor region (n)
Modified in RINPUT

Used in VAPOR3D
In common  'vof3dcom' /MCKIB1/
Default = 2

(INTEGER) K-coordinate location of the inside of a corner at static
contact point (n)

Modified in RINPUT

Used in

Incommon  'vof3dcom' /MCKIB1/

Default =0

(INTEGER) K-coordinate of the reference cell for vapor region (n)
Modified in RINPUT

Used in VAPOR and VAPOR3D
In common  'vof3dcom' /MCKIB1/
Default = 2

(INTEGER) Flag to solve the vapor phase regions

LVAPOR =0 Do not solve void regions

LVAPOR =1 Solve regions using previous value as initial guess
LVAPOR =2 Solve regions using O as initial guess at all times
Modified in  RINPUT

Used in SOLA, VAPOR, and VAPOR3D

In common  'vof3dcom' /MCKIB1/

Default =0




LVFLAG -

NVEFR

RHOG

UBW

UFW
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(INTEGER) Flag to label the void regions
LVFLAG =0 Do not label
LVFLAG =1 Label

Modified in RINPUT

Used in LAVORE
In comrnon ‘vof3dcom' /MCKIB1/
Default =0

(INTEGER) Number of static contact lines present
Modifiedin RINPUT '

Used in

Incommon  'vof3dcom' /MCKIB1/

Default =0

(INTEGER) Number of vapor phase regions to be studied
Modified in RINPUT

Used in VAPOR and VAPOR3D

In common  'vof3dcom' /MCKIB1/

Default =0

(DOUBLE PRECISION) Ration of the vapor phase density to the liquid
phase density
Modified in RINPUT

Used in PRESCR and VAPORI1
In common  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) U-velocity component along the bottom wall
(no-slip condition)

Modified in RINPUT

Used in BC

In common 'vof3dcom' /MCKIB/

Default = 0.0

(DOUBLE PRECISION) U-velocity component along the front wall (no-
slip condition)

Modifiedin RINPUT

Used in BC

In common  'vof3dcom' /MCKIB/

Default = 0.0
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UTWw

VBW

VOMG

VRW
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(DOUBLE PRECISION) U- velocny component along the back wall (no-
slip condition)
Modified in RINPUT

Used in BC . .-
Incommon  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) U-velocity component along the top wall (no-
slip condition) _
Modified in RINPUT

Used in BC
In common  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) V-velocity component along the bottom wall
(no-slip condition)
Modifiedin RINPUT

Used in BC
In common  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) V-velocity component along the left wall (no-
slip condition)
Modified in RINPUT

Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) SOR acceleration parameter for the vapor phase
solution
Modifiedin RINPUT

Used in VAPOR and VAPOR3D
In common  ‘'vof3dcom' /MCKIB/
Default = 1.0

(DOUBLE PRECISION) V-velocity component along the right wall (no-
slip condition)

Modified in RINPUT

Usedin BC

In common  'vof3dcom' /MCKIB/

Default = 0.0
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WKW

WLW

WRW
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(DOUBLE PRECISION) V-velocity component along the top wall (no-
slip condition)
Modified in RINPUT

~Used in BC

Incommon 'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) W-velocity component along the front wall (no-
slip condition)
Modified in RINPUT

Used in BC
In common  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) W-velocity component alorig the back wall (no-
slip condition)
Modified in RINPUT

Used in BC :
Incommon  'vof3dcom' /MCKIB
Default = 0.0

(DOUBLE PRECISION) W-velocity component along the left wall (no-
slip condition)
Modified in RINPUT

Used in BC
In common  'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) W-velocity component along the right wall (no-
slip condition) :
Modified in RINPUT

Used in BC :
In common 'vof3dcom' /MCKIB/
Default = 0.0

Variables in namelist MESHGN read in MESHSET

Variables in MESHGN pertaining to the grid structure
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DYMN(n)

DZMN(n)

NKX

NKY

NKZ

NXL(n)

NXR(n)
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(DOUBLE PRECISION) : Min. cell spacing:adjacent to “focal” point in-the
x-direction in region (n)

Modified in MESHX

Used in MESHSET -

In common  'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Min. cell spacmg adjacent to “focal” point in the

- y-direction in region (n)

Modified in MESHY
Used in MESHSET
In common 'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Min. cell spacing adjacent to “focal” point in the
z-direction in region (n)

Modified in MESHZ

Used in MESHSET

Incommon 'vof3dcom' /SSCM1/

(INTEGER) Number of regions in the x-direction -
Modified in . MESHSET

Used in MESHX

Incommon none

(INTEGER) Number of regions in the y-direction
Modified in MESHSET

Used in MESHY

In common  none

(INTEGER) Number of regions in the z-direction
Modifiedin MESHSET

Used in MESHZ

In common none

(INTEGER) Number of cells to the left of the “focal” point in region (n)
Modified in

Used in MESHSET and MESHX

In common  'vof3dcom' /SSCM2A/

(INTEGER) Number of cells to the right of the “focal” point in region (n) -
Modified in _

Used in MESHSET and MESHX

Incommon 'vof3ddcom' /SSCM2A/
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NYL(n): ~ (INTEGER) Number of cells in front of the “focal” point in region (n)
Modified in
Used in MESHSET and MESHY
Incommon 'vof3dcom' /SSCM2A/

NYR(n) (INTEGER) Number of cells in back of the “focal” point in region (n)
© -~ Modified in | '
Used in MESHSET and MESHY
Incommon  'vof3dcom' /SSCM2A/

NZL(n) (INTEGER) Number of cells below the “focal” point in region (n)
Modified in
Used in MESHSET and MESHZ
In common  'vof3dcom' /SSCM2A/

NZR(n) (INTEGER) Number of cells above the “focal” point in region (n)
Modified in
Used in MESHSET and MESHZ
In common  'vof3dcom' /SSCM2A/

XC(n) (DOUBLE PRECISION) Location of the x-direction “focal” point in
region (n) '
Modified in
Used in MESHSET and MESHX
Incommon 'vof3dcom' /SSCM2/

XL(n+1) (DOUBLE PRECISION) Location of the left boundary of region (n) [the

right boundary is (n+1)]
Modified in
Used in MESHSET and MESHX
In common  'vof3dcom' /SSCM2/
YC(n) (DOUBLE PRECISION) Location of the y-direction “focal” point in
_ region (n)
Modified in
Used in MESHSET and MESHY

In common 'vof3dcom' /SSCM2/

YL(n+1) (DOUBLE PRECISION) Location of the front boundary of region (n) [the

back boundary is (n+1)]
Modified in
Used in MESHSET and MESHY

In common ‘'vof3dcom' /SSCM2/



ZC(n)

ZL(n+1)
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(DOUBLE PRECISION) Location of the z-direction “focal” point in
region (n)

Modified in ]

Used in MESHSET and MESHZ

Incommon  'vof3dcom' /SSCM?2/

(DOUBLE PRECISION) Location of the bottom boundary of region (n)
[the top boundary is (n+1)]

Modified in -

Used in MESHSET and MESHZ

Incommon  'vof3dcom' /[SSCM?2/

Variables in MESHGN pertaining to the interior obstacles .

IOH(n)

NOBS

OAl(n)

OA2(n)

(INTEGER) Obstacle flag for obstacle (n)
IOH(n) =0  Subtract obstacles within region

IOH(n)=1  Add obstacles within region
Modified in .

