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SUMMARY

In this thesis a powerful and practical method for characterizing ultrashort

pulses in space and time is described (called SEA TADPOLE). SEA TADPOLE is a

linear interferometric technique for measuring pulses that are very complex in time

and/or space, and it uses a simple experimental setup.

First we focus on measuring pulses that are spatially uniform but potentially very

complicated in time or frequency. We demonstrate and verify that SEA TADPOLE

can measure temporal features as small as 30 femtoseconds over durations as long as

15 picoseconds, and these measurements can be made at video-rates. The spectral

resolution of this device is carefully studied and we demonstrate that for certain

pulses, we achieve spectral super resolution. We also develop and test an algorithm

for measuring polarization shaped pulses with SEA TADPOLE.

Our simple experimental setup for SEA TADPOLE can even be used to measure

the spatiotemporal electric field of ultrashort pulses at a focus. This is because

SEA TADPOLE samples the field with an optical fiber which has a small core size.

Therefore this fiber can be used to spatially sample the beam, so that the temporal

electric field can be measured at every position to obtain E(x, y, z, t). The single mode

fiber can be replaced with an NSOM (Near Field Scanning Optical Microscopy) fiber

so that spatial resolution as low as 500nm (and possibly lower) can be achieved.

Using this device we make the first direct measurements of the compete field of

focusing ultrashort pulses. These measurement can be viewed as “snap shots” in

flight of the focusing pulse. Also, for the first time, we have observed some of the

interesting distortions that have been predicted for focusing ultrashort pulses such as

the “forerunner” pulse, radially varying group delay dispersion, and the Bessel-like

xiv



X-shaped pulse.

In addition to characterizing focused pulses with SEA TADPOLE, we have also

made some of the first direct measurements of the electric field of Bessel X-pulses.

We demonstrate their propagation invariance as well as their superluminal velocity.

We also use SEA TADPOLE to study the “boundary wave pulses” which are due

to diffraction of the laser beam off of a circular aperture and these pulses are also

superluminal.
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CHAPTER I

A QUICK INTRODUCTION TO ULTRAFAST OPTICS

AND PULSE MEASUREMENT

Ultrashort (or ultrafast) pulsed lasers emit a continuous train of short bursts of light

which last on the order of a few femtoseconds (10−15 s) but can be as long as 10’s of

picoseconds (10−12 s). Ultrafast lasers have many useful properties which have led to

numerous applications. Their high peak power (imagine cramming all of the energy of

a continuous laser into a few femtoseconds) is very useful for creating nonlinear optical

effects such as filamentation (or self guiding) and high harmonic generation to produce

x-rays or atto-second pusles [1, 2]. Ultrashort pulses can have a high peak power but a

low average power (most of the time in the pulse train, the power is equal to 0) which is

ideal for micro-machining because material can be ablated without heating it (heating

is what tends to make the features larger and distorted) [3]. This property has also

made ultrashort pulses very useful for imaging live cells with depth resolution in the

technique known as multi-photon microscopy [4]. Ultrafast lasers have revolutionized

high precision spectroscopy, because the broad spectrum of a phase stabilized laser

pulse contains on the order of 10,000 very narrow spectral lines known as a frequency

comb [5]. Ultrashort pulses can even be used for controlling the quantum state of

molecules and the outcome of chemical reactions. When combined with an optical

synthesizer (a pulse shaper) the pulses can be made into “electromagnetic catalysts”

[6–10]. Because ultrashort pulses also enable femtosecond time resolution (which

is the time scale over which many chemical reactions happen) these pulses can be

used to study the time evolution of molecules during reactions, in what is known as

femtochemistry [11]. And there are even more applications than those listed here.
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To successfully work with ultrashort pulses, it is important to know and control

the pulse’s shape in both time and frequency including the phase of the pulse, or

how its temporal shape varies with color. How do you even know if a pulse is a

femtosecond pulse and not a picosecond pulse if you do not measure its temporal

profile? To completely characterize a pulse, its intensity and phase as a function of

time must be determined, and it is not a trivial task to measure an event that has

a duration of more than three order’s of magnitude shorter than the time resolution

of the fastest oscilloscopes or electronics. In general to measure an event you need a

shorter event. For example, high speed photography requires the use of a strobe light

that turns on and off faster than the speed of what is being photographed. Of course

there are no events available that are shorter than a femtosecond pulse, and usually

the only event that we have that even happens on a similar time scale is the pulse

itself or another similar laser pulse. So we have to use the laser pulse to measure itself.

All approaches for doing this involves interacting the pulse with itself in a nonlinear

crystal. Once we have a characterized laser pulse, we can use it as a reference pulse

to measure other unknown pulses either through another nonlinear interaction, or by

interfering the pulses with one another [12].

In 1993 the first technique for measuring the intensity and the phase of ultrashort

pulses, known as FROG or Frequency Resolved Optical Gating was introduced [13].

Today it is routine to measure the temporal intensity and phase of ultrashort pulses

directly out of most commercial lasers.

A lot happens to a pulse after it leaves the laser and goes through an experiment,

and in fact it becomes a lot more complicated, a lot more interesting, and much more

difficult to measure. For example, a pulse shaper (which is an optical synthesizer)

may be used to make the pulse several picoseconds long but with femtosecond features

in time in order to optimize a chemical reaction [14]. Measuring a pulse such as

this could lead to insights about how reactions happen. As another example, the
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focus is probably the most important place to measure the pulse because this is

where everyone uses it. But focused pulses are very difficult to measure because

they often have complex space-time couplings due to lens aberrations, meaning that

their temporal shape varies across the focus and as it propagates, and measuring

these spatial variations often requires a spatial resolution of less than 1 µm [15]. It

turns out that even the diffraction that ultrashort pulses experience due to apertures

produces interesting, very small, sub-pulses with superluminal speeds [16]. Studying

these pulses could lead to new insights about the diffraction of light.

1.1 Ultrashort pulses

1.1.1 Generation of Ultrashort pulses

From the Fourier transform it is easy to see that to have a short pulse of light in time,

it is necessary to have a broad spectrum of colors present, where all of the colors are

in phase with one another, or mode-locked. Nanosecond pulsed lasers usually use

what is called active mode-locking which simply involves making a continuous wave

laser and then adding a fast shutter to it so that the output intensity is modulated

in time so that a train of nanosecond pulses is emitted by the laser. The fastest

shutters are pockels cells which involve applying a voltage to a crystal in order to

quickly change its polarization axis. The pockels cell can be used as the end mirror

of the laser cavity by placing it in between crossed polarizers (though configurations

using parallel polarizers are also used). When an appropriate voltage is applied to

the pockels cell to make it a half wave plate, the light leaves the cavity, and then the

voltage is quickly turned off so that only a short burst of light escapes. This is known

as Q-switching. The shortest pulses from Q-switched lasers are usually around 10-100

nanoseconds.

Passively mode-locking lasers—or using the light inside of the laser as the mode-

locking signal—results in much shorter pulse durations than can be achieved with
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active mode-locking. The earliest passively mode-locked lasers used what are called

saturable absorbers to make the laser emit shorter pulses. Saturable absorbers absorb

light when its intensity is below a certain thresh hold, but become saturated and thus

transparent for light above the intensity threshold [17]. Therefore if you have a

long pulse of light in time (imagine that it is shaped like a Gaussian), the saturable

absorber will absorb the light at early and later times where its intensity is lower,

but close to the center of the pulse where it is most intense, the saturable absorber

will be transparent and not absorb any of the light. This of course makes the pulse

shorter in time. Adding a saturable absorber to a laser, makes longer pulses inside of

the laser shorter, and it also greatly increases the likelihood for a laser to emit shorter

pulses because these experience much less loss at the saturable absorber. Pulsed solid

state as well as dye lasers are built using saturable absorbers and these usually emit

pulses with durations of 500fs at the shortest [17, 18].

The most commonly used femtosecond laser, and the one that was used for all of

the work in this thesis is the Ti:Sa mode-locked laser [19]. Ti:Sa lasers use what is

known as kerr-lens mode-locking [20, 21]. In Ti:Sa lasers, the mode locking conve-

niently happens in the lasing medium, or the Ti:Sa crystal. Kerr lensing is a non-linear

effect that happens when intense light propagating through a crystal spatially mod-

ulates the crystal’s refractive index causing the light to focus (this is also called self

focusing). Because this is a non-linear process the strength of this effect depends on

the intensity of the light. So the shorter the pulse, the more it is focused. Therefore,

Ti:Sa lasers can be aligned to recollimate the light after the crystal accounting for

the self focusing that will select shorter more intense pulses. This optimizes the laser

cavity to amplify the pulsed or self focused radiation much more than the continuous

light which does not self focus so it will diverge in the cavity and not overlap well

with the pump laser at the gain medium. The other key ingredient in a kerr-lens

mode-locked laser is dispersion compensation (see section 1.1.2) [22, 23]. Usually a
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prism pulse compressor (or sometimes chirped mirrors are used) is added to the path

of the laser to remove the dispersion acquired by the pulse in each pass through the

crystal, so that it stays short in time and intense enough to experience self-focusing.

Pulses with durations as short as 5fs have been generated with Ti:Sa lasers [24].

Ti:Sa lasers also have the nice property that their wavelength and pulse duration (or

bandwidth) are tunable, and typically they have durations between 20-200fs, center

wavelengths between 700 and 1000nm, and spectral bandwidths from 20-95nm. Usu-

ally Ti:Sa lasers have repetition rates around 80MHz (or one pulse every 12.5ns) and

average powers around 0.5 Watts resulting in an energy of 1-10 nanojoules per pulse.

It is very common to amplify Ti:Sa lasers to achieve millijoules of energy per pulse,

though amplification was not necessary for any of the work done in this thesis (see

for example [25, 26]).

1.1.2 Mathematical description of ultrashort pulses

To write an expression for the electric field of an ultrashort pulse we will assume that

it is polarized along one direction, so that its temporal electric field can be written

as a scalar. Even focused pulses with numerical apertures less than 0.8 can still be

approximated well with a scalar field (see chapter 6). In chapter 4, when we deal

with polarization shaped pulses, we will write the field with two scalar equations, one

for the x component and one for the y component. The equation for the field of an

ultrashort pulse is shown below.

E (t) =
1

2

√
I(t) exp (ωt− φ(t)) + c.c (1.1)

In the above equation, I(t), φ(t), are the temporal intensity and phase of the pulse

and ω0 is the carrier frequency in radians per second. It is conventional, and much

more convenient to leave out the complex conjugate and only work with the complex

field of the pulse and to leave out the high carrier frequency as shown in equation 1.2.

E(t) =
√
I(t) exp (−iφ(t)) (1.2)
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The field E(t), is the one that we will work with most of the time. E(t) can be

fourier transformed to the frequency domain to get the following field for the pulse

as a function of frequency.

E(ω − ω0) =
√
S(ω − ω0) exp (−iϕ(ω − ω0)). (1.3)

In Eq. 1.3, ϕ(ω − ω0) is the spectral phase and S(ω − ω0) is spectral intensity or the

spectrum. The FWHM or rms width of the spectrum is referred to as the bandwidth.

Though, technically E(t) Fourier transforms to E(ω − ω0), most of the time we will

plot the spectral field as E(ω) or E(λ) (λ is the wavelength) so that the center

frequency or wavelength can be seen.

Figure 1.1 illustrates the difference in plotting the real part of field as opposed

to the intensity and the phase separately for a chirped pulse (meaning that different

colors arrive at different times). It is conventional to plot the intensity and the phase

separately because this is easiest to interpret and unambiguously displays all of the

information about the pulse.

The spectral phase of the pulse is often approximated by the first few terms in a

Taylor expansion of ϕ(ω) about ω = ω0 as shown below.

ϕ(ω) =
dϕ

dω

∣∣∣
ω0

(ω − ω0) +
1

2

d2ϕ

dω2

∣∣∣
ω0

(ω − ω0)2 +
1

6

d3ϕ

dω3

∣∣∣
ω0

(ω − ω0)3 + ... (1.4)

The first order coefficient is the group delay or the arrival time of the pulse. The

second order coefficient, or d2ϕ
dω2

∣∣∣
ω0

is referred to as linear chirp. If this term is present

then the pulse’s arrival time will vary linearly with frequency. Note that this term is

also referred to as the group delay dispersion (GDD), though GDD is usually refers to

the second order phase introduced to the pulse by a medium or a device (often due to a

frequency dependent refractive index). The examples in Fig. 1.1a are for a positively

chirped pulse. In Fig. 1.1a, the real part of the field shows that the oscillations have

a lower frequency at earlier times, or that the redder colors are ahead of the bluer

colors, due to the positive chirp. In Fig. 1.1d, you can see that this corresponds to a
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(a) The real part if E(t) (b) The intensity and phase of E(t)

(c) The real part if E(ω − ω0) (d) The intensity and phase of E(ω − ω0)

Figure 1.1: Plotting the complex electric field of an ultrashort pulse
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quadratic spectral phase. When there are higher order terms in Eq. 1.4, the chirp can

be nonlinear, or the arrival time of the pulse can vary nonlinearily with frequency.

Because we will be dealing with pulses whose electric fields may vary in time

and contain couplings between time and space (or frequency and space), we need

to define the electric field as a function of space. Below we show the equation of

the spatiotemporal electric field of the pulse where ϕ(ω, x, y, z), is referred to the

spatiospectral phase.

E(ω, x, y, z) =
√
S(ω, x, y, z) exp (−iϕ(ω, x, y, z)) (1.5)

E(t, x, y, z) =
√
I(x, y, z, t) exp (−iφ(t, z, y, z)) (1.6)

Most of the time we will discuss the spatiotemporal field at a fixed value of z, where

z is the propagation direction of the pulse, and in all of the cases that we have

considered here, the x and y parts of the field were separable. The spatiospectral

phase is also best understood in terms of coefficients in a Taylor expansion which is

shown below considering only the x and the ω dependence of the field [27].

ϕ(ω, x) =
∂2ϕ

∂ω∂x
x(ω − ω0) +

∂2ϕ

∂ω2
(ω − ω0)2 +

∂2ϕ

∂x2
x2+

∂2ϕ

∂x2∂ω
x2(ω − ω0) +

∂2ϕ

∂x2∂ω2
x2(ω − ω0)2 + ...

(1.7)

This expansion shows the first order coupling terms in the phase, where the coefficient

of the xω term is known as the wave front tilt dispersion [27]. While first order

spatiotemporal couplings are usually due to the beam propagating in the presence of

angular dispersion [27–29], the next order terms are commonly introduced by lenses

and will be discussed in more detail in chapters 5 and 6. The terms on the second

line are some of the higher order couplings that are introduced by lenses with the

ωx2 term which is radially varying group delay and the ω2x2 term which is radially

varying group delay dispersion. There are also spatiotemporal coupling terms such

as these that can be found in the intensity.
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1.1.3 Time bandwidth product

The time bandwidth product (TBP) is a useful metric for describing how complicated

a pulse is in time or frequency, because it gives a rough estimate of the number of

sub-peaks that there are within the pulse. The TBP is defined as the width of S(ω)

times the width of I(t). The width can be defined in many different ways, such as the

rms width (which is best for complicated pulses), or the FWHM (the full width at half

maximum), or any other definition). It is easy to show from the Fourier transform

that there is an uncertainty principle associated with the TBP, or that it has to be

greater than a minimum value. These vary with the definition of width and if rms

width is used then TBP ≥ 1
2

or if FWHM (the full width at half maximum) definition

is used then, TBP ≥ 2.76 (we are using angular frequency here, as usual) [12]. The

figure below shows some examples of pulse shapes corresponding to different time

bandwidth products. This figure nicely illustrates that the TBP is approximately

Figure 1.2: The spectrum and temporal intensity for pulses with different TBP’s

consistent with the number of peaks that there in the pulse. Figure 1.2, also shows

that as the size of the features in the spectral field decrease, the temporal duration

(or temporal spread) of the pulse increase. This is also a result of the uncertainty
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principle, and the smallest feature in the spectrum is approximately equal to one over

the pulse duration (or δλ ≈ 1
∆t

).

1.2 Measuring ultrashort pulses

To measure an ultrashort pulse (assuming that it is spatially homogenous), its in-

tensity and phase must be determined. This can be done in the frequency domain

or the time domain, because these fields contain the same information, and one can

be obtained by Fourier transforming the other. So everything in either Eq. 1.2, or

Eq. 1.3 must uniquely determined. If the field is not spatially homogenous, or if

spatiotemporal couplings might be present, the field cannot just be measured at one

spatial position, because the time duration, or the spectrum could vary with position

along the beam. So in this case the complete field versus space and time or frequency

(see Eq. 1.5) must be measured (again in either domain) though the z dependence is

not necessary to measure, because the diffraction integral can be used to propagate

this field to another value of z. Also, if the beam can safely be assumed to have cylin-

drical symmetry, then it is only necessary to measure E(x, y = 0, ω) or E(x, y = 0, t)

(or the y dependence can equivalently be determined).

In general, there are two ways to characterize ultrashort pulses, either through a

nonlinear interaction or linearly with interference (some methods use a combination

of these two approaches [30]). If there is no pre-characterized reference pulse avail-

able, then the pulse must be used to measure itself. These so called self-referential

techniques require a nonlinear interaction, and it is not possible to self-referentially

measure a pulse with a linear method [31].

While self-referential techniques such as FROG work very well for simple pulses

(TBP< 30), they are often slow, or non-convergent for very complicated pulses

(TBP> 100) [32]. Also, because they are nonlinear, they are much less sensitive

than interferometric techniques which have been used to measure pulses with as little
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energy as few zeptojoules (zepto=10−21) while nonlinear techniques have measured

pulses in the attojoule range at the best [33].

Also note, that pulse measurements techniques like FROG, that require scanning,

work under the assumption that all of the pulses in the pulse train are identical.

These so called “multi-shot” techniques average over billions of pulses to make a

measurement. But some pulse measurement techniques like GRENOUILLE (see sec-

tion 1.2.1) can measure the pulse in a single camera frame. These so called “single

shot” techniques provide the option of measuring a single, isolated pulse in the pulse

train. Single shot measurements are necessary for very low repetition rate lasers, or if

there are reasons to suspect that all of the pulses in the pulse train are not identical.

In this thesis, our approach for measuring high TBP pulses with spatiotempo-

ral couplings is to use a spatially and temporally simple (low TBP) reference pulse

to measure the spatial and temporal profile complicated unknown pulse. The pulse

directly out of the laser can often be used as the reference pulse, as long as it con-

tains all of the colors that are in the unknown pulse. We do this by measuring the

interference of the unknown and reference pulses (see chapter 2). Interference only

allows the measurement of the spectral phase difference between the unknown and

reference pulse, or it measures the spectral phase acquired by the pulse after prop-

agating through an optical element, pulse shaper or experiment (what is measured

can also be thought of as the response function). While this information is useful

for certain applications such as pulse shaping, or characterizing lenses, to determine

the phase of the unknown pulse, the phase of the reference pulse must be known.

But the reference pulse is simple, so it is easy to measure with FROG. Since we will

sometimes use FROG (or its experimentally simplified counter part GRENOUILLE)

to measure the reference pulse, it is briefly described below.
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1.2.1 FROG

The most common and most reliable self-referential technique is Frequency Resolved

Optical Gating or FROG. There are several different types of FROG techniques, and

the most common one is SHG FROG which involves measuring the spectrally resolved

intensity autocorrelation of the pulse. This is done by crossing the pulse with itself

in a nonlinear crystal. A second harmonic signal is created if the two pulses overlap

in time, and the spectrum of this second harmonic signal is measured. A delay stage

is used so that the spectrum of the autocorrelation of the pulse can be measured at

every delay. This is illustrated in the Fig. 1.3. Once the FROG trace is measured, an

Figure 1.3: Experimental setup for FROG (taken from [12])

iterative algorithm is used to essentially, uniquely determine the intensity and phase

of the pulse [32].

It is also possible to make a SHG FROG trace using a simplified, single shot

experimental setup called GRENOUILLE, which is shown in Fig. 1.4 [34, 35]. It

turns out that the delay stage can be replaced with a fresnel biprism, which can map

delay onto the vertical axis of a camera so that the autocorrelation can be generated

in a single shot. And if a thick SHG crystal is used each color will leave the crystal at

a different angle along the direction that the beam is focused (the horizontal axis) due

to phase matching. This can be used to map color to the camera’s horizontal position,
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Figure 1.4: Experimental setup for GRENOUILLE (taken from [35])

so that we get the spectrum of the autocorrelation at each delay, or the FROG trace

in a single camera frame. The same retrieval algorithm is used to reconstruct the

intensity and phase from the FROG trace. Typically, GRENOUILLE can measure

pulses with TBP’s less than 10, and our reference pulse is usually much simpler than

this.

1.3 Goals of this thesis

The goals of this thesis are to develop a technique that can measure pulses that are

very complicated in time such as shaped pulses. Additionally, we need the option of

being able measure the pulse when its temporal field varies with polarization. We

would also like to able to measure ultrashort pulses at a focus (which might also

be shaped), where the pulse can be both complicated in space and time, and con-

tain complicated space-time couplings (due to commonly occurring lens aberrations).

Because it is possible to focus a beam down to a spot size of λ/2 we will need to

have sub-µm spatial resolution. Therefore we would like to develop, demonstrate

and thoroughly test a technique for measuring the spatiotemporal electric field of

ultrashort pulses with femtosecond temporal resolution, picosecond temporal range,
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sub-µm spatial resolution, and a large acceptance angle (meaning that it is able to

collect a large range of k-vectors).
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CHAPTER II

MEASURING THE COMPLETE TEMPORAL ELECTRIC

FIELD OF COMPLEX ULTRASHORT PULSES

2.1 Motivation

Many applications of ultrashort pulses, such as coherent control of quantum dynam-

ics [14, 36–38] or multi-photon microscopy [39, 40], utilize very complicated shaped

pulses. To optimize these experiments, it is important to be able to completely char-

acterize these complicated pulses. Coherent control experiments use feedback loops

to select the appropriate pulse shape, and usually pulse measurement is a required

part of these loops. Therefore a fast (video-rate) pulse measurement technique that

is capable of measuring shaped pulses would be very useful for these experiments and

before the work in this thesis was done, there was no such technique.

Shaped pulses have small features in their spectrum or spectral phases making

them longer in time (as long as 10ps) and therefore they have a large time bandwidth

product (this is what we mean by complicated). There are three techniques that

are good candidates for measuring shaped pulses: frequency-resolved-optical gating

(FROG) [12], cross-correlation FROG (XFROG) [41], and spectral interferometry

(SI). FROG techniques, while quite fast for simple pulses (TBP < 10), are much

slower or even non-convergent for more complex pulses. SI has the advantage that it

is inherently a single-shot technique and the interferogram can be directly and quickly

inverted regardless of the complexity of the pulse. Therefore SI could in principle be

used to measure very complicated pulses in real-time. Another useful property of SI

is that it is a linear and heterodyne technique, and so it is extremely sensitive and can

measure pulses that are approximately nine orders of magnitude weaker than those
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that can be measured using nonlinear-optical methods(like FROG) [33].

SI’s only fundamental drawback is that it requires a reference pulse that contains

all of the colors of the unknown pulse1. This is because, like all interferometers,

with SI you can only measure the phase difference between the interfering fields, or

ϕunk(ω) − ϕref (ω) is what is measured rather than just ϕref (ω). So if you want to

know the spectral phase of the unknown pulse, then you have to know the spectral

phase of the reference pulse to subtract out its contribution. But fortunately, when

measuring shaped pulses, the unshaped pulse provides an ideal reference pulse, and

it is easily measured using another technique, such as FROG or its experimentally

simpler version, GRENOUILLE [12].

