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ABSTRACT

Free surface problems occur in a variety of processes important in the

manufacture of pulp and paper. Examples include black liquor spraying in a recovery

furnace, jets from head boxes, the forming section of a paper machine, condensate flow in

dryer cylinders, and finishing operations such as coating and polymer extrusion.

The purpose of this work was to develop a computational fluid dynamics model

for the analysis of some of these free surface problems. Specifically, the features added

to an available computational technique have allowed the study of the instability of a thin

viscous sheet of fluid flowing through an inviscid vapor phase. This problem has direct

application in the understanding of black liquor spraying.

In order to accurately solve the sheet instability problem, it was necessary to

accurately include the deviatoric normal stress in the liquid phase in the interfacial

boundary condition arising from a normal stress balance. The driving force for sheet

instability, variations in the vapor phase pressure must also be allowed. In this

computational technique, vapor phase pressure variations are determined by solution of

potential flow in the vapor phase coupled to the solution of the full Navier-Stokes

equations in the liquid phase through both the continuity of normal velocity at the

interface and the interfacial normal stress balance.

The accuracy of this computational technique is demonstrated through solution of

the lid-driven cavity problem for confined flows, the die-swell problem for free surface

flows (with and without surface tension), and the stability of a thin viscous sheet flowing

through a stagnant, inviscid vapor phase. Accurate solution of these test problems

indicates that the new features of this computational technique work properly. Additional
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problems studied include flows under the blade in a short dwell coater and condensate

flows in dryer cylinders.

Both temporal and spatial pressure variations can occur in the pond of a short

dwell time coating applicator. Since the flow under the blade is made up of a

combination of Couette and Poiseuille flows, these pressure variations upstream of the

blade effect the flow under the blade and the resulting coating thickness. The effects of

both temporal and spatial variations on film thickness are presented.

The heat transfer rate through the condensate layer in a dryer cylinder can limit the

paper drying rate. In this work, the film thickness and velocity variations expected within

the condensate layer are predicted. The resulting velocity profiles show a small boundary

layer accompanied by an "inviscid" core of relatively constant velocity.

In this dissertation, I have developed a computational technique based on the

volume of fluid technique for tracking the interface and a modified form of the SOLA

solution algorithm for solution of the Navier-Stokes equations. This technique includes

third order accurate treatment of the advective terms in the Navier-Stokes equations, the

liquid phase deviatoric normal stress at the interface, and allows for pressure variation in

the vapor phase through solution of potential flow. This computational technique is

unique in its ability to solve the coupled problem of an initially stagnant, inviscid vapor

phase governed by potential flow and a moving liquid phase governed by the

incompressible Navier-Stokes equations.
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INTRODUCTION

Many processing operations in the pulp and paper industry involve flows of fluids

with free surfaces. These operations include the spraying of black liquor into a recovery

furnace, jets leaving the headbox, the paper machine forming section, condensate flows

inside dryer cylinders, coating application systems, and finishing operations such as

polymer film extrusion.

In the context of this thesis, free surface flows are defined as flows where at least

a portion of a liquid phase of interest is bounded by a vapor phase rather than a solid wall.

The presence of a free surface complicates solution of the flow equations by requiring

some means of tracking the location of the interface between the liquid and vapor phases

in addition to the already difficult task of solving for the pressure and velocity fields

within the flow. Specifically, this work focuses on developing a computation tool

suitable for studying the problem of spraying black liquor into a recovery furnace. I begin

by discussing the importance of black liquor combustion on the economic viability of the

Kraft pulping process, followed by a discussion of the desirable characteristics of a black

liquor spray.

THE KRAFT PULPING PROCESS

Wood, consisting primarily of cellulosic fibers held together by a "glue" called

lignin, is the primary raw material in the manufacture of paper. In order to manufacture

paper, individual fibers are required. The fibers can be separated from the lignin matrix

by a variety of means, with one of the most common being the Kraft pulping process.



-2-

In the Kraft process, wood chips and white liquor, an aqueous solution of sodium

sulfide and sodium hydroxide, are heated in a reaction vessel called a digester. The lignin

matrix is preferentially attacked by the inorganic pulping chemicals and breaks down into

soluble fragments freeing the individual fibers from the lignin matrix.

In order to recover the inorganic pulping chemicals, now primarily in the form of

sodium sulfate and sodium carbonate, the fibers are washed and sent on to bleaching or

papermaking operations. The filtrate from the washed fibers, termed weak black liquor

because of its color, contains the inorganic chemicals that must be recovered and the

dissolved lignin fragments.

In order to make the Kraft pulping process economically viable, it is necessary to

recover the inorganic chemicals as well as the chemical energy contained in the lignin

fragments. 1,2 These objectives are accomplished by combustion of the black liquor in a

recovery furnace after concentration in multiple effect evaporators to 65-75% solids. The

concentrated black liquor is burned in a water-walled recovery furnace, with the energy

released used to produce high pressure steam for electricity generation and to provide

process steam for plant operation. The inorganic component of the black liquor is

recovered from the bottom of the furnace as a smelt of molten salts consisting primarily

of sodium sulfide and sodium carbonate.

The final step in the recovery of the inorganic pulping chemicals is the

causticizing step where the sodium hydroxide is renewed. First, the sodium sulfide and

sodium carbonate salts are dissolved in water. Next, lime (calcium oxide) is added to the

solution precipitating calcium carbonate from a solution now consisting of sodium sulfide

and sodium hydroxide. Finally, the calcium carbonate is recovered and heated in a kiln to

drive off carbon dioxide yielding calcium oxide.
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The general steps in the pulping and chemical recovery cycles are presented in-

Figure 2. As mentioned above, the economic viability of the Kraft pulping process is

determined by the recovery of the pulping chemicals and the chemical energy in the

dissolved lignin. Therefore, the operating characteristics of the recovery furnace are of

great importance to mill operations.

