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SUMMARY

Time-frequency analysis for non-linear and non-stationary signals is extraor-

dinarily challenging. To capture the changes in these types of signals, it is necessary

for the analysis methods to be local, adaptive and stable. In recent years, decom-

position based analysis methods were developed by different researchers to deal with

non-linear and non-stationary signals. These methods share the feature that a signal

is decomposed into finite number of components on which the time-frequency analy-

sis can be applied. Differences lie in the strategies to extract these components: by

iteration or by optimization. However, considering the requirements of being local,

adaptive and stable, neither of these decompositions are perfectly satisfactory.

Motivated to find a local, adaptive and stable decomposition of a signal, this thesis

presents an Adaptive Local Iterative Filtering (ALIF) algorithm. The adaptivity is

obtained having the filter lengths being determined by the signal itself. The locality

is ensured by the filter we designed based on a PDE model. The stability of this

algorithm is shown and the convergence is proved. Moreover, we also propose a local

definition for the instantaneous frequency in order to achieve a completely local analy-

sis for non-linear and non-stationary signals. Examples show that this decomposition

really helps in both simulated data analysis and real world application.

xi



CHAPTER I

INTRODUCTION

1.1 Nonlinear Signal Analysis

Data and signal analysis has become increasingly important these days. Finding

features and structures of the data is quite challenging especially when the data are

generated by a non-linear system and that data are non-stationary. Time-frequency

analysis of signals has been studied massively, readers can find relevant information

in well-known books such as [20] and [37]. Traditionally, Fourier spectral analysis

has been commonly used for signal and data analysis. Another well known approach

is based on Wavelet transforms. Both of them are effective and easy to implement.

However, there are some limitations. Fourier transform works well when systems

are linear and the data are periodic or stationary, it cannot deal with non-stationary

signals or data from non-linear systems. The wavelet transform is also a linear analysis

tool. Both use predetermined bases and are not designed with effective data-adaptive

properties.

To analyze non-linear and non-stationary signals efficiently, it is necessary that the

analysis method is local, adaptive and stable. The event in time-frequency analysis

should be only determined by the local behaviour of signal not by behaviours in

faraway positions. Being adaptive means that the analysis procedure should be data-

driven. Any analysis method with a rigid basis lose this property. Being stable means

that the analysis results should be consistent for signals under small perturbation.

In the last decade, several decomposition techniques have been proposed to an-

alyze non-linear and non-stationary signals. All these methods share the same ap-

proach: first they decompose a signal into simpler components and then apply a

1



time-frequency analysis to each component separately. The signal decomposition can

be achieved in two ways: by iteration or by optimization. For example, Empirical

Mode Decomposition [51] and Iterative Filtering method [78] are decompositions by

iteration; adaptive data analysis via Sparse Time-Frequency Representation [47] and

Synchrosqueezed Wavelet Transforms [22] are decompositions by optimization.

1.2 Empirical Mode Decomposition

The first iterative algorithm, Empirical Mode Decomposition (EMD), was introduced

by Huang et al. in [51]. This method aims to iteratively decompose a signal into

a finite series of intrinsic mode functions (IMFs) whose instantaneous frequencies

are well behaved. Then based on Hilbert transform, Huang et al. compute the

instantaneous frequencies for the IMFs to construct the spectrum for the signal [52,

131, 50].

For a given signal x(t), t ∈ R, its Hilbert transform is

H(x)(t) =
1

π
p.v.

∫ ∞

−∞

x(τ)

t− τ
dτ, (1)

provided this integral exists as a principal value. Then it is well known that

z(t) = x(t) + iH(x)(t) (2)

is an analytic function and one can write it as

z(t) = x(t) + iH(x)(t) = a(t)eiθ(t), (3)

where a(t), θ(t) are both real functions and a(t) represents the amplitude θ(t) repre-

sents the phase of z(t) respectively:

a(t) =
√

x2(t) +H2(x)(t),

θ(t) = arctan

(

H(x)(t)

x(t)

)

.
(4)

The instantaneous frequency w(t) for signal x(t) is defined as

w(t) =
dθ(t)

dt
. (5)
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However, such definition of the instantaneous frequency may be controversial,

mainly because it may lead to negative frequencies, which are not meaningful in

practice. In order to obtain well behaved instantaneous frequency, which means

the instantaneous frequency is in a narrow positive interval, Huang imposed some

restrictive conditions on the signal. To illustrate these restrictions, consider one

simple example. Let

x(t) = sin t. (6)

Its Hilbert transform H(x)(t) is cos t. Plot (x(t), H(x)(t)) on the phase plane, it is

the unit circle shown in Figure 1(a) with origin (0, 0) at point a . The unwrapped

phase angle function is a straight line as shown in Figure 1(b) as the dashed line, and

the instantaneous frequency, shown in Figure 1(b), is a constant. Let us move the

mean of x(t) from 0 to α, so

x(t) = α + sin t. (7)

Plot (x(t), H(x)(t)) on the phase plane, it is still a circle with radius 1 since H(x)(t) is

again cos t, but the center is shifted from (0, 0) to (α, 0) like for instance point b. When

α < 1, the center (α, 0) is inside the circle. The phase angle is no longer a straight

line but keeps increasing. Thus the instantaneous frequency behaves differently from

the instantaneous frequency when α = 0. However, it is still in a narrow positive

interval, which is well behaved. When α > 1, the center (α, 0) moves to the outside

of the circle for example point c. As a result, the phase angle is not increasing any

more. Instead, it is increasing and decreasing alternatively as the dashed dot line.

Thus the instantaneous frequency yields negative values, as shown in Figure 1(b),

which is meaningless.

3



(a) (b)

Figure 1: Physical interpretation of instantaneous frequency. [51]. (a) The phase

plane for the signal x(t) = α+sin t. a: α = 0; b: α < 1; c: α > 1. (b) The unwrapped

phase function of x(t) and the instantaneous frequency computed according to (5).

The simple example provided above illustrates that, for a signal such as the sinu-

soidal function, the instantaneous frequency is well behaved if the function is restricted

to a zero mean. For general signals, in order to make the instantaneous frequency in

a narrow positive interval, Huang considered two constraints which are expected to

lead to a well behaved instantaneous frequency:

• in the whole data set, the number of extrema and the number of zero crossings

must either equal or differ at most by one;

• at any point, the mean value of the envelope defined by the local maxima and

the envelope defined by the local minima is zero.

The functions that satisfy these conditions are called intrinsic mode functions (IMFs),

which represent the oscillation modes embedded in signals. The sinusoidal functions

are IMFs, but IMFs are not limited to sinusoidal functions. Perturbations in both the

amplitude and the frequency are allowed. For example, the signals with amplitude

modulated and/or frequency modulated are IMFs. What is more important, the

IMFs can be non-stationary. One example of IMF is shown in Figure 2.
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Figure 2: An example of the intrinsic mode function which has the same number

of zero crossing points and local extrema and symmetric upper envelope and lower

envelope.

The method Huang developed to compute IMFs is called the sifting process. It has

an iterative structure, which can be described in the following. Given signal x(t), the

method generates an upper envelope as the cubic spline connecting the local maxima

of x(t) and a lower envelope as the cubic spline connecting the local minima of x(t).

Let m1(t) be the mean of the upper envelope and the lower envelope. Subtract m1(t)

from x(t), the fluctuation part is derived as

h1(t) = x(t)−m1(t). (8)

The procedure is shown in Figure 3.

h1(t) contains oscillations. However, it may not satisfy the constraints of the IMF,

i.e. the number of zero crossing points and the number of local extrema differ and

the upper and lower envelops have not zero mean. In order to derive an IMF, it is

necessary to iterate the steps described above. Treat h1(t) as the signal, construct its

5
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Figure 3: Illustration of the sifting process. (a) The original signal x(t); (b) The
upper and lower envelopes (dot-dashed lines) of x(t) and their mean m1(t); (c) The
difference of x(t) and mt(t). This is not an IMF since the number of local extrema is
greater than the number of zero crossings.
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Figure 4: effects of the iterated sifting process. (a) After one sifting process as shown
in Figure 3(c), it is not an IMF; (b) After eight siftings, the result is improved as an
IMF.

upper and lower envelopes, subtract the mean of the envelopes m11(t) from h1(t):

h1(t)−m11(t) = h11(x). (9)

This process is repeated many times

h1(k−1)(t)−m1k(t) = h1k(t) (10)

until h1k(t) satisfies the two requirements of an IMF as shown in Figure 4.

In the implementation, the stopping criterion is related to the value of SD defined

as

SD =
‖h1(k−1)(t)− h1k(t)‖L2

‖h1(k−1)(t)‖L2

. (11)
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If SD is less than a pre-selected threshold, the iteration is stopped and h1k(t) is an

IMF. A typical value of SD can be set between 0.2 and 0.3. Let

I1(t) = h1k(t). (12)

This is the first IMF extracted from x(t).

Then the sifting process is applied on the remaining signal

x(t)− I1(t) (13)

to get the subsequent IMFs. The sifting process is repeated until the remaining signal

does not contain any oscillation, i.e. there is at most one extrema in the remaining

signal. Denote the remaining signal by y(t). The decomposition of signal x(t) is

x(t) = I1(t) + I2(t) + ...+ Im(t) + y(t), (14)

where m is the number of IMFs in the decomposition.

Since cubic splines are constructed based on the maxima and minima of the signal,

the sifting process is local and adaptive. However, the sifting process is not stable

since the cubic splines may behave quite differently under perturbations of the same

signal. In order to make the sifting process more stable, Huang et al. developed

Ensemble Empirical Mode Decomposition (EEMD) in [133]. In EEMD, to get one

IMF, numbers of trials of sifting process are applied to different perturbations of the

same signal. Taking the mean of the IMFs extracted in different trials, the IMF for

the original signal without any perturbation is obtained. Another issue of using cubic

splines is that the convergence of the sifting process is hard to deal with.

1.3 Iterative Filtering Algorithm

Recently, some other decomposition techniques have been developed inspired by

Huang’s EMD. Iterative Filtering (IF) algorithm is one of these methods devised

by Wang et al. in [78]. IF makes use of the same algorithm frame as EMD.

8



Let L be an operator to get the ‘moving average’ of a signal x while S is an

operator to take the fluctuation part

S(x) = x−L(x). (15)

The moving average is referred as a replacing function as the mean of the envelopes

in the sifting process. Then the first IMF is given by

I1 = lim
n→∞

Snx. (16)

Here the limit is reached so that applying S will not change the signal any more. The

subsequent IMFs are obtained one after another by

Ik = lim
n→∞

Sn(x− I1 − ...− Ik−1). (17)

The process stops when

y = x− I1 − I2 − ...− Im (18)

has at most one local maximum or one local minimum. By this step, the decomposi-

tion of x(t) is

x = y +
m
∑

j=1

Ij. (19)

In the sifting process, the moving average is extracted by taking the average of the

upper envelope and the lower envelope. In IF alorithm, the moving average is ex-

tracted by taking the convolution of the signal x(n), n ∈ Z with a low pass filter

a(k), k = −m,−(m − 1), ..., m− 1, m :

La(x)(n) =
m
∑

k=−m

x(n + k)a(k). (20)

Wang et al. showed the convergence of IF algorithm with toeplitz filters for periodic

signals.

Theorem 1. [78] Let x(n), n ∈ Z be a periodic signal, i.e. there exists an N > 0

such that x(n +N) = x(n) for all n ∈ Z. Let a(k), k = −m,−(m − 1), ..., m − 1, m
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and

S(x) = x−La(x). (21)

Denote

â(ξ) =
m
∑

k=−m

a(k)e2πikξ. (22)

Let N > 2m. Then Sn(x) converges for all N−periodic X(n) if and only if for all

ξ ∈ 1
N
Z we have either â(ξ) = 0 or |1− â(ξ)| < 1. Assume that lim

n→∞
Sn(x) = y, then

y =
∑

k∈Γ

ckEk, (23)

where Γ = {0 ≤ k < N : â(k/N) = 0}, Ek is given by Ek(n) = e
2πikn

N and

ck =
1

N

N−1
∑

j=0

x(j)e−
2πikj

N . (24)

The proof of Theorem 1 is presented in [78]. This theorem essentially gaurantees

the convergence of obtaining the IMFs when the moving average is computed as the

convolution of the signal and a filter with appropriate properties. Moreover, it is

convergent to the projection onto the basis Ek, which depends on the chosen filter.

If a(k) is symmetric, â(ξ) = 0 or |1 − â(ξ)| < 1 is equivalent to 0 ≤ â(ξ) ≤ 2 for

all ξ ∈ R with â(ξ) 6= 2 for ξ ∈ Q. One filter satisfies these properties is the double

average filter. So it is used in IF algorithm by Wang et al. The weight of double

average filter for length 2m+ 1 is given by

a(k) =
m+ 1− |k|

(m+ 1)2
, k = −m, ...,m. (25)

It is clear that the double average filter satisfes the condition

0 ≤ â(ξ) ≤ 1 (26)

so that the convergence is guaranteed. Furthermore, the zeros of them are known:

âm(ξ) = 0 if and only if ξ =
k

m+ 1
, 1 ≤ k ≤ m+ 1. (27)
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The double average filter with half length 22 is shown in Figure 5.
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Figure 5: double average filter defined in (25) with m = 22

In the implementation of IF algorithm with uniform filter length where the moving

average is computed by (20), the half filter length m is set to be

m =

⌊

2N

k

⌋

, (28)

where N is the number of sample points of the signal x(n) and k is the total number of

local maxima and local minima in x(n). Given the same signal as in the illustration

of the sifting process in Figure 3, the effect of one step of the iterative filtering is

illustrated in Figure 6. S1(x) is shown in Figure 6(c). However, S1(x) is not an

IMF. Iterate the filtering process as Sn(x) and the IMF is obtained. In the numerical

implementation, it is not necessary to grow n to a large enough number. Instead the

stopping criteria of Sn(x) is also depending on a threshold of SD, which is similar to

the sifting process. Let

Ik,j(n) = S
j
k(x(n)− I1(n)− ...− Ik−1(n)), (29)

then SD of iterative filtering is defined as

SD =

∑N
n=1 |Ik,j(n)− Ik,j−1(n)|

2

∑N−1
n=1 |Ik,j−1(n)|2

. (30)
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Figure 6: Illustration of one step of Iterative Filtering (IF) algorithm. (a) The original
signal x(t); (b) x(t) and its moving average computed by (20) using the double average
filter. The thick solid line is the moving average of x(t); (c) The difference of x(t) and
its moving average. This is not an IMF since the number of local extrema is greater
than the number of zero crossings.
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The iteration is stopped when SD is less than a pre-selected threshold. The smaller

this threshold is the more iteration steps we take. In the implementation in [78], this

threshold is ranging from 0.001 to 0.2. Usually it is set to be around 0.05. The first

IMF derived from the given signal x(t) following Figure 6 is shown in Figure 7.