For many cases, a differential measurement in which the phase added to the pulse,

or the transfer function is of interest and therefore, the phase of the reference pulse

does not have to be known or removed from the measured phase difference. All of

the measurement shown in this thesis are differential measurements, and this type of

measurement has been useful in the past when for pulse shaping [42, 43], studying

plasmas [44] and for characterizing photonics devices [45].

But, as explained in section 2.2.3, there are a few other problems with SI that we

need to overcome in order to make it a practical method that is capable of measuring

shaped pulses. And this is why we have developed SEA TADPOLE which is an

experimentally simplified high spectral resolution version of SI which most of the

work in this thesis is based on. We will discuss SEA TADPOLE in detail in section

2.3.

2.2 Spectral Interferometry

Spectral interferometry is a linear-optical technique for measuring the spectral inten-

sity and phase of an ultrashort pulse when a characterized reference pulse is available

1Here we refer to the pulse that is to be measured Eunk(ω) as the unknown pulse and the reference
pulse Eref (ω) as the reference pulse.
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[33, 46, 47]. SI simply involves measuring the combined spectrum of an unknown and

a reference pulse where one of them is delayed by an amount τ so that the signal

shown in Eq 2.1 is recorded.

SSI(ω) = |F (Eref (t− τ) + Eunk(t))|2

= |Eref (ω) exp iωτ + Eunk(ω)|2

= |Eref (ω)|2 + |Eunk(ω)|2 + |Eref (ω)‖Eunk(ω)| cos(ϕref (ω)− ϕunk(ω) + ωτ)

(2.1)

In the above equation the first two terms are usually referred to as the “DC” com-

ponent and they are the spectra of the unknown and reference pulses. The second

term is what we are really interested in because it contains the spectral phase of the

unknown pulse.

Another way to view the spectral interferogram is that phase difference between

the interfering pulses is encoded in the the periodicity of the interference fringes. For

example if ϕref (ω)− ϕunk(ω) is quadratic which could happen if the unknown pulse

is more chirped than the reference pulse then the period of the fringes will increase

linearly with omega (see the interferogram in fig. 2.2).

2.2.1 The experimental setup for spectral interferometry

In principal, the experimental setup for SI is quite simple; you just need a Mach

Zender interferometer and a spectrometer. Figure 2.1 shows the typical setup that

is used for an SI measurement. A first beam splitter is placed just after the laser

to pick off a reference pulse and a second beam splitter recombines the unknown

and reference beams and then they are sent collinearly into a spectrometer. The

unknown pulse travels through some experiment and the spectral phase that the

experiment introduces to the pulse is the phase of the interference fringes that can be

be retrieved. There is a delay stage in the reference arm so that the the appropriate

delay (see section 2.2 for a discussion of this) can be introduced to produce fringes in

the spectrum with the needed frequency.
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Figure 2.1: Experimental setup for spectral interferometry

2.2.2 Reconstructing the unknown field from the spectral interferogram

Once the spectral interference is recorded, the next step is to extract (or ”recon-

struct”) the unknown electric field, Eunk(ω) from the interferogram. This might seem

trivial to do because you could just isolate the cosine term by subtracting and divid-

ing out the unknown and reference spectra and then take the arccosine of what is

remaining. The problem with doing this is that arccosine is only defined between 0

and π and the phase is defined between ±π. In other words if you use the arcosine

to isolate ϕunk(ω) there will be a minus sign ambiguity at every value of ω. So we

need a different method to do this that will both remove the DC from the measured

spectra and isolate Eunk(ω) from its complex conjugate2.

Fourier Transform Spectral Interferometry (FTSI) is the most commonly used

reconstruction algorithm for doing this [46]. Using what is called Fourier filtering,

the field of the unknown pulse is isolated from both the spectra (or the DC) and its

complex conjugate. This algorithm requires that the unknown pulse be delayed by

an amount τ from the reference pulse which is why the reference field is delayed in

2Of course if the phase only varies between 0 and π this is not a problem, but we do not want to
restrict ourselves to such simple pulses.
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Eq 2.1.

The FTSI algorithm is illustrated by the Fig. 2.2. The top left image shows

the SSI(ω) as well as the two spectra of the unknown and reference fields. The first

step is to Fourier transform SSI(ω) to the time domain where the data separates into

three parts as shown in the top right of Fig. 2.2. At the center (because they have

a frequency of 0) are the DC terms or the spectra and one of the side bands is the

product of Eunk(ω) and Eref (ω)∗ and the other side band is the complex conjugate of

this. This is a very nice arrangement of the data because now Eunk(ω) is separated

from the rest of the information so we will be able to determine its phase (and

intensity) without any ambiguities. Therefore the next step is to crop out either

of the two sidebands and then inverse fourier transform this back to the frequency

domain. At this point we are left with Eref (ω)Eunk(ω)∗ and now we just have to

divide out Eref (ω) in order to isolate Eunk(ω). The final results (the intensity and

phase of the unknown pulse) are shown at the bottom right in Fig. 2.2.

In the FTSI algorithm, both the delay and the size of the filtering window have

to be chosen carefully to get the best reconstruction. Consider that the interference

pattern is sampled with n points and a resolution of δω. If the data is filtered in

the Fourier domain so that n2 points are remaining, then after the inverse Fourier

transform, the spectral resolution of the reconstructed phase will only be δωn2/n.

So the filtering should be done so that n2 (or equivalently, the delay τ) is as large

as possible. However, larger delays correspond to finer spectral fringes that may

exceed the spectral resolution of the spectrometer, resulting in poor fringe visibility,

a reduced signal-to-noise radio, and a more distorted retrieved field due to the effects

of the spectral response function for larger delays.

Also note that since spectrometers linearly map position to λ rather ω, the raw

data points of a measured spectral interferogram are not equally spaced with respect

to ω. Yet it is SSI(ω), and not SSI(λ), that needs to be Fourier transformed, and
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the most common Fourier transform implementation on a computer (the fast Fourier

transform, or FFT) requires that the data points be equally spaced. It is therefore

necessary to interpolate the measured data set before the FFT is applied, otherwise

some errors will result [48].

Figure 2.2: Schematic of FTSI

2.2.3 Problems with spectral interferometry

Unfortunately, SI has some serious limitations. The Fourier-transform spectral in-

terferometry (FTSI) retrieval algorithm results in a loss of spectral resolution and

temporal range due to the filtering step where one side band is isolated from the rest

of the data (see the top right image in Fig. 2.2). The delay τ has to be large enough

that the sidebands are completely separated from the other peaks. In theory this
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means that one third of the points could kept after the filtering. But in practice the

resolution suffers more due to the fact that the spectrometer’s instrument response

function has a greater effect on the pulse when the delay is non-zero (see chapter 3)

and in practice we have found that the typical resolution loss is around a factor of 5

[33, 46, 49].

The link between spectral resolution and temporal range comes from the fact

that when taking a discrete Fourier transform from t to ν = 2πω, the resolution

in one domain is given by the inverse of the range in the other domain. Therefore

this loss of range on the time axis is equivalent to a loss in spectral resolution. So

the filtering should be done so that filtering window (or equivalently, the delay τ)

is as large as possible. If SI is used to measure such a pulse, then the spectrometer

that we use would require a resolution that is five times smaller than the smallest

feature in the spectral electric field of the pulse. For a 10ps pulse, this means that we

need a spectral resolution around 0.08nm which requires using a very big, expensive

spectrometer which we would like to avoid3.

Also, while simple in principle, in practice SI has an unwieldy experimental setup.

To get the best results the interfering beams must enter and travel perfectly collinearly

through the spectrometer; This is difficult to set-up and maintain in the lab. The

spatial modes of the interfering beams must also be identical to achieve optimal

results. And because the device is an interferometer, it has to be mechanically very

stable. These complexities and constraints have prevented the spectral interferometer

from becoming a practical device.

SI is the best candidate for measuring shaped pulses due to its real-time retrieval

speed and the fact that it is linear. Therefore we set out to develop a high spectral

resolution and experimentally simple version of SI that will be described in the next

3To calculate this we used the formula δλ = 2λ2

∆Tc and divided this by 5. This formula will be
explained in more detail in chapter 3 and can be found in reference [50].
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section.

2.3 SEA TADPOLE

In this section, a version of SI called SEA TADPOLE that is both experimentally

very simple and high-spectral resolution is discussed [50, 51]. This method employs

a quick, direct inversion algorithm, and it measures the spectral phase with the full

resolution of the spectrometer. In fact,this technique sometimes achieves better spec-

tral resolution than that of the spectrometer involved (see chapter 3). Even more

importantly, this device is very easy to use and insensitive to alignment. Therefore

we expect this device to be especially useful for pulse shaping. We have tested this

technique on complex pulses including shaped pulses and these measurements are

shown here.

In our method the trick that we use to make the apparatus simple is that we

combine the two pulses using two short, equal-length optical fibers. Also, rather

than producing the interference in the spectrum, we make a spatial interferogram by

crossing the two beams emerging from the fibers at a small angle. We then spectrally

resolve the crossing beams, so that we have a spatial interferogram (or a hologram)

for each color in the beam. This results in an interferogram much like that shown

in equation 2.1 except that it is two-dimensional S(ω, x). This interferogram can

be thought of as a spectrally resolved spatial interferogram (or a spectrally resolved

hologram). Also unlike traditional SI, our method involves overlapping the pulses in

time (τ = 0) which happens to improve the spectral resolution (see chapter 3).

Spectrally resolved spatial interferometry has been used in the past, but in all

of these techniques either the phase was not retrieved or complicated curve fitting

methods were used [40, 52, 53]. A simpler fourier filtering technique which we use

here has been demonstrated before for measuring the group velocity of a plasma [49]

but not for characterizing ultrashort pulses. To retrieve the phase from S(ω, x), we
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use an algorithm that Fourier filters the trace along the camera’s spatial dimension,

rather than the spectral coordinate (as it is done in SI), to remove the DC component

and one of the interference terms without loosing any spectral resolution. In view of

previous work using such a spatially encoded arrangement (SEA) and also work using

the combination of SI and FROG to measure the reference pulse (called TADPOLE),

we call our technique SEA TADPOLE, or Spatial Encoded Arrangement for Temporal

Analysis by Dispersing a Pair of Light E-fields [33, 54].

2.3.1 SEA TADPOLE experimental setup

To make a SEA TADPOLE measurement we couple the reference and unknown pulses

into two identical fibers. The output ends of the fibers are placed close together, so

that when the light diverges from them, both beams are collimated with the same

spherical lens (focal length f). Because the fibers are displaced from the optic axis

(with a distance d between them which is usually < 1mm) the collimated beams cross

at angle θ which is equal to d
f

and we place a camera at the crossing point in order

to record their interference. In the other dimension we use a diffraction grating and

a cylindrical lens to map wavelength onto horizontal position (as in a conventional

spectrometer) so that we record a two-dimensional interferogram given by Eq. 2.2.

Figure 2.3b illustrates the experimental setup.

Typical experimental parameters include a crossing angle of 0.06◦, a camera with

about 106 pixels, each having a pitch around 6 µm, a collimating lens with a focal

length of 150 mm, 40 cm long fibers with a mode size of 5.6 µm, and we typically build

the spectrometer to have a range of 80 nm and a spectral resolution of about 0.14 nm

(as we will show later). The range of the wavelength axis can be decreased in order to

increase the spectral resolution simply by using a longer focal length cylindrical lens,

as in any spectrometer, and the usual limitations of grating spectrometers apply.

This experimental setup is very convenient to use because the beams enter it

23



(a) Before SEA TADPOLE (b) SEA TADPOLE

Figure 2.3: SEA TADPOLE experimental setup

through fiber optics which erase the spatial dependence of the beams (such as their

entrance angle or mode shape). In other words, if the reference or unknown beams

move around this does not change the alignment that they take through the inter-

ferometer and therefore it does not make the measured interferogram incorrect as it

would if the fibers were not present; it only attenuates the beams which is usually

not a problem because cameras are very sensitive. The fibers also ensure that the

interfering beams will have identical modes which optimizes the fringe contrast.

2.3.2 Reconstructing the unknown field from the SEA TADPOLE inter-
ferogram

The SEA TADPOLE interferogram described in the previous section is given by the

following equation:

SST (ω, x) = |Eref (ω) exp(i~kref · ~r) + Eunk(ω) exp(i~kunk · ~r)|2

= |Eref (ω) exp(ikxcos(θ) + ikzsin(θ)) + Eunk(ω) exp(−ikxcos(θ) + ikzsin(θ))|2

= |Eref (ω)|2 + |Eunk(ω)|2 + |Eref (ω)‖Eunk(ω)| cos(ϕref (ω)− ϕunk(ω) + kxsin(θ))

(2.2)

In Eq. 2.2 θ is the half crossing angle, k is the wave number, x is the vertical dimension

(the dimension in which the beams are crossing) and z is the propagation direction.
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This is similar to the interferogram measured in SI (see 2.1), except that the light

is both spectrally and spatially resolved, and there is a linear term in the position,

x, in the argument of the cosine (rather than the linear term in ω due to the delay).

Because we use fiber optics as the entrance to this device, all spatial information

about beams is lost, and therefore we leave out the spatial dependence of the reference

and unknown fields in Eq. 2.2.4 The top right image in Fig. 2.4, shows a typical

interferogram. As you can see from Eq. 2.2, the location of the maxima, or the shape

of an interference fringe is the spectral phase difference between the interfering pulses.

This means that spectral phase added to the pulse can be qualitatively read off of

the unprocessed interferogram. The interferogram shown in Fig. 2.4 shows parabolic

fringes because the unknown pulse is chirped (or it has group delay dispersion) as you

can see in the image at the bottom left. See Appendix 1 to see several simulations of

SEA TADPOLE traces for different pulses.

The advantages of this interferogram become apparent when we go to reconstruct

Eunk(ω) and this is done much like that described in the following references [49, 51,

55]. First we take a 1D Fourier transform of the 2D interferogram with respect to

camera’s position axis, so that the Eq. 2.2 becomes:

SST (ω, kx) = |Eref (ω)|2 + |Eunk(ω)|2

+ E∗ref (ω)Eunk(ω)δ(kx + 2
ω

c
sin(θ)) + Eref (ω)E∗unk(ω)δ(kx − 2

ω

c
sin(θ))

(2.3)

As a result, the data separates into three bands (in kx) in which each of the two

sidebands contains the complex field of the unknown pulse (see the top right image

in Fig. 2.4), and we can extract the required information from either of these. The

sidebands are slightly tilted because the argument of the delta function is frequency

dependent, or equivalently because the fringe spacing in the x domain, is frequency

4The spatial dependence of the pulses is only measured so that fourier filtering can be done along
the position axis and then now spectral resolution is lost in this reconstruction. We assume for the
moment that the beam that we are measuring is spatially uniform. In chapters 5 and 6 we will
discuss how to extend this method to measure pulses when this is not the case.
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Figure 2.4: SEA TADPOLE retrieval

dependent. Although we could isolate the unknown spectral field at this point, it is

easier to inverse-Fourier transform back to the x domain where the tilt becomes a

small, linear phase term given by 2xsinθ
c

ω, which is small enough to neglect.5 At this

point Eunk(ω) can be obtained in several ways (taking one line, or averaging) and we

have found that what works best (especially in the presence of noise) is to average

the 2D data over x and then divide out the reference electric field. When averaging is

done, it is important to average over the spectral phase and the spectrum separately

otherwise the small cross term in the phase will distort the spectrum as shown in

the bottom right image in Fig. 2.4. The bottom right image in this figure shows the

retrieved pulse.

SEA TADPOLE’s simple experimental setup (see Fig. 2.1 combined with this

5This linear spectral phase term will shift the origin of time axis by a small amount which
is usually on the order of 100fs. This shift is unimportant because it will be the same for all
measurements with a given device and therefore we can still measure relative delays or see the
pulse’s arrival time change.
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retrieval algorithm that reconstructs Eunk(ω) with the full resolution of the spectrom-

eter used to make the measurement makes this technique the first practical device for

measuring ultrashort pulses with durations anywhere from 10fs-20ps.

2.3.3 Other issues and comments

Much like SI, the only requirements of the reference pulse in SEA TADPOLE are

that it be from the same laser as the unknown pulse so that the interfering pulses are

coherent (time-synchronized).6 Also its spectrum must contain that of the unknown

pulse (otherwise the spectral-interference term is zero at that frequency). The best

reference pulse is generally the pulse taken directly out of the laser, because this is

usually a spatially and spectrally smooth pulse that is easy to measure using FROG or

GRENOUILLE [12]. Figure 2.3b illustrates this. If it is only necessary to determine

the phase and spectrum introduced by an experiment such as some material, a lens,

or a pulse shaper, then it is not necessary to characterize the reference pulse.

As long as the experimental setup is considered, there is no direction of time

ambiguity in SEA TADPOLE. If the unknown pulse enters the device from the bottom

fiber, then the phase difference will have the sign shown in Eq. 2.2, and it will have the

opposite sign if the unknown pulse enters through the top fiber. It is also necessary to

consider which interference term (in our analysis we used the top one) is used in the

reconstruction because these are complex conjugates of one another so their spectral

phase differences have opposite signs as illustrated by Eq. 2.3.

A calibration can be performed if the spectral phase difference between the two

arms of the interferometer is not zero (possibly due to different fiber lengths) [51, 55].

This is simply done by measuring the spectral-phase difference between the two arms

of the interferometer when the unknown arm also contains the reference pulse and

6In principle we could use a reference pulse from another laser, but the measurement would
either have to be of an isolated pulse in the pulse train, or the two lasers would have to be time
synchronized so that they would have the same absolute phases.
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then this phase can be subtracted out from all subsequent measurements. In principle,

the phase difference in the interferometer as a function of x and ω can be measured so

that any spatial phase difference introduced by the interferometer is also removed. In

practice, because an interferometer only measures phase differences and both beams

travel through the same optics and very similar fibers, we find that it is not necessary

to do the two-dimensional calibration. But the one-dimensional calibration is useful

because it is difficult to cut the fibers to have the exact same lengths.

2.3.4 Testing SEA TADPOLE

We performed several measurements to demonstrate and test SEA TADPOLE using

a KM Labs Ti:Sa oscillator with a center frequency of 800nm.

First, to test the accuracy of SEA TADPOLE, we measured the group delay

dispersion (GDD, and also know as chirp) of a 1.85cm thick SF11 glass window

by placing it in the unknown pulse arm of the device so that the phase difference

between the interfering pulses yields the GDD of the glass. Figure 2.5a shows the

SEA TADPOLE trace obtained in this measurement. The fringes appear parabolic,

because the spectral phase difference between the unknown and reference pulses is

encoded in the curvature of the fringes. Figure 2.5b shows the retrieved spectral

phase of the pulse. We found the GDD to be 1840 fs2

rad
, in reasonable agreement (4%

error) with the theoretical value of 1770 fs2

rad
.

To demonstrate the high spectral resolution of our technique, we measured the

spectral phase of a 14 ps double pulse (two identical pulses with 14 ps between them)

generated by a Michelson interferometer. See Fig. 2.6. Ordinarily, SI devices lack

the spectral resolution to measure such a long pulse due to the fine structure in

the pulse spectrum and spectral phase. In SEA TADPOLE, however, the spectral

fringes, as well as the jumps in the spectral phase, are easily seen. To confirm that

our reconstructed electric field is correct we measured the ratio of the intensities of
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Figure 2.5: SEA TADPOLE GDD measurement

the pulses from our Michelson interferometer and found them to be 1:2, in agreement

with our result shown in Fig. 2.6b. We also confirmed that the pulse separation

was in fact 14 ps by making an independent measurement of the spectrum, which is

shown in blue in Fig. 2.8. The inserts in Fig. 2.6b show a linear temporal phase for

the pulses because our spectrum was not precisely centered on the wavelength axis.

Figure 2.6: SEA TADPOLE double pulse measurement

We also measured a very complicated pulse generated by a Michelson interferom-

eter and an etalon to produce two trains of pulses. The intensity and phase measured

by SEA TADPOLE are shown in Fig. 2.7, which nicely reveals the double train of
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pulses and shows the high complexity of the pulse, whose time bandwidth product

is ≈ 400. The spectral phase shows the jumps of the double pulse and also a slower

modulation, which is the phase introduced by the etalon. We used a well calibrated

etalon whose reflectivity was 50% at 800 nm, and the spacing between the partial

reflectors was 52 µm, yielding a 350 fs round trip time. The intensity of the first and

second reflections of the pulse in the time domain should be 25% and 6% and this is

close to what our reconstructed temporal intensity in Fig. 2.7b shows.

Figure 2.7: SEA TADPOLE double train of pulses measurement

Although we routinely monitor our pulses’ intensity and phase using a Swamp Op-

tics GRENOUILLE to confirm their approximately flat phase, in these experiments

the key quantity was only the spectral phase difference between the unknown and

reference pulses, which was the phase introduced by the SF11 glass in the first exper-

iment, the phase due to the double-pulse behavior in the second experiment, and the

phase of the double train of pulses in the last experiment. To measure the phase of

an arbitrary unknown pulse, it is, of course, necessary to use FROG to characterize

the reference pulse.

In all of our measurements, we retrieved the unknown pulse spectra from the same

interference term used to obtain the spectral phase (the last term in equation 2.1).

Noting that the amplitude of this term is proportional to the geometric mean of the
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reference and unknown spectra, we simply squared this amplitude and divided by the

spectrum of the known reference pulse. This not only worked well, but, interestingly,

it achieves a type of spectral super-resolution which we discuss in detail in the next

chapter.

Consider that, with one arm of our SEA TADPOLE device blocked, it is a simple

spectrometer. Using the device in this manner, we measured spectra of the various

unknown pulses, shown as the blue curves in Fig. 2.8. Also shown in Fig. 2.8 (in

green) are the spectra obtained from the above SEA TADPOLE algorithm from the

interference pattern. Note the significantly higher spectral resolution in the SEA

TADPOLE spectra.

Figure 2.8: Measured and correct spectra

2.3.5 Measuring shaped pulses with SEA TADPOLE

Previous work has shown that SEA TADPOLE (without fibers) is useful for measuring

shaped pulses [42]. To further demonstrate this, we used SEA TADPOLE to measure

a phase-shaped pulse, which was shaped using a 256-element liquid crystal display

(LCD) pulse shaper. For this experiment, we used an 85MHz repetition rate KM

labs Ti:Sapphire oscillator, which had approximately 30nm of bandwidth. For the

reference pulse, we used the unshaped oscillator pulse so that the phase difference that
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we measured with SEA TADPOLE was the phase introduced by the pulse shaper.

Figure 2.9 shows the results of this experiment. Figure 2.9b shows the phase that

was applied by the shaper and the phase that was measured by SEA TAOPOLE and

you can see that the two are in good agreement. Figure 2.9c shows the reconstructed

spectrum (Sunk(ω)) compared to the spectrometer measurement (taken by blocking

the unknown beam just as we described in the previous section). You can see that

Sunk(ω) is essentially a better resolved version the spectrometer spectrum as is often

the case in SEA TAPDOLE (we discuss this in detail in the next chapter). Figure

2.9d shows the reconstructed temporal field and you can see that this pulse had a

TBP of around 100. Figure 2.9a is the SEA TAPDOLE trace and it nicely illustrates

that the curvature of the fringes is the phase difference between the interfering pulses.