Water

-Fibers Further
Processing

~~~~~I ~Flue
Water Gases Steam

i 

Figure 1. General steps in the pulping and chemical recovery cycles.

CHARACTERISTICS OF A BLACK LIQUOR RECOVERY BOILER

A diagram of a typical black liquor recovery furnace is presented in Figure 2. The

recovery boiler is similar to other large industrial furnaces in that fuel is burned in the

combustion zone and steam is generated in the heat exchangers. The primary differences
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are due to the presence of relatively large amounts of non-combustible inorganic species

in black liquor which are generally not present to the same degree in other fuels.

smelt removed

Figure 2. Diagram of a typical black liquor recovery furnace.

The presence of these inorganic species leads to fouling of heat transfer surfaces

by molten salts. In addition, the presence of the liquid smelt in the lower furnace is a

safety hazard due to the possibility of smelt-water explosions in the event of water tube

rupture.1,2
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In order to understand the implications of black liquor combustion on furnace

operation, it is necessary to review the steps in black liquor combustion. These steps

actually occur at overlaping times, but are usually discussed as occurring in series. The

first step is the drying phase where the remaining water in the droplets is evaporated.

This is followed by the gasification stage where combustible gases are given off through

pyrolysis. The final stage in the black liquor combustion process is char combustion

where residual carbon in the char remaining after pyrolysis is burned and the molten

smelt formed.

Ideally, the drying and combustion phases occur in the combustion zone while the

char combustion step happens either inflight or on the char bed. In reality, each droplet

follows a different trajectory during its time in the furnace based on its size, initial

velocity, and the air flow patterns in the furnace. Thus, the actual locations in the furnace

where these steps occur varies from drop to drop.

Before discussing the probable fate of droplets with different initial sizes, I would

like to discuss the effect of droplet size on the rate of the different processes that the

droplet undergoes. Frederick 3 reports that the drying time increases linearly with the

initial drop diameter. The time for pyrolysis increases with the initial drop size to the

five-thirds power. 3 Finally, the time for inflight char combustion increases with the

initial drop diameter to the five-thirds power. 3 Thus, the time for all of these processes

increases with the drop diameter and the density of the droplet is expected to initially

decrease during the drying phase, drop due to swelling 3' 4' 5 in the pyrolysis phase, and

finally increase during the smelt formation step.

Industrial black liquor sprays are known to produce a distribution of droplet

sizes. 6 In many combustion processes, smaller droplets are preferred because the overall
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rates of the combustion steps increase with decreasing droplet size. The presence of the

relatively large inorganic component of black liquor means that drops which are either

too small or too large are undesirable.

A small droplet is expected to dry very rapidly and swell. Because small drops

have a higher surface area to volume ratio than large drops,6 the aerodynamic drag on

small droplets is relatively higher than that on large droplets making them more

susceptible to entrainment in the upward flowing central core. If the pyrolysis reactions

and char.combustion phases are completed prior to a small droplet entering the heat

transfer regime, the droplet, now consisting of molten smelt, may be expected to drop to

the bottom of the furnace since the smelt has a much higher density and may be able to

overcome the aerodynamic drag. In the event that the droplet remains in the gas stream, it

is expected to contribute to fouling the heat exchangers in the upper part of the furnace,

reducing the efficiency of energy recovery.

Thus, we see that droplets that are too small are expected to lead to problems in

the heat transfer section due to fouling. Droplets that are too large yield a different set of

problems. Efficient regeneration of the sodium sulfide pulping chemical in the lower part

of the furnace requires both high temperature and a reducing atmosphere. Droplets that

are too large may not dry completely prior to reaching the char bed, resulting in low char

bed temperature due to the energy required to evaporate the remaining water. In addition,

there are safety concerns, because the addition of water to the smelt bed can lead to an

explosive smelt-water interaction. 1'2
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BLACK LIQUOR SPRAYING

Industrially, black liquor is sprayed using either hollow cone swirl, v-jet, or

splash-plate type nozzles. 6 All of these nozzle types share the characteristic that a sheet

of fluid is formed which subsequently becomes unstable and breaks up into droplets. 6

This is in contrast to jet-producing nozzles where a cylindrical strand of fluid is produced.

In his doctoral dissertation at the Institute of Paper Science and Technology,

Spielbauer6 studied the mechanism of the breakup of a radially thinning sheet into

individual droplets. He described the following sequence of events leading to droplet

formation. First, the liquid sheet becomes unstable due to aerodynamic forces and

sinuous waves in the sheet are observed. Next, the sheet perforates due to an

undetermined process, but probably some combination of non-wettable particles, air

bubbles, impinging droplets or particles, and local thin spots due to multiple growing

wavelengths. Thirdly, the perforations in the sheet grow due to surface tension forces and

interact to form a "web" of strands. Finally, the strands become unstable and break up

into droplets.

The stochastic nature of the perforation mechanism yields strands of varying sizes,

which implies that the resulting droplets will be of various sizes. Thus, a distribution of

droplet sizes is expected from nozzles where this mechanism is active, in agreement with

experimental results.6

The growth of waves in the sheet of black liquor, to a large extent, determines the

distribution of droplets obtained from a nozzle. As a result, the primary purpose of this

work is to develop a computational tool capable of studying the growth of waves in a thin

viscous sheet of fluid flowing through an inviscid vapor phase.
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I have discussed the importance of the black liquor recovery cycle and the

characteristics of the black liquor spray. One of the most important processes in black

liquor spraying is the instability of the sheet of black liquor prior to sheet breakup. This

instability leads to the thinning of the sheet which ultimately results in perforations and

sheet breakup. This effort to develop a tool suitable for the study of the liquid sheet

instability problem involved the following steps:

o A mathematical description of the equations describing fluid flow.

o A mathematical definition of a free surface.

o A review of methods which have previously been used to solve free surface flow
problems.

o Additional capabilities needed to study free surface flow problems affecting the pulp
and paper industry (beyond those in existing techniques) and a problem statement.

o A detailed description of a solution algorithm (SOLA)7 for the Navier-Stokes
equations coupled with the volume of fluid (VOF)8 method for tracking the location
of the free surface.

o A discussion of the major additions to the SOLA-VOF 8 family of computational
techniques needed to solve the free surface problems studied in this work.

o Several validation problems which prove the accuracy and capabilities of different
pieces of the IPST-VOF3D code.

o Applications of the IPST-VOF3D computational technique to free surface problems
of interest to the paper industry, specifically three-dimensional flows under the blade
in a coating application and the flow of condensate inside a dryer cylinder.

o Additional features that would be useful in the computational technique and areas for
future work.
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DEFINITION OF THE FREE SURFACE PROBLEM

The flow of incompressible, isothermal, Newtonian fluids can be described by the

Navier-Stokes equations (NSE) first derived by Navier9 and Stokes 10. The first equation,

V-u=O, (1)

derived from conservation of mass, is commonly referred to as the continuity equation.

The second equation,

au
+ u.Vu = g - 1Vp + vV2u

at P (2)
inertial advective body forces pressure viscous

results from a momentum balance and consists of inertial, convective, gravitational or

body forces, and a surface force due to the normal stress consisting of pressure and

viscous contributions. Here, u is the velocity vector, g is the body force vector, p is

pressure, p is the fluid density, and v is the fluid kinematic viscosity.

In order to properly pose the problem, appropriate boundary conditions must be

specified. These normally include some combination of no-slip walls, symmetry planes

(slip walls), continuative outlets, and periodic outlet conditions. Table 1 shows the

mathematical descriptions for these boundary conditions on the left edge of a

computational domain (smallest value in the x-direction). Analogous conditions may be

written for the remaining domain boundaries. Generally, interior obstacles are treated

either as slip or no-slip walls with the appropriate conditions applied in a manner similar

to the external boundaries. Numerically, boundary conditions for the pressure adjacent to

no-slip walls are required and are typically derived from the velocity boundary conditions

and the NSE. The specifics of the pressure boundary condition derivation for this

computational technique are presented below along with the discussion of the

implementation of the computational technique.
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Table 1. Boundary Conditions for confined flows.

Boundary Condition u v w p

Symmetry Plane or v 0 w =0 p 0u=0 --=0 -0 =
Frictionless Wall ax ax ax

No-Slip Wall u=0 v=0 w=0

au 0 v aw 3p
Continuative Outlet -= = 0 0 =

axP x Cx ax

Periodic Condition UL =UR VL = VR WL =W R PL =PR

The presence of a free-surface yields an interface between two fluids of different

properties where the boundary is allowed to move as a function of time. Thus, the

addition of a free surface requires additional boundary conditions at the interface between

the two phases. These conditions for two general fluids, derived from conservation of

normal velocity, normal stress, and tangential stress, respectively, are11

uen = uv n, (3)

e -n te n = Pv -n v -n+K, (4)

n IC s =n Tv .s, (5)

and n. et t=n -x t (6)

where the subscripts e and v refer to the liquid and vapor phases, respectively; n is the

unit vector normal to the interface; s and t are unit vectors tangent to the interface that

form an orthogonal coordinate system with n; a is the surface tension between the fluids;

K is the curvature of the interface; and T is the deviatoric stress tensor (the viscous

component of the total stress). For a Newtonian fluid, the deviatoric stress tensor is

defined as
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=[Vu + (Vu)V], (7)

where g is the Newtonian viscosity. 1

The primary assumption used in deriving a free surface boundary condition from

the boundary conditions for a general interface just presented is that the vapor phase is

inviscid. This yields

pt -n-x, n = Pv +G K (8)

n.,r s =0 (9)

and ni t t=0 (10)

for the normal and tangential stress conditions at the interface with the normal velocity

condition remaining the same. Usually, the additional assumption of constant pressure in

the vapor phase is also made. This assumption simplifies the problem considerably by

eliminating the need to solve the NSE in the vapor phase. Further discussion of the

implications of the constant vapor phase pressure assumption are presented in the

literature review section below.

If the deviatoric stress in the liquid phase is also assumed to be small, the

tangential conditions vanish and the condition arising from the normal stress balance is

represented by Laplace's formula,

Pt = po + a K, (11)

where p0 is the constant vapor phase pressure.

The unit vector normal to the interface, two mutually orthogonal unit vectors

tangential to the interface, and interfacial curvature can be defined in terms of the local

height of the interface above a plane,

H(x,y,z) = y -(x,z) = 0, (12)

where TI is an auxiliary height function. The vector normal to the interface can be
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computed as the gradient of the H(x, y, z). 12 For Cartesian coordinates the normal vector

becomes

(y -l(x,z)). a(y--n(x,z)). a(y -l(x,z))
VH(x,y,z)a=+x .+ y z k(13)

=-lx i+j- iz k

where i, j, and k are the unit vectors in the coordinate directions, and subscripts denote

partial differentiation. To generate the unit normal, this vector must be scaled to unit

length yielding the unit normal vector,

n-nx i+j-nk k (14a)

The tangential vectors are derived from mutual orthogonality of the normal and tangential

vectors condition and by setting the i-component of s tangential vector to zero, yielding

s +=kr .. (14b)

(l+n1)i+nx j-q_ q k
and t = nxs (14c)

+1 + l + 1 Z + 1 

for the unit tangential vectors.

Finally, the surface curvature is defined as the negative divergence of the unit

normal vector 13

K=-V n

=- [ ln ] [ 1 1i2 + a+ 11 j (15)

which simplifies to
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- x(lZ)+ z + ( +1)I(1 + 12 + If= () +(16K= ----̂  ------- * ( + ~ii(16)

These formulas for Cartesian coordinates can be rotated to apply to interfaces oriented

primarily in the x or z directions.

In cylindrical coordinates, the formulas vary depending on the orientation of the

interface. The formulas for each direction again begin with local height functions such as

R(r,0,z) = r -T(0,z). (17)

The unit normal and tangential vectors are derived using the gradient operator, here for

cylindrical coordinates, in the same manner as that used above

n = Ir-io 0-i z (18a)
Vl + lo + If TIf:

Tlz r+zs = r,1+z (18b)
j +T2

and t= - r +(1 + ) 0 + i ( 8c)

1+Wz2 P + o
2

+ n2ii2

Similarly, for the O-direction the local fluid height function is

e(r,0, z) = 0-1i(r,z) (19)

with the unit normal and tangential vectors

n -r r+0-rlz z(20a)
Vrl2r + 1 +r 2

lrn, O+z ~s=~~~ - mZO+~~~~~~~~Z ,(20b)

Jl + r2i2i

-( l+r2 r22)r-rr O+r, 2 zr Z
and t-- (20c)

l + r2 rq + 1+ r 2I q

Finally, for the z-direction the local height function is
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Z(r,0,z) = z-T(r,0), (21)

with the unit normal and tangential vectors

-rrM r-0 0O+rz
2n= / + 112 + r (22a)

r 9 r + T1 z
r0+il, z

S= -r 2 (22b)
[1120 + r2

(nd + r2 ) r+ irTl 0 - r2'lr Z
and It= . (22c)

V+q2 r22 r22 + r2

With the definition of a free surface problem complete, I present a summary of the

primary difficulties in solving free surface problems numerically, quoted from Floryan

and Rasmussen. 14

1. The interfacial boundary conditions are nonlinear and of a mixed type, and
they involve pressure which has to be evaluated accurately at the
boundary.

2. The field equations are nonlinear and boundary layers are possible.

3. The solution domain has an irregular, constantly changing geometry; its
connectivity may change, e.g. breakup of a liquid droplet.

4. The interface may undergo large distortions and non-analytic cusp-like
interfaces are possible.

5. Crossing interfaces may occur when multiple interfaces are involved.

6. Tracking the shape of the interface, i.e., its curvature, demands high
accuracy to account properly for the surface tension effects.

7. Presence of singularities at the contact points poses serious difficulties for
accurate determination of the location of the boundary.
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8. Several physical instabilities are known to occur at the interfaces, and,
therefore, several intrinsic temporal and spatial characteristic scales might
be involved. Knowledge of these scales is required in order to establish
the appropriate numerical step sizes.

Thislist of potential pitfalls in solving free surface problems implies that no

single numerical approach can be expected to accurately and efficiently treat all free

surface problems. Each approach may be expected to handle certain classes of problems

well, while potentially having great difficulty with other classes of problems.
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LITERATURE REVIEW

The presence of a free surface and the accompanying need to track the location of

the moving interface further complicates the already difficult task of solving the Navier-

Stokes equations. Detailed knowledge of the interface shape and location is required to

accurately impose the highly non-linear interfacial boundary conditions presented above.

In addition, the location and shape of the interface are often among the most important

pieces of information obtained from a free surface problem solution.

This section presents a review of the literature describing techniques for solving

free surface problems. This is followed by a discussion of the stability of a thin viscous

sheet flowing through an inviscid vapor phase, the problem related to black liquor

spraying that has driven the development of this computational technique.

NUMERICAL TECHNIQUES FOR FREE SURFACE PROBLEMS

This review of numerical techniques for treating free surface flows will generally

follow the format of Floryan and Rasmussen, 14 ' 15 who present more complete reviews of

moving boundary methods. Additional reviews related to this subject are presented by

Yeung,16 Hyman,1 7 Laskey et al., 18 Crank,1 9 Bulgarelli et al.,20 Harlow, 2 1 and Tseng

et al.22

Current techniques for computational analysis of free surface flows can be divided

primarily into Lagrangian and Eulerian approaches. I will describe and discuss many of

the available techniques in each of these categories plus some hybrid techniques that do

not fit easily into either the Eulerian or Lagrangian classifications. Next, I will discuss in

greater detail the particular family of volume tracking Eulerian techniques used in this
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work which have advantages in a broad class of free surface flow problems involving

large surface deformations.

Lagrangian Approaches

Lagrangian approaches are generally defined as those where the computational

mesh used in the numerical approximation of the NSE is allowed to move with the flow.

This simplifies the imposition of the interfacial boundary conditions since the interface

lies along an edge of the computational domain. Unfortunately, Lagrangian techniques

have the disadvantage that, for flows with large surface deformation or locally large shear

rates, the local mesh can become distorted, leading to loss of numerical accuracy and,

potentially, numerical stability. 14 In some cases, the grid distortion can become so severe

that the mesh becomes entangled leading to failure of the numerical technique.

An example of a purely Lagrangian approach can be found in the LINC

(Lagrangian incompressible) method presented by Hirt et al. 23 and extended by Butler. 2 4

In this technique, the vector quantities (position, velocity, and body accelerations) are

stored at the computational cell vertices and the scalar quantities (pressure and stress

tensor) at the cell centers. A Poisson equation for the pressure in a cell is derived from

the requirement of constant volume in a cell as a function of time. This technique

generally suffers severely from the grid distortion problems outlined above.

In an effort to overcome the grid distortion problem, free Lagrangian approaches

have been developed.2 5, 26, 27 ,28 In the free Lagrangian approach, the computational grid

is reconstructed at each time step by choosing the nearest neighbors to each vertex. Thus,

the advantages of the Lagrangian representation are maintained, while the computation

grid is dynamically adjusted to prevent entanglement and maintain accuracy. The usual
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approach is again to have the vector quantities vertex centered and the scalar quantities

cell centered, 2 5, 26, 2 7, 28 but examples exist where all quantities are cell centered2 9 ,30 ,3 1

and where all quantities are vertex centered. 32 ,3 3

An alternative to the free Lagrangian approach for removing the grid distortion

problem is to allow periodic rezoning of the computational grid. This process maintains

the integrity of the computational grid while keeping the advantage of allowing the

interface to be represented by an edge of the computational domain. The rezoning

process has a side effect of introducing numerical diffusion as the information is

transferred between the computational grids. Examples of numerical techniques using

rezoning techniques are presented by Hirt et al.,34 Amsden et al.,35 Addesio et al.,36 and

Bach and Hassager. 3 7 As an example, the Arbitrary Lagrangian-Eulerian (ALE)

technique developed by Hirt et al.34 will be discussed in greater detail below as a hybrid

technique.

Eulerian Methods

In the Eulerian approach, the computational mesh typically remains fixed or is

allowed to move in a prescribed manner. What makes these techniques an Eulerian

representation is that, in all of these methods, the fluid moves relative to the mesh. The

location of the interface is maintained either by some means of tracking the interface

location3 8,3 9, 40, 41 or by tracking the location of the fluid itself, referred to as volume

tracking. 8 ,42 It is possible to use any of the interface tracking techniques with both the

fixed and variable grid formulations.
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Fixed Grid Eulerian Methods

Fixed grid representations have the advantage that there is no possibility of the

mesh becoming entangled and thus large changes in the free surface can be tolerated. The

primary disadvantage with fixed grids versus Lagrangian and variable grid approaches is

a loss of precision in the knowledge of the interface location and shape. Interface

tracking in fixed grid methods are reviewed by Hyman 17 and Laskey 18 with additional

discussion presented by Hirt and Nichols. 8 The two primary examples of interface

tracking methods are the height function and line segment approaches.

Height functions are probably the simplest methods for tracking a moving

interface. The interface location is stored as the height of the interface above an arbitrary

line (typically a coordinate axis) in two-dimensions or plane in three-dimensions. In this

instance, the local height functions used to compute the surface curvature discussed above

are the same as the interface tracking height functions.

As an example, if the interface remains relatively parallel to the x-z plane in three-

dimensions, the height function is expected to be a function of position and time such as

H = f(x, z, t). Problems can occur when the slope of the interface, ah/ax or ah/az, is

greater than the local mesh aspect ratio, 6y/6x or 5y/6z.8 This technique is extremely

efficient in terms of storage and computations, but has problems with sharp gradients and

is limited to interfaces that are single valued. Examples of fixed Eulerian mesh

computational techniques using height functions include SOLA-SURF 7 where the height

function is stored at the center of a column of computational cells and an approach

developed by Hill 40 ,41 where the height function is stored at the computational cell edges.
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Movement of the interface is governed by the kinematic condition representing

the requirement that the interface must move with the fluid,

ah Ah ah
-+u-+w-=v. (23)
At Dx az

The line segment approach overcomes the requirement that the interface remain

relatively flat and single valued by treating the interface as a collection of points

connected by line segments. For accuracy, the distance between the points must be less,

than the local grid spacing. 8 Each point moves with the local fluid velocity maintaining

its position on the interface. In a sense, the line segments move in a Lagrangian manner

through the fixed Eulerian mesh. To maintain accuracy and computational efficiency of

the simulation, line segments can be added and deleted as necessary. Examples of fixed

Eulerian mesh methods based on the line segment approach are given by Nichols and

Hirt.3 9 ,43

The line segment method has difficulty in situations where two interfaces intersect

or when an interface folds over on itself (e.g. wave-breaking). 8 These difficulties are

compounded when the line segment technique is extended to three-dimensions with

additional problems arising when segments need to be added or deleted.

Volume tracking methods originated with the Marker and Cell (MAC) method,

the first generally successful free surface computational technique. This technique was

originally presented by Harlow and Welch4 2,44 and modified by Viecelli,4 5 among others.

In the MAC method, the location of the fluid within a fixed mesh is tracked by a set of

massless marker particles which are moved at the end of each time step in a Lagrangian

manner. The interface is assumed to lie somewhere within a cell containing marker
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particles and having an empty neighbor. Taking the limit as the number of marker

particles becomes infinite, it is possible to track the "fullness" of each computational cell.

The computational cell fullness concept leads to a number of volume tracking

techniques which differ primarily in the method used to reconstruct the interface from the

"fullness" data. Techniques include Simple Line Interface Calculation (SLIC),4 6 a

modification to SLIC,4 7 a method proposed by Chorin4 8 to fit an osculating circle with

the same properties as the local fluid configuration, and the Volume of Fluid (VOF)

concept.8, 49 These finite difference techniques address the issue of how to take the

fullness of a computational cell and its neighbors and convert it into an accurate

representation of the interface location and local curvature as demonstrated in Figure 3.

The early volume tracking codes were all based on finite difference methods, however,

recent applications of the cell fullness concept have included finite element

analyses. 50 ,5 1,52,53

x -sweep 

|j .... r mikg jj / _ y - sweep a 1 ' B 

P;8.:i a.S :

Figure 3. Reconstruction of the interface using various volume tracking procedures from
left to right: (a) the actual form of the interface; (b) reconstruction based on a
marker-and-cell procedure (the interface is somewhere in the lined area);
(c) SLIC reconstruction; 46 (d) improved SLIC reconstruction; 47 (e) VOF
reconstruction. 8
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A recent modification to the VOF approach which yields a more accurate

representation of the surface tension component of the interfacial boundary condition has

been developed. 1354, 55 In this approach, termed the Continuum Surface Force (CSF),

the surface tension force is spread over a region near the interface with dimensions on the

order of the local computational grid spacing. The resulting force is then treated as an

additional body force in the solution of the Navier-Stokes equations. A similar technique

for multi-fluid flows has been developed by Unverdi and Tryggvason. 56, 57

The majority of the interface tracking methods and all of the volume tracking

methods apply Laplace's formula (11) as the boundary condition at the interface. This is

a reasonable assumption for many flows, but the deviatoric normal stress is important in

certain problems such as die-swell 4 0,41 and thin film instability.5 8

Adaptive Grid Eulerian Methods

In adaptive grid Eulerian techniques, after a new surface configuration has been

determined a new computational mesh is generated to cover the resulting computational

domain. This allows accuracy in applying the interfacial conditions along a domain

boundary while eliminating the problems in regions of high shear associated with the

Lagrangian methods discussed above. Unfortunately, the problems of mesh entanglement

and surface intersection remain. Reviews of adaptive grid methods can be found in

Tanner, 59 Denn,6 0 Kistler,6 1 and Kheshgi. 62

While most of the fixed grid techniques discussed above use the finite difference

method, adaptive grid techniques have been developed which use finite difference

methods,6 3 ,64 ,65 finite element methods,66,67,68,69,70,71 and spectral element methods.7 2
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Mixed Lagrangian-Eulerian Methods

Several techniques have been developed which are hybrids containing features of

both Eulerian and Lagrangian methods. These include the ALE method mentioned

previously, 34 the Particle in Cell (PIC) method, 73 and the Coupled-Eulerian-Lagrangian

(CEL) method. 74 Typically, these methods attempt to maintain the best features of the

Lagrangian approach coupled with the best features of the Eulerian approach.

In the ALE method34 the NSE are solved using the Lagrangian approach, but

rezoning is accomplished by convecting the computational nodes upstream at the end of

each time step. The level of rezoning can vary from none, yielding a purely Lagrangian

representation, to complete rezoning, effectively yielding an Eulerian representation. The

ALE approach allows accurate knowledge of the surface location in the Lagrangian frame

while reducing the potential for mesh tangling which is a problem with Lagrangian

methods. This is accomplished at the expense of a significant amount of numerical

diffusion introduced by the rezoning process.14

The PIC7 3 method uses Lagrangian particles to transport mass between cells in a

fixed Eulerian mesh. The pressure in each cell is determined through an equation of state

using the internal energy of the cell and is mass density of the particles.

The CEL 74 method uses a fixed Eulerian mesh to store the velocity and pressure

fields. The fluid is tracked using a separate Lagrangian representation. Difficulties exist

t Numerical diffusion occurs when the error in a numerical approximation, in this case a
first order accurate finite difference scheme, contains second derivatives. The error in the
numerical approximation is superimposed on the physical diffusion term exaggerating the
magnitude of the diffusion.
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in the program logic coupling the Eulerian and Lagrangian frames and this technique has

only been implemented for compressible inviscid flows. 14

Contact Between a Solid and Two Fluid Phases

Thus far, I have discussed the equations to be solved and a number of methods for

tracking the interface between the two phases. The remaining problem to discuss is the

contact between two-fluid interface an a solid surface, termed the contact point (or line in

three-dimensions) depicted in Figure 4. Several theoretical analyses of this problem have

been conducted, 75, 76,77' 78 but the question of the best way to numerically treat the

contact point remains open.

Liquid Movement Liquid Movement

Static
Contact

Vap .or Point 

Figure 4. Description of static and dynamic contact points.

The primary difficulty results from a singularity in the stress at the contact point

or line. 79 The typical method of treating this singularity is to allow slip in the region of

the dynamic contact line. This method, used by Torrey et al.80, 81 and explained in greater

detail below, remains unchanged in the current computational technique. For static
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contact points, the no-slip condition can be applied and this option has been added to the

present computational technique as is discussed below.

The interfacial normal stress balance also requires modification in the region of a

contact point. Using Laplace's formula, p, = p0 + a K, as an example, the discontinuity

due to the surface tension is modified by an "adhesion" force between the fluid and the

wall. This requires a modified treatment of the normal stress discontinuity adjacent to the

contact point as is described below.

THE STABILITY OF A THIN VISCOUS SHEET

One of the stages in the black liquor spraying process is the generation of droplets

due to the breakup of a thin viscous sheet of black liquor flowing through air. In an effort

to develop a tool suitable for studying this process, I have added the capability to solve

for potential flow in a vapor phase adjacent to a liquid phase where the full NSE are

solved. To test this capability, below I will study the problem of a thin viscous sheet of

fluid flowing through a stagnant inviscid vapor phase.

This problem has been studied analytically by many workers with the most

complete analysis presented by Li and Tankin. 58 Their analysis begins with a flat sheet

moving through a stagnant vapor phase as shown in Figure 5. Superimposed on the sheet

is a sinusoidal disturbance of the form

= o0 eC t+ ikx (24)

where £o is the initial disturbance amplitude, Cd = cor + io0i is the complex growth rate,

i = A--T, and k is the wavenumber of the disturbance.
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As the fluid with a sinusoidal disturbance moves through the stagnant vapor

phase, a difference in pressure builds up along the surface between the crests of the waves

and the troughs. At the crest, the relative velocity between the liquid and the vapor is

high and, from a simplified analysis using Bernoulli's principle, the pressure in the vapor

phase is expected to be low, while at the troughs, the relative velocity is low and the

pressure is expected to be high. Thus, the interface is pushed inward toward the fluid in

the troughs and expands outward into the vapor at the crests. For low wavenumbers

where waves are long, the pressure gradient is relatively small because the low and high

pressure regions are relatively far apart, but for high wavenumbers this gradient is high

and the growth rate due to the vapor phase pressure is larger.

y Vapor

(A) -x

Vapor

Vapor

NW.~~ UO

(B) x

Vapor

Figure 5. Schematic of the sheet instability problem for antisymmetric, (A), and
axisymmetric, (B), disturbances.
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Surface tension provides a competing force seeking to maintain a perfectly flat

sheet which minimizes the surface energy. At small wavenumbers, the surface curvature

is small and, thus, the surface tension force is weak. As the wave number is increased

and the curvature increases, the effect of the surface tension becomes more pronounced.

This competes with the force due to the pressure gradient in the vapor phase where the

magnitude of the gradient is expected to increase with the wave number.

In summary, at low wavenumbers the surface tension restoring force is small and

the pressure gradient in the vapor phase is also small, while at high wavenumbers the

magnitude of each of these forces is expected to increase. The relationships between the

magnitude of these forces and wavenumber are nonlinear and both forces become

stronger at increasing wavenumber.

Li and Tankin 58 conducted a linear stability analysis of the problem outlined in

Figure 5. That is, the vapor phase was assumed to be inviscid, the liquid phase was

assumed initially to have flat surfaces and be moving at uniform velocity, and a

disturbance such as that in Equation (24) was imposed. Their analysis yields dispersion

relations between the wavenumber of a disturbance to its complex growth rate. In non-

dimensional form these relations are

0= (a, + 4m2Z)6), tanh(m)

+4m3Z2[m tanh(m)+ (m2 + )/Z) 12 tanh((m2 + o, /Z)12)] + po)2 + m 3

0 = (), + 4m2Z)C, coth(m)

and +4m 3Z2 [mcoth(m)+ (m2 + /Z)1/2 coth((m2 + ,/Z)/ 2)] +p2 +m 3 (26)

for antisymmetric and axisymmetric disturbances, respectively. Here, 06 = ro + i We'/2t;

co, =+ o+iWel/2m; 6), = (a/pea3)-'12; cij = woi(a/Uo)m; a is the initial sheet half-
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thickness; m = ka is the dimensionless wavenumber; and U0 is the initial sheet velocity.

The remaining parameters are the liquid phase Weber number, We, = p,U0a/a; the

Ohnesorge number, Z = gi (peaa) /2; and the density ratio, p = Pv/P,

It is possible to solve the dispersion relations, (25) and (26), for a given Wee, Z,

and p to yield the complex growth rate, i, as a function of the wave number. The

computational technique and computer program used to solve this highly nonlinear

equation in complex numbers are presented in Appendix VII. The real part of co is

dimensionless growth rate of a disturbance with wavenumber m. Results from the

dispersion relations with We = 40, Z = 0.1, and p = 0.1 are shown in Figure 6 for both

antisymmetric and axisymmetric disturbances represented by solid and dashed lines,

respectively.

2

ma .5~0 5 -/,' \ ~~~~Antisymmetric -
~cna~~ / *' \ ~~~~~~Li and Tankin

0.5
o. /.- \ -.-.---. Axisymmetric -

g 0 i. f-- |-'- J -- Li and Tankin

t -0.5

-1
0 1 2 3 4 5

Dimensionless Wavenumber

Figure 6. Non-dimensional growth rate for We = 40, Z = 0.1, and p = 0.1 obtained
from numerical solution of the Li and Tankin's 58 dispersion relations.
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Solutions of modified forms of Li and Tankin's dispersion relations illustrate the

importance of the deviatoric normal stress and surface tension components of the

interfacial boundary condition. In the absence of surface tension, the dispersion relation

for antisymmetric disturbances becomes

0= (6i + 4m2Z)Co, tanh(m)

+4m3Z2[m tanh(m) + (m2 + Co /Z)1 2 tanh((m2 + o /Z)I ) ] + p 2 .(27)

Similarly, with the assumption of constant pressure in the vapor phase, the dispersion

relation reduces to

0= (o, + 4m2Z)&, tanh(m)
(28)

+4m3Z2[m tanh(m)+ (m2 + , /Z) 2 tanh((m2+ )1/Z)12)] + m 3.

Finally, if Laplace's formula is used as the interfacial boundary condition, neglecting the

liquid phase deviatoric normal stress in the interfacial boundary condition, the dispersion

relation becomes

0 = )o tanh(m) + p6 2 + m3 (29)

which readily reduces to the dispersion relation for two inviscid fluid derived by Squire 82

and Hagerty and Shea 83

mJ/Wee tanh(m) - m[p + tanh(m)]

p + tanh(m)

Results from the solution of the modified dispersion relations presented in (26), (27), and

(30) are compared with results from the complete dispersion relation for antisymmetric

disturbances in Figure 7.