0 50 100 150 200 250
−0.015

−0.01

−0.005

0

0.005

0.01

0.015

Figure 7: the first IMF derived from x(t) where x(t) is given in Figure 6(a).

The numerical experiment in Figure 7 shows that IF algorithm generates the

similar IMF compared with the sifting process which is shown in Figure 4(b). What

is more important, IF algorithm is much more stable under perturbation compared

with EMD.

For the non-stationary signals, Wang et al. suggested to use filters with different

lengths at different positions of the given signal, which we shall call adaptive filters

from now on. Then the selection of these adaptive filter lengths plays an essential

role in the performance of the decomposition. Wang et al. proposed a method of

choosing the filter lengths at different points.

Assume there are k extreme points in the signal x(n), n ∈ N. Let nj be the local

extrema point of x(n). Then the filter length at n = nj is

l(nj) = nj+2 − nj−2. (31)
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So the filter lengths at the extreme points are obtained. Construct a cubic spline by

connecting the points (nj , l(nj)). The filter length l(n) for any other n within the

sampling size of x(n) is given by the interpolation of this spline. Then the half filter

length m(n) is obtained by

m(n) =
l(n)

2
. (32)

The moving average L(x) with the adaptive filter is

L(x)(n) =

m(n)
∑

k=−m(n)

x(n + k)a(k). (33)

In this case, L(x) is not the convolution of the signal and the filter any more. The

convergence of IF algorithm with adaptive filters has not been established yet. Re-

cently, by using some high order partial differential equations, Wang et al. developed

mode decomposition evolution equations in [121] and [122] which can achieve similar

results compared with IF algorithm.

1.4 Sparse Time-Frequency Representation

Inspired by EMD and the development in compressed (compressive) sensing theory,

Hou et al. proposed an adaptive data analysis method via sparse time-frequency

representation in [47] and [46] based on the observation that many multi-scale data

usually have an sparse structure in the time-frequency plane.

Using the multicomponent amplitude modulate and frequency modulate (AM-

FM) representation, which has been studied for example in[86] and [126], Hou as-

sumed that each IMF could be written as an AM-FM function. A dictionary of IMFs

is given as

D = {a(t) cos θ(t), θ′(t) ≥ 0, a(t) ∈ V (θ)}, (34)

where V (θ) is the collection of all the functions that are smoother than cos θ(t):

V (θ) = {g(t) : g(t) is smoother than cos θ(t)}. (35)
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Then the signal is decomposed over this dictionary by seeking the sparsest represen-

tation. The sparest decomposition of signal f(t) is obtained by solving a non-linear

optimization problem:

Minimize M,

Subject to f(t) =
M
∑

k=1

ak(t) cos θk(t), ak(t) cos θk(t) ∈ D, k = 1, ...,M.
(36)

After this optimization problem is solved, the instantaneous frequency of the kth IMF

is computed by

wk(t) = θ′k(t). (37)

A decomposition method based on a non-linear TV 3 minimization was developed

as a tool to solve (36). Given signal f(t), it is decomposed into its local median a0(t)

and an IMF a1(t) cos θ1(t) by solving the following optimization problem:

Minimize TV 3(a0) + TV 3(a1),

Subject to a0(t) + a1(t) cos θ1(t) = f(t), θ′1(t) ≥ 0,

(38)

where the third order total variation TV 3 is defined as

TV 3(g) =

∫

R

|g(4)(x)|dx. (39)

The non-linear minimization problem (38) is solved by a Newton type of iterative

method. Numerical experiments in [46] shows that the sparse time-frequency repre-

sentation generates similar components as EMD and its performance does not rely

on the parameters such as the stopping criterion. However, there are two limitations

of this approach. One is that the computational cost is high. The other is that it is

sensitive to noise and a pre-denoising step by a low pass filter in the Fourier domain

is required to remove the noise impact as in [46]. To get rid of both of these two

issues, Hou et al. proposed another decomposition method based on the non-linear

matching pursuit in [45] which yields a lower computational cost and stability to noise

perturbation.
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1.5 Synchrosqueezed Wavelet Transforms

Inspired to analyze EMD mathematically, Daubechies et al. proposed a different

approach of constructing the IMFs from a signal in [22] based on optimizations.

Using the multicomponent AM-FM representation, which is similar to sparse time-

frequency representation introduced in Section 1.4, Daubechies consider a class of

signals which are the superposition of AM-FM functions:

s(t) =

K
∑

k=1

sk(t), (40)

where sk(t) is an AM-FM function and it can be written as:

sk(t) = Ak(t) cos(Φk(t)), with Ak(t),Φ
′
k(t) > 0 ∀t. (41)

Locally, sk(t) can be viewed as a harmonic signal if the change of Ak(t) and Φ′
k(t) is

much slower than the change of Φk(t) itself. So at time t, the amplitude is Ak(t) and

the instantaneous frequency is Φ′
k(t).

Based on the continuous wavelet transform Ws of the signal s(t) defined by

Ws(a, b) =

∫

s(t)a−1/2ϕ(
t− b

a
)dt, (42)

the synchrosqueezed wavelet transform (SWT) of s(t) is defined as

Ts(ω, b) =

∫

A(b)

Ws(a, b)a
−3/2δ(ω(a, b)− ω)da, (43)

where A(b) = {a;Ws(a, b) 6= 0} and a ∈ A(b). It is proved in [22] that for any

signal which can be written as a superposition of the AM-FM functions, SWT can

decompose it successfully on the time-frequency plane. The adaptive time-frequency

decomposition is achieved by solving the following minimization problem:

argmin
F (t,ω)

∫
∣

∣Re
[∫

F (t, ω)dω − s(t)
]

− s(t)
∣

∣

2
dt

+µ
∫ ∫

|∂tF (t, ω)− iωF (t, ω)|2 dtdω.
(44)

The minimizer of (44) is close to the SWT of the signal s(t).
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1.6 Summary Of The Introduction

We introduced several decomposition methods which can perform time-frequency

analysis afterwards in the previous sections. Each method has its strong points, but

it is hard for each of them to deal with all kinds of signals. In order to develop an

algorithm which handles general signals, we first consider some necessary properties

of the decomposition.

For analysis results of non-linear and non-stationary signals, all events need to be

localized on time and frequency axis in the analysis results. Being local means the

frequency on one position should be affected only by local information while not be

affected by any information from faraway positions. This is a basic requirement of

the time-frequency analysis, which the decomposition method should also achieve.

Another necessary property is that the analysis method should be adaptive so that

it can deal with all kinds of behaviours appearing in signals. The stationary signals

are relatively easy to handle. However, there exist some non-stationary signals with

sudden changes in the amplitude or (and) the frequency. The analysis results are

reliable only if these transient behaviours are captured. It is necessary that the

analysis method is adaptive so that it can catch possible transient behaviours as well

as stationary behaviours if there are no sudden changes.

Besides locality and adaptivity, it is also necessary that the analysis method to be

stable. Consider two signals which are perturbation of each other, it is natural that

the decompositions of these two signals yield consistent components. By consistent

components, we mean that the significant components showing up in the decompo-

sition for one signal should also appear in the decomposition for the other signal.

Consistent components can be achieved only when the decomposition is stable.

With the purpose of developing an adaptive, local, stable decomposition method,

we first build a mathematical foundation of IF algorithm. Based on a splitting into

an inner iteration and an outer iteration, where the inner iteration is intended to
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extract a signal IMF, while the outer iteration extract all the IMFs from a signal,

we present the convergence theorem of the inner iteration with uniform filters as well

as the convergence theorems of both the inner iteration and the outer iteration with

non-uniform filters.

we also present a new method, called Adaptive Local Iterative Filtering (ALIF)

algorithm, to generalize the iterative filtering technique for general oscillatory signals

with non-uniform filters. ALIF algorithm follows the same algorithm frame of EMD

and IF. There are two main aspects in ALIF that are different from the existing

IF algorithms. One is that we use Fokker -Planck equation, a second order partial

differential equation (PDE), to construct smooth low pass filters which have compact

support. The other is that we adapt the filter length according to an initial value

problem for an ordinary differential equation (ODE) defined by the signal. The

adaptation is highly non-linear and the data driven, yet, it ensures the convergence

in the decomposition.

Moreover, we propose an alternative definition for the instantaneous frequency.

In the existing instantaneous frequency analysis, Hilbert transform is used to build

analytical signals. On the other hand, Hilbert transform is a global transform, which

is not ideal to handle signals with transient features. To localize the analysis, we

define the instantaneous frequency of an IMF, obtained by ALIF algorithm, as the

rotation speed calculated by the normalized IMF and its derivative. We show that

such definition for instantaneous frequency can better capture the frequency changes

in non-linear signals.

The rest of this thesis is organized as follows: in Chapter 2, we present the math-

ematical fundamental of IF algorithm including the convergence Theorems for both

uniform filters and adaptive filters for general signals; in Chapter 3, we develop ALIF

algorithm based on the convergence Theorems and a PDE model; in Chapter 4, we

propose a new local definition and computation of the instantaneous frequency; in
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Chapter 5, we apply ALIF algorithm to a real world problem in the area of gas detec-

tion; we also apply ALIF algorithm to the solutions of several second order ordinary

differential equations (ODEs) and the results provide a new understanding of the

decomposition methods such as ALIF algorithm, EMD or IF algorithm.
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CHAPTER II

FUNDAMENTALS OF IF ALGORITHM

In this chapter, we show the convergence of IF algorithm under proper assumptions.

Before we explore the details, we present IF algorithm in the format of two layers

of loops which are given as Algorithm 1 and Algorithm 2. For the convenience of

later analysis, we call Algorithm 1 as the inner iteration and Algorithm 2 as the outer

iteration of IF algorithm.

Algorithm 1 imf = get-one-IMF(f)

compute l // l is the length for filter mask
while the stopping criteria is not satisfied do

get the filter w with length l

g = f −
∫ l/2

−l/2
f(x+ t)w(t)dt

f = f − g
compute l for this new f

end while

imf = x

Algorithm 2 IMF = get-all-IMFs(f)

IMF=∅
while the number of extrema ≥ 2 do

imf = get one IMF(x)
IMF = IMF∪{imf}
x = x− imf

end while

IMF = IMF∪{x}

The rest of this chapter is organized as follows: in Section 2.1, we present the

convergence theorem of the inner iteration with uniform filters. there are certain re-

quirements for the uniform filters based on the convergence theorem, we demonstrate

that these requirements can be simply satisfied. In Section 2.2, we present the con-

vergence theorems for both the inner iteration and the outer iteration with adaptive
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filters. There are several constraints for the adaptive filters, which can be either sat-

isfied by changing the filter length according to the signal during IF algorithm or be

checked after each step of the iteration.

2.1 The Convergence Of The Inner Iteration With Uni-

form Filters

Let f(x), x ∈ R be a continuous signal. For any filter w(x), x ∈ [−l, l] with compact

support, the moving average of f(x) using uniform filter w(x) is

ave(x) =

∫ l

−l

f(x+ t)w(t)dt. (45)

Let

L(f)(x) := ave(x) =

∫ l

−l

f(x+ t)w(t)dt,

S(f) := f − L(f) = (I − L)f.

Then after one step of the inner iteration of IF algorithm, the signal is

S(f) = (I − L)f ; (46)

after n steps of the inner iteration of IF algorithm, the signal is

Sn(f) = (I − L)nf. (47)

If {Sn(f)} is convergent, the first IMF I1 of f(x) is

I1 = lim
n→∞

Sn(f). (48)

It is proved in [78] that {Sn(f)} is convergent when f is a periodic signal. In

this section, we discuss the convergence of the series {Sn(f)} for L2 signals. Before

getting to the convergence theorem, we need some preliminary analysis, which takes

the symmetric property of the filter and the Fourier transform of Sn(f) into account.
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Let the filter w(x) be symmetric, i.e. w(x) = w(−x), x ∈ [−l, l]. Then the moving

average of f(x) computed by (45) is the convolution of f(x) and w(x):

ave(x) =

∫ l

−l

f(x+ t)w(t)dt =

∫ l

−l

f(x− t)w(t)dt

=

∫ ∞

−∞

f(x− t)w(t)dt = (f ∗ w)(x).