2.4 Conclusions

We have introduced a new technique, which we call SEA TADPOLE, and we have

shown that is can accurately determine the pulse intensity and phase, even for quite

long pulses with fine spectral structure. SEA TADPOLE uses the spectrometer’s full

spectral resolution and even supersedes it. With our compact home-made spectrom-

eter, it can measure pulses as long as 14 ps and it is experimentally much simpler

and more convenient than other implementations of SI. It is also computationally

simple and fast, making it ideal for real-time implementation. And it can measure

quite complex pulses including shaped pulses as we have demonstrated. We believe

that SEA TADPOLE will finally make SI practical and will be especially useful for

measuring, confirming, and optimizing shaped pulses.
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Figure 2.9: Measured shaped pulse
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CHAPTER III

SPECTRAL SUPER RESOLUTION IN SEA TADPOLE

In section 2 (see figure 2.9) and in a previous publication [51], we showed that the

spectrum retrieved from the SEA TADPOLE interferogram, which we call Sunk(ω),

can be better resolved than the spectrum measured directly with the same spectrom-

eter that is used in SEA TADPOLE. Experimentally we make this comparison by

directly measuring the spectrum of the unknown pulse with the spectrometer, (which

we call Ssp(ω)) simply by blocking the SEA TADPOLE reference beam and Sunk(ω) is

the amplitude squared of the interference term after dividing out the reference pulse’s

field (see 2.3.4). By retrieving the spectrum from the interferogram (Sunk(ω)) we have

been able to measure features in the pulse’s spectrum that are ∼7 times smaller than

what we could measure directly with the spectrometer [51]. Interferometry has also

been used to improve spatial resolution in microscopy [56]. In spectral interferome-

try (see section 2.4) this spectral resolution improvement still occurs though is not

noticeable due to the much larger resolution loss that happens because of the Fourier

filtering that has to be done on the time axis [33, 46, 47].

In this section the spectral resolution of our measurements—or the smallest mea-

surable spectral feature and the largest measurable temporal feature—is discussed in

detail. It turns out that the spectral resolution of the field measured with SEA TAD-

POLE depends on the pulse’s shape (intensity and phase). For some pulses, features

that are significantly smaller than the spectrometer’s resolution can be resolved, but

there are some cases where a SEA TADPOLE measurement results in worse spectral

resolution than the spectrometer.
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3.1 Mathematical description of a spectrometer’s response
function

The resolution improvement achieved by interferometry can be explained by looking

at one of the interference terms which is given by Eunk(ω)E∗ref (ω)1. In this chapter

we consider only the case where the reference pulse has a simple or smooth spectrum

and the unknown pulse is very complicated, which is the case for measuring shaped

pulses, and all of the examples that were shown in Chapter 2. Also for this discussion

we will assume that the reference pulse has a flat spectral phase, and that it is at

zero delay (although these are not strict requirements). Given these assumptions the

interference term is approximately equal to Eunk(ω), or the complex electric field of

the unknown pulse2. As a result, SEA TADPOLE directly measures the unknown

electric field, while a spectrometer measures |Eunk(ω)|2 or the magnitude squared of

the interference term.

To see why these two measurements can result in different spectra, we must include

the effect of the spectrometer’s instrument response function H(ω) whose width is the

spectral resolution of the spectrometer δω. The finite resolution of the spectrometer

effectively smears out, or averages together neighboring frequency components in the

measured quantity, which can be modeled as a convolution [48, 57, 58]. Therefore,

the spectrum measured with a spectrometer is given by H(ω) ⊗ |Eunk(ω)|2, and the

spectrum retrieved from a SEA TADPOLE measurement is given by H(ω)⊗Eunk(ω).

If we view the effect of finite spectral resolution in the time domain, the convolu-

tion becomes a product where h(t) is the fourier transform of H(ω) and h(t) can be

interpreted as a time window. As shown by equation 3.1, Ssp(ω) in the time domain

1The other interference term is given by the complex conjugate of this, but for this section, we
will use the interference term given by Eunk(ω)E∗

ref (ω)
2Note, that if Eunk(ω) is as smooth as the reference pulse, or if Eref (ω) is as complicated as the

unknown pulse, then this approximation is not true, and the resolution of SEA TADPOLE is similar
to that of the spectrometer
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becomes the autocorrelation of E(t) times h(t).

Ssp(ω) = Sunk(ω)⊗H(ω)

F (Ssp(ω)) = (Eunk(t)⊗ E∗unk(t))× h(t) (3.1)

Also shown in equation 3.2, the SEA TADPOLE spectrum in the time domain is

simply the product of E(t) and h(t).

Sunk(ω) = Eunk(ω)⊗H(ω)

F (Sunk(ω)) = Eunk(t)× h(t)

(3.2)

Therefore, when using SEA TADPOLE, the pulse duration of Eunk(t) has to be less

than the width of the time window h(t) which we will refer to as ∆T . And for a

spectrometer, the width of the pulse’s temporal field autocorrelation has to be less

than ∆T ; Most of the time this will be a wider function than Eunk(t) itself. Given

the shape of the spectral response function, the relationship between the spectral

resolution and the time window can be determined. For example, if the spectral

response function is a Gaussian, then ∆T = 2λ2

cδλ
.

From Eqs. 3.1 and 3.2, it is immediately apparent, that if the amplitude of Eunk(ω)

is a delta function (or just very thin), then Sunk(ω) will have a width equal to that of

H(ω) and Ssp(ω) with have a width equal to H2(ω). Therefore, if H(ω) is a Gaussian,

Ssp(ω) will be become wider than Sunk(ω) by a factor of
√

2 as we will illustrate in

the next section (see Fig. 3.3).

It is also interesting to note that the convolution operator has eigenfunctions which

are given exp (iωτ) or cos (iωτ) which corresponds to a purely oscillatory function.

Therefore if a pulse has a spectral electric field given by one of these eigenfunctions

then the spectrometer’s instrument response function will not change or smear the

shape of measured field, regardless of its width in time! But this seemingly infinite

resolution does come at cost which is a loss in intensity that increases as τ increases.
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Of course in practice, we never encounter fields that are purely oscillatory. Though

we do commonly use pulses that are very close to being purely oscillatory such as a

Gaussian spectrum multiplied by cos (iωτ), which, if viewed in the time domain, is a

double pulse, or a Gaussian pulse followed by an identical replica of itself τ later (for

sufficiently large values of τ). As long as the Gaussian spectrum is much wider than

the oscillations due to the cosine, this function is approximately an eigenfunction of

the convolution operator and therefore, it is almost unchanged by the convolution.

And, if we measure the double pulse with a spectrometer, because we are not mea-

suring the complex field it is not an eigenfunction and therefore Ssp(ω) is much more

effected than Sunk(ω) is. In fact, the spectrometer may not see any oscillations in the

spectrum, while SEA TADPOLE will retrieve them nearly perfectly. But this spec-

tacular resolution comes with a cost and as the frequency of the oscillations increase,

the field is attenuated and eventually noise becomes a problem, and at some point

the interference term will be too weak to detect. This is illustrated in Fig. 3.1.

Figure 3.1: Approximate eigenfunctions of the convolution operator

Figure 3.1(a) shows Eunk(ω) for a double pulse before and after being numerically

convolved with a spectral response function H(ω) which is Lorentzian with a width of

0.4nm for this example. The convolution does not noticeably change the shape of the

field, it only attenuates it. Figure 3.1(b) shows the real spectrum (no convolution) in
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red, the spectrometer spectrum Ssp(ω) in blue, Sunk(ω) in black and then also in green

after being renormalized. You can see that Sunk(ω) is essentially unchanged in shape

and only attenuated by the convolution while Ssp(ω) is badly smeared. In section 2.3.4

we experimentally demonstrate resolution enhancements such as this. In general we

expect the improvement in spectral resolution offered by SEA TADPOLE to vary

with the shape of the pulse involved and be somewhere between
√

2 (A very thin

Gaussian spectrum) and a factor of ∼7 as we have observed for oscillatory spectral

fields [51].

An important difference between Sunk(ω) and Ssp(ω) is that the spectral phase

can have no effect on Ssp(ω) (because spectrometers measure only the spectrum and

not the phase), but for Sunk(ω) this is not true. Because SEA TADPOLE resolves

the complex field, (or the convolution acts on the complex field), to make a SEA

TADPOLE measurement the spectral resolution of the spectrometer must be smaller

than the smallest feature in the pulse’s spectral amplitude and also its spectral phase

(or equivalently, just its complex field). And because the convolution acts on the

unknown pulse’s complex field, it can mix together the spectrum and phase if the

features in either one are too small. When the spectral phase has features that are

too small to be resolved by the spectrometer, then its spectrum cannot be accurately

measured using the interferometer (nor can its phase), but a spectrometer could still

measure this pulse’s spectrum. Therefore, as long as the pulse’s complexity comes

from its spectrum rather than its phase, or from both, Sunk(ω) will essentially always

be better resolved than Ssp(ω).

3.2 Simulations to test SEA TADPOLE’s spectral resolu-
tion

Because the difference between Sunk(ω) and Ssp(ω) is pulse dependent, this is best

illustrated using examples. Figure 3.2 shows a simulation of how Sunk(ω) compares to

Ssp(ω) and the ideal spectrum for 6 different pulse shapes. In Fig. 3.2, the white line
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shows the actual spectrum, Sunk(ω) is shown in gray, and Ssp(ω) is shown in black.

In this simulation, we used a Gaussian spectral response function with a width of 0.3

nm and all of the spectra are normalized to have an area of 1.

Figure 3.2: Examples of the Sunk(ω) compared to Ssp(ω)

In Fig. 3.2, which was generated using a double pulse as unknown field (such

as that generated by a Michelson interferometer), Sunk(ω) is identical to the real

spectrum even though the duration of the double pulse is 50% of the width of h(t).

As discussed above this is because double pulses are approximately the eigenfunctions

of the convolution operator as long as the individual pulses are much shorter that their

spacing which was the case for this simulation. This can also be understood in the

time domain, because the double pulse is approximately two delta functions with one

at τ and the other at −τ and therefore when the E(t) gets multiplied by h(t) this
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just attenuates each of the peaks and does not change the shape of the pulses.

Figures 3.2a, 3.2c, and 3.2d show the more typical improvement that we see with

SEA TADPOLE and while Sunk(ω) is not identical to the real spectrum, it is no-

ticeably closer to this than Ssp(ω) is. Figure 3.2a is a train of pulses such as that

produced by a Fabry-Pérot etalon, Fig. 3.2c is a sum of 3 double pulses with different

delays, and Fig. 3.2d is the same as c except that the double pulses are shorter.

Figures 3.2e and 3.2f show two examples in which Ssp(ω) is identical to the real

spectrum and Sunk(ω) is distorted. These are pulses with Gaussian spectra and a

sinusoidal spectral phase (Fig. 3.2e) and a huge amount of chirp (Fig. 3.2f). So

these pulses have simple spectra (that are very easy to resolve with a spectrometer),

but complex spectral phases that make their pulse durations very long in time (80%

of h(t) for Fig 3.2e and 140% for Fig. 3.2f). Therefore Sunk(ω) is distorted, while a

spectrometer can perfectly measure these spectra. While we are accustomed to seeing

smeared features in the spectrum when a spectrometer lacks sufficient resolution to

make the measurement, when SEA TADPOLE lacks resolution to resolve a pulse

because it is too long compared to h(t) due to its spectral phase, the distortions look

quite different.

The numerical factor for the resolution difference in Ssp(ω) and Sunk(ω) depends

on the exact shape of the pulse. For a Gaussian spectrum, squaring it decreases the

rms width by
√

2, which is the resolution improvement for SEA TADPOLE in this

case (as long as the spectral phase is relatively small). Figure 3.3 shows the result of

a simulation that illustrates the difference in the Ssp(ω) and Sunk(ω) for a spectrum

that is a very thin Gaussian centered at 800nm with an rms bandwidth of 0.1nm. In

Fig. 3.3 you can see that, while Sunk(ω) is affected by the convolution, it is closer to

the actual spectrum than Ssp(ω) In this example, the rms width of Sunk(ω) is 0.12

nm and, for Ssp(ω), this is 0.16 nm, which is a difference of about
√

2 as expected.
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Figure 3.3: Example of the Sunk(ω) compared to Ssp(ω)

3.3 Experimentally testing SEA TADPOLE’s spectral res-
olution

Additionally we can do some experimental tests of the spectral resolution in SEA

TADPOLE. First we experimentally measured the temporal response function of the

spectrometer that we were using. We did this by observing the fringe visibility of the

spectrum (the spectrum as measured with the spectrometer or Ssp(ω)) produced by

an etalon as we increased the spacing between the two reflectors (reflectivity = 57%),

which is similar to the approach used in the following references [48, 59, 60]. This

method is illustrated by the measurements shown in the Fig. 3.4. The etalon spacing

is largest for the top spectrum and it is smallest for the bottom spectrum. And due

to the the spectrometer’s finite resolution the fringe visibility decreases as the etalon

spacing increases (or as the fringes become smaller).

Quantitatively the change in visibility is most easily determined by Fourier trans-

forming the spectrum to the time domain and looking at the relative height of a

side band compared to the central peak as illustrated by the right image in 3.4. By

measuring this relative height (which is attenuated due to the temporal response

function) at different etalon spacings we can read off the temporal response function
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Figure 3.4: Illustration of how h(ω) was measured

of the spectrometer and this result is shown in Fig. 3.5. The left side of Fig. 3.5

Figure 3.5: Measured temporal and spectral response functions

shows the measured temporal response function (dots) and a curve fit to the data

(solid line) and the rms width of h(t) was 3.9 ps (FWHM of 6.2 ps). Because we

know that H(ω) is a real function, we know that h(t) is symmetric and therefore we

only measured one side of the temporal response function and assumed that it was
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symmetric at t = 03. The right plot in Fig. 3.5 shows the spectral response function

which was obtained by Fourier transforming h(t), and this curve has an rms width

of 0.14 nm and this spectrometer had a spectral range of about 80nm. Therefore, if

this spectrometer is used in SEA TADPOLE (assuming a relatively simple spectral

phase) to measure Sunk(ω), the smallest feature in Eunk(ω) has to be greater than

0.14 nm, and if the spectrum Ssp(ω) is measured directly with this spectrometer,

the same restriction applies to |Eunk(ω)|2 , or the spectrum of the unknown pulse.

Knowing the temporal response function is useful for determining precisely how well

pulses can be measured using a given spectrometer in SEA TADPOLE. Additionally

the experimentally determined H(ω) could be deconvolved from the reconstructed

unknown field in order to further improve its resolution. In all of our measurements

we have had sufficient spectral resolution in all, so that devonvolution, and the noise

that this would introduce, could be avoided.

Fig. 3.6 shows a typical experimental example of how Sunk(ω) differs from Ssp(ω)

using the spectrometer that was characterized above and an unknown pulse compris-

ing a train of pulses produced by an etalon. The left plot in Fig. 3.6 shows Ssp(ω)

and Sunk(ω) and when comparing the two spectra we can see, that Sunk(ω) is a better

resolved version of Ssp(ω). To verify that Sunk(ω) is more accurate than Ssp(ω), we

combined each of these spectra with the spectral phase that we retrieved from the

SEA TADPOLE trace, and Fourier transformed this to the time domain which is

shown on the right side of Fig. 3.6. Because we used an etalon with two identical

57% reflectors, the height of the second two peaks in the temporal intensity should

be 0.33 and 0.11 respectively, so clearly the result from SEA TADPOLE is the more

accurate one.

3If we did not use the spectrometer at the design wavelength, there would be off axis aberrations
present in the spectrometer that would make H(ω) asymmetric, and then both size of h(t) would
need to be measured
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Figure 3.6: Comparison of spectrometer and SEA TADPOLE measurement of a train
of pulses

Figure 2.9 (which was discussed in Chapter 2), shows another experimental exam-

ple of how Ssp(ω) compares Sunk(ω) which represents a significant improvement and

illustrates the typical improvement that we expect when measuring shaped pulses.

3.4 Other issues and comments

Another issue that must be considered when retrieving the spectrum from the SEA

TADPOLE interferogram is the delay, or the location of Eref (ω) underneath the tem-

poral window. For example, if the unknown pulse is delayed with respect to the

reference pulse (which is at zero delay) by τ then the interference term becomes

Eunk(t− τ)× h(t) and is no longer centered underneath the temporal response func-

tion. Because the temporal window is flattest at its center (because it is typically

a Gaussian, or some similar function as we showed in the previous section), the un-

known field will be more distorted by the temporal response function if it does not

have a mean of zero, because it will then be multiplied by a steeper part of h(t).

To illustrate this, we performed a simulation, making SEA TADPOLE traces for a

double pulse at several different delays. The temporal intensity and spectra retrieved

from these three traces is shown in Fig. 3.7. The bottom plot in Fig. 3.7 shows h(t)
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Figure 3.7: Variation of Iunk(t) and Sunk(λ) with delay

(blue), the ideal temporal intensity (green) and the reconstructed temporal intensity

(blue) which is h(t). The higher plots show the reconstructed temporal intensity when

the unknown pulse was delayed by 1 ps (middle) and 2 ps (upper) and these results

are much more distorted than the result of the zero delay interferogram. It is evident

that it is important to measure the SEA TADPOLE interferogram at zero delay in

order to minimize the damage done by the spectrometer’s response function, and this

becomes more important as the duration of the unknown pulse becomes close to the

width of the temporal window.

As explained in section 2.2, spectral interferometry requires that the there be

a delay between the Eunk(ω) and Eref (ω), As illustrated here, this means that the

retrieved field from the spectral interferogram, which already suffers a spectral reso-

lution loss due to Fourier filtering on the time axis, will be further distorted due to

the required delay.
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CHAPTER IV

MEASURING POLARIZATION SHAPED PULSES

4.1 Introduction

In Chapter 2 we discussed SEA TADPOLE which is a method for measuring the

temporal electric field of ultrashort pulses with high spectral resolution, which is easy

to use, and can measure complex pulses at video rates. This method is ideal for

measuring the shaped pulses that are commonly used in quantum coherent control

experiments, as we demonstrated in chapter 2.

But molecules and atoms are three dimensional, so to really control them with

laser fields, both the fields’ temporal shape and polarization must be appropriately

shaped. Therefore, there has been a trend in quantum control towards using not just

pulse shaping, but polarization pulse shaping [6–10]. Control of the pulse’s polariza-

tion to generate time dependent polarization states has also been used for generating

attosecond pulses using high harmonic generation [61]. Polarization shaping typi-

cally involves using a polarizing beam splitter to separate the S and P polarization

components and then two pulse shapers are used so that Ex(ω) and Ey(ω) can be

given arbitrary and different temporal pulse shapes, and then the two polarizations

are recombined with a second beam splitter [9]. Recently a more compact design for

a polarization pulse shaper that uses only one SLM was introduced [62].

To optimize and build experiments that use polarization pulse shaping, it is im-

portant to be able to measure the complete polarization state of the pulse, or Ex(ω)

and Ey(ω), including their relative spectral phase (ϕx(ω) − ϕy(ω)) must be deter-

mined. Quantum control experiments use optimization or feed-back loops that result
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in complicated pulses with durations as long as 10ps. Therefore, to characterize polar-

ization shaped pulses, a measurement technique that is fast, high spectral resolution,

and that can measure the complete polarization state of such a pulse is needed.

In the past a technique known as POLLIWOG or Polarization Labeled Interfer-

ence versus Wavelength of Only a Glint has been the primary method for measuring

polarization shaped pulses [12]. POLLIWOG involves using a polarization beam

splitter to break the pulse into its S and P components and then E(ω) for each of

these components is measured using Spectral Interferometry (see section 2.2). POL-

LIWOG has all of the advantages of SI, such as being very sensitive and fast. But

it also has the disadvantages, such as the strict alignment requirements and a loss of

spectral resolution results when reconstructing E(ω) from the interferogram making

it difficult to measure the more complex shaped pulses (see section 2.2.3). Another

difficulty with POLLIWOG is that the interferometer has to be very stable, so that

the measured relative phase of Ex(ω) and Ey(ω) is the real relative phase.1

Another, similar approach for measuring polarization shaped pulses called TUR-

TLE, or Tomographic Ultrafast Retrieval of Transverse E-Fields, uses several FROG

measurements to determine the pulse’s complete polarization state [63]. Because a

single FROG measurement is not sensitive to the absolute phase or the delay, simply

measuring Ey(ω) and Ex(ω) will not tell you the relative absolute phase or the rela-

tive delay between the two components of the pulse. TURTLE is designed to regain

this information by making FROG measurements of the S and P components as in

POLLIWOG, but also a FROG measurement is made of Ex(ω) +Ey(ω) by putting a

quarter wave plate (QWP) in the beam before the FROG device. These three FROG

measurements are then used to reconstruct the complete polarization state including

the relative delay and absolute phase. The disadvantage to using FROG is that it is

1If there is a drift in the interferometer between the time that Ey(ω) and Ex(ω) are measured, the
measured relative phase will contain this contribution due to the drift which will be indistinguishable
from the pulse’s relative phase.
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a multi-shot technique and its retrieval can be quite slow (and even slower if three

measurement have to be made) for complex shaped pulses [32].

In this chapter we use SEA TADPOLE to measure the complete polarization state

of complex pulses, so that even complex polarization shaped pulses can be measured,

quickly and using a simple device. Because the phase drift that happens in SEA

TADPOLE (see Appendix B) causes us to loose the relative absolute phase (also just

called the relative phase), we use an approach similar to that used in TURTLE to

regain this information without having to stabilize the interferometer.

4.2 Method

To measure the complete polarization state of a pulse we need to measure Ey(ω) and

Ex(ω) and the relative spectral phase including the relative absolute spectral phase

which we will call ϕrel. The most straightforward way to make this measurement

would be to make two SEA TADPOLE measurements, one of Ey(ω), and of Ex(ω).

This measurement would yield the relative spectral intensity of the Ex and Ey and

the all terms in the relative spectral phase, except for relative absolute phase2. This

is because of the phase drift in SEA TADPOLE that we discuss in Appendix B which

is due to a random change in the path length of the two arms of the interferometer

that most likely happens because of small temperature fluctuations that change the

index of refraction of the fibers. In Appendix B a measurement of the typical drift

that we experience is shown which illustrates that the drift’s effect on the higher order

spectral phase terms is negligible. However, the average drift in the absolute phase

is around 1.8 radians over one minute (though it varies equally as much over a few

seconds). This is a large error for a quantity that only varies between 0 and 2π, and

therefore, we effectively loose the absolute spectral phase difference information (or

ϕrel). So, if we only make the two measurements described above, we will measure

2Just to clarify, by higher order relative spectral phase terms, we mean for example, the difference
in the chirp, cubic phase and etc, between the x and y components of the field.
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the following fields

Ex(ω) =
√
Sx(ω) exp

(
ϕx(ω)× ϕrel × ϕrand

)
(4.1)

Ey(ω) =
√
Sy(ω) exp

(
ϕy(ω)× ϕrand

)
(4.2)

ϕrel =ϕ0x − ϕ0y (4.3)

where ϕrand is a random number between 0 and 2π which we use to model the effect

of the interferoemter’s drift, and ϕ0x and ϕ0y refers the the absolute phases. Note

that in the above equations, we have subtracted the the absolute phase Ey(ω) from

both fields so that the relative phase appears only in Ex(ω).