Used in ASET and MESHSET
Incommon  'vof3dcom' /SSCMS5B/
Default =0

(INTEGER) Number of interior obstacles
Modified in  MESHSET :

Used in ASET
Incommon  'vof3dcom' /SSCMS5B/
Default =0

(DOUBLE PRECISION) Coefficient of x-term in function
Modified in

Used in ASET and MESHSET
In common  ‘vof3dcom' /SSCMS/
Default = 0.0

(DOUBLE PRECISION) Coefficient of x2-term in function
Modified in '

Used in ASET and MESHSET

Incommon  'vof3dcom' /SSCM5/

Default = 0.0




OBI1(n)

OB2(n)

OCl(n)

OC2(n)
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(DOUBLE PRECISION) Coefficient of z-term in function
Modified in '

Used in ASET and MESHSET
" Incommon  'vof3dcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Coefficient of z2-term in function
~ Modified in

Used in ASET and MESHSET

Incommon  'vof3dcom' /SSCMS5/

" Default = 0.0

(DOUBLE PRECISION) Coefficient of constant term in function
Modified in

Used in ASET and MESHSET
In common  'vof3dcom' /SSCMS/
Default = 0.0

(DOUBLE PRECISION) Coefficient of xz-term in function
Modified in

Used in ASET and MESHSET
In common  'vof3dcom' /SSCM5/
Default = 0.0

Variables in Namelist FLUIDGN read in SETFES

IQH(n)

NQBS

(INTEGER) Flag for adding fluid within a region
Modifiedin SETFS '
Used in

In common  'vof3dcom' /SSCM5B/

Default =0

(INTEGER) Number of fluid generation regions
Modifiedin SETFS

Used in .

Incommon 'vof3dcom' /SSCMS5B/

Default =0

Axisymmetric (ICSURF = 1)




QAI(n)

QA2(n)

QB (n)

QB2(n)

QCl(n)

QC2(n)
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(DOUBLE PRECISION) Coefficient of x-term.in function
Modified in  SETFS

Used in o

Incommon  'vof3ddcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Coefficient of x2-term in function
Modifted in SETFS

Used in ‘

Incommon  'vof3dcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Cocfficient of z-term in function
Modified in SETFS

Used in

Incommon  'vof3dcom’ /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Coefficient of z2-term in function
Modified in SETFS

Used in

In common  'vof3dcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Coefficient of constant term in function
Modified in  SETFS

Used in

Incommon  'vof3dcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Coefficient of xz-term in function
Modifiedin SETFS

Used in

In common  'vof3dcom' /SSCMS5/

Default = 0.0

Non-axisymmetric (ICSURF>1)

QA l(n)

(DOUBLE PRECISION) Value of X at the center of volume n
Modified in  SETFS

Used in

In common  'vof3dcom' /[SSCMS5/

Default = 0.0
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QA2(n) (DOUBLE PRECISION) Lower limit of I index
Modifiedin SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0
QA2(n) (DOUBLE PRECISION) Upper limit of I index
Modifiedin SETFS
Used in
In common  ‘'vof3dcom' /SSCMS5/
Default = 0.0
QB1(n) (DOUBLE PRECISION) Value of Y at the center of volume n
Modifiedin SETFS
Used in
In common  'vof3dcom' /SSCMS5/
Default = 0.0
QB2(n) (DOUBLE PRECISION) Lower limit of J index
Modified in SETFS
Used in
In common  'vof3dcom' /SSCMS/
Default = 0.0
QB2(n) (DOUBLE PRECISION) Upper limit of J index
- Modifiedin SETFS
Used in
Incommon 'vof3dcom'/SSCMS5/
Default = 0.0
QCl1(n) (DOUBLE PRECISION) Value of Z at the center of volume n
Modifiedin SETFS '
Used in
- Incommon  'vof3dcom' /SSCM5/
Default = 0.0
QC2(n) (DOUBLE PRECISION) Lower limit of K index
Modified in SETFS
Used in

Incommon 'vof3dcom'/SSCM5/
Default = 0.0




QC2(n)

QD1(n)

QD2(n)

QD3(n)
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(DOUBLE PRECISION) Upper limit of K mdex
Modifiedin SETFS

Used in

In common  'vof3dcom' /SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Constant term in function n
Modified in SETFS

Used in

Incommon 'vof3dcom' /SSCMS/

Default = 0.0

(DOUBLE PRECISION) Indicator spec1fy1ng if the fluid is initially fluid
or void

QD2(n) =0.0 Void

QD2(n) = 1.0 Fluid

Modifiedin SETEFS

Used in

In common  'vof3dcom'/SSCMS5/

Default = 0.0

(DOUBLE PRECISION) Not currently used
Modifiedin SETFS

Used in

In common  'vof3dcom' /SSCM5/

Default =0.0
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APPENDIX II

VARIABLE GRID QUICK DIFFERENCING

The initial literature derivations for Quadratic Upstream Interpolation for
Convective Kinematics (QUICK) differencing were formulated for constant grid
problems. Since, for computational efficiency, it is necessary to use variable grid

spacing, a variable grid representation of the QUICK algorithm was necessafy.

QUICK differencing was first proposed by Leonard83.112 as a technique for
improving the accuracy and stability of the finite difference representation of the
convective terms in the NSE. The basic premise is that more accurate differencing is
possible if the flux at each cell face is computed from a quadratic interpolation of the
local velocities. For added stability, the interpolation is weighted in the upstream

direction. Figure II-1 shows the local grid configuration for a two dimensional problem.

¢LL ¢L
I 1
e e

Figure II-1.  Schematic of QUICK interpolation.
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From Leonard's derivation, the two dimensional formula at the left cell face is

O, = Oy — -;-CURVN + ?14—CURVT , 1-1)

where

>¢LIN = ';‘(Q’L + q)c) o (II-2)

isa lineaf ‘inteAr‘polation term which alone would yield second order accurate central
differencing. The term, CURVN, defined as

CURVN = ¢ =20, +0y, (u, >0) -

' (II-3)

and CURVN =0, —20.+0, (u, <0), ‘

represénts the upstream difference normal to the cell face. Finally, CURVT, defined as

CURVT = ¢ —20, +0y ' (u, >0)

and CURVT =, 20 +b, | (u, <0), 1=
represents the small tangential éomponent of the curvature. Note that the point ¢, cancels
out in Leonard’s®5 derivation, and thus does not appear in the formulas for u, > O . In

addition, it has been found through experience that the small CURVT terms rhay be

neglected without a major impact on the resulting accuracy.113

If I substitute the terms, with the exception of CURVT, into (II-1), the resulting

formulas are

0, =5 (30 +60, ~0y,) |  (4,>0)

; (II-5)
and ¢e=§(3¢L+6¢c—¢R) = (u, <0).

Combining the results from Equation (II-5) with the analogous interpolation formulas at

the right cell face yields the following finite difference formulas for d¢/dx:
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0 | : -

L o (30,4300 -0, +0,,) weror

_ 1 e | '
and S0 + 70, ~30. -30,) (e <0)

Equation (I1-6) represents the QUICK formulas for a constant grid when the
CURVT terms are neglected. For a variable grid, similar formulas may be defined. The
simplest method for deriving these formulas is to fit a quadratic interpolation formula to
the data points surrounding the appropriate cell face in the appropriate direction. Then
compute the difference as outlined above. The geometry used in the derivation is

presented in Figure I1-2.

. o S ) ¢ ¢
[ B e Dy @ ¢ iy @ 8
I
| ¢ a—>| ¢ b—>|¢ c —>|

Figure I[I-2.  Cell Spacing Schematic.

We begin by fitting a quadratic interpolation formula of the form ¢ =r +sx + tx?
to the neighboring points. Then, after substituting the location of the cell face into the
quadratic interpolation formula, it is possible to determine the correct wei ghtihg factors.