(49)

Since
∫ l

−l
w(t)dt = 1, w(x) ∈ L1(R). In addition, let w(x) be a continuous function,

then w(x) ∈ Lp(R), 0 < p < ∞. So w(x) ∈ L2(R). The Fourier transform of w(x) is

defined by

F(w)(ξ) =

∫ ∞

−∞

w(x)e−2πixξdx, ξ ∈ R. (50)

If signal f(x) ∈ L2(R), the Fourier transform of f(x) is

F(f)(ξ) =

∫ ∞

−∞

f(x)e−2πixξdx, ξ ∈ R. (51)

By the convolution theorem of Fourier transform, we have the Fourier transform of

ave(x) as:

F(ave)(ξ) = F(f)(ξ)F(w)(ξ), ξ ∈ R. (52)

Thus

F(Lf)(ξ) = F(f)(ξ)F(w)(ξ), ξ ∈ R,

F(Sn(f))(ξ) = F((I −L)nf)(ξ) = [1− F(w)(ξ)]nF(f)(ξ), ξ ∈ R.

(53)

Based on these preliminary analysis, we propose the convergence theorem of the series

{Sn(f)}.

Theorem 2. Let w(x), x ∈ [−l, l] be continuous and symmetric and let f(x) ∈ L2(R).

If |1− F(w)(ξ)| < 1 or F(w)(ξ) = 0, then {Sn(f)} converges and

lim
n→∞

Sn(f)(x) =

∫ ∞

−∞

F(f)(ξ)χ{F(w)(ξ)=0}e
2πiξxdξ. (54)

Proof. f(x) ∈ L2(R), thus

∫ ∞

−∞

|F(f)(ξ)|2dξ =

∫ ∞

−∞

|f(x)|2dx < ∞. (55)
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|1−F(w)(ξ)| < 1 or F(w)(ξ) = 0, thus

|1− F(w)(ξ)| < 1 or 1− F(w)(ξ) = 1. (56)

Then

|F(Sn(f))(ξ)| = |[1− F(w)(ξ)]nF(f)(ξ)| = |1− F(w)(ξ)|n|F(f)(ξ)|










< |F(f)(ξ)| if |1− F(w)(ξ)| < 1,

= |F(f)(ξ)| if 1− F(w)(ξ) = 1,

and {F(Sn(f))} is convergent as n → ∞:

lim
n→∞

|F(Sn(f))| =











0 if |1−F(w)(ξ)| < 1,

|F(f)(ξ)| if 1− F(w)(ξ) = 1.

So {Sn(f)} is also convergent and

lim
n→∞

Sn(f)(x) =

∫ ∞

−∞

F(f)(ξ)χ{F(w)(ξ)=0}e
2πiξxdξ.

By Theorem 2, to ensure the convergence of IF algorithm with uniform filters, the

essential requirement of filter w(x) is that

|1− F(w)(ξ)| < 1 or F(w)(ξ) = 0. (57)

This requirement is not unrealistic. For example, the double average filter defined

in (25) satisfies this requirement and F(a)(ξ) = 0 when ξ = k
m+1

, 1 ≤ k ≤ m + 1.

Moreover, the double average filter is not the only choice. The filters which satisfy the

constraint |1− F(w)(ξ)| < 1 or F(w)(ξ) = 0 are easy to obtain. Let us demonstrate

how to obtain such a filter based on the symmetric property.
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For symmetric filters w(x), F(w)(ξ) is real:

F(w)(ξ) =

∫ ∞

−∞

w(x)e−2πixξdx

=

∫ ∞

−∞

w(x) cos(−2πxξ)dx+ i

∫ ∞

−∞

w(x) sin(−2πxξ)dx

=

∫ ∞

−∞

w(x) cos(−2πxξ)dx

∈ R.

(58)

In addition, since
∫ l

−l
w(x)dx = 1, we have

|F(w)(ξ)| = |

∫ ∞

−∞

w(x) cos(−2πixξ)dx| ≤

∫ ∞

−∞

|w(x) cos(−2πxξ)|dx

<

∫ ∞

−∞

|w(x)|dx =

∫ l

−l

w(x)dx = 1.

(59)

So for the symmetric filter w(x), we have following property automatically:

−1 < F(w)(ξ) < 1, ξ ∈ R. (60)

To obtain the filter w(x), x ∈ [−l, l] such that 0 ≤ F(w)(ξ) < 1, we make use of

another symmetric filter u(x), x ∈ [−l/2, l/2]. Let F(u)(ξ) be the Fourier transform

of u(x), we have −1 < F(u)(ξ) < 1, ξ ∈ R. Let w(x) be the convolution of u(x) with

itself

w(x) = u(x) ∗ u(x). (61)

Then w(x) has the compact support [−l, l] as well as the desired property: 0 <

F(w)(ξ) < 1 or F(w)(ξ) = 0, ξ ∈ R.

2.2 The Convergence Of IF Algorithm With Adaptive Fil-

ters

In Theorem 2, χ{ŵ(ξ)=0} is determined by the filter w(x) itself not by the functions

Sn(f), n ∈ N. If we apply IF algorithm with the same uniform filter on two different

signals, χ{m̂(ξ)=0} is the same. This observation shows that using uniform filters in IF

algorithm does not extract IMFs completely in an adaptive way. To get rid of this
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issue, adaptive filters are explored where the filter lengths are different from point

to point. In the computation of the moving average of f(x), instead of using a fixed

filter w(x) with support [−l, l], we make use of the function w(x, t), t ∈ [−l(x), l(x)].

For different x, the filter has different support.

Let f1(x) = f(x). Then after one step of the inner iteration of IF algorithm with

adaptive filters, the signal is

f2(x) = f1(x)−

∫ l1(x)

−l1(x)

f1(x+ t)w1(x, t)dt, (62)

where w1(x, t), t ∈ [−l1(x), l1(x)] is the filter for signal f1(x) at point x with length

2l1(x). Similarly, after n steps of the inner iteration of IF algorithm with adaptive

filters, the signal is

fn+1(x) = fn(x)−

∫ ln(x)

−ln(x)

fn(x+ t)wn(x, t)dt, (63)

where wn(x, t), t ∈ [−ln(x), ln(x)] is the filter for signal fn(x) at point x with length

2ln(x). If {fn(x)} is convergent, the first IMF I1(x) of f(x) is

I1(x) = lim
n→∞

fn(x). (64)

There is an equivalent formulation of (63) which is written in the following:

fn+1(x) = fn(x)−

∫ L

−L

fn(x+ gn(x, y))W (y)dy, (65)

where gn(x, y) : [−L, L] → [−ln(x), ln(x)] is a scaling function and W (y), y ∈ [−L, L]

is a fixed filter with length 2L. We propose the convergence theorem of the inner

iteration based on (63) and the convergence theorem of the outer iteration based on

the equivalent formulation (65).

2.2.1 Rescaling The Horizontal X Axis

In (63) and (65), we propose two different formulas of updating steps in the inner

iteration. (63) can be viewed as that the signal is fixed and that the filters are adjusted
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to match up with the signal while (65) can be viewed as that the filter is fixed and

that the signal is adjusted from point to point to match up with the filter. We can

perform a scaling of the x axis on a fixed filter to get a filter with desired length. We

can also perform a scaling of the x axis on the signal to get the same result as we

rescale the filter. We demonstrate the underneath connection of (63) and (65) by the

following example.

Let W (t), t ∈ [−L, L] be a filter with fixed length. For any filter length l(x), Let

y =
l(x)

L
t, (66)

then the filter w(y, l(x)), y ∈ [−l(x), l(x)] can be obtained by

w(y, l(x)) =
L

l(x)
W (

L

l(x)
y). (67)

So filters with different lengths are obtained by changing the variable from t to y

followed by multiplying proper constants. The moving average of f(x) using w(y, l(x))

is

ave(x) =

∫ l(x)

−l(x)

f(x+ y)w(y, l(x))dy. (68)

By (67), the moving average of f(x) is

ave(x) =

∫ l(x)

−l(x)

f(x+ y)
L

l(x)
W (

L

l(x)
y)dy. (69)

Since y = l(x)
L
t, the moving average of f(x) can also be written as

ave(x) =

∫ L

−L

f(x+
l(x)

L
t)W (t)dt. (70)

In (67), we use linear scaling from the fixed filter W (t) to general filter w(y, l(x))

with length 2l(x). In fact, other type of scaling method can also be used here as long

as it keeps the filter w(y, l(x)) continuous and symmetric.

Let g(x, t) be a scaling function

g(x, t) : R × [−L, L] → R× [−l(x), l(x)], (71)
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where [−L, L] is the support of the fixed filterW (y) and l(x) is the half mask length for

the center x when computing the moving average of f(x). Assume g(x,−t) = −g(x, t),

since W (−t) = W (t), t ∈ [−L, L], thus w(y, l(x)) = W (g(x, y)), y ∈ [−l(x), l(x)]

is symmetric. Assume g(x, t) is continuous in t, since W (t) is continuous, thus

w(y, l(x)), y ∈ [−l(x), l(x)] is continuous in y. Using the scaling function g(x, t),

the moving average of f(x) is

ave(x) =

∫ L

−L

f(x+ g(x, t))W (t)dt. (72)

(72) has the similar form of the moving average of f(x) using uniform filter

W (t), t ∈ [−L, L] which is

ave(x) =

∫ L

−L

f(x+ t)W (t)dt, (73)

except the function f(x+ g(x, t)) with scaling. Since g(x, t) is not in the same range

for different x, (72) is not the convolution of a signal and a filter. In this case, we

cannot make use of the same analysis as we did for IF algorithm with uniform filters.

Instead, we develop new techniques to analyze the convergence of IF algorithm with

adaptive filters.

2.2.2 The Convergence Of The Inner Iteration

If the limit of fn(x) exits, then the moving average of fn(x) converges to zero, i.e.

lim
n→∞

∫ ln(x)

−ln(x)
fn(x + t)wn(x, t)dt = 0. In this case, lim

n→∞
fn(x) cannot be zero since

lim
n→∞

fn(x) = 0 corresponds to a zero component derived from the signal f(x), which

is not meaningful. The inner iteration is expected to end up with an IMF, which is

an oscillatory function with the moving average as zero. Based on this analysis, we

present the convergent theorem of the inner iteration of IF algorithm with adaptive

filters.
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Theorem 3. Let f(x), x ∈ R be continuous and f(x) ∈ L∞(R). Let

ǫn =

∥

∥

∥

∫ ln+1(x)

−ln+1(x)
fn+1(x+ t)wn+1(x, t)dt

∥

∥

∥

L∞

∥

∥

∥

∫ ln(x)

−ln(x)
fn(x+ t)wn(x, t)dt

∥

∥

∥

L∞

, (74)

δn =

∥

∥

∥

∫ ln+1(x)

−ln+1(x)
|fn+1(x+ t)|wn+1(x, t)dt

∥

∥

∥

L∞

∥

∥

∥

∫ ln(x)

−ln(x)
|fn(x+ t)|wn(x, t)dt

∥

∥

∥

L∞

. (75)

If
n
∏

i=1

ǫi → 0,

n
∏

i=1

δi → c > 0, as n → ∞, (76)

then {fn(x)} converges to an IMF.

Proof. Since
∏n

i=1 ǫn → 0 as n → ∞ thus ∀ǫ > 0, ∃ N such that when n > N

∏n
i=1 ǫn < ǫ. By (74),

n
∏

i=1

ǫi =

∥

∥

∥

∫ ln+1(x)

−ln+1(x)
fn+1(x+ t)wn+1(t)dt

∥

∥

∥

L∞

∥

∥

∥

∫ l1(x)

−l1(x)
f1(x+ t)w1(t)dt

∥

∥

∥

L∞

< ǫ. (77)

Then
∥

∥

∥

∥

∥

∫ ln+1(x)

−ln+1(x)

fn+1(x+ t)wn+1(t)dt

∥

∥

∥

∥

∥

L∞

< ǫ

∥

∥

∥

∥

∥

∫ l1(x)

−l1(x)

f1(x+ t)w1(t)dt

∥

∥

∥

∥

∥

L∞

. (78)

So we have
{
∥

∥

∥

∥

∥

∫ ln+1(x)

−ln+1(x)

fn+1(x+ t)wn+1(t)dt

∥

∥

∥

∥

∥

L∞

}

→ 0 as n → ∞. (79)

As a result,
∫ ln+1(x)

−ln+1(x)

fn+1(x+ t)wn+1(t)dt → 0 as n → ∞. (80)

So {fn(x)} is convergent. Let F (x) denote the limit of {fn(x)} as following:

F (x) := lim
n→∞

fn(x). (81)

We consider the absolute area bounded by the curve fn(x) and the x axis. The limit

of this area is a positive value as shown below:
∥

∥

∥

∥

∥

∫ ln+1(x)

−ln+1(x)

|fn+1(x+ t)|wn+1(t)dt

∥

∥

∥

∥

∥

L∞

=
n
∏

i=1

δi

∥

∥

∥

∥

∥

∫ l1(x)

−l1(x)

|f1(x+ t)|w1(t)dt

∥

∥

∥

∥

∥

L∞

(82)
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and
∥

∥

∥

∥

∥

∫ l(x)

−l(x)

|F (x+ t)|w(t)dt

∥

∥

∥

∥

∥

L∞

=

(

lim
n→∞

n
∏

i=1

δi

)
∥

∥

∥

∥

∥

∫ l1(x)

−l1(x)

|f1(x+ t)|w1(t)dt

∥

∥

∥

∥

∥

L∞

=c

∥

∥

∥

∥

∥

∫ l1(x)

−l1(x)

|f1(x+ t)|w1(t)dt

∥

∥

∥

∥

∥

L∞

> 0.

(83)

By (80), the moving average of F (x) is zero; by (83), F (x) itself is non zero. So we

get that F (x) is an IMF.

Note that in order to satisfy the convergence condition in Theorem 2, it is not

necessary ǫn < 1 for each n ∈ N. ǫn are allowed to be greater than 1 for some n ∈ N.