In order to be able to measure the relative absolute phase we could take special

care to stabilize the interferometer, for example, by building an acrylic box around it

as was done in the following reference [64]. It also might be possible to very quickly

make the two measurements before the drift effects the phase. But, considering that

a path length change in the interferometer as small as λ
4

results in a phase drift of π
2
,

it is very difficult to make the interferometer stable enough. Therefore, we would like

to use a technique that can measure the relative phase without having to stabilize

the interferometer.

The trick is to not only make SEA TADPOLE measurements of Ey(ω) and Ex(ω),

but to also measure Ey(ω) +Ex(ω) for example, by putting a wave plate before SEA

TADPOLE’s entrance fiber to rotate the polarization of the unknown pulse [63, 65].

In this third measurement, which we will refer to as Exy(ω), we get the following,

Exy(ω) =
[√

Sx(ω) exp (ϕx(ω)× ϕrel) +
√
Sy(ω) exp (ϕy(ω))

]
× exp (ϕrand). (4.4)

You can see from Eq. 4.4 that in the measured field Exy(ω), ϕrel is not lost by the

random phase due to the drift because these two phase terms do not appear together

as they do when only one of the field’s components is measured as shown in Eq. 4.1.

Therefore, with SEA TADPOLE measurements of Ex(ω), Ey(ω) and Exy(ω), and an
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appropriate algorithm to extract ϕrel from these three measurements, we should be

able to reconstruct a pulse’s complete polarization state.

4.2.1 Reconstructing the complete polarization state from the measured
SEA TADPOLE traces

To reconstruct the polarization state from the three fields discussed above, we first

measure the SEA TADPOLE traces for these three fields and then reconstruct Ex(ω),

Ey(ω) and Exy(ω) from the interferograms in the usual way (which is described in

section 2.3.2). At this point we have everything except for the relative absolute

phase. To determine this we use a minimization routine in order make the spectrum

of Ex(ω) + Ey(ω) the same as Ixy(ω) by adding a constant to the spectral phase

of Ex(ω) as described by the equations below where we have factored the absolute

phases out of the fields.

Ix+y(ω) =
∣∣∣Ex(ω) + Ey(ω)

∣∣∣2 =
∣∣∣Ex(ω) + Ey(ω) exp (iϕrand + iε)

∣∣∣2 (4.5)

Ixy(ω) =
∣∣∣Exy(ω)

∣∣∣2 =
∣∣∣Ex(ω) exp (iϕrel) + Ey(ω)

∣∣∣2 (4.6)

Equation 4.6, shows that taking the magnitude of the measured field Exy(ω) com-

pletely removes the random phase.

Our goal is to pick a value of ε that will make ϕrand + ε = ϕrel. When we have

done this, the two spectra Ix+y(ω) and Ixy(ω) will be the same. The Example shown

in the figures below illustrates this process. In this example, which is a simulation,

we used a simple Gaussian pulse with a delay between Ex and Ey and with a relative

phase of 45◦. To do the minimization we plot the rms difference between Ix+y(ω) and

Ixy(ω) summed over all frequencies as a function of ε and look for the minimum in

this curve. As you can see in Fig. 4.1a, for this example, the minimum occurs at 45◦

as it should. Figure 4.1b, compares the spectra before and after the minimization

and once we have picked the value of ε that makes the absolute relative phase correct,

these two spectra overlap well.
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(a) RMS error (b) Spectra

Figure 4.1: Reconstructing ϕrel from measured SEA TADPOLE spectra

4.2.2 Experimental setup for measuring polarization shaped pulses with
SEA TADPOLE

To measure the complete polarization state with SEA TADPOLE, we need to make

three measurements of the field, one of Ex(ω), one of Ey(ω) and one of Exy(ω). These

three cuts, or projections of the field, can be obtained by placing a polarizer and a half

wave plate in the unknown arm of SEA TADPOLE, just before the pulse’s entrance

fiber to SEA TADPOLE as illustrated in 4.2. All other parts of SEA TADPOLE’s

Figure 4.2: Schematic for measuring different field components to measure the polar-
ization state with SEA TADPOLE

experimental setup remain unchanged and a schematic of SEA TADPOLE can be

found in Fig. 2.3b. Using the analyzer illustrated in Fig. 4.2, the projection of the

51



unknown pulse’s polarization state that we measure is given by,

Eunk(ω, α) =
[
i sin2 (α)− i cos2 (α)

]
Ex(ω)−

[
2i sin (α) cos (α)

]
Ey(ω) (4.7)

where α is the angle between the beam’s axis and the fast axis of the wave plate.

Therefore, we can can simply rotate the waveplate to take the three measurements

that we need, and at α = 0, we will measure iEx(ω), at α = π/8 we will measure

i
√

2
2

(Ex(ω) + Ey(ω)) and at α = π/4 we measure iEy(ω).

There are several advantages to using this method to measure the fields. A mo-

torized stage can be used to precisely and quickly rotate the wave plate to the needed

angles. Also, having a polarizer after the half wave plate, assures that polariza-

tion of the unknown beam will be the same for all three measurements so that SEA

TADPOLE’s sensitivity to polarization (due primarily to the diffraction grating’s po-

larization dependent efficiency) will not affect our results. With this approach we do

not have to worry about mechanically stabilizing the interferometer and a we have

the advantage of SEA TADPOLE’s high spectral resolution, quick inversion algo-

rithm and simple experimental setup (as opposed to using POLLIWOG or spectral

interferometry).

4.2.3 Ambiguities

It is important to identify and understand any ambiguities that can occur in the

absolute phase retrieval described above. For example, how can we be sure that the

error plot will only have one minimum or that our algorithm will return only one

answer? It turns out that there are some cases when we retrieve two answers and this

can be easily understood by expanding out Eq. 4.6 as shown below.

Ixy(ω) = Sx(ω) + Sy(ω) +
∣∣∣Ex(ω)Ey(ω)

∣∣∣× cos (ϕx(ω)− ϕy(ω) + ϕrel) (4.8)

The relative absolute phase is contained only in our measured field Exy, whose inten-

sity is shown above. You can see by expanding out this quantity, that the relative
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absolute phase information is contained inside of a cosine which can cause problems,

because cosines are even functions and they are insensitive to the sign of their argu-

ments. As illustrated in Fig. 4.3a, if the spectral phases of Ex and Ey are the same,

then the error curve will have two minima and is will not be possible to determine

the sign of the ϕrel. But, as long as Ex(ω) and Ey(ω) have different spectral phases,

(a) ϕx(ω)− ϕy(ω) = 0 (b) ϕx(ω)− ϕy(ω) = ωτ where τ is the delay

Figure 4.3: Error plots for determining the relative phase absolute phase have two
minima when the spectral phases of Ex(ω) and Ey(ω) are the same.

as shown in Fig. 4.3b, there is no ambiguity because the sign of ϕrel will change the

value of the argument of the cosine. And if this is the case, Ixy(ω) will be different for

ϕrel and minus −ϕrel and the error curve will have a minimum at only one of these

values.

Fortunately, this should not be a problem for us, because we want to measure

polarization shaped pulses which will be complicated so that Ex(ω) and Ey(ω) will

not have the same spectral phases most of the time. But, if it is necessary to remove

this ambiguity, it can be done my making a fourth SEA TADPOLE measurement of

the field Ex(ω) + iEy(ω) by replacing the half wave plate with a quarter wave plate.

This measurement will yield an intensity like that shown in Eq. 4.8, except that

there is a sine in place of the cosine. This intensity alone would still not allow us
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to always determine the sign of ϕrel. But using this intensity in the minimization

along with Ixy(ω) yields the absolute phase including its sign even when two field

components have the same spectral phases. This is because the sine and the cosine can

be combined together to make an exponential which does not have a sign ambiguity

(it is neither a purely even or a purely odd function).

If we were to encounter a case where the spectra of the Ex(ω) and Ey(ω) do

not overlap, then the field Exy(ω) would not contain the absolute relative phase

information because the cross term shown in Eq. 4.8 would be 0, and the minimization

would not yield ϕrel. We can still retrieve ϕrel using Exy(t), by taking a Fourier

transform of the field, and doing the minimization with the temporal intensities using

Ex(t) and Ey(t) as long as the fields overlap in time. If the x and y components of

the field neither overlap in time nor frequency, then the retrieval algorithm descried

here will not work, though we do not expect to encounter this case very often. In

most cases, considering that spectral domain shaping is usually used, the spectra of

Ey(ω) and Ex(ω) will overlap, though the temporal fields may not overlap and this

is why we have chosen to do the minimization with the spectral intensities.

4.3 Simulations

Before experimentally testing this method, we tested it out with simulations. In the

first simulation, we used a Gaussain pulse for Ex and Ey where both had flat spectral

phases, but with Ex ahead in time. We added 5% Gaussian noise to this simulation

and ϕrel = 45◦. The results are shown in Fig. 4.4. Figure 4.4a, shows the error curve

and there is a minimum at 45.9◦ which is close to the expected value. Figure 4.4b

compares Ix+y(ω) and Ixy(ω) before and after the minimization and they overlap well

once we have found the correct value for ϕrel giving an error of 0.002% at this value.

Figure 4.4b shows the retrieved temporal intensities and the spectra compared to the

correct answers, and you can see that the two are in good agreement except for a
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.4: Simulation of reconstructing the polarization state of a Gaussian pulse
with ϕrel = 45◦ and a delay between Ex and Ey.
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small discrepancy due to the noise that we added.

The final figure shown at the bottom right is a plot of the reconstructed polariza-

tion state plotted in the usual way [6]. To make this plot we Fourier transform the

retrieved fields to the time domain and at every value of t, we plot the polarization

ellipse for that value of t, which is given by the equations below

Ex(t) = |Ex(t)| cos(φrel + φx(t) + l) (4.9)

Ey(t) = |Ey(t)| cos(φy(t) + l) (4.10)

where l is an angle between 0 and 2π that is use to parameterize the ellipses. El-

lipses are commonly used to plot polarization states and a few examples of these for

monochromatic light are shown in Appendix C. In this plot, at points in time where

the pulses do not overlap, the pulse has a linear polarization state and when they do

overlap, the polarization angle is given by ϕrel + ϕx(t)− ϕy(t), so it varies with time

due to the time dependence of pulse’s phase. The gray lines in this figure are the

projection of the polarization ellipses at every time onto this plane. Also in Fig. 4.4d

the color represents the instantaneous center frequency which we calculate by aver-

aging together the colors of the x and y components (calculated from (ω0 = dφ(t)
dt

)) of

the field weighted by their intensities at a given point in time and space. and both

components of the pulse are green at every point in time for this pulse because both

Ex and Ey have flat spectral phases. This figure also shows the projections of the

pulse onto the x and the y axes so that you can see both the shape and the color of

the x and y components of the pulse as a function of time.

In the next simulation we used a very similar pulse, but this time both Ex and

Ey were chirped (by the same amounts) and ϕrel was equal to 90◦. These results

are shown in Fig. 4.5. Again, Figs. 4.5a through 4.5c illustrate that our retrieval

worked well and the minimum occurred at 89.7◦ which is close to the expected value.

Ixy overlaps well with Ix+y at this value for ϕrel and the error is 0.12%. Also, the
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.5: Simulation of reconstructing the polarization state of a Gaussian pulse
with ϕrel = 90◦ and a delay between Ex and Ey, and chirp.
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retrieved spectra and temporal intensities agree with one another. Figure 4.5a shows

the reconstructed polarization ellipses at every time, and for this pulse, due to the

temporal chirp, you can see that the pulse’s color changes with both time and direc-

tion. As in the previous example, the pulse starts off with a vertical polarization and

then while, Ex and Ey overlap, the pulse is elliptically, and the circularly polarized

and then elliptically again. And then for later times when Ey = 0 the pulse is hori-

zontally polarized. When the pulses overlap in time you can see that the color is like

that of Ex along the x axis and like that of Ey along the y axis.

To make sure that our algorithm would work for more complex pulses such as

those that are produced by a polarization pulse shaper, we tested our method out on

a complex pulse that is shown in Fig. 4.6b (correct Ex and Ey). This pulse consisted

of a linear 45◦ pulse at t=-500fs, followed by a right circular pulse at t=-250fs, then

a left circular pulse at t=250fs and then finally another 45◦ pulse at t=500fs. The

outer pulses had an intensity of 36% of the inner pulses, and there was no chirp on

any of the pulses. The results of the retrieval are shown in Fig. 4.6 and you can see

that they are in good agreement with the expected answer. The color changes seen

in Fig. 4.6d close to where the field changes sign are due to difficulties unwrapping

the temporal phase which we use to calculate the instantenous center frequency in

the plots. Because the higher order spectral phases of Ex and Ey were the same,

you can see that there are two minima in the error curve or there is a overall minus

sign ambiguity in our determination of the relative phase. This means that we could

retrieve this pulse train to be composed of a 180◦ pulse then a left circular then a right

circular followed by a 180◦ pulse, as opposed to the correct answer. Note that this

sign of the relative phase cannot be seen using our plotting style for the polarization

state.
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.6: Simulation of reconstructing the polarization state of complex pulse
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4.4 Measurements

To further test our algorithm, we produced and measured a few pulses with known

absolute relative phases to verify that we could retrieve the correct answer. For this

experiment, we used an 85MHz repetition rate KM labs Ti:Sapphire oscillator, which

had approximately 30nm of bandwidth. For the reference pulse, we the used oscillator

pulse by putting a beam splitter before the polarization state was generated. In all

of the measurements shown in this section, the x and y components of the field had

the same spectral phases and therefore we were only able to determine the absolute

value of ϕrel and not its sign. Though in the data in this section it many appear that

one of the two minima in the error curves is slightly less than the other, this is only

due to the noise that was present in the measurements.

In the first experimental test we rotated the polarization state of the Gaussian

pulse from the oscillator using a quarter wave plate at the appropriate angle to make

the light circularly polarized. Then we sent this beam through the analyzer shown in

Fig. 4.2, and then to SEA TADPOLE so that the three projections needed for the

reconstruction were measured. The results of this measurements are shown in Fig. 4.7.

Figure 4.7a shows the error curve which has two minima near ±94◦ which is close to

the value that we expect(For circularly polarized light,ϕrel = 90◦). The polarizations

ellipses shown in 4.7d, are circles at every point in time which we also expect, because

every frequency component of the pulse should have the same polarization (or very

close to it) because we used a zeroth order quarter wave plate. Also, the relative

amplitude of Ex and Ey should be 1, as it is, and the error in the reconstruction (the

minimum value in Fig. 4.7c) was 0.06%.

In the next measurement, we used the same setup described above, but we ro-

tated the polarizer to make an elliptical polarization with ϕrel = 54◦ and a relative

amplitude of 3.5. Figure 4.8 shows these results. From Fig. 4.8a we found that the

minimum happened at a value of ϕrel ± 52.7◦) and that the relative amplitude was
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.7: Experimental reconstruction of an circularly polarized pulse.
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.8: Experimental reconstruction of an elliptically polarized pulse.
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2.9, which are both close the answer that we expected. Figure 4.8d shows the re-

trieved polarization state and at every time you can see that this it is the same ellipse

with the color varying a little in time, due to a small difference in chirp between the

reference and unknown pulses.

In the final experimental test we used a slightly more complicated pulse though

the spectral phase of the x and y components were still the same (meaning that we

still could only determine the magnitude of ϕrel). To make this pulse we passed

the beam through a 256-element liquid crystal display (LCD) pulse shaper and we

applied a voltage to it to make the pulse into a double pulse (a sinusoidal phase).

Then we propagated the double pulse through a polarizer to ensure that it was still P

polarized and then a quarter wave plate to make it a circularly polarized double pulse

and then we sent this pulse to the polarization analyzer and then to SEA TADPOLE

to measure the three cuts needed to reconstruct its polarization state. Again, we used

the pulse directly out of the oscillator as the reference pulse.

Figure 4.9 shows the results of this measurement. The minimum of our error

curve is close to the expected value (it was at ±91◦) and the relative amplitude is

close to 1.2 which is close to the expected value of 1. Even though the spectra in

the minimization were more complicated this time, you can see from Fig. 4.9c that

they overlap well after the minimization. The polarization state is plotted in Fig.

4.9d, and it shows one circularly polarized pulse followed by an very similar circularly

polarized pulse, just as we expect considering the wave plate and the phase mask on

the pulse shaper that were used.

In these measurements, we found it advantageous to also measure i
√

2
2

(Ex(ω) −

Ey(ω)) by making a SEA TADPOLE measurement with the half wave plate’s angle

at 67.5◦. Though this did not give us any additional information, or remove the

sign ambiguity, it did allow us to simultaneously minimize the difference between this

measured spectrum and |(Eunkx(ω)−Eyunk(ω))|2 as well as the minimization that was
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(a) error curve (b) Spectra and temporal intensities

(c) Spectra before and after the minimization (d) Reconstructed polarization state

Figure 4.9: Experimental reconstruction of a circularly polarized double pulse.
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discussed in above, which makes the algorithm less sensitive to noise and intensity

fluctuations. This was convenient to do because we had the half wave plate mounted

to a rotation stage, though in general only the 3 measurements discussed in section

4.2.1 are necessary.

4.5 Conclusions and future outlook

In this chapter an extension of SEA TADPOLE for measuring polarization shaped

pulses was discussed. In this method we add an analyzer to SEA TADPOLE so that

interferograms of the fields Ex(ω), Ey(ω), and Ex(ω) + Ey(ω) can be measured and

retrieved. These three interferograms combined with a simple minimization procedure

can then be used to determine the intensity and the phase of the x and y components

of the field including the relative spectral phase and the relative absolute phase of the

pulse. We verified that this procedure works well by doing several simulations that

included some very complicated pulses and three examples of these were shown. We

tested this method out in the lab on a few simple pulses and achieved accurate results

for the relative absolute phase. In the future we would like to test SEA TADPOLE

out on real polarization shaped pulses in which the higher order spectral phases of the

two field components are different (and then we can retrieve the sign of the relative

absolute phase), though from our simulations and preliminary experimental tests we

have no reason to believe that this should not work. SEA TADPOLE, can measure

polarization shaped pulses, with a simple experimental setup, with high spectral

resolution, and relatively quickly (in 3 shots) and therefore it should be a very useful

device for measuring and optimizing polarization shaped pulses.
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CHAPTER V

MEASURING THE SPATIOTEMPORAL ELECTRIC

FIELD OF FOCUSING ULTRASHORT PULSES

5.1 Introduction and background

In this chapter a version of SEA TADPOLE for measuring the spatiotemporal electric

field E(x, y, z, t) of ultrashort pulses at and around the focus is described which we

call scanning SEA TADPOLE [55]. Before describing and demonstrating scanning

SEA TADPOLE, we show how focusing pulses with common lens aberrations can be

modeled so that we will have a way to test our initial measurements to verify that

scanning SEA TADPOLE works. Also we will use this model to show how common

lens aberrations distort ultrashort pulses.

5.1.1 Motivation

In nearly all applications of ultrashort pulses such as plasma generation, coherent con-

trol of chemical reactions, micro machining, nonlinear microscopy or high harmonic

generation, the pulse is used at a focus. In general, the highest possible intensity is

desired, and this is achieved when the pulse is undistorted in both space and time, so

that it has a transform limited time duration and a diffraction limited focused spot

size. Unfortunately, lenses and lens systems suffer from a wide variety of aberrations,

and theoretical studies have shown that very complex spatiotemporal distortions can

occur at a focus, due to, for example, spherical and chromatic aberrations [15, 66–68].

If no aberrations or material dispersion were present (the ideal case), then the

spatiotemporal field of the pulse at the focus would look like that shown in the figure

below. Figure 5.1 shows snap shots of the pulse at different z’s or positions around
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Figure 5.1: Simulation of the focus of an ideal lens

the focus. In these plots, the color represents the instantaneous center frequency of

the pulse which is the same everywhere in space and time because no distortions

are present. The white dots show the pulse front or the arrival time of the pulse at

every x. When no distortions are present the pulse fronts are flat at the focus and

symmetric about the focus. The next figure shows a simulation of the focus of a lens

with chromatic aberration and a little spherical aberration. This figure illustrates

Figure 5.2: Simulation of the focus of a lens with a lot of chromatic aberrations
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that the pulse can take on a very complex spatiotemporal shape when common lens

aberrations are present. Due to chromatic aberration the pulse’s color varies in x, t

and z which makes the local bandwidth smaller, or it make the pulse duration longer.

Also due to the aberrations, the spot size is far from being a nice round point as need

for most applications. Even with perfect material dispersion compensation (such as

the example shown in Fig. 5.2), when chromatic aberrations are present, the pulse

can still be distorted and far from transform and diffraction limited at the focus.

The simulations shown in Fig. 5.2 illustrate that measuring only E(t) or E(ω)

averaged over x and y of a focused pulse is far from sufficient. For the same reason,

measuring only E(x, y) averaged over ω, or just making a spatial measurement is

also far from sufficient. To characterize a focused ultrashort pulse, a spatiotemporal

measurement of E(x, y, z, t) must be made so that all of the cross terms (the x − t

couplings) are measured.

To further complicate the problem, in addition to focusing, pulse shaping is often

used in applications such as nonlinear microscopy and coherent control and these

pulses have complex temporal shapes [10, 39]. And even without pulse shaping,

diffraction effects at the lens’ aperture and lens aberrations alone can make the pulse

as long as picosecond [15]. Therefore, a technique that can measure the spatiotem-

poral electric field with high spatial and spectral resolution is need for characterizing

focused pulses. Additionally, this technique needs to be very sensitive (or linear-

optical) to be able to measure E(t) at values of x that are away from the center of

beam which can be very weak.

Although techniques are available for measuring focused pulses in space or time

separately, none of these can measure the spatiotemporal electric field. Autocorrela-

tors are available for determining the rough pulse duration at the focus [69, 70] with no

phase or spatial information. With some nonlinear-optical pulse measurement tech-

niques, the lens in question can be used as the focusing lens in the pulse-measurement
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device, so that the temporal electric field after the lens is the measured field [12, 71–

73]. Unfortunately, all such measurements average over all spatial dimensions at the

focus, so that no spatial information is obtained (there is one exception in which

minimal, qualitative spatial information was obtained [74]). Linear interferometric

techniques for measuring spatial and temporal information have been introduced, but

these only measure collimated pulses [68, 75, 76]. Therefore, if a focused pulse is to be

characterized using these techniques, it must first be recollimated and this is usually

done with the same lens that was used to focus it. In this case, the electric field of

the focused pulse can only be inferred indirectly from the measurement of the recol-

limated beam by assuming that the phase of the lens is half of the phase obtained by

double-passing the lens (which is only true if the alignment is perfect).

In this chapter, a simple technique for directly measuring the complete spatio-

temporal electric field at and near the focus of an ultrashort pulse is described. To our

knowledge this is the first technique in which the spatiotemporal field, E(x, y, z, t),

is directly measured for a focusing pulse. From a typical measurement using our

device, a movie can be made of the pulse focusing, showing its intensity and color

vs. space and time. To make these measurements we use SEA TADPOLE, or Spatial

Encoded Arrangement for Temporal Analysis by Dispersing a Pair of Light E-fields

which was described in detail in chapters 2 and 3 and can be found in these references

[50, 51, 55].