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4o .-*'' ----- Complete Relation
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Tension

° 0 --t - - Constant Vapor
c"1- . _ ~.^. _... .~Phase Pressure
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-4

0 1 2 3 4 5

Dimensionless Wavenumber

Figure 7. Non-dimensional growth rate for Wee = 40, Z = 0.1, and p = 0.1 obtained
from numerical solution of the Li and Tankin's 58 dispersion relations and
modified forms of the dispersion relation.

Significant deviations from the results obtained using the complete dispersion

relation are seen when any of the assumptions leading to the modified dispersion relations

are made. This means that it is important to include the liquid phase deviatoric normal

stress at the interface, the pressure discontinuity at the interface due to surface tension,

and the pressure fluctuations in the vapor phase to accurately predict the growth rate of a

wave in a viscous liquid sheet flowing through an inviscid vapor phase.
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PROBLEM ANALYSIS AND OBJECTIVES

The primary goal of this thesis is to develop a computational technique for

analysis of three-dimensional free surface flow problems. Study of the stability of a thin

viscous sheet flowing through a stagnant vapor phase, a phenomenon associated with

sheet breakup in black liquor spraying, has been the driving force for this work.

Many modeling techniques have been applied to free surface problems as outlined

above; however, all of the previous analyses suffer from limitations preventing their

direct application to the sheet instability problem. The large deformations and potentially

discontinuous interfaces at sheet breakup suggest that the volume tracking techniques are

the most appropriate for this problem due to their simplicity in treating the interface.

Volume tracking methods in the past have almost universally implemented

Laplace's formula, Pt = p0 + a K, as the interfacial boundary condition, neglecting the

liquid phase deviatoric normal stress. In addition, currently available free surface

computational techniques typically assume constant pressure in the vapor phase, a

limitation that must be removed for accurate analysis of the liquid sheet instability

problem where pressure variations in the vapor phase are the driving force for wave

growth.

With these goals in mind, the principal objectives of this thesis are:

* Improve the accuracy of existing volume tracking techniques for free surface

flows at Reynolds numbers where the accuracy of the advective terms is

important.



-32-

* Implement the complete normal stress boundary condition at the free surface

by extending Laplace's formula to include the deviatoric normal stress in the

liquid phase at the interface.

o Add the capability to simultaneously solve the coupled problem of flow in a-

viscous liquid phase and an inviscid vapor phase.

o To demonstrate the applicability of this technique to additional problems of .

interest to the pulp and paper industry (e.g. three-dimensional flow under a

coating blade and flow of condensate in a dryer cylinder).
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NUMERICAL TECHNIQUE

In this section, I describe in detail the numerical schemes used in the

IPST-VOF3D computational technique to solve the incompressible Navier-Stokes

equations for flow problems having a free surface. I discuss the algorithm neglecting the

interfacial deviatoric normal stress in the liquid phase and assuming the pressure in the

vapor phase to be constant. In this form, the computational technique is essentially the

NASA-VOF3D 8 1 computational technique. In the following section, I describe the major

modifications necessary to include the effects of the deviatoric normal stress in the liquid

phase on the interfacial boundary condition and to allow vapor phase pressure variations

through solution of the potential flow equations in the vapor phase.

I begin by presenting the continuity equation for incompressible flow in a

modified form. Since, in general, this computational technique can be used for either

Cartesian or cylindrical coordinates, I will use the factors r and ~ to distinguish between

the coordinate systems. The factors r = 1 and ~ = 0 correspond to Cartesian coordinates,

while r = x and I = 1 correspond to cylindrical coordinates. Thus the continuity equation

becomes

V.(Ou) a(rOu) 1 a(Ev) a(Ow) (31)V.(O,,)= ^ 1 3+ 8 +=0, (31)
r ax r ay az

where u, v, and w are the velocity components in the x, y and z directions, respectively

(or r, 0, and z which are represented as x, y, and z). The term 0 in Equation (31) arises

from a partial cell treatment and is used to account for interior obstacles that block only a

portion of a given computational cell. 80 The partial cell technique, discussed in greater

detail below, allows more accurate simulation of interior obstacles with curved
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boundaries than the "stair-step" approach often used in finite difference computational

techniques.

Again using the r and ~ parameters, the momentum balance equations for

incompressible Newtonian flow can be written as

au au v a u u 2
-+u-+--+w-- -
at ax r Dy az r

(32)
lap [a2u 1 a 2u a2u l( au u 2 av

gx e --- +- ) y 2 + z 2 x + r2 r 2___ _P ax ax2 r2 ay2 az2 a ' 2 a+y

av av vav av +uv
at ax r + y az r

iiap a 2v avv a2v lay v 2aud (33)
=gy p ray x r 2 ay2 az2 r ax r 2 r2 ayJ

aaw aw V aw aw-- +U-a+--a+W-
at ax r Dy az

and lap F a 2w 1 a 2 w a 2w law (
=z --- +V +-_ + +

p az aX2 r 2 y2 dz 2 rax J

where gx, gy, and gz are body forces in the x, y, and z directions, respectively.

The location of the liquid phase within the computational domain is tracked using

the VOF technique as described above. The VOF "fullness" function, F, is transported

through the domain by solution of the F-convection equation,

a(oF) 1 a(rOFu) 1 a(OFv) a(OFw)
=_-~-~~~~~~~~- -- -.-- ~~ .- ~ ~(35)

at r ax r ay az

Now that I have presented the forms of the equations to be solved, I present the

finite difference approximations of these equations. First, I describe the computational

mesh used including a brief description of the mesh generation method (see Appendix I



- 35 -

documenting the code for more details). Next, I discuss the finite difference

approximations leading to an explicit guess for the new velocity field forming the first

step in a two-step projection method used to step forward in time, with special attention

paid to the approximation of the advective terms in the NSE. This is followed by a

description of the correction step, the second step of the projection and the two methods,

Successive Over Relaxation (SOR) and the Conjugate Residual (CR) technique, available

for solving the resulting Poisson pressure equation. Finally, I discuss the type of donor-

acceptor differencing used to solve the F-convection equation which has remained

unchanged from the NASA-VOF3D computational technique.

THE COMPUTATIONAL MESH

The computational mesh is a three-dimensional orthogonal mesh representing

either Cartesian or cylindrical coordinates. For simplicity in the form of the equations,

the cylindrical coordinate system is modified to use x = r, y = rm6,, and z = z as the

mapping between the coordinate systems with the terms in the continuity equation, the

NSE, and the F-convection equation modified accordingly.

Solution is accomplished on a "staggered" grid where scalar quantities, such as

the "fullness" function, F, and the pressure, p, are located at the computational cell

centers and vector components such as the velocity components u, v, and w are located on

the cell faces as shown in Figure 8 for a two-dimensional mesh. In the x-direction, the

variable X(i) refers to the location of right side of the computational cell denoted xi+, in

Figure 8. Similarly, XI(i) refers to the cell center, denoted xi, DELX(i) refers to the local

grid spacing, denoted Ax i = x., - x.i_, and the distance between cell centers is denoted

by Ax+ = xi+, - x i . The y and z directions are defined in an analogous manner.
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Setup of the computational grid is accomplished through the input data:; Each

coordinate direction is divided into zones having a left boundary, XL; a right boundary,

XR; a "focal" point, XC; the number of computational cells within the zone on either side

of the focal point, NXL and NXR; and the spacing of the cells adjacent to the focal point,

DXMN. If DXMN > DX,, = (XL- XC)/NXL, the cells are equally spaced with a

spacing of DXave. Otherwise, the cell spacing varies with the smallest cell adjacent to

XC and the largest cells adjacent to XL and XR. The cell sizes are adjusted so that a

smooth transition between cell sizes is maintained and (DXX + DXc )/2 = DXav .e Care

must be taken to keep cells in adjacent zones of similar sizes and to maintain cell aspect

ratios as close to unity as possible to maintain accuracy and stability. 81

ij+1/2

Yj+I/2 

U i+l/2j
Yj- --- *

Pij, Fj

Yj-1/2 -

Xi-1/2 I Xi+1 /2

Xi

Figure 8. Diagram of a two-dimensional computational cell.

The remaining portion of the computational grid setup to be discussed is the

partial cell treatment alluded to above. This computational technique uses a partial cell

treatment for interior obstacles that eliminates the need for stair-stepping curved or

diagonal boundaries as is often necessary in finite difference techniques. The basis of the

partial cell treatment is discussed by Torrey et al. 80
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The partial areas open to flow, AR(ij,k), ABK(i,j,k), and AT(i,j,k) representing

the right, back and top boundaries, respectively, are stored at cell faces in the same

manner as the velocity components. The cell volume open to flow, AC(i,j,k), is stored at

the cell center in the manner of the scalar quantities F and P.

Values of AR, ABK, AT, and AC are set according to the interior obstacles

defined in the input data. Assuming y or 0 direction symmetry, a three-dimensional prism

or conic section,

O(x,z) < ax+a2 x2 +bz+b2 z2 +c 1 +c 2 xz, (36)

is defined. An input flag determines whether the volume contained within (36) is opened

or closed to flow. From this function, the area of each cell boundary and the volume of

the cell itself open or closed to flow may be calculated. By combining a series of

obstacles, extremely complex geometries may be constructed, although currently they

must be symmetric with respect to the y or 0 direction. This procedure is demonstrated in

the input data shown for subsequent test and example problems.

EXPLICIT PROJECTION STEP

The first step in the two-step projection consists of solving the equations resulting

from explicit temporal finite differencing of the NSE. In vector form, the equation for the

provisional velocity field is

u" = u n + §t[g- VP n + vV2u n -- u n V ]. (37)

Note that from here on, the variable P refers to the reduced pressure, p/p.

Specifically, this step consists of adding a body acceleration, a specific pressure

acceleration, an advection term, and a viscous acceleration computed using the previous

velocity and pressure fields to the previous velocity field. These terms, computed in the
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subroutine TILDE in the NASA-VOF3D program, will be explained below. In addition

to the advective differencing scheme used in the NASA-VOF3D computational

technique, three third order accurate finite difference schemes are presented below and

available as options in the IPST-VOF3D program.

With the terms defined in the subsequent subsections, the x, y, and z components

of.the explicit projection step for the NSE become

ijk = Utjk +at[ACCX+, k-ADVX+, k +VISX j], (38a)

v;jn, = vn. +t[ACCYn -ADVY.I +VISY1.], (38b)ij+½,k 
=

ij+½,k J+Ayk k]A+' k J
+
J+,kV

and w w + t[ACCZi; k+-ADVZ k++ VISZjk+,] (38c)

where the body forces and specific pressure accelerations have been lumped together in

the terms ACCX, ACCY, and ACCZ.

Gravitational and Specific Pressure Accelerations

The body and specific pressure accelerations in the x, y, and z directions are

ACCX+j.k = g + (P,.k - P.,,k )/Axi+ (39a)

ACCYJ+, =gy +(Pi,, -P,,k )/(rAyj+), (39b)

and ACCZ ,jk+t = gz + (P.j,k+ -Pi Jk)/Azk+ , (39c)

respectively. As above, the term r, is 1 for Cartesian coordinates and xi for cylindrical

coordinates. In cylindrical coordinates the body accelerations in the r and 0 direction are

typically not constant, but a function of position.
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Viscous Acceleration

The viscous accelerations in the x-direction is computed as a second partial

derivative. Therefore, several first partial derivatives near the computational cell of

interest need to be computed. These first partial derivatives for the u-component of

velocity, used here and below, are defined as:

(u)i = (Unk -Utk )/^X , (40a)

(ax)i+jk (u i+jk Ui+Tjk)/AXi+l ' (40b)

(40c)( )]tiMt k = (u +.j+I< k - u++,tk )/(r,+^Y+y )' (40C)

()i+j-tk= (U +,j,k- U+i.j-ljk)/(ri+AYj) (40d)

-( ),ut^f = (UntJ I -Ui )/^Ak+l I (40e)

and (z)i+t = (u+k -Ui+ jk-I)/Azk-. (40f)

Similarly the finite differences in the v velocity component are

(ax xi+tj+, k (vlj+ik - j+ k )/,xi+ (41 a)

ax --j+ ( ij+,+k- i-lj++k )/^Ax, (41b)

((vj k )/(rAyj), (41c)

();j+lk = (V j+ik -ij+,k )/(riAyj+), (41d)

(az)ij+tk+ (Vi-j+k+l-Vj+k )i /k+i (41e)

and ( )i+ (v -j+,k - v,+,k_,l )/Azk_. (410
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Finally, the finite differences for the w velocity component are

(ax ,+ ji = (W+iJk+ n -W .k)/^X (42a)

( jk+ = n -_ij,ki j,k+)/A (42b)(ta),x x =(v/i-½,k+) i + (42b)

ay i = (W;~ ij+lk+f Wjk+j)l i i+t) .(42c)

(ay); H =(w j w i( ^ - -j - -,k+j)/( s y^ j )I (42d)

(az )ijk (Wjk+ wj-t )/AZ (42e)

and ( )^ = (W n - i, )/Azk * (42f)az Ai,j,k+l (\ ij,k+- i- j2k+½)/Axk+l '

From these definitions, the viscous accelerations are computed using second order

accurate finite difference formulas,

(au) _ au) (u _(a-u (au) _-(i
VISXn =v ax j +j ay ik+½,i+lk ay i+,j-,k + azZi+,j+,k+½ az i+½,j,k-.

J, '~-l Axi+j Ay, Azk

(43a)

Axi(a)n, + Axj i+(,)jn AXi (y) +k AXi+l (aTy)i jk

Xi+,(Ax, +Ax,+,) xi+j x+I(Axi+Axi+,) j

{(aV)Y -(V) n (V) ^ (aV)Y (,v) -(avy
VISyn. (Vl -aXvi+lj+,k _ a tj++k \ Y i,j+l,k ijk i+,j,k t j az i..j+,k-

I J+tk Ax Ay+ Azk (,

C( i}"v - (avy V" U +U" _-U+ -U n j 
f av 1"j.Hk '^"i-tj+^k Yi j k \ jzkIi+ij+l~k j+l.k \jj Jiij+,k-½

' 2x, xi xiAy,+ - * |

and
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___)_ _ (___________ ( ) - )n _)f n _(9
VISZn J i.j- ()+'jk+-( ax )i-+ aY -j+t ' ay )i9Jk+½ + ,k+ i,,

ijk+f l AXi Ayj A.k+
(43c)

ax i+,j,k+ ' ax i,j,k+i<r 2x, j

Advective Terms

For numerical stability, the advective terms in the NSE must be treated using

finite difference formulas with some level of upwind differencing, where the advective

differences are weighted toward the local upstream side in some manner. Using central

differences that are equally weighted between the upstream and downstream values leads

to an unconditionally unstable numerical scheme and must be avoided. 84 The original

implementations based on the SOLA formulation used a linear combination of first order

accurate upwind differencing and second order accurate central differencing (from here

on this combination is termed SOLA differencing) to achieve a combination of the

numerical stability of the upwind scheme and the accuracy of the second order scheme.

Since the previous terms in the NSE, with the exception of the temporal differences, use

second order accurate finite difference schemes, the accuracy of a simulation at increasing

Reynolds number is limited by the formally first order accurate treatment of the advective

terms. In order to improve the accuracy of simulations at high Reynolds number while

maintaining numerical stability, I have implemented three different third order accurate

finite difference schemes for the advective terms; quadratic upwind differencing for

convective kinematics (QUICK),85 third order accurate upwind differencing (THIRD), 86

and the method of Kawamura and Kuwahara (KANDK). 87
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Here, I describe the finite difference representations for the advective term

differencing options. The details of the derivations of the third order accurate schemes

can be found in Appendix II, Appendix III, and Appendix IV for QUICK, THIRD, and

KANDK, respectively. First, I present the finite difference formulas for the advective

terms in the NSE as implemented using SOLA differencing. This is followed by

descriptions of the terms that are different when each of the third order accurate finite

difference schemes are used.

SOLA Differencing:

The x-direction advective term can be written as

= X n au 1 au u " ( u' V 2u +
ADVX . uaU)' + v-) +w - i- , (44)

( aU) [(1-'x (ax )+,k +(1+ a')A ()j (45a)
- auf <^V n (l-a )A~i-t^^Y++d++k+a )Q j++ 45,,)

, i+x+ ,i++,j, k (1- a')Axyji + (1+ x')Ax j, rbY i[i j(l-&)Ay. ^ ^ +l±&Ayj(fe){au ny ijak (l-i')Ayn +. (1 +a )Ay^ u)j (45b)

j a(1- -0)A )i+,j,k + (1 + O)A. )+ j k -

ikY -i+j,jk, (1 -a- )Az k-½ + (1 + )Ak+ (45c)

vUn Ax„ i(v +] j+k +v+lj+ik)+A xj+l(v kj+½k +ijk (45d)

i++,jk 2(Ax, + Axi+) ' ))

awI++W-ljk ) + Ax'w njk+_ +w ) A4
W„ Axi(vi+l,j+½,k i+l,j_½,kI)"+ Axi+, (,j+, k - in j,k)

and +,jk 2(Ax + Ax,, (45e)
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As an example, I use the term

( ~u'V' u.
1U aux ,1_= 'j2 [(1 -a)(au/ax)n, + (+c')(au/ax)j.k], (46)ax /i+½,j,k 2

here rewritten for a constant grid, to describe SOLA differencing. The parameter a' is

derived from the fraction of upwind differencing, a,

a' = a sign(u ,n,. (47)

Thus, if un+j. > 0 and a = 1, then (46) becomes

u axu u" (.' (48)( ax )i+,jk i+½,jk (ax i,j,k'

which is pure first order accurate upwind differencing. Similarly, if and a = 0,

then (46) becomes

r "" .. i.n[(,u, \, +([a)n 1((uQ u 2U i+nj nJ + ( .).I (49)ax i+=,j,k 2 U i+i,j,k [(ax )i+l,j,k + ax 'ij,k ]'

which is second order accurate central differencing (an unstable numerical scheme).

Next, the y-direction advective term can be written as

ADVY.. = ( ) +(v +(w-) -+ , (50)
A*J+½k ax i,,j+4 ,k r ay 'Jj+},k aZ i,j+,k xi

( 3^" ^ "(l-av~x (1--v X i ,(h-xj+n .+Lk +a° +(,'qAxx ((ax i
itwhere un - +'J+'k -!i+\-½J+'k /' = k

( xU Xa ij+½,
k ,= L j+½,k ( )xi(51a)

f Y „ -aiAYi L (1 -a)Ayj +(1l+a)Ay+j+, , ay iL *^(jaOyd~fA, 
' (

k
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av nw a ijk ^=W n aII !iv½z/ij++,k +_ + .i+ ''j+A,k-',l/=wJ+-½k .(1-)Azj ,( +(l+a')Az ( )"
ij+{,k L(1- a')Azi_½+ (1 + o')Azi+: 

(I - oc')Azi-i + (I + CC')Azi+'

Ijn Ayj( i+j+½lk +j+,k)+AYj (u+j + u ,jk)

Ji j+'+k -2(Ayj + Ayj+l)

and wn.k
,ij++,k

wy + Wn )+ Ay1 (w k.n + n
j+lk+ 2(A, + ,k Ayj+l jk

2 Ayj + Ayj+ 

Finally, the z-direction advective term can be written as

ADVZijk+½= u )

axax)
where u- =uUn j,

\ ax Ji,j,k+ = i

aw n
V i

awaw-)
Jz )

Un
i,j,k+½ -

and vDjk.+ =i,j,k+½ =

n 1 aw n awY , w

ijk+ y ij,k+ a j,i,j,k+' rj v a i k+ . z .) jk+. 1

(1 - a')Ax,_ (aX)a +,jj,k+i + (1 + a')Axi (+4 ) Ijk+]

(l-o')Ax i- +(l+a ' ) Ax+.'

((1- a')Ayj_ ( ),j+,k+½ +(1+ ')Ayj+_ ( ) 'j-_.k+1

(1- Cx')Ayj_ + (1 + (l')Ayj+ J

i.jk+i ij k+iL (1- )A Zk + (1+ a')Zk+l

Azk( -(u ,jk+l + U-),jk+l )+ Ak+l ( , j + jk

2(Azk + Azk+,)

k (v +U n U n) +V n

Azk( ,j+i,+lj-k+l )+ v"k+l j' 'i,j-v,k

2(Az, +Azk+ )

(51c)

(51d)

(51e)

(52)

(53a)

(53b)

(53c)

(53d)

(53e)

,j,k+i
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QUICK Differencing:

For QUICK differencing, the situation is a bit more complex. The finite

difference formulas for variable grids are derived in Appendix II; however, for simplicity,

only the constant grid formulas are presented here. The variable grid formula uses the

same velocities with weighting factors that depend on the local grid spacings.

Many of the components of the advective terms remain the same as in the SOLA

differencing just presented and only the terms that vary are presented. With constant grid

spacings represented as ox, 8 y, and 8z, the resulting formulas are

= (-u+k + 7 un k-3u +k-3ujk) Ujk <0

u Ui=utjk (- +3U-7uik +iJk i 2k v+Jk+u>0

(y i )k = (3un + k + .3u+ J k-7ui; k- +ujk2)k j k > ° (54a)
-- -- 1" +7" -" -3 U~_½j+u U-i+ j, <0

8 Vj (u i+.+,j+,k + 3u"i+j k+l 7u +ij k ui+ j ,-1 i+.,jk
with anaogous formulas for the equations in the y and z-directions.
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Third Order Accurate Upwind Differencing

The complete formulas for third order accurate upwind differencing with variable

grid spacing can be found in Appendix Im. As with the quick differencing above, the

formulas presented here are for constant grid spacings only:

Un
D 3uY )n - (2ui'+i.,+3u' -6u n J u >0

ua) 65x l+i+,j, k3U + ,j,k 6Ui- k i Uij, k Ui+,j k > 
ax ^.i+½j uj n ' , (55a)

(1 a 1) = (2U+jjk un .n U j U j1 ) , j 

v-- ^ j 6 ( j3. + 6U_½j, l kk 3 Ui+,j k . < 0 (55b)

and

-w_- = +6662 (+ -3i+j '- i +,j i+I,j,k2) w+ik
au Jk (2Ui+½, j+l,k 3Ui+j, -6u ^Uk -Iu- +,,k (55c)

= ^izj, (-Ui++.j,+2,k +6Ui-,j+lk 3U+,-2U+,j I) W+,j <0

with analogous formulas for the equations in the y and z-directions.

The Method of Kawamura and Kuwahara

Kawamura and Kuwahara' s technique presents an additional challenge due to the

nature of their derivation. For a constant grid they obtained the finite difference formula

presented below. Unfortunately, I was unable to reproduce their derivation exactly on a

variable grid. An approximate derivation of a variable grid version of Kawamura and

Kuwahara's technique is presented in Appendix IV which is the numerical technique
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present in the IPST-VOF3D program. For a constant grid, the formulas derived in

Appendix IV reduce to these formulas of Kawamura and Kuwahara:

f»uI =% i..k.L -2u" +9"u^ -10u, +2u u( 

V 66i+ .jk Un
k ) 

i+½.j.k un n ) u=68x(-2u i+j+.k + louij.k -9i+^jk +2Ui -,j,k -- Ui-j.k i+,jk 
< 0

V 63Y (56b)

and

nu = <k (2Un +9'U 1Oun_+2un ) + 2 n > 56Cw-). 68z (JA+2 i+JJk+ i+,jk i+J,k-- i+j.,j,k- +,j,k (56c)
U Z+½ijjk W0

=-2u' j.k+2 ( -2 kUi+½ j_2.) ,k6yz (--2Ui24+ +loUik+½ -9U½' +2U'--- un-.) V ½., <0

with analogous formulas for the equations in the y and z-directions.

THE PRESSURE CORRECTION STEP

The correction step in the two-step projection method accomplishes an implicit

correction of the pressure field based on the explicit guess for the velocity field computed

in the first projection step. The velocity after a time step is defined as the provisional

velocity computed in the first projection step plus a correction for the pressure change

across the time step,

u n+= u-ot VSn _). ((57)

Since the continuity equation must be satisfied at all times, the new velocity field caw be

substituted into the continuity equation,

V.O (eu"n+) =, O(58)
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resulting in a Poisson equation for pressure (PPE),

st V V- [V(8sp ' )] = V V. (ei), (59)

where V is the volume of the computational cell needed to ensure a symmetric system of

equations.8 0 Below, two numerical schemes for the solution of the PPE are presented,

but first the pressure boundary condition adjacent to a no-slip wall must be derived.

The boundary condition for the pressure on a no-slip wall at the left edge (smallest

value of x) of the computational cell (2,j) with constant cell spacing, is derived from

Equation 57

.p-+I - pI 1+l1 -

5°P2J j b" -Un~~~~~~++j~ _~ j ) *(60)
Ax 8t 

For a computational cell adjacent to the boundary, the two-dimensional finite difference

form of the PPE (assuming constant cell volume and all cells open to flow) is

- 8P . -Se. . ' .+ 1L (e.+1J- - -Se2.-_ ~ _ +, _8 _ 2 j-/
Ax x Ax ) y Ay Ayy 

~ _ ~(61),.
J1 ij-UX=x,.j v2J.+-v2j

At( Ax Ay y

Upon substitution of Equation 60 into Equation 61 it is apparent that the solution of the

PPE is independent of the value of U=x .j = ui. so it can be set equal to U-"+' yielding the

boundary condition a(8P)/ax = 0. 88, 89 This condition can be applied to any domain

boundary since the only requirement is that solution of the PPE is independent of the

provisional velocity at the boundary. However, as Peyret and Taylor 88 point out, "it must

be clear that this zero-derivative condition is purely numerical and does not imply that the

real pressure gradient is zero."
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SOR Option for the Second Projection Step

The SOR option does not solve the PPE directly, but accomplishes the same

purpose. The conservation of mass at any time step is computed from Equation (31). In

finite difference form this is represented as

1 Fr^+AR^ ju.+ ,j-r AR u_
Di.k i , jk ,ARi+j,jk -i+½,j,k - i-, i-jj,k i-jj,k

"ik ACijk rAx

+ ABKj+ v - ABK v k AT w ijk-j -AT W ij,k- 6ABKij++,kVij+½,k -ABKi,j-t,kvi j-½,k ATij,k+½Wi,j,k+i _ ATj,k-½Wijik-½ 

rjAyj AZk

where the divergence, Dj,k, is the error in satisfying the continuity equation (ideally this

should be zero for incompressible flow).

With this definition in mind, an iteration procedure for updating the pressure and

the velocity components is described. First, the pressure after the iteration is defined as

p, ,k = PV -r. + aPi, k (63)

where Pijk =-pDjjk' (64a)

1 = it 1 [AR i+,j,k +ARi-,j,kl [ AR++jk AR +,jk1

- ACjk tAxi L AXi Ax J 2xL Ax+, Ax, J
and . (64b)

L _ABK , ABK,j AT + +AT~ -

Once the new value for the pressure has been determined from Equation (63), the

velocities are updated:

UI ^^iw.' =u'~j..~ -fr-&8Pk/Ax (65a)
ul k - + I jl"Wk/X i+ (65 )

iV -,, V- 2k ijk /AX i
i-~~~~~,j~~~~k~
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v v-1v ij+½,k = Vi+½k + 6t P k/Ayj +, (65c)
ijlk = ij- k -t pi / 1 (65d)

wVj,+ = Wi,j,k+ tt i, jkAzk+, (65e)

and wv .=A , - -SPY.k'Az . (65f)wJk_ IkJok- 2 = WV k-'

This process is continued until the largest value of the divergence, computed from

Equation (62), is less than the user specified tolerance. This process can be accelerated

when 3 is multiplied by an over-relaxation parameter, 1.0 < o < 2.0. Values on the order

of 1.8 are often used, but care must be taken not to use too large a value lest the iteration

become unstable. 80

CR Option for the Second Projection Step

The second method present in IPST-VOF3D for accomplishing the correction step

in the two-step projection method is the conjugate residual technique. This technique,

which requires a symmetric positive definite system of equations for assurance of a

solution, is described in detail by Chandra. 90

Here, The numerical steps needed to solve the system of equations using the CR

method are presented. To speed convergence, a preconditioned form of the conjugate

residual method is used based on diagonal scaling. 90 Preconditioning modifies the

condition number of the system of equations allowing a more rapid solution.

Beginning with a system of equations (in this case the PPE) in matrix form,

Ax = f, (66)

which is assumed to be symmetric and positive definite, the conjugate residual technique

seeks to minimize the function
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E 2(i) [x - , A2 (x - )], (67)

where [.,.] denotes an inner product and x is an approximation of the true solution x

(minimizing E, (x) - [x - x, A' (x - i)] yields the more widely known conjugate gradient

method). For solution of the Poisson pressure equation, minimizing E2 is equivalent to

driving the divergence towards zero, thereby enforcing the continuity equation. 80

As mentioned above, the computational technique uses a preconditioned form of

the conjugate residual method. First a preconditioning matrix, M, which is in some sense

close to A is chosen. In the case of diagonal scaling, M is the diagonal of the coefficient

matrix, A. Chandra presents the following algorithm for Preconditioned conjugate

residual method. 90

Step 1: Choose X0

Compute ro = f - Ax o

Solve Mr o = ro

Set po = ro

Compute the matrix / vector product Ai o

Set Apo = Ai o and i = 0

Step 2: Solve the system Mqi =Ap1 (69)

Step 3: Compute
ai =[ri,Ari]/[Ap,qi ]

Xi+, =x i + aip

ri+ = ri - aiqi
(70)

bi = [r+,, IAri+ ]/['i , A ri ]

Pi+l = ri+ + bip

and Api+, = Ari+, + bApi

Step 4: If xi+ is sufficiently close to x, terminate the iteration process;
Else set i = i + 1 and go to Step 2. (71)
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After the Poisson equation for pressure is solved to yield the new pressure field,

the velocity field is updated using a finite difference form of Equation.(57):

Ui+jk = i+ - t (+ -P )/i ' (72a)
n+1 =j n \ i+jk - - ijk /i+b ' ) 2

V ijj+½,k i=j+,k -t(6Pi+ k- j)/(riAy/) (72b)

n+1 - n ( +and w = (ik+ -ot (kOP, ,+ OP+ )/ (72c)

Free Surface Cell Boundary Conditions

Now that I have established a technique for solving the NSE, I turn my attention

to the treatment of boundary conditions at the interface between the liquid and vapor

phases. First, I present the algorithms used to compute the surface curvature, followed by

a description of the velocity boundary conditions near the interface. Finally, I discuss the

difficulties in applying the pressure discontinuity imposed by the surface tension force at

the interface. In the following section, this discontinuity will be modified to include the

deviatoric normal stress in the liquid phase and pressure variations in the vapor phase.

Surface Force Computation

For simplicity I will present the surface curvature finite difference formulas for

problems with constant grid spacing. The more complex formulas for variable grids are

presented by Torrey et al. 81 and may be deduced from the source code listing presented in

Appendix IX. Here, I present only the formulas for Cartesian coordinates (which were

not present in the NASA-VOF3D program), Torrey et al. 81 present the cylindrical

coordinate formulas.
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Only the formula for the surface curvature at an interface with its normal most

nearly in the x-direction is presented. In Cartesian coordinates, the y and z direction

formulas are available by rotation. The discontinuity in the pressure at the interface due

to surface tension, PS, is computed from

i(j y k I 1 (v+H ,+,j- ),k

pressure is also divided by the liquid phase density), H refers to the y-direction (73)1 - Hz Hx 

i+2 l+Hy + i,j,k+½ y z ij,k4

where a7 is the surface tension divided by the liquid phase density (remember that the

pressure is also divided by the liquid phase density), Hx refers to the y-direction

derivative of the height function in the x-direction, which is defined as

HiJ: = E [1 + ACj.j (Fi.j, - l)]Ax,,. (74)
i'=i-2

The partial derivatives needed to compute the surface curvature use nine point

computational grids surrounding the surface point of interest. The resulting formulas for

the derivatives with respect to the y-direction are

H x j+k = 24y (Hj+Jk+l + 22H;j+lk + Hj+lk-] - H, k+l -22Hjk - Hj ,k), (75a)Yi,j+½,k 24/y

Hx = 21 (Hi,, k+ +22Hjxk + Hi -H ' -22Hixj,,k -H j,,k-_), (75b)

Hx k = I (7Hxj+~,k+l 8Hxj k+l + Hj-l,k+ -Hij+l,k + 8Hj,k -
7 H j-,,k) (75C)

and ij,k+ =2 (7H (75d)Iand Hx = I i,j+lk 8Hk iHj-Ik i Hxj-I,k-1 + 8Hi,j,k_ 1 - 7Hxjl,k_ 1 (75d)
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Similarly, the derivatives with respect to the z-direction are

Hxzi~j~k{ 1 (Hi ,+l,k+I + H 22Hik+l + Hj + - Hi22 ,k - ij-l.kzk+ (Hj+l,k+l + 22Hj+ + H j- k+-HX jjk -H ,k) (76a)H'j',k½1 ( 24 Hx

Hz i24Z (Hi'j+lk + 22Hjk + Hi - Hix+ -22H - - H ik), (76b)

24 z i, i ,i,j+k,-H .k =- (7Hj+, k+l -8Hj+, k Hij+,k- -Hij k+l + 8Hj ,k -7Hijk_,,) (76c)

and H = (7Hik+l -8Hj k+HX, -H +8Hxk -7HX -). (76d)
an Hij-½'k - 12 iZj-, i -~-

Treatment of a dynamic contact line

The formulation presented above for computing the pressure discontinuity due to

surface tension is valid so long as the interface between the liquid and vapor phases does

not intersect a solid boundary. When this situation occurs, a contact point in two-

dimensions or line in three-dimensions occurs. This contact is typically classified as

either static or dynamic depending on the motion of the contact point or line relative to

the wall (Figure 4 above). The NASA-VOF2D 80 and NASA-VOF3D 81 programs contain

limited options for treating dynamic contact points, but make no provision for treating

static contact points or lines.

A method to treat dynamic contact points was developed by Torrey et al. 80 ,8 1 The

terms in Equation (73) of the form

(H /v1+1+ +Hx 2 (77)

are equivalent to the tension on a discrete "patch" of the interface in the y-direction on the

right side of the patch. If the free surface intersects a wall, this tension must be replaced

with a wall adhesion force which is equal to the cosine of the user specified contact angle.
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Application of the surface pressure as a pressure boundary condition at the interface

So far I have outlined methods for computing the surface pressure discontinuity

due to the presence of surface tension or wall adhesion. In the following section, I

discuss additions to include the liquid phase deviatoric normal stress and relax the

assumption of constant vapor phase pressure. With the surface pressure determined, it is

necessary to interpolate (or extrapolate) the surface pressure from the location of the

interface to the center of the free surface cell. This is accomplished by making use of a

flag array indicating the adjacent computational cell to be used as an interpolation

neighbor. The interpolation factor Tq is computed from the distances shown in Figure 9,

T1=Ac / Ax. (78)

The pressure at the center of the free surface cell is then computed from

Pij,k = (1 -)Pn +TlPs (79)

where Pn is the pressure in the neighboring cell and Ps is the pressure at the free surface

due to the surface tension or wall adhesion forces. As mentioned above, P, has been

expanded to include the vapor phase pressure and liquid phase deviatoric normal stress.

Surface

Interpolation
Neighbor

Figure 9. Definition of interpolation geometry.
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Solution of the F-Convection Equation

The donor-acceptor algorithm used to solve the F-convection equation is the same

as that used in the NASA-VOF2D and NASA-VOF3D computational techniques. First, I

state the principles used to derive this algorithm, followed by a discussion of its

implementation. More detailed descriptions are presented by Torrey et al. 80; 8 1

"The convection algorithms use a form of donor-acceptor differencing
which is designed to (1) preserve the sharp definition of free boundaries,
which we denote here as fluid interfaces; (2) avoid negative diffusion
truncation errors; and (3) not flux more fluid, or more void, across a
computing cell interface than the cell losing the flux contains. The
algorithms also contain features designed to suppress the appearance of
spurious small wisps of fluid."8 1

Generally, the F-convection equation (35) is solved using an explicit finite

difference formulation,

F.^ -+ F"1 - ___' ___ i+j AR J+ k i+;.jk i+yJ, k i , -r i -2j k i-2,j k i-U .j.k

ABK , F" vn', r -ABK U Fn+½ v n+- - , AR-,k ,-j-,k k (80j,kFi, =F+½ 8t i+½+½j,ki+½.LjrkAi+y,j,k-ABK ,FiTw vn+1 - ABKT F.w +- vn+'
i,j+,j-,k i,j-2,k i,+ kj- k i-,k j-,k----r,-- A-Y^- j (80)

+ i,j,k+1 ,j,k+~ i,j,k+ k i'j,k- E ij,k-2 i,j,k-

AZk ..-Az 

where the F values are known at the half time steps because of their position in the

iterative process. Since for volume of fluid function F is known at the cell centers but is

needed at the cell faces in Equation (80), some form of interpolation is required. If a

simple average is used, a second order accurate central difference scheme results tending ,

to smear the interface. 80 ,81
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Therefore, the flux of fluid across each boundary of the computational cell is

determined from the donor-acceptor algorithm. First, the donor and acceptor cells, FD

and FA, respectively, are defined as the upstream and downstream cells based on the

velocity in the direction normal to the face of interest. Next, the value of F at the

interface, FAD, is chosen to be either FD or FA by an algorithm which attempts to impose

the first two criteria above. Finally, FAD is modified to impose the third criterion above.

The choice of FAD is made by choosing FD if the donor cell contains fluid or if the

donor cell is nearly tangential to the local surface. If the cell is nearly normal to the

interface or the acceptor cell is a void cell, FA is chosen. This algorithm ensures that the.

donor cell is nearly full before fluid is convected into an empty acceptor cell and assists in

limiting the generation of "spurious wisps" of fluid. 81

Once FAD has been chosen, corrections to limit the flux are imposed. As an

example, the formula at the right face of a computational cell becomes

FADV = sgn(Vx) MIN(FADIV I + CF, FD (XID++ -D ) ) (81)

where V, = u+'t, (82a)i~j jk (82a)

CF = MAX[((F) - FAD)IVx I - (F) - FD)(XlD++ - XID-), 0.o], (82c)

and (F) =MAX(FD, FDM, 0.1) (82b)

with FDM defined as the upstream neighbor to FD.

The first two options for (F) increase the accuracy of the convection process

while the third limits convection by the CF term until the donor cell (or its neighbor) has

become at lease 10% full. This operation again helps to limit the formation of wisps of

fluid. Generally, the MIN statement in Equation (81) ensures that a cell does not give up
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more fluid than it contains, and the MAX statement in the definition of CF prevents more

void from being convected than is present.

Time Step Limitations

The final step in describing the numerical algorithm used in the IPST-VOF3D

computational technique is to discuss the time step limitations. These limitations are

general guidelines; cases exist where they are both too restrictive and not restrictive

enough. Care should be taken to remember the difference between numerical stability

and numerical accuracy. Just because a simulation is numerically stable does not mean

that it is an accurate representation of the physical problem.

Next, I describe three primary limiting conditions for the time step; a convective

limit, a diffusive limit, and a capillary limit. The absolute convective limit derives from

the Courant condition which implies that a particle of fluid may not be convected further

than one computational cell during a single time step,

e8t. <MINf Ix, yj ,j (83)

where MIN is the minimum value taken over the entire computational mesh. Typically, a

more restrictive limit, CON 86tonv, where CON = 0.4 (defined in subroutine DELTADJ)

is required for numerical stability. This yields an additional constraint on the SOLA

upwind differencing parameter, c. If SOLA differencing is used,

o > 1.2 CON = 0.48 (84)

when CON = 0.4.81