This is consistent with what we observe in the implementation of IF algorithm. There

are signals whose L∞ norm grow at the beginning of the inner iteration but eventually

converge.

We should also remark that δn are not necessary to be greater than 1 to be

convergent. For example if δn = 1− 1
2n
, then

∞
∏

n=1

δn > 0. (84)

Proof. Consider the function values of log(1− x) and −2x. We get that

log(1− x) ≥ −2x when x ≤
1

2
. (85)

Then
∞
∑

n=1

log(1−
1

2n
) ≥ −2

∞
∑

n=1

1

2n
= −2. (86)

So we can get

∞
∏

n=1

(1−
1

2n
) = exp

{

∞
∑

n=1

log(1−
1

2n
)

}

≥ e−2 > 0. (87)
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This is only one special example of workable δn. There are actually many more

cases of such δn. In IF algorithm, it is easy to check the values of δn or ǫn after each

step in the inner iteration.

We consider the interpretion of the constraints (74) and (75). Let

M =

∥

∥

∥

∥

∥

∫ ln(x)

−ln(x)

fn(x+ t)wn(t)dt

∥

∥

∥

∥

∥

L∞

, (88)

and M is reached at point x0. Since

∥

∥

∥

∥

∥

∫ ln+1(x)

−ln+1(x)

fn+1(x+ t)wn+1(t)dt

∥

∥

∥

∥

∥

L∞

= ǫn

∥

∥

∥

∥

∥

∫ ln(x)

−ln(x)

fn(x+ t)wn(t)dt

∥

∥

∥

∥

∥

L∞

, (89)

if ǫn < 1, there exists a positive ǫ0 < 1 such that

∥

∥

∥

∥

∥

∫ ln+1(x)

−ln+1(x)

fn+1(x+ t)wn+1(t)dt

∥

∥

∥

∥

∥

L∞

≤ (1− ǫ0)

∥

∥

∥

∥

∥

∫ ln(x)

−ln(x)

fn(x+ t)wn(t)dt

∥

∥

∥

∥

∥

L∞

. (90)

At point x0, it is equivalent to

− (1− ǫ0)M

≤

∫ ln+1(x0)

−ln+1(x0)

∫ ln(x0+t)

−ln(x0+t)

fn(x0 + s+ t)wn(s)wn+1(t)dsdt

−

∫ ln+1(x0)

−ln+1(x0)

fn(x0 + t)wn+1(t)dt

≤(1− ǫ0)M.

(91)

If
∫ ln(x0)

−ln(x0)
fn(x0 + t)wn(t)dt > 0 and wn(t) is close to wn+1(t), we have

∫ ln+1(x0)

−ln+1(x0)

fn(x0 + t)wn+1(t)dt ≈ M, (92)

and

∫ ln+1(x0)

−ln+1(x0)

fn(x0 + t)wn+1(t)dt− (1− ǫ0)M

≤

∫ ln+1(x0)

−ln+1(x0)

∫ ln(x0+t)

−ln(x0+t)

fn(x0 + s+ t)wn(s)wn+1(t)dsdt

≤

∫ ln+1(x0)

−ln+1(x0)

fn(x0 + t)wn+1(t)dt+ (1− ǫ0)M.

(93)
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The right inequality is easy to be satisfied since the right part is close to 2M and the

middle part is the moving average of a function with maximal value M . Consider the

left inequality and let

v(t) =

∫ ln(x)

−ln(x)

wn(s+ t)wn+1(t)ds. (94)

Then the left inequality can be written as

∫ ln+1(x0)

−ln+1(x0)

fn(x0 + t)wn+1(t)dt− (1− ǫ0)M ≤

∫ ln(x)+ln+1(x)

−ln(x)−ln+1(x)

fn(x+ t)vn(t)dt. (95)

When wn+1(x) is close to wn(x), the left side of (95) is close to ǫ0M . When the

weight of the filter is concentrated in the middle, vn(t) decays faster than wn(t) in

the interval [−ln(x), ln(x)]. So it is highly possible that (95) holds. The intuition of

the inner convergence requirements is that the filter weight should be concentrated in

the middle and two consecutive filters should be close. These conditions are easy to

be satisfied. What is more important is the convergence of the outer iteration, which

we explore in the next subsection.

2.2.3 The Convergence Of The Outer Iteration

IF algorithm stops when the remaining signal has a sufficiently small number of

extrema. So the stopping criterion is by checking the number of extrema in the

remaining signal. The convergence theorem of the outer iteration we propose is based

a control of the number of extrema in the remaining signal. We first present the

convergence theorem and then some lemma and corollaries which we shall use to

prove the theorem.

Let function f(x), x ∈ R be continuous and differentiable and f(x) has a finite

number of extreme points in any compact interval. So f(x) has at most countable

extreme points. Let xi, i ∈ N be the extreme points of f(x). Assume that f(x) is

strictly monotone in [xi, xi+1], i ∈ N. We make use of the update step (65) as the

inner iteration. Here is the main theorem in this subsection.
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Theorem 4. Let f(x), x ∈ R be a function with the described properties. In (65), if

gn(x, y) = ln(x)h(y) and

c(1)n (x) + l′n(x)c
(2)
n (x) > 0 when f ′

n(x) > 0,

c(1)n (x) + l′n(x)c
(2)
n (x) < 0 when f ′

n(x) < 0,

(96)

for every n ∈ Z where c
(1)
n (x) and c

(2)
n (x) are defined as

c(1)n (x) =

∫ L

−L

(f ′
n(x)− f ′

n(gn(x, y) + x))W (y)dy,

c(2)n (x) =

∫ L

−L

(f ′
n(x)− f ′

n(gn(x, y) + x))W (y)h(y)dy.

(97)

Then the number of extreme points of f(x) − lim
n→∞

fn(x) is at most the number of

extreme points of f(x) if lim
n→∞

fn(x) exists.

In order to prove Theorem 4, we need following lemma and corollaries.

Lemma 1. Let x0 ∈ [xi, xi+1] where xi is a local minima and xi+1 is a local maxima of

fn(x) and fn(x) is monotonously increasing between (xi, xi+1). In (65), if the scaling

function gn(x, y) is separable, i.e. gn(x, y) = ln(x)h(y), then fn+1(x0) < fn+1(x0 + ǫ)

for small ǫ > 0 if and only if

c(1)n (x0) + l′n(x0)c
(2)
n (x0) > 0, (98)

where

c(1)n (x0) =

∫ L

−L

(f ′
n(x0)− f ′

n(gn(x0, y) + x0))W (y)dy,

c(2)n (x0) =

∫ L

−L

(f ′
n(x0)− f ′

n(gn(x0, y) + x0))W (y)h(y)dy.

(99)

Proof. For any small ǫ > 0, taking the first term in the Taylor expansion of

fn(x0 + ǫ)− fn(x0) and fn(gn(x0 + ǫ, y) + x0 + ǫ)− fn(gn(x0, y) + x0), (100)

we get

fn(x0 + ǫ)− fn(x0) ≈ ǫf ′
n(x0), (101)
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and

fn(gn(x0 + ǫ, y) + x0 + ǫ)− fn(gn(x0, y) + x0)

=fn(gn(x0 + ǫ, y) + x0 + ǫ)− fn(gn(x0, y) + x0 + ǫ) + fn(gn(x0, y) + x0 + ǫ)

− fn(gn(x0, y) + x0)

≈f ′
n(gn(x0, y) + x0 + ǫ)

∂gn(x0, y)

∂x
ǫ+ f ′

n(gn(x0, y) + x0)ǫ

≈f ′
n(gn(x0), y) + x0)

∂gn(x0, y)

∂x
ǫ+ f ′(gn(x0, y) + x0)ǫ

=f ′
n(gn(x0, y) + x0)(

∂gn(x0, y)

∂x
+ 1)ǫ.

(102)

Then we get the approximation of fn+1(x0 + ǫ)− fn+1(x0)

fn+1(x0 + ǫ)− fn+1(x0)

=fn(x0 + ǫ)−

∫ L

−L

W (y)fn(gn(x0 + ǫ, y) + x0 + ǫ)dy

− (fn(x0)−

∫ L

−L

W (y)fn(gn(x0, y) + x0)dy)

=fn(x0 + ǫ)− fn(x0)

−

∫ L

−L

W (y)(fn(gn(x0 + ǫ, y) + x0 + ǫ)− fn(gn(x0, y) + x0))dy

≈ǫ[f ′
n(x0)−

∫ L

−L

W (y)f ′
n(gn(x0, y) + x0)(

∂gn(x0, y)

∂x
+ 1)dy].

(103)

Since the scaling function gn(x0, y) is separable as

gn(x0, y) = ln(x0)h(y), (104)

we can even simplify the approximation of fn+1(x0 + ǫ)− fn+1(x0) from (103) as

fn+1(x0 + ǫ)− fn+1(x0)

≈ǫ[f ′
n(x0)−

∫ L

−L

W (y)f ′
n(ln(x0)h(y) + x0)(l

′
n(x0)h(y) + 1)dy].

(105)

Since h(−y) = −h(y) and W (−y) = W (y), the product of these two functions

h(y)W (y) is an odd function. So we have

∫ L

−L

W (y)h(y)dy = 0. (106)
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Modify f ′
n(x0) by adding a zero term to it:

f ′
n(x0) = f ′

n(x0) + f ′(x0)l
′
n(x0)

∫ L

−L

W (y)h(y)dy

=

∫ L

−L

f ′
n(x0)W (y)dy +

∫ L

−L

f ′
n(x0)l

′
n(x0)W (y)h(y)dy

=

∫ L

−L

W (y)f ′
n(x0)(l

′
n(x0)h(y) + 1)dy.

(107)

Using (107), the approximation of fn+1(x0 + ǫ)− fn+1(x0) in (105) can be written as

fn+1(x0 + ǫ)− fn+1(x0)

≈ǫ

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)][l
′
n(x0)h(y) + 1]dy

=ǫ

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]dy

+ ǫ

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]l
′
n(x0)h(y)dy

=ǫ

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]dy

+ l′(x0ǫ)

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]h(y)dy

=ǫ[c(1)n (x0) + l′n(x0)c
(2)
n (x0)].

(108)

So

fn+1(x0 + ǫ)− fn+1(x0) > 0 if and only if c(1)n (x0) + l′n(x0)c
(2)
n (x0) > 0, (109)

where

c(1)n (x0) =

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]dy

=

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(gn(x0, y) + x0)]dy,

c(2)n (x0) =

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(ln(x0)h(y) + x0)]h(y)dy

=

∫ L

−L

W (y)[f ′
n(x0)− f ′

n(gn(x0, y) + x0)]h(y)dy.

(110)
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Lemma 1 holds for a tiny monotonously increasing interval. This property can be

extended to a larger interval, such as a monotonously increasing interval between a

local minimal point and a local maximal point. For the strictly increasing intervals

of fn(x), apply Lemma 1 on fn(x), we get following corollary.

Corollary 1. Let xi, xi+1 be two adjacent extreme points of fn(x) and fn(x) is strictly

increasing on (xi, xi+1). fn+1(x) is also strictly increasing on (xi, xi+1) if

c(1)n (x) + l′n(x)c
(2)
n (x) > 0, (111)

for any x ∈ (xi, xi+1) where

c(1)n (x) =

∫ L

−L

(f ′
n(x)− f ′

n(gn(x, y) + x))W (y)dy,

c(2)n (x) =

∫ L

−L

(f ′
n(x)− f ′

n(gn(x, y) + x))W (y)h(y)dy.

(112)

Proof. fn+1(x) is strictly increasing on (xi, xi+1) is equivalent to fn+1(x+ǫ) > fn+1(x),

for any x ∈ (xi, xi+1) and small ǫ > 0. Since fn(x) is strictly increasing on (xi, xi+1),

by Lemma 1, fn+1(x+ ǫ) > fn+1(x) if

c(1)n (x) + l′n(x)c
(2)
n (x) > 0. (113)

So fn+1(x) is strictly increasing on (xi, xi+1) if

c(1)n (x) + l′n(x)c
(2)
n (x) > 0, for any x ∈ (xi, xi+1), (114)

where

c(1)n (x) =

∫ L

−L

[f ′
n(x)− f ′

n(gn(x, y) + x)]W (y)dy,

c(2)n (x) =

∫ L

−L

[f ′
n(x)− f ′

n(gn(x, y) + x)]h(y)W (y)dy.

(115)

In a similar way, apply Lemma 1 on −fn(x) for the strictly decreasing intervals

of fn(x), we get following corollary.
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Corollary 2. Let xi, xi+1 be two adjacent extreme points for fn(x) and fn(x) is strictly

decreasing on (xi, xi+1). fn+1(x) is strictly decreasing on (xi, xi+1) if

c(1)n (x) + l′n(x)c
(2)
n (x) < 0, (116)

for any x ∈ (xi, xi+1) where c
(1)
n (x) and c

(2)
n (x) are defined in the same way as in

(112).

Proof. Let hn(x) = −fn(x). So hn(x) is strictly increasing on (xi, xi+1). By Corollary(1),

hn+1(x) := hn(x)−

∫ L

−L

hn(x+ gn(x, y))W (y)dy, (117)

is strictly increasing on (xi, xi+1) if d
(1)
n (x) + l′n(x)d

(2)
n (x) > 0 for any x ∈ (xi, xi+1)

where

d(1)n (x) =

∫ L

−L

W (y)[h′
n(x)− h′

n(x+ gn(x, y))]dy,

d(2)n (x) =

∫ L

−L

W (y)[h′
n(x)− h′

n(x+ gn(x, y))]h(y)dy.