Because the entrance to SEA TADPOLE is an optical fiber, it naturally measures

pulses with high spatial resolution, and, in particular, it can measure them at a focus.1

If the fiber for sampling the unknown pulse has a mode size smaller than the smallest

spatial structure of the focused spot size of the unknown pulse, then Eunk(ω) can

1The spatiotemporal field of collimated pulses can be measured as well as long as the there is
enough power in the unknown field. The difficulty is that for collimated beams, they are usually as
large as 0.5mm - 1cm and therefore not much light is coupled into the fiber which has a mode size
around 5.6µm
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be measured at one position (x, y, z) and then the fiber can be scanned in x, y, and

z until Eunk(ω) has been measured at all spatial points at and near the focus, so

that we have E(x, y, z, ω). Inverse-Fourier-transforming to the time domain yields

E(x, y, z, t). Doing this, it is possible to watch the pulse focusing, or measure it at

many positions along the propagation direction before, after and at the focus. We

refer to this technique as scanning SEA TADPOLE.

While scanning SEA TADPOLE bears some resemblance to the method of interfer-

ometric photon tunneling scanning microscopy (PTSM) there are some key differences

between the two methods [45, 64, 77, 78]. Both methods involve sampling or spatially

resolving the unknown field with an optical fiber (or an NSOM probe in the case of

PTSM) and then interferometrically recombining it with a reference pulse for each

position of the sampling fiber. While interferometric PSTM operates in the space

and time domains scanning SEA TADPOLE operates in the space and frequency

domains. Interferometric PSTM has primarily been used to measure propagating

pulses in photonic structures while scanning SEA TADPOLE is intended for measur-

ing focusing pulses. Also, interferometric PSTM requires scanning in 4 dimensions to

measure E(x, y, z, t) because scanning is required to measure E(t) unlike SEA TAD-

POLE which only requires 3 scanning dimensions to make this measurement because

E(t) is measured in a single shot.

5.1.2 Numerically modeling focusing ultrashort pulses with low NA’s

In order to test scanning SEA TADPOLE we measured E(x, ω) at several different z’s

(the propagation direction) at and around the focus. We also calculated the expected

spatiotemporal fields given the experimental beam, pulse and lens parameters in order

to make sure that our measurements were correct. Later in this chapter we will show

these results and in this section we show how these simulations were done.

As we will explain later in section 6.3, scanning SEA TADPOLE (with fiber as
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described in this chapter) is limited to measuring foci with numerical apertures less

than 0.122. Because of this restriction, we can model these foci using the Fresnel

integral which is a small angle approximation of the Kirchhoff Integral (also called

the Fresnel-Huygen’s integral) and is therefore only valid up to numerical apertures

of 0.4 [15, 79].3 Here we will only consider the cylindrically symmetric aberrations

chromatic and spherical aberrations, because these are the aberrations that most

commonly distort ultrashort pulses. Off axis aberrations such as astigmatism or

coma can usually be removed or greatly minimized just by properly aligning the lens.

Given the electric field E(x1, y1, ω, z = 0) at an initial plane z = 0, the Fresnel in-

tegral can be used to calculate E(x, y, ω, z), or the field after the light has propagated

a distance z from the lens which is at z = 0. See Eq. 5.1.

E(x, y, ω, z) ∝∫ ∞
−∞

dx1

∫ ∞
−∞

dy1E(x1, y1, ω, 0)Θ(x1, y1, ω) exp
[
− ik

2z2

[(x− x1)2 + (y − y1)2]
] (5.1)

For our case, E(x1, y1, ω, z = 0) is the electric field of the pulse just before the

lens, Θ(x1, y1, ω) is the phase and amplitude introduced by the lens, and z is the

propagation distance from the lens and the observation plane where the field is given

by E(x, y, ω, z). This geometry is illustrated in Fig. 5.3. This version of the diffraction

integral can be found in many references such as [79] and specifically for modeling

focusing pulses in [66, 67, 81].

The intensity and phase introduced by the lens is given by,

Θ(x1, y1, ω) = P (x1, y1) exp
[
i
k

2f0

(x2
1 + y2

1)
]
× exp

[
iϕ(x1, y1, ω)

]
(5.2)

where P (x1, y1) is the aperture function of the lens (most likely just a circular aperture

that can be bigger or smaller than the beam), and ϕ(x1, y1, ω) is the phase due to

2The numerical aperture or the NA of a focus is defined as the sine of the half divergence angle.
3Note that the Fresnel approximation is equivalent to a paraxial approximation, and therefore

this integral is also referred to as the paraxial diffraction integral [80].
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Figure 5.3: Schematic of the Fresnel integral for modeling a focusing pulse

aberrations and group delay dispersion of the lens (GDD). The other phase term is

the quadratic spatial phase introduced by the lens and for an ideal lens this would be

the only non-zero phase term. All of the subscript 0’s indicate that the value is taken

at the center frequency where f is the focal length of the lens which is a frequency

dependent quantity.

In all of our measurements, we used lenses and beams with cylindrical symme-

try and therefore it is convenient to write E(x1, y1, ω, z = 0) and ϕ(x1, y1, ω) as

E(r1, ω, z = 0) and ϕ(r1, ω) where r1 and θ are the radius and polar angle for the

cylindrical coordinate system. As discussed above, in our experiments we should be

able to minimize off-axis aberrations so that there will no θ dependence in Θ. After

changing the integral to polar coordinates, and integrating out the θ dependence, Eq.

5.1 becomes

E(r, ω, z) ∝ exp
[ikr2

2f0

]
×∫ R

0

dr1r1J0(r1rk0/f0)E(r1, ω, 0)P (r1) exp
[
ϕ(r1, ω)− ikr

2
1

2
(1/f0 − 1/z)

]
.

(5.3)

In Eq. 5.3 J0 is a Bessel function of the first kind of order 0 that comes from the

integration over θ after changing from rectangular to cylindrical coordinates. Also, in

the above equation we assumed that the lens had a finite aperture with a radius of R

and therefore we have changed the integration limits because P (r1) will be zero for
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r1 > R. For the initial field E(r1, ω, 0) we use a two-dimensional Gaussian with the

spot size and the bandwidth of the beam/pulse that was used in the experiments. In

our simulations, we use a flat spectral phase for the field before the lens, because this

contribution to the spectral phase cancels out in our SEA TADPOLE measurements

as we will explain further in section 5.2.4

The phase due to spherical and chromatic aberrations, and also the GDD (β)

introduced by the center thickness of the lens is given by the following equation:

ϕ(r1, ω) = exp [−ikAr4
1 − iβ(ω − ω0)2 − i(ω − ω0)(αr2

1 + γ(ω − ω0)r2
1)]. (5.4)

The first term in Eq. 5.4 is due to spherical aberrations. The coefficient A can easily

be calculated using the formula show below which comes from [82].

A =
n2

0(n2
0 − 4) + 2n0 + 4

8n0(n0 − 1)2(n0 + 2)f 3
0

(5.5)

To model lenses that are not plano-convex a ray tracing program is needed to deter-

mine A and we use the program OSLO. The next terms are due to the radially varying

group delay and radially varying group delay dispersion that result due to the lenses

varying thickness with r1. These terms are easily calculated by Taylor expanding the

focal length which is given by 1/f = n(ω)(1/R1 − 1/R2) where R1 and R2 are the

radii of curvature of the first and second surfaces of the lens and n(ω) is the refractive

index of the material that the lens is made of [67]. Formulas for these coefficients are

given below.

α =
k0

2f0(n0 − 1)

dn

dw

∣∣∣
ω=ω0

(5.6)

γ =
1

2n0 − 1)

d2n

dw2

∣∣∣
ω=ω0

+
1

ω0(n0 − 1)

dn

dw

∣∣∣
ω=ω0

(5.7)

4SEA TADPOLE only measures the spectral phase difference between the two arms of the in-
terferometer which in our measurements is the spectral phase introduced by the lens. At the front
surface of the lens, the reference and unknown pulses will have the same spectral phase and therefore
this will cancel out in the measurements
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To model the foci in our measurements we used Eq. 5.3 and the formulas above

for the aberrations as well as some ray tracing. For all of the lenses that we used in

our measurements, the refractive index (including the dispersion formula or Sellmeier

equation for this material), the radius of curvature for each surface, and the aperture

diameters were provided by the manufactures. Once we have calculated E(r, ω, z)

using the above integral, this can be Fourier transformed to obtain E(r, t, z).

Note that Eq. 5.3 does assume that the lens is a singlet lens (or that it only

contains 2 surfaces), but as long as the lens can be broken down into a cascade of

thin single-element lenses so that Θ(r1, ω) = Θ1(r1, ω)×Θ2(r1, ω)× . . . , this integral

can still be used with little error. We have used this approach to model doublets

(lenses with three surfaces) but most of our experimental tests were done using singlet

refractive lenses.

5.1.3 Radially varying group delay

A simple and informative expression for the group delay as a function of r and ω can

be derived from Eq. 5.3 without numerically solving the integral. This expression,

which was taken from reference [81], is shown below.

τ(r, ω, z) =
3Ar4

c
+

1

2c

(1

z
− 1

f0

)
r2 − αr2 − γ(ω − ω0)r2 (5.8)

Keep in mind, that k = ω/c and therefore all of the terms containing k’s contribute

to the group delay which is where the first two terms in Eq. 5.8 come from.

The first term in Eq. 5.8 is due to spherical aberrations which result in a quartic

pulse front. The second term is known as the “defocus” term and this would be

the only term present if there were no aberrations. You can see that at z = f this

term goes to zero, meaning that the pulse front would be flat at the focus of an ideal

lens as shown in Fig. 5.1. The third term, which is also an r2 term like the defocus

term, is due to chromatic aberrations, but this term does not change as the pulse

propagates (it has no z dependence). Interestingly, chromatic aberrations have the
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effect of shifting the flat pulse front away from the focus. From Eq. 5.8 combined

with Eq. 5.6 (assuming that γ = 0) you can see that if chromatic aberrations can

cause the flat pulse front to be at a distance L = f
n−1

(
− λdn

dλ

)
after the focus (this

equation, without the spherical aberration term was first derived in [68, 83]). If the

pulse front is curved at the focus, its pulse duration becomes larger because it center

of the beam will be ahead or behind in time of the edges of the beam. In the next

section will show our measurements of this effect.

The final term, which is often very small and negligible, is the radially varying

group delay dispersion. This term comes about because the varying thickness of the

lens chirps different parts of the beam by different amounts( more at the center of the

beam than on the edges for a convex lens). This distortion is usually negligible unless

the numerical aperture of the lens is very high (greater than 0.4) because tighter foci

involve using lenses with rounder surfaces. In chapter 6 when measure high NA foci,

we will discuss this effect in more detail.

5.2 Details of the method scanning SEA TADPOLE

To use SEA TADPOLE to measure Eunk(ω) at one point in space, we temporally

overlap and couple the reference and signal pulses separately into short single-mode

fibers, as shown in Fig. 5.4. One focal length after the fibers, we place a spherical

lens (of focal length f) to collimate the light diverging from the fibers. Because

each of the fibers is slightly displaced from the optic axis (each by a distance ±d),

the collimated beams cross, yielding horizontal interference fringes that are recorded

with a digital camera. The beams also pass through a diffraction grating and a lens,

so that wavelength is mapped to the horizontal position of the camera to yield the

two-dimensional SEA TADPOLE trace SST (ω, x).

To reconstruct Eunk(ω) from this trace, we Fourier filter the interferogram along

the x axis and then divide out the reference field yielding the unknown pulse field
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Figure 5.4: Experimental setup for scanning SEA TADPOLE

Eunk(ω). Because the Fourier filtering is done with respect to x and kx, rather than

ω and t, no spectral resolution is lost in this reconstruction. On the other hand, even

though the SEA TADPOLE trace is two-dimensional, all of the unknown beam’s

spatial information is lost in the fiber, so that only Eunk(ω)(of the sampled spatial

region of the beam) is constructed from a single SEA TADPOLE trace. For more

details about SEA TADPOLE see 2.

To measure the unknown pulse as a function of both time and space, we simply

scan the position of the unknown-pulse input fiber in x, y, and z and measure many

traces, assuming that the input pulse train remains stable throughout the measure-

ment, resulting in Eunk(x, y, z, ω). See Fig. 5.4.

When the unknown fiber is moved to different longitudinal positions z, we must

readjust the delay stage so that the pulses again temporally overlap (this is done by

our data acquisition computer program).
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5.2.1 Loss of the spatial phase in scanning SEA TADPOLE

As discussed previously [51, 64], the use of optical fibers in an interferometer can cause

a slow drift in time in the measured absolute phase of a pulse due to small changes

in the optical path lengths due to temperature fluctuations. In our measurements,

the absolute spectral phase as a function of x, y, and z is the spatial phase of the

pulse, so, if the absolute phase drifts faster than our scanning time, as it does here,

then we are unable to measure the spatial phase. With our current setup, however,

we can measure every other aspect about a focusing pulse. In particular, we are

able to measure all other phase terms, including the spectral phase and the phase

terms that depend on both x or y and ω such as the radially dependent group delay

and the radially dependent group-delay dispersion. Additionally we can measure the

amplitude of the electric field versus x, y, z and ω. In other interferometric techniques

in which fibers are used, it has been reported that simply enclosing the interferometer

in a plastic box largely eliminates the phase drift [64]. Therefore, in principle SEA

TADPOLE could also easily measure the spatial phase of the pulse. In this study we

are primarily interested in knowing the spatiotemporal couplings of a focusing pulse,

such as the pulse fronts and the position dependent spectrum, which can be measured

by scanning SEA TADPOLE without stabilizing the interferometer, so we have not

done this.

Appendix B shows a measurement of the drift in our interferometer as well as

some examples of how this drift distorts the measured spatial phase.

5.3 Measurements of focusing pulses

To test scanning SEA TADPOLE, we measured ultrashort pulses focused by various

lenses. We measured Eunk(ω) for numerous values of x and z at y = 0, and then

Fourier transformed the measured data to the time domain to obtain Eunk(x, z, t)

(with interpolation to increase the number of data points on the time axis from 10 to
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90). While we could have scanned in y as well, scanning in only one transverse dimen-

sion was sufficient to measure a pulse front with spherical and chromatic aberrations

for the purpose of testing our technique.

Although we know the intensity and phase of our reference pulses (we routinely

monitor the output of our laser with a Swamp Optics GRENOUILLE), in these

experiments the interesting quantity for scanning SEA TADPOLE was the phase in-

troduced by the lens. So in all of our measurements we measured the phase difference

in the two arms of SEA TADPOLE with the lens in the unknown arm. Therefore the

following measurements show only the effects of the various lenses for a given pulse

input spot size and bandwidth.

In all of our measurements, our laser source was a KM Labs mode-locked Ti:Sapphire

oscillator emitting pulses with rms bandwidths of 18 nm and centered at 800 nm.

The rms spot size of the beam before each lens was 2.12 mm and all of the lenses used

had diamters of 24.5 mm. Because the beam was sufficiently smaller than the lens’

apertures, it was not clipped by the lenses and we did not observe any effects due to

the beam diffracting off of the edge of the lens. All of the lenses studied were oriented

so that collimated beam entered through the curved surface, which is the orientation

that minimizes spherical aberration. Our optical fibers had a 5.6µm mode field di-

ameter. Each measurement of Eunk(x, t) took 2-3 minutes, and the measurements at

different z’s were all made continuously. The remainder of the details of our set up

are described in chapter 2 or can be found in the following references [50, 51, 55].

To confirm our measurements, we also performed simulations of pulses propagat-

ing through the various lenses used in our experiments as described in the previous

section.

The first lens that we considered was an 50 mm focal length aspheric lens made of

molded PMMA, which is designed to have minimal spherical aberration, but which

exhibits chromatic aberration and, group-delay dispersion (GDD). We measured and
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simulated E(x, t) at nine different longitudinal positions, z, around the focus, where

z = 0 corresponds to the geometric focus. See Fig. 5.5. The experimental results are

Figure 5.5: Measured and theoretical spatiotemporal field of a pulse focused with an
aspheric lens

displayed in the top plots, and the simulations are in the bottom plots. Each box

displays the amplitude of the electric field versus x and t at a distance z from the

geometric focus. The color represents the instantaneous wavelength as designated by

the color bar on the right. Each set of plots displays the amplitude of the electric

field versus −t (so that the leading edge of the pulse appears on the right) and x at

a particular longitudinal distance away from the focus. The white dots display the

pulse front (defined as the maximum temporal intensity at each x).

In the absence of dispersion and aberrations, the instantaneous wavelength would

be the same everywhere in space and time as shown in Fig. 5.1. GDD and aberrations,

on the other hand, cause color variations. For the aspheric lens, we expect color

variations due to both GDD and chromatic aberration, but, for this particular lens,
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the effects of chromatic aberration are small compared to those due to GDD, so in all

of the plots in Fig. 5.5, the redder colors precede the bluer colors, as expected when

material dispersion is present.

While chromatic aberration plays only a small role in the pulse temporal phase, it

does become evident, however, in the pulse’s temporal intensity and its distortions.

For a lens free of aberrations, the pulse fronts are curved and perfectly symmetrical

about the focus, and flat at the focus (see Fig. 5.1). Chromatic aberration shifts the

position of the flat pulse front to a a position of L = f
n−1

(
− λdn

dλ

)
after the focus,

resulting in pulse fronts that are not symmetric about the focus [68] and as described

in section 5.1.3. In Fig. 5.5, it is clear that the pulse fronts are, in fact, not symmetric

about the focus, and the pulse front is flat at z = 1.5 mm in both the simulation and

experimental data.

The second lens we considered was an f0 = 50 mm achromatic doublet in the

form of a meniscus lens consisting of a biconvex BAFN10 lens cemented to a concave-

convex SF10 lens. This lens was designed to be free of chromatic aberrations for

visible light. The measurements and simulations of the focusing pulses are shown in

Fig. 3.

In Fig. 5.6, most of the color variation is again due to the GDD of the lens.

Because the doublet is very thick (9.8 mm) and, made of very dispersive glass, it

introduces significant GDD, and this lengthens the pulse by about three times more

than the aspheric lens does (using rms temporal width of the pulse averaged over x).

Also, the pulse fronts are not symmetric about the focus, revealing the presence of

chromatic aberration.

We included both spherical and chromatic aberrations in the simulations of this

lens. While the two lenses in the doublet do not manage to cancel out the chromatic

aberration, they also greatly reduce the spherical aberration, and no noticeable effects

of it can be seen in data shown in Fig. 5.6.
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Figure 5.6: Measured and theoretical spatiotemporal field of a pulse focused with an
achromatic doublet
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In the next set of measurements, we measured the focus using a BK7 plano-convex

lens with a focal length of 50 mm. The results for this lens are shown in Fig.

Figure 5.7: Measured and theoretical spatiotemporal field of a pulse focused with a
plano-convex lens

This lens contains noticeable amounts of both chromatic and spherical aberration.

The most striking feature is the ripples in the spatial profile before the focus mainly

at z = -0.7 mm. According to our simulations, the spherical aberration introduced

by this lens increases the focused rms spot size by almost a factor of two. Just as

with the two previous lenses, the asymmetrical pulse fronts with respect to the focus

are a result of chromatic aberration. The pulse front term introduced by spherical

aberration has the opposite sign of that due to chromatic aberration as shown in Eq.

5.8. As a result, the flat pulse front occurs closer to the focus than it does for the

aspheric lens, when no spherical aberration is present. Just as with the two previous
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lenses, most of the color variation in this data is due to the GDD introduced by the

BK7 glass.

In the case of spherical aberration, the focus is not well defined in position z. To

determine the actual value of z for the focus in the measurements, we picked the value

that resulted in the best match between the simulations and the experiments. Here,

as in all of the measurements, z = 0 refers to the location of the geometric focus.

There is a small discrepancy between the simulations and experimental data, in

the color, or chirp. In our simulations, we used the center thickness of the lens in

the spectral phase. It is possible that we made the measurement slightly off axis (so

y was not exactly equal to 0), so that the part of the beam that we were measuring

did not pass through quite as much glass. Other than this minor discrepancy, the

measurements are in good agreement with the simulations

Next we investigated the focal region of a higher NA BK7 lens which had a focal

length of 25 mm. The NA of the focus was 0.085 (using the 1/e2 full width of the

beam before the lens). The simulations and experiments shown in Fig.5.8 are in good

agreement. These results look very similar to those shown in Fig.5.7 except that the

ripples are more apparent due to the increase in the focal length of the lens and the

pulse is more chirped because this lens was thicker(12.8 mm center thickness instead

of 6.3mm). This lens also has chromatic aberrations present which cause the pulse

fronts to be asymmetric about the focus. The aberrations in this lens increase the

focused spot size by a factor of 3.

In our final experiment, we measured the focal region of a plano-convex ZnSe

lens. In this measurement, we felt that it would be helpful if we canceled out most

of the material dispersion so that the effects of the lens aberrations would appear

more clearly. Because SEA TADPOLE measures only the spectral phase difference

between its two arms, we were able to cancel out the dispersion of the lens by placing

a ZnSe plate whose thickness was equal to the center thickness of the lens into the
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Figure 5.8: Measured and theoretical spatiotemporal field of a pulse focused with a
higher NA plano-convex lens
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reference arm. Because the radius of curvature of this lens is so large (71.46 mm),

this flat plate accurately canceled out the lens material dispersion. As a result, this

set of measurements shows what distortions would remain at the focus after perfect

material dispersion compensation using, for example, an ideal pulse compressor or a

one-dimensional pulse shaper before the lens. And to fully compress this pulse, or

to remove these distortions, a two-dimensional pulse shaper, such as the one in this

reference would be needed [84] (A different delay has to be introduced at each r to

compensate for radially varying group delay).

Figure 5.9: Measured and theoretical spatiotemporal field of a pulse focused with a
znse lens

The results are shown in Fig. 5.9. While the ZnSe lens has much more chromatic

aberration than the other lenses ( 5 times that for PMMA and BK7 using the chro-

matic aberration coefficient as derived in reference [68]), it actually has less spherical
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aberration than the BK7 lens (by a factor of about 2.5 using the spherical aberration

coefficient from reference [81]). Therefore, essentially all of the distortions and color

variations seen in the data are due to chromatic aberration. For this lens, even if the

spectral phase of the pulse at the focus is constant, the pulse duration is still 29%

longer at the focus (with a bandwidth of 25 nm) than the transform-limited pulse

duration-due to the chromatic aberration.

As with the previous lenses, the pulse fronts are asymmetric about the focus due

to the chromatic aberration. For this lens, the flat pulse front occurs 6.5 mm after the

focus, which is out of the range of our data. At the focus, the chromatic aberration

results in some ripples, which are marked with the white dots. Note that, before the

focus, the redder colors have a larger spot size, and they are ahead in time. Similarly,

the pulse is bluer closer to x = 0. Both of these effects occur because chromatic

aberration causes the bluer colors to focus before the redder colors.

To better show the distortions present in this pulse, we have produced a movie

of it. See Fig. 5.10. The movie consists of 16 measurements of E(x, t) at different

values of z, which we interpolated along the z axis to yield 114 frames. These images

range from z = -1.4 mm to z = +1.6 mm. Observe the color of the pulse close to z

=0 (where the spot size is minimal), and note that it changes from blue, to green, to

yellow, and finally to red, which is due to chromatic aberration.