In matrix form, the equations solved for the interpolation are

1 —a a’{r] [o.
1 0 0fs|=|o, (11-7)
1 b b |t] |

with the reference location at ¢;. Rearranging the equationé yields
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—a a’ 1s Oy,
b b2 1ft|= o, |-
0 0 Iyr 9,

which simplifies to

-1 a l/a 5 ¢u,/a
0 a+b (a+b)/abft|=|(bd, +ad.)/ab
0 0 I r 0,
Thus,
r=o,,

t=[(bo,,, +adc)/ab—(a+Db)p, fab]/(a+Db)
= ['d((])c -0, ) + b(¢|,l. - ¢'|.)]/[ab(a + b)],

and 5= =0, /a=0,/a—a[a(0c ~,)+b(0,, ~9,)]/[ab(a+b)))

| = [az(q)c - ¢|) + ab(q)u, - ¢|) -bla+ b)(¢u,"' ¢l)]/[db(a + b)]

=[a(0c - 9,) ~ b"(0,,, — 9, )] /[ab(a + b)].

(11-8)

‘(11-9)

- (11-10)

‘( I1- lﬂ 1').

(I1-12)

Substituting the results of Equations (11-10), (II-11), and (II-12) and the position of the

cell face, b/2, into the interpolation formula yields

az(q)c _¢’l,)" b2(¢l,|. —¢l,)2+ a(q)c _¢L)+ b(q)l.L —q)L) b® -

b=t ab(a+b) 2 ab(a +b)

which simplifies, in agreement with results from the literature,!!3 to

—b? 2a+b 2a+b

") T " )

¢, b

with an analogous result for the other cell face

_ =’ q)+2b+c L 2b+c
ab(b+c) " 4b ¢ 4(b+c)

o, Pr-

—, II-13
2 (II-13)

(1I-14)

(1I-15)

When a and b are equal, (II-14) reduces to the constant grid formula, (II-5), as expected.
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The complete finite difference formula for the variable grid representation of

QUICK differencing is derived by talking a central diff ference aboutvq)c

a_¢.___. ¢r—¢l
ox (b+c)/2
. b’ 2a+b
B (b+c)/2{4a(a+b)¢“' _[ 4a +4b(b+c):|¢" | (II-16)
2b+c 2a+b 2b+c¢
+[ 4b +4(a+b):|¢C+4(b+c)¢R} uc >0.

Similar formulas were derived for the other flow directions.
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APPENDIX 11}

VARIABLE GRID THIRD ORDER ACCURATE UPWIND DIFFERENCING

The third order accurate upwind differencing scheme was first proposed by
Agarwal86 as a method for increased accuracy and numerical stability at high speeds.
Agarwal’s derivation of a constant grid formula will be presented followed by an
alternative derivation based on the method of undetermined cocfficients! !4 which is then
extended to a variable grid formulation. Computational grid spacings will bc with

reference to Figure I11-1.

0 o 0 0 o

[ L C R RR
® °® ® e )
| ¢ a—>|¢ b —> | & c—|¢ d—>|

Figure III-1 Grid spacings for derivation of third order accurate upwind differencing.

Agarwal begins with the second order central difference formula at the point C

which can be written as

0| _du—9, _Ax? 2% e (T11-1)

axl.~ 2ax 6 A,

Now if u > 0, then
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o0 |9
. [ ]/A"
(¢R _2¢c +¢, Ax3¢c -20, +¢u.) (IH—Z)
_ ¢R _3¢c +3¢L —¢u.
= e .

Sihﬁiéﬂy, if u <0, then

) asq)l _ az¢ 2 Ax.
ax3lc - x2 2 .
- (¢RR _2¢R +¢ci;3(¢k —2¢c +‘PL) (I1I-3)
_ ¢RR —3¢R +3¢c _¢L
= Ve .

Substituting (III-2) and (III-3) into (III-1) yields Agarwal’s third order accurate upwind

technique for constant grid spacings:

9% _ 1 _
ox " Gax 20 30 60 oL ) > (I1-4)
9 _ 1 _

and ax-m( Orr +605 —30c —20,) (u<0).

Since I am interested in problems using variable grid spacings, I used an
alternative derivation technique that is easily extended to variable grid spacings. This

derivation, using the method of undetermined coefficients,!14 follows.

First, I define the derivative of interest in terms of several base points and

coefficients,

b
dx

Next I want to determine a polynomial that passes through these points exactly (in this

=cp Oy L0 +CcOc +Crbc. (II-5)

case of degree 3). Thus, I define four equations for the polynomial:
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%L: ] = ¢, (xc =28x) + ¢, (xc —Ax)’ +c(xc ) +cg(xc fAX)T’, | (I0-6a)

aa);z ] =c,, (xe —2Ax)" +¢, (xc - Ax)’ +co(xe)” +cp(xc +Ax), | (I1-6b)

%)ixl-c =c,, (xe =2Ax) +¢, (xc —Ax) +co(xo) +cg (%o +Ax), (I-6¢)

and a;xo =cy (xc ~2Ax)’ +c (% - Ax) + ce(xc )’ +cR(xCV+ Ax)°. - (-6d)
c .

Since the location of x is arbitrary, it is set equal to zero yielding the following: system of

equations in matrix form,

8 -1 0 17 ey 0
4 1 0 1fc, 0
2 -1 0 1fcc| (yax]| . {m-7)
I 1 1 1fcq 0

When this system of equations is solved, it yields the same formula as that derived by
Agarwal86 for u>0. A similar procedure can be followed to derive the formula for

u<O0.

When a variable grid is used, the same procedure is used, but the system of

equations becomes more complex:

—(a+b)’ —b* 0 c*fen] [O
(a+b)?’ b* 0 c*fc, _{0 L8)
—(a+b) -b 0 c | cc 1

1 1 1 1fec] |O

Solution of this system of equations yields the variable grid finite difference formulas

ad _ be _ c(a+b)
x a(a+bla+b+c) = ab(b+c) -
‘*’bc—(b—c)(aﬁ-b)(|> N b(a+b) o (u>0) (-92)
bc(a+b) € c(b+c)a+b+c)




and
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a9 _ c(c+4d) o _bc+(b—‘c)(c+d)¢
9x  b(b+c)b+c+d) " be(c+d) ¢
(u<0). (II1-9b)
+,,b(c+d)¢ 3 bc 0
cd(b+c) '® d(c+d)(b+c+d)

These finite difference formulas and analogous formulas for the remaining

velocity components yield the third order accurate upwind differencing scheme. As

indicated above, this method was proposed by Agarwal86. I have extended the algorithm

to allow problems with variable grids and to be studied. Within the IPST-VOF3D

program, this technique is implemented in the subroutine THIRD.
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APPENDIX IV

VARIABLE GRID KAWAMURA AND KUWAHARA METHOD

I will begin deriving an approximate version of Kawamura and Kuwahara’s87

method for treating the convective terms in the NSE by reviewing the derivation of the

constant grid formula. This is followed by an attempt to directly reproduce their

derivation scheme for a variable grid. Finally, I present my approximation of their

method for a variable grid. The notation presented in Figure IV-1 will be used with the

constant grid spacing denoted Ax.

.¢LL .¢L .¢c .¢R ’ .¢RR
| ¢ a—e— b —le— c —le— 1 —3]

Figure IV-1.  Grid spacings for derivation of Kawamura and Kuwahara’s technique.