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The diffusive stability limit,

tvisc = 3v(x_2+ y 2 + z-2), (85)

is often the most restrictive condition for problems at low Reynolds numbers. 81 When

using the three-dimensional program to solve two-dimensional problems (normally done

using a "sandwich" domain with one fluid cell between two slip boundary cells) this

limitation can be overly restrictive, so the two dimensional analogue,

8tvisc v(k ) (86)

may be used (two-dimensional problems are currently only supported in the x-z and r-z

planes for Cartesian and cylindrical coordinates, respectively).

The final time step limitation is due to capillary forces. A capillary surface wave

must not be allowed to travel through more than one computational cell during a time

step. This is approximated by the limitation

p MIN(8x, y, 8zk)y S
tcap = 8 (87)

where, as above, the two-dimensional analogue does not include the y-direction cell

size.8 1
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MAJOR ADDITIONS TO THE NUMERICAL TECHNIQUE

In addition to the third order accurate techniques for approximating the advective

terms in the NSE discussed earlier and the extension of the pressure discontinuity due to

surface tension to Cartesian coordinates, there have been several other major additions to

the computational technique. These include a method for treating static contact points or

lines, inclusion of the liquid phase deviatoric normal stress to the interfacial boundary

condition, solution of the potential flow in the vapor phase to relax the assumption of

constant vapor phase pressure, and replacement of the graphical output options. These

modifications are described in detail in this section.

STATIC CONTACT LINE TREATMENT

Many free surface problems have a contact point or line where the liquid, vapor,

and solid phases intersect. As described above, static contact is the intersection between

vapor, liquid, and solid phases where the point of contact is fixed relative to the solid

surface but the contact angle may vary. The varying contact angle is part of the solution

and may have a significant effect on the free surface shape. An example of a problem

where this phenomenon is important is the die-swell problem described below.

Previous computational techniques using the VOF approach to track the fluid

within a fixed Eulerian mesh8,80 8 i have handled the presence of a dynamic contact line

in the manner described in the previous section. That is, the pressure discontinuity at the

interface between the liquid and vapor phases in the cell adjacent to the wall was

modified to account for the wall adhesion force based on a user specified contact angle.

If both the point (or line) of contact and the contact angle are specified in advance, then
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the mathematical model of the contact point (or line) is over specified. Thus, either the

location or the angle of contact may be specified for a given situation, but not both.

In my treatment of a static contact point (or line), the contact angle is computed

from the local fluid configuration and the known contact point (or line). The wall

adhesion force needed in the pressure discontinuity is then computed from this variable

contact angle in the same manner as for the dynamic contact model described above.

Additional modifications are required in the treatment of the velocity boundary

conditions in the region of the static contact point. 40 ,41 With reference to Figure 10, the

velocity boundary condition in the computational cell upstream from the contact point is

the same as that for a no-slip wall, i.e. the fictitious velocity inside the die wall is adjusted

to enforce zero velocity at the wall. The velocity boundary condition for the downstream

computational cell is similar to that of a slip wall, i.e. the velocity inside the wall is set

equal to the fluid velocity. Thus, if the explicit projection step for the upstream cell, (ij),

is being computed, the no-slip boundary condition,

Ui+½,j+l =-Ui+½,j, (88)=.i,,.,-u,. ~(88)

is used. If the explicit projection step for the downstream cell, (i+l,j), is being computed

then the slip boundary condition,

Ui.^+.j+l = U+l ,j (89)

is used. This separate treatment is necessary to reduce the effect of the stress singularity

in the interfacial boundary condition at the contact point.
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Tv.. -- Liquid
V ij. 1/2 * Vij1/2

General Fluid Motion

Figure 10. Velocity boundary conditions near a static contact point.

LIQUID PHASE DEVIATORIC NORMAL STRESS

The majority of the volume tracking techniques for free surface flows use

Laplace's formula,

P = P + K, (90)

as the interfacial boundary condition arising from the normal stress balance. I have added

an option to include the effect of the liquid phase deviatoric stress in the interfacial

boundary condition.

The liquid phase deviatoric normal stress at the interface is computed from the

complete deviatoric stress tensor and the unit vector normal to the interface, n-' -n. This

requires knowledge of the unit normal vector and all of the components.of the deviatoric

stress tensor.

The local unit normal vector is computed in the manner used by Torrey et al. 8 1

during surface tension computations. Once the coordinate axis most nearly normal to the
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interface has been determined and the local height functions used to compute the surface

curvature have been determined, the unit vector normal to the interface is calculated from

the gradient of the height function.

Next, the components of the deviatoric stress tensor are computed using the

provisional velocity field, uii, where only velocities within the liquid phase are included

in the finite difference formulas for the velocity gradients. For example, in two

dimensions with reference to Figure 11, the components of the deviatoric stress tensor,

assuming constant grid spacing, are computed as:

X, = 2g + j (91a)
Ax

(1 +2F jk) -4Fj -(1- 2Fj)v. 

and Xxy=yx = {t .i+jt i ij i+fj-1 i-ij-l + lj++ i-*,j+j) (91c)2Ay 2Ax

The deviatoric stress component most nearly normal to the interface is computed with a

finite difference formula that maintains second order accuracy at the location of the

interface anywhere within the free surface cell, Equation (9lb). The remaining

components of the deviatoric stress are computed using finite difference formulas which

are at best second order accurate and at worst first order accurate. With the deviatoric

stress tensor and the unit normal vector available, the deviatoric normal stress is

computed,

deviatoric normal stress = n re * n (92)

and used in the free surface boundary condition.
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An alternative formulation for the computation of the deviatoric normal stress was

developed and is presented in Appendix V. This formulation uses the continuity equation

and two zero tangential stress boundary conditions to eliminate three of the components

of the deviatoric stress tensor. I chose to use the full implementation because the

additional computational cost is small (only a few of the computational cells are free

surface cells) and future extension of the computational technique to handle non-

Newtonian and turbulent flows is expected to be simpler with the full deviatoric stress.

Figure 11. Example configuration for interfacial deviatoric stress computation.

SOLUTION OF POTENTIAL FLOW IN THE VAPOR PHASE

Perhaps the single largest enhancement of the capabilities in the IPST-VOF3D

computational technique over previously available VOF-based computational techniques

is the relaxation of the constant vapor phase pressure assumption. For many free surface
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problems of interest to industry, the physical stability of the interface between the liquid

and vapor phases to disturbances is extremely important. In many cases, such as the

stability of a thin viscous sheet flowing through an inviscid vapor phase, 58 variations in

pressure in the vapor phase is the primary driving force for the instability. Thus, in order

to accurately study the stability of these systems, it is necessary to allow the pressure in

the vapor phase to vary.

In keeping with the earlier assumption that the vapor phase is inviscid and adding

the assumption that flow in the vapor phase is irrotational (this assumption is always

valid if the vapor phase is initially stationary and inviscid 91), then the vapor phase can be

represented by potential flow. Thus, the vapor phase potential is defined as,

UV= VV,, (93)

which, after substitution of the vapor phase velocity into the continuity equation, yields

Laplace's equation for the vapor phase velocity potential;

V2qv =0. (94)

Under the inviscid and irrotational assumptions when the flow is governed by potential

flow. Thus, the unsteady Bernoulli equation,

avt+ luI2 P, 2 (95)
at pv

can be used to relate to vapor phase pressure, vapor phase velocity potential and the vapor

phase velocity. After rearranging, the unsteady Bernoulli equation becomes

p.=pav _ 1u12, (96)PI =-_PV at 2

which is used to compute the vapor phase pressure as a function of position and time.
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The boundary conditions for the vapor phase potential are derived from the vapor 

phase potential definition in Equation (93). Therefore, the condition at the boundaries of

the vapor phase are Neuman (derivative) conditions where the normal derivative of the

vapor phase velocity potential is equal to the normal velocity. On the fixed domain

boundaries, this condition is easily imposed; however, along the interface between the

liquid and vapor phases the Neuman boundary condition is more difficult to apply due to

the moving curved boundaries.

A reasonable amount of work has been done previously on methods to accurately

treat Neuman or Robbins (mixed constant and derivative) boundary conditions along

curved boundaries. Kantorovich and Krylov 92 present a first order accurate method for

treating the Neuman boundary condition in two dimensions along a curved boundary. In

this formulation, the value of the bulk function, q, at an interface point of interest is

defined by

. 2

Vnormal +a bioi

=0 -i1 (97)

ibi

where vnrna, is the normal velocity at the interface and two points within the vapor phase

are required, one on either side of the normal vector. The coefficients in Equation (97),

bi, are determined by solution of the system of equations,

tl t2 J[b2]J[°] (98)* [h: I- -]1 = (98)
where ni and t1 in equation (98) are the distances between the surface point and the two

points within the domain in the directions normal and tangential to the interface,

respectively. Since I will be using a second order accurate approximation of Laplace's
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equation for the vapor phase potential in the regions away from the interface and near the

fixed boundaries of the computational domain, a second order accurate method for

treating the Neuman boundary condition on a curved boundary is needed.

Bramble and Hubbard 93 present a second order accurate technique for solving

Poisson's equation in a region with curved boundaries and Robbins boundary conditions.

Our problem, solving Laplace's equation in a region with curved boundaries and Neuman

boundary conditions, is merely a subset of Bramble and Hubbard's more general problem.

They prove that it is possible, within certain constraints surrounding the grid size and

local curvature of the interface, to choose three points within the vapor phase which allow

computation of positive coefficients. Positive coefficients are necessary to ensure that the

resulting system of equations is positive definite and thus, the iterative scheme for solving

the system of equations will converge.

The coefficients for the second order accurate formula in two dimensions using

three interpolation points is

ni n2 n3 a, 1F

t, t 2 t 3 a 2 = 0 (99)

t2 _ n t 2 - n 2 t2 _ n 3 a 3 0

With the proper choice of points to yield positive values for ai, the value of the vapor

phase potential at the interface is defined as

V normal 3 - 3

v +norma +vt ia ij
qbo= 3 = (100)

3= .Yai

A similar technique that is third order accurate was developed by Van Linde9 4 ,9 5

but is not included in this computational technique. Since the bulk of the liquid phase
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differencing is only second order accurate in the spatial derivatives, the extra overhead

required for a third order accurate solution of the vapor phase velocity potential does not

seem warranted.

Techniques in the literature are available only for two-dimensions. Since I have

developed a three-dimensional computational technique for the other aspects of the

problem, it was necessary to extend the method of Kantorovich and Krylov 92 and that of

Bramble and Hubbard 93 to three dimensions. The details of this process are presented in

Appendix VI.

The three-dimensional first order accurate formula derived in Appendix VI is

3

Vnormal + ,bi i

o= -'-3 - (101)

,bi

where three points within the vapor phase must be chosen and the coefficients are

obtained from solution of

ni n2 n3 b, 1

s i s2 S3 b2 = 0 (102)

t, t 2 t3 _b3 0

where ni, s;, and t, are the distances from the surface point to the domain points in the

normal and two orthogonal tangential directions, respectively. The only requirement to

ensure positive coefficients in the first order accurate case is the three-dimensional

analogue of the two-dimensional criterion, that the normal vector must lie within the

volume enclosed by the vectors from the surface point to the vapor phase domain points.
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The second order accurate formula for three-dimensions is also derived in

Appendix VI and represented as

'avm6 avnommal 6 6V normal + }norma I Zn a in i t i +Ea o ii

Vnom~n+ ajn s. + ajn()nonai saS i=l 3 ant, +aaiti
o06 i' i=1 (103)

lai
i=l

where the coefficients are obtained from solution of

n, n2 n3 n4 n5 n6 a, 1

s- s2 S3 S4 S5 s6 a2 0

t, t2 t 3 t 4 t 5 t 6 a3 0
s2 - 2 s2 - 2 s2 n2 s 2 n2 52 2- n a (104)-n 1 2 2 3l3 4 5 a4- 0 s 2-n 2st-n 2 s 2-n 2s 5- n ~s - n a
2 2 2 2 2 2 2 2 2 2 2n t2 - n2 t 32- n33 t 4- n4 t5 n t 6 - a 0

st, s2t 2 s3t 3 s4t 4 s5t5 s6t 6 _ a6 0

At this point, no proof has been developed that a collection of points must exist where the

coefficients are all positive. However, in practice it has been possible to determine an

appropriate set of points in the majority of cases. In the few cases where this has not been

possible, the algorithm reverts to the first order accurate formula just described. The

fraction of cells where the accuracy of the normal velocity approximation is reduced is

generally less than 1% of the interfacial cells and thus is not expected to affect the

accuracy of the overall solution. It has also been noted that, for most choices of grid

points, the sixth equation can be neglected because the sixth coefficient is nearly zero and

approximately the same coefficients are obtained using only the first five equations.

OUTPUT OPTIONS

The choice of graphical and textual output options are controlled by the program

input variables LPR, PLTDT, and PRTDT. These and the remaining input variable are
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documented along with the program description in Appendix I. Input for LPR has integer

values from 0 to 3 yielding options: no output, plots only, plots and prints, and prints

only, respectively. When the printing or plotting options are active, PLTDT and PRTDT

control the frequency of plotting and printing, respectively.

The printing option creates a text listing of the velocity components, pressure,

surface pressure, VOF function (F), cell orientation flags, SOR function ([), interpolation

function (ri of Equ. 76), and the divergence.

The plotting option has been completely changed from the NASA-VOF2D 80 and

NASA-VOF3D 8 1 programs. These programs contained integrated graphics routines for

producing plots of the free surface location, velocity vector, and pressure contour plots.

These routines called low level graphics libraries that were specific to the Los Alamos

computing environments. I replaced the graphics routines in the earlier programs with a

subroutine (DRAW) that produces data files suitable as input to the commercial scientific

visualization program Data VisualizerTM. Here, I present a brief discussion of Data

Visualizer's™TM wave file format (a more complete description can be found in the Data

VisualizerTM programmer's manual 96).

The input into Data VisualizerTM is in the form of a set of grid points, a topology

connecting these grid points, and the data stored at these grid points. There are several

different types of topologies possible ranging from structured evenly spaced grids to

unstructured grids with extremely complex topology.

The principle output from the DRAW subroutine consists of two parts. First a

grid data file gives the grid, topology, and information that doesn't vary with time (the

volume of each computational cell open to flow). Second, when graphical information is
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desired, the simulation data is output including the three components of velocity, the

liquid phase pressure, the fraction of each computational cell containing fluid, and the

vapor phase potential. In order to produce a Data VisualizerTM input file, the variable

data file is appended to the grid file.

Additional graphical output can be obtained by periodically storing subsets of the

data in auxiliary storage files and using software such as a spreadsheet to plot the

resulting output. This is most easily accomplished through modification of the file

draw.pat, the appropriate place to modify the DRAW subroutine.

The final option for output is based on the restart file. The program, at a user

specified internal, saves all of the contents of the common blocks to a data file. This

allows the program to be restarted from the saved data if a case needs to be run for a

longer time. It also serves as a useful method to "checkpoint" the program. This means

that the program can be restarted if it is interrupted during execution (e.g. the computer

has been shut down while the program is running). It is possible to write a simple

program that reads in a restart file and extracts the necessary data from. This requires a

main program that calls the RDTAPE subroutine to read in the restart file and then prints

the appropriate data.

;? .;c'r ! ; a .l .: .' .
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PRESENTATION OF RESULTS

One of the most important aspects of developing any computational technique is

the process of validating the model to ensure that it produces accurate results for test

problems where either experimental or other computational results are available. Thus,

the presentation of results in my computational work will include several validation

problems testing the different features of the computational technique as well as some

problems where comparative data may not be available but the results are of interest.

The validation problems include the lid-driven cavity problem for testing the

numerical accuracy of the underlying NSE solver; the die-swell problem for testing the

free surface capability, the static contact point treatment, and the deviatoric normal stress

implementation; and the growth of disturbances in a thin viscous sheet flowing through a

stagnant vapor phase. Additional problems studied include the flow under a blade in

short dwell coating application 9 7 ,98 and rimming flow of condensate in a paper drying

cylinder.9 9

In the next several sections, I present the results from each of the test problems

just described. Each test problem consists of a description of the problem studied, a brief

discussion of results available for comparison, any program modifications and input data

necessary to run these cases, and the results themselves.

FLOW IN A TWO-DIMENSIONAL LID-DRIVEN CAVITY

The lid-driven cavity (LDC) problem is a classic test problem for any NSE

solution technique. This problem is often used because of its simple geometry having no

inflow or outflow boundary conditions with which to contend, while still having a
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complex flow field. The problem consists of a box filled with fluid having three

stationary walls with the top wall moving (Figure 12).

V 
A

C D h

^__---^v

<'- w- >
Figure 12. Schematic of the lid-driven cavity.

The dimensionless parameters describing the lid-driven cavity, with reference to

Figure 12, are the Reynolds number,

Re = hV/v, (105)

and the cavity aspect ratio,

AR = h/W, (106)

where h is the height of the cavity, V is the velocity of the cavity lid, v is the kinematic

viscosity of the fluid filling the box, and W is the width of the cavity.

As a test of the accuracy of IPST-VOF3D and especially the third order accurate

techniques for the advective terms in the NSE, I studied the lid-driven cavity problem

with Re = 1000 and AR = 1. For comparison, the results of Ghia et al.1 00 are used which
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are among the most accurate available for this highly non-linear problem. Their results

were obtained using a multigrid technique on a computational grid with 128 cells in each

direction. Our results were obtained on two different computational grids with only 40

computational cells in each direction. The first grid used constant cell spacing while the

second was "graded" having smaller cells adjacent to the walls and larger cells in the

center of the cavity. The variable grid spacing allows the mesh to be refined in the

regions of high gradients, while larger cells are used in regions of lower gradients.

Each of the four differencing techniques for the advective terms in the NSE

(SOLA with a = 0.5, third order accurate upwind, QUICK differencing, and the method

of Kawamura and Kuwahara) were tested using both the constant and variable grids. The

results of the horizontal component of velocity along the vertical centerline (line AB in

Figure 12) and the vertical component of velocity along the horizontal centerline (line CD

in Figure 12) are presented in Figures 13 and 14, respectively. The data for these plots

was obtained by reading in the restart files and printing the velocity components along the

centerlines as discussed above.

The relative accuracy of the simulations is determined by analysis of the

reproduction of the local minimum in Figure 13 and the two local extrema in Figure 14.

The average error in reproducing these extrema is presented in Table 2. While using less

than 10% the number of computational cells as those used by Ghia et al., 100 this

computational technique was able to get within 5% of their results. All of the third order

accurate techniques give acceptable results. Unfortunately, the method of Kawamura and

Kuwahara drops from best to worst of the third order accurate methods as the grid is

changed from constant to variable. This shift in position is attributed to the inexact

nature of the derivation for the variable grid version of Kawamura and Kuwahara's
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method. Overall, the third order accurate upwind differencing technique gives the most

accurate results for this problem.
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Figure 14. Plots of the vertical component of velocity along the horizontal centerline
A Ghia et al., 10 0 variable grid, and - - - constant grid.

Table 2. Error for the LDC problem at Re = 1000.

Convective terms Grid
differencing scheme Constant Variable

SOLA (a = 0.5) 54.3 % 38.8 %
QUICK 15.4 % 4.8 %
Third order accurate upwind 13.0 % 4.2 %
Kawamura and Kuwahara 12.4 % 6.7 %

Using constant grid spacing, Kawai and Ando 10 1 compared the same three third

order techniques with the results from Ghia et al.100 Their approach used the
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streamfunction-vorticity formulation for the NSE and results were obtained on a 60 by 60

computational mesh. Comparison of Kawai and Ando's results for the minimum

horizontal velocity component along the vertical centerline with results obtained using

IPST-VOF3D is presented in Table 3 with the minimum velocity of -0.3829 obtained by

Ghia et al. 100 for comparison.

Table 3. Minimum Velocity along vertical centerline for LDC problem at Re = 1000.

Convective terms Kawai Grid
differencing scheme and Ando Constant Variable

QUICK -0.3680 -0.3340 -0.3676
Third order accurate upwind -0.3552 -0.3449 -0.3731
Kawamura and Kuwahara -0.3473 -0.3576 -0.3666

In Kawai and Ando's analysis, QUICK differencing yielded the most accurate

result which is inconsistent with the IPST-VOF3D results. In this thesis, third order

accurate upwind differencing was the most accurate for the variable grid and more

accurate than QUICK using either computational grid. Kawai and Ando also indicate

that, for their formulation, QUICK differencing is the only third order scheme tested to

remain stable as the Reynolds number is increased above 1000.101

The choice of which third order accurate scheme (QUICK differencing or

Agarwal's third order accurate upwind differencing) to use for subsequent simulations is

by no means clear. Both techniques give comparable accuracy for the lid-driven cavity

problem and I have discovered no numerical stability problems with either technique.

The majority of the simulations conducted in this thesis have been done using QUICK

differencing, primarily due to its reputation for stability and accuracy in the literature.
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Problem set up consists of making necessary modifications to the source code of

the program and specifying the appropriate input data. For the lid-driven cavity problem,

there are no modifications to the source code required and the sample input data for the

case with variable grid spacing using SOLA differencing are presented in Table 4.

Switching to the third order accurate differencing schemes is accomplished by setting the

variable ALPHA in the input data to 2, 3, and 4 for third order accurate upwind, QUICK,

and Kawamura and Kuwahara's methods, respectively. The constant grid spacing cases

are obtained by modifying the grid setup in Table 4 for the x and z directions to be

nkx=l, xl=0.0, 1.0, xc=0.5, nxl=20, nxr=20, dxmn=1.0,

and

nkz=l, zl=0.0, 1.0, zc=0.5, nzl=20, nzr=20, dzmn=1.0,

where the variables are defined as part of the input data in Appendix I and the mechanism

for setting up a computational grid was discussed previously.

Table 4. Input data for variable grid LDC with SOLA differencing.

$xput
jnm=' vof3d7 ',name=' LDC with SOLA and variable grid', nfcal=l,

iequib=0, icsurf=0, idefm=l, rhof=1.0, cyl=0.0, delt=0.0005,

velmx=1.0, nu=0.001, isor=0, epsi=0.001, wi=0.0,

wl=2, wr=2, wt=2, wb=2, wf=l, wbk=l, utw=1.0,
sigma=0.0, lpr=l, cangle=90.0, isurft=0, alpha=1.0,

dtcrmx=0.05, flht=1.5, twfin=40.0, omg=1.3, pltdt=40.0,

prtdt=40.0, tddt=10.0, tlimd=0.0, td=-l, t=0.0,

$end
$meshgn

nkx=2, xl=0.0, 0.5, 1.0, xc=0.0125, 0.9875,

nxl=l, 19, nxr=19, 1, dxmn=0.0125, 0.0125,

nky=l, yl=0.0, 1.0, yc=1.0, nyl=l, nyr=0, dymn=1.0,

nkz=2, zl=0.0, 0.5, 1.0, zc=0.0125, 0.9875,

nzl=l, 19, nzr=19, 1, dzmn=0.0125, 0.0125,

nobs=0,
$end
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THE DIE-SWELL PHENOMENON

When a fluid is pushed out of the end of die at a low speed it will tend to swell.

This die-swell phenomenon is a good test problem for algorithms to numerically study

free surface flows. As the Reynolds number of the flow is increased, the amount of

swelling decreases until, ultimately, the fluid shrinks (commonly referred to as negative

die-swell).

In the die-swell phenomenon, the deviatoric normal stress component of the

interfacial boundary condition is extremely important as the fluid near the corner of the

die transforms from a no-slip condition inside the die to the zero shear stress condition

along the free surface. 4 0,4 1 Thus, this problem serves as an excellent test problem for the

addition of the liquid phase deviatoric stress to the interfacial boundary condition. The

remaining features of the computational technique tested by the die-swell problem are the

static contact line treatment and the Cartesian coordinate surface tension algorithm.

Figure 15 shows a sample geometry for the die-swell problem which can be

characterized by two dimensionless groups, the Reynolds Number,

Re = 2hV/v, (107)

and the Capillary number

Ca = Vg/c, (108)

where h is the slot half height, V is the average velocity of the liquid phase in the slot, v is

the liquid phase kinematic viscosity, gp is the Newtonian viscosity of the liquid phase, and

o is the surface tension between the liquid and vapor phases. The final die swell is

defined by

% Die-Swell = 100(h,we,,/h-l). (109)

where Hswell is the final half thickness of the liquid phase.
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Figure 15. Schematic of the die-swell problem.

Two test cases were studied, the first without surface tension to study the effect of

the deviatoric stress alone and the second adds the effect of surface tension. Specifically,

the first is Re = 300 and Ca = oo while the second is Re = 75 and Ca = 0.5. The static

contact line additions are also tested in both cases. The first case examines the effect of

the velocity adjustments due to the no-slip to slip transition alone, while the second case

tests computation of the wall adhesion force at the static contact point, in addition to the

velocity adjustments.

As an example, the input data for the Re = 75, Ca = 0.5 case with domain length

of 20h and minimum cell spacing 0.03333h are presented in Table 5. The problem is set

up using a symmetry plane and having an entrance region within the die of 3.0h with a

parabolic inlet velocity profile. The average inlet velocity, the slot half height, and the

viscosity are all set to one, while the remaining parameters of density and surface tension

are computed from the Reynolds and capillary numbers. Longer domains are examined

by adding additional computational cells to the end of the existing computational domain.

Table 5. Sample input data for the die-swell problem at Re = 75 and Ca = 0.5.

$xput
jnm=' vof3d ',name=' die swell test case 12/20/91 ', nfcal=l,

iequib=0, icsurf=0, idefm=0, rhof=37.5, cyl=0.0, delt=0.005,

velmx=l.0, nu=0.0266666667, isor=0, epsi=0.001, wi=l.0,

sigma=0.0133333333, lpr=l, cangle=90.0, isurft=l, wt=3, wb=3,

alpha=3.0, flht=3.0, twfin=50.0, omg=1.0, pltdt=l.0,

prtdt=l.0, tddt=50.0, tlimd = 0.0, td=-l, t=0.0, dtcrmx=0.005,
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lvapor=O, rhog=O.0001, lvflag=O, islip=O, nfx=l, istress=l,

ifx(l)=32, kfx(l)=31, iorin(l,l)=2, iorin(2,1)=3, islp(l)=O,

$end

$meshgn

nkx=l,xl=0.0,1.3, xc=1.O, nxl=30, nxr=9, dxmn=l.0,

nky=l,yl=0.0,l.O, yc=l.0, nyl=l, nyr=O, dymn=l.0,

nkz=l,zl=0.0,20.0, zc=10.0, nzl=100, nzr=100, dzmn=l.O,

nobs=2,

oal=-l.0,0.0, oa2=0.0,0.0, obl=O.0,-1.O, ob2=0.0,0.0,

ocl=1.0,3.0, oc2=0.0,0.0, ioh=l,0,

$end

$fluidgn

$end

Modifications to the source code are required in bc.pat, draw.pat, setup.pat,

tildel.pat, tilde2.pat, and surcart.pat presented in Tables 6 through 11, respectively. The

modifications in bc.pat impose the parabolic profile as an inlet boundary condition and

the no-slip conditions along the interior boundaries. The addition in setup.pat provides

the parabolic velocity profile as an initial condition throughout the entrance region. The

changes in tildel.pat and tilde2.pat allow the treatment of the upstream and downstream

boundary conditions in the region of the static contact point. Finally, surcart.pat contains

the treatment of the surface tension force at the static contact point.

Table 6. Modifications in bc.pat for the die-swell problem.

c *** inlet boundary conditions

do i=l,ifx(l)-l

u(imax+i)=O.OdO

w(imax+i)=wi

1 *1.5dO*(l.OdO-(xi(i)*rx(ifx(l)-l))**2)

w(imax+i+ii5)=w(imax+i)

enddo

c *** die-edge boundary conditions

do k=l,kfx(l)-l

ijk=ii5*(k-1)+imax+ifx(l)

w(ijk)=-w(ijk-l)*delx(ijk)*rdx(ijk-l)

u(ijk-l)=O.OdO

enddo

kkk=ii5*(kfx(1)-l)+imax

do i=ifx(l),iml

u(kkk+i)=u(kkk+i+ii5)

w(kkk+i)=w(kkk+i+ii5)
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enddo
u(ii5*(kfx(l)-l)+imax+ifx(l)-l)=O.OdO

ccc end addition

Table 7. Modifications in draw.pat for the die-swell problem.

ccc addition to print out surface profile
write(2,'(/,'' time='', lpel2.4)') t

do k=2,kfx(l)

write(2,'(i6,3fl5.10)') k, zk(k), x(ifx(l)-l), x(ifx(2))

enddo

do k=kfx(l)+l,kml
temp4=O.OdO

do i=2,iml

ijk=imax+ii5*(k-l)+i
if (nf(ijk).ge.l.and.nf(ijk).le.6) then
temp4=x(i-3)+delx(i-2)*f(ijk-2)+delx(i-l)*f(ijk-1)

1 +delx(i)*f(ijk)+delx(i+l)*f(ijk+l)+delx(i+2)*f(ijk+2)

go to 2121
endif

enddo

2121 continue

write(2,'(i6,3fl5.10)') k, zk(k), temp4, temp2
enddo

ccc end addition

Table 8. Modifications in setup.pat for the die-swell problem.

ccc additon for parabolic initial condition
if (beta(ijk+ii5).gt.O.OdO.and.beta(ijk+ii5).ne.l.OdO)

1 w(ijk)=wi *1.5dO*(1.OdO-(xi(i)*rx(ifx(l)-l))**2)
ccc end additon

Table 9. Modifications in tildel.pat for the die-swell problem.

ccc addition for singularity at the static contact points
do itempl = 1, nfx

if (iorin(l,itempl).le.2) then
itemp2=-3+2*iorin(l,itempl)
itemp3=-3+iorin(2,itempl)
if (i.eq.ifx(itempl)-itemp2.and.

1 k.eq.kfx(itempl)-itemp3) then
templ=wn(ijk+itemp2)
wn(ijk+itemp2)=wn(ijk)
if (islp(itempl).eq.O.and.(islip.eq.O.or.

1 (nf(ijk+itemp3*ii2).eq.O.and.islip.eq.1)))
2 wn(ijk+itemp2)=-wn(ijk)

endif
else
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itemp3=-7+2*iorin(1,itempl)

itemp2=-l+iorin(2,itempl)
if (i.eq.ifx(itempl)-itemp2.and.

1 k.eq.kfx(itempl)-itemp3) then

templ=un(ijk+itemp3*ii2)

un(ijk+itemp3*ii2)=un(ijk)
if (islp(itempl).eq.O.and.(islip.eq.O.or.

1 (nf(ijk+itemp2).eq.0.and.islip.eq.0)))
2 un(ijk+itemp3*ii2)=-un(ijk)

endif

endif
enddo

ccc end addition

Table 10. Modifications in tilde2.pat for the die-swell problem.

ccc addition for singularity at the static contact points
do itempl=l,nfx

if (iorin(l,itempl).le.2) then
itemp2=-3+2*iorin(1,itempl)
if (i.eq.ifx(itempl)-itemp2.and.

1 k.eq.kfx(itempl)+3-iorin(2,itempl)) wn(ijk+itemp2)=templ

else
itemp2=-7+2*iorin(l,itempl)

if (i.eq.ifx(itempl)+l-iorin(2,itempl).and.

1 k.eq.kfx(itempl)-itemp2) un(ijk+itemp2*ii2)=templ

endif
enddo

ccc end addition

Table 11. Modifications in surcart.pat for the die-swell problem.

c +++ addition for static contact point
if (i.eq.ifx(l)-l.and.k.eq.kfx(l)+l) then

if (nf(ijk).eq.l.or.nf(ijk).eq.2) then

afs=O.OdO
else if (nf(ijk).eq.5.or.nf(ijk).eq.6) then

afe=O.OdO
endif
if (f(ijk).lt.0.5dO) then

templ=2.OdO*f(ijk)*delz(k)*rdx(i)

csang=templ/dsqrt(1.OdO+templ*templ)
else

temp2=2.OdO*(1.OdO-f(ijk))*delx(i)*rdz(k)

csang=l.OdO/dsqrt(1.OdO+temp2*temp2)
endif

endif
c +++ end addition
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Die-Swell with Re = 300 and Ca = 

The results from the die-swell problem at Re = 300, Ca = o are presented in

Table 12, where the computed die-swell ratio is recorded as a function of the length of the

computational domain and the size of the computational cells adjacent to the static

contact point. Since the deviatoric normal stress acting on the free surface is greatest near

the static contact point, the finest computational mesh is required in this region. The

number of computational cells remains constant while the minimum cell spacing is

adjusted in the computational cell nearest to the die corer. This leads to the smallest

cells near the die and largest cells near the symmetry plane. Generally, the die-swell ratio

decreases as the minimum cell spacing decreases or the computational domain length

increases. An asymptotic value of-15.66% is reached, in good agreement with literature

results of -15.52% and -15.24% reported by Omodei6 8 and FIDAP,7 1 respectively.

The actual surface profiles from several of the cases in Table 12 are presented in

Figure 16 where each chart consists of the surface profiles for the separate cases at a

given cell spacing. Only every tenth data point is presented to simplify the plots. The

initial portions of each figure are in good agreement, while small waves in the interfacial

position are seen as the domain length is increased.

Table 12. Results of solutions of the die-swell problem at Re = 300, Ca = oo.

Minimum Cell Spacing
0.04h 0.03h 0.02h I 0.01h

Domain
Length

20h -14.48% -14.92% -15.20% -15.12%
25h -14.78% -15.08% -15.52% -15.37%
30h -15.05% -15.14% -15.62% -15.53%
35h -15.19% -15.17% -15.66% -15.63%
40h -15.31% -15.21% -15.66% -15.67%



- 85 -

1--

0.96 

X 0.92-

S 0.88

0.84 
0 5 10 15 20 25 30 35 40

1

i 0.96

: 0.92-

0.88

0.84 I. .
0 5 10 15 20 25 30 35 40

1

i, 0.96

X 0.92

0.88-

0.84 
0 5 10 15 20 25 30 35 40

-i 0.96

X 0.92

E 0.88

0.84 , .
0 5 10 15 20 25 30 35 40

Domain Length - 20
Positior

-- 25 - 30 - 35 - 40

Figure 16. Surface profiles for domain lengths of 20H, 25H, 30H, 35H, and 40H with
minimum cell spacings of (a) 0.04H, (b) 0.03H, (c) 0.02H, and (d) 0.01H.

(a)

(b)

(c)

(d)



- 86 -

Die-Swell with Re = 75 and Ca = 0.5

The die-swell problem with surface tension was studied in a slightly different

manner. Here, the length of the computational domain was held constant at 20H while

the number of computational cells perpendicular to the direction of flow and the

minimum cell spacing adjacent to the static contact point were varied. The results of

these simulations are presented in Table 13. Note that certain combinations of cell

spacing and number of computational cells are not possible as indicated. This results

because not that many cells with the minimum cell spacing will fit within the

computational domain (e.g. 36 cells with a cell spading of 0.0333H yields 1.2H for the

die half height which is greater than H). The results for this test problem show a good

deal more scatter, but a majority of the cases fall within the range of the literature values

which are -11.16%,71 -10.92%, 102 and -10.48%.68 The surface profiles for the cases

along the diagonal of Table 13 are presented in Figure 17.

Table 13. Results of solutions of the die-swell problem at Re = 75 and Ca = 0.5.

Minimum Cell Spacing
0.0333h 0.0278h 0.0222h I 0.0167h 

Y-Direction
Computational

Cells

30 -10.99% -11.61% -11.38% -11.26%
36 *** -11.62% -11.43% -11.53%

45 ** ** -10.91% -11.37%
60 *** *** -11.05%

*** combination not possible
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minimum cell spacing --- 0.04 -- 0.03 A 0.02 - - 0.01

Figure 17. Surface profiles for RE = 75 and Ca = 0.5 (a) 0.0333H with 30 cells,