The input beam that we used was the pulse directly out of our oscillator without

spatial filtering in order to avoid seeing any aberrations from the lenses in the spatial

filter in our measurements. We assumed that the input beam was relatively free of

aberrations, and, because the agreement between our simulations and experiments is

generally good, it is evident that this assumption is largely correct. For example, if

the input beam had had chromatic aberrations that were comparable in size to those

introduced by the lenses, then the flat pulse front in Fig. 5.5 would not have occurred

close to the z = 1.5 mm plane. It is also obvious that very little spherical aberration
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Figure 5.10: (Click on the above picture to start the movie) E(x, t) where each frame
is a different z.
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is present in the input beam because signs of spherical aberrations (ripples in the

intensity versus x) are not present in all of our data. By the same logic it is clear that

the lens was well aligned, meaning that the beam passed through the center of the

lens and that the lens was not tilted with respect to the beam’s path. If this had not

been the case, then aberrations such as coma and astigmatism would be present in the

measurements, and the measured data would not have agreed with the simulations

(in which we only included chromatic and spherical aberrations). It is possible that

the small discrepancies between our measurements and simulations can be attributed

to the input beam or the alignment of the lens.

5.4 Measuring focusing pulses in the presence of linear
spatiotemporal distortions

Linear spatiotemporal distortions refer to xω, xt, kxx or kxω cross terms in the elec-

tric fields of ultrashort pulses [27, 85]. Examples of these distortions include angular

dispersion (where different colors have different k-vectors), spatial chirp (where differ-

ent positions on the beam have different center frequencies), or pulse front tilt (where

the arrival time of the pulse varies linearly from the top of the beam to the bottom of

the beam). The distortions due to the radially varying group delay (see section 5.1.3

that are introduced by lens aberrations are higher order spatiotemporal distortions

(they are ωx2, ω2x, or ωx4 couplings).

Unfortunately linear spatiotemporal distortions are difficult to avoid because they

are produced by diffraction gratings and prisms which are present in nearly every

application of ultrashort pulses including the laser’s themselves. Just as with lens

aberrations, linear spatiotemporal distortions are unwanted because they make the

pulse duration longer and therefore the intensity weaker. As we mentioned earlier

in this chapter, ultrashort pulses are almost always used at a focus. When linear

spatiotemporal distortions are present, these distortions of course remain at the focus

and make the pulse duration and the spot size there larger.
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Linear spatiotemporal distortions have been measured in collimated beams in the

past [29, 86, 87]. Here we measure the focal region of pulses that contain linear spa-

tiotemporal distortions before being focused to study the effects of these distortions

on the focus. To test our measurements we modeled these foci using the method

described in 5.1.2. To calculate the spatiotemporal field just before the lens and ac-

count for the linear spatiotemporal distortions that we introduced, we used a method

know as Kostenbauder matrices [27, 88], which is just a matrix method of solving the

Huygens-Fresnel integral to second order (see the reference for more information).

In the first measurements we focused a beam which had angular dispersion and

then measured the spatiotemporal field in and around the focus. To introduce angular

dispersion we used the -1 order of a ruled reflection grating (300 g/mm) which we

placed just before (by 17.5 cm) the focusing lens. The results of this experiment are

shown in Fig. 5.11.

The experiment and simulation are in good agreement. Because a lens is a Fourier

transformer, the angular dispersion introduced by the grating becomes spatial chirp

at the focus. As a result, the pulse front becomes flat at the focus, because the

pulse front tilt in this case is due to angular dispersion. Because the magnification

of the optical system becomes negative after the focus, the order of the colors and

the sign of the pulse front tilt change after the focus. This measurement essentially

shows the pulse in the focal region of a spectrometer. The lens that we used in

this experiment is the aspheric lens from Fig. 5.5, though the distortions due the

chromatic aberrations are not noticeable because theses effects are much larger than

those due to the chromatic aberrations.

In another similar measurement we added spatial chirp to the pulse before focusing

it (also with the 50mm focal length aspheric lens). To do this we propagated the pulse

through a pair of parallel transmissive diffracting gratings with grove densities of 700

grooves/mm and a spacing of 25 mm between the two gratings. After the first grating
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Figure 5.11: E(x, z, t) in the focal region of beam which had angular dispersion
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Figure 5.12: E(x, z, t) in the focal region of beam which had spatial chirp
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we used only the -1 order and at the second grating we used the +1 order so that

the outgoing beam was parallel to the incoming beam and it contained no angular

dispersion, only spatial chirp (see reference [23]). Then we focused this beam and

made the measurement that is shown in Fig. 5.12.

Again, because a lens is a Fourier transformer, at the focus the spatial chirp should

vanish and there should only be angular dispersion present. As you can see at z=0,

there is still a little spatial chirp present. This is likely because the two diffraction

gratings were not perfectly parallel so that there is a little angular dispersion present

in this beam as well (which becomes spatial chirp at the focus). In practice it is

difficult to get the gratings to be exactly parallel, and at best we can align them

with ∼ 3◦ accuracy. To match our simulations to the measurements we said that the

second grating was off by 1◦ (too small to see in the lab) and you can see that makes

the simulations agree reasonable well with the measurements.

Both of the measurements shown in the section show the importance of having

a pulse that is free of linear spatiotemporal distortions in order to achieve a small

homogenous focused spot size with a short pulse duration.

5.5 Spatial resolution in scanning SEA TADPOLE

When using scanning SEA TADPOLE to collect spatial information about a focusing

pulse, a few questions arise. For example, what is the spatial resolution achieved by

sampling the beam with a fiber, and what is the acceptance angle of the fiber. In a

previous paper [55], we argued that these two questions are equivalent, and so if a

SEA TADPOLE device has sufficient spatial resolution to sample a given focus, then

it also has sufficient angular acceptance to measure that focus. In this section we

consider this issue in more detail, further clarifying this point.

To determine the acceptance angle and spatial resolution of the fiber, we consider

the effect of the fiber’s finite spatial resolution as a convolution just as we did with
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the spectral resolution is chapter 3. For this discussion, we will ignore the effects of

the finite spectral resolution and we will assume that the fiber’s spatial resolution

along the x and y axes is the same so that we can only consider one transverse spatial

dimension.

When the fiber spatially samples the field of the focusing pulse Eunk(x, ω), this

field is spatially averaged over the fibers mode (or the aperture) so that any spatial

features that are as small as the the mode size of the fiber (or the averaging window)

get smeared out. Therefore, the spatially sampled field can be written as Eunk(x, ω)⊗

H(x) where H(x) is the point spread function, or the spatial response function that

is given by the shape of the fiber’s mode.

The sampled field can be Fourier transform to the k domain, where it becomes,

Eunk(kx, ω)⊗ h(kx). The function h(kx), which is referred to as the transfer function

[89], can be viewed as an angular window, just as the temporal response function h(t)

forms a time window. This product of the field with the angular response function is

zero anywhere that h(kx) is zero, so only a certain range of k-vectors will be coupled

into the fiber. Therefore, because the fiber has a finite spatial resolution, it will

also have a finite acceptance angle where we define the acceptance angle is width of

the transfer function. The above Fourier transform relation shows knowledge of the

spatial resolution will yield the acceptance angle and visa versa.

To derive an expression for the acceptance angle of a single-mode fiber, the power

transmitted into the fiber should be calculated shown as below.

T =
[ ∫ ∞
−∞

dx

∫ ∞
−∞

dyEfiber(x, y)E∗unk(x, y)
]2

(5.9)

This integral is a measure of the spatial overlap of the mode of the fiber with the

mode of the unknown pulse [90, 91]. Efiber(x, y) is approximately equal to a Gaussian

with a width (full width at e−1) equal to the single-mode field diameter d of the fiber.

For a Gaussian beam with a waist size (diameter) w (where w > d) with an incident

angle into the fiber (with respect to the fiber axis) of θ, it has been shown [91] that
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the power coupled into the fiber as a function of θ is given by:

T =
( 2dw

d2 + w2

)2

exp
[
− 2(dπwθ)2

(w2 + d2)λ

]
. (5.10)

In order to isolate the effects of transmission loss due to a potentially large incident

angle, we consider the power transmitted over the cross sectional area of the incoming

beam overlapping with the fiber’s core by setting d to w so that Eq. 5.10 becomes,

T = exp
[
− (dπθ)2

4λ2

]
. (5.11)

Equation 5.13 shows that the transmission of the unknown pulse into the fiber has a

Gaussian dependence on the incident angle. If we take the acceptance angle of the

fiber θmax to be the full width of T (θ) at e−2, then we find that it is given by 2λ
πd

.

The angular window h(kx) is identical to T (θ) (where θ ≈ kxλ0

2π
), and the fiber is

Gaussian angular filter. Thus, as long as we measure pulses whose NA’s are less than

2λ
πd

, Eunk(x, λ) will experience minimal angular filtering and be accurately sampled by

the fiber because T (θ) is relatively flat in this region.

Because we know that the spatial response function is a Fourier transform of h(kx)

we can write it as follows:

H(x) = exp
[
− (2x)2

d2

]
. (5.12)

If we take the spatial resolution of the fiber to be the full width of H(x) at e−2 , then

we get the expected result that it is equal to the mode diameter of the fiber(d).

Because H(x) and h(kx) are a Fourier pair, θmax is related to the mode diameter

as shown above, so we can see that the acceptance angle of the fiber is determined by

the mode diameter. Therefore, if we require that the focusing pulse to be measured

has an NA that is less than the acceptance angle of the fiber, then we get the condition

that

2λ

πw
<

2λ

πd
(5.13)

where we have assumed that the focusing pulse is Gaussian with a focused spot

diameter of w. From the above equation, we can see that this requirement on the
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NA is equivalent to requiring that the mode diameter of the fiber be smaller than

the focused spot size of the pulse, which is necessary if we are to spatially resolve

the incoming pulse. Therefore, if we use a fiber with sufficient spatial resolution for

a given focus, then it will also have a sufficient angular acceptance.

In the above discussion we assumed that the incoming Gaussian beam was free

of aberrations. Because aberrations will only increase the size of the focus, requiring

that the fiber mode be less than the size of the focus when no aberrations are present

will be sufficient. And if aberrations are present, the fiber will still accurately sample

the focus.

As we have explained in chapter 3, we find that it can be advantageous to measure

the spectrum using the interferogram rather than directly measuring it because the

spectral resolution of SEA TADPOLE can be better than that of a spectrometer.

Because we also interferometrically measure the spatial intensity of the focusing pulse

(we reconstruct E(x, y, z, ω)), we achieve a spatial-resolution improvement in SEA

TADPOLE compared to what we would get with direct measurements of the spatial

intensity using the same fiber. This is illustrated in the measurement shown in Fig.

5.13 where we measured E(x, ω) with SEA TADPOLE for a Bessel beam that had

very fast oscillations. To make these measurements we used a single mode fiber with

a core size around 5 µm. You can see that the fringe spacing is only 3.4µm in the

beam’s spatial intensity but it is still clearly resolved in our measurement.

5.5.1 Measuring the transfer function of an optical fiber

Just to confirm our analysis above, we measured h(kx) for the single mode fibers

that we used in our measurements and fourier transformed this to obtain H(x). To

measure h(kx), we measure the coupled power of a large Gaussian beam into the fiber

as a function of the angle that the beam’s axis makes with the fiber’s axis as was done

in reference [89]. To vary this angle, we mounted the fiber’s end to a rotation stage
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Figure 5.13: Spatial intensity measured with SEA TADPOLE for a Bessel beam

translated the fiber back the center of the beam after each rotation (just by optimizing

the power at each angle). Figure 5.14a shows a schematic of the experimental setup

for this, and the results of the measurement are shown in Fig. 5.14b. As you can

see, the measured transfer function is approximately Gaussian as we expected. The

measurement is a little noisy which is due to the fact that very little light was coupled

into the fiber because our beams spot’s area was about 32,000 times larger than the

of the fiber’s mode. The acceptance angle of the fiber can be taken as the full width

of T (θ) at e−2 which is 21◦, giving a numerical aperture of 0.17 which is in close

agreement to that specified by the manufacturer which was 0.14.

This verifies that scanning SEA TADPOLE should be able to accurately sample

focusing pulses with numerical apertures less than 0.17.
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(a) Schematic to measure h(kx) (b) Measured h(kx) for a single mode optical
fiber

Figure 5.14: Measuring the transfer function of a single mode fiber

5.6 Conclusions

In this chapter a technique for directly measuring the spatiotemporal electric field of

a focusing pulse was discussed. To make these measurements, we spatially sample

the focusing beam with by scanning the entrance optical fiber of SEA TADPOLE. To

illustrate our technique, we measured E(x, z, t) for an aspheric lens, an achromatic

doublet, and two plano-convex lens, all having an NA’s = 0.04, or 0.09. We also

measured the focus of a ZnSe lens with chirp compensation, in order to illustrate

the distortions that can remain in focused pulses even after perfectly compensating

for the material dispersion introduced by the lens’ center thickness. To confirm our

measurements, we performed simulations by numerically propagating Gaussian pulses

through the lenses used in the experiments. The agreement between the simulations

and experiments is good.
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CHAPTER VI

MEASURING THE SPATIOTEMPORAL ELECTRIC

FIELD OF ULTRASHORT PULSES WITH SUB-MICRON

SPATIAL RESOLUTION

6.1 Introduction and background

In the previous chapter a version of SEA TADPOLE for measuring focusing ultra-

short pulses was described. As we explained, scanning SEA TADPOLE is limited to

measuring foci with numerical apertures less than that of the single mode fiber which

is around 0.15. In this chapter we discuss a version of scanning SEA TADPOLE

that uses near field scanning optical microscopy NSOM fibers probes to achieve sub-

µm spatial resolution so that tightly focused ultrashort pulses and the interesting

distortions that they experience can be measured [92].

6.1.1 Motivation

In Fig. 5.2 in Chapter 5 we showed a simulation to illustrate that very complicated

distortions can occur when ultrashort pulses are focused due to commonly occurring,

and difficult-to-avoid lens aberrations, and this is also shown in many publications

[15, 66, 68, 81, 93–96]. For example, the so called “fore-runner pulse” which is an

additional pulse well ahead of the main pulse, has been predicted to occur at and near

the focus when chromatic aberrations are present and the lens is overfilled [68, 97]

(This is the case that we simulated in Fig. 5.2). Calculations have also shown that se-

vere spherical aberrations produce Bessel-like pulses (meaning that they have similar

properties to “X-pulses” such as those described in [16]), which have spatiotemporal
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intensities shaped like an “X” [15, 81]. Other effects such as radially varying group-

delay dispersion (see section 5.1.3), or a pulse that is more chirped at its center than

on its sides, are expected to occur at the foci of some lenses. Because focused-pulse

distortions are usually spatiotemporal and require a spatiotemporal measurement

technique simultaneously having sub-micron spatial resolution, femtosecond tempo-

ral resolution, and high spectral resolution, many of these distortions have never been

directly observed.

Indeed, the focus is a very important place to measure a pulse because this is where

most experiments take place, so the quality of experiments often greatly depends on

the pulse’s properties there. For example, in multi-photon microscopy, the resolution

of the microscope depends on the spot size of the focus, and the two-photon excitation

efficiency (and hence the microscope sensitivity) depends on the pulse duration. As a

result, a transform-limited pulse and diffraction limited spot size are usually desired.

Ultrafast micro-machining has similar requirements. When spatiotemporal distor-

tions are present, such as those that can result from lens aberrations, it is difficult to

compress the pulse, and a two-dimensional, or a spatiotemporal pulse compressor is

needed.

In Chapter 2 we described SEA TADPOLE which can measure very long pulses

using a simple experimental setup and we demonstrated that this technique can ac-

curately measure complex shaped pulses with time bandwidth products as high as

400. And as explained in chapter 5, because the entrance to SEA TADPOLE is a

single-mode optical fiber, it also has spatial resolution, which is limited only by the

fiber mode diameter (in our initial work, we used a fiber with a 5.4 µm diameter).

By scanning the fiber in space and making many measurements of Eunk(ω) at differ-

ent positions all along the focusing beam’s cross section, we have used this device to

measure the spatiotemporal electric field of pulses [55]. As long as the focus to be

measured has a numerical aperture (NA) less than that of the fiber, SEA TADPOLE
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has sufficient spatial resolution and acceptance angle to measure the spatiotemporal

electric field of a focusing pulse. This has allowed us to measure the spatiotemporal

field of focused pulses with NA’s of up the 0.12 or with focused spot sizes larger than

5.4µm.

In this chapter another new version of SEA TADPOLE is described, which uses

an NSOM (Near Field Scanning Optical Microscopy) fiber probe in place of the single

mode optical fiber to extend our spatial resolution to be < 1 µm [98, 99]. NSOM has

been used in the past to measure the spatial intensity distribution of tightly focused

continuous-wave lasers [100]. Using an NSOM probe with an aperture diameter of

500 nm, we have measured Eunk(x, y, z, t) (where the unknown pulse is the focusing

pulse under investigation) for focused pulses with NAs as high as 0.44 and features in

their intensity < 1µm. Using this device we observe some of the severe focused-pulse

distortions previously predicted, but never directly observed, such as radially varying

group-delay dispersion, an “X-shaped pulse”, and the “forerunner pulse”.

6.1.2 Numerically modeling focusing ultrashort pulses with high NA’s

In section 5.1.2 we showed how to calculate the spatiotemporal field for focused pulses

using the Fresnel integral, but this approach is only valid for numerical apertures is

less than 0.4 (even less according to this reference [101]). Now that we are using

NSOM fibers in SEA TADPOLE, we have no restrictions on the NA of the pulse that

we can measure (NSOM probes with apertures as small as 10nm are available) and

therefore we need a simulation that does not have this restriction.

There are several approaches to modeling high numerical aperture pulses, and

here we choose to use the approach described in [15]. The Fresnel integral is an

approximation of the Kirchhoff integral which is shown below.

E(x, y, ω, z) ∝
∫ ∞
−∞

dx1

∫ ∞
−∞

dy1E(x1, y1, ω, 0)Θ(x1, y1, ω)
exp (ikρ)

ρ2
z (6.1)

ρ =
√
z2 + (x1 − x)2 + (y1 − y)2 (6.2)
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In Eq. 7.2, E(x1, y1, ω, 0) is the field just before the lens and Θ(x1, y1, ω) is the

intensity and phase introduced by the lens (So E(x1, y1, ω, 0) × Θ(x1, y1, ω) is the

field just after the lens). This integral takes the beam just after the lens, and says

that each point on the beam emits spherical waves that have an intensity and phase

of the field just after the lens at that specific point. Then the spherical waves after

propagating a distance z are summed together to give the field E(x, y, ω, z) which is

the field after the beam has propagated a distance z from the lens. This is illustrated

in Fig. 6.1a.

It might seem that we should just tell our computer to evaluate Eq. 7.2 and then be

done. But unfortunately the phase introduced by the lens (the phase of Θ(x1, y1, ω))

oscillates very quickly for high NA lenes and it often takes 20,000 or more sampling

points to model Eq. 7.2 [101] which will take all day to run in MATLAB. So we would

like to use a different approach.

One trick involves parameterizing the field just after the lens using a reference

sphere rather than a reference plane. The reference sphere is centered on the focus

and its radius is equal to the focal length of the lenses [102]. This geometry is shown

in Fig. 6.1b. We will refer to the coordinates on the reference sphere as px and py.

(a) Reference plane (b) Reference sphere

Figure 6.1: Two different approaches to solving Kirchhoff’s integral for a focusing
beam
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The next step is to the write an expression for the field at the focus (z = r), where

ρ and E(x, y, ω, z), and Θ(x, y, ω, z) are written in terms of px and py. Equation 6.3

shows the new expression for ρ.

ρ = f
[
1 +

x2 − 2pxx

f 2
+
y2 − 2pyy

f 2

]1/2

≈ f
[
1 +

2pxx

f 2
+
pyy

f 2

]
(6.3)

The approximation used for ρ above assumes that the angle between the radius of

the sphere and ρ is small, which is the case regardless of the NA.1 Using this value

of expression of ρ, the field of the pulse at the focus reduces to the Fourier transform

shown below which was taken from [101].

E(x, y, ω, f) ∝

exp
[ik(x2 + y2)1/2

2f

]
×F (E(px, py, ω, z = 0)×Θ(px, py, ω, z = 0))

(6.4)

To find the field of the pulse near the focus, Eq. 6.4, can be propagated to another

plane using what is know as the “angular spectrum of plane waves” and is described in

detail in [80]. This approach uses the fact that Kirchhoff’s integral can be expressed

as a convolution and therefore if it is fourier transformed it becomes a product of the

initial field with a kernel given by the following equation.

Ps(kx, ky) = exp
[
ikz

√
1−

(2πc

ω

)
(k2
x + k2

y)
]2

(6.5)

where kx,y = − ω
2πf

px,y. Then the field at some distance from the focus δz reduces to

a very simple Fourier transform which is show below.

E(x, y, ω, f) ∝ F
[
(E(px, py, ω, z = 0)× Ps)

]
(6.6)

The final step is to change from rectangular to cylindrical coordinates because we

will continue to use lenses and beams with cylindrical symmetry and this will allow

us to reduce the number of variables in the integral by 2. Note that, a cylindrically

1The approximation that is used in the Fresnel integral assumes that the angle between the z
axis and ρ is small, and this is only true for lower NA foci
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symmetric two-dimensional Fourier transform reduces to a Hankel transform [103],

so the Fourier transform in 6.6 becomes a Hankel transform after changing it to

cylindrical coordinates and integrating out θ (the polar angle). The final expression

that we will evaluate is shown below.

E(r, ω, z) ∝
∫ ∞

0

dprprJ0(prrk0/f0)E(pr, ω, 0)Ps(kr)P (pr) exp
(
iϕ(pr, ω)

)
. (6.7)

In the above equation pr =
√
p2
x + p2

y, kr =
√
k2
x + k2

y, J0 a bessel function of the first

kind of order 0, Ps is the lens’s aperture function and ϕ(pr, ω) is the phase due to

the lens’ aberrations. The expression for ϕ(pr, ω) is given by 5.4 from chapter 5 (just

substitute pr for r).

The advantage to using the reference sphere is that the spherical part of the phase

introduced by the lens can be left out when writing the initial field as E(px, py, ω, z)

so that it requires a lot less sampling points 2. Using the spherical coordinate system

the field just after the lens will only have a phase which is that due to the aberrations

shown in Eq. 5.4. The quadratic term (r2k/2f) due to focusing can be left out,

because with respect to the spherical reference frame, this term is a constant. To

write the spatial amplitude of E(px, py, ω, z), we just have to coordinates from r to

pr which can be done using pr = fo(tan( r
fo

)) where r =
√
x2

1 + y2
1. Just as we did

for all of our simulations in chapter 5, for the simulations in this chapter we take the

pulse just before the lens to have Gaussian spectrum and spatial intensity and use

the experimental parameters for the bandwidth and the spot size. To calculate the

phase due to aberrations (ϕ) we use the formulas in Eqs. 5.4, 5.6, and 5.7.

Note that the Kirchhoff integral is still a scalar approximation to Maxwell’s Equa-

tions, and therefore it does break down at some point because it ignores the fact that

there are many different polarizations (or k-vectors) present in a tightly focusing

2If you compare the paraxial diffraction integral that we used in chapter 5 to the non-paraxial
one derived above you will see that this there is the difference
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beam. In reference [100], it was experimentally demonstrated that polarization ef-

fects become important (meaning that Kirchhoff’s integral breaks down) at numerical

apertures that are around 0.8 and higher.

Appendix D shows a comparison of the paraxial (Eq. 6.7) to the non-paraxial

diffractions integrals at several different numerical apertures to illustrate when they

give the same results and when they give different results.