(118)

Since

hn(x) = −fn(x), (119)

we have that

hn+1(x) = −fn+1(x), (120)

and

d(1)n (x) = −c(1)n (x),

d(2)n (x) = −c(2)n (x),

(121)

where

c(1)n (x) =

∫ L

−L

W (y)[f ′
n(x)− f ′

n(x+ gn(x, y))]dy,

c(2)n (x) =

∫ L

−L

W (y)[f ′
n(x)− f ′

n(x+ gn(x, y))]h(y)dy.

(122)

So

d(1)n (x) + l′(x)d(2)n (x) > 0 (123)
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is equivalent to

−c(1)n (x)− l′(x)c(2)n (x) > 0. (124)

As a result, fn+1(x) is strictly decreasing on (xi, xi+1) if

c(1)n (x) + l′(x)c(2)n (x) < 0. (125)

The significance of Corollary 1 and Corollary 2 lies in the number of extreme

points in fn(x). Since the monotonously increasing and monotonously decreasing

parts keep increasing or decreasing respectively after one step in the inner iteration,

the extreme points do not change their positions from fn(x) to fn+1(x), i.e., xi is a

maximum point in fn(x) at the beginning of the nth step in the inner iteration; then

xi is still a maximum point after the nth step in the inner iteration. As a result, the

number of extreme points does not increase from step to step in the inner iteration.

Based on this analysis, we prove Theorem 4, which is the convergence theorem of the

outer iteration of IF algorithm with adaptive filters.

Proof. Since

c(1)n (x) + l′n(x)c
(2)
n (x) > 0 when f ′

n(x) > 0,

c(1)n (x) + l′n(x)c
(2)
n (x) < 0 when f ′

n(x) < 0,

(126)

by Corollary (1) and Corollary (2), fn+1(x) and fn(x) are monotonously increasing

or monotonously decreasing simultaneously for each n ∈ Z. Since f1(x) = f(x), fn

and f(x) are monotonously increasing or monotonously decreasing simultaneously for

each n ∈ Z. So if lim
n→∞

fn(x) exists, lim
n→∞

fn(x) and f(x) are monotonously increasing

or monotonously decreasing simultaneously. Consequently, the number of extreme

points of f(x)− lim
n→∞

fn(x) is no greater than the number of extreme points of f(x).

In Theorem 4, if the number of extreme points of f(x) − lim
n→∞

fn(x) is less than

number of extreme points of f(x), in next step of the outer iteration, the function we
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start with, f(x) − lim
n→∞

fn(x), is smoother than f(x). If this property keeps true for

each step of the outer iteration, i.e. the number of extreme points in the remaining

signal keeps decreasing, then IF algorithm with adaptive filter converges for f(x).

We check two kinds of signals for which the conditions (96) are satisfied easily. Let

f(x) be a piecewise linear function with period T , i.e. f(x+ T ) = f(x). In addition

assume that within one period

f

((

n+
1

2

)

T − t

)

= f

((

n+
1

2

)

T + t

)

t ∈

[

0,
T

2

]

. (127)

Let l(x) = L and g(x, y) = y. So we have l′(x) = 0. When f ′(x) > 0

c1(x) =

∫ L

L

w(y)[f ′(x)− f ′(x+ y)]dy

=

∫ L

L

w(y)f ′(x)dy −

∫ L

L

w(y)f ′(x+ y)dy

= f ′(x)−

∫ L

L

w(y)f ′(x+ y)dy

> 0,

(128)

as a result

c1(x) + l′(x)c2(x) = c1(x) + 0 = c1(x) > 0. (129)

When f ′(x) < 0,

c1(x) =

∫ L

L

w(y)[f ′(x)− f ′(x+ y)]dy

=

∫ L

L

w(y)f ′(x)dy −

∫ L

L

w(y)f ′(x+ y)dy

= f ′(x)−

∫ L

L

w(y)f ′(x+ y)dy

< 0,

(130)

as a result

c1(x) + l′(x)c2(x) = c1(x) + 0 = c1(x) < 0. (131)

By (129) and (131), we see that for the piecewise linearly function f(x) satisfying the

periodicity assumption, by applying uniform filters, the two constraints are satisfied

directly.
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Moreover, we consider the same constraints for sinusoidal functions. Without loss

of generality, let f(x) = sin(2π
T
x). Since f(x) is periodic with period T , we shall use

IF algorithm with uniform filters. So l′(x) = 0 since the filter length doesn’t change

from point to point. Let the length of the uniform filter be 2L. If T = 2L

c1(x) =

∫ L

−L

W (y)[f ′(x)− f ′(x+ y)]dy

=

∫ L

−L

W (y)
[

sin′
(π

L
x
)

− sin′
(π

L
(x+ y)

)]

dy

=
π

L

∫ L

−L

W (y)
[

cos
(π

L
x
)

− cos
(π

L
(x+ y)

)]

dy

=
π

L

[

cos
(π

L
x
)

−

∫ L

−L

cos
(π

L
x
)

cos
(π

L
y
)

W (y)dy

+

∫ L

−L

sin
(π

L
x
)

sin
(π

L
y
)

W (y)dy

]

=
π

L

[

cos
(π

L
x
)

− cos
(π

L
x
)

∫ L

−L

cos
(π

L
y
)

W (y)dy

+ sin
(π

L
x
)

∫ L

−L

sin
(π

L
y
)

W (y)dy

]

.

(132)

Since sin
(

π
L
y
)

is an odd function, we have that

∫ L

−L

sin(
π

L
y)W (y)dy = 0. (133)

Then c1(x) could be written as

c1(x) =
π

L

[

cos
(π

L
x
)

− cos
(π

L
x
)

∫ L

−L

cos
(π

L
y
)

W (y)dy

]

=
π

L
cos
(π

L
x
)

[

1−

∫ L

−L

cos
(π

L
y
)

W (y)dy

]

.

(134)

Since

∣

∣

∣

∣

∫ L

−L

cos
(π

L
y
)

W (y)dy

∣

∣

∣

∣

<

∫ L

−L

∣

∣

∣
cos
(π

L
y
)
∣

∣

∣
W (y)dy <

∫ L

−L

W (y)dy = 1, (135)

we get

−1 <

∫ L

−L

cos
(π

L
y
)

W (y)dy < 1. (136)

39



So

0 < 1−

∫ L

−L

cos
(π

L
y
)

W (y)dy < 2, (137)

and c1(x) has the same sign of cos( π
L
x). Moreover since l′(x) = 0 for uniform filters,

we have

c1(x) + l′(x)c2(x) > 0 when f ′(x) > 0,

c1(x) + l′(x)c2(x) < 0 when f ′(x) < 0.

(138)

If T > 2L, we could extend the uniform filter W (y), y ∈ [−L, L] to be a filter

W1(y), y ∈ [−T
2
, T
2
] with length T by adding two zero parts:

W1(y) =























0 if − T
2
≤ y < −L,

W (y) if − L ≤ y ≤ L,

0 if L < y ≤ T
2
.

(139)

Apply the same computation as in the case T = 2L with W1(y), y ∈ [−T
2
, T
2
] we get

the same result that

c1(x) + l′(x)c2(x) > 0 when f ′(x) > 0,

c1(x) + l′(x)c2(x) < 0 when f ′(x) < 0.

(140)

If T < 2L

c1(x) =

∫ L

−L

W (y)[f ′(x)− f ′(x+ y)]dy

=

∫ L

−L

W (y)

[

sin′

(

2π

T
x

)

− sin′

(

2π

T
(x+ y)

)]

dy

=
2π

T

∫ L

−L

W (y)

[

cos

(

2π

T
x

)

− cos

(

2π

T
(x+ y)

)]

dy

=
2π

T

[

cos

(

2π

T
x

)

−

∫ L

−L

cos

(

2π

T
x

)

cos

(

2π

T
y

)

W (y)dy

+

∫ L

−L

sin

(

2π

T
x

)

sin

(

2π

T
y

)

W (y)dy

]

=
2π

T
cos

(

2π

T
x

)[

1−

∫ L

−L

cos

(

2π

T
y

)

W (y)dy

]

.

(141)

Since
[

1−

∫ L

−L

cos

(

2π

T
y

)

W (y)dy

]

> 0, (142)
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c1(x) has the same sign as f ′(x). We get that

c1(x) + l′(x)c2(x) > 0 when f ′(x) > 0,

c1(x) + l′(x)c2(x) < 0 when f ′(x) < 0.

(143)

Based on these analysis, we get that when the signal is a sinusoidal function, applying

IF algorithm with uniform filters does not change the positions of extreme points, thus

does not change the number of extreme points.

We consider the direct requirement of l′(x) for some small neighbourhoods near

the extreme points of f ′(x). If the scaling function has a special form such that

g(x, y) = l(x)
L
y, then

c1(x) + l′(x)c2(x) > 0 (144)

is equivalent to

∫ L

−L

W (y)f ′(x)dy −

∫ L

−L

W (y)f ′

(

l(x)

L
y + x

)(

l′(x)

L
y + 1

)

> 0. (145)

We could simply get that

• l′(x) < 0 when x is on the left of the maxima of f ′(x);

• l′(x) > 0 when x is on the right of the maxima of f ′(x).

On the other hand

c1(x) + l′(x)c2(x) < 0 (146)

is equivalent to

∫ L

−L

W (y)f ′(x)dy −

∫ L

−L

W (y)f ′

(

l(x)

L
y + x

)(

l′(x)

L
y + 1

)

< 0. (147)

Similary, we could get that

• l′(x) > 0 when x is on the left of the minima of f ′(x);

• l′(x) < 0 when x is on the right of the minima of f ′(x).
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2.3 Conclusions

The aim of this chapter is to study the convergence of IF algorithm. we show the

convergence of the inner iteration of IF algorithm under proper conditions with both

uniform filters and adaptive filters. In addition, we also show the convergence of

the outer iteration of IF algorithm by controlling the number of extreme points in

the remaining signal. We would like to emphasize that the conditions required in

the convergence theorems can either be achieved by adjusting the filter length or be

shown by checking easily after each step of the inner iteration.
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CHAPTER III

ADAPTIVE LOCAL ITERATIVE FILTERING

ALGORITHM

In Chapter 2, we establish the fundamental of IF algorithm by showing the con-

vergence theorems. In this chapter, we propose Adaptive Local Iterative Filtering

(ALIF) algorithm based on the convergence theorem. In Section 3.1, we set up an

approach of adjusting the filter length adaptively according to the signal’s local be-

haviour. This approach is guided by Theorem 4 and the convergence is guaranteed.

In Section 3.2, we develop a local filter which is a smooth function with a compact

support based on a PDE model. This local filter could be applied in ALIF algorithm.

In Section 3.3, we present a special adaptivity strategy to handle signals with jumps

using only one side information. In Section 3.4, we show the results of numerical

experiments of ALIF algorithm on both simulated signals and real data. In Section

3.5, we present specific numerical examples which demonstrate the stability of ALIF

algorithm.

3.1 Adaptive Iterative Filtering Techniques

3.1.1 The ALIF Algorithm

Adaptive Local Iterative Filtering (ALIF) algorithm is given on the next page.

In Theorem 4, if the number of extreme points of f(x) − lim
n→∞

fn(x) is less than

number of extreme points of f(x), in next step of the outer iteration, the function we

start with, f(x) − lim
n→∞

fn(x), is smoother than f(x). If this property keeps true for

each step of the outer iteration, i.e. the number of extreme points in the remaining

signal keeps decreasing, ALIF algorithm converges for signal f(x).
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Algorithm 3 IMF = ALIF(f)

IMF=∅
while the number of extrema ≥ 2 do

f1 = f
while the stopping criteria is not satisfied do

compute ln(x) for fn
fn+1 = fn −

∫ ln(x)

−ln(x)
f(x+ t)wn(x, t)dt

n = n+ 1
end while

IMF = IMF∪{fn}
f = f − fn

end while

IMF = IMF∪{f}

3.1.2 Filter Lengths Computation

In Algorithm 3, there is a step of computing the filter length ln(x) for signal fn(x).

In general, ln(x) is a positive function. For special cases where ln(x) is a positive

constant function

ln(x) :=

⌊

2N

k

⌋

, (148)

where N is the total sample points of signal fn(x) and k is the number of extreme

points of fn(x). When ln(x) is a constant function, the moving average of fn(x) is

degenerated to the convolution of fn(x) and wn(x) where wn(x) is a uniform filter

with length 2ln(x). In this section, we focus on the general situation where ln(x) is

not restricted to a positive constant. For this general case, there are more than one

way to compute ln(x). In [78], Wang proposed an interpolation method of the filter

length. let xi denote the position of the ith local extreme point of fn(x), then the

filter length 2ln(xi) at xi is given by

2ln(xi) = xi+2 − xi−2. (149)

Then the filter length 2ln(x) for any other point x is given by the interpolation with

the known filter length (xi, 2ln(xi)). Similar to this approach, we propose another

approach in order to utilize more local information. The half filter length ln(xi) at
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the ith local extreme point xi is given by

ln(xi) = xi+1 − xi−1 (150)

and the half filter length ln(x) for any other point x is given by the interpolation

based on (xi, ln(xi)). However, the computation of the filter length ln(x) in either

(149) or (150) does not show any clue about convergence or relations with Theorem

4.

With the purpose of ensuring the convergence, we design adaptive techniques

to compute the filter length ln(x) such that (96) holds for each step of the inner

iteration based on Theorem 4. To satisfy the constraints in (96), it is necessary to

adjust the filter length ln(x) according to the value of l′n(x) which satisfies (96). Since

the constraints are inequalities about l′n(x), there are infinite number of choices for

the value of l′n(x). As a simple choice, we first convert the two inequalities in (96)

to equality constraints with right hand sides which are properly set up. Then we

obtain the filter length ln(x) from point to point by the values of l′n(x) in the equality

constraints.