KAWAMURA AND KUWAHARA’S DERIVATION

and

We begin with a second order. upwind differencing scheme,

) 1 '

54;) =—2—h(3¢c—4¢h+¢u) u.>0  (IV-la)
C

0 1

a_ic = (- bun + 40, ~30) uc<0.  (V-1b)

These formulas can be combined to yield a single formula independent of the flow

direction
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a_¢ Ue ( N -
,(ucax)c_4Ax +4¢R 4¢L+¢LL)

Iv-2)
L2l g — a0, 460040, +00,). |
" 4Ax LT T
From Taylor series expansions, this formula can be rewritten as
| a¢) T[99 Ax* 9% . 3 9% V|
— | =u|==—-————+O0lAX"} [+ Ax +0lAx ) |. Iv-3
' .(u 0x Jc “C[ax 2 ox’ ( ) Juc ox* (ax’) @v-3)
Thus, the leading error in (IV-1) or (IV-2) can be reduced by eliminating the term
Ax? 2%
—. Iv-4
2 ox’ -2
Improved accuracy is obtained by replacing the first term in (IV-3),
a0 Ax* d*u 4
——-———+0lAx"), ’ V-5
ox 2 ox’ - () @v-5)
with
a—¢-+O(Ax4) — —Ogp +80z —80, +0,, , (IV-6)
ox 12Ax
yielding
. - 4
( a“) —uc[a¢+O(Ax4)]+|uc| Ax? 2 ‘1’ o(Ax®) |. AV-7)
ox). Lo ox
The resulting analog of (IV-2) with an error of O(Ax*)is
: aq)) :
+8¢, — 8¢, +
(15), = st 800 50, +00)
(IV-8)

Icl

¢RR 40, +60. —40, +0,,.)-
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ATTEMPTED DERIVATION WITH VARIABLE GRID

In this section, we follow the steps of Kawamura and Kuwa:lhara’s derivation as
far as possible for a variable grid. All derivations will be-with respect to the dimensions -
shown in Figure IV-1. The finite difference formulas used below were derived using the
method of undetermined coefficients described by Gerald!14 and in Appendix II of this

document.

For a variable grid, (IV-1) becomes

(ua—q)) =uc( a+2b ) —a+b'¢L+ b %) T ue>0 " (IV:9a)

ox b(a+b) ¢ ab a(a+b) ", ,

o c c+d 2¢+d Se oo

B =g |- - L (IV-
and (uax)c uc( d(c+d)¢RR+ ” dg c(c+d)¢c) u. <0, (IV-9b)

Thus, (IV-2) can be rewritten as

( a¢) _uc{ C 4 potdy .+( 2c4d N a+2b )4)
T RR R - C
C

ox 2| d(c+d) cd c(c+d) b(a+b)
a+b IUC[ c c+d
T a(a+b)¢“] 2 [d(c+d)¢.““’_ o« (v-10)
J[2crd  ax2b ) arb. b )
c(c+d) bla+b)) © ab a(a+b)

In order to continue with Kawamura and Kuwahara’s derivation, we begin by defining the

terms in (IV-3)

aq’+0(Ax ) (IV-11)

ox
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o’¢ a)_ 6(a+2b—c) o
ox’ +O(Ax )— d(0+d)(b+c+'d)(a+b+c+d)(q)RR ~%c)
__6(a+2b-c-d) . 6(d+2c-b=a)
cd(a+b+c)(b+c) (0x —0c)+ ab(b+c+d)(b+c)’(¢L 0c) (IV-12)
_ 6(d+2c—b) o
a(a+b)(a+b-'+-c)(a+b+c+d)(4)1‘L oc)
EX) Y _ 6 _
and ax4 +O(Ax )_ d(C+d)(b+C+d)(a+b+C+d) (¢RR ¢C)
6 V 6 :
| _Cd(a"‘b'*'c)(b'*'c)(q)R_¢C)_ab(b+c+d)(b+c)(¢“_¢C) (IV-13)
° (¢LL —¢c)-

+
a(a+b)(a+b+c)(a+b+c+d)
When (IV-11), (IV-12), and (IV-13) are substituted into (IV-3), it does not yield (IV-2), '
implying that the derivation of Kawamura and Kuwahara’s method is not possible for

variable grids.
APPROXIMATE DERIVATION WITH VARIABLE GRID

An approximate form of Kawamura and Kuwahara’s technique can be derived by
beginning the variable grid portion of the derivation with Equation (IV-7). Substituting

the variable grid analogue of (IV-6),
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ad a_ be(a+b) - B
3 rolax')= Aerd)brordarbrara) tm %)
b(a+b)(c+d).- c(a+b))(c+d)
Hdarbromre ) B rer b b mde) VI
be(c+d)

(¢LL _«q)c ) l

a(a+b)(a+b+c)la+b+c+d)
and (IV-13) into Equation (IV-7) results in an approximate formula for Kawamura and

Kuwahara’s method on a variable grid:

(uf)i) _ —be(a+b) oo +24[o |
U ox ). d(c+d)(b+c+d)(a+b+c+d)
b(a+b)(c+d) ¢ —24/0¢|

(¢RR‘_¢C)

. cd(a+b+c)(b+q) (9x —0c)
_c(a+b))(c+d)¢c—24|¢cl(¢ 0. (IV-15)
ab(b+c+d)(b+c) - ¢ '

be(c+d) o +24]o.|
a(a+b)(a+b+c)(a+b+c+d)

(¢LL _¢c )
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APPENDIX V

ALTERNATI_VE FORMULATION FOR THE INTERFACIAL DEVIATORIC STRESS

The deviatoric normal stress at the interface is needed to accurately impose the
interfacial boundary condition arising from the normal stress balance. Here I present a
three-dimensional analogue of the method used by Hill40:41 for determining the
deviatoric normal stress. First I present Hill’s derivation followed by my extension to

three-dimensions.
TWO-DIMENSIONAL FORMULAS

I begin by defining the components of the stress tensor in two dimensions. I will

use the subscripts to denote the direction.

(du
T, =DP—2Hie,, =p-21t 5;) (V-1a)
—p_2 —p_2 ov A
T)’y—p_ ueyy_p—_u‘ _a— ’ (V—lb)-
\ JY
du dv
T, =Ty, =—2Ue,, =—p| —+=— V-1
Xy yx p'exy u’\ay ax) ( C)
The normal stress at the interface is computed from
NS=n-t-n=1,n’+7,n’+27, nn o : (V-2)

and the tangential stress is computed from

TS =n-T-t=1,n,t +7T, 0t + ‘cxy(nxty + nytx). | (V-3)

Finally, I will need the continuity equation ‘
O=e, +e, ‘ ‘ (V-4)

Since we know that the tangential stress is zero at the interface (because the surface
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tension is constant and the vapor phase viscosity is zero), we can write three equations for

the normal stress, e -
2ue, n’ +—4pe (V-5)

NS:p_zuexxni - yy''y xynxny;
the tangential stress, -, . : : R .
0=p(n.t, +n,t,)-2ue 0t -2ne nt ~2pe, (0t +0t,);  (V-6)
and the continuity equation, o 4
O=e,, +e,. o N A A7)

Rearranging and making use of the orthogonality of the normal and tangential vectors .. .

yields the system of equations

n; n’ 2n,n, |le, | [visc
nt, nt nt+nt e (=| 0 (V-8)

1 1 0 e 0

Xy

where visc = (p—NS)/2u.

Next, we solve this system of equations yielding

_ -
nt, —n,t
visc = (nf—ni)—annyM .
n.t, +n,t,
' S (V-9
nt,-nt | |
= (ni—ni)—h n Yy xx

X yy'*
L

"t n,
The appropriate formula from (V-9) is chosen depending on which coordinate direction is _~

nearest the surface normal.