6.2 Experimental setup

The experimental setup that we use for the measurements shown in this chapter,

is the same as what we used in for scanning SEA TADPOLE before (show in 5.4)

except that we have replaced the single mode optical fiber with an NSOM fiber probe

as shown in the figure below. The NSOM fiber probe for sampling the focusing pulse

Figure 6.2: Experimental set for scanning SEA TADPOLE with an NSOM fiber probe

is a single mode fiber that is identical (it is the same type of fiber and it has the same

length) to the fiber that is used for sampling the reference pulse except that it has

an NSOM probe at its sampling end. And everything else, including the measured

interferogram and the method of reconstructing Eunk(ω) is identical to what we used
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before for scanning SEA TADPOLE as you can see from 6.2. And also, as we did in

before, to measure the spatiotemporal electric field of the focusing ultrashort pulse

Eunk(x, y, z, ω), we mount the NSOM probe end of the fiber to an x-y-z scanning

stage as illustrated in Fig.6.2. To determine Eunk(x, y, z, t), we just Fourier transform

Eunk(x, y, z, ω).

The NSOM fiber probes that we use were purchased from Nanonics. These are

made by tapering one end of a single mode fiber (the fiber is the same kind of fiber

that we use in the reference arm). The end of the taper is coated using chromium

and gold and a small aperture or hole is left uncoated. In our experiments so far, we

have used probes with aperture diameters of 500 nm and 1 µm because these were

sufficient to measure the pulses that we were interested in. Though in principle, even

the smallest aperture NSOM probes could be used in SEA TADPOLE to achieve even

higher spatial resolution.

Recall that SEA TADPOLE, like all linear interferometers, measures the spectral

phase difference between the two arms of the interferometer. The phase of the refer-

ence pulse can be removed from this difference to isolate the phase of the unknown

pulse. Or if one is interested in the phase introduced by some element that is in the

unknown arm of the interferometer, then the phase difference will provide this. In

this chapter, just as in chapters 2 and 5, we desire the spectral phase introduced by

a lens (at every position within the focus), so, from each interferogram, we retrieve

the spectral-phase difference between the two arms of the interferometer.

6.3 Measuring the transfer function of NSOM probes

As discussed previously in section, when sampling a focusing beam, the aperture

diameter must be smaller than the focused spot size. This simultaneously provides

sufficient spatial resolution and acceptance angle. Thus, a small enough NSOM probe

will accurately spatially resolve the focusing pulse and collect all of the k-vectors from
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the focus.

Because NSOM fiber probes are difficult to manufacture and easy to damage, it

is important to characterize the probe (that is, measure its transfer function) before

making any measurements to assure that the probe will not introduce artifacts in

the measurement, and this characterization can be done is several different ways (for

example see [98, 99]).

Here we make the measurement (just as we did in section 6.3 for the single mode

fibers) by sending a collimated Gaussian beam into the small probe end and measuring

the transmitted intensity as a function of the angle that the probe’s axis makes with

the beam’s axis [89]. Because the Gaussian beam is 1000 times or more larger than the

probe diameter, it is essentially a plane wave and, therefore, any change in intensity

with angle, is due to the NSOM tip transfer function. We only measured the one-

dimensional transfer function and so only rotated the probe in the plane of the table.

This was sufficient for our measurements (see section 6.4) of focusing pulses due to

the rotational symmetry present

Figure 6.3 shows the results of this measurement for two different NSOM fiber

probes. The image on the right shows the transfer function for a 1µm probe that has

Figure 6.3: Measurement of the transfer function of two NSOM probes

a very complicated transfer function. This probe would angularly filter the focusing
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pulse in a complicated way and is therefore not suitable for our measurements. This

probe was likely bumped and damaged. The measurement on the left shows a much

smoother and broader transfer function. As we have discussed in section 6.3, provided

that the NA of the focused beam is less than the NA of the sampling NSOM fiber

probe (which we took to be the sine of the half width at e−2 of the maximum of

the transfer function), the probe will collect essentially all of the k-vectors of the

light at the given point in space and therefore will sample the beam reasonably well.

Therefore, using this probe we can measure foci with numerical apertures less than

0.5. The transfer function shown on the left was smoothed using a window size of 3

points to remove measurement noise.

Because this is an intensity measurement, it will not tell us if the transfer function

is complex (has variations in its imaginary component), which would correspond to a

variation in the phase of the light collected as a function of angle. A badly distorted

probe (such as the one shown on the right of Fig, 6.3), which is not perfectly opaque

outside of the aperture, could have a complex-valued transfer function. But as long as

the NSOM probe really is an aperture, then its transfer function should be purely real.

The measured transfer function for the 500-nm aperture indicates that this NSOM

probe is not distorted, and therefore it is safe to assume that its transfer function is,

not only smooth and broad, but also real. Our results corroborate this conclusion

(see section 6.4).

Another potential source of error in our measurements is spectral filtering of the

collected light by the NSOM probe (the probe could, in principle, collect some colors

more efficiently than others), but we made spectral transmission measurements, as

well, and confirmed that ours did not. Previous papers have also reported that

NSOM probes do not change the spectrum as long as the power is low enough to

avoid nonlinear effects, which it is here [104, 105].
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6.4 Experimental results

Using the 500-nm-aperture diameter NSOM fiber probe that we characterized (shown

on the left in Fig.6.3) above, we measured the spatiotemporal field of foci from several

different lenses in order to test our method.

In all of these measurements, we used our KM Labs Ti:Sa oscillator, which had a

bandwidth of 20 nm (FWHM) or 50 nm for the X-pulse measurement, and we never

introduced more than 10 mW into the NSOM probe (as suggested by Nanonics) to

avoid damaging it. As explained in section 2.3.1, because we measure the phase

introduced by the lens, any spectral phase that the input pulse has, cancels in the

measurement and the pulse that we measure is effectively transform limited before

the lens (47fs, or 19fs). The temporal resolution in our measurement is given by

the inverse of the spectral range of the spectrometer and this was 12fs, though we

generally zero fill the spectral electric field before Fourier transforming to the time

domain using around 1000 zeros to smooth out the measured temporal intensities.

The beam and all of the lenses that we used had rotational symmetry, so measuring

E(x, z, t) was sufficient to test our method, and we only measured E(x, z, t), although

we can also easily scan in y in the future if necessary. To scan the NSOM probe, we

used motorized actuators, which had a minimum step size of 200 nm or better. All

other experimental details for SEA TADPOLE can be found in sections 2.3.1 or 5.2.

6.4.1 Microscope objectives

As our first experimental test, we focused the beam using two different aberration

corrected microscope objectives and measured E(x, z, t) at and around the focus (or

the point where the beam had its smallest spot size). Because the parameters for these

objectives are proprietary, we could not perform simulations to verify these results.

But, even though these objectives are designed for the visible, they have significantly

less aberrations than singlet lenses and instead have significant group delay dispersion
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(GDD) due to the large amount of glass in their multiple elements [15]. Therefore we

made these measurements to verify that the focus from the microscope objectives that

we measured showed a relatively smooth, small, and flat pulse front (as determined by

previous simulation [15]), which would indicate that the NSOM probe was accurately

sampling the focusing beam. The pulse fronts for this measurement (and for the 20x

objective) are flat because the measurements were made so close to the focus.

The first objective that we used was a 10x (f = 16.5 mm, clear aperture diameter

= 7.5 mm, and NA=0.25) microscope objective, and Fig. 6.4 shows the results of this

measurement. Each box in Fig. 6.4 shows the pulse’s amplitude as function of t and

Figure 6.4: Measured spatiotemporal field of a pulse focused with a 10X microscope
objective

x (the transverse position) at a certain distance from the focus (or the point where

then beams spot size was the smallest). The color in the plot shows the instantaneous

frequency of the pulse as indicated by the color bar.

The main distortion seen in the focus is that the redder colors precede the bluer

colors, or that the pulse is chirped, as expected from the GDD introduced by the

multi-element, aberration-corrected refractive lens. Interestingly, the center part of

the beam is more chirped than the sides-due to the radially varying GDD-which is

also expected considering that the center of the objective contains more glass than
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the sides (especially apparent at z = -40 and -20). Other than these two distortions,

the pulse front is fairly smooth, as expected. The spot size of the intensity averaged

over time at the focus of this objective has a FWHM of 3µm.

We measured the focus of a similar, but higher NA, objective (20x, f = 9 mm,

clear aperture diameter = 6 mm, and NA=0.4), and the results of this measurements

are shown in Fig. 6.5. As with the 10x objective, the main distortion seen in the

Figure 6.5: Measured spatiotemporal field of a pulse focused with a 20X microscope
objective

focused pulse is chirp. The pulse from this objective looks more chirped than that

from the 10x objective which is expected considering that a higher NA objective

probably contains more glass. Also, the focused spot of the intensity averaged over t

had a FWHM of 1.8 µm.

In both of the above measurements, we focused the 1mm beam directly out of

the oscillator, which we routinely monitor using a Swamp Optics GRENOUILLE,

which shows it to be free of pulse-front tilt and spatial chirp. As in previous chapters

(chapters 5 and 2) and publications [51, 55], our measurements confirm that this

beam was also free of other spatiotemporal distortions. Were this not the case, then

our SEA TADPOLE measurements would show these distortions as well as those

introduced by the lens.
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Finally, because the beam was much smaller than the clear aperture of the objec-

tives, no edge diffraction effects are seen in these measurements.

6.4.2 Singlet lenses

For the next two measurements, we used a telescope to increase the beam’s spot

size by a factor of four, yielding a FWHM of 4 mm at the focusing lens. To ensure

that minimal aberrations were introduced by the telescope we put a 25 µm pinhole

at the focus of the telescope to spatially filter the beam. This filter also removed

any spatiotemporal distortions that may have been present before the telescope. The

telescope consisted of two plano-convex lenses with focal lengths of 100 mm (25 mm

diameter) and 400 mm (50 mm diameter). The spatial filter did not remove any

aberrations introduced by the second lens (the 400 mm focal length lens), but because

this lens has such a low NA, its aberrations are negligible.

To test our measurements, we also numerically propagated the fields through these

lenses using all of the experimental parameters and the method that is described in

section 6.1.2.

We measured Eunk(x, z, t) for a pulse focused using an SF11 plano-convex lens,

with a diameter of 12 mm and a focal length of 12 mm. The NA of this focus was

0.28 (using the standard definition for Gaussian beams, which is the radius of beam

at e−2 of its peak intensity, divided by the focal length). Figure 6.6 shows the results

of this measurement at the top, and the results of the simulations are shown at the

bottom. The results shown in Fig. 6.6 show good agreement between the simulation

and the experiment. In these plots, z = 0 is defined as the geometric focus, which

we find using the simulations. Because of the material dispersion introduced by the

lens, the redder colors precede bluer colors. The ripples that are seen before the focus

are due to the large spherical aberrations. The smallest of these ripples has a width

of 1µm (looking at the FWHM of a ripple in the intensity versus x at one t), which
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Figure 6.6: Measured spatiotemporal field of a pulse focused with a 0.28 NA SF11
lens
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illustrates our high spatial resolution.

We also made two measurements of a pulse focused with similar plano-convex

lenses for the purpose of observing the Bessel-like X-shaped pulse that occurs before

the geometric focus due to spherical aberrations [81]. In the first of these measure-

ments we used a lens made of BK7 with a focal length of 15 mm and a diameter of 12

mm. This BK7 lens has about the same amount of spherical aberration as the SF11

lens shown above, but much less GDD (by a factor of ∼ 3), which makes it easier

to observe this distortion. We also increased the bandwidth of our laser to 50 nm

(FWHM) when making this measurement.

Figure 6.7 shows the results of the simulation and the measurement for this focus.

For these results we plotted |E(x, z, t)| (the amplitude as opposed to the intensity)

Figure 6.7: Measured spatiotemporal field of a bessel-like pulse
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of the focusing pulse and not the phase so that the shape of the pulse could be more

easily seen. The color in these plots represents the normalized intensity as indicated

by the color bar. The phase of this pulse simply showed that there was positive GDD

and we found good agreement between the simulations and the measurements for

this.

The measurements and the simulations shown in Fig. 6.7 for the intensity are in

good agreement; both show the presence of a Bessel-like pulse between 0.9 and 0.5

mm before the geometric focus. As reported in a previous theoretical paper, extreme

spherical aberrations result in a Bessel-like pulse (characterized by the “X-shape”)

between the marginal (z=-3mm) and the paraxial focus (z = 0) [15, 81]. As far as

0.9mm away (and all the way to the marginal focus) from the geometric focus, most

of the pulse’s energy is confined within a 1µm spot size. It is also interesting to note

that the “X-shaped” part of the pulse travels faster than the main pulse front and

therefore faster than the speed of light which is allowed because this intensity pattern

is due to interference and does not carry any energy [15]. The difference between

this pulse and a real Bessel pulse is that its spatiotemporal shape and its speed of

propagation do change as it propagates and in this case, the Bessel-like pulse only

exists between the paraxial and the marginal foci [15].

The next set of measurements shows an even better measurement of the bessel-

like ”X pulse” (see Fig. 6.8). For these measurements we used a BK7 plano-convex

lens with a focal length of 6mm and an aperture diameter of about 6mm. Again,

considering the beam’s spot size just before the lens, this focus had a numerical

aperture around 0.25. Much like the the data shown in Fig. 6.7, as far as 1.3mm

away (and all the way to the marginal focus) from the geometric focus, most of the

pulses energy is confined within a 1-µm spot size. In this measurement, we were able

to observe the “X pulse” at a point when it does not overlap with the main pulse

front, which we could have observed with the in the previous set of measurements if
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Figure 6.8: Measured spatiotemporal field of a bessel-like pulse
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we had looked made measurements at larger z’s. And, again, it is apparent that the

“X-shaped” part of the pulse travels faster than the main pulse front and therefore

faster than the speed of light.

To better observe this pulse as it propagates, we made a movie out of the data

shown above by streaming together the 30 measurements, and interpolating so that

there are around 200 frames. This movie is shown from the prospective of walking

along with the pulse at the speed of light as it focuses.

(movies/xpulse-lens.avi)

Figure 6.9: (Click on the above picture to start the movie) |E(x, t)| where each frame
is a different z.

The final measurement that we made was of the focus produced by a New Focus

aspheric lens made of CO550 glass with a focal length of 8 mm, an aperture diameter

of 8 mm; the focus had an NA of 0.44. To determine the aberrations in this lens

for the simulations, we performed ray tracing using OSLO [106] and used the lens

parameters provided by New Focus. Because this lens is designed to be used with a
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glass cover slip, which we did not use in our experiment, some spherical aberrations

are present. Figure 6.10 shows the results of the measurement. Again, the results of

Figure 6.10: Measured spatiotemporal field of a 0.44 NA asphere

the simulation and the experiment are in good agreement. The color varies with time

due to GDD and also with the transverse position x due to chromatic aberrations.

Also the redder colors focus later than the bluer colors, so before the focus the blue

is at the center and the red is on the edges of the pulse.

The most striking feature in this data is the presence of the additional pulse, the

so called “fore-runner pulse” than can be seen before the focus. This additional pulse

results from the combination of diffraction at the edge of the lens and chromatic
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aberration [15, 81]. The “fore-runner pulse”, like the “X-shaped” pulse, travels faster

than the main pulse front meaning that it is traveling faster than the speed of light.

Again, because this additional pulse is the result of interference, it does not carry

any energy, so this does not violate the theory of relativity [81]. The FWHM of the

intensity of the additional pulse is less than 1µm. The small amount of spherical

aberration present in this focus increases the intensity of the additional pulse.

Due to chromatic aberration, the color of the pulse also changes as it propagates.

To better visualize this, we made a movie of this pulse focusing by streaming together

21 measurements and using interpolation to generate 150 frames. The movie is shown

in Fig. 6.11 Note that the center of the pulse color at its center changes from blue to

(movies/asphere.avi)

Figure 6.11: (Click on the above picture to start the movie) E(x, t) where each frame
is a different z.

green and then red as it propagates, because different colors are focusing at different

values of z.
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6.5 Other issues and comments

Each time that we moved the NSOM probe to a different z, we also adjusted the path

length of the reference pulse so that there would always be zero delay between the

two pulses. But in our measurements (which are automated), the adjustment did not

always work perfectly, and the delay between the focusing pulse and the reference

pulse was not zero for every value of z. At most it was off by ∼100 fs. Because of

the agreement between the simulations and the measurements, we believe that the

location of the NSOM probe with respect to the focus (or the z value) is still correct

(or very close), and that the varying delay was due to a drift in the reference arm

of the interferometer or the inaccuracy of the stage that moves the reference pulse.

Using the simulation as a reference, we recentered each E(x, t) on the time axis to

the appropriate place. In the future, using better translation stages or adjusting the

delay to be zero within our program, we should be able to fix this problem. We

only had to make this adjustment for the aspheric lens data where we used a smaller

step size in z than in any of the other measurements. In all of our measurements,

measuring E(x, t) at one z typically took about 1 min, so the measurements in Figs.

6.6-6.8 each required ∼ 9 minutes, and the data for the movie required ∼ 20 minutes

to collect. Measuring the X-pulse required taking ∼ 10 times as many points due to

the small features present in the pulse’s large wings, so the data shown in Fig. 6.10

required ∼ 2 hours.

Just as in scanning SEA TADPOLE with fibers, as explained in chapter 5, because

we have not perfectly stabilized our interferometer, it experiences a slow phase drift

that only affects the spatial phase so that we do not measure it well. To illustrate

this, appendix B shows the measured spatial phase information from the measurement

using the SF11 lens shown in Fig. 6.6.
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6.6 Conclusions

We demonstrated a method for measuring the spatiotemporal electric field of focusing

ultrashort pulses with sub-micron spatial resolution, femtosecond time resolution, and

high spectral resolution. We made these measurements using SEA TADPOLE with

an NSOM fiber probe to spatially resolve the focusing pulse. We make multiple

measurements of E(x, t) at many positions throughout the focus by scanning the

NSOM probe longitudinally and transversely in order to measure E(x, z, t).

Before making any measurements, we measured the transfer function of several

NSOM probes in order to find one that had a high enough numerical aperture and

a smooth transfer function so that it would accurately indicate the focusing pulse

at the point of interest. Then using this NSOM probe (the 500-nm diameter one

shown in Fig. 6.3), we tested our technique by measuring the foci produced by two

different microscope objectives. The primary distortion we saw in these foci was chirp

as expected and we observed some radially varying GDD in these measurements.

We also measured E(x, t) at and near the foci produced by two different plano-

convex lenses (NA = 0.28, and 0.23) and an aspheric lens (NA = 0.44). To verify

these measurements, we simulated these foci and found good agreement between the

simulations and measurements. With the NA = 0.23 plano-convex lens, we observed

the X-shaped Bessel-like pulse due to its spherical aberrations. From the measurement

of the focus of the aspheric lens, we made a movie of the pulse focusing. In these

measurements, we were able to spatially resolve features in the intensity smaller than

1 µm, and we observed the “fore-runner pulse”-the additional pulse that appears

ahead of the main pulse before the focus, due to chromatic aberrations and overfilling

the lens. To our knowledge, these are the first measurements of the spatiotemporal

field of the Bessel-like due to spherical aberrations and the “fore-runner pulse”.

The agreement between our measurements and simulations also verifies the validity

of the non-paraxial simulations that we use for calculating the spatiotemporal field
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of focused ultrashort pulses which can be a very useful tool.

In the future using NSOM probes with even smaller apertures, we hope to measure

even more tightly focused pulses such as those from the high NA objectives that are

routinely used in microscopy.
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CHAPTER VII

MEASURING THE SPATIOTEMPORAL FIELD OF

ULTRASHORT BESSEL X PULSES

7.1 Introduction

Due to diffraction, the spot size of a laser beam changes as it propagates, and smaller

beams tend to diffract after less propagation than larger beams. The distance over

which a Gaussian beam can propagate without significantly changing size, or the

so-called “collimated range” is given by
2πw2

0

λ
where w0 is the waist size of the beam

[79].1 This means that a tightly focused Gaussian beam only stays small over a short

propagation distance. For example, a Gaussian beam that has been focused down to

a size of 1µm starts to significantly diverge after propagating only 8µm away from the

focus. This is unfortunate because high intensities are needed for many applications

of lasers, and the focus, or the point with the highest intensity only lasts for a short

distance, limiting the interaction lengths in nonlinear optics and lasers for example.

In mathematical terms, given the electric field at an initial plane (y1, x1, z1), the

field at another plane (y2, x2, z2) that is some propagation distance away, can be

calculated by evaluating the kirchhoff diffraction integral which is shown below.

E(x2, y2, ω, z2) ∝
∫ ∞
−∞

dx1

∫ ∞
−∞

dy1E(x1, y1, ω, 0)
exp (ikρ)

r2
z (7.1)

ρ =
√
z2 + (x1 − x)2 + (y1 − y)2 (7.2)

To say that a beam diffracts, means that this integral changes the shape of the field.

So, if there exists some field that is an Eigenfunction of the diffraction integral, then its

shape would be unchanged by this integral and it could propagate for long distances

1The collimated rage is two times the Rayliegh range
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without diffracting. It turns out that such solutions to the diffraction integral do

exist and these are known as “localized” or “non-diffracting” waves [107]. These non-

diffracting beams can be made using ultrashort pulses so that the field is localized in

both space and time.

In this chapter we show our recent measurements of a specific type of non-

diffracting field known as a Bessel beam. We use our ultrafast laser along with

the Bessel beam generator to make time-localized Bessel beams which are known as

Bessel X pulses. Besides being propagation invariant, Bessel X pulses also have the

interesting property that they propagate superluminally along the z axis.

7.2 Bessel pulses

Bessel X pulses are of great interest because they propagate in vacuum or linear

media over large distances like an optical bullet—without exhibiting any diffraction

or spread in time [108]. Bessel pulses have many applications, such as filament or

plasma generation, and they have even been used for cell transfection [109]. Bessel-X

pulses are a rotationally symmetric localized wave (see [107, 108, 110, 111]) that is

a broad band wave packet of Bessel beams. Their three dimensional intensity profile

I(x, y, z) consists of a bright spot in the center surrounded by weaker interference

rings whose diameter increases with distance away from t = 0, so they look like two

cones extending out in time from the origin. An x− t or x− z slice I(x, t) or I(x, z)

of the pulse resembles the letter “X”. The field of the Bessel X pulse propagates in

the axial (z) direction with a superluminal (in vacuum greater than c) which is not in

violation of Einstein’s causality [111]. It is important to measure these pulses, not only

to observe their interesting and useful properties, but also to aid in their generation

and application. But Bessel-X pulses have a complex spatiotemporal shape, so a

sophisticated spatiotemporal technique with high temporal and spatial resolution is

needed to completely and accurately measurement them.
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Using bessel pulses generated with a diffractive optical element known as a lensacon,

the propagation invariance of the central spot of the beam was observed [108]. The

X-like spatiotemporal shape and the superluminal propagation of the Bessel pulse

was first demonstrated in [111], by measuring cross correlations. In another study,

using an axicon (a conical lens) the propagation speed of a Bessel pulse was deter-

mined to be 1.1c. This measurement was made by ionizing argon gas with the X pulse

[112]. But, to our knowledge, no one has ever made a direct, complete spatiotemporal

measurement of the electric field of a Bessel X pulse.

Here we show direct measurements of “snapshots in flight”, or spatiotemporal

slices of the X-like profile of a femtosecond Bessel X pulse. Our results show propaga-

tion invariance over ≈ 7 cm as well as the superluminal velocity of the Bessel X pulse.