Let the right hand sides be tn(x), then the two constraints in (96) can be written

as

c(1)n (x) + l′n(x)c
(2)
n (x) = tn(x), (151)

where tn(x) satisfies

tn(x)











> 0, when f ′
n(x) > 0,

< 0, when f ′
n(x) < 0.

(152)

One simple selection of tn(x) is the step function as

tn(x) =











c, when f ′
n(x) > 0,

−c, when f ′
n(x) < 0.

(153)

This selection works from the constraint point of view. However, there are two issues

we need to consider in this selection. One is that we need to be really careful to pick
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up a value for c. Large values of c lead to big values of l′n(x) and consequently cause

big variation of ln(x) or even negative values in ln(x). Small values of c generate small

l′n(x) and then ln(x) almost as a constant. This may work well only for some part

of the signal especially when the signal is stationary. The other issue is that even if

we found a good value of c for certain signal, it does not work well for all the others.

Due to these considerations, a step function as (153) is not the best choice for the

function tn(x).

We propose a better selection of tn(x) as

tn(x) =











λ|c
(1)
n (x)|, when f ′

n(x) > 0,

−λ|c
(1)
n (x)|, when f ′

n(x) < 0,
(154)

where λ is a constant with the scale of 1. This selection is adaptive since in (154)

the value of tn(x) depends on the value of c
(1)
n (x), which reflects the local behaviour

of a signal. By choosing the fixed filter W (y), y ∈ [−L, L] with a large length, the

function h(y) has the value much smaller than 1. Consequently, c
(1)
n (x) has greater

absolute value than c
(2)
n (x). With the underneath assumption that the filter length

has only smooth changes, this observation plays its role in (154) by setting λ close to

1. We shall implement the selection of tn(x) as (154) later in Section 3.4.

To get the filter length ln(x) for the whole signal fn(x), we start with the filter

length ln(x0) at a particular point x0 and extend the function ln(x) to both the left

and the right sides by (151) and (154). Basically, we select the point x0 as the local

extreme point which has the minimal distance to its adjacent extreme points. Assume

the right adjacent extreme point of x0 is x1 and the left adjacent extreme point of x0

is x−1. Then ln(x0) := x1 − x−1. Given the filter length ln(x) at point x, the filter

length at point x+ dx is computed by

ln(x+ dx) = ln(x0) + dx
tn(x)− c

(1)
n (x)

c
(2)
n (x)

. (155)

So the filter length ln(x) of signal fn(x) is obtained point after point using (155). We

propose to make use of this computation of the filter length in ALIF algorithm.
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We point out here that the implementation of the above approach requires careful

attention. Given a signal f(x) if we sample it every ∆x, then x = n∆x with n =

1, 2, . . . , N . To ensure the convergence of the algorithm applied to the given f(x),

l′n(x) has to satisfy the condition (151) at every sample point x = n∆x. We refer to

the set containing the sample points as the physical space. In the implementation of

the algorithm it is required to rescale the variable x into y = x/∆x such that ∆y,

the distance between two consecutive samples points y, is equal 1. We refer to the

set containing the values y as the computational space.

Let us consider the condition that l′n(x) should satisfy in the computational space.

Let L′
n(y) denote the rate of change of the filter length in the computational space.

Since l′n(x) is independent of the value of ∆x, at any point x = y∆x we have that

l′n(x) = L′
n(y). So (151) can be rewritten as

c(1)n (y∆x) + L′
n(y)

dy

dx
c(2)n (y∆x) = tn(y∆x). (156)

Let C
(1)
n (y) = c

(1)
n (y∆x), C

(2)
n (y) = c

(2)
n (y∆x), Tn(y) = tn(y∆x), and since dy/dx =

1/∆x we get

C(1)
n (y) + L′

n(y)
1

∆x
C(2)

n (y) = Tn(y). (157)

So the condition that L′
n(y) should satisfy in the computational space is

L′
n(y) = ∆x

Tn(y)− C
(1)
n (y)

C
(2)
n (y)

, (158)

therefore (155) becomes

Ln(y + 1) = Ln(y) +
Tn(y)− C

(1)
n (y)

C
(2)
n (y)

∆x. (159)

ALIF algorithm is implemented based on (159).

Furthermore, in order to make sure the filter length has smooth change, we set

up a threshold δ for c
(2)
n (x). When c

(2)
n (x) is smaller than δ, c

(2)
n (x) is set to be δ.
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3.2 Local Filters Developed From A PDE Model

To effectively handle non-linear and non-stationary signals, it is highly desirable to

use filters with compact support, for the simple reason that filters with longer support

may mix features that are far apart in a signal. This could be troublesome, especially

for signals with transient information. However, the compact support low pass filters,

such as the double average filters, used in the existing IF algorithms are not smooth

enough. They may create artificial oscillations in subsequent IMFs, due to the non-

smoothness. This motivates us to design filters from the solution of certain Fokker-

Planck equations, because they are compactly supported, infinitely differentiable and

vanishing to zero at both ends smoothly. Thus they can avoid creating any artificial

oscillations due to the non-smoothness of the filters.

Let us consider the Fokker-Planck equation

pt = −α(h(x)p)x + β(g2(x)p)xx, α, β > 0. (160)

Assume h(x) and g(x) are smooth enough functions such that there exist a < 0 < b

satisfying:

• g(a) = g(b) = 0, g(x) > 0 for x ∈ (a, b);

• h(a) < 0 < h(b).

The (g2(x)p)xx term generates diffusion effect and pulls out the density from the

center of (a, b) towards a and b while the −(h(x)p)x term transports the density from

a and b towards the center of the interval (a, b). When the two forces are balanced,

the steady state is achieved. There exists a smooth non trivial solution p(x) of the

stationary problem:

−α(h(x)p)x + β(g2(x)p)xx = 0 (161)

satisfying p(x) ≥ 0 for x ∈ (a, b), and p(x) = 0 for x 6∈ (a, b). That means the solution

is concentrated in the interval [a, b] and there is no leakage outside. So p(x) is a local
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Figure 8: coefficient functions and steady states of (162): h(x) is an odd function and
here we use x3; g2(x) is an even function and it is a smooth approximation to the
step function; (c) shows two steady states for coefficients α = 0.02, β = 0.008 and
α = 0.003, β = 0.01 respectively.

filter satisfying our requirement.

Based on this analysis, we shall use the solution to the following initial value

problem as the filter in our decomposition algorithm:

pt = −α(h(x)p)x + β(g2(x)p)xx,

p(x, 0) = δ

(

x−
a+ b

2

)

,
(162)

where δ(x) is the Dirac delta function . By adjusting the functions h(x), g(x) as well

as coefficients α, β, we can get different shapes of filters. In Figure 8, we plot two

steady states for different α, β respectively for the same h(x) and g(x) functions.

We can see that when α is larger, the weight is concentrated more in the center;

on the other hand, when β is larger, the weight is diffused more and concentrated less

in the center. When designing the local filter based on the Fokker-Planck equation,

we first fix the functions f(x) and g(x) then adjust the coefficients α and β to get to

the filter shape we want.

3.2.1 Filters With Different Lengths

Another issue involved is about designing filters with different lengths but the same

shape. There are two approaches available. One way is to solve the Fokker-Planck

equation again with h(x) and g(x) scaled in x for every different a or b. Assume we
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get the steady state of (162), in order to get the filter with length from â to b̂, we

solve (163) and the steady state is the filter we want.

pt = −α

(

h

(

â
x− (a+ b)/2

a
+

â+ b̂

2

)

p

)

x

+ β

(

g2

(

â
x− (a+ b)/2

a
+

â+ b̂

2

)

p

)

xx

,

p(x, 0) = δ

(

x−
â+ b̂

2

)

.

(163)

The other way is to solve the Fokker-Planck equation for a fixed a and b only once and

take a special interpolation of the steady state to get the proper filter. The former

approach generates the exact solution of PDE, but solving PDEs numerically is much

slower than interpolating existing filters. The latter approach is easier to implement.

So in our simulations, we use this special interpolation strategy to get filters with

same shape for different lengths. We present this special interpolation strategy in the

following paragraphs.

Assume we get the numerical solution for the steady state of (162) with 2k +

1 discrete points xi, i = 1, 2, ..., 2k + 1 where k is a large natural number and

[x1, x2, ..., x2k+1] is a discretization of the interval [a, b]. The function value p(xi) is

the weight in the interval [xi, xi+1) and the sum of weights in all the intervals equals 1.

Assume for another interval [â, b̂] we have a different discretization [x̂1, x̂2, ..., x̂2n+1].

There is a one-to-one linear correspondence from the interval [â, b̂] to the interval [a, b].

By this correspondence, [x̂1, x̂2, ..., x̂2n+1] are mapped into [y1, y2, ..., y2n+1]. The val-

ues of the filter wj, j = 1, 2, ..., 2n+ 1 in the interval [â, b̂] will be the weights in the

intervals [yj, yj+1], j = 1, 2, ..., 2n + 1 respectively, where the weight in the interval

[yj, yj+1] is given by

w[yj ,yj+1] =

∫ yj+1

yj

p(x)dx. (164)

The integral is computed by the Riemamn sum based on the discrete points xi and

the weights p(xi), i = 1, 2, ..., 2k + 1 . If yj falls between two points xm1−1, xm1
and
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yj+1 falls between two points xm2
, xm2+1. Then

∫ yj+1

yj

p(x)dx = p(xm1−1)(xm1
− yj) +

m2−1
∑

i=m1

p(xi) + p(xm2
)(yj+1 − xm2

). (165)

So the filter weight wj will be

wj = p(xm1−1)(xm1
− yj) +

m2−1
∑

i=m1

p(xi) + p(xm2
)(yj+1 − xm2

). (166)

Using this special interpolation method, the shapes of filters with different lengths

are the same. Moreover, the filter length could be any positive real number, it is not

limited to integers.

3.3 Iterative Filtering With One Side Information

For some signals, there can be significant changes or jump in the magnitude. When

computing the moving average of this type of signals, it gets severe impact from the

jumps and behaves unexpectedly. It is nice that the algorithm should be able to

deal with the jumps, i.e. the jumps of signals do not have huge influence on nearby

positions. To get such a capacity, we make use of one side information to compute

the moving average when jumps happen. The technique is based on two steps. The

first step is to detect positions of jumps in a signal. Treat the left side and the right

side of a jump as two signals. In the second step, for the left signal, we extend the

right boundary of the signal so that the moving average can be computed; for the

right one, we extend the left boundary of it. The moving average of the whole signal

is the catenation of the moving average from the left side and the moving average

from the right side.

To detect the positions of jumps, we compute the variation of two consecutive

points. If the value of the variation is extremely larger than the average variation, a

jump is regarded to exist from one point to the other. Then the signal f(t) is separated

into two parts by splitting at the jump: the left part fL(t) and the right part fR(t).

Assume we use the uniform filters and the filter length is 2m and assume the position
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of the jump is t0. The left part fL(t) only provides complete data to compute the

moving average upto t0−m. To compute the moving average for [t0−m, t0], the right

boundary of fL(t) need to be extended properly. The technique we use is based on

the least square fitting. For the series of points

(t0−2m,Lf(t0−2m)), (t0−2m+1,Lf(t0−2m+1)), ..., (t0−m,Lf(t0−m)), (167)

we could find a linear function as the least squares solution. Compute the values of

this linear function at t = t0 −m+1, t0−m+2, ..., t0 and extend the right boundary

of fL(t) by these values. Similarly, the right part signal fR(t) only provides complete

data to compute the moving average down to t0 +m. To extend the left boundary of

fR(t), we find the linear function fitting points

(t0+m+1,Lf(t0+m+1)), (t0+m+2,Lf(t0+m+2)), ..., (t0+2m,Lf(t0+2m)) (168)

with least squares. Compute the values of this linear function at t = t0, t0+1, ..., t0+m

and extend the left boundary of fR(t) by these values.

3.4 Numerical Experiments

In this section, we show the performance of ALIF algorithm given in Algorithm 3. In

addition, the filter length ln(x) is computed by the adaptive techniques we propose in

Section 3.1. we use the designed filter given in Figure 9 which is based on the PDE

model as described in the Section 3.2, where f(x), g(x) are the functions shown in

Figure 8 and the coefficients are α = 0.005, β = 0.09. Filters with different lengths

are computed using the special interpolation method introduced in Section 3.2.
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Figure 9: The local filter we use in numerical implementations.

For the stopping criterion, we can either put a limit on the maximal iterations

number or stop the iteration when SD reaches certain threshold. Let Ik,n = Sn
k (x −

I1 − ...− Ik−1) where Sk denotes the operator S to obtain the kth IMF.

SD :=
‖Ik,n − Ik,n−1‖2

‖Ik,n−1‖2
. (169)

It is also possible to adopt different stopping criteria for different IMFs. Consider

a noisy signal, we may use looser stopping criteria for the first few IMFs to reduce

the number of noise components and use stronger stopping criteria for the remaining

IMFs to attract different patterns in following components. In the implementation,

we use as stopping criterion SD ≤ δ where δ is usually set to be 0.08.

As observed previously, a good decomposition method should capture all the finest

oscillations around a moving average. That means the IMFs should satisfy at least

this condition: all the local maximal values are positive and all the local minimal

values are negative. Using iterative filtering method eventually we can get to this

point. One example is given in Figure 10.
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Figure 10: The effect of iterative filtering: (a) After 3 iterations the local minima

point a is above 0. (b) After 5 iterations the local minima point b is below 0. Other

parts do not change significantly from (a) to (b).