(b) 0.0278H with 36 cells, (c) 0.0222H with 45, and (d) 0.0167H with 60.

The Effect of the Deviatoric Stress in the Interfacial Boundary Condition

The importance of including the deviatoric stress in the interfacial boundary

condition for accurate solution of the die-swell problem has been discussed previously.

Here, simulations of the two cases discussed above solved with and without the inclusion

of the liquid phase deviatoric stress in the interfacial condition are presented.

Figures 18 and 19 show the effect of the deviatoric stress on specific cases

outlined in the Tables above. As expected, at the higher Reynolds number, Figure 18, the

effect of the deviatoric stress is less important than at the lower Reynolds number,

Figure 19. Regardless of the Reynolds number, the inclusion of the deviatoric stress in

the interfacial condition is necessary for accurate solution of the die-swell problem.
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-- [-- With viscous terms - - Without viscous terms

Figure 18. The effect of the viscous terms in the interfacial boundary condition for the
Re = 300, Ca = o case having a minimum cell spacing of 0.02 and a domain
length of 40.
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Figure 19. The effect of the viscous terms in the interfacial boundary condition for the
Re = 75, Ca = 0.5 case having a minimum cell spacing of 0.02 and 50
computational cells in the fluid half-height.

In summary, these results indicate that accurate solution of the die-swell problem

is possible provided the liquid phase deviatoric normal stress is included in the interfacial

boundary condition and there is proper treatment of the surface tension and velocity

boundary condition at the edge of the die. The deviatoric stress in the interfacial

boundary condition becomes increasingly important as the Reynolds number decreases.
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STABILITY OF A THIN TWO-DIMENSIONAL VISCOUS SHEET

As discussed above, the stability of a thin viscous sheet of fluid flowing through a

stagnant inviscid vapor phase is the problem driving the requirements for this

computational technique. Thus, the final test problem for the computational technique is

the accurate prediction of the growth rates of waves in the viscous sheet. In order for

accurate solution of this problem to be possible, all of the added features of the

computational technique must be working properly and accurately with the exception of

the static contact line treatment which is not tested by this problem.

Simulations at We, = 40, Z = 0.1, and p = 0.1 have been conducted for both

antisymmetric and axisymmetric disturbances at wavenumbers of 1, 2, and 3 with both

the top and the bottom surfaces simulated and including both vapor phase regions.

Solutions at m = 1 were obtained on a computational domain with 2na in the primary

direction of flow and 8a perpendicular to the flow. This problem was discretized on a

computational grid with 360 constantly spaced cells in the direction of flow and 100

graded cells perpendicular to the primary direction of flow. The grading was done so that

regions of constant cell spacing were maintained adjacent to the interfaces. Problems

with larger wavenumbers used the same computational grid with shorter computational

domains to keep the number of computational cells per wavelength constant. A

computational domain with periodic boundary conditions was used allowing the traveling

waves to leave the domain while reentering it from the opposite side. The input data for

the antisymmetric case with m = 1 are presented in Table 14. The code modifications

needed are the imposition of the initial surface perturbation and the surface position

output. These modifications, shown in Tables 15 and 16 are included of the SETVEL

subroutine and draw.pat, respectively.
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Table 14. Input data for antisymmetric wave growth problem with m = 1.

$xput
name=' antisymmetric wave growth m = 1 - Z=0.1, We=4.0, Rv/Rl=0.1',

rhof=63.24555321d0, rhog=0.ld0, sigma=0.025d0, nu=0.01581139d0,

wi=l.OdO,

jnm=' vof3d7 ', nfcal=l, iequib=0, icsurf=l, idefm=l, cyl=0.0d0,
delt=0.0001d0, velmx=1.0d0, isor=l, epsi=l.0d-4, lpr=l, cangle=90.0d0,

isurft=l, wt=4, wb=4, alpha=3.0d0, flht=0.0d0, twfin=30.0d0,

omg=1.75d0,
pltdt=0.5d0, prtdt=1.0d0, tddt=30.0d0, tlimd=0.0d0, td=-l, t=0.0d0,

dtcrmx=0.005d0, islip=l, nfx=0, epsiv=l.Od-4, autot=l,
ifx(l)=72, kfx(l)=2, ifx(2)=31, kfx(2)=2,

istress=l, lvapor=l, lvflag=l, vomg=1.65d0,

nvfr=2, ivfr=2,101, jvfr=2,2, kvfr=2,2, ivwl=l, ivwr=l, ivwb=2, ivwt=2,

$end
$meshgn

nkx=4, xl=0.d0, 5.01d0, 6.d0, 6.99d0, 12.d0,

xc=4.61d0, 5.41d0, 6.59d0, 7.39d0,
nxl=20, 10, 10, 10, nxr=10, 10, 10, 20,

dxmn=0.02d0, 0.02d0, 0.02d0, 0.02d0,

nky=l, yl=0.0d0, 1.0d0, yc=1.0d0, nyl=l, nyr=0, dymn=1.0d0,

nkz=l, zl=0.0d0, 6.283185307d0, zc=3.141592654d0, nzl=160, nzr=160,
dzmn=l.OdO,

$end

$fluidgn
nqbs=2,

qal=l.0d0, 1.OdO, qa2=0.OdO, O.OdO, qbl=0.OdO, 0.OdO, qb2=0.OdO, 0.OdO,

qcl=-7.0d0, -5.OdO, qc2=0.0d0, O.OdO, iqh=l, 0,

$end

Table 15. Initial perturbation for antisymmetric wave growth with m = 1 insetvel.f.

subroutine setvel

include 'vof3dcom'

c

integer k, kkk
real*8 mm, kk, temple, aaa

c

mm=l.OdO

aaa=0.5d0*(xi(ifx(l))-xi(ifx(2)))

kk=mm/aaa

c

do k=2,kml
kkk=ii5*(k-1)+imax
templ=zeta*rdx(ifx(l))*dsin(kk*zk(k))

f(kkk+ifx(l))=f(kkk+ifx(l))+templ
f(kkk+ifx(2))=f(kkk+ifx(2))-templ

enddo
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call dcopy(lvec, f, 1, fn, 1)
call dcopy(lvec, fn, 1, fnn, 1)

c

return
end

Table 16. Modifications to draw.pat for the wave growth problem.

c
write(2,290) t
do k=2,kml

do i=imax/2,2,-1

ijk=imax+ii5*(k-l)+i
if (nf(ijk).ge.l.and.nf(ijk).le.6) then

temp2=x(i+2)-(delx(i-2)*f(ijk-2)+delx(i-l)*f(ijk-1)

1 +delx(i)*f(ijk)

2 +delx(i+l)*f(ijk+l)+delx(i+2)*f(ijk+2))
go to 1212

endif

enddo

1212 continue
do i=imax/2+l,iml

ijk=imax+ii5*(k-l)+i

if (nf(ijk).ge.l.and.nf(ijk).le.6) then
temp4=x(i-3)+(delx(i-2)*f(ijk-2)+delx(i-1)*f(ijk-1)

1 +delx(i)*f(ijk)

2 +delx(i+l)*f(ijk+l)+delx(i+2)*f(ijk+2))

go to 2121
endif

enddo

2121 continue

write(2,300) k, zk(k), temp4, temp2

enddo
c

290 format (/,' time=', lpel2.4)

300 format (i6,3fl5.10)
c

Figure 20 presents a plot of the Ln(amplitude) as a function of time for a specific

case as an example. The displacement is computed as the average of the displacement of

one crest and one trough on each interface, where the same crests and troughs are

followed as they move through the computational domain. Since from linear stability

analysis the growth is expected to be exponential, the plot in Figure 20 is expected to be a

straight line, which after an initial transient region, it is. The dimensionless growth rate
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determined from the slope of the linear portion of this curve combined with the slopes for

additional cases at wavenumbers 1 and 3 and axisymmetric cases at wavenumbers 1, 2,

and 3 are presented in Figure 21. These results show very good agreement between the

theoretical and computed growth rates in the linear growth rate regime.

0.01

0.001

0.0001

0 2 4 6 8 10

Time

Figure 20. Wave growth results for antisymmetric case for Wet

and m = 2.

12 14 16

=40, Z=0.1, =0.1,

The results presented in Figure 21 imply that, given sufficient grid resolution, the

physics associated with the treatment of boundary conditions at the interface between a

liquid phase and a vapor phase governed by potential flow are reasonably treated.
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Figure 21. Non-dimensional growth rate for We e = 40, Z = 0.1, and p = 0.1 obtained

from numerical solution of the Li and Tankin's5 8 dispersion relations. Closed
circles and open triangles represent results from computational analysis.

Thus, with the solution of the lid driven cavity problem, the die-swell problem,

and the accurate prediction of the growth of waves in a thin viscous sheet of fluid, I have

demonstrated the accuracy of the treatment of the interfacial boundary conditions. I now

go on to discuss applications of this computational tool to specific problems that are of

interest to the pulp and paper industry.
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THE EFFECT OF CROSS MACHINE DIRECTION PRESSURE VARIATIONS ON

COAT-WEIGHT NON-UNIFORMITIES

Non-uniformities in the coated surface of paper is a problem that becomes more

pronounced as the speed of coating operations increases. Specifically, in short dwell time

coaters, an uneven coat-weight profile appears characterized by streaks of 1 to 3 cm wide

running along the machine direction (MD). In general, these streaks are approximately

15 to 50 % thinner than other coated regions of the sheet, and their scale, - 1 cm, is much

larger than the blade gap (-30-50 gm). The magnitude of these streaks is in contrast to

other coating defects such as streaks due to solid particles blocking the blade gap or skip

coating where the streaks have essentially no coating. 97

In addition, wet streaks occur when the coating speed is increased above a critical

limit for a given coating formulation. Pilot trials by Triantafillopoulos and Aidun 10 3 and

Li104 indicate that the limiting speed decreases with increasing percentage solids and,

consequently, the low-shear viscosity of the coating color. 97

There have been three primary mechanisms (Figure 22) proposed for the

formation of wet streaks. 97 The first is air entrainment at the dynamic contact line105

which occurs as the contact line becomes unstable. The second and third proposed

mechanisms are due to hydrodynamic instability in the flow within the pond of the short

dwell coater. Instability in these three-dimensional flows can lead to cross-machine

direction pressure variations in the coating entering the blade gap. Finally, the presence

of the deformable blade and substrate can allow for variation in the blade gap and, thus,

the coating thickness.
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Figure 22. Summary of mechanisms which may lead to wet streaks. 97

In this thesis, results from study of the second mechanism, the effect of pressure

variations upstream of the blade on the thickness of the coating layer in the absence of the

air entrainment and blade gap fluctuation mechanisms are presented.

Here, I discuss the results obtained by Miura and Aidun, 97 using an early version

of the IPST-VOF3D program, in their study of the effects of pressure variations upstream

of the blade on the thickness of the coating leaving the blade region. First, I present their

results from the study of the temporal pressure variations. This is followed by an

extension of Miura and Aidun's spatial fluctuation results. 98
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Two-Dimensional Base Case

The initial condition for all of the cases discussed below is a two-dimensional

steady-state simulation. Since the computational technique developed in this dissertation

is transient, the normal method for obtaining a steady state solution is to choose a

reasonable initial condition and march forward in time until the solution ceases to vary

with time. The results of the steady-state two-dimensional simulation yield a better initial

guess for the three-dimensional simulations performed below, potentially reducing the

time needed to reach steady-state. The 2D-SS problem solved is shown in Figure 23. All

of the results are presented in nondimensional form with the blade gap and the substrate

velocity used as characteristic length and velocity, respectively. 

W zsubstrate 

h : Color 

1Blade / \ Free

Static Surface
", -. Contact

Point

Figure 23. Schematic of the two-dimensional steady-state coating problem.

The inlet boundary condition assumes that the fluid is adjacent to the upstream

edge of the blade and the flow is a linear combination of shear-driven (Couette-flow) and

pressure-driven (Poiseuille-flow). 97,106,107 Thus, the nondimensional inlet velocity

profile is given as
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w(x,y,t) = 1-x +#- (y,t)x(x-1) at z=0 (110)
2d

where the pressure gradient, - (y, t), will later be allowed to vary with span wise

position, y, and time, t. Results are to be presented in terms of the Reynolds number,

Re = phWsubsrae, (111)

and Capillary number,

Ca = LWsubste/, -(112)

where Wsubstrate is the web speed, p is the density of the coating color, g is the viscosity

(assumed to be constant with a value appropriate for the conditions under the blade), 97

h is the blade gap, and o is the surface tension. The details of the two-dimensional

steady-state simulations and demonstration of the solution grid independence are

presented by Miura and Aidun 97 and Miura et al.9 8

Example input data for the two-dimensional steady-state simulation are presented

in Table 17. The input data are entered in dimensional units in the mks system. The code

modifications required are the same as those for the die-swell problem discussed above

except that different velocity profiles are required for the inlet and initial conditions. The

temporal instability problem discussed here and the three-dimensional problem discussed

below require adjustments in bc.pat and setup.pat for the velocity profiles which are

presented in Tables 18 and 19, respectively. The modifications for the treatment of the

static contact point and the display of the interface profile are accomplished in the same

manner as those used for the die-swell problem discussed above. Notice that temporal

and spatial fluctuations in the inlet pressure gradient can be imposed by adjusting the

comments in front of specific lines in bc.pat presented in Table 18.
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Table 17. Input data for the two-dimensional steady state simulation of flow under a
short dwell coater blade.

$xput
jnm=' QUICK ',name='50 cps 03/20/92 ', nfcal=2,

iequib=0, icsurf=0, idefm=l, rhof=1.2, cyl=0.0, delt=0.000000001,

velmx=1000.0, nu=0.4167, isor=0, epsi=0.005, wi=0.0, wlw=1000.0,

sigma=41.67, lpr=l, cangle=90.0, isurft=l, autot=l.0, wl=2, wt=3,

wb=3, wf=l, wbk=l, alpha=3.0, dtcrmx=0.0000005, flht=0.1,

twfin=0.0005, omg=l.0, pltdt=0.0001, prtdt=0.0001, tddt=0.0005,

tlimd=0.0, td=-l, t=O.O, islip=0, nfx=l, ifx(l)=20, kfx(l)=31,

iorin(l,l)=2, iorin(2,1)=3, islp(l)=0, istress=l,

$end
$meshgn
nkx=l, xl=0.0, 0.005555555556, xc=0.005, nxl=18, nxr=2, dxmn=l.0,

nky=i, yl=0.0, 1.0, yc=1.0, nyl=l, nyr=0, dymn=l.0,

nkz=l, zl=0.0, 0.4, zc=0.1, nzl=30, nzr=90, dzmn=0.0005,

nobs=2,
oal=-l.0, 0.0, oa2=0.0, 0.0, obl=0.0, -1.0, ob2=0.0, 0.0,

ocl=0.005, 0.1, oc2=0.0, 0.0, ioh=l, 0,

$end
$fluidgn
$end

Table 18. Modifications to bc.pat for the flow under a short dwell blade.

c *** blade-edge boundary conditions

do j=2,jml
jjj=imax*(j-1)
do k=l,kfx(l)-l

ijk=ii5*(k-l)+jjj+ifx(l)
w(ijk)=-w(ijk-l)*delx(ijk)*rdx(ijk-1)
u(ijk-l)=0.OdO

enddo
kkk=ii5*(kfx(1)-l)+jjj

do i=ifx(l),iml
u(kkk+i).=u(kkk+i+ii5)

w(kkk+i)=w(kkk+i+ii5)

enddo
u(ii5*(kfx(l)-l)+jjj+ifx(l)-l)=0.OdO

enddo

c

c set specified inflow velocities for designated inflow cells

c

do j=2,jml
jjj=imax*(j-l)
do i=2,ifx(1)-1

ijk=jjj+i
u(ijk) = 0.0
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v(ijk) = 0.0
c --- parabolic profile ---
c w(ijk)=wi*1.5*(1.0-(xi(i)*rx(ifx(l)-1))**2)
c --- inflow setting : couette & poiseuille flow ---
c --- templ is pressure gradient : dp/dz (dyn/cm^2/cm)

templ = -1.60e8
c --- time periodic pressure fluctuation
c --- prtdt is the period of the fluctuation
c if (t.le.2.0d0*prtdt) then
c temp2=l.0d0+0.5d0*dsin(2.0d0*pi*t/prtdt)

c --- CD pressure fluctuation
c --- full-wave fluctuation ? ---
c temp2=l.0d0+0.5d0*dcos(2.OdO*pi*yj(j)/yl(2))
c --- or half-wave fluctuation ? ---
c temp2=l.0d0+0.5d0*dcos(l.0d0*pi*yj(j)/yl(2))
c ----------------------------------------------

w(ijk) = wwl*(l-xi(i)*rx(ifx(l)-l))+
1 templ*temp2/(2.0*nu*rhof)*xi(i)*(xi(i)-x(ifx(l)-1))

c ----------------------------------------------

endif
enddo

enddo

Table 19. Modifications to setup.pat for the flow under a short dwell blade.

c --- modified for blade coating simulation by Miura 06/04/91 ---
c --- inflow setting : couette & poiseuille flow ---
c -1.6e8 is pressure gradient in md : dp/dz (dyn/cm^2/cm)

w(ijk) = wwl*(l.0d0-xi(i)*rx(ifx(l)-l))+
1 (-1.60e8)/(2.0*nu*rhof)*xi(i)*(xi(i)-x(ifx(l)-l))

Results from the two-dimensional steady state base case problem are presented in

Figure 25 for the coarse and fine computational grids diagrammed in Figure 24.

The slight discontinuities or "kinks" in Figure 23 result from a combination of

three factors. First, the position of the interface is computed using only a local height

function in the y-direction. As the computational grid is refined, even though it remains

skewed, the magnitude to the kinks decreases and the surface becomes smoother, in part

because the y-direction height function becomes more accurate. The second factor

contributing to the kinks is the highly skewed grid structure which reduces the accuracy
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of the surface shape computation. For example in the coarse grid simulation the y-

direction grid spacing is 0.1 while the x-direction grid spacing is 0.25 yielding a grid

aspect ratio of 2.5 to 1 versus the ideal 1 to 1 ratio. The final factor affecting the rough

appearance of the interface is the scaling of the y-axis, which is magnified over 7 times

contributing to the apparently large size of these kinks.

110
(a)

(b)

I -50 -H

-H

T

Figure 24. Illustration of the (a) coarse and (b) fine grid systems for the two-dimensional
computations (number inside the arrow indicates the number of cells).



- 101 -

1

0.9 9 Fine Grid
0.8
0.7 Coarse Grid
0.6
0.5
0.4
0.3
0.2
0.1

00 --------------------------------I I I --

0 2 4 6 8 10 12

Z

Figure 25. Comparison of the free surface computations using the fine and coarse grid
systems.

Next, I focus on the results of Miura and Aidun's simulations. First, I discuss

their study of time periodic pressure fluctuations in two-dimensions, followed by

presentation and extension of three-dimensional steady-state simulations with span wise

pressure variations.

Time-Periodic Pressure Fluctuation

In addition to wet streaks, which are coat-weight non-uniformities in the span

wise direction, the film thickness can also develop a 2-D wavy profile due to temporal

fluctuation in the pressure upstream of the blade. Thus, the effect of the time-dependent

fluctuation of static pressure at the blade entrance on the film thickness was investigated.
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A sinusoidal pressure fluctuation lasting for two periods is given by

z (t) = (d)[1+ 0.5 sin(2t/T)], 0< t < 2T
(113)

and d (t) = (d) t 2T

where (--) indicates the steady-state pressure gradient and T is the period of fluctuation.

Notice that the amplitude of the pressure varies by ±50% from the steady-state value.

With the addition of the time periodic inflow condition, all other boundary

conditions remain the same as the steady-state simulation discussed above, which was

used as the initial condition. The blade gap was maintained at 50 mm and the substrate

speed varied from 10 m/s for Re = 12 to 25 m/s for Re = 30. The flow parameters in

dimensional and dimensionless form are presented in Table 20.

Table 20. Physical parameters used in temporal pressure variation study.

Parameter Dimensional Dimensionless
Blade gap, h 5x10-5 m 1
Blade thickness, T lx10 -3 m 20
Density, p 1200 kg/m 3

Viscosity, v 0.05 Pa-s 
Machine Speed, W 10 m/s 1
Average Pressure Grad., (d) -100 MPa/m -0.5 (Re = 12)

W 15 m/s 1
d) -150 MPa/m -0.5 (Re = 18)

W 20 m/s 1
(dz) -200 MPa/m -0.5 (Re = 24)

W 25 m/s 1
(d) -250 MPa/m -0.5 (Re = 30)
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Figure 26. Variation in surface thickness due to temporal pressure fluctuation at the blade
entrance after two periods of variation.
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Figure 26 shows the film thickness as a function of position after two periods of

disturbance. The variations in thickness are small, which is to be expected since more

than 91.7% of the mass flow through the gap in this case is shear driven.9 7 Thus, a 50%

variation in pressure could be expected to yield -4% variation in film thickness. This

film thickness variation from the steady-state value is plotted in Figure 27. Notice that

the computed film thickness variations are less than 1%, much smaller than the 4%

variation expected from the simple linear analysis.

Figure 27. Film thickness deviation from the steady state outlet value.

Cross-Machine Pressure Fluctuation

Here we study the effects of cross machine pressure variations on the steady-state

coating profile downstream of the blade. Various types of flow instability in the pond are

expected to yield pressure variations with wavelengths from 1 mm to greater than 1 cm. 97
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Film thickness non-uniformities become even more important in light weight

coated applications where the blade gap may be reduced to 30 gm from the 50 pm studied

in the temporal instability. The dimensional and dimensionless flow parameters used in

the three-dimensional simulations are presented in Table 21 where the Reynolds and

capillary numbers fall within the range of actual operating conditions. Paper coating

fluids are typically shear thinning, but for these simulations a constant viscosity with the

value expected in the shear rates under the blade is used. The pressure gradient is

estimated from the results of Pranckh and Scriven 10 6 which is currently the most

complete two-dimensional analysis of blade coating.

The pressure variation is assumed to be a sinusoidal disturbance given by

(y) = [1 + 0.5 cos(7y/y)] (114)

where I| is the average pressure gradient and y is the pressure fluctuation wavelength.

The boundary conditions remain the same as in the previous simulations with the

exception of the inlet condition and the additional constraints of symmetry conditions,

3u 3w 3Pv=-=- -= = - =0 at y=±y/2. (115)
ay ay 3y

Miura and Aidun9 7 studied the effect of dimensionless span wise wavelengths

from 33.3 to 400, corresponding to dimensional disturbances from 1 mm to 1.2 cm.

Here, this analysis has been extended to dimensionless wavelengths of 800 and 1200

corresponding to dimensional disturbances of 2.4 cm and 3.6 cm, respectively.
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Table 21. Physical parameters used in three-dimensional spatial pressure variation study.

Parameter Dimensional Dimensionless
Substrate speed, W 20 m/s 1
Blade gap, h 3x10-5 m 1
Blade thickness, T lx10-3 m 20
Density, p 1200 kg/m3 -
Viscosity, v 0.05 Pas -
Surface Tension, ( 0.05 N/m_
Average Pressure Grad., Id -1.6x10 9 Pa/m -1.44

Reynolds number, Re. -14.4

Capillary number, Ca - 20

With no CD pressure variations, the steady-state film thickness can be computed

by integrating Equation (110). This indicates that the average contributions to the

dimensionless film thickness from Couette-flow and Poiseuille-flow are

0.5 + 0.12 = 0.62

Couette - flow Poiseuille - flow Total(116)

A simple linear analysis predicts that a CD pressure fluctuation of 50 % will lead to 50 %

Poiseuille flow fluctuations and dimensionless film thickness variations from 0.56 to

0.68. As can be seen in Figure 28, when the wavelength of the disturbance is large, the

amplitude coat weight variations agrees with the simple linear analysis, but when the

wavelength is very small, the amplitude of the surface profile is also very small.

Miura and Aidun 97 present the following discussion of the physical mechanism

leading to the variation in film thickness as a function of disturbance wavelength:

Considering the y-component of the Navier-Stokes Equation and noting
that the length and velocity scale in the x-direction is small, that is 0(8), it
is easy to show from order of magnitude analysis that the pressure gradient
term is balanced mainly by

ap/ay _ 32 v/ax2 .
When we compute the RHS term from the computational results, we
observe that its magnitude does not greatly vary between the cases
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considered in this study. Therefore, the value of ap/ay is also of the same
order for y between 1 mm and 12 mm. This implies that as the
wavelength of the pressure fluctuation, i.e., the magnitude of the
denominator, Dy, increases, the magnitude of the pressure gradient, i.e., the
magnitude of the numerator, ap, will increase to keep ap/ay relatively
constant. As we mentioned above, however, at a critical wavelength the
value of the pressure gradient will approach a plateau with a further
increase in y.

0.68 -

0.66

l 0.64

; 0.62

= 0.6

0.58

0.56
-600 -400 -200 0 200 400 600

Y

Figure 28. Comparison of the span wise film thickness profile for pressure variations
having varying wavelength. Cases with wavelength of 33.3, 100, 200, and
400 by Miura and Aidun. 97

These results and analysis indicate that the second proposed mechanism in

Figure 22, that of pressure fluctuations upstream of the blade, is indeed a plausible

mechanism for wet streaks. For the case studied, a 50% cross machine direction pressure

fluctuation on the order of 1 to 3 cm in side yields a coat weight variation on the order of

10%. Disturbances with smaller cross machine fluctuations yield smaller coat weight

variations which may not be perceived as wet streaks.
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This is not expected to be the complete story of the wet streak phenomenon. This

analysis does not include the compressibility of the substrate or the deflection of the

blade, two results that are also expected to contribute to coat weight variations via a non-

uniform blade gap (mechanism 3 in Figure 22).
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CONDENSATE FLOW INSIDE DRYER CYLINDERS

In this section, results obtained by applying this computational technique to the

study of condensate flow within dryer cylinders are discussed. In this problem, a constant

volume of fluid is contained in a rotating horizontal cylinder. No attempt was made to

include the effects of steam condensation, variation of properties with temperature, or the

siphoning process used to remove condensate from the cylinder. The focus of this study

was to determine the velocity profiles within the condensate layer and to understand the

implications of these profiles on the heat transfer through the condensate layer.

A schematic of the condensate flow problem is presented in Figure 29. It is

shown as a two-dimensional problem, although a three-dimensional computational

domain was required for solution. Simplifications are present in the IPST-VOF3D

program to improve the computational efficiency in the study of two-dimensional

problems; however, it is currently only possible to treat two-dimensional problems in the

x-z or r-z planes in this manner. Since this two-dimensional problem is defined in the r-O

plane, a domain with two fluid cells and two fictitious cells in the z-direction was used,

combined with symmetry boundary conditions in the z-direction to simulate a two-

dimensional computational domain.

The condensate flow problem is characterized by the dimensionless groups Reynolds

number,

Re = pcob 2 /g , (110)

(sometimes defined as Re = pcoR 2/jg in the literature); the Froude number,

Fr = o2R/g; (111)
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the Capillary number,

Ca = goR/a; (112)

and the film thickness ratio,

= b/R. (113)

Here, R is the radius of the inside wall of the cylinder, to is the angular velocity of the

rotating cylinder, b is the average condensate film thickness, g is the acceleration due to

gravity (acting downward in Figure 29), p is the condensate density, g is the condensate

viscosity, a is surface tension of the condensate.

I Cylinder shell

^^~:2:I Condensate layer

Figure 29. Schematic of the condensate flow problem.

Earlier studies of this problem have been conducted by Deibler and Cerro10 8 as

well as by Orr and Scriven. 109 Deibler and Cerro used an order of magnitude analysis to

generate a simplified form of the NSE for this problem,

Vr3Ve V0 aVr cosO 52 3 1 a3(9Vo) (114)
9r 9 9 a0 Fr Re 89- ' 9 a ' 

where Vr = vr/0oR, V0 = v./toR, and 91 = r/R. This equation, essentially a boundary

layer equation in cylindrical coordinates, was solved numerically in transformed
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coordinates for Reynolds numbers from 0.05 to 456, for Froude numbers from 0. I to 16,

and for-film thickness ratios from 0.05 to 0.0004.

Orr and Scriven109 studied the rimming flow problem using a finite element

technique to solve the full incompressible NSE for flow in the liquid layer. In comparing

their results, it is important to note that they have defined the Reynolds number using the

radius of the cylinder as a length scale rather than the average film thickness as was done

by Deibler and Cerro. Thus, the dimensionless groups used by Orr and Scriven are the

Reynolds number, Reo, -= pcoR 2/g; the Weber number, Wer,, -= /poC2R '; the inverse of

the Froude number, Go, = 1/Fr = g/o0R; and the ratio of the surface radius to the

cylinder radius, fo = 1 - 6 = (R - b)/R.

Although the Reynolds number and Froude number ranges studied by Orr and

Scriven are similar, when expressed in the same dimensionless parameters, the film

thickness ratios studied by Orr and Scriven are much larger. Orr and Scriven looked at

film thickness ratios of 5 = 0.5 and § = 0.2 while we are interested in thickness ratios

closer to 5 = 0.01.

We have studied flow inside a cylinder with a range of Reynolds numbers from

100 to 3000, and a range of Froude numbers from 14 to 85. The Capillary number was

not directly controlled as a parameter but was allowed to vary with the angular velocity of

the cylinder (the physical properties and R remained constant throughout). For a typical

dryer cylinder radius of 0.75 m, the range of Froude numbers studied correspond to paper

machine speeds from 400 to 1500 m/min.

The initial condition used was to evenly distribute the fluid as a film along the

edge of the cylinder rotation with the constant angular velocity. This initial condition
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corresponds to a "solid body" rotation and is equivalent to a case with zero gravity. In

early cases, the gravitational field was impulsively enforced at t = 0, which led to large

oscillations in the surface position resulting in long simulation times for these oscillations

to damp-out and steady-state to be reached. Later simulations have been conducted using

a modified gravitational force

g(t) = min(l, at) (115)

where g is the steady state acceleration due to gravity, and a is a proportionality factor

controlling the rate of change in the gravitational field. This approach is similar to that

used by Orr and Scriven10 9 to achieve convergence in their Finite Element simulations.

The modifications needed for the gravitational force are accomplished through the use of

the tildel.pat and tilde2.pat shown in Tables 22 and 23, respectively. The surface profile

is stored using an addition to draw.pat similar to those used in the die-swell problem and

the coating problems discussed above.

Table 22. Modification to tildel.pat for variable gravitational force in dryer cylinder.

templ=gxa(j)

gxa(j)=templ*dminl(1.OdO,t*0.5dO)
temp2=gya(j)
gya(j)=temp2*dminl(1.OdO,t*0.5dO)

Table 23. Modification to tilde2.pat for variable gravitational force in dryer cylinder.

gxa(j)=templ

gya(j)=temp2

The boundary conditions are no-slip along the outer wall of the cylinder, periodic

conditions between 0 and 2i in the 0-direction, Laplace's formula at the interface, and

symmetry conditions on the front and back walls.
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Determination of Grid Independence

The case at RE = 3000 and Fr = 85 was used to test the dependence of the solution

on the size of the computational grid. Initially, 25 computational cells were used in the r-

direction and 100 equally spaced computational cells were used in the O-direction as

indicated in the input data presented in Table 24. In order to obtain adequate resolution

of the viscous sublayer, the minimum cell spacing in the r-direction adjacent to the wall

of the cylinder was maintained as 1% of the average film thickness. A similar case was

studied with 50 and 200 computational cells in the r and O-directions, respectively.

Table 24. Input data for condensate flow problem with Re = 3000 and Fr = 85.

$xput
name=' Condensate flow in a rotating cylinder. Re=3000 Fr=85',

jnm=' test ', nfcal=l, iequib=0, idefm=l, cyl=l.OdO,

velmx=l.OdO, isor=0, epsi=l.Od-3, lpr=l, cangle=90.OdO,

isurft=l, istress=l, alpha=0.5d0, flht=0.OdO,

omg=l.OdO, autot=O, icsurf=l, vi=25.0077488d0, gy=-9.81,

prtdt=l.OdO, tlimd=0.OdO, td=-l, t=0.OdO, dtcrmx=0.0005d0,

wf=4, wbk=4, wr=2, wl=2,

rhof=958.4d0, sigma=0.0000626d0, nu=0.0000000294d0.

vrw=25.0077488d0,

delt=0.0005d0, pltdt=0.0471093d0, twfin=18.8437153d0, tddt=9.421858d0

$end

$meshgn

nkx=l,xl=0.739738dO, 0.75d0, xc=0.0.749948569dO, nxl=24, nxr=l,

dxmn=.000051431d0,

nky=l,yl=O.OdO, 4.7124d0, yc=2.3562dO, nyl=50, nyr=50, dymn=l.OdO,

nkz=l,zl=0.OdO, O.OldO, zc=0.005dO, nzl=l, nzr=l, dzmn=l.OdO,

$end

$fluidgn

nqbs=l, qal=-l.OdO, qa2=0.OdO, qbl=0.OdO,

qb2=0.OdO, qcl=0.7448569d0, qc2=0.OdO, iqh=l,

$end

Figure 30 shows a comparison of the results from the coarse and fine grid

simulations in the viscous sublayer region adjacent to the cylinder wall at Re = 3000,

Fr = 85. The ordinate and abscissa are non-dimensional quantities defined as a
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dimensionless film thickness,

T =(R-r)/(o/2v, (116)

and the velocity deviation from the solid body rotation scaled by the Froude number,

4 = (v/(Rco)-l)Fr, (11'

respectively. The coarse grid results are in extremely good agreement with the results

obtained using the fine grid, indicating that the coarse grid contains sufficient resolution

for this problem. Therefore, computational grids with 25 by 100 computational cells

were used in all subsequent simulations.
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Figure 30. Comparison velocity profiles in the viscous sublayer at Re = 3000 and Fr = 85
results on different computation grids.
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The velocity profiles shown in Figure 30 present only the viscous sublayer. The

complete profiles from the wall to the interface are presented in Figure 31. Notice that

the complete flow is made up of the viscous sublayer and a fairly large constant velocity

region termed the inviscid core.
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Figure 31. Complete velocity profiles at Re = 3000 and Fr = 85 (25 x 100 cells).

The Effect of Froude Number

Once a computational grid with sufficient resolution, for accurate .sotlluion of tethe

flow patterns was determined, a variety of cases were studied. First, I present a

comparison of surface profile deviations from the solid body rotation for Re = 3000 as a

function of Froude number (Figure 32). As the Froude number (the ratio of centrifugal
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and gravitational forces) decreases, the free surface profile departs more and more from

the solid body rotation, which is equivalent to Fr = oo.
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Figure 32. The effect of Froude number on condensate film thickness variation.

The remaining question is the effect of decreasing Froude number on the velocity

profiles. For Fr = oo, the velocity profiles are flat and constant as a function of position.

As is shown in Figure 30 above, even at Fr = 85 there is significant deviation from the

solid body solution. In Figure 33 we present velocity profiles for cases with Re = 3000

and Froude numbers of 85, 38, 24, and 13 at 0° , 45 ° , 90" and 135 ° .
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Figure 33. Comparison of velocity profiles for Re = 3000 at various Froude numbers.

The Effect of Reynolds Number

A similar comparison to that made in Figure 33 is possible to, study the effect of

Reynolds number at a specific Froude number. Figure 34 shows the effect of varying,

Reynolds number on velocity profiles at a constant Froude number. At a giiwea Froude

number the only parameter that was varied when the Reynolds number changes is the

average film thickness. The results in Figure 34 show that the velocity profiles in the

viscous sublayer remain constant as a function of Reynolds number at a given Froude

number: Thus,, increasing the Reynolds number (which is equivalent to increasing the

average film thickness) does not affect the flow in the viscous sublayer, but only adds

fluid to the inviscid core.

I 



-118-

2 4 ,o 0 45° ,, 1 ,( 1 31,5° 2"

-1.2 -0.8 -0.4 0 0.4 (.X 1.2

Re=3000 Re=1000 A Re=300 --- Re=100

Figure 34. Comparison of velocity profiles for Fr = 85 at various Reynolds numbers.

Comparison with Experimental Results

As a further test of the accuracy of the computational technique for analysis of

condensate flows is to compare the computational results with those from experiment.

Limited experiments using an ultrasonic film thickness technique were performed at the

University of Lund in Sweden. l0 Presented in Figures 35 and 36 are comparisons of the

computed surface profiles with the experimentally measured film thickness for case at

Re = 763, Fr = 6 and Re = 1107, Fr = 13, respectively. The experimental data are

presented as a series of three points recorded every 450 around the cylinder. No error bars

were available, so the reported maximum and minimum values represent the range of

recorded thicknesses with the middle point representing the average reading. The tends
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in the film thickness and the general magnitude of the deviations from the solid body

rotation show good agreement between the computed and experimental results.
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Figure 35. Comparison of computed and experimental 110 for Re = 763 and Fr = 6.
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Figure 36. Comparison of computed and experimental 10 for Re = 1107 and Fr = 13.
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Implications for Heat Transfer

The flow in the condensate layer is characterized as a relatively small viscous

sublayer supporting a much larger inviscid core having a nearly constant velocity profile.

From Figure 33 it is clear that as the machine speed, and thus the Froude number, is

increased, the velocity profiles approach the solid body rotation. Accompanying this is a