To make these measurements we use scanning SEA TADPOLE which was described

in detail in chapter 5.

7.3 Experimental results and numerical simulations

To generate the Bessel X pulse we used a fused silica axicon with an apex angle of

176 degrees and a KM Labs Ti:Sa oscillator with 40nm of bandwidth.(FWHM)2 The

spot size of the beam at the front surface of the axicon was 4mm (FWHM). The

experimental setup that we used is shown in Fig. 5.4, where the lens in the unknown

beam was replaced with the axicon. We placed the fiber at the vertical center of the

bessel beam y = 0 and scanned in x to measure E(λ, x) at several different values of z

or propagation distances after the axicon. The fields were Fourier transformed to the

time domain to give us E(t, x, y = 0). Note that we could also scan the fiber along

the y dimension to measure E(λ, x, y), but our Bessel-X pulses were approximately

symmetric about the z-axis, so this was not necessary. Our temporal resolution was

2An axicon is a rotationally symmetric prism, or it is shaped like a cone. Refraction of the beam
at the tilted edge, causes it to cross with itself. This crossing region is where the Bessel beam occurs,
and therefore, its speed, spot size and the distance over which it lasts all depend on the apex angle
and material that the axicon is made of.
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8.9fs, and we used zero-filling to decrease the point spacing to 4.6fs. As explained

in sections 2.3.4 and 5.3, SEA TADPOLE measures the spectral phase difference

between the unknown and the reference pulse and for these measurements we placed

extra glass in the reference arm to cancel out the group delay dispersion (GDD)

introduced by the center thickness of the material in the axicon. Therefore the field

that we measure reflects the spatiotemporal phase introduced by the axicon if a pulse

compressor to compensate for the center thickness of the axicon had been used.

We measured E(t, x) at several different values of z or axial distances from the

front surface of the axicon by translating it along the beam’s propagation direction,

and three of these measurements are shown in Fig. 7.1 3. We also performed numerical

Figure 7.1: Measurement (left) and simulations (right) of a Bessel pulse

simulations of the expected field using all of the experimental parameters, and these

results are shown on the right in Fig. 7.1. The two are in good agreement except

that the wings in the z=5.5cm image are shorter in the measurement. This is because

axicons are difficult to machine perfectly and the tip of the cones are always distorted.

Though we have tried to account for this in our simulations, it is difficult to model

3In Chapters 5 and 6 we moved the fiber to measure the field at different propagation distances,
and then also moved the reference fiber by the same amount to keep the pulses temporally over-
lapping. But here we instead moved the axicon closer or further away from the fiber so that the
reference beam path would not have to be changed.
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perfectly, or to know the exact shape of the axicon. SEA TADPOLE also measures

the spatiotemporal phase, but because we compensated for the glass in the axicon,

this phase is transform limited, or the color of the pulse is the same everywhere in x

and t. So here we only show the amplitude.

There are several interesting features in this data. The central maximum of the

pulse has a width of ≈ 20 µ m, which remains essentially unchanged in shape from

z = 5cm through z = 13.5cm, and in our measurement at z = 13.5, the interference

pattern is just beginning to change due to the axicon aberrations/imperfections.

Also, the Bessel X-pulse’s superluminal speed is apparent in these plots. SEA

TADPOLE measures the pulse’s arrival time with respect to the reference pulse which

is just a simple Gaussian (it is the pulse directly out of our laser) that travels at the

speed of light (c). Therefore if the Bessel X pulse were traveling at the speed of light

then at each z its spatiotemporal intensity would be centered at the same time (here t

= 0 and emphasized with the white line), but it is easy to see that this is not the case.

From our axicon’s apex angle and from the simulations, we find that the Bessel X

pulse’s speed should be 1.00013c. Therefore, over a distance of 8cm, the Bessel X pulse

would lead our moving reference frame (the reference pulse) by 35 fs. In our results,

the center of the pulse is ahead in time by 32fs after propagating from z = 5.5cm to z

= 13.5cm, which is in good agreement with our theoretical prediction. To verify this

result, we repeated the experiment several times and consistently measured the time

shifts predicted for this axicon. We also realigned the axicon in between these trials

to assure that this delay was not due to (or significantly affected by) misalignment of

the axicon’s scanning stage.

7.4 Conclusions

In conclusion, using SEA TADPOLE, we have made the first (to our knowledge)

direct spatiotemporal measurements of Bessel X pulses, and we verified these results
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with simulations. We demonstrated both the propagation invariance of the Bessel X

pulse and its superluminal axial group velocity which we determined to be around

1.00012c which is within 0.001% error of the expected value.
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CHAPTER VIII

DIFFRACTION IN THE TIME DOMAIN

8.1 Introduction

Diffraction—or the change in a light field due to a boundary, or an obstruction—

is a very old and well-known topic which dates back at least to Lenardo da Vinci

[82]. Though the theory of diffraction has been around for a long time, the tradi-

tional methods of solving diffraction problems are still often difficult to use, and give

unintuitive results.

In most textbook examples, diffraction is presented as a spatial effect that causes

holes created by the obstruction to gradually get filled in as the beam propagates. But

in general, diffraction usually happens anytime that a beam propagates and even when

the propagates is through free space or in the absence of an obstruction, or optical

element. The electric field after different propagation distances can be calculated

using an appropriate version of the diffraction integral (see for example sections 6.1.2

and 5.1.2). While diffraction effects are easy to understand in the far field where they

can be treated as a Fourier transform of the field just after the boundary, in the near

field the diffraction pattern can be quite complicated.1 Figure 8.1 shows two standard

examples of near field diffraction intensity patterns for monochromatic light. Figure

8.1a shows the intensity as a function of x at different propagation distances after

a circular aperture. The second example 8.1b, shows the diffraction of a Gaussian

beam by a disk which makes a hole in the beam. This results in the exotic “spot of

Arago”, or the bright spot at the center of the hole that appears after the beam has

1Far field diffraction refers the case when the distance from the boundary z is at least several
orders of magnitude greater than πD2

λ where D is the size of the boundary. Diffraction at distances
smaller than this is referred to as near field diffraction
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(a) Diffraction of a Gaussian beam off of an aperture

(b) Diffraction of a Gaussian beam off of a disk (the spot of Arago)

Figure 8.1: One-dimensional diffraction examples
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propagated a few centimeters [82, 113]. Surprisingly, the hole fills in from the center

first. Both of these examples are quite strange and difficult to explain other than by

saying that this is what diffraction integral and Maxwell’s equations tell us 2. And of

course, these very old results have been verified by many experiments.

In this chapter, we show the first measurements of diffracted light fields in the

time domain. We use ultrashort pulses as the light source and SEA TADPOLE

to measure the diffraction pattern in both space and time. As we will show, the

diffraction effects experienced by ultrashort pulses—due to being well localized in

both time and space—are different than those experienced by other light sources

[114]. It turns out that for ultrashort pulses, diffraction effects are not just spatial,

but spatiotemporal meaning the pulse is changed in both space and time. We will also

attempt to explain our results using a simple and elegant, but somewhat forgotten

theory of diffraction known as the boundary wave diffraction theory.

8.2 Boundary wave theory of diffraction

The idea of the boundary wave diffraction theory of light was intuitively conceived

by Thomas Young, who thought that a diffracted field should be equal to a sum

of two contributions: one wave that propagates unobstructed through the boundary

and in accordance with geometric optics, and another wave due to the interference

of spherical waves that are emitted all along the boundary, or the “boundary wave”

[115]. While the more common formulation of diffraction using the Kirchhoff integral

involves summing up spherical waves from every point (x, y) on the initial plane

(including the area where there is no obstruction), Young’s approach is simpler, and

it turns out be equivalent. But nevertheless, his theory was temporally forgotten

and finally rigorously formulated and proven to be consistent with the Kirchhoff

2The diffraction can be understood as summing up spherical waves that are emitted at every
point (x, y) on the initial plane. But, even with this qualitative explanation of the integral, it is
difficult to guess what the results will be.
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diffraction integral over 100 years later by Maggi and Rubinowicz, and Wolf and

coworkers [116, 117].

The idea of the boundary wave theory is especially useful for explaining some

diffraction effects that have been observed with ultrashort pulses [114, 118]. Figure

8.2, shows the results of a simulation done by Horvath and coworkers that predicts

the spatiotemporal field of an ultrashort pulse after propagating through a circular

aperture. Figure 8.2a uses plane waves for the initial spatial dependence of the field

(a) A plane wave pulse (b) A diverging spherical wave pulse

Figure 8.2: Simulation of Diffraction of ultrashort pulses off of a circular aperture
using the boundary wave diffraction integral (Image taken from ref [114])

and in Fig. 8.2b a divergent spherical wave is used. This figure illustrates that the

resulting diffracted field is the sum of a geometric or an undiffracted wave (also called

the main pulse front) and the boundary wave which was calculated by adding up

spherical waves that were emitted all along the boundary.

Interestingly, the boundary waves shown in 8.2 are shaped like an “x” in space-time

and behind the main pulse front in time with a delay that varies with r. A qualitative

explanation of the propagation speed of the boundary wave along the z direction is

shown in Fig. 8.3. Because the spherical waves that make up the boundary wave
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Figure 8.3: Illustration of the propagation speed of the boundary wave along the z
axis. The arrows indicate the path length for the spherical waves that add up to make
this wave. The Gray lines represent the plane waves that illuminate and propagate
through the aperture.

originate at the boundary, the distance that they have to travel to get to a point

on the z axis is longer than the distance that the main pulse front must travel to

get to this point. Therefore the boundary wave arrives after the main pulse front as

seen in Fig. 8.2. The black arrows in Fig. 8.3 show the propagation distance for

the spherical waves to get to different points on the z axis, and you can see that this

distance decreases with z and eventually becomes equal to the propagation distance

of the main pulse front (the plane waves shown in gray). For values of r not equal to

0, the spherical waves from the same side of the aperture as the r vector, will arrive

before the waves at r = 0 and the spherical waves from the other side of the aperture

will arrive later, resulting in the “x” shape. Therefore we can predict that the bright

spot at r = 0 will start out behind the main pulse front in time, but it will travel

along the z axis with a superluminal speed and eventually catch up with the main

pulse front.
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8.3 Measuring the spatiotemporal field of diffracted ultra-
short pulses

Using scanning SEA TADPOLE we measured the spatiotemporal field of ultrashort

pulses after they were diffracted by different types of boundaries. The experimental

setup that we used is shown in Fig. 8.4 and the SEA TADPOLE device that we used

is the same as that described in chapter 5 for measuring lower NA focusing pulses.

Note, that for simplicity we translated the boundary rather than scanning the fiber

along the z axis.3 To spatially sample the diffracted field, we used a single mode fiber

with a core size around 5µm. Figure 8.5 shows the three different boundaries that we

Figure 8.4: Experimental setup for measuring diffracted pulses with SEA TADPOLE

used to generate the diffraction. As the light source we used a mode-locked Ti:Sa laser

with a center wavelength of 810nm, a bandwidth around 35nm and a pulse duration

around 27fs. In all of the measurements shown here we used a Gaussian beam with

a FWHM spot size of 4mm.

We also calculated the expected field after the aperture by numerically solving the

3For our measurements in the previous chapters, every time that we moved the reference fiber in
the z direction we also adjusted the delay of the reference pulse to maintain temporal overlap.

133



(a) Circular aper-
ture

(b) Circular disk (c) Leaky annular
slit

Figure 8.5: Diffraction boundaries used for the measurements in this chapter

non-paraxial diffraction integral using the angular spectrum of plane waves approach

and fast Hankel transforms as described in the following references [80, 119, 120].

Though we did not use the boundary wave theory for our simulations, this theory is

still useful for interpreting our results and the two approaches for doing the calcula-

tions should give the same answer [116, 117].

In the first measurement we propagated the beam through a circular aperture

(see Fig. 8.5a) with a 4.2mm diameter. Then we put the fiber at the center of the

beam vertically (at y = 0) and scanned along the x dimension to measure E(x, ω) at

different distances z from the aperture. The amplitude of the measured and simulated

fields are shown in Fig. 8.6 where the color represents the intensity (red is 1 and dark

blue is 0). As we expected, the boundary wave starts out behind the main pulse front

in time but travels superluminally along the z axis and eventually catches up with it.

Our measurements and simulations are in reasonable agreement although there is a

discrepancy between the two intensities. This is most likely due to difference between

the simulations and measurements such as our assumption that the beam before the

aperture was a perfect Gaussian in both space and frequency, and that the aperture

was a perfect circle.

In our next measurement, we made a hole in the beam by propagating it through

a circular metal disk with a diameter of 4mm (see Fig. 8.5b and we measured the

spatiotemporal field at different distances after the disk. Because this disk and the
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(a) Measurement

(b) Simulation

Figure 8.6: Measured |E(x, y = 0, t)| after propagating through a circular aperture
(Color is intensity).
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aperture from the previous measurement have identical boundaries (both are circles

with a diameter of 4mm), the boundary waves for these two cases should be identi-

cal. Therefore the only difference we expect between these two measurements is the

contribution that comes from the main pulse front. The results of the measurements

and simulations are shown in Fig. 8.7. This data shows a boundary pulse that is very

(a) Measurement

(b) Simulation

Figure 8.7: Measured |E(x, t)| after propagating through a circular aperture (Color
is intensity).

similar to that in Fig. 8.6, except that its intensity relative to the main pulse front is

different as expected because this part of the pulse is different for the two cases. Note

that the boundary wave for this example of diffraction is called the “spot of Arago”
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in conventional diffraction theory.

The results shown in Fig. 8.6, show reasonable agreement between the simulations

and the measurements, with the main discrepancy being the noise in the measure-

ments. When measuring the field after the circular aperture (shown in Fig. 8.6) the

main pulse front overlaps in space with the boundary wave, so these two fields inter-

fere which effectively amplifies the boundary wave making it easier to measure. But

with the disk the boundary wave and the main pulse front do not spatially overlap,

so more sensitivity is required to measure this field, and it is barely detectable with

our setup.

In a final measurement we propagated the pulse through a very thin annular slit

with a diameter of 5.64mm and a width of around 10 µm such as that shown in Fig.8.8.

If the slit is thin enough, then the non-diffracting contribution of the field is zero and

there will only be the boundary wave. Although a slit contains two boundaries, if it

is thin enough, then the two resulting boundary pulses will overlap in space and time.

Therefore we expect to get results similar to that in the previous two measurements,

but without a “main pulse front”. Also, because this slit has a larger diameter than

the disk or the aperture, its speed along the z axis should be grater than that seen

in the two previous measurements.

The slit that we used for this measurement was made by coating a thin piece of

glass with metal, but this metal coating was partially transmitting, so that 0.63% of

the Gaussian beam illuminating it leaked through (see Fig. 8.5c). This is actually

very convenient for two reasons: the Gaussian beam that leaks through travels at the

speed of light, so it can be used as a reference to verify the speed of the boundary

wave (even though our reference pulse already serves this purpose), and the Gaussian

beam will interfere with the boundary wave which will amplify it making it easier

to measure. The results of this measurement and our simulations are shown in Fig.

8.8. These results, which have the expected features discussed above, show good

137



(a) Measurement

(b) Simulation

Figure 8.8: Measured |E(x, t)| after propagating through a leaky annular slit.
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agreement between the simulations and the measurements.

Actually two of the results shown in Chapter 6, contain boundary pulses. Figures

6.10 and 6.8, which show the measured spatiotemporal field after two different over-

filled lenses both show an additional pulse which is temporally separated from the

main pulse front. As you can see from the discussion in this chapter, these additional

pulses are boundary wave pulses that are present because the lens’ aperture is smaller

than the beam. These measurements are similar to the results shown in Fig. 8.2b

which show the diffraction of a pulse off of a circular aperture for a converging beam.

But, in Fig. 6.10, the chromatic aberrations present in the lens change the phase of

the spherical waves emitted at the boundary which causes it be ahead of the main

pulse front rather than behind it as it is in the absence of abberations [15].

Also note that the boundary pulse is an interference effect and therefore it does

not carry any information at a superluminal speed, so none of these results violate

special relativity.

8.4 Conclusions

To our knowledge, we have made the first time resolved measurements of the diffrac-

tion of utlrashort pulses. Using SEA TADPOLE we measured the spatiotemporal field

of ultrashort pulses after propagating them through a circular aperture, a circular disk

and a leaky annular slit, and we confirmed these measurements with simulations. Our

measurements reveal the superluminal propagation speed of the boundary wave pulse.
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APPENDIX A

EXAMPLES OF SEA TADPOLE TRACES

As mentioned in chapter 2, the curvature of the interference fringes is the spectral

phase difference between the reference and unknown pulses. This is illustrated by the

simulations shown below. For these simulations the reference pulse had a flat spectral

phase so that the curvature of the fringes (or the phase difference) is the phase of

the unknown pulse. The spectra of the pulses has about 20nm of bandwidth. The

spectral phase and intensity of the unknown pulses is shown below the interferograms.

Figure D.3a corresponds to an unknown pulse that is delayed with respect to the

reference pulse or the spectral phase is linear (as well as the fringe curvature). In Fig.

D.3b the unknown pulse was chirped and you can see that the fringes are parabolas.

Figure A.2a shows a pulse with a cubic spectral phase. In Fig. A.2b the unknown

pulse with a quartic phase.

Figure A.3a shows a pulse with a sinusoidal phase. In Fig. A.3b the unknown

pulse has a more complex spectrum and a quadratic spectral phase.
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(a) Delay (b) Chirp

Figure A.1: Example SEA TADPOLE traces (simulations)
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(a) Cubic phase (b) Quartic phase

Figure A.2: Example SEA TADPOLE traces (simulations)
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(a) Sinusoidal phase (b) A more complex spectrum and a quadratic
phase

Figure A.3: Example SEA TADPOLE traces (simulations)

143



APPENDIX B

ABSOLUTE PHASE DRIFT IN SEA TADPOLE

As discussed in chapter 5 and chapter 2, there is a drift in the interferometer due to

primarily the fibers reacting to small temperature fluctuations. To better understand

this drift and how it effect measurements that we make with SEA TADPOLE we

measured this.

To measure the phase drift, we continuously measured the phase (or extracted

it from a measured SEA TADPOLE trace) once a second over several minutes. Be-

cause we were not making any changes to the unknown pulse during this time, if

no fluctuations were present then the measured phase would have been the same for

every measurement, but this was of course not the case. To see how the phase drift

effected each term in the measured spectral phase, we did a polynomial curve fit to

each measured phase. Figure B.1 shows these results for the absolute phase, the delay

and the group delay dispersion (GDD). The average value of the fluctuations for each

Figure B.1: Measured phase drift in our interferometer

of these phase terms is shown above the plots, and this is the error that we get for

each of these terms for a typical measurement using our setup. Note that some of

the fluctuation could be do to errors in the curve fit cause by noise, but nevertheless,
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this gives an upper bound on the error due to the fluctuations.

The drift in the delay and the GDD were very small over 10min compared to

values of GDD and delay that we are usually interested in measuring. And therefore,

we can conclude that the phase drift does not effect these (and all higher order) terms.

But the absolute phase varies as much as ±1.8 radians over 16.7min which is

significant enough to effect certain applications of SEA TADPOLE including scanning

SEA TADPOLE for measuring the absolute spatial phase (chapter 5) or for measuring

the relative phase (chapter 4) of polarization shaped pulses.

In the next set of figures, the effect of the drift on the measured spatial phase in

scanning SEA TADPOLE is illustrated. The plots were constructed from the data

shown in 6.6 which involved focusing the pulse with an SF11 plano-convex lens having

an NA of 0.28. Figure B.2 shows the measured and theoretical spatial phases (the

absolute spectral phase at each x) at 0.3mm after the geometric focus. The noise due

Figure B.2: Effect of the absolute phase drift on the measured spatial phase

to the fluctuations is apparent, but the shape of the measured phase resembles the

theoretical phase. The next plot shows the measured and theoretical spatial phases

at z=0.3mm, and these results are as accurate as those in B.3. In the final plot,

which is closer to the beam’s minimal spot size and therefore the point where its

145



Figure B.3: Effect of the absolute phase drift on the measured spatial phase

spatial phase is the flattest, the results are not as good, and the measured spatial

phase barely resembles the theoretical value. As the scale in this plot indicates, the

spatial phase at this z only varies over about 6 radians compared to the previous two

examples that varied over 50 and 30 radians. And therefore, the absolute phase’s

drift has more heavily distorted the results shown in Fig. B.4

Figure B.4: Effect of the absolute phase drift on the measured spatial phase

While we have demonstrated that some spatial phase information is obtained in
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a scanning SEA TADPOLE measurement (especially the spot size as a function of

z), the measurements shown in Fig. B.2 and B.3 are still quite noisy. Due the large

amounts of information obtained in scanning SEA TADPOLE measurement and the

fact that we measure the field at several different z’s, we expect that standard phase

retrieval algorithms such as the Gerchberg-Saxton algorithm could be adapted and

used to better extract the spatial phase from our measurements [121, 122]. In the

future we hope to implement this .

147



APPENDIX C

POLARIZATION ELLIPSES

As mentioned in chapter 4, the polarization state of light can be represented as an

ellipse [113]. Some of these ellipses for different polarization states are shown in Fig.

C.1 where we have plotted Ex versus Ey from the equations shown below.

Ex = Ex0 cos(φrel + ωt) (C.1)

Ey = Ey0 cos(ωt) (C.2)

To make plots of the polarization state of a pulse when its polarization state may be

time dependent, we plot the ellipse at every time as show in section 4.4.
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Figure C.1: Polarization eclipses for various polarization states
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APPENDIX D

COMPARISON OF THE NON-PARAXIAL AND THE

PARAXIAL DIFFRACTION INTEGRALS

We performed simulations to better understand the differences between the paraxial

diffraction integral (or the Fresnel integral) described in Eq. 5.1, and the non-paraxial

diffraction integral discussed in 6.7. Using the same parameters and the same grid

size and spacing in both simulations, we calculated the E(x, t) at several different z’s

in the focal region of a lens that had no spherical aberration and a little chromatic

aberration. The results for a numerical aperture (NA) of 0.2 are shown below and

only the amplitude is plotted (red is the most intense and blue is the least intense).

The left plot shows the results of the paraxial simulation and the results of the non-

(a) paraxial (b) Non-paraxial

Figure D.1: Simulations of the focal region of an aspheric lens with NA=0.2

paraxial simulation are on the right. At this NA, as we expect, the two simulations

give the same results. The Next set of figures shows similar results except that the
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numerical aperture was 0.4. In these plots, some differences are noticeable such as

(a) paraxial (b) Non-paraxial

Figure D.2: Simulations of the focal region of an aspheric lens with NA=0.4

more intensity in the wings in the non-paraxial simulation and an additional fore

runner (a pre pulse) is apparent in the paraxial simulation. In this simulation the

beam’s rms spot size was 3mm and the aperture diameter was 10mm, but the edge

effects are more apparent in the non-paraxial simulation. To final set of plots shown

below, we used an NA of 0.8, and the two simulations give very different results as

we expect. The effect of the paraxial simulation is to underestimate the intensity in

the wings which is again apparent in the above plot. And as we were beginning to

for the NA=0.4 simulation, as the paraxial approximation breaks down, the effects

of diffraction off of the lens’ aperture become too bright.

In conclusion, for numerical apertures around 0.4 and greater, a non-paraxial

simulation should be used.
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(a) paraxial (b) Non-paraxial

Figure D.3: Simulations of the focal region of an aspheric lens with NA=0.8
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