We test the proposed ALIF algorithm on both simulated signals and real-life data

sets. Among these examples, the first three are simulated signals, the next four are

real-life signals and last one is the example to show the performance of ALIF using

only one side information.

Example 1 We test ALIF algorithm on a non-stationary frequency modulated signal

f(t) = 4(t− 0.5)2 + (2(t− 0.5)2 + 0.2) sin ((20π + 0.2 cos (40πt))t), t ∈ [0, 1]. (170)

From Figure 11, we see that f(t) is decomposed into two components. The first is

the frequency modulated signal (2(t−0.5)2+0.2) sin ((20π + 0.2 cos (40πt))t) and the

second is the trend 4(t− 0.5)2.
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Figure 11: (a) signal given in (170); (b) shows two components in the decomposition.

Example 2 We test ALIF algorithm on the highly non-stationary signal

f(t) = sin (4πt) + 0.5 cos (50π|t| − 40πt2), t ∈ [−0.4, 0.4]. (171)

As shown in Figure 12, f(t) is separated into two IMFs. One has a varying instanta-

neous frequency and the other has a constant instantaneous frequency.
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Figure 12: (a) signal given in (171); (b) components obtained from the decomposition.

Example 3 In this example, we test the difference between the white noise and the

chaotic signals. The chaotic signals are generated by the Lorenz system given in the
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following


























ẋ = θ(y − x),

ẏ = x(ρ− z)− y,

ż = xy − βz.

(172)

when ρ = 28, θ = 10 and β = 8/3, the solution of the Lorenz system is shown in

Figure 13. Each variable x, y or z is a chaotic function. We pick up the variable x

for the numerical experiment and plot it in Figure 14. To test the difference in the

decomposition with the white noise signal, we pick up one example n(t) ∼ (0, 52) as

shown in Figure 15. The standard deviation is set to be 5 so that the white noise has

a comparable magnitude with the x variable of the solution.
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Figure 13: A plot of a solution of Lorenz system when ρ = 28, θ = 10 and β = 8/3.
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Figure 14: A plot of the x variable in a solution of Lorenz system when ρ = 28, θ = 10

and β = 8/3.
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Figure 15: A white noise n(t) ∼ (0, 52).

Apply ALIF algorithm on the signal corresponding to the x variable, the decom-

position of x is shown in Figure 16. Apply ALIF algorithm on the white noise signal

shown in Figure 15 and plot its decomposition in Figure 17. The difference of the
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components for these two signals includes that: the first few components of the white

noise has a higher frequency than the first few components of the chaotic signal; the

first few components of the chaotic signal, whose magnitude drops to quite small val-

ues occasionally, are non-stationary while the first few components of the white noise

are relatively homogeneous. The second difference would be useful to distinguish the

chaotic signals and noise signals when both have similar frequencies.
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Figure 16: The decomposition of the x variable in the solution of the Lorenz system.
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Figure 17: The decomposition of the white noise shown in Figure 15.

Example 4 We apply ALIF algorithm on some real world data. The first one is the

deviation of the length of day light data for 1000 days from the year 1973 to the year

1976. This data is decomposed into 5 components as shown in Figure 18 where 4 of

them are IMFs and the last one is the trend. From the four IMFs, we can see very

regular patterns: the half monthly change pattern, the monthly change pattern, the

half yearly change pattern as well as the yearly change pattern.
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Figure 18: Length of day (LOD) signal and its decomposition. (a) the LOD signal;

(b) the 5 components in the decomposition.

Example 5 We apply ALIF algorithm to the monthly global ocean temperature

anomalies (degrees C) from January 1880 to February 2013 where anomalies are pro-

vided as departures from the 20th century average. The data are plotted in Figure

19. In the decomposition of this data, there are several patterns corresponding to

temperature rising or dropping at different scales. The trend shows that the tem-

perature does increase for recently 100 years. However, it could be part of a regular

pattern at a longer time scale.
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Figure 19: Monthly global ocean temperature anomalies from 1880 to 2013.
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Figure 20: Decomposition of Monthly global ocean temperature anomalies.

Example 6 We apply ALIF algorithm to the water level data observed at Kawaihae,

Hawaii, HI for 72 hours from March 11, 2011 to March 13, 2011 when the 2011

Tohoku earthquake and tsunami occurred. The data set of this example could be

found in [1]. The data is decomposed into several components where the beginning

three components is the impact of the tsunami and the last two components reveal

the basic wave height. From figure 21 we see that the algorithm captures transient

signals as well as the regular pattern.
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Figure 21: (a)the given wave height signal; (b) the 7 components in the decomposition.

Example 7 We anayze the temperature of certain computer. The data is provided

by Dr. Edmond Chow from Georgia Institute of Technology. The temperatures of
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the CPU and the motherboard of Chow’s desktop were recorded every ten minutes

from 2pm Oct 3rd, 2010 to 9pm Feb 25th, 2013. The temperature data are shown in

the following:
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Figure 22: The CPU and motherboard temperature data of Chow’s computer from

Oct 2010 to Feb 2013.

Take the decomposition of both signals and we get 10 components for the CPU

temperature and 12 components for the motherboard temperature.
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Figure 23: The decomposition result of the CPU temperature data
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Figure 24: The decomposition result of the motherboard temperature data

We compare the last component and the sum of all the other components of both

signals in Figure 25. It is clear that the CPU temperature has larger variation than

the motherboard temperature. The trend of CPU is generally lower than the trend
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of the motherboard. However, the CPU temperature does have higher trend than the

motherboard temperature around June 2012. There might be something abnormal

in the cooling system of the CPU during that period. We also derive some regular

patterns based on the decomposition. In Figure 26, we plot the 6th and the 8th

components of the CPU temperature for 44 consecutive days which are randomly

selected. The 6th component of the CPU temperature represents a daily change

pattern while the 8th component of the CPU temperature corresponds to a weekly

change pattern.
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Figure 25: Comparison of the trends and the variation of two signals.
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Figure 26: The 6th and 8th components of the CPU temperature. They are corre-

sponding to a daily change pattern and a weekly change pattern respectively.
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Example 8 When there are sudden changes in the amplitude of a signal, we use

only one side information near this sudden change in ALIF algorithm. Consider the

following signal

x(t) = f(t) + 0.3 sin(4πt) + n(t), t ∈ [0, 10], (173)

where f(t) is a step function

f(t) =























−0.5 if 0 ≤ t < 3.5 or 6.75 < t ≤ 10,

0.5 if 3.5 ≤ t ≤ 6.75,

0 otherwise,

(174)

where n(t) ∼ N(0, 0.12), t ∈ R.
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Figure 27: the signal given by (173): there are two sudden changes in the amplitude
of this signal.

Using ALIF algorithm with uniform filters, we get the decomposition of x(t) shown

in Figure 28. The first 4 components are the reflections of the white noise n(t). The

5th component is the IMF corresponding to the sinusoidal function 0.3 sin(4πt). The

subsequent components are somehow related to the step function f(t). The 7th and

the 8th components are mainly related to the sudden changes in the magnitude of

x(t) since they have obvious larger amplitude at the same positions where the step

function f(t) jumps. The 9th components looks like a smoothed version of the step

function f(t). It has the same trend as the step function but loses the transient

jumping behaviour. The result is like this since we use the signals behaviours from
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both sides near the jumps in ALIF algorithm although the signal are severely non-

stationary from one side of the jump to the other side.
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Figure 28: The decomposition of the signal (173) by IF algorithm: the last component

lose the representation of the step function.
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Using ALIF algorithm with only one side information, we get the decomposition

of x(t) shown in Figure 29. Similarly, the first four components are derived due to

the impact of noise. The 5th component is corresponding to the sinusoidal function

0.3 sin(4πt). The subsequent components are related to the step function f(t), where

the last component is much more close to a step function compared with the last

component in Figure 28.
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Figure 29: The decomposition of the signal (173) by IF algorithm using only one side

information when there are sudden changes in the amplitude: the last component

reveals the step function.
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3.5 Stability

In this section, we demonstrate the stability of the proposed ALIF algorithm by two

examples, one is for simulated data and the other is for real world data.

Example 1 We study a signal and its two perturbation with white noise. These

signals are given as

f1(t) = sin πt+ sin 4πt, t ∈ [0, 5], (175)

f2(t) = sin πt + sin 4πt+ n2(t), t ∈ [0, 5], (176)

f3(t) = sin πt + sin 4πt+ n3(t), t ∈ [0, 5], (177)

where n2(t) and n3(t) are the white noise: n2(t) ∼ N(0, 0.01) and n3(t) ∼ N(0, 1)

for each t. We apply ALIF algorithm on f1(t), f2(t) and f3(t). From Figure 30, we

see that f1(t) is separated into two IMFs, which correspond to the component sin 4πt

and sin πt respectively.
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Figure 30: (a) is the signal given in (175); (b) shows all the components in the

decomposition.

f2(t) is decomposed into seven IMFs as shown in Figure 31. The first few IMFs

come from the impact of noise and the last two IMFs reveal the two sinusoid functions
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sin (4πt) and sin (πt). f3(t) is decomposed into nine IMFs and only last seven of them

are shown in Figure 32. Similar to the result of f2(t), the first few IMFs come from

the impact of noise and the last two IMFs reveal the two sinusoid functions sin (4πt)

and sin (πt).

Recall that the decomposition algorithm is said to be stable if the components are

consistent in the results of decomposition. In the decomposition results of f1(t), f2(t)

and f3(t), there are two components which are consistent. These two components

are sin (4πt) and sin (πt). The proposed ALIF algorithm can derive the intrinsic

components even if the noise is pretty large like f3(t). Via this example, the proposed

ALIF algorithm is shown to be stable under perturbations which are caused by adding

white noise.

Another observation we get from this example is that ALIF algorithm can achieve

denoising effect automatically. For signal f2(t) and f3(t), we can remove the noise

simply by getting rid of the first several components and summing up the subsequent

ones.
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Figure 31: (a) is the signal given in (176); (b) shows all the components in the

decomposition.
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Figure 32: (a) is the signal given in (177); (b) shows the last seven among nine

components in the decomposition.

Example 2We present another example which can demonstrate the stability of ALIF

algorithm. In this example, the data are from the real world. The two signals shown

in Figure 33 are troposphere monthly mean temperature inferred from two research

groups from Jan 1979 to Dec 2004. We see that these two signals are quite close to

each other, i.e. they have almost the same increasing and decreasing patterns except

the magnitudes are a little different. So we can regard one signal as a perturbation

of the other.
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Figure 33: troposphere monthly mean temperature inferred from two research groups
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Apply the proposed ALIF algorithm to both signals shown in Figure 33, we get

the decompositions for each of them. The results show that ALIF algorithm generates

the same number of components for these two signals. We compare the corresponding

components in Figure 34. It is clear that each pair of corresponding components are

close to each other. This example demonstrates that the proposed ALIF algorithm

is stable for real signals under perturbations.
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Figure 34: Decompositions of two signals shown in Figure 33: each corresponding

components of two signals are small perturbations of each other.

3.6 Conclusions

In this Chapter, we propose ALIF algorithm with the purpose of developing an adap-

tive, local and stable iterative filtering algorithm. The adaptivity is achieved by

adjusting the filter lengths accordingly based on the guidance of the convergence

theorem we proved in Chapter 2. The locality is ensured by the filter we designed

based on a PDE model. Although we have not established the fundamental about
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the stability, ALIF algorithm does perform stable decompositions for both simulated

and real world signals.
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CHAPTER IV

A NEW DEFINITION OF INSTANTANEOUS

FREQUENCIES

The instantaneous frequency introduced in Chapter 1 is defined based on Hilbert

transform. However, the Hilbert transform is a global operator, which violates the

locality aim of the time-frequency analysis. In this section, we present a new definition

of the instantaneous frequency which obeys the locality requirement.

Looking back at the two requirements of an IMF, we get that the class of IMFs

contain all the sinusoidal functions, but is not limited to these functions. Small

perturbations are allowed. To interpret instantaneous frequency, first we analyze a

sinusoidal function, then we take the same analysis on a general function satisfying

IMF requirements. Let us consider the sinusoidal function f(t) = sin t, the unit circle

plotted in Figure 49a (a) represent the signal and its derivative f ′(t) = cos t in f − f ′

plane. If we stand at or near the center of the unit circle like point a in Figure

35, we can see the point (f(t), f ′(t)) rotating around where we stand. The angle

keeps increasing with time, thus the instantaneous frequency, interpreted as the rate

of change of the angle, is positive. However, if we stand outside of this circle, for

example point b in Figure 35, we can’t see the rotation of (f(t), f ′(t)), which makes

the angle increase and decrease alternately. As a result, the instantaneous frequency is

no more only non-negative. Consider two signals which are the perturbation of sin t,

their phase angles are also the perturbations of the unit circle as shown in Figure

35. Standing at the center of the unit circle as point c or point d in Figure 35, the

rotating is visible and thus the instantaneous frequency is well-behaved although it

is not constant any more.
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Figure 35: phase angles: (a) is the phase angle of sin t. Its instantaneous frequency
is a constant function. (b) shows the phase angle of sin ((0.95 + 0.05t/π)t). Its in-
stantaneous frequency is a non-constant function. (c) shows that phase angle of
(0.95 + 0.05t/π) sin ((0.95 + 0.05t/π)t). Its instantaneous frequency is also a non-
constant function.

4.1 2D ODEs In Polar Coordinates

The phenomena we observe in Figure 35 gives a hint of 2 dimensional ordinary differ-

ential equations (ODE) in the polar coordinates, where the frequency is corresponding

to one equation in the system. Consider the following linear ODE:











ẋ = cos t,

ẏ = − sin t.