The final piece of information needed to corriplete the definition of the normal

stress in two-dimension is the relation between the unit normal vector and the unit

tangential vector. Since they are both unit vectors and must be orthogonal, t, =—n  and

t,=n,. Substituting these relations into (V-9) yields
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, 4n’n? 4n’n? . ‘
“visc = [(ni —n§)+———" L jle“ = —|:(ni —n3)+—2"—’-2— Cy (V-10)

2 2
n,—n;

which simpliﬁes to -

[
™~

. e . : : ‘
visc=—H—=— . . ) (V-1D)
- Rp—ng 0N _ .
Thus, in two dimensions, the normal stress at the interface can be determined by
using the stress in the coordinate direction closest to the normal vector and geometrical

considerations.
THREE-DIMENSIONAL FORMULAS

In three dimensions, the situation is a bit more complex, rather than three '
independent components-of the Newtonian stress tensor, there are six. Therefore five
additional relations would be required to eliminate éll but one of the components of the
stress tensor in the manner presented for two dimensions above. Unfortunately, only
three additional relations are available, two orthogonal tangential stress balances 'and the

continuity equation.

First I present equations for the normal stress, two equations for the tangential

stress, and the continuity equation

. . 2 2 2 -
visc=¢,n; +e n +e,n, +2e,n.n +2e,nn, +2e,n,n,, (V-12)

O=e,n,s, +e, ns +e,n;s,

: (V-13)
+exy(nxsy + nysx)+eyz(nysz + nzsy)+ e, (n,s, +n,s,)
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O=e,nt +e,nt +e,nt,

L, (V-14)
+e, (nt, +nt)+e, (nt, +n,.t,)+e, (nt +n0t,)

and O=e,+e, +e,. ' (V-15)

Since I only have three auxiliary equations, I must choose which three
components of the rate of strain tensor to eliminate. If the normal is most nearly in the
x-direction, then I will eliminate the components that are only in the y-z plane (the other

directions are obtained by aflailogy). Thus, the system of equations becomes

2 2 2 ; -
n, n, 0, 2n n, € visc—2e,.n,n, —2e,n0,0,
ns, nySy ns, nysz "'nzsy eyy _ —exy (nxsy + ny x)_ezx(nzsx + nxsz) (V-16)
nt, ot mt nt+ng €| |- (0t +nt)-e,(nt, +nt,) .
1 1 1 0 €y, -0
As is discussed elsewhere, the two unit tangent vectors can be expressed as
' .‘ . _nz . ny
s=0i+ =L ot ——— k - (V-17a)
\/ny +n, \/ny +n;
2 2
(n +n ) n.n . n.n .
and.  t= ; : i+ j+—=—k. : (V-17b)
\/ny+nz ‘/ny+nz \/ny+nz
Thus, the system of equations becomes
2 n’ n? 2 e visc —2n (e n,+e,_n )
nx y z nynz XX X xyy X 'z
2 2
0 -n,n, n,n, 0 -n, §€, _ —exy(-—nxnz)—ezx(nxny) (V-18)
2 2 2
nx(nx —1) n,n, n.n, 2nynxnz Cu —(zn,z‘ —1_)(exyny +ezxnz)
1 1 1 0 €y 0

Dividing the third equation by n, and subtracting it from the first equation yields

[nf ~(n? -—1)]eu = visc —2n,((<:,(yny +e,n )+(2n, —l/nx)(éxyﬁy +e,n,) (V-19)

which simplifies to
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: - Ily nz
visc=e, +—e, +——e _ (V-20)

=*
n, n, .

By analogy, if the normal vector is nearest to the y-direction, the formula becomes

. n n '
visc=e, +—Fe, +—Le, . : (V-21)

ny n,

and if the normal vector is nearest the z-direction, the formula becomes

' ) n; n)’ I
visc=¢€,_, +;—eu +n—eyz. (V-22)

z z

This method of computing the normal stress is not implemented, and is only valid
in Cartesian coordinates for Newtonian flows. The computational technique can be more
easily extended to cylindrical coordinates and non-Newtonian fluid mechanics with the

full stress computation currently used.
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APPENDIX VI

THREE-DIMENSIONAL ANALOG TO BRAMBLE AND HUBBARD’S TECHNIQUE

Brérﬁblé and Hubbafd93 present a formulation for's;)zlying Poisson’s equétion
having mixed boundary conditions on a region with curved bbundaries. This technique is
second order accurate, and presents cr}ter_i,a that guaranties a positive dgﬁn@_tg solution,
matrix. Here I present an extension of Bramble and Hubbard’s technique that is

applicable to three-dimensional problems.

For a given coordinate direction, s, the partial differential in terms of an .
alternative coordinate system consisting of the x, y, and z directions. may be written as

0 J0x0J dyod 0dzd . C e
L VI-1
os 8s8x+asay+asaz . _ ( ')

and the second partial with respect to the coordinates s and t may be written as

9 =a_x_a_(a_x_§_)+i’ii 99 ﬁli(@ii)
dsot Jds 9x\ ot dx/ Js dx\ dt dy /] Js dx\ ot 0z

dy 9 axa) dy 0 (dy 9 aya(aza)
9y d(oxo),0yofdyo) oyofozo VI-2
+asay(8t o +asay(at 3y | as oyl ot oz VI-2)

aza(axa) aza(aya) aza(aza)
+t——| =t = |+

s 9z\ ot 9x ) 3s 0zl At Ay ) ds dz\ 3t oz

where s and t are again allowed to vary over any of the transformed coordinates.
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Figure IV-1. Coordinate transformation for two-dimensional interface.

In this situation, the transformation tensor relating the two coordinate syétems is

[0x dy 9z . . : .

s 3 as| |0 e O S

ox. 9y dz|_ sing —cos¢cos® sin@ : ) AtVI-3)
on on odn ‘ ‘ :

ox dy o0z : ’

3w a) b 0 sin@ cos6 |

which arises from geometrical considerations. Figure VI-1 shows the transformation in
two-dimensions with an analogous transformation in three-dimensions yielding the .

matrix in Equation VI-3.

With this transformation matrix, the first partial derivatives in the transformed

system become

v, =cos¢ v, +sin¢pv, +0v,, ' ‘ (VI-4)
v, =sin¢ v —cosdpcos6 v, +sinfv,, (VIfS)

and v, =0v, +sinOv, +cosBv, | (VI-6)
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where v is an arbitrary function and the subscripts denote differentiation. Similarly, the

second partial derivatives are defined below.

First,

v, = cosq)a—a-(cosq) vx)+cos¢§—(sin¢ vy)+cos¢ai(0 v,)
X X X

+sin¢5a)—,(cos¢ v, )'+sin¢%(sin¢ vy) +sin¢5%(0 vz) ,

d 9 (. d
4—O£(cos¢ vx)+O£(smq) vy)+05;(0 v,)

which simplifies to

V=04, +coso v, 2% 4 singoosg v, +cos v, .
= - » .
. : dcosd . _ dsin
+sindcosd V,, tsing v, Ty_._,_smzq) v,, +sin6 v, 3
and finally,
v, =cos’§v, +sin’¢ v, +2sindcosd v,
—sin¢ vx(cos¢g—i+sin¢%il}+cos¢ vy(cosq)%,,_sinq)g_i).
Notice fhat
% = cos¢%§+sin¢g—$ =K

Where K is the cur_vathre in the x-y plane. Thus,

v, =cos’¢ v, +sin’¢ v, +2sin¢cosd v, —sind v, K+cosp v K.,

By analogy,

v, =cos’0 v, +sin”@ v, +2sinBcosBv,, —sin@v,L+cosOv L

where L is the curvature in the z-y plane.