shift towards a constant film thickness seen in Figure 32.

Since there is no mixing within the condensate layer, the heat transfer mechanism

through the condensate layer is expected to be by conduction. In general, convection is

superior to conduction as a heat transfer mechanism, so some means of introducing

mixing and thus increasing convection is expected to have a significant effect on the heat

transfer rate through the condensate layer.

There are several ways to optimize the heat transfer through the condensate layer.

Decreasing the thickness of the condensate layer to reduce the distance through which the

heat must be conducted is one approach. Perhaps the most cost-effective method of

increasing the heat transfer rate through the condensate layer is to promote mixing and

thus convection within the condensate layer. An example of this is the use of axial bars

on the inner surface of the dryer cylinder. Pulkowski and Wedel 111 present examples of

the dramatic effect these "spoiler" bars can have on the heat transfer rate.
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CONCLUSIONS

Free surface flows exist in a number of pulp and papermaking unit operations

including the spraying of black liquor into a recovery furnace, jets leaving the headbox,

the paper machine forming section, condensate flows inside dryer cylinders, coating

application systems, and finishing operations such as polymer film extrusion.

Specifically, this work has been motivated by the study of the stability of a thin viscous

sheet flowing through a stagnant inviscid vapor phase. This problem is directly related to

black liquor spraying, an important part of the operation of a recovery furnace.

In the course of this work, a computational fluid dynamics model for transient

three-dimensional free surface flows has been developed with capabilities beyond

previously existing computational techniques. This was accomplished by enhancing and

extending the capabilities of the SOLA-VOF computational technique in the following

manner:

* Improved accuracy of the advective terms in the NSE through the addition of
three third-order accurate finite differencing schemes.

* The capability to treat static contact points (or lines) by treating both the wall
adhesion force due to surface tension and velocity boundary conditions in the
region of the static contact point (or line).

* Modification of the free surface boundary condition arising from the normal stress
balance to include the liquid phase deviatoric normal stress at the interface.

* Added a computational technique to allow the pressure in the vapor phase to vary
when the vapor phase is assumed to be inviscid and irrotational and thus governed
by potential flow.

Each of these enhancements to the computation technique was tested and

compared with results from the literature. First, the lid-driven cavity problem



-122-

demonstrated the accuracy of the third-order accurate differencing schemes for the

advective terms in the NSE. Next, the die-swell problem tested the accuracy of the static

contact line treatment and the inclusion of the liquid phase deviatoric normal stress in the

interfacial boundary condition. Finally, study of the growth of waves in a thin viscous

sheet of liquid flowing through a stagnant inviscid vapor phase showed the accuracy of

the numerical technique for allowing the pressure in the vapor phase to vary.

Additional applications of the computational technique to problems of interest to

the pulp and paper have been demonstrated. First, analysis of the effects of temporal and

spatial pressure fluctuations upstream of a coating blade on the thickness of the coating

layer was accomplished. Second, the effect of varying Froude number and Reynolds

number on the flow of condensate in a paper dryer cylinder was analyzed. These

applications demonstrate that the IPST-VOF3D computational technique in its current

form can assist in understanding phenomena of practical interest to the pulp and paper

industry.

With the development of IPST-VOF3D, a general computational technique is

available to solve three-dimensional free surface problems involving complex geometries

and potentially intersecting free surfaces. Example problems have been presented

demonstrating the accuracy and capabilities of the computational technique. The

IPST-VOF3D computational technique is unique in its ability to accurately solve the

coupled problem of an initially stagnant, inviscid phase and moving viscous 'phase.

In summary, Table 25 compares the features of IPST-VOF3D with the features of

two commercially available computational fluid dynamics programs having free surface

capabilities, FIDAP71 and NEKTON. 72
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Table 25. Features of the IPST-VOF3D, FIDAP, and NEKTON programs.

Feature IPST-VOF3D FIDAP 7.0 NEKTON 2.85
Interface tracking VOF (can handle Method of Spines Mapping

large interface Local perturbation
* ~. .__ ~deformation) (new in 7.0)

Two fluids yes (if one fluid is yes (limitations yes (if fluid
governed by not known to densities are

_____________ potential flow) author) similar)
Turbulence no mixing length mixing length

.'. ._____ k-E k-e
Three-dimensional yes yes (new in 7.0) yes
Transient yes yes yes
Energy equation no yes yes
Phase change no liquid-solid liquid-solid
Non-Newtonian no Bingham Fluid User Supplied

Power law
.·____ . .____ ________ Carreau Model

Variable surface tension no yes yes
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AREAS FOR ADDITIONAL WORK.

In this section I discuss areas for additional work directly resulting from this

thesis. Specifically, I outline additional features that should be added to the IPST-VOF3D

computational technique to enhance its capabilities. These additions are primarily

motivated by paper industry free surface flow problems that cannot be properly addressed

with the current capabilities of the IPST-VOF3D computational technique.

Many paper industry problems consist of non-Newtonian flows, including coating

flows and pulp suspensions. Thus, the addition of options for non-Newtonian fluids

would be of great use. Several of the choices made in the computational technique

development have been made with this in mind, e.g., the choice to use the full deviatoric

stress at the interface rather than the simplified formula derived in Appendix V.

One of the most important free surface flows in the papermaking process is the

turbulent jet issuing from the headbox. Therefore, an extremely important extension to

the IPST-VOF3D computational technique is the addition of a turbulence modeling

capability.

Currently, the computational technique assumes that all flows are isothermal and

that the fluid properties are constant. More complete analysis of problems, such as the

flow of condensate in a dryer cylinder, can be accomplished through the addition of the

energy equation and physical properties that vary with temperature. This may also

require modification of the boundary conditions at the interface between the liquid and

vapor phases, since the assumption of zero tangential stress may no longer be valid when

the surface tension is allowed to vary. A mechanism for treating phase change would also

enhance the ability of this computational technique to address heat transfer problems.
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An additional area in need of study is extension of the continuum surface force

(CSF) model for treating surface tension.13 As discussed above, this technique converts

the discontinuity in pressure at the interface caused by the surface tension into an

equivalent localized body force. This procedure allows more accurate treatment of the

force due to surface tension, but has currently only been implemented for flows where the

boundary condition can be governed by Laplace's formula, i.e., without the liquid phase

deviatoric normal stress. Thus, even if the surface tension force is included using the

CSF model, a discontinuity is still required due to the presence of the liquid phase

deviatoric normal stress. It may be possible to formulate an analogy to the CSF model

that would include the effects of the deviatoric stress as a localized body force.

The final addition to the code that is warranted is the extension of the vapor phase

potential solution to cylindrical coordinates. This is necessary for study of the stability of

radially thinning viscous liquid sheets flowing through a stagnant vapor phase, a problem

directly applicable to the process of black liquor spraying.
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NOMENCLATURE

VECTORS AND TENSORS

g body force vector (includes gravitational forces)
i x-direction unit vector in Cartesian coordinates
j x-direction unit vector in Cartesian coordinates
k x-direction unit vector in Cartesian coordinates
n unit vector normal to the interface
r r-direction unit vector in cylindrical coordinates
s unit vector tangent to the interface and tangent to the t
t unit vector tangent to the interface
u velocity vector (in Cartesian or cylindrical coordinates)
ui explicit guess for velocity vector
z z-direction unit vector in cylindrical coordinates
0 0-direction unit vector in cylindrical coordinates
IT deviatoric stress tensor (viscous component of the total stress tensor)

SCALARS

a initial sheet half-thickness in wave growth problem
AR aspect ratio: defined as needed
b average film thickness
Ca capillary number: defined as needed
D divergence: D = V v
F VOF function, fraction of a computational cell containing fluid
Fr Froude number
g acceleration due to gravity
h dimension of problem: defined as needed
H interfacial position function
i imaginary number i = ---
I x or r-direction index
J y or 0-direction index
k wavenumber of disturbance
K z-direction index
m dimensionless wavenumber: m = ka
p pressure
P reduced pressure: P = p/p
r x-direction component in cylindrical coordinates

or scale factor: r=l in Cartesian coordinates and r=x in cylindrical coordinates



- 128 -

R r-direction interfacial position function
or radius of a cylinder

Re Reynolds number: defined as needed
t time
u velocity component in the x or r-direction
UO initial sheet velocity
v velocity component in the y or O-direction
V characteristic velocity: defined as needed
w velocity component in the z-direction
W width of lid driven cavity

or characteristic velocity: defined as needed
We Weber number: Wee = peUa/o
x x or r coordinate direction or position
y y or 0 coordinate direction or position
z z coordinate direction or position
Z z-direction interfacial position function

or Ohnesorge number: Z = ge (peaa) - '/2

a fraction of upwind differencing
a' modified upwind differencing fraction: a' = a sign(local velocity)

1p SOR factor
ft time step
Ax local computational cell width
Ay local computational cell depth
Az local computational cell height
E perturbed interface position
rl local height function

or interpolation factor
or dimensionless position

K total curvature of the interface between two fluids
v kinematic viscosity
g viscosity
0 y-direction component in cylindrical coordinates
0 0-direction interfacial position function

or partial cell function
p density
p Density ratio: p = P/Pe

a surface tension between two fluids
Co wave growth rate

or SOR acceleration factor
or angular rotation of a cylinder
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a dimensionless growth rate: o) = 6r + i Wet/2co

modified dimensionless growth rate: Co, = eB + i We'/ 2m

ir real part of dimensionless growth rate: r; = r (o/pea3 )- ¥/

c) imaginary part of dimensionless growth rate: o; = coj(a/UO)m

dimensionless velocity
scale factor: r=0 in Cartesian coordinates and r=1 in cylindrical coordinates

SUBSCRIPTS

0 constant or base condition
i imaginary part of growth rate

or x or r-direction index
j y or 0-direction index
k z-direction index
g liquid phase
L left side of computational domain (smallest position in x-direction)
n neighboring cell
r derivative with respect to the r-direction in cylindrical coordinates

or real part of growth rate
R right side of computational domain (largest position in x-direction)
s surface
v vapor phase
x derivative with respect to the x-direction in Cartesian coordinates
y derivative with respect to the y-direction in Cartesian coordinates
z derivative with respect to the z-direction in Cartesian or cylindrical coordinates
0 derivative with respect to the O-direction in cylindrical coordinates

SUPERSCRIPTS

n time step
x height function normal to the x-direction
y height function normal to the y-direction
z height function normal to the z-direction
v iteration
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APPENDIX I

DESCRIPTION OF THE PROGRAM IPST-VOF3D

This appendix describes the operation of the IPST-VOF3D computational fluid

dynamics program. This process will occur in four major steps. First, the general

execution procedure of the program is outlined with an accompanying flow diagram.

Next, the individual subroutines included in or called by the program are listed with a

brief description, a list of the routines that call the subroutine, a list of the subroutines that

are called by the subroutine, and a list of any files that are included in the subroutine.

Third, the variables in common are documented (excluding any variables used as input

data) with separate sections for the array and the scalar variables. This documentation

includes a list of subroutines that modify the variable, other routines that use the variable,

and the common include file and common block where the variable is defined. Finally,

the input data are described with separate sections for each namelist. The input data are

documented as to their modification, use, and default values.

OUTLINE OF PROGRAM EXECUTION

The IPST-VOF3D program consists of two major pieces as shown in Figure 1.

Program execution begins in a primary controlling routine (CONTROL) which opens

input and output files, calls initialization routines, and calls the main calculation routine

SOLA.

Within SOLA execution continues in the same general manner as that outlined in

the description of the numerical method found earlier. First, and explicit guess for the

new velocity field is computed using either TILDE, THIRD, QUICK, or KANDK.
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Next, after imposition of the boundary conditions, the pressure equation is solved using

either the Conjugate'Residual technique (PRESCR) or an SOR solver (PRESSIT). Both

of these routines call VISC3D to compute the deviatoric normal stress at the interface as

required. In addition PRESSIT calls VAPOR1 to compute the pressure in the vapor

phase at the interface if needed (at the present time the conjugate residual solver will not

work if the vapor phase option is used).

After the boundary conditions have again been imposed, the VOF function is

convected through the domain yielding a new surface configuration. This is

accomplished using a form of donor-acceptor differencing to maintain a sharp interface

between the two fluids. The boundary conditions are again updated and the surface

physics routines are called.

The surface physics routines, overseen by PETACAL includes PCAL to compute

preliminary surface orientations (calls LAVORE to identify separated void regions as

needed), PETASET to compute the pressure interpolation factors, PRESCK to reset the

pressure in all non-fluid cells, and either SURCART (Cartesian coordinates) or

SURF1ON (cylindrical coordinates) to compute the surface tension force as needed. The

surface physics related task is solution of the vapor phase potential which, when required,

is accomplished (after the boundary conditions are updated) by either VAPOR (two-

dimensions) or VAPOR3D (three-dimensions). Next, required output prints and plots are

performed, the values are advanced to the next time step, and the time and cycle are

incremented. This completes the main calculation loop and the process begins again.

Several details of the solution procedure have been omitted in the interest of

clarity. For instance, there is an initial startup section in SOLA that includes VFCONV,

the surface physics routines in PETACAL, and the vapor phase routines VAPOR or
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VAPOR3D as needed. The details of the algorithms used in the pressure equation

solvers (PRESCR and PRESSIT), vapor phase solvers (VAPOR or VAPOR3D), and

the surface tension subroutines (SURF1ON or SURCART) can be found by looking at

the inline documentation contained in each subroutine.
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CONTROL SOLA

Figure I-1. Flow chart for IPST-VOF3D.
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SUBROUTINE DOCUMENTATION

This section contains documentation of the subroutines that make up the program

IPST-VOF3D. Each subroutine is documented by a brief description of its purpose, a list

of the subroutines that call it, a list of the subroutines that it calls, and any files that must

be available to be included at compile time.

AFACE1 (2D vapor phase) Treats the case where only one face is closed to the
vapor phase.
Called by VAPOR
Calls MATRIX2
includes none
Added by John McKibben at IPST

AFACE2A (2D vapor phase) Treats the case where two adjacent faces are closed to
the vapor phase.
Called by VAPOR
Calls MATRIX2
includes none
Added by John McKibben at IPST

AFACE2B (2D vapor phase) Treats the case where two opposing faces are closed to
the vapor phase.
Called by VAPOR
Calls MATRIX2
includes none
Added by John McKibben at IPST

AFACE3 (2D vapor phase) Treats. the case where three faces are closed to the vapor
phase.
Called by VAPOR
Calls MATRIX2
includes none
Added by John McKibben at IPST
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(geometry setup) Sets up interior obstacles. Obstacle data read from
namelist MESHGN in MESHSET , 
Called by MESHSET
Calls none

'vof3dcom'Includes

(boundary conditions) Sets boundary conditions at the edges of the
computational domain. Slip (symmetry), no-slip, continuative outflow,
and periodic options are available. Calls BCFS to update the boundary ·

conditions at the free surface. Modifications should be made in the patch
S ~~~~~~~~~~~. 1 . . . . I 

PRESCR, PRESSIT, SOLA
BCFS
'vof3dcom' and 'bc.pat'

file bc.pat.
Called by
Calls
Includes

(boundary conditions) Sets the velocities in the cells adjacent to the free
surface.
Called by BC
Calls none
Includes 'vof3dcom'

(p for the mesh interior) Calculates BETA for non-obstacle cells.
(Includes effects of over-relaxation parameter co when SOR is used.)
Called by SETUP
Calls none
Includes 'vof3dcom'

(controlling main program) Performs setup operations and reads restart
tape as necessary. Main computations are performed under the control of
SOLA. Normal program completion is accomplished here.
Called by This is the MAIN program
Calls RINPUT, MESHSET, SETUP, SOLA, EXITA,
Includes 'vof3dcom'

(utility) Gets the cpu time used by the program thus far.
Called by RDTAPE and SOLA
Calls system dependent functions
Includes none
Added by John McKibben at IPST

ASET

BC

BCFS

BETACAL

CONTROL

CPUTIME
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DATIM (utility) Gets the current date and time in the array NOW.
Called by MESHSET and RDTAPE
Calls LTIME_ (system dependent function)
Includes none
Added by John McKibben at IPST

DCOPY (BLAS) Basic Linear Algebra Subroutine to copy one double precision
vector to another.
Called by DELTADJ, SETVEL, and SOLA
Calls none
Includes none

DELTADJ (time step control) Adjusts the time step, if enabled with the AUTOT flag,
to ensure numerical stability and a reasonable number of iterations for the
pressure equations. Recomputes BETA as needed if SOR is used.
Called by SOLA
Calls DCOPY
Includes 'vof3dcom'

DRAW (graphics output) Replaces the graphics subroutines in the NASA-VOF3D
program with a dump to an ASCII data file in the format needed by the
Data Visualizer TM program. The data output are grid point locations XI(i),
YJ(j), and ZK(k); the obstacle data AC(i,j,k); the VOF function F; the
velocities at the center of each cell Uave(i,j,k), Vave(i,j,k), and Wave(i,j,k);
the pressure P(i,j,k); and the vapor phase potential PRV(i,j,k). Subsets of
the data can be output by changes in the patch file 'draw.pat'.
Called by , SOLA, VAPOR, and VAPOR3D
Calls SYSTEM (system dependent)
Includes 'vof3dcom', 'draw.pat' and 'vaporcom'
Rewritten by John McKibben at IPST

DSWAP (BLAS) Basic Linear Algebra Subroutine to swap two double precision
vectors.
Called by SOLA
Calls none
Includes none

EQUIB (equilibrium surface) Solves two-point boundary value problem to obtain
(cylindrically symmetric) equilibrium shape of initial free surface and
returns to SETUP.
Called by SETUP
Calls EXITA
Includes none
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EXITA (utility) Prints message and aborts the program.
Called by CONTROL, EQUIB, PRESCR, RDTAPE, VAPOR,

VAPOR3D, and VFCONV
Calls none
Includes none
Added by John McKibben at IPST

FACE1 (3D vapor phase) Treats case where only one face is closed to the vapor
phase.
Called by VAPOR3D
Calls MATRIX
Includes none
Added by John McKibben at IPST

FACE2A (3D vapor phase) Treats case where two adjacent faces are closed to the
vapor phase.
Called by VAPOR3D
Calls MATRIX
Includes none
Added by John McKibben at IPST

FACE2B (3D vapor phase) Treats case where two opposing faces are closed to the
vapor phase.
Called by VAPOR3D
Calls MATRIX
Includes none
Added by John McKibben at IPST

FACE3A (3D vapor phase) Treats case where three adjacent faces (forming a
corner) are closed to the vapor phase.
Called by VAPOR3D
Calls MATRIX
Includes none
Added by John McKibben at IPST

FACE3B (3D vapor phase) Treats case where two opposing faces and one
connecting face are closed to the vapor phase.
Called by VAPOR3D
Calls MATRIX2 and MATRIX
Includes none
Added by John McKibben at IPST
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FACE3C (3D vapor phase) Treats case where two opposing faces and one
connecting face are closed to the vapor phase. (different orientation than
FACE3B)
Called by VAPOR3D
Calls MATRIX2 and MATRIX
Includes none
Added by John McKibben at IPST

FACE4A (3D vapor phase) Treats case where only two adjoining faces are open to
the vapor phase.
Called by VAPOR3D
Calls MATRIX2 and MATRIX
Includes none
Added by John McKibben at IPST

FACE4B (3D vapor phase) Treats case where only two opposing faces are open to
the vapor phase.
Called by VAPOR3D
Calls MATRIX2
Includes none
Added by John McKibben at IPST

FACE5 (3D vapor phase) Treats case where only one face is open to the vapor
phase.
Called by VAPOR3D
Calls MATRIX
Includes none
Added by John McKibben at IPST

KANDK (Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using an approximate variable grid version of
Kawamura and Kuwahara's third order accurate technique for treating the
convective terms in the Navier-Stokes equations. Called if ALPHA = 4.0.
(The 'tildel.pat' and 'tilde2.pat' files are used to treat the singularity at the
static contact line.)
Called by SOLA
Calls none
Includes 'vof3dcom', 'tilde 1l.pat', and 'tilde2.pat'
Added by John McKibben at IPST
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(vapor phase identification) Algorithm, modified from the NASA-VOF2D
program to define each separate vapor phase region with its one NF value
greater than 7. Needed so that the potential in each vapor phase region is
treated separately.
Called by PCAL
Calls none
Includes 'vof3dcom'
Added by John McKibben at IPST

(output) Performs specified output of data to files. Options are
determined by the flag LPR.
Called by SOLA
Calls none
Includes 'vof3dcom'

(output) Entry point in LPRT.
Called by PRESSIT and SOLA
Calls none
Includes 'vof3dcom'

LUBKSB (utility) From Numerical Recipes. Solves a system of equations by back-
substitution with the LU decomposition.
Called by MATRIX
Calls none
Includes none
Added by John McKibben at IPST

(utility) From Numerical Recipes. Computes matrix LU decomposition.
Called by MATRIX
Calls none
Includes
Added by

none
John McKibben at IPST

(vapor phase) Compute coefficients for Neuman boundary condition on a
curved boundary given the location of the points and the normal vector at
the surface. Uses points in three-dimensions and calls subroutines from
Numerical Recipes to invert the matrix.
Called by FACE1, FACE2A, FACE2B, FACE3A, FACE3B,

FACE3C, FACE4A, and FACES
Calls LUDCMP and LUBKSB
Includes
Added by

none
John McKibben at IPST

LAVORE

LPRT

LPRT2

LUDCMP

MATRIX
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MATRIX2 (vapor phase) Compute coefficients for Neuman boundary condition on a
curved boundary given the location of the points and the normal vector at
the surface. Uses points in two-dimensions and inverts matrices
analytically.
Called by AFACE1, AFACE2A, AFACE2B, AFACE3, FACE3B,

Calls
Includes
Added by

MESHSET

FACE3C, FACE4A, and FACE4B
none
none
John McKibben at IPST

(mesh generator) Generates computing mesh, the fractional volumes and
areas open to flow, and geometric information about the mesh. Reads in
the mesh and obstacle data from namelist MESHGN.
Called by CONTROL
Calls ASET, MESHX, MESHY, MESHZ, and DATIM
Includes 'vof3dcom'

MESHX (mesh generator) Computes x-coordinate values and their reciprocals.
Called by MESHSET
Calls none
Includes 'vof3dcom'

MESHY (mesh generator) Computes y-coordinate values and their reciprocals.
Includes special treatment of case with only one non-"fictitious" cell.
Called by MESHSET
Calls none
Includes 'vof3dcom'

MESHZ (mesh generator) Computes z-coordinate values and their reciprocals.
Called by MESHSET
Calls none
Includes 'vof3dcom'

PCAL (surface physics) Calculates preliminary values of NF array and supplies
them to PETACAL.
Called by PETACAL
Calls LAVORE
Includes 'vof3dcom'
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PETACAL

PETASET

PRESCK

(surface physics) Determines preliminary values of surface orientation
index NF and of interpolation parameter r I(PETA).
Called by SOLA
Calls PETASET, PCAL, PRESCK, SURCART and SURF1ON
Includes 'vof3dcom'

(surface physics) Calculates PETA in neighboring interpolation cells.
Called by PETACAL
Calls none
Includes 'vof3dcom'

(surface physics) Resets pressure in surface cells, obstacle cells, void cells
and isolated fluid cells.
Called by PETACAL
Calls none
Includes 'vof3dcom'

PRESCR (conjugate residual) Increments pressures and velocities by conjugate
residual technique, as in NASA-VOF2D and NASA-VOF3D programs.
Currently does not work when the vapor phase option is turned.on.
Called by SOLA
Calls BC, EXITA, and VISC3D
Includes 'vof3dcom' and 'vaporcom'

(successive-over-relaxation) Increments pressures and velocities by
successive-over-relaxation technique
Called by SOLA
Calls BC, LPRT2, VAPOR1, and VISC3D
Includes 'vof3dcom'

(Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using a variable grid version of Leonard's
Quadratic Upstream Interpolation for Convective Kinematics (QUICK)
technique for treating the convective terms in the Navier-Stokes equations.
Called if ALPHA = 3.0. (The 'tildel.pat' and 'tilde2.pat' files are used to
treat the singularity at the static contact line.)
Called by SOLA
Calls none
Includes 'vof3dcom', 'tildel.pat', and 'tilde2.pat'
Added by John McKibben at IPST

PRESSIT

QUICK
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RDTAPE (read restart tape) Reads restart data from tape.
Called by SOLA
Calls CPUTIME, DATIM, EXITA, and RINPUT
'Includes 'vof3dcom'

RINPUT (read input data) Sets default values, reads input data from namelist
XPUT, and echoes input data to output file.
Called by CONTROL and RDTAPE
Calls none
Includes 'vof3dcom'

SETFS (initial conditions) Generates initial configuration of fluid from data in
namelist FLUIDGN.
Called by SETUP

SETUP (initial conditions) Calculates problem parameters, geometry, initial
arrays, fluid configuration, and velocities. User modifications in the initial
velocity fields are incorporated through 'setup.pat' and modifications to the
initial fluid configuration are incorporated through 'setupl.pat'.
Called by CONTROL
Calls BETACAL, EQUIB, SETFS, and SETVEL
Includes 'vof3dcom', 'setup.pat', and'setupl.pat'

SETVEL (initial conditions) Additional subroutine to set up the perturbations
needed in instability studies. This also ensures that the FN array is filled
in to ensure proper startup of vapor phase computations.
Called by SETUP
Calls DCOPY
Includes 'vof3dcom'
Added by John McKibben at IPST

SOLA (main calculational routine) Increments pressures, velocities, volume of
fluid, and vapor phase potential by one time step &t.

Called by CONTROL
Calls BC, CPUTIME, DCOPY, DELTADJ, DRAW,

DSWAP, KANDK, LPRT, LPRT2, PETACAL,
PRESCR, PRESSIT, QUICK, RDTAPE, THIRD,
TILDE, VAPOR, VAPOR3D, VFCONV, and WRTAPE

Includes 'vof3dcom'
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SURCART

SURF1ON

THIRD

TILDE

(surface physics) Gives final NF values, and calculates surface tension
effect for Cartesian coordinates only (cylindrical coordinates are handled
in SURF1ON). Appropriate place for wall adhesion modifications.
Patches needed for static contact points are included from 'surcart.pat'.
Called by PETACAL
Calls none 
Includes 'vof3dcom' and 'surcart.pat'
Added by John McKibben at IPST

(surface physics) Gives final NF values and calculates surface tension
effect for cylindrical coordinates only (Cartesian coordinates are handled
in SURCART). Appropriate place for wall adhesion modifications.
Called by PETACAL
Calls none
Includes 'vof3dcom'

(Provisional velocity field) Replacement for TILDE to compute the
provisional velocity field using an variable grid version of Agarwal's third
order accurate upwind differencing technique for treating the convective
terms in the Navier-Stokes equations. Called if ALPHA = 2.0. (The
'tilde 1.pat' and 'tilde2.pat' files are used to treat the singularity at the static
contact line.)
Called by SOLA
Calls none
Includes 'vof3dcom', 'tildel.pat', and 'tilde2.pat'
Added by John McKibben at IPST

(Provisional velocity field) Calculates explicitly a set of approximate
velocity increments. Used if 0.0 < ALPHA < 1.0, otherwise THIRD,
QUICK, or KANDK is used., (The 'tilde .pat' and 'tilde2.pat' files are
used to treat the singularity at the static contact line.)
Called by SOLA
Calls none
Includes 'vof3dcom', 'tildel.pat', and 'tilde2.pat'
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VAPOR (2D vapor phase) Computes the vapor phase velocity potential for two-
dimensional problems with Neuman Boundary conditions on curved
boundaries using the method of Bramble and Hubbard. Loops through
each vapor phase region based on the identifying region number from
LAVORE at the reference location.
Called by SOLA
Calls AFACE1, AFACE2A, AFACE2B, AFACE3, DRAW,

and EXITA
Includes 'vof3dcom' and 'vaporcom'
Added by John McKibben at IPST

VAPOR1 (surface physics) Computes the vapor phase pressure at the interface from
the vapor phase potential computed in either VAPOR or VAPOR3D.
Called by PRESSIT
Calls none
Includes 'vof3dcom'
Added by John McKibben at IPST

VAPOR3D (3D vapor phase) Computes the vapor phase velocity potential for three-
dimensional problems with Neuman Boundary conditions on curved
boundaries using the method of Bramble and Hubbard. Loops through
each vapor phase region based on the identifying region number from
LAVORE at the reference location.
Called by SOLA
Calls FACE1, FACE2A, FACE2B, FACE3A, FACE3B,

FACE3C, FACE4A, FACE4B, FACES, DRAW, and
EXITA

Includes 'vof3dcom' and 'vaporcom'
Added by John McKibben at IPST

VCHGCAL (void volume)
Called by
Calls
Includes

Computes the volume of disjoint void (F = 0.0) regions.
VFCONV
none
'vof3dcom'

(F increment) Computes the advective fluxes of F from the newly
determined velocity field using Donor-Acceptor differencing and updates
the F array. Patches needed for inlet boundaries (to ensure that fluid
continues to enter the domain) are added in the file 'vfconv.pat.
Called by SOLA
Calls VFCONV and EXITA
Includes 'vof3dcom' and 'vfconv.pat'

VFCONV
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VISC3D (surface physics) Computes the deviatoric stress component of the
interfacial boundary condition. This is accomplished by computing the
local rate of strain at the interface (using only velocities known within the
liquid) and combining this with knowledge of the normal vector to
compute 2Reijninj .
Called by PRESSIT and PRESCR
Calls none
Includes 'vof3dcom'
Added by John McKibben at IPST

WRTAPE (output) Writes restart data to output file.
Called by SOLA
Calls none
Include 'vof3dcom'

COMMUNICATION AMONG THE SUBROUTINES

In large part communication among the subroutines that make up IPST-VOF3D is

accomplished through variables in common. The majority of these variables are

contained in the file 'vof3dcom' referred to in the includes lists above. There are a few

additional variables listed in 'vaporcom' which define a shared pool of temporary storage

for use in VAPOR, VAPOR3D, PRESCR, and DRAW.

First I will describe the arrays in common (excluding input data) and their primary

functions. This will be followed by a similar discussion of the scalar variables in

common (excluding input data) and their functions. A few variables will occur both here

and in the input data listing because these input variables are regularly updated as the

simulation precedes.

Documentation consists of identification of the variables type, a brief description

of its purpose, the subroutines where its value is modified, other subroutines that use it,

and file and common block where it is defined.



- 155-

Parameters in COMMON

IBASC (INTEGER) Maximum number of computational cells. Must be greater
than IMAX*JMAX*KMAX
File 'vof3dcom'
Default = 100000

LSCR (INTEGER) Scratch storage space lscr=ibasc*maxcoef
File 'vaporcom'
Default = 1100000

MAXCOEF (INTEGER) Number of columns in "scratch" arrays
File 'vaporcom'
Default = 11

MXV (INTEGER) Maximum number of cells in the x-direction must be greater
than IMAX
File 'vof3dcom'
Default = 500

MYV (INTEGER) Maximum number of cells in the x-direction must be greater
than JMAX
File 'vof3dcom'
Default = 500

MZV (INTEGER) Maximum number of cells in the x-direction must be greater
than KMAX
File 'vof3dcom'
Default = 500

NVOR (INTEGER) Maximum number of void regions. Set larger than expected
due to needs of the region numbering algorithm in LAVORE.
File 'vof3dcom'
Default = 5000



- 156-

Arrays in COMMON

ABK(i,j,k) (DOUBLE PRECISION) Fractional area open to flow in back wall of
cell (ij,k)
Modified in ASET
Used in BCFS. BETACAL. KANDK. PCAL. PETASET.

In common

PRESCR, QUICK, SETUP, SURCART, SURF1ON,
THIRD, TILDE, VFCONV, and VISC3D
'vof3dcom'/SLCM4/

AC(i,j,k) (DOUBLE PRECISION) Fractional volume open to flow in cell (i,j,k)
Modified in ASET
Used in BETACAL, DRAW, KANDK, PCAL, PETASET,

PRESCK, PRESCR, QUICK, SURCART, SURF10N,
THIRD, VCHGCAL, VFCONV, and VISC3D

In common 'vof3dcom' /SLCM4/

AR(i,j,k) (DOUBLE PRECISION) Fractional area open to flow in right wall of
cell (i,j,k)
Modified in ASET
Used in

AT(i,j,k)

BCFS, BETACAL, KANDK, PCAL, PETASET,
PRESCR, QUICK, SETUP, SURCART, SURF1ON,
THIRD, TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SLCM4/

(DOUBLE PRECISION) Fractional area open to flow in top wall of
cell (i,j,k)
Modified in ASET
Used in BCFS, BETACAL, PCAL, PETASET, PRESCR,

SETUP, SURCART, SURF1ON, VFCONV, and
VISC3D

In common 'vof3dcom' /SLCM4/

BETA(i,j,k) (DOUBLE PRECISION) Pressure iteration relaxation factor in cell (i,j,k)
Modified in ASET, BETACAL, and DELTADJ
Used in

In common

BCFS, KANDK, LPRT, PCAL, PETACAL, PETASET,
PRESCK, PRESCR, PRESSIT, QUICK, SURCART,
SURF1ON, THIRD, TILDE, VCHGCAL, and VFCONV
'vof3dcom' /SLCM2/
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CTHJ(j)

CTHJBK(j)

(DOUBLE PRECISION) Cosine of 0 (at cell center) = Cos(YJ(j)/X(IM 1))
Modified in MESHSET
Used in BC and SETUP
In common 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) Cosine of 0 (at cell back) = Cos(Y(j)/X(IM1))
Modified in MESHSET
Used in BC, SETFS, and SETUP
In common 'vof3dcom' /SSCM4/

(DOUBLE PRECISION) The residual (V u) for cell (i,j,k) after
convergence of the pressure iteration
Modified in PRESCR, PRESSIT, and SETUP
Used in VFCONV
In common 'vof3dcom' /SLCM4/

(DOUBLE PRECISION) Mesh spacing of the i-th cell along the radial (x)
coordinate
Modified in
Used in

In common

MESHX
ASET, DELTADJ, KANDK, MESHSET, PETACAL,
PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF10N, THIRD, TILDE, VAPOR, VAPOR1,
VAPOR3D, VCHGCAL, VFCONV, and VISC3D
'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Mesh spacing of thj-th cell along the
azimuthal (y) coordinate at the maximum R(x) mesh value
Modified in MESHY
Used in

In common

DELTADJ, KANDK, MESHSET, PETACAL,
PRESCR, QUICK, SETFS, SURCART, SURF1ON,
THIRD, TILDE, VAPOR1, VAPOR3D, VCHGCAL,
VFCONV, and VISC3D
'vof3dcomo'/SSCM1/

DELZ(k) (DOUBLE PRECISION) Mesh spacing of the k-th cell along the axial (z)
coordinate
Modified in MESHZ
Used in ASET, DELTADJ, KANDK, MESHSET, PETACAL,

PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF1ON, THIRD, TILDE, VAPOR, VAPOR1,
VAPOR3D, VCHGCAL, VFCONV, and VISC3D
'vof3dcom' /SSCM1/

D(i,j,k)

DELX(i)

DELY(j)

In common
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(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at
time level n+ 1
Modified in

Used in

In common

BC, BCFS, DELTADJ, SETFS, SETUP, VCHGCAL,
and VFCONV
DRAW, KANDK, LPRT, PCAL, PETACAL, PRESCR,
QUICK, SOLA, SURCART, SURF1ON, THIRD,
TILDE, VAPOR, VAPOR1, VAPOR3D, and VISC3D
'vof3dcom' /SLCM2/

(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at
time level n
Modified in SETUP and SOLA
Used in DELTADJ, VAPOR, VAPOR3D, and VFCONV
In common 'vof3dcom' /SLCM2/

(DOUBLE PRECISION) Radial component of acceleration due to applied
body force for cell (i,j,k)
Modified in SETUP
Used in KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom' /SSCM5/

(DOUBLE PRECISION) Azimuthal component of acceleration due to
applied body force for cell (i,j,k)
Modified in SETUP
Used in KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom' /SSCM5/

(INTEGER) Index value of plane opposite j-th J plate (appropriate for
CYL = 1.0 only)
Modified in MESHSET
Used in BC, PCAL, and SURF1ON
In common 'vof3dcom' /SSCM4A/

(INTEGER)
Modified in

Used in

In common

Flag indicating cell type at time level n+l
BC, LAVORE, PCAL, PETACAL, SETUP, and
SURF1ON
BCFS, DELTADJ, DRAW, KANDK, LPRT,
PETASET, PRESCK, PRESCR, PRESSIT, QUICK,
THIRD, VAPOR, VAPOR1, VAPOR3D, VFCONV,
and VISC3D
'vof3dcom' /SLCM3/

F(i,j,k)

FN(i,j,k)

GXA(j)

GYA(j)

JOP(i)

NF(i,j,k)
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(INTEGER)
Modified in
Used in
In common

Flag indicating cell type at time level n
PETACAL
LPRT and PRESCK
'vof3dcom' /SLCM3/

NFP(i,j,k) (INTEGER) Flag indicating provisional cell type at time level n+1 (from
fluid surface height function)
Modified in PCAL and PETACAL

- Used in LPRT
In common 'vof3dcom' /SLCM3/

NFS(i,j,k) (INTEGER) Flag indicating provisional cell type at time level n+l (from
fluid surface slope function)
Modified in PETACAL, SURCART, and SURF1ON
Used in LPRT
In common 'vof3dcom' /SLCM3/

P(i,j,k)

PETA(i,j,k)

PN(i,j,k)

PR(NVOR)

(DOUBLE PRECISION) Pressure in cell (i,j,k) at time level n+1 divided
by the liquid phase density
Modified in BC, BCFS, PETACAL, PETASET, PRESCK,

PRESCR, PRESSIT, and SETUP
Used in DRAW, KANDK, LPRT, QUICK, SOLA, THIRD, and

TILDE
In common 'vof3dcom' /SLCM2/

(DOUBLE PRECISION) Pressure interpolation factor for cell (i,j,k)
Modified in BC, PETACAL, PETASET, and SETUP
Used in LPRT, PRESCK, PRESCR, and PRESSIT
In common 'vof3dcom' /SLCM2/

(DOUBLE PRECISION) Pressure in cell (i,j,k) at time level n divided by
the liquid phase density
Modified in BC, PRESCR, SETUP, SOLA, SURCART, and

SURF1ON
Used in PRESCK
In common 'vof3dcom' /SLCM2/

(DOUBLE PRECISION) Pressure in void region I (nominally = 0)
Modified in SETUP
Used in PETASET, PRESCK, PRESCR, and PRESSIT
In common 'vof3dcom' /SSCM4/

NFO(i,j,k)
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PS(i,j,k) (DOUBLE PRECISION) Surface pressure in cell (i,j,k) computed from
surface tension forces
Modified in BC, PETACAL, SURCART, and SURF1ON
Used in LPRT, PRESCK, PRESCR, and PRESSIT
In common 'vof3dcom' /SLCM4/

RDX(i) (DOUBLE PRECISION) Reciprocal of DELX(i)
Modified in MESHX
Used in BCFS, BETACAL, KANDK, MESHSET, PETASET,

PRESCR, PRESSIT, QUICK, SURF1ON, THIRD,
TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM2/

RDXP(i) (DOUBLE PRECISION) 2.0/(DELX(i)+DELX(i+ ))
Modified in MESHX
Used in BETACAL, DELTADJ, KANDK, PETASET,

PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VISC3D

In common 'vof3dcom' /SSCM2/

RDY(j) (DOUBLE PRECISION) Reciprocal of DELY(j)
Modified in MESHY
Used in BCFS, BETACAL, KANDK, MESHSET, PETASET,

PRESCR, PRESSIT, QUICK, SURF10N, THIRD,
TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM2/

RDYP(j) (DOUBLE PRECISION) 2.0/(DELY(j)+DELY(j+1))
Modified in MESHY
Used in BETACAL, DELTADJ, KANDK, PETASET,

PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPOR1, VAPOR3D, and VISC3D

In common 'vof3dcom' /SSCM2/

RDZ(k) (DOUBLE PRECISION) Reciprocal of DELZ(k)
Modified in MESHZ
Used in BCFS, BETACAL, KANDK, MESHSET, PETASET,

PRESCR, PRESSIT, QUICK, SETUP, SURF10N,
THIRD, TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM2/
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RDZP(k) (DOUBLE PRECISION) 2.0/(DELZ(k)+DELZ(k+1))
Modified in MESHZ
Used in BETACAL, DELTADJ, KANDK, PETASET,

PRESCR, PRESSIT, QUICK, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VISC3D

In common 'vof3dcom'/SSCM2/

RR(i) (DOUBLE PRECISION) =1.0 if CYL = 0.0; =X(IMI)/X(i) if CYL = 1.0
Modified in MESHSET
Used in. BC, BCFS, KANDK, PRESCR, QUICK, THIRD,

TILDE, VFCONV, and VISC3D
In common 'vof3dcom' /SSCM6/

RRI(i) (DOUBLE PRECISION) =1.0 if CYL = 0.0; =X(IM1)/XI(i) if CYL = 1.0
Modified in MESHSET
Used in BCFS, BETACAL, DELTADJ, KANDK, PETASET,

PRESCR, PRESSIT, QUICK, SETFS, SURF10N,
THIRD, TILDE, VCHGCAL, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM6/

RX(i) (DOUBLE PRECISION) Reciprocal of X(i)
Modified in MESHX
Used in BETACAL, DRAW, KANDK, MESHSET, QUICK,

SETUP, SURCART, SURF10N, THIRD, and TILDE
In common 'vof3dcom' /SSCM2/

RXI(i) (DOUBLE PRECISION) Reciprocal of XI(i)
Modified in MESHX
Used in BC, KANDK, MESHSET, QUICK, SURF10N, THIRD,

and TILDE
In common 'vof3dcom' /SSCM2/

RY(j) (DOUBLE PRECISION) Reciprocal of Y(j)
Modified in MESHY
Used in SURCART
In common 'vof3dcom' /SSCM2/

RYJ(j) (DOUBLE PRECISION) Reciprocal of YJ(j)
Modified in MESHY
Used in MESHSET
In common 'vof3dcom' /SSCM2/
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RZ(k) (DOUBLE PRECISION) Reciprocal of Z(k)
Modified in MESHZ
Used in SURCART
In common 'vof3dcom' /SSCM2/

RZK(k) (DOUBLE PRECISION) Reciprocal of ZK(k)
Modified in MESHZ
Used in MESHSET
In common 'vof3dcom' /SSCM2/

STHJ(j) (DOUBLE PRECISION) Sin of 0 (at cell center) =Sin(YJ(j)/X(IM I))
Modified in MESHSET
Used in BC and SETUP
In common 'vof3dcom' /SSCM4/

STHJBK(j) (DOUBLE PRECISION) Sin of 0 (at cell back) =Sin(Y(j)/X(IM 1))
Modified in MESHSET
Used in BC, SETFS, and SETUP
In common 'vof3dcom' /SSCM4/

U(i,j,k) (DOUBLE PRECISION) x-direction velocity in cell (i,j,k) at time
level n+l
Modified in BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT,

QUICK, SETUP, THIRD, and TILDE
Used in DRAW, LPRT, SOLA, VFCONV, and VISC3D
In common 'vof3dcom'/SLCMI/

UN(i,j,k) (DOUBLE PRECISION) x-direction velocity in cell (i,j,k) at time level n
Modified in SOLA
Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom'/SLCMI/

V(i,j,k) (DOUBLE PRECISION) y-direction velocity in cell (i,j,k) at time
level n+1
Modified in BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT,

QUICK, SETUP, THIRD, and TILDE
Used in DRAW, LPRT, SOLA, VFCONV, and VISC3D
In common 'vof3dcom'/SLCMI/

VN(i,j,k) (DOUBLE PRECISION) y-direction velocity in cell (i,j,k) at time level n
Modified in SOLA
Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom'/SLCM 1/



- 163 -

W(i,j,k) (DOUBLE PRECISION) z-direction velocity in cell (i,j,k) at time
level n+1
Modified in BC, BCFS, DELTADJ, KANDK, PRESCR, PRESSIT,

QUICK, SETUP, THIRD, and TILDE
Used in DRAW, LPRT, SOLA, VFCONV, and VISC3D
In common 'vof3dcom' /SLCM1/

WN(i,j,k) (DOUBLE PRECISION) z-direction velocity in cell (i,j,k) at time level n
Modified in SOLA
Used in DELTADJ, KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom' /SLCM1/

X(i) (DOUBLE PRECISION) Location of the right-hand boundary of the i-th
cell along the x-axis
Modified in MESHX
Used in ASET, BCFS, KANDK, MESHSET, QUICK, SETFS,

SETUP, SURF10N, THIRD, and TILDE
In common 'vof3dcom' /SSCM2/

XI(i) (DOUBLE PRECISION) Location of the center of the i-th cell along the
x-axis
Modified in MESHX
Used in BC, DRAW, KANDK, MESHSET, QUICK, SETUP,

SURF10N, THIRD, VAPOR, VAPOR1, VAPOR3D,
and VISC3D

In common 'vof3dcom' /SSCM2/

Y(j) (DOUBLE PRECISION) Location of the back boundary of the j-th cell
along the y-axis
Modified in MESHY
Used in MESHSET, SETFS, and SURF1ON
In common 'vof3dcom' /SSCM2/

YJ(j) (DOUBLE PRECISION) Location of the center of the j-th cell along the
y-axis
Modified in MESHY
Used in DRAW, KANDK, MESHSET, QUICK, SURFION,

THIRD, VAPOR1, VAPOR3D, and VISC3D
In common 'vof3dcom' /SSCM2/
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Z(k) (DOUBLE PRECISION) Location of the top boundary of the k-th cell
along the z-axis
Modified in MESHZ
Used in ASET, MESHSET, SETFS, SETUP, and SURF1ON
In common 'vof3dcom'/SSCM2/

ZK(k) (DOUBLE PRECISION) Location of the center of the k-th cell along the
z-axis
Modified in MESHZ
Used in DRAW, KANDK, MESHSET, QUICK, THIRD,

VAPOR, VAPOR1, VAPOR3D, and VISC3D
In common 'vof3dcom'/SSCM2/

Additional variables in COMMON added by John F. McKibben at IPST

ASCR(i) (DOUBLE PRECISION) Scratch array for storing vapor phase potential
coefficients in VAPOR and VAPOR3D, conjugate residual storage arrays
in PRESCR, and temporary storage in DRAW.
Modified in VAPOR and VAPOR3D
Used in DRAW and PRESCR
In common 'vaporcom' /PRESVAP/

DIV(i,j,k) (DOUBLE PRECISION) Stores the divergence in VAPOR, VAPOR3D,
and PRESCR
Modified in PRESCR, VAPOR, and VAPOR3D
Used in
In common 'vaporcom' /PRESVAP/

DPS(i,j,k) (DOUBLE PRECISION) Stores the correction to PS(i,j,k) due to the
deviatoric stress (VISC3D) and the vapor phase pressure (VAPOR1)
Modified in PRESCR, PRESSIT, VAPOR1, and VISC3D
Used in LPRT and PRESCK
In common 'vof3dcom' /SLCM5/

DVMAX(n) (DOUBLE PRECISION) Maximum relative error in vapor region (n)
Modified in VAPOR and VAPOR3D
Used in PRESSIT and SOLA
In common 'vof3dcom' /MCKIB/
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(DOUBLE PRECISION) Volume of fluid per unit volume of cell (i,j,k) at
time level n-1
Modified in SOLA
Used in
In common 'vof3dcom' /SLCM2/

(INTEGER) Scratch storage for pointer array for solution of vapor phase
potential in VAPOR and VAPOR3D
Modified in VAPOR and VAPOR3D
Used in
In common 'vaporcom' /PRESVAP/

IMFL(ibasc)

IVITER(n)

NR(n)

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in

PRESCR, VAPOR, and VAPOR3D

'vaporcom' /PRESVAP/

Iterations required for vapor region (n)
VAPOR and VAPOR3D
PRESSIT and SOLA
'vof3dcom'/MCKIB 1/

Void region number
LAVORE

In common 'vof3dcom' /MCKIB1/

PRV(i,j,k)

PRVN(i,j,k)

PRVNN(i,j,k)

(DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n+1
Modified in VAPOR and VAPOR3D
Used in DRAW, PRESCR, SOLA, and VAPOR1
In common 'vof3dcom' /SLCM5/

(DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n
Modified in SOLA, VAPOR, and VAPOR3D
Used in PRESCR and VAPOR1
In common 'vof3dcom' /SLCM5/

(DOUBLE PRECISION) Vapor phase potential of cell (i,j,k) at n-1
Modified in
Used in
In common 'vof3dcom' /SLCM5/

FNN(i,j,k)

ISCR(i)
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PRVT(ibasc) (DOUBLE PRECISION) Temporary storage array
Modified in VAPOR and VAPOR3D
Used in
In common 'vaporcom' /PRESVAP/

Scalar Variables in COMMON

AVE (DOUBLE PRECISION) Second-order accurate option parameter
Modified in SOLA
Used in TILDE
In common 'vof3dcom' /SSCM4/

CLK (DOUBLE PRECISION) System furnished time of day for run
identification
CLK
Modified in LPRT.
Used in MESHSET
In common 'vof3dcom' /SSCM1B/

CSANG (DOUBLE PRECISION) Cosine of contact angle
Modified in RINPUT and SURF1ON
Used in SURCART
In common 'vof3dcom'/SSCM4/

CYCLE (INTEGER) Calculational time cycle number
Modified in DELTADJ, SETUP, and SOLA
Used in LAVORE, LPRT, PETACAL, PRESCR, PRESSIT,

VAPOR, VAPOR3D, and VFCONV
In common 'vof3dcom' /SSCM1A/

DAT (CHARACTER*8) Date furnished by system for run identification
Modified in LPRT
Used in MESHSET
In common 'vof3dcom'/SSCM1B/

DELMN (DOUBLE PRECISION) Smallest cell dimension in problem
Modified in MESHSET
Used in
In common 'vof3dcom'/SSCM1/

mm
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DELT (DOUBLE PRECISION) Time step (also in input namelist XPUT)
Modified in DELTADJ and RINPUT
Used in BETACAL, KANDK, LPRT, PETASET, PRESCR,

PRESSIT, QUICK, SETUP, SOLA, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VFCONV

In common 'vof3dcom' /SSCM1/

DELXRL (DOUBLE PRECISION) Ratio of cell spacing on left side of mesh
(=DELX(1)/DELX(2))
Modified in MESHSET
Used in BC
In common 'vof3dcom' /SSCM1/

DELXRR (DOUBLE PRECISION) Ratio of cell spacing on right side of mesh
(=DELX(IMAX)/DELX(IM 1))
Modified in MESHSET
Used in BC
In common 'vof3dcom' /SSCM1/

DELYRBK (DOUBLE PRECISION) Ratio of cell spacing on back side of mesh
(=DELY(1)/DELY(2))
Modified in MESHSET
Used in BC
In common 'vof3dcom'/SSCM1/

DELYRF (DOUBLE PRECISION) Ratio of cell spacing on front side of mesh
(=DELY(JMAX)/DELY(JM 1))
Modified in MESHSET
Used in BC
In common 'vof3dcom'/SSCM1/

DELZRB (DOUBLE PRECISION) Ratio of cell spacing on bottom side of mesh
(=DELZ(1)/DELZ(2))
Modified in MESHSET
Used in BC
In common 'vof3dcom' /SSCM1/

DELZRT (DOUBLE PRECISION) Ratio of cell spacing on top side of mesh
(=DELZ(KMAX)/DELZ(KM 1))
Modified in MESHSET
Used in BC
In common 'vof3dcom' /SSCM1/
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DTVIS (DOUBLE PRECISION) Maximum DELT value allowed by the viscous
forces stability criterion
Modified in SETUP
Used in DELTADJ
In common 'vof3dcom'/SSCMl/

EM6 (DOUBLE PRECISION) 10-6
Modified in ASET
Used in BC, BCFS, KANDK, PETASET, PRESCK, PRESCR,

QUICK, RINPUT, SURCART, SURF1ON, THIRD,
TILDE, VFCONV, and VISC3D

In common 'vof3dcom' /SSCM4/

EMF (DOUBLE PRECISION) Small value used to negate round off error
effects in F convection (=10-6)
Modified in SETUP
Used in KANDK, PCAL, QUICK, SURCART, SURF10N,

THIRD, TILDE, VCHGCAL, VFCONV, and VISC3D
In common 'vof3dcom' /SSCM4/

EMF1 (DOUBLE PRECISION) 1.0-EMF
Modified in SETUP
Used in PCAL, PRESCR, and VCHGCAL
In common 'vof3dcom' /SSCM4/

FLG (DOUBLE PRECISION) Pressure iteration convergence indicator
(=0.0 converged)
Modified in PRESSIT, SETUP, and SOLA
Used in BCFS
In common 'vof3dcom' /SSCM4/

FLGC (DOUBLE PRECISION) Volume of fluid convection limit indicator
Modified in SETUP and VFCONV
Used in DELTADJ and SOLA
In common 'vof3dcom' /SSCM4/

FNOC (DOUBLE PRECISION) Pressure convergence failure indication
Modified in PRESSIT, SETUP and SOLA
Used in DELTADJ
In common 'vof3dcom'/SSCM4/
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(INTEGER) Number of real cells in x-direction (excludes fictitious cells)
Modified in MESHX
Used in
In common

(INTEGER)
Modified in
Used in
In common

MESHSET, THIRD, VAPOR, and VAPOR3D
'vof3dcom'/SSCMlA/

Data storage parameter (=IBAR)
MESHSET
BC
'vof3dcom' /SSCMlA/

(INTEGER) Data storage parameter (=IMAX)
Modified in MESHSET
Used in BCFS, PCAL, SURCART, SURF1ON, TILDE,

VAPOR1, and VAPOR3D, VISC3D
In common 'vof3dcom' /SSCM1A/

(INTEGER)
Modified in
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in

In common

Data storage parameter (=IMAX*JMAX)
MESHSET
MESHSET
BCFS, PCAL, SURF1ON, THIRD, TILDE, and VISC3D
'vof3dcom'/SSCM A/

Data storage parameter (=IMAX*JBAR)
MESHSET
BC
'vof3dcom'/SSCMlA/

Data storage parameter (=IMAX*JMAX*KBAR)
MESHSET
BC, PRESCR, VAPOR, and VAPOR3D
'vof3dcom' /SSCM1A/

Data storage parameter (=IMAX*JMAX)
MESHSET
ASET, BC, BCFS, DELTADJ, DRAW, KANDK,
LAVORE, LPRT, PCAL, PETACAL, PETASET,
PRESCK, PRESCR, PRESSIT, QUICK, SETFS,
SETUP, SURCART, SURF1ON, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, VCHGCAL,
VFCONV, and VISC3D
'vof3dcom'/SSCMlA/ 

IBAR

II0

II1

112

113

114

115
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(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
(=IMAX-1)
Modified in
Used in

In common

Data storage parameter (=IMAX*JBAR)
MESHSET
ASET and PRESCR
'vof3dcom'/SSCM 1 A/

Data storage parameter (=IMAX*JM 1)
MESHSET
ASET, DRAW, and PRESCR
'vof3dcom'/SSCM A/

Value of the index I at the last real cell in the x-direction

MESHSET
ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,
KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETFS, SETUP,
SURCART, SURF10N, THIRD, TILDE, VAPOR,
VAPOR1, VAPOR3D, VCHGCAL, VFCONV, and
VISC3D
'vof3dcom'/SSCM 1 A/

(INTEGER) Value of the index I at the next to the last real cell in the x-
direction (=IMAX-2)
Modified in MESHSET
Used in KANDK, QUICK, SURCART, SURF10N, VAPOR, and

In common
VISC3D
'vof3dcom'/SSCM IA/

(INTEGER)
Modified in
Used in

Total number of cells in x-direction (=IBAR+2)
MESHSET
ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,
KANDK, LAVORE, LPRT, PCAL, PETACAL,
PETASET, PRESCK, PRESCR, PRESSIT, QUICK,
SETFS, SETUP, SURCART, SURFION, THIRD,
TILDE, VAPOR, VAPOR1, VAPOR3D, VCHGCAL,
VFCONV, and VISC3D

In common 'vof3dcom'/SSCM1A/

(INTEGER)
Modified in
Used in
In common

Pressure iteration counter
PRESCR, PRESSIT, SETUP, and SOLA
BC, BCFS, DELTADJ, LPRT, and VFCONV
'vof3dcom'/SSCM1A/

II6

117

IM1

IM2

IMAX

ITER
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(INTEGER)
Modified in
Used in
In common.

(INTEGER)
Modified in
Used in
In common

(INTEGER)
(JMAX-1)
Modified in
Used in

In common

Number of real cells in y-direction (=JMAX-2)
MESHY
BC, MESHSET, SURF1ON, THIRD, and VAPOR3D
'vof3dcom' /SSCM1A/

Indicator of 360 degree geometry (CYL = 1.0)
MESHSET
SURF1ON
'vof3dcom' /SSCM4A/

Value of the index J at the last real cell in the y-direction

MESHSET
ASET, BC, BCFS, BETACAL, DELTADJ, DRAW,
KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETUP, SOLA,
SURCART, SURF1ON, THIRD, TILDE, VAPOR,
VAPOR1, VAPOR3D, VCHGCAL, VFCONV, and
VISC3D
'vof3dcom'/SSCM 1 A/

(INTEGER) Value of the index'J at the next to the last real.cell in the y-
direction (JMAX-2)
Modified in
Used in

In common

(INTEGER)
Modified in
Used in

In common

(INTEGER)
Modified in
Used in
In common

MESHSET
KANDK, QUICK, SURCART, SURF1ON, VAPOR,
VAPOR3D, and VISC3D
'vof3dcom' /SSCM1A/

Total number of cells in y-direction (=JBAR+2)
MESHSET
ASET, BC, DRAW, KANDK, LAVORE, LPRT, PCAL,
PETASET, PRESCR, QUICK, SETFS, SETUP,
SURCART, SURF10N, THIRD, VAPOR, VAPOR3D,
and VFCONV
'vof3dcom' /SSCM1A/

Number of real cells in z-direction (=KMAX-2)
MESHZ
MESHSET, THIRD, VAPOR, and VAPOR3D
'vof3dcom' /SSCM1A/

JBAR

JC2PI

JM1

JM2

JMAX

KBAR
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(INTEGER)
(KMAX-1)

Value of the index K at the last real cell in the z-direction

Modified in MESHSET
Used in ASET, BCFS, BETACAL, DELTADJ, DRAW,

KANDK, LAVORE, PCAL, PETACAL, PRESCK,
PRESCR, PRESSIT, QUICK, SETFS, SETUP,
SURCART, SURF1ON, THIRD, TILDE, VAPOR,
VAPOR1, VAPOR3D, VCHGCAL, VFCONV, and
VISC3D

In common 'vof3dcom' /SSCM1A/

(INTEGER) Value of the index K at the next to the last real cell in the z-
direction (KMAX-2)
Modified in MESHSET
Used in

In common

(INTEGER)
Modified in
Used in

In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

NUMTD (INTEGER)
Modified in
Used in
In common

ASET, KANDK, QUICK, SURCART, SURF10N, and
VISC3D
'vof3dcom' /SSCMlA/

Total number of cells in z-direction (=KBAR+2)
MESHSET
ASET, B, DRAW, KANDK, LPRT, PCAL, PETASET,
PRESCR, QUICK, SETFS, SETUP, SURCART,
SURF10N, THIRD, VAPOR, VAPOR3D, and VFCONV
'vof3dcom' /SSCM1A/

Accumulated F convection limit excesses
DELTADJ and SETUP
SOLA
'vof3dcom' /SSCM4A/

Accumulated pressure convergence failures
PRESSIT and SETUP
SOLA
'vof3dcom' /SSCM4A/

Restart tape dump counter
SETUP

'vof3dcom' /SSCM2A/

KM1

KM2

KMAX

NFLGC

NOCON



- 173-

PI (DOUBLE PRECISION) =3.141592654
Modified in SETUP
Used in
In common 'vof3dcom' /SSCM4/

RIJK (DOUBLE PRECISION) Reciprocal of the number of real non-obstacle
cells on computational mesh
Modified in BETACAL
Used in SOLA
In common 'vof3dcom'/SSCM2/

SANG (DOUBLE PRECISION) Sine of the contact angle
Modified in RINPUT and SURF1ON
Used in SURCART
In common 'vof3dcom'/SSCM4/

STIM (DOUBLE PRECISION) System clock time when problem commences
Modified in SOLA
Used in
In common 'vof3dcom' /SSCM2/

T (DOUBLE PRECISION) Current program time (initialized in input
namelist XPUT)
Modified in DELTADJ, RINPUT, SETUP, and SOLA
Used in DRAW, LPRT, and VFCONV
In common 'vof3dcom'/SSCM2/

TANCA (DOUBLE PRECISION) Tangent of contact angle
Modified in RINPUT
Used in
In common 'vof3dcom' /SSCM4/

TD (INTEGER) Tape dump number (initialized in input namelist XPUT)
Modified in RINPUT
Used in SOLA
In common 'vof3dcom' /SSCM2A/

TLM (CHARACTER*8) Problem control parameter (currently not used)
Modified in
Used in
In common 'vof3dcom' /SSCM2/
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TWPLT (DOUBLE PRECISION) Problem time for next plot and/or data print to
be sent to film
Modified in SETUP and SOLA
Used in
In common 'vof3dcom' /SSCM2/

TWPRT (DOUBLE PRECISION) Problem time for next paper data print to be sent
to output
Modified in SETUP and SOLA
Used in
In common 'vof3dcom' /SSCM2/

TWTD (DOUBLE PRECISION) Problem time for next restart tape dump
Modified in SOLA
Used in
In common 'vof3dcom' /SSCM2/

UDUM (DOUBLE PRECISION) Temporary storage for U component of velocity
Modified in TILDE
Used in
In common 'vof3dcom' /SSCM4/

VCHGT (DOUBLE PRECISION) Accumulated fluid volume change in mesh
Modified in SETUP and VCHGCAL
Used in SOLA
In common 'vof3dcom' /SSCM4/

VDUM (DOUBLE PRECISION) Temporary storage for V component of velocity
Modified in TILDE
Used in
In common 'vof3dcom' /SSCM4/

VOFTOT (DOUBLE PRECISION) Total fluid volume change in mesh
Modified in VCHGCAL
Used in SOLA
In common 'vof3dcom'/SSCM4/

WDUM (DOUBLE PRECISION) Temporary storage for W component of velocity
Modified in TILDE
Used in
In common 'vof3dcom' /SSCM4/

Additional variables in COMMON added by John F. McKibben at IPST
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DELTN (DOUBLE PRECISION) Old value of DELT
Modified in DELTADJ and RINPUT
Used in PRESCR, VAPOR, VAPOR1, and VAPOR3D
In common 'vof3dcom' /MCKIB/

DELTNN (DOUBLE PRECISION) Old value of DELT
Modified in DELTADJ and RINPUT
Used in
In common 'vof3dcom' /MCKIB/

LVEC (INTEGER) Total number of computational cells in simulation
=IMAX*JMAX*KMAX
Modified in CONTROL
Used in DELTADJ, DRAW, PETACAL, PRESCR, PRESSIT,

SETUP, SOLA, SURCART, VAPOR, and VAPOR3D
In common 'vof3dcom' /MCKIB 1/

NAMELIST DOCUMENTATION

Variables in Namelist XPUT read in RINPUT

ALPHA (DOUBLE PRECISION) Controls the accuracy of the differencing of the
convective terms in the Navier-Stokes equation.
O<ALPHA 1

ALPHA = 2
ALPHA = 3

ALPHA = 4

Modified in
Used in
In common
Default = 1.0

Determines the portion of first order accurate upwind
differencing used in TILDE.
Uses third order accurate upwind differencing in THIRD.
Uses quadratic upstream interpolation for convective
kinematics in QUICK.
Uses an approximate variable grid version of Kawamura
and Kuwahara's differencing scheme in KANDK.
RINPUT, SETUP, and SOLA
TILDE
'vof3dcom'/SSCM1/
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AUTOT (DOUBLE PRECISION) Automatic time stepping flag
AUTOT = 0.0 Use constant time step.. 
AUTOT = 1.0 Automatically adjust time step to maintain stability and a

reasonable number of iterations for the pressure equation.
Modified in RINPUT
Used in DELTADJ
In common 'vof3dcom'/SSCMI/
Default = 1.0

CANGLE (DOUBLE PRECISION) Contact angle in degrees between the fluid and a
wall.
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM4/
Default = 0.0

(DOUBLE PRECISION) Cylindrical coordinates flag
CYL = 0.0
CYL = 1.0
Modified in
Used in

In common
Default = 0.0

Use Cartesian coordinates.
Use cylindrical coordinates.
RINPUT and SETUP
BC, BCFS, BETACAL, DRAW, KANDK, MESHSET,
PCAL, PETACAL, QUICK, THIRD, TILDE, and
VISC3D
'vof3dcom' /SSCM1/

(DOUBLE PRECISION) Initial time step. Becomes the transient time
step later.
Modified in DELTADJ and RINPUT
Used in BETACAL, KANDK, LPRT, PETASET, PRESCR,

In common
Default = 0.02

PRESSIT, QUICK, SETUP, SOLA, THIRD, TILDE,
VAPOR, VAPOR1, VAPOR3D, and VFCONV
'vof3dcom' /SSCM1/

I

(DOUBLE PRECISION) Pressure iteration convergence criterion.
Modified in PRESCR and RINPUT
Used in PRESSIT and SOLA
In common 'vof3dcom' /SSCM1/
Default = 0.001

CYL

DELT

EPSI
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FLHT (DOUBLE PRECISION) Initial fluid height in computing mesh (if
appropriate).
Modified in RINPUT and SETUP
Used in
In common 'vof3dcom' /SSCM4/ 
Default = 1.0

GX (DOUBLE PRECISION) Body acceleration in the positive x-direction
Modified in RINPUT
Used in SETUP
In common 'vof3dcom'/SSCM1/
Default = 0.0

GY (DOUBLE PRECISION) Body acceleration in the positive y-direction
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM1/
Default = 0.0

GZ (DOUBLE PRECISION) Body acceleration in the positive z-direction
Modified in RINPUT
Used in KANDK, PRESCR, QUICK, SETUP, THIRD, and

TILDE
In common 'vof3dcom' /SSCM1/
Default = 0.0

ICSURF (INTEGER) Flag for the initial fluid configuration generator.
ICSURF = 0 Horizontal or equilibrium surface.
ICSURF = 1 Axisymmetric free surface (see namelist FLUIDGN)
ICSURF = 2 Non-axisymmetric free surface (see namelist FLUIDGN)
Modified in RINPUT
Used in SETFS and SETUP
In common 'vof3dcom' /SSCM4A/
Default = 0

IDEFM (INTEGER) Defoamer flag
IDEFM = 0 Defoamer off
IDEFM = 1 Defoamer on
Modified in RINPUT
Used in PRESCR and VFCONV
In common 'vof3dcom'/SSCM1A/
Default = 0
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(INTEGER) Equilibrium surface computation flag (requires ICSURF = 0
to be active).
IEQUIB = 0 Do not generate equilibrium surface.
IEQUIB = 1 Generate equilibrium surface.
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM4A/
Default = O

IORDER (INTEGER) Flag for second order accurate option for the convective
terms. (Does not seem to work in the code as received from Los Alamos).
Modified in RINPUT
Used in SETUP and SOLA
In common 'vof3dcom' /SSCM4A/
Default = 1

(INTEGER)
ISOR = 0
ISOR = 1
Modified in
Used in
In common
Default = 0

(INTEGER)
ISURFT = 0
ISURFT = 1

Modified in
Used in
In common
Default = 0

Pressure equation solution flag
Use the Conjugate gradient method
Use Successive-Over-Relaxation
RINPUT
BC, BCFS, DELTADJ, and SOLA
'vof3dcom'/SSCM1A/

Surface tension computation flag
No surface tension computations are performed
Surface tension forces computed using either SURFION
(cylindrical coordinates) or SURCART (Cartesian
coordinates)
RINPUT
PETACAL
'vof3dcom' /SSCM4A/

(CHARACTER*8) Job identifier
Modified in RINPUT
Used in LPRT
In common 'vof3dcom' /SSCM1B/
Default = 'run 1'

EQUIB

ISOR

ISURFT

JNM
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(INTEGER)
LPR = 0
LPR = 1
LPR = 2
LPR = 3
Modified in
Used in
In common
Default = 2

Output flag
No prints or plots
Plots only
Plots and prints
Prints only
RINPUT
LPRT, MESHSET, SETFS, and SOLA
'vof3dcom'/SSCMlA/

(CHARACTER*64) Job name
Modified in RINPUT
Used in LPRT
In common 'vof3dcom'/SSCM1B/
Default = 'prob. no name'

(INTEGER)
NFCAL = 1
NFCAL = 2
NFCAL = 3

Modified in
Used in
In common
Default = 3

Flag to determine NF computation algorithm
Use provisional value
Use slope value
Use decision-making algorithm to decide between
provisional and slope values
RINPUT
SURCART and SURF1ON
'vof3dcom' /SSCM2A/

(INTEGER) Wall adhesion indicator
NOWALL =0 Wall adhesion
NOWALL = 1 No wall adhesion
Modified in RINPUT
Used in SURCART and SURF1ON
In common 'vof3dcom'/SSCM4A/
Default = 0

(DOUBLE PRECISION) Coefficient of kinematic viscosity
Modified in RINPUT
Used in KANDK, QUICK, SETUP, THIRD, TILDE, and

VISC3D
In common 'vof3dcom' /SSCM2/
Default = 0.0

LPR

NAME

NFCAL

NOWALL

NU
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OMG (DOUBLE PRECISION) SOR acceleration parameter
Modified in RINPUT
Used in BETACAL and PETASET
In common 'vot3dcom' /SSCM2/
Defaiult = 1.0

PLTDT (DOUBLE PRECISION) Time increment between data plots (if
operative)
Modified in RINPUT
Used in SETUP and SOLA
In common 'vof3dcom' /SSCM2/
Default = 1.0

PRTDT (DOUBLE PRECISION) Time increment between data prints (if
operative)
Modified in RINPUT
Used in SETUP and SOLA
In common 'vof3dcom' /SSCM2/
Default = 1.0

RADPS (DOUBLE PRECISION) Constant angular rotation velocity
Modified in RINPUT
Used in KANDK, QUICK, THIRD, and TILDE
In common 'vof3dcom' /SSCM5/
Default = 0.0

RHOF (DOUBLE PRECISION) Fluid Density
Modified in RINPUT
Used in
In common 'vof3dcom' /SSCM4/
Default = 1.0

SIGMA (DOUBLE PRECISION) Fluid surface tension divided by the fluid
density
Modified in RINPUT
Used in SETUP, SURCART, and SURF10N
Default = 0.0

T (DOUBLE PRECISION) Problem time
Modified in DELTADJ, RINPUT, SETUP, and SOLA
Used in DRAW, LPRT, and VFCONV
In common 'vof3dcom' /SSCM2/
Default = 0.0
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TD (INTEGER) Dump number for restart if greater than zero
Modified in RINPUT
Used in SOLA
In common 'vof3dcom' /SSCM2A/
Default = -1.0

TDDT (DOUBLE PRECISION) Time increment between restart tape dumps
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM2/
Default = 1.OelO

TLIMD (DOUBLE PRECISION) Problem run parameter (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom' /SSCM2/
Default = 1.0

TWFIN (DOUBLE PRECISION) Problem time to end calculation
Modified in RINPUT
Used in SOLA
In common 'vof3dcom' /SSCM2/
Default = 10.0

UI (DOUBLE PRECISION) Initial x-component of velocity for fluid cells
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM2/
Default = 0.0

VELMX (DOUBLE PRECISION) Maximum velocity expected (artifact from
removed graphics routines)
Modified in RINPUT
Used in
In common 'vof3dcom' /SSCM2/
Default = 2.0

VI (DOUBLE PRECISION) Initial y-component of velocity for fluid cells
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM2/
Default = 0.0
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(INTEGER)
WB= I
WB=2
WB=3
WB=4
Modified in
Used in
In common
Default = I

(INTEGER)
WBK= I
WBK=2
WBK=3
WBK=4
Modified in
Used in

In common
Default = I

(INTEGER)
WF= I
WF=2
WF = 3
WF=4
Modified in
Used in

In common
Default = I

Bottom wall boundary condition hlag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, VAPOR3D, and VISC3D
'vot3dcom' /SSCM2A/

Back wall boundary condition flag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, PRESCR, SETFS, SURFION, and
VISC3D
'vof3dcom' /SSCM2A/

Front wall boundary condition flag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, SETFS, SURFO1N, VAPOR,
VAPOR3D, and VISC3D
'vof3dcom' /SSCM2A/

(DOUBLE PRECISION) Initial z-component of velocity for fluid cells
Modified in RINPUT
Used in SETUP
In common 'vof3dcom' /SSCM2/
Default = 0.0

WB

WBK

WF
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(INTEGER) Left wall boundary condition flag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, VAPOR, VAPOR3D, and VISC3D
'vof3dcom' /SSCM2A/

Right wall boundary condition flag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, VAPOR, VAPOR3D, and VISC3D
'vof3dcom' /SSCM2A/

Top wall boundary condition flag
Slip wall (symmetry plane)
No-slip wall with specified velocity
Continuative outlet boundary with all zero normal gradients
Periodic boundary condition
RINPUT
ASET, BC, DRAW, PRESCR, VAPOR, VAPOR3D, and
VISC3D
'vof3dcom' /SSCM2A/

WL= 1
WL=2
WL = 3
WL=4
Modified in
Used in
In common
Default = 1

(INTEGER)
WR= 1
WR = 2
WR = 3
WR=4
Modified in
Used in
In common
Default = I

(INTEGER)
WT= 1
WT = 2
WT = 3
WT=4
Modified in
Used in

In common
Default = 1

Additional variables in XPUT added by John F. McKibben at IPST

DTCRMX (DOUBLE PRECISION) Arbitrary time step limit to ensure stability
Modified in RINPUT
Used in DELTADJ
In common 'vof3dcom' /MCKIB/
Default = 1.OelO

WL

WR

WT
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(DOUBLE PRECISION) Vapor phase convergence criterion
Modified in RINPUT
Used in VAPOR and VAPOR3D
In common 'vof3dcom'/MCKIB/
Default = 0.00001

(INTEGER) I-coordinate location of the inside of a corner at static contact
point (n)
Modified in RINPUT
Used in VFCONV
In common 'vof3dcom'/MCKIB1/
Default = 0

IORIN(m,n) Flags the orientation of the fluid flowing past a static contact point (see
sample problem studying the die-swell problem)
IORIN(l,n) defines the side of the cell adjacent to the fluid
IORIN(2,n) defines the side of the cell adjacent to the vapor
Modified in RINPUT
Used in
In common
Default = 0

ISLIP (INTEGER)
ISLIP = 0
ISLIP = I
Modified in
Used in
In common
Default = 0

ISLP(n) (INTEGER)
point
ISLIP(n) = 0
ISLIP(n) = I
Modified in
Used in
In common
Default = 0

'vof3dcom'/MCKIB1/

Simple-minded attempt to treat a dynamic contact line
No-slip at the contact line
Allow slip in the cell at the contact line
RINPUT

'vof3dcom'/MCKIBI/

Flag for slip along the wall leading up to the static contact

No-slip
Slip
RINPUT

'vof3dcom'/MCKIB /

EPSIV

IFX(n)
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ISTRESS (INTEGER) Deviatoric normal stress flag
ISTRESS = 0 Do not compute
ISTRESS = 1 Compute
Modified in RINPUT
Used in VISC3D
In common 'vofdcom'-/MCKIB 1/
Default = 0

IVFR(n) (INTEGER) I-coordinate of the reference cell for vapor region (n)
Modified in RINPUT
Used in VAPOR and VAPOR3D
In common 'vof3dcom'/MCKIB 1/
Default = 2

IVWB (INTEGER) Bottom face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom'/MCKIB 1/
Default = 0

IVWF (INTEGER) Front face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom'/MCKIB 1/
Default = 0

IVWK (INTEGER) Back face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom'/MCKIB 1/
Default = 0

IVWL (INTEGER) Left face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom' /MCKIB 1/
Default = 0
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(INTEGER) Right face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom' /MCKIB 1/
Default = 0

(INTEGER) Top face vapor phase boundary flag (currently not
implemented)
Modified in RINPUT
Used in
In common 'vof3dcom' /MCKIB 1/
Default = 0

(INTEGER)
Modified in
Used in
In common
Default = 2

J-coordinate of the reference cell for vapor region (n)
RINPUT
VAPOR3D
'vof3dcom'/MCKIBl/

(INTEGER) K-coordinate location of the inside of a corer at static
contact point (n)
Modified in RINPUT
Used in
In common 'vof3dcom'/MCKIB 1/
Default = 0

KVFR(n) (INTEGER)
Modified in
Used in
In common
Default = 2

K-coordinate of the reference cell for vapor region (n)
RINPUT
VAPOR and VAPOR3D
'vof3dcom'/MCKIB 1/

LVAPOR (INTEGER) Flag to solve the vapor phase regions
LVAPOR = 0 Do not solve void regions
LVAPOR = 1 Solve regions using previous value as initial guess
LVAPOR = 2 Solve regions using 0 as initial guess at all times
Modified in RINPUT
Used in SOLA, VAPOR, and VAPOR3D
In common 'vof3dcom'/MCKIBI/
Default = 0

IVWR

IVWT

JVFR(n)

KFX(n)
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LVFLAG (INTEGER) Flag to label the void regions
LVFLAG = 0 Do not label
LVFLAG = 1 Label
Modified in RINPUT
Used in LAVORE
In common 'vof3dcom' /MCKIB 1/
Default = 0

(INTEGER)
Modified in
Used in
In common
Default = 0

(INTEGER)
Modified in
Used in
In common
Default = 0

Number of static contact lines present
RINPUT

'vof3dcom'/MCKIB 1/

Number of vapor phase regions to be studied
RINPUT
VAPOR and VAPOR3D
'vof3dcom'/MCKIB1/

(DOUBLE PRECISION) Ration of the vapor phase density to the liquid
phase density
Modified in RINPUT
Used in PRESCR and VAPOR1
In common 'vof3dcom' /MCKIB/
Default = 0.0

(DOUBLE PRECISION) U-velocity component along the bottom wall
(no-slip condition)
Modified in RINPUT
Used in
In common
Default = 0.0

BC
'vof3dcom' /MCKIB/

(DOUBLE PRECISION) U-velocity component along the front wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

NFX

NVFR

RHOG

UBW

UFW
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UKW (DOUBLE PRECISION) U-velocity component along the back wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

UTW (DOUBLE PRECISION) U-velocity component along the top wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

VBW (DOUBLE PRECISION) V-velocity component along the bottom wall
(no-slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

VLW (DOUBLE PRECISION) V-velocity component along the left wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom'/MCKIB/
Default = 0.0

VOMG (DOUBLE PRECISION) SOR acceleration parameter for the vapor phase
solution
Modified in RINPUT
Used in VAPOR and VAPOR3D
In common 'vof3dcom' /MCKIB/
Default= 1.0

VRW (DOUBLE PRECISION) V-velocity component along the right wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0
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VTW (DOUBLE PRECISION) V-velocity component along the top wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

WFW (DOUBLE PRECISION) W-velocity component along the front wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

WKW (DOUBLE PRECISION) W-velocity component along the back wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

WLW (DOUBLE PRECISION) W-velocity component along the left wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom'/MCKIB/
Default = 0.0

WRW (DOUBLE PRECISION) W-velocity component along the right wall (no-
slip condition)
Modified in RINPUT
Used in BC
In common 'vof3dcom' /MCKIB/
Default = 0.0

Variables in namelist MESHGN read in MESHSET

Variables in MESHGN pertaining to the grid structure
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(DOUBLE PRECISION): Min. cell spacing adjacent to "focal" point in-the
x-direction in region (n)
Modified in MESHX
Used in MESHSET
In common 'vof3dcom'/SSCM1/

(DOUBLE PRECISION) Min. cell spacing adjacent to "focal" point in the
y-direction in region (n)
Modified in MESHY
Used in MESHSET
In common 'vof3dcom' /SSCM1/

DZMN(n) (DOUBLE PRECISION) Min. cell spacing adjacent to "focal" point in the
z-direction in region (n)
Modified in MESHZ
Used in MESHSET
In common 'vof3dcom' /SSCM1/

(INTEGER) Number of regions in the x-direction
Modified in MESHSET
Used in MESHX
In common none

(INTEGER)
Modified in
Used in
In common

Number of regions in the y-direction
MESHSET
MESHY
none

(INTEGER) Number of regions in the z-direction
Modified in MESHSET
Used in MESHZ
In common none

(INTEGER) Number of cells to the left of the "focal" point in region (n)
Modified in
Used in MESHSET and MESHX
In common 'vof3dcom' /SSCM2A/

(INTEGER)
Modified in
Used in
In common

Number of cells to the right of the "focal" point in region (n) 

MESHSET and MESHX
'vof3dcom' /SSCM2A/

DXMN(n)

DYMN(n)

NKX

NKY

NKZ

NXL(n)

NXR(n)



- 191-

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

(INTEGER)
Modified in
Used in
In common

Number of cells in front of the "focal" point in region (n)

MESHSET and MESHY
'vof3dcom' /SSCM2A/

Number of cells in back of the "focal" point in region (n)

MESHSET and MESHY
'vof3dcom' /SSCM2A/

Number of cells below the "focal" point in region (n)

MESHSET and MESHZ
'vof3dcom' /SSCM2A/

Number of cells above the "focal" point in region (n)

MESHSET and MESHZ
'vof3dcom' /SSCM2A/

(DOUBLE PRECISION) Location of the x-direction "focal" point in
region (n)
Modified in
Used in MESHSET and MESHX
In common 'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Location of the left boundary of region (n) [the
right boundary is (n+l)]
Modified in
Used in MESHSET and MESHX
In common 'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Location of the y-direction "focal" point in
region (n)
Modified in
Used in MESHSET and MESHY
In common 'vof3dcom' /SSCM2/

(DOUBLE PRECISION) Location of the front boundary of region (n) [the
back boundary is (n+l)]
Modified in
Used in MESHSET and MESHY
In common 'vof3dcom' /SSCM2/

NYL(n)

NYR(n)

NZL(n)

NZR(n)

XC(n)

XL(n+l)

YC(n)

YL(n+l)
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ZC(n) (DOUBLE PRECISION) Location of the z-direction "focal" point in
region (n)
Modified in
Used in MESHSET and MESHZ
In common 'vof3dcom' /SSCM2/

ZL(n+I) (DOUBLE PRECISION) Location of the bottom boundary of region (n)
[the top boundary is (n+l)]
Modified in
Used in MESHSET and MESHZ
In common 'vof3dcom'/SSCM2/

Variables in MESHGN pertaining to the interior obstacles 

IOH(n) (INTEGER) Obstacle flag for obstacle (n)
IO1(n) = 0 Subtract obstacles within region
IOH(n) = I Add obstacles within region
Modified in
Used in ASET and MESHSET
In common 'vof3dcom'/SSCM5B/
Default = 0

NOBS (INTEGER) Number of interior obstacles
Modified in MESHSET
Used in ASET
In common 'vof3dcom'/SSCM5B/
Default = 0

OA 1 (n) (DOUBLE PRECISION) Coefficient of x-term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom' /SSCM5/
Default = 0.0

OA2(n) (DOUBLE PRECISION) Coefficient of x2-term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom' /SSCM5/
Default = 0.0
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OB 1 (n) (DOUBLE PRECISION) Coefficient of z-term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom' /SSCM5/
Default = 0.0

OB2(n) (DOUBLE PRECISION) Coefficient of z2-term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom'/SSCM5/
Default = 0.0

OC 1(n) (DOUBLE PRECISION) Coefficient of constant term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom'/SSCM5/
Default = 0.0

OC2(n) (DOUBLE PRECISION) Coefficient of xz-term in function
Modified in
Used in ASET and MESHSET
In common 'vof3dcom'/SSCM5/
Default =0.0

Variables in Namelist FLUIDGN read in SETFS

IQH(n) (INTEGER) Flag for adding fluid within a region