(VI-1

(VI-8)

(VI-9)

(VI-10)

(VI-11)

(VI-12)
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For the first of the cross derivatives,
V, = c05¢i(0'vx)+ cosq)i(sin(-) v )+.c,os¢i(cos6 vl)
: ox - ox Y ox
. 0 .. .. d
+sing—(0 vx)+sm¢—(sm9 vy)+sm¢—(cose v,)
.oy ooy T dy .

d (o v d (o d
+0$(0 vx)+0—a;(sm9 vy)+O$(cose v,)

which simplifies to
‘ o 00 ' : a0
v, =cos¢sinB v, +cosdcosO v, a—+cos¢cosG V,, —cossin@ v, ™
_ X X
o . a0 . o a0
+sin¢sin@ v, +sin¢cosO v, 3-+sm¢cose v, +sin¢sin@yv, 3o

and finally

v, =cos¢sin@v, +cos¢cosOv,, +singsin®v +sinpcosOv,
+cos@ v, (cos'cb—éag + sinq)g—S) —sin@ vz(cosq)—g—g +sin ¢—g—3)

Since .

08 90 . .30
'.a—.s--cosq)ax+sm<|)(_)y =0,

the resulting equation is

v, =cosdsin@ v, +cos¢cosB v, +sindsin@v  +singcosbv,,.

- The remain cross derivatives are derived next:

v, = cos¢—aa—(sin¢ v‘)+cos¢ai(—cos¢cose vy)+cos¢ai(sin9 v,)
X X X )

+sin¢i(sin¢ vx)+sin¢—a~(—cos¢cose vy)+sin¢—§f(sin9 v,)
dy ay dy

+O%(sin¢ vx)+0%(—cos¢cose vy)+0—§z—(sin9 v,)

which sixﬁpliﬁes to

(VI-13)

(VI-14)

(VI-15)

(VI-16)

(VI-17)

(VI-18)
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V,, =sin¢cos¢ v, —sindcosdpcos@ v, + (sin® ¢ — cos? ¢cgse)yxy

sn

+cossin@v,, +sin¢sinB v,

+cosd v, c'os'q)§9+'sin¢a—q> +sincosO v, ccl>sq)a—q)+.sin(3)§9 - (VI-19)
x oy . ox - Tdy
+cosO v, cds¢iq+sih¢a—9 +cosdsin@ v, cosq>~é-)2+’sinq>é"2
ox %) COU - ex T ay
and finally
v, =sin¢cos¢ v, —sindpcosdcosOv A +(sin2 ¢ — cos’ ¢cose)vxy (V1.20)
+cos¢sin® v, +sin¢sin@v , +cosd v, K+sin¢cosdv K :
Again, by analogy: -
v, =sinfcosO v, —cosdsinBcos® v +(sin’B—cosdpcos’B)v,,
" - ¢ nt| ¢ ) o a(VI2D)

+sindcosBv_ +sindsinOv._ +cosOv. L+cosdpsinOv L
xz xy z y

In summary and incorporating the knowledge that ¢ =6 =0 at the point of interest

Ve =V (VI-22a)

Vi= Ve (VI-22b)

Va =7 Yy L vVI220)

Ve = Vi T VK, - (VI-22d)

V"=vu+vyL, | N (VI-223)

Ve vy tvK, v

Vo =—V, +Vv,L, o B | (VI-22g)

and V,=V,,. ) (VI-22h)
One additional relation, ' )

Viv=Av=v, 4V, +v,, o - (V1-23)

is needed.
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The relations in (VI-22) and (VI-23) may be rearranged to yield

and

V.=V, (V1-24a)
vV, =V, : ' ~ - - (VI-24b)
v, ==V, | : S (VI240)
v,=v, +v K, (VI-24d)
V=V, +VL, ‘ . o  (VI-24e)
V,=—Va+vK, ' N (VI-24f)
V==V, +vlL, (V1-24g)
v_=v,, " (VI-24h)
Vi - AVv—-v_ —v,. ' (VI-24i)

I will also need a three-dimensional Taylor series expansion of v about point O
v(P)=v(0)+x v, (0)+y v, (0)+zv,(0)
+3(x? v, (0477 v, (0)+27 v, (0)) (VI-25)

+(xy vy (0)+xz v, (0)+yz vyz(O))
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GENERATION OF A FIRST ORDER ACCURATE FORMULA

For the first order accurate finite difference formula, I begin with the three-
dimensional Taylor series expansion neglecting the second derivatives, and substitute the
appropriate relations from (VI-24),

v(P)=v(0)+x v, (0)-y v (0)+z v (0). : (VI-26)

Multiplying by b; and summing over i =1 to 3 yields

Eb v Eb v(0) +Zb,x,v\(0 +§*3:b4 v,(0)— Eby v_(0) (VI-27)

Since I.am only interested in the normal derivative, I can define three equation to
eliminate the terms containing the tangential derivatives and set the normal derivative

equal to unity. '

3
by =1, | | (VI-28a)
3 ' _
Y bx, =0, - - © (VI-28b)
=]
3
and D bz, =0. (VI-28c)

Thus equation (VI-27) reduces to

anv(o)=gbi[v(0)—v(?i)] |

=v,_(0) (VI-29)

which after rearranging to solve for the value at the interface yields

g(0)+ ibiv(Pl _
=) . (VI-30)

v(0) =
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GENERATION OF A SECOND ORDER ACCURATE FORMULA

The second order accurate formula is derived in the same manner as the ﬁfst order
accurate formula described above. I begin with the three-dimensional Taylor series in
(VI-25), which after substituting the relations in (VI-24) yields |

 v(P)=v(0)+x v,(0)-y v, (0)+zv,(0)+Ly*Av
+3(x? = y*) (v (0) + v, (0)K(0))

+4(22 = y?)(v, (0)+v, (0)L(0))
+xy (v, (0)+v,(0)K(0)) + x2 v,,(0) + yz (—v,,(0) + v, (0)L(0))

(VI-31)

which may be rearranged by combining terms to
- v(P) = v(0)+ x(1+y K(0))v,(0) + z(1+y L(0))v, (0)
~{y - +(x* - y*)K(0) - 4(2* - y*)L(0)) v, (0)
+3(x* = y?) v, (0)+4(z* - y* )V, (0) + 4y* Av
-xy v (0)-yz v, (0)+xz v_(0).

(VI-32)

Multiplying by a; and summing over i = 1 to 6 yields

M=

1 i=l1
6

av(B)= 320+ S ax [14y, KO, (0)+ Taz,[1+y,L O]y, 0)
-y ‘

a[y, ~4(x? - y2)K(0) - 4(z7 - y2)L(O)]v, (0)

6
=]

6 6 - : (VI-33)
a,(x? =y v, (0)+1 Y a, (22 —y?)v, (0)+1 Y a,y?Av

i=l i={

1
+7

6 : 6 ' 6
_ZaixiYivsn (0)- Zaiyizivm (0)+ Zaixizivst (0).
i=l i=1 i=l
In order to derive a second order accurate formula, I need to eliminate the terms

containing vy, vy, Vs, Vyp, and vy, and set the term containing v,=1. Thus there are six

simultaneous equations to solve:

R




S ax, (1+yK(0) =0,

Zaizi (1 + YiL(Q)). = 6,

iﬁix, =0,

i=l

iﬁizi =0,

=1

Y3 (xt-yf) =0,

Thus, Equation (VI 33) reducg:s to:

3,v(0)= 3., [v(0)~ V()]

6 6 6
= Vn(0)_%ZaiYi2AV+Zaixiyivsn (0)+zaiYiZiVm (0)
i=l i=l il
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Yy ~3(x -y KO -4z -y L)) = Ty =1,

= g(o)"'iai [xiYigs (0)+ YiZ,8, (0)]

~

.+ (VI-34a)

(VI-34b)

»(VI‘-34c)

(VI-34d)

(VI-34e)

(VI-34f)

(VI-35a)

(VI-35b)
(VI-35¢)

(VI-35d)

 (VI35¢)

(VI-356)

(VI-36)

where g(0) is the normal derivative at the point of interest, g_(0) is the curvature in the

x-y plane, and g, (0) is the curvature in the y-z plane. -
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Rearranging (VI 36) yields

ZaiV(Pi) 1 | i.a;xiYi | iaiyiz,i
v(0) == +——g(0)+ = ——g,(0)+ =——g,(0) (VI-37)

Za. Za. iai :

v

for the value of the arbitrary function at the boundary in terms of neighboring points and

the normal derivative.

Thus, In order to apply the boundary condition in three-dimensions, six points
within the domain must be chosen such that linear system in (VI-35) can be solved to
yield all positive values for the coefficients, a;. Equation (VI-37) may then be used to

determine the boundary value.
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APPENDIX VII

NUMERICAL SOLUTION OF LI AND TANKIN’S DISPERSION RELATIONS

In their analysis of the stability of a thin viscous sheet flowing through an inviscid
vapor phase, Li and Tankm58 present dlsperswn relatxons lmkmg the growth rate of
waves in the sheet of lxqu1d with the wavenumber of the dlsturbance These relations are

0= (&, +4m?Z)®, tanh(m)

N T L. L (VIED
+4m’Z? [mtanh(m) —(m?+®,/Z) tanh(m? + &, /Z)’? :|+ pd’ +m’

0=(®, +4m?Z)®, coth(m)

and (VII-2)

Mm’Zz[mcoth(m)—(mi +6;,/Z)% coth(m2 ;t-(I),/Z)%]+f)(I)2 +m?

for antisymmetric and axisymmetric disturbances, respectively. The parameters in these .

equations are defined in the text above, but I will repeat the important ones here:

©, the dimensionless complex growth rate

@, =®+i Weim,

m = ka, the dimensionless wave number.

We, = We, /p, the liquid phase Weber number
We, =p, UZa/c, the gas phase Weber number
p=p,/p,, the density ratio

Z=yu, / \/ﬁg , the Ohnesorge number.

Below is a source code listing of the FORTRAN program used to solye this
extremely non-linear problem involving complex numbers. The program begins by
initializing the variables including the gas phase Weber number, the Ohnesorge number
and the density ratio. Next the program loops over the desired range of wavenutnbers ad
solves Equation (VII-1) and (VII-2) for the growth rate at that wavenumber. Four cases

are considered for the axisymmetric and antisymmetric cases: the complete equation;
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neglecting surface tension, the term m?; neglecting the vapor phase, the term p®*; and

neglecting both the vapor phase and surface tension, the terms p®? and m*.

i‘ The solution procedure is to used direct substitution and treat the complex grthh_
rate as a single equaﬁon and é single unknown. Thus we begin with an initial guess of
(0.0,0.0) as the complex growth rate, substitute this into the equation being solved,
yielding a residual that should be near zero. If the residual is not small enough it is
subtracted (with an under—relaxation factor) from the previous value of the complex

growth rate and the process is repeated.
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Table VII-1:  Source code. listing for.computation of the complex growth rate.

O n0naaon

111

0

222

program omega . . . .-
implicit none

integer j, 1

double complex omg(8), eps, omgl, s, ztanh
double precision m, WEg, Z, rhor C

ztanh(sié(iéxp(s)-zexpk-é))/(ze§b($f+zexp(-s))
WEg=4.0d0 :
z=0.1d0

rhor=0.1d0

write(*,998) Z, rhor, WEg
do 1=1,100
m=5.040/100.040*float (1)

antisymmetric

eps=(0.0d0,0.0d0)

omg(l) =eps

do 3j=1,100000
omg(l)=omg(1)-0.00140/m* (1.0d40,1.040) *eps
omgl=omg (1) +(0.0d40,m*sqgrt (WEg/rhor) )
s=zsqgrt (m*m+omgl/2Z)
eps={omgl+4.0d40*m*m*Z) *omgl*tanh(m)

1 + 4.0d0*m*m*m*Z*2* (m*tanh (m) -s*ztanh(s))
2 + rhor*omg (1) *omg{l)+m*m*m

if (zabs(eps).1lt.1.0d-10) go to 111
enddo
continue

axisymmetric

eps=(0.040,0.0d40)
omg (2) =eps
do 3j=1,100000
omg (2)=omg(2)-0.00140/m* (1.040,1.040) *eps
omgl=omg(2)+(0.0d0, m*sqrt (WEg/rhor))
s=zsqgrt (m*m+omgl/Z)
eps={omgl+4.0d40*m*m*Z) *omgl/tanh (m)
+ 4.0d40*m*m*m*Z*Z2* (m/tanh (m)-s/ztanh(s))

[

2 + rhor*omg(2) *omg (2) +m*m*m

if (zabs{eps).lt.1.04-10) go to 222
enddo
continue

antisymmetric w/o surface tension

eps=(0.040,0.0d40)
omg (3)=eps




333

e}

444

¢}

555

o]

[
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do j=1,100000
omg (3)=omg (3)-0.00140/m* (1.0d0,1.040) *eps
omgl=omg(3)+(0.0d40, m*sqrt (WEg/rhor))
s=zsqrt(m*m+omgl/Z)
eps=(omgl+4.0d0*m*m*Z) *omgl*tanh (m)

+ 4.0d0*m*m*m*Z*Z* (m*tanh (m) -s*ztanh(s))

~ + rhor*omg (3) *omg (3)
if (zabs(eps).lt.1.0d4-10) go to 333 °

enddo . C

continue

axisymmetric w/o surface tension

eps=(0.0d40,0.0d0)
omg.(4)=eps
do j=1,100000
omg(4)=omg(4)-0.001d0/m*{(1.040,1.0d40) *eps
omgl omg(4)+(0.0d40, m*sqrt(WEg/rhor))
s=zsqrt (m*m+omgl/2)
. eps=(omgl+4.0d0*m*m*Z) *omgl/tanh (m)
+ 4.040*m*m*m*Z*Z* (m/tanh(m)-s/ztanh(s))
+ rhor*omg(4) *omg(4)
if (zabs(eps).1lt.1.0d-10) go to 444
enddo
continue

antisymmetric w/o vapor phase

eps=(0.0d0, 0.0d0)
omg (5) =eps
do 3j=1,100000
omg(5)=omg(5)-0.001d40/m* (1.040,1. OdO)*eps
omgl=omg{5)+(0.0d40,m*sqrt (WEg/rhor))
s=zsqrt (m*m+omgl/Z)
eps=(omgl+4.0d0*m*m*Z) *omgl*tanh (m)
+ 4.0d0*m*m*m*Z*Z* (m*tanh (m) -s*ztanh(s) )
+ m*m*m
if (zabs(eps).lt.1.0d-10) go to 555
enddo
continue

axisymmetric w/o vapor phase

eps=(0.0d40,0.0d0)
omg (6) =eps
do j=1,100000
omg (6)=omg(6)~0.001d0/m* (1.0d0,1.0d0) *eps
omgl=omg (6)+(0.040, m*sqrt (WEg/rhor))
s=zsqgrt (m*m+omgl/Z)
eps=(omgl+4.0d40*m*m*Z) *omgl/tanh (m)
+ 4.040*m*m*m*Z*Z* (m/tanh (m) -s/ztanh(s))
+ m*m*m
if (zabs(eps).lt.l. Od 10) go to 666
enddo
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666 continue