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5B/
Default = 0

NQBS (INTEGER) Number of fluid generation regions
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5B/
Default = 0

Axisymmetric (ICSURF = 1)
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QA I(n) (DOUBLE PRECISION) Coefficient of x-term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QA2(n) (DOUBLE PRECISION) Coefficient of x2 -term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QB l(n) (DOUBLE PRECISION) Coefficient of z-term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QB2(n) (DOUBLE PRECISION) Coefficient of z2 -term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QC 1 (n) (DOUBLE PRECISION) Coefficient of constant term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QC2(n) (DOUBLE PRECISION) Coefficient of xz-term in function
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

Non-axisymmetric (ICSURF>1)

QA 1 (n) (DOUBLE PRECISION) Value of X at the center of volume n
Modified in SETFS
Used in
In common 'vol3dcom' /SSCM5/
Detaiul = 0.0
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QA2(n) (DOUBLE PRECISION) Lower limit of I index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QA2(n) (DOUBLE PRECISION) Upper limit of I index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QB 1 (n) (DOUBLE PRECISION) Value of Y at the center of volume n
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QB2(n) (DOUBLE PRECISION) Lower limit of J index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QB2(n) (DOUBLE PRECISION) Upper limit of J index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QC 1 (n) (DOUBLE PRECISION) Value of Z at the center of volume n
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5/
Default = 0.0

QC2(n) (DOUBLE PRECISION) Lower limit of K index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0
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QC2(n) (DOUBLE PRECISION) Upper limit of K index
Modified in SETFS
Used in
In common 'vof3dcom' /SSCM5/
Default = 0.0

QDl(n) (DOUBLE PRECISION) Constant term in function n
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5/
Default = 0.0

QD2(n) (DOUBLE PRECISION) Indicator specifying if the fluid is initially fluid
or void
QD2(n) = 0.0 Void
QD2(n) = 1.0 Fluid
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5/
Default = 0.0

QD3(n) (DOUBLE PRECISION) Not currently used
Modified in SETFS
Used in
In common 'vof3dcom'/SSCM5/
Default = 0.0
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APPENDIX II

VARIABLE GRID QUICK DIFFERENCING

The initial literature derivations for Quadratic Upstream Interpolation for

Convective Kinematics (QUICK) differencing were formulated for constant grid

problems. Since, for computational efficiency, it is necessary to use variable grid

spacing, a variable grid representation of the QUICK algorithm was necessary.

QUICK differencing was first proposed by Leonard 85-1 12 as a technique for

improving the accuracy and stability of the finite difference representation of the

convective terms in the NSE. The basic premise is that more accurate differencing is

possible if the flux at each cell face is computed from a quadratic interpolation of the

local velocities. For added stability, the interpolation is weighted in the upstream

direction. Figure II-1 shows the local grid configuration for a two dimensional problem.

TL T

Figue.I- S c C'-- '.,o n

Figure II- 1. Schematic of QUICK interpolation.
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From Leonard's derivation, the two dimensional formula at the left cell face is

¢t =O LIN -CURVN+ CURVT, (n-1)
8 24

where

OLIN = (L + qc) (I-2)

is a linear interpolation term which alone would yield second order accurate central

differencing. The term, CURVN, defined as

CURVN =Oc - 2<L + LL (ue > 0)
(n-3)

and CURVN = OR - 20c + (L (Ue < 0),

represents the upstream difference normal to the cell face. Finally, CURVT, defined as

CURVT = TL- 2)L + )BL (Ue > 0)
(II-4)

and CURVT = OT - 2(c + tB (u < 0),

represents the small tangential component of the curvature. Note that the point OB cancels

out in Leonard's 85 derivation, and thus does not appear in the formulas for u, > 0. In

addition, it has been found through experience that the small CURVT terms may be

neglected without a major impact on the resulting accuracy. 113

If I substitute the terms, with the exception of CURVT, into (II-1), the resulting

formulas are

Oe = -(3( c + 6(L -L) (u e > 0)

8 (n-5)
and ,e = -(3L+ + 6()c O) u < 0).

Combining the results from Equation (11-5) with the analogous interpolation formulas at

the right cell face yields the following finite difference formulas for 3a/3 x:



-199-

_=- (3R+3 -7(1) + 3+LL ) (UC > 0)

(11-6)
and (-_RR +7 - 3 -C 3L) (U < 0).

ax 8Ax

Equation (11-6) represents the QUICK formulas for a constant grid when the

CURVT terms are neglected. For a variable grid, similar formulas may be defined. The

simplest method for deriving these formulas is to fit a quadratic interpolation formula to

the data points surrounding the appropriate cell face in the appropriate direction. Then

compute the difference as outlined above. The geometry used in the derivation is

presented in Figure 11-2.

b *L - L .C R 

'I r

[- a b > c >

Figure 11-2. Cell Spacing Schematic.

We begin by fitting a quadratic interpolation formula of the form 0 = r + s x + t x2

to the neighboring points. Then, after substituting the location of the cell face into the

quadratic interpolation formula, it is possible to determine the correct weighting factors.

In matrix form, the equations solved for the interpolation are

-a a2 'r _OLL

0 0 S = L (11-7)

1 b 2 t Oc

with the reference location at OL. Rearranging the equations yields
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-a a2 1 s 

b b2 t I = ] . (II-8)

0 0 1 r (t".

which simplifies to

-I a I/a s kj/a

0 a+b (a + b)/ab t = (bI 1, + a-c)/ab(11-9)

0 ° I r . t. -

Thus,

r = , (11-10)

t = [(bo,, + ac )/ab - (a + b), /ab]/(a + b)
(II-11)

= [a(Oc --,) + b( 1,,. - q,)]/[ab(a + b)],

and s = -(/,,/a - L/a- a[a(+c - -L)+b(1,, - ,,)]/[ab(a + b)])

= [a2(Oc - q,) + ab(4b,, - q,.)- b(a + b)(OL, - P1 )]/[ab(a + b)] (11-12)

=[a2(c -)l) - b2(OLL- _-L)]/[ab( a + b)].

Substituting the results of Equations (II-10), (II-I 1), and (11-12) and the position of the

cell face, b/2, into the interpolation formula yields

k + ,a2 (C - ,.) - b2(0,., - 0,1) b a(Oc - L) + b(0,L - 01,) b2 (1
ab(a+ b) 2 ab(a + b) 4

which simplifies, in agreement with results from the literature,1 13 to

-b 2 2a+b 2a+b 2a+b
<)>.ptL 1+c=, (11-14)

4a(a+b) 4a 4(a+b)

with an analogous result for the other cell face

-c 2 2b+c 2b+c . (-15)
r 4b(b+c) ' 4b C + 4(b+c) R

When a and b are equal, (II-14) reduces to the constant grid formula, (11-5), as expected.



-201 -

The complete finite difference formula for the variable grid representation of

QUICK differencing is derived by talking a central difference about )C

ax (b+c)/2

I -b2 _2a+b + c 2 l (
--- --- - -- 4- --- b (11-16)

(b+c)/2 4a(a+b) L. 4 b(b+c)a .

r2b+c 2a+b b+c 
+ -- c+ + -i 0Pc( uc > 0 .

L 4b 4(a + b) c 4(b+c) JK

Similar formulas were derived for the other flow directions.
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APPENDIX Ill

VARIABLE GRID THIRD ORDER ACCURATE UPWIND DIFFERENCING

The third order accurate upwind differencing scheme was first proposed by

Agarwal 86 as a method for increased accuracy and numerical stability at high speeds.

Agarwal's derivation of a constant grid formula will be presented followed by an

alternative derivation based on the method of undetermined coefficients 114 which is then

extended to a variable grid formulation. Computational grid spacings will be with

reference to Figure III-1.

( a -a ( b ( c d

Figure III-1 Grid spacings for derivation of third order accurate upwind differencing.

Agarwal begins with the second order central difference formula at the point C

which can be written as

aX Ol-t 31 +2Ax (III-1)
Jaxi 2Ax 6 ax3 C+ '

Now if u > 0, then
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ax3 C ax2 I ax , 

(.R -2)c +L) -( c -20L +(LL) (m-2)
=X 3H(m-2)

Ax 3

=R - 30c + 3L - LL

Ax3

Similarly, if u < 0, then

,. a3¢/a_ _a a2 /Ax
aX3 I ax2 aX2R 2 J/

(ORR - 20R + Cc)-(R -20c +L) ()3)
Ax 3

=RR - 3R +30c -0L

Ax 3

Substituting (M-2) and (III-3) into (III-1) yields Agarwal's third order accurate upwind

technique for constant grid spacings:

= 1=- (2)R +3(0c -60L +)LL) (u>0)
ax 6Ax (4)

and -- (- RR +6-R -30c-20) (u <0).
ax 6Ax

Since I am interested in problems using variable grid spacings, I used an

alternative derivation technique that is easily extended to variable grid spacings. This

derivation, using the method of undetermined coefficients,1 14 follows.

First, I define the derivative of interest in terms of several base points and

coefficients,

-- = CLLOLL + CL L + CC C + CR C * (III-5)
ax

Next I want to determine a polynomial that passes through these points exactly (in this

case of degree 3). Thus, I define four equations for the polynomial:
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x_ = CLL (xc- 2Ax)3 + CL(X - Ax)3 + Cc (X )3 + CR (XC + A) 3 , (I-6a)
Cx c

ax =CLL (XC -2Ax) + CL(XC -A)2 +CC(XC) + CR(XC +AX), (-6b)
ax -

ax~ = Ci (Xc -2x)' +CL(X -AX)Y + CC (XC) + CR(Xc + Ax) (ml-6C)
ax c

and =CLL (xc -2Ax) + CL (XC -Ax) +CC(xc) 0 +CR(xC + AX)' (If-6d)

Since the location of XC is arbitrary, it is set equal to zero yielding the following system of

equations in matrix form,

-8 -1 0 1 CLL 0

4 1 0 1 c, 0

-2 -1 01 C 1/Ax (7)

When this system of equations is solved, it yields the same formula as that derived by

Agarwal8 6 for u > 0. A similar procedure can be followed to derive the formula for

u < 0.

When a variable grid is used, the same procedure is used, but the system of

equations becomes more complex:

-(a+ b)3 -b 3 0 c3 ' 1c 0

(a + b)2 b2 0 c2 CL 0 (-8)

-(a + b) -b 0 c c c

1 1 1 ICR. LJ

Solution of this system of equations yields the variable grid finite difference formulas

a(a_ 2_bc 0 c(a + b)
ax a(a + b)(a + b + c) ab(b + c)

bc - (b - c)(a + b) b(a + b)

bc(a +b) c c(b+c)(a+b+c).R
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c(c + d) bc + (b -'c)(
b(b+c)(b+c+d) bc(c+d

b(c+d) bc

+ cd(b + c) R d(c + d)(b+c+d) q RR

c+d)
1d)

(u < 0). (III-9b)

These finite difference formulas and analogous formulas for the remaining

velocity components yield the third order accurate upwind differencing scheme. As

indicated above, this method was proposed by Agarwal 86. I have extended the algorithm

to allow problems with variable grids and to be studied. Within the IPST-VOF3D

program, this technique is implemented in the subroutine THIRD.

and
ax̂X
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APPENDIX IV

VARIABLE GRID KAWAMURA AND KUWAHARA METHOD

I will begin deriving an approximate version of Kawamura and Kuwahara's 87

method for treating the convective terms in the NSE by reviewing the derivation of the

constant grid formula. This is followed by an attempt to directly reproduce their

derivation scheme for a variable grid. Finally, I present my approximation of their

method for a variable grid. The notation presented in Figure IV-1 will be used with the

constant grid spacing denoted Ax.

LL L o°C OR RR

I a fr d n of Ka d Kuwahas c 

Figure IV-1. Grid spacings for derivation of Kawamura and Kuwahara's technique.

KAWAMURA AND KUWAHARA'S DERIVATION

We begin with a second order upwind differencing scheme,

=-L (3Ct,-4, L+LL) UC>O (IV-la)
ax c 2h

and a u 2-(-<RR + 4R - 3c) , < 0. (IV-lb)
ax 2h

These formulas can be combined to yield a single formula independent of the flow

direction



- 207 -

( ax = u c (_- RR + 4R - 4L + _4VLL)ax 4 / c
(IV-2)

.. c + (RR- 40R + 6C .- 4L + iLL)
4Ax

From Taylor series expansions, this formula can be rewritten as

a( ,x) Y [ax 2 o( a +(Ax4)J+1uc[Ax3 a +o(Ax5)J. (IV-3)
ax x 2 x DX4 

Thus, the leading error in (IV-1) or (IV-2) can be reduced by eliminating the term

2 ax3

Improved accuracy is obtained by replacing the first term in (IV-3),

a¢A2 a^u +o( ,X4), (iV-5)
ax 2 ax 3

with

aD + O(Ax4)=- RR+8 -8q L +(~u. (iv-6)+O(Ax4 )- ^ (IV-6)
ax 12Ax

yielding

u ax) =u +[ao(x4)J+IuI aX4 +o(Ax') (IV-7)

The resulting analog of (IV-2) with an error of o(Ax4)is

U"| C (-UcR+8R-8(L 4 <L
aXc 12Ax + (IV-8)

+ lucl (RR- 4R + 60 c - 4(L + I) L).
4Ax
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ATTEMPTED DERIVATION WITH VARIABLE GRID

In this section, we follow the steps of Kawamura and Kuwahara's derivation as

far as possible for a variable grid. All derivations will be with respect to the dimensions

shown in Figure IV-1. The finite difference formulas used below were derived using the

method of undetermined coefficients described by Gerald 114 and in Appendix II of this

document. 

For a variable grid, (IV-1) becomes

Cu -=u a+2b a+b( C ) uc>O b u .>(IV-9a)(a+2b a+b. b Vax c b(a + b) ab a(a +b) u>
c c+d 2c+d - ( y9,

and =u-) = UC- ERR +- R- C -UC <U O.' (IV-9b)
=ax cc c d(c + d) c cc )

Thus, (IV-2) can be rewritten as

( uA uj c c+d .( 2c+d a+2b 

.axd(c cd(c+d) b(a+b) ) c

a+b b 1 Iucl | c dRR - R ( 10)
ab a(a + b) . 2 d(c+d) cd

( 2c+d a+2b a+b b 1
c(c + d) b(a.+ b) ab a(a + b) LL

In order to continue with Kawamura and Kuwahara's derivation, we begin by defining the

terms in (IV-3)

a+O(AX2)= b Rc-b c (c-)ORc + ^'^^ --- O(IV-1I1)ax c(b + c) bbcc b(b + c)
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+ 0(AX4 - _ 6(a+2b-c) ___R_ / C

ax ' d(c + d)(b + c +d)(a+b+c+d)(RR -C)

6(a+2b-c - d) (R 6(d+2c-b-a) (q (
cd(a+b+c)(b+c) a-C ab(b+c+d)(b+c) L-

6(d+2c-b)

a(a + b)(a + b + c)(a + b + c + d)

and +4 O(Ax)= 6
dax d(c + d)(b + c + d)(a + b + c + d)

6 6 ( V-13)
cd(a+b+c)(b+c-c) ab(b+c+d)(b+c)( L -(3)

cda +b(* -+c+) c)-
a(a+b)(a+b+ c)(a+b+ c+d)(L -c)

When (IV-11), (IV-12), and (IV-13) are substituted into (IV-3), it does not yield (IV-2),

implying that the derivation of Kawamura and Kuwahara's method is not possible for

variable grids.

APPROXIMATE DERIVATION WITH VARIABLE GRID

An approximate form of Kawamura and Kuwahara's technique can be derived by

beginning the variable grid portion of the derivation with Equation (IV-7). Substituting

the variable grid analogue of (IV-6),
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-t- +O(Ax4 4= bc(a+b) d)(~RRc
ax (d(cf +d)(b+c+ d)(a+b + c+ d) 

b(a + b)(c+d). c(a+.b))(c + d) (
cd(a +b+c)-'(b + c) ab(b + c + d)(b+c)) (-

bc(c + d) ( 
a(a+b)(a+b+c)(a+b + c +d) .,

and (IV-13) into Equation (IV-7) results in an approximate formula for Kawamura and

Kuwahara's method on a variable grid:

_( uiJ = -bc(a+ b) c + 241c )c (
\. axJc d(c+d)(b+ c + d)(a+b + c+d) RR 

c

b(a+ b)(c+d) q c - 241 c ( C

cd(a + b+c)(b+c)

c(a + b))(c+d) qc - 241,c ( (IV-15)

ab(b + c +d)(b+c) L 

bc(c + d) Oc + 24lC ( 
a(a+b)(a+b+c)(a+b+c+d)L
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APPENDIX V

ALTERNATIVE FORMULATION FOR THE INTERFACIAL DEVIATORIC STRESS

The deviatoric normal stress at the interface is needed to accurately impose the

interfacial boundary condition arising from the normal stress balance. Here I present a

three-dimensional analogue of the method used by Hill40, 4 1 for determining the

deviatoric normal stress. First I present Hill's derivation followed by my extension to

three-dimensions.

TWO-DIMENSIONAL FORMULAS

I begin by defining the components of the stress tensor in two dimensions. I will

use the subscripts to denote the direction.

-x =P-2pe, =P-2 2au (V-la)

yy =p-22ey, =p-2ayj (V-ab)

y = T, =- 2 ey = -(yy +ax (V-lc)

The normal stress at the interface is computed from

NS=nT.n=xnx +'ryyny +2T'xyn,n (V-2)

and the tangential stress is computed from

TS = n.T.t = nxt +yynyty + xy(nt y + nyt ). (V-3)

Finally, I will need the continuity equation

0 = exx + ey (V-4)

Since we know that the tangential stress is zero at the interface (because the surface
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tension is constant and the vapor phase viscosity is zero), we can write three equations for

the normal stress, . - ..

NS = p - 2gexn - 2geyyn2 + -4eynny; (V-5)

the tangential stress, 

O = p(nt x + nyty)- 2.exxnt,- 2eyynyty -2exy (nxty +!nytn); (V-6)

and the continuity equation,

0 = exx + eyy . (V-7)

Rearranging and making use of the orthogonality of the normal and tangential vectors

yields the system of equations

1 1 0 ey 0.[n2x ny> 2nXny jex] [v sc l

where visc = (p - NS)/2g. 

Next, we solve this system of equations yielding

visc= (n- n )-2nny ntexx (V-9)
L[nY -n2 Y - nxty +n tx

(V-9)

(n-n x-2nxn n t e,,

The appropriate formula from (V-9) is chosen depending on which coordinate direction is --

nearest the surface normal.

The final piece of information needed to complete the definition of the normal

stress in two-dimension is the relation between the unit normal vector and the unit

tangential vector. Since they are both unit vectors and must be orthogonal, tx = -ny and

ty = nx. Substituting these relations into (V-9) yields
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visc= (nx -n)+ .n .=-(n -n)+ n en 2 (V-10)vicLn n) 2 x2 X 2 2eYY
n x -n n x -n

which simplifies to

exx -e
visc= 2x -= (V-1l)

2 2 2 2'n_-n n_-nn- y x -- y

Thus, in two dimensions, the normal stress at the interface can be determined by

using the stress in the coordinate direction closest to the normal vector and geometrical

considerations.

THREE-DIMENSIONAL FORMULAS

In three dimensions, the situation is a bit more complex, rather than three

independent components of the Newtonian stress tensor, there are six. Therefore five

additional relations would be required to eliminate all but one of the components of the

stress tensor in the manner presented for two dimensions above. Unfortunately, only

three additional relations are available, two orthogonal tangential stress balances and the

continuity equation.

First I present equations for the normal stress, two equations for the tangential

stress, and the continuity equation

visc = exxnx +eyyn2 +ezn2e n +2e nn n +2ezn +2e n x, (V-12)

0 = exnxsx + eynysy +ezznzS z

+exy (nxsy + nysx ) + eyz(nysz + nzSy) + ezx (nzsx + nXsz '
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O = exxnxtx +eyynyty + eznzt z

(v- 14)
+exy(nxt +nytX)+ez (nytz +nzty)+ez(nztx+nxtz (V-14)

and 0=e ex +eyy +ezz. (V-15)

Since I only have three auxiliary equations, I must choose which three

components of the rate of strain tensor to eliminate. If the normal is most nearly in the

x-direction, then I will eliminate the components that are only in the y-z plane (the other

directions are obtained by analogy). Thus, the system of equations becomes

n n2y n2 2nynz lexx visc- 2exynxny -2eznznx 

nxsx n nzSznysy n s +nzsy ey -exy(nxS +nysx-ex(ns+s 

ntx nt n zyt n tz + nzty ezz -e(nxty +nytx)- ex(ntx + nt)

1e1y1 0 e. 0

As is discussed elsewhere, the two unit tangent vectors can be expressed as

s=Oi+ j+- ny k (V-17a)
n2y+n~ Vny +n2

-(n_ +n_ _ n~ny J nn
and t n= 2 + n2y 2 j n xn z k. (V-17b)

+/nz + n n y +-nz

Thus, the system of equations becomes

2 n 2 n 2 2nyn ex, visc-2nx(ex ny +en z )

0 -nyn z nzny n2y -n2 z eyy -exy(-nxnz)-ezx(nxny)
2 2 n z 2 (V-18)

nx(n2x-1) nx2 nxn 2nynxnz ezz -(2n -_l)(exny+eznz)

1 1 1 0 ,eyz .

Dividing the third equation by nx and subtracting it from the first equation yields

[n -(n -1)]ex = visc-2nx(exny +enz)+(2nx-1/nx)(eny +ezxnz (V-19)

which simplifies to
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n n zvisc = exx + ex +-e ,. (V-20)
nX n .x nx x

By analogy, if the normal vector is nearest to the y-direction, the formula becomes

nx nzvisc = eyy + exy + eyz (V-21)
n ny y

and if the normal vector is nearest the z-direction, the formula becomes

· : - n - n
visc = ez + - ex + eyz. (V-22)

nz nz

This method of computing the normal stress is not implemented, and is only valid

in Cartesian coordinates for Newtonian flows. The computational technique can be more

easily extended to cylindrical coordinates and non-Newtonian fluid mechanics with the

full stress computation currently used.



-216-

APPENDIX VI

THREE-DIMENSIONAL ANALOG TO BRAMBLE AND HUBBARD'S TECHNIQUE

Bramble and Hubbard 93 present a formulation for solving Poisson's equation

having mixed boundary conditions on a region with curved boundaries. This technique is

second order accurate, and presents criteria that guaranties a positive definite solution

matrix. Here I present an extension of Bramble and Hubbard's technique that is

applicable to three-dimensional problems.

For a given coordinate direction, s, the partial differential in terms of an

alternative coordinate system consisting of the x, y, and z directions may be written as

a ax 3 ay a az a.-=-+--+ -- {(V
as as ax as ay as z

and the second partial with respect to the coordinates s and t may be written as

sat ax a x aa x y asx a az a
asat 3as ax at ax) as ax a t ay as ax a3t az)

+ay a (ax a ay (ay a y a (z a 
as ayyat ax) as ayy)at ay) as ay at azo

+az a ax a +az a ay o a z of z ao
as az at ax) asa alt ay aso az at a a

where s and t are again allowed to vary over any of the transformed coordinates.

1-1)

[-2)
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x
n

Figure IV-1. Coordinate transformation for two-dimensional interface.

In this situation, the transformation tensor relating the two coordinate systems is

ax ay az
cos4 sin4 0

as as as

ax ay az an- - a= smin -cosocosO sinO (VI-3)3n an an
ax ay az

- -- 0 sin0 cos0
at at at

which arises from geometrical considerations. Figure VI-1 shows the transformation in

two-dimensions with an analogous transformation in three-dimensions yielding the

matrix in Equation VI-3.

With this transformation matrix, the first partial derivatives in the transformed

system become

v, = cos vx + sinO Vy + vz, (VI-4)

vn = sing4 vx - cos )cosO vy + sin 0 v, (VI-5)

and v, = O vx + sin vy + cos v, (VI-6)
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where v is an arbitrary function and the subscripts denote differentiation. Similarly, the

second partial derivatives are defined below.

First,

vs, =cosx -(cosb Vx)+cos;) -(sin vy)+cosqa(0 vz)
ax ax ax

+sin(-a (cosb vx)+sin a (sin vy)v+ sin| a0 (Ovz) , (VI-7)ay ay ay
a a

+O (cos vx)+Oa (sin vy)+Oa (Ovz)az az az
which simplifies to

2 +c' vacos_ asin.
vs=cos , CO +sincos vvx + cos v, dx -cyax

(VI-8). cos asinV+sinocosq vxy +sin vxv + sin2 q Vy + sinb v
3y y 3y

and finally;

vSS = cos2 q v~ + sin2 q vyy + 2sin cos vy

.( ,aq . ay ( o\ a (VI-9)
-sin Vx cosa-+sinq- +cos v cosq -+sin )ax ay a ax ay

Notice that

= coso a +sino a =K (VI-10)
as ax dy

Where K is the curvature in the x-y plane. Thus,

Vss = cos2 2 vX + sin 2 q vyy + 2sinqbcoso vxy -sin vxK +cos' vyK. (VI-1 1)

By analogy,

v, = cos2 0 v +sin 2 0 yy + 2sinOcos v z -sinO vzL+cosO vyL (VI-12)

where L is the curvature in the z-y plane.
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For the first of the cross derivatives,

vt = Cos (O-(0 v)+cosxa (sin vy)+cosx (cosO vz)ax ax ax

+sino (O v, )+sina (sin0 vy)+sin -(cos v,) (VI-13)ay ay ay
+o-0 (o v) + 0 (sin0 vy)+ 0 (cos0 v.)

az az az

which simplifies to

vt =cost sinO vy +coscos v- 0 os+cos0 v-os -cossinO vz a-

39039 
(VI-14)

+sinosin0 vyy +sinocosO vy +sin(cosO v +sinosinO vz I-14)"Y ' ay 3ay

and finally

vt = cososinO vXy +cosocosO vxz + sin sinO vyy +sin cosO vyz

( 3 .a . .a ( ao+. a' (VI-15)
+cosOvy cos(lx+smin -sinOvz cos v+sin|)

ax ay a 3x ay)

Since

.as =cosao +sinmao =0, (VI-16)
3s ax ay

the resulting equation is

vst =cos sin0 vxy +cos cosO vz +sin sinO vyy +sin cosO vyz. (VI-17)

The remain cross derivatives are derived next:

viS1 =cos-(sino v.) + cos x-(-cosocos0 v ) + cos<- (sino vz)
ax ax ax

+ sin -a (sinovj+sino) ±(-cospcosv) + sin+- (sinO vz) (VI-18)ay ay Ky
+O (sinp vx)+O-a (-cos<cosO v)+0-(sinO vz)

az az 3z

which simplifies to
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vsn = sin 0 cos q v, - sin cos q cos vyy +(sin2 qb-cos 2 Ocpsos)vy

+cososin0 vxz +sinosino vyz

+coso vx cos-+sinb-- +sin +sicos0 v cos - +sino ) (VI-19)
ax ay a.x y 

+csos V(M,+iii( , . (ao . ado+cs0v~cos9x+Sny + cos+sin 0 v cos- +'sin( -
a ax y.x .ay

and finally

vn = sin cos v.. -sinqcos cos0 vyy +(sin2 q -cos 2 qcoso)vxy
(VI-20)

+cos sin0 vxz +sin sin0 vyz +coso vxK+sin cos 0 v K

Again, by analogy:. 

vtn = sin cos0 v, - cos Qsin cosO vyy +(sin 2 0-cos)cos2 0)vyz

+ sin q cos 0 vz +sin q sin vy +cos vzL+cos q sin vyL
'. (VI-21)

In summary and incorporating the knowledge that ( = 0 = 0 at the point of interest

v = vX

V, = V,,Vt = Vz'

v n = - Vy,

vSS = vxx + VyK,

Vtt =vzz+vyL,

Vs = --Vxy + VxK,

Vtn =-vy z + vzL,

and v,t = vz.

One additional relation,

V V=AV = Vxx+ vyy +Vzz,

(VI-22a)

(VI-22b)

(VI-22c)

(VI-22d)

(VI-22e)

(VI-22f)

(VI-22g)

(VI-22h)

(VI-23)

is needed.
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The relations in (VI-22) and (VI-23) may be rearranged to yield

v, = V,, (VI-24a)

vz = v t , (VI-24b)

Vy =-v,, (VI-24c)

vx = vS + vK, (VI-24d)

vzz = Vt + v,L, (VI-24e)

Vxy =-vsn + vsK, (VI-24f)

vyz = -vt + vtL, (VI-24g)

vz = vt, (VI-24h)

and vyy = Av - v-z. (VI-24i)

I will also need a three-dimensional Taylor series expansion of v about point 0

v(P)= v(O)+x v (0)+y vy(0)+z vz (0)

+ (x2 vx (O)+y 2 vy (0)+z 2 Vzz(0)) (VI-25)

+(xy v,y (0) + xz vXz (0) + yz vyz (0))
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GENERATION OF A FIRST ORDER ACCURATE FORMULA

For the first order accurate finite difference formula, I begin with the three-

dimensional Taylor series expansion neglecting the second derivatives, and substitute the

appropriate relations from (VI-24),

v(P) = v(O)+ x v,(O)-y v.(O) + z v,(0 ) . (VI-26)

Multiplying by bi and summing over i = 1 to 3 yields

3 3 3 3 3

_biv(P,) = Ibiv(0) + _b ,x ,v,(0) + b,z ,v,(0)- _b,y,v,(0) (VI-27)
i=l i=l i=l i=l i=l

Since. I am only interested in the normal derivative, I can define three equation to

eliminate the terms containing the tangential derivatives and set the normal derivative

equal to unity.

Ebjyi = 1, (VI-28a)

,bix i =0, (VI-28b)
i=l

and _biz i =0. (VI-28c)
i=l

Thus equation (VI-27) reduces to

nv() = bi [v(0)- v(P,)]
i=l

= v (0) (VI-29)

=g(O).

which after rearranging to solve for the value at the interface yields

3

g(0) + Jbiv(Pi)
v(0) = 3. (VI-30)

Ibi
i=,
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GENERATION OF A SECOND ORDER ACCURATE FORMULA

The second order accurate formula is derived in the same manner as the first order

accurate formula described above. I begin with the three-dimensional Taylor series in

(VI-25), which after substituting the relations in (VI-24) yields

v(P)= v(O)+x v,(O)-y v(O)+z v, (O)+y 2 'Av

+ (x 2 - y2)(v s (0)+ v n(0)K(0))

+(z2 _ y2)(vtt (0)+ v(0)L(0))-3 

+xy (-v,, (0) + v, (0)K(0)) + xz v, (0) + yz (-vn (0) + v, (0)L(O))

which may be rearranged by combining terms to

v(P) = v(0) + x(1 + y K(0))v, (0) + z(1 + y L(0))v, (0)

_(y _(X 2 y2)K(0)_ -(z2 y2 )L(0)) v, (0)

+(x2 - y2) V(0) z2 y2)v(0) + y2 Av

-xyv, (0)- yz v,, (0) + xz v,, (0).

Multiplying by aiand summing over i = 1 to 6 yields

6 ". 6 6 6

ai v(Pi ) = a,v(O) + aix, [1 + y K(O)]vs (0)+ Xazi [1 + yiL(O)]v, (0)
i=l i=l i=l i=l

- a; [y, - (x _ y2 )K(0)- (z2 _ y2 )L(O)]v n (0)

6 6 6 (VI-33)
+' a(ax ( -y2 )v~ (0)+ Ia (zi-y2 )v,, (0) + ay AV

i= i=2 i=

6 6 6

-Zaixy iv.n(0)- a,y,z,v, (0)+ aix,z,v., (0).

In order to derive a second order accurate formula, I need to eliminate the terms

containing vs , vt, vss, vtt, and vst and set the term containing vn=l. Thus there are six

simultaneous equations to solve:
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a 2[y i-T(x-y 2)K()-(z-2_ y?)L(O)]= Iaiy . (VI-34a)
i=l i=l
6

ax (1 + yiK()) = , (VI-34b)
i=1

,aiz i (l+yiL(O))=O (VI-34c)
6

ai(x -y) =0 .. (VI-34d)
i=l
6

=a , 'yO. (VI-34e)
i=l

and axiz i =0. (VI-34f)

Which, assuming xi, yi, and z; to be small, is approximated by the system:
6

f-ahyi = 1, -n(VI-35a)
i=l
6

saixi ̂= 0, (VI-35b)

aizi O = 0, (VI-35c)
6

,^di (X -y2 )=O, (VI-35d)
i=l
6

Zai(z~-y ) = 0 (VI-35e)
6

and ,a _x,zi =0. (VI-35f)
i=l ·

Thus, Equation (VI 33) reduces to:

6

8,v(o) = a, [v(0)- v(P,)]
i=l

6 6 6

= v (0)-2 ayAv+ axjyv (0) + aiyizv,n (0) (VI-36)

6

= g(0)+1ai [xiyig, (0)+ yizig, (0)]

where g(0) is the normal derivative at the point of interest, g, (0) is the curvature in the

x-y plane, and g, (0) is the curvature in the y-z plane.
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Rearranging (VI 36) yields

6 6 6

Zaiv(Pi) 1 Z'axiyi Zaiyiz
v(0)== 6 + 6 g(0)+ =1 g,(0)+ i g,(0) (VI-37)

i=l i=Xa i=la

for the value of the arbitrary function at the boundary in terms of neighboring points and

the normal derivative.

Thus, In order to apply the boundary condition in three-dimensions, six points

within the domain must be chosen such that linear system in (VI-35) can be solved to

yield all positive values for the coefficients, a,. Equation (VI-37) may then be used to

determine the boundary value.
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APPENDIX VII

NUMERICAL SOLUTION OF LI AND TANKIN'S DISPERSION RELATIONS

In their analysis of the stability of a thin viscous sheet flowing through an inviscid

vapor phase, Li and Tankin5 8 present dispersion relations linking the growth rate of

waves in the sheet of liquid with the wavenumber of the disturbance. These relations are

o ((o, +4m Z)C), tanh(m)

+4mZ 2 [mtanh(m)-(m2 +,/Z)2 tanh(m2 +(o,/Z)2 +pb 2 +m3

0 = (co, +4m2z)0o, coth(m)

and (VII-2)
+4m3Z2 mcoth(m)-(m i + ,/Z) coth(m +ci,/Z) ]+ po2 m 3

for antisymmetric and axisymmetric disturbances, respectively. The parameters in these

equations are defined in the text above, but I will repeat the important ones here:

Co, the dimensionless complex growth rate

ol = 0)+ i Wem,

m = ka, the dimensionless wave number

We, = We,/p, the liquid phase Weber number

We, = p,,U2a/a, the gas phase Weber number

P = P1/P,, the density ratio

Z = ,u,/Jpa, the Ohnesorge number.

Below is a source code listing of the FORTRAN program used to solve this

extremely non-linear problem involving complex numbers. The program begins by

initializing the variables including the gas phase Weber number, the Ohnesorge number

and the density ratio. Next the program loops over the desired range of wavenumbers ad

solves Equation (VII- 1) and (VII-2) for the growth rate at that wavenumber. Four cases

are considered for the axisymmetric and antisymmetric cases: the complete equation;
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neglecting surface tension, the term m3 ; neglecting the vapor phase, the term po&2; and

neglecting both the vapor phase and surface tension, the terms po)2 and m 3 .

The solution procedure is to used direct substitution and treat the complex growth

rate as a single equation and a single unknown. Thus we begin with an initial guess of

(0.0,0.0) as the complex growth rate, substitute this into the equation being solved,

yielding a residual that should be near zero. If the residual is not small enough it is

subtracted (with an under-relaxation factor) from the previous value of the complex

growth rate and the process is repeated.
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Table VII-1; Source code listing for-computation of the complex growth rate.

program omega , . -
implicit none

integer j, 1

double complex omg(8), eps, omgl, s, ztanh

double precision m, WEg, Z, rhor

ztanh(s)=(zexp(s)-zexp(-s))/(zexp(s)+zexp(-s))

C . ! ** :.. ,. . . . . . ,
WEg=4.OdO
Z=O.ldO .
rhor=0O.ldO

c
write(*,998) Z, rhor, WEg

do 1=1,100

m=5.0d0/100.Od0*float(l)

c
c
c antisymmetric

c
eps=(0.OdO,0.OdO)
omg(1)=eps
do j=l,100000

omg(l)=omg(1)-0.00ldO/m*(l.OdO,1.OdO)*eps
omgl=omg(l)+(O.Od0,m*sqrt(WEg/rhor))
s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.OdO*m*m*Z)*omgl*tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m*tanh(m)-s*ztanh(s))
2 + rhor*omg(l)*omg(l)+m*m*m

if (zabs(eps).lt.l.Od-10) go to 111

enddo
111 continue

c
c axisymmetric

c
eps=(0.Od0,0.OdO)

omg(2)=eps
do j=l,100000

omg(2)=omg(2)-0.00ld0/m*(1.OdO,1.OdO)*eps
omgl=omg(2)+(0.OdO,m*sqrt(WEg/rhor))
s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.0dO*m*m*Z)*omgl/tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m/tanh(m)-s/ztanh(s))
2 + rhor*omg)*o*omg(2)+m*m*m

if (zabs(eps).lt.l.Od-10) go to 222

enddo

222 continue

c
c antisymmetric w/o surface tension

c
eps=(0.OdO,0.OdO)
omg(3)=eps
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do j=l,100000

omg(3)=omg(3)-0.001dO/m*(1.0d0,1.0d0)*eps

omgl=omg(3)+(0.OdO,m*sqrt(WEg/rhor))

s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.OdO*m*m*Z)*omgl*tanh(m)

1 + 4.0d0*m*m*m*Z*Z*(m*tanh(m)-s*ztanh(s))

2 + rhor*omg(3)*omg(3)

if (zabs(eps).lt.l.Od-10) go'to 333

enddo

333 continue

C

c axisymmetric w/o surface tension

c.

eps=(0.0d0,0.Od0)

omg.(4)=eps

do j=l,100000

omg(4)=omg(4)-0.001dO/m*(1.OdO,1.0d0)*eps

omgl=omg(4)+(0.OdO,m*sqrt(WEg/rhor))

s=zsqrt(m*m+omgl/Z)

.eps=(omgl+4.OdO*m*m*Z)*omgl/tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m/tanh(m)-s/ztanh(s))

2 + rhor*omg(4)*omg(4)

if (zabs(eps).lt.l.Od-10) go to 444

enddo

444 continue

c

c antisymmetric w/o vapor phase

c

eps=(0.OdO,0.OdO)

omg(5)=eps

do j=1,100000

omg(5)=omg(5)-0.001d0/m*(1.0d0,1.0d0)*eps

omgl=omg(5)+(0.OdO,m*sqrt(WEg/rhor))

s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.OdO*m*m*Z)*omgl*tanh(m)

1 * + 4.0dO*m*m*m*Z*Z*(m*tanh(m)-s*ztanh(s))

2 + m*m*m

if (zabs(eps).lt.l.Od-10) go to 555

enddo

555 continue

c

c axisymmetric w/o vapor phase

c

eps=(0.OdO,0.OdO)

omg(6)=eps

do j=l,100000

omg(6)=omg(6)-0.001d0/m*(1.0d0,1.0d0)*eps

omgl=omg(6)+(0.0dO,m*sqrt(WEg/rhor))

s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.OdO*m*m*Z)*omgl/tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m/tanh(m)-s/ztanh(s))

2 + m*m*m

if (zabs(eps).lt.l.Od-10) go to 666

enddo
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666 continue

c

c antisymmetric w/o vapor phase w/o surface tension

c

eps=(0.0d0,0.0d0)
omg(7)=eps
do j=l,100000

omg(7)=omg(7)-0.001dO/m*(1.0d0,1.Od0)*eps
omgl=omg(7)+(0.Od0,m*sqrt(WEg/rhor))
s=zsqrt(m*m+omgl/Z)

eps=(omgl+4.OdO*m*m*Z)*omgl*tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m*tanh(m)-s*ztanh(s))
if (zabs(eps).lt.l.Od-10) go to 777

enddo

777 continue

c
c axisymmetric w/o vapor phase w/o surface tension

c
eps=(0.OdO,O.OdO)
omg(8)=eps
do j=l,100000

omg(8)=omg(8)-0.001d0/m*(1.OdO,1.OdO)*eps
omgl=omg(8)+(0.OdO,m*sqrt(WEg/rhor))
s=zsqrt(m*m+omgl/Z)
eps=(omgl+4.OdO*m*m*Z)*omgl/tanh(m)

1 + 4.0dO*m*m*m*Z*Z*(m/tanh(m)-s/ztanh(s))

if (zabs(eps).lt.l.Od-10) go to 888

enddo

888 continue

write(*,999) m, (dreal(omg(j)),j=1,8)

enddo
c

998 format(lp,5el4.6)
999 format(flO.8,lp,8el4.6)

return
end
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APPENDIX VIII

BUGS IN THE NASA-VOF3D PROGRAM

During the course of the development of the IPST-VOF3D 'computational

technique, I have discovered several programming errors or "bugs" in the NASA-VOF3D

implementation. These bugs will be presented by the incorrect line in the NASA-VOF3D

program, the line number in the source code listing of Torrey et al.,8 1 and the corrected

source line.

NO-SLIP BOUNDARY CONDITIONS IN BC ASSUME STATIONARY WALLS

This error occurs in many places in the BC subroutine, but only one is presented

as an example.

line
number

v(ijk-l)=-v(ijk)*delxrl 49

w(ijk-1)=-w(ijk)*delxrl 50

v(ijk-l)=vlw+(vlw-v(ijk))*delxrl

w(ijk-1)=wlw+(wlw-w(ijk))*delxrl

The additional variables VLW and WLW indicate the velocities of the domain

boundaries. VLW refers to the v-velocity component on the left boundary and WLW

refers to the w-velocity component on the left boundary. Similarly, VTW would refer to

the v-velocity component of the top boundary.

ERROR IN BCFS RELATING TO CARTESIAN COORDINATES

These statements were valid only for problems in cylindrical coordinates and led

to errors in certain Cartesian problems (note that the NASA-VOF3D program was only

intended for cylindrical problems).
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if (ar(ijk).gt.em6) u(ijk)=u(imjk)*ar(imjk)*x(i-l)/(ar(ijk)*x(i)) 42

if (ar(imjk).gt.em6) u(imjk)=u(ijk)*ar(ijk)*x(i)/(ar(imjk)*x(i-1)) 48

if (ar(ijk).gt.em6) u(ijk)=u(imjk)

1 *(1.0-cyl+cyl*ar(imjk)*x(i-l)/(ar(ijk)*x(i)))

if (ar(imjk).gt.em6) u(imjk)=u(ijk)

1 *(1.0-cyl+cyl*ar(ijk)-*x(i)/(ar(imjk)*x(i-l)))

ERROR IN COMPUTATION OF THE SOR PARAMETER, 3, IN BETACAL

The equations for computing the SOR parameter [3 is incorrect. The term rri(i)

occurs an extra time in line 32. -It appears that it was factored out of the expression

containing abbk and abf, but not removed from the expression.

xx=2.0*delt*(rdx(i)*(abr/(delx(i)+delx(i+l))+abl/(delx(i)+delx(i-1 30

1 )))+rdy(j)*rri(i)*(abbk*rri(i)/(dely(j)+dely(j+l))+abf*rri(i)/ 31

2 (dely(j)+dely(j+l)))+rdz(k)*(abt/(delz(k)+delz(k+l))+abb/(delz(k) 32

3 +delz(k-l)))+cyl*0.5*(abr/(delx(i)+delx(i+l))-abl/(delx(i-l)+delx! 33

4 (i)*rri(i)/x(iml)) 34

beta(ijk)=omg/xx*ac(ijk) .35

beta(ijk)=omg*ac(ijk)/(delt*

1 (rdx(i)*(abr*rdxp(i)+abl*rdxp(i-1))

2 +rdy(j)*rri(i)*(abbk*rdyp(j)+abf*rdyp(j-1))

3 +rdz(k)*(abt*rdzp(k)+abb*rdzp(k-1))

4 +cyl*0.5d0*(abr*rdxp(i)-abl*rdxp(i-l))*rxi(i)))

POSSIBLE DIVISION BY ZERO IN MESHX, MESHY, AND MESHZ

In the subroutines MESHX, MESHY, and MESHZ there is code that can lead to

division by zero in single precision implementations. The section of code for MESHX is

presented with analogous changes required in MESHY and MESHZ.

dxml=(xc(1)-xl(1))/nxl(1) 10

dxmnl=dxmn(l1) 11

nt=nxl(l) 12

tn=nt - 13

tn=amaxz(tn,1.0+1.0d-14) 14

dxmn (1)=aminl(dxmnl,dxml) 15

cmc=(xc(l)-xl(l)-tn*dxmn(l))*tn/(tn-1.0) 16

if (nt.eq.1) cmc=0.0 . 17
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On a single precision implementation, the term 1.0+1.0e-14 in line 14 could be

rounded to 1.0 yielding a division by zero in line 16. This section of the program was

restructured to eliminate the division when nt=l since cmc is set to zero anyway.

tn=float(nxl(l))
dxml=(xc(l)-xl(l))/tn
dxmnl=dxmn (1)
dxmn(l)=dminl(dxmnl,dxml)

if (nxl(l).eq.l) then

cmc=O.OdO
else

cmc=(xc(l)-xl(l)-tn*dxmn(l))*tn/(tn-l1.OdO)
endif

INCORRECT SUBROUTINE CALL IN SETUP

The NASA-VOF3D program called specific subroutines to compute the indices

corresponding to a computational cell and its neighbors. For efficiency, these subroutines

are no longer called explicitly, but the indices are computed as needed. In the subroutine

SETUP, the index initialization subroutine IJKONLY was called where IJKAJCT was

required.

call ijkonly 133

should have been

call ijkajct 133

As mentioned, this bug was fixed when the calls to the index computation

subroutines were replaced.

BUG IN SURF10N

The improper index was changed.

if (wbk.eq.4) m=2 432

if (wbk.eq.4) mm=2
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APPENDIX IX

IPST-VOF3D SOURCE CODE LISTING

The listing of the FORTRAN source code for the IPST-VOF3D program is

available for viewing in the Haselton Library at the Institute of Paper Science and

Technology in Atlanta, Georgia.