C . .
C antisymmetric w/o vapor phase w/o surface tension
o
' eps=(0.0d0,0.0d0)
omg(7) =eps
do 3j=1,100000 , .
omg(7)=omg(7)-0.001d0/m*(1.0d0,1.0d0) *eps
omgl=omg{7)+(0.0d0,m*sqrt (WEg/rhor)) '
s=zsqgrt (m*m+omgl/Z)
eps=(omgl+4.0d0*m*m*Z) *omgl*tanh (m)
1 + 4.0d40*m*m*m*Z*Z* (m*tanh{m)-s*ztanh(s))
if (zabs{eps).lt.1.0d4-10) go to 777
enddo
777 continue
c
c axisymmetric w/o vapor phase w/o surface tension
c
eps=1(0.0d40,0.0d0)
omg (8) =eps
do 3j=1,100000
omg (8)=omg(8)-0.001d40/m*{1.0d0,1.040) *eps
omgl=omg(8)+{0.0d40,m*sqgrt (WEg/rhor))
s=zsqrt (m*m+omgl/2Z)
eps=(omgl+4.0d0*m*m*Z) *omgl/tanh (m)
1 + 4.040*m*m*m*Z*Z* (m/tanh(m) -s/ztanh(s))
if (zabs(eps).lt.1.04-10) go to 888
enddo
888 continue .
) write(*,999) m, (dreal(omg(3j)),j=1,8)
enddo
c

998 format(lp,5el4.6)

999 format(£10.8,1p,8el4d.6)
return
end
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APPENDIX VIII

BUGS IN THE NASA-VOF3D PROGRAM

During the course of the development of the IPST-VOF3D computational
technique, I have dlscovered several programming errors or “bugs” in the NASA- VOF3D
1mplementatxon These bugs will be presented by the incorrect line in the NASA- VOF3D
program the line number in the source code hstmg of Torrey et al.,8! and the corrected

source hne

NO-SLIP BOUNDARY CONDITIONS IN BC ASSUME STATIONARY WALLS

This error occurs in many places in the BC subroutine, but only one is presented

as an example.

line

number
v(ijk-1)=-v(ijk) *delxrl " 49
w(ijk-1)=-w(ijk) *delxrl 50

v(ijk-1)=vliw+(viw-v(ijk)}*delxrl
w(ijk—1)=w1w+(wlw—w(ijk))*delxrl

The additional variables VLW and WLW indicate the velocities of the domain
boundaries. VLW refers to the v-velocity component on the left boundary and WLW
refers to the w-velocity component on the left boundary. Similarly, VTW would refer to

the v-velocity component of the top boundary.

ERROR IN BCFS RELATING TO CARTESIAN COORDINATES

These statements were valid only for problems in cylindrical coordinates and led
to errors in certain Cartesian problems (note that the NASA-VOF3D program was only

intended for cylindrical problems).
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if (ar(ijk).gt.em6) u(ijk):u(imjk)*af(imjk)*x(i-l)/(ar(ijk)*x(i)) 42
if (ar(imjk).gt.emé) u(imjk)=u({ijk)*ar(ijk)*x(i)/(ar(imjk)*x(i-1)) 48

if (ar(ijk).gt.em6) u(ijk)=u(imjk)

1 *(1.0-cyl+cyl*ar(imjk)*x(i-1)/(ar(ijk)*x(i)))
if (ar(imjk).gt.emé) u(imjk)=u(ijk)

1 *{l.0-cyl+cyl*ar(ijk)*x(i)/(ar(imjk)*x(i-1}})

ERROR IN COMPUTATION OF THE SOR PARAMETER, B, IN BETAC‘A'L

The equatlons for computlng the SOR parameter Bis mcorrect The term rr1(1)
occurs an extra time in line 32. -It appears that it was factored out of the expressmn _
containing abbk and abf, but not removed from the expression.

xx=2.0*delt* (rdx (i) * (abr/ (delx (i) +delx(i+1))+abl/(delx(i)+delx(i-1 30
1 )))+rdy(j)*rri(i)*(abbk*rri(i)/(dely(j)+dely(j+1))4abf*rri(i)7 © 31
2 (dely(j)+dely(j+1)))+rdz(k)*(abt/(delz(k)+delz(k+1))+abb/(delz (k) 32
3 +delz (k-1)))+cyl*0.5* (abr/ (delx(i)+delx(i+l))-abl/(delx(i-1)+delx : 33
4 (i)*rri(i)/x(iml)) . 34

beta (ijk)=omg/xx*ac (ijk) .' ~s.. . 35

beta(ijk)=omg*ac(ijk)/ (delt*

(rdx (i) * (abr*rdxp (i) +abl*rdxp(i-1))

+rdy (j) *rri (i) * (abbk*rdyp (j) +abf*rdyp(j-1)) .
+rdz (k) * (abt*rdzp (k) +abb*rdzp (k-1) )

+cyl*0.5d40* (abr*rdxp (i) abl*rdxp(1 1))*rx1(1)))

W N

POSSIBLE DIVISION BY ZERO IN MESHX, IVIESHY AND MESHZ

In the subroutines MESHX, MESHY, and MESHZ there is code that can lead to
division by zero in single precision implementations. The section of code for MESHX is

presented with analogous changes required in MESHY and MESHZ.

dxml=(xc(1l)-x1(1))/nx1(1) 10
dxmnl=dxmn (1) 11
nt=nx1 (1) : - ‘ X A2
tn=nt : o T 13
tn=amaxz(tn,1.0+1.0d-14) - 14
dxaon (1) =aminl (dxmnl, dxml) - . 15
cme=(xc (1) -x1(1l)-tn*dxmn (1)) *tn/ (tn- 1 0) 16

if (nt.eq.l) cmc=0.0 . L 17
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On a single precision implementation, the term 1.0+1.0e-14 in line 14 could be
rounded to 1.0 yielding a division by zero in line 16. This section of the program was
restructured to eliminate the division when nt=1 since cmc is set to zero anyway.

tn=float (nx1(1))
dxml={(xc(l)-x1(1))/tn
dxmnl=dxmn (1)

dxmn (1) =dminl (dxmnl, dxml)
if (nx1(1l).eqg.l) then

cme=0.0d40
else
cmc=(xc(1)-xl(l)—tn*dxmn(l))*tn/(tn—l.OdO)
endif

INCORRECT SUBROUTINE CALL IN SETUP

The NASA-VOF3D program called specific subroutines to compute the indices
corresponding to a computational cell and its neighbors. For efficiency, these subroutinés
are no longer called explicitly, but the indices are computed as needed. In the subroutine
SETUP, the index initialization subroutine IJIKONLY was called where IIKAJCT was
required.

call ijkonly 133

should have been

call ijkajct 133

As mentioned, this bug was fixed when the calls to the index computation

subroutines were replaced.

BUG IN SURF10N

The improper index was changed.
if (wbk.eqg.4) m=2 432

if (wbk.eq.4) mm=2
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APPENDIX IX

IPST-VOF3D SOURCE CODE LISTING

The listing of the FORTRAN source code for the IPST-VOF3D program is
available for viewing in the Haselton Library at the Institute of Paper Science and

Technology in Atlaﬁta, Georgia.