(178)

By changing the coordinate from (x, y) to (r, θ) by

x = r cos θ, y = −r sin θ. (179)

(178) can be written as










θ̇ = 1,

ṙ = 0.

(180)

in (180), the frequency of this ODE system is given directly as θ̇ in the first equation.

As θ̇ is a constant, the frequency is a constant, which is consistent with the intuition.

Let us consider a non-linear ODE: the van der Pol oscillator given as

ẍ+ α(x2 − 1)ẋ+ x = 0, α > 0. (181)
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The standard first-order form of the van der Pol equation is










ẋ = y,

ẏ = −x − α(x2 − 1)y.

(182)

Using polar coordinates x = r cos θ, y = −r sin θ, (182) can be written as










ṙ = −α(r2 cos2 θ − 1)r sin2 θ,

θ̇ = 1 + α(r2 cos2 θ − 1)r sin θ cos θ.

(183)

The equation of motion for the phase angle is the second one in (183). The frequency

θ̇ is not a constant any more. When α << 1, θ̇ is positive, which is corresponding to

a rotation.

Let f(t) be an IMF. It represents some pattern of oscillations. Treat it as the x

coordinate of some second order ODEs, we can get the frequency naturally as the

derivative of the phase angle in the polar coordinate. It is not necessary to derive the

equations for such an ODE since we only use it implicitly. Instead, we first get rid of

the impact of r by mapping f(t) to a perturbation of the unit circle and then derive

the frequency based on it. Although the perturbation is not a perfect unit circle, we

can still see its rotation standing at the center of the unit circle like in Figure 35. Thus

the angle θ(t) is monotonously increasing and the instantaneous frequency w(t) is a

positive function if the rotation is counter clockwise; the angle θ(t) is monotonously

decreasing and the instantaneous frequency w(t) is a negative function if the rotation

is clockwise. As long as the instantaneous frequency does not change its sign, it is

well behaved.

4.2 The New Definition Of Instantaneous Frequencies

Based on the analysis in Section 4.1, we propose a new definition of the instantaneous

frequency for IMFs. Let f(t) be a function satisfying IMF requirements, there exists

an envelope function g(t) of f(t) such that

F1(t) := f(t)/g(t) ∈ [−1, 1]. (184)
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Taking derivative of f(t), there exists an envelope function h(t) of f ′(t) such that

F2(t) := f ′(t)/h(t) ∈ [−1, 1]. (185)

If we define

F (t) = F1(t) + iF2(t), (186)

then F (t) corresponds to a curve in [−1, 1]× [−1, 1] on the complex plane. F (t) is a

perturbation of the unit circle and we define the angle for the rotation of F (t) as

θ(t) = − arctan
F2(t)

F1(t)
, (187)

and the instantaneous frequency for f(t) as

w(t) =
dθ(t)

dt
. (188)

.

4.3 Numerical Experiments Of Instantaneous Frequencies

The computation of the instantaneous frequency follows the new definition. We first

normalize the function f(t) and its derivative f ′(t) by their envelopes g(t) and h(t)

respectively. The envelopes functions g(t) and h(t) can be simply taken as the cubic

splines connecting the local extrema in f(t) or f ′(t) respectively. Then the phase

angle is computed by (187) and the instantaneous frequency is obtained by taking

the derivative of the phase angle.

4.3.1 The Computation With One Side Information

The magnitude of an IMF sometimes changes significantly in a short time. Due to

the impact of this kind of behaviours, the envelopes constructed for the IMF are

not following the change of the IMF closely, which may cause unexpected errors in

the instantaneous frequency. So it is nice that the algorithm is able to catch these

sudden changes when constructing the envelopes so that they are accurate enough.
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To get such a technique, we make use of only one side information based on the

essentially-non-oscillatory (ENO) idea.

The technique of dealing with the sudden changes are based on two steps. The

first step is to detect the change in the magnitude and the second step is to find the

point for whose left hand side and right hand side should be treated separately in

envelope construction. Based on the difference of consecutive extrema, we tell if there

is a sudden change. Let ti, i ∈ N be the local extreme points of the IMF f(t). Check

the values of

| |f(ti+1)| − |f(ti)| | , i ∈ N. (189)

If (189) is greater than a preselect threshold for some i, we realize the magnitude

of f(t) does have a sudden change from ti to ti+1. Assume that there is only one

sudden change in the magnitude from ti to ti+1. For each point between ti and ti+1,

we compute the difference of the f(t) for consecutive two sample points. The sudden

change is regarded to happen at the point where the left difference differs most from

the right difference.

4.3.2 Numerical Examples

Let us consider the instantaneous frequencies of two examples using both the proposed

local definition and the definition based on Hilbert transform. Both of these two

examples are simulated signals.

Example 1 In Figure 36, the signal is given by

f(t) = (1 + 0.2 cos (0.06πt)) sin [(1 + 0.1t)t], t ∈ [0, 40]. (190)

The amplitude of the signal changes slowly, both frequency analysis methods show the

gradual change in the instantaneous frequency as shown in figure 36. However, when

there is a significant change in the amplitude of the signal, instantaneous frequencies

defined by two approaches are different.
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Figure 36: Example 1: (a) the signal defined in (190). The oscillation gradually
becomes faster and the amplitude changes mildly. (b) instantaneous frequency com-
puted using Hilbert transform. It shows the gradual change in the instantaneous
frequency but has some oscillations. (c) instantaneous frequency computed using the
proposed method. It also shows the gradual change in the instantaneous frequency
and almost has no oscillations.

Example 2 In Figure 37 the signal is generated by

f(t) =























sin (2πt) if 0 ≤ t < 3

0.1 sin (4πt) if 3 ≤ t ≤ 6

sin (2πt) if 6 < t ≤ 10

(191)

It has sudden changes in both the amplitude and the frequency at time 3 and

6. We expect that the time frequency analysis gives us the instantaneous frequency

which is almost a step function with jumps at 3 and 6. Using the instantaneous fre-

quency definition based on Hilbert transform, the transitory change in the amplitude

affects faraway positions by Hilbert transform and this leads to strange behaviours

in the instantaneous frequency. On the other hand, using the proposed method with

adopting one side information, we get an instantaneous frequency which is almost a

step function.
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Figure 37: Example 2: (a) the signal defined in (191) . There are sudden changes in
the amplitude. (b) instantaneous frequency computed using Hilbert transform; the
instantaneous frequency is inconsistent with people’s expectation. (c) instantaneous
frequency computed using the proposed method. The instantaneous frequency is
almost a step function as we expected.
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CHAPTER V

APPLICATIONS

Besides the development in decomposition algorithms inspired by EMD, people have

implemented EMD on different kinds of applications such as signal analysis, image

processing, damage detection, health monitoring, climate change and so on. EMD

was applied to seismic traces in [90], to ECG signals in [9] and to EMG signals in [2]

for frequency attributes of those signals. Hariharan, Guan, Nunes each developed bi-

dimensional EMD and performed it on image processing and texture analysis in [40],

[38] and [100]. EMD was also applied to the Nile annual records, stratospheric data,

atmospheric wave field, long daily ozone records and rainfall data in [109], [21],[95],

[61], [145] and [112] . The decomposition results revealed certain climate cycles. EMD

can also be used to detect the damages in gear systems as shown in [87], [84], [35],

and [101] or to monitor health and detect disease as shown in [103], [30] and [99].

In this chapter, we perform ALIF algorithm to two different kinds of applications.

One is a real world application to detect certain chemical in a plume; the other one is

about the relations between the iterative filtering and ordinary differential equations.

5.1 Application On The Gas Detection

Advances in hardware provides the capability to detect possible chemical or biolog-

ical substance in the air. To establish the dataset for detecting a certain substance,

different experiments were designed and carried out. A a result, many hyper spec-

trum data are collected from these experiments. These substance may come from an

unexpected explosion. They spread out into the air in a very short time and cause

harmful impact on people or the environment. If these substance can be detected

after the release, corresponding techniques can be taken out to prevent such noxious
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spreading. So the detection algorithm plays an important role in this problem.

Recently Dimitris Manolakis in MIT Lincoln Laboratory developed a gas detection

method for the hyper spectrum data. The data that the detection algorithm deals

with is a hyper spectrum cubic block. For each frequency band with the hyper

spectrum, the data are the records of the signals reflected from the air for a fixed

region. The detection is based on the similarity of the spectrum of the collected data

and the spectrum of the substance aimed to detect. The similarity is computed by

y =
[sTΣ−1

b (x− µb)]
2

(sTΣ−1
b s) · (x− µb)TΣ

−1
b , (x− µb)

(192)

where µb is the mean vector of the data over different spectrum frequency; Σb is

the covariance matrix cross different frequencies and s is the standard spectrum of

the substance aimed to detect. Assume certain substance exists in the plume, the

spectrum of it is expected to be derived by removing the mean from the data and

then normalizing via the covariance matrix. Compute the angle between the vectors

representing the derived spectrum and the standard spectrum of this substance, the

similarity is obtained and can be used further to infer the existence of this substance.

Based on the similarity values and the experiment dataset, the performance of the de-

tection algorithm can be evaluated by a receiver-operator-characteristic(ROC) curve

described in [32]. The ROC curve is a graphical plot which shows the performance of

a binary classifier. It plots the fraction of true positive out of the number of positives

vs. the fraction of false positive out of the number of negatives at different thresholds.

When the threshold is set such that the numbers of both true positive and false posi-

tive are zero, the plotting for this threshold is at (0, 0). On the other hand, when the

threshold is set such that all instances are classified as positives, the number of true

positives is the same as the number of positives and the number of negative positives

is the same as the negatives. So the plotting for this threshold is at (1, 1). So an

ROC curve must go from (0, 0) to (1, 1). The classifier using random guess has the

ROC curve as the linear function connecting (0, 0) and (1, 1). The larger area under
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the ROC curve, the better performance the classifier has.

Let us present one example of the detection method proposed by Dimitris Manolakis.

For one dataset, the ROC curve of the detection by (192) is plotted in Figure 38.

When plotting the ROC curve, the x axis is rescale by taking logarithm. The solid

curve is the ROC curve for the detection method where the similarity is computed

by (192). The dashed curve is the ROC curve for the detection by random guess.

The dashed curve is the off-diagonal line in the same kind of plot without taking

the logarithm of the x axis. It is clear that the solid curve is high above the dashed

curve, which means the detection algorithm has much better performance than ran-

dom guess.
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Figure 38: The ROC curve of the detection method (192).

We propose a different detection method by using ALIF algorithm. In this new

detection method, we compute several similarity values and take the maximal one

among them. We compute four different similarity values described in the following:

• y1. Take the image for each frequency band in the dataset. Apply the de-

composition for each horizontal vector in this image, get rid of the first IMF,
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replace the vector by summing up the subsequent components. The reason of

taking such a step comes from two aspects. One is that the data usually con-

tain noise and getting rid of the first IMF can remove the noise efficiently. The

other aspect is to include the spatial correlation. Since the substance region is

continuous, for a position in the substance region, it is highly possible that its

neighbourhood is also in the substance region. By summing up the subsequent

components, each point of the substitute data is impacted by its horizontal

neighbourhood. The spatial correlation is involved to a certain extent. Then y1

is computed by (192) with x replaced.

• y2. Process the dataset in a similar way as in y1. Apply the decomposition for

each vertical vector in the image for each frequency band. Get rid of the first

IMF and sum up the remaining components. Compute y2 by (192) where x is

replaced.

• y3. Take the image for each frequency band in the dataset. Apply the decom-

position for each horizontal vector, replace it by getting rid of the first IMF;

apply the decomposition again for each vertical vector, replace it by getting rid

of the first IMF. Then compute y3 by (192) with x replaced. In this detection,

both the horizontal and vertical spatial correlations are involved.

• y4. We consider removing the spectrum of the background from the dataset.

Then the remaining part is the spectrum corresponding to the substance. First

compute the mean of each frequency band of the dataset. This is the spectrum

of the background. Second for each position in the region, there is a vector

over different frequencies. Subtract the background from this vector and the

difference D is derived. We make use of the decomposition method and get the

components for D. Remove the trend of D and it is the derived spectrum after

removing the background. Compute the cosine similarity between the derived
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spectrum and the standard spectrum of the substance. This is y4.

After compute these four different similarities, take the maximal one among them.

Let

y = max{y1, y2, y3, y4}. (193)

Evaluate the proposed detection algorithm by the ROC curve for the same dataset we

used in Figure 38. The performance of the proposed detection algorithm is plotted in

Figure 39. The thin solid curve is the ROC curve of the detection method proposed

by Dimitris Manolakis and the thick solid curve is the ROC curve of the new proposed

detection method. It is clear the latter one has better accuracy.
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Figure 39: The ROC curve of the detection method (193).

The proposed detection method could be improved by an more accurate back-

ground. If we have the knowledge of the possible position where the substance is,

we can modify the background spectrum by taking the mean only restricted to a

surrounding region of these possible positions. Let y5 be the similarity computed

following this background. Then the similarity is take as

y = max{y1, y2, y3, y5}. (194)
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Evaluate the proposed detection algorithm (194) for the same dataset. The perfor-

mance of the detection methods (193) and (194) are plotted in Figure 40. The thin

solid curve is the ROC curve of the detection method (193) and the thick solid curve

is the ROC curve of the detection method (194). It is clear the (194) has better

performance than (193). So with an accurate background, the detection algorithm is

even more improved.
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Figure 40: The ROC curve of the detection method (194).

5.2 Relations With Ordinary Differential Equations

Based on the numerical examples from Chapter 3 and the examples from Section 5.1,

we can see that ALIF algorithm has good performance on decomposing signals and

dealing with real world applications. In this section, we consider the reason of the

good performance of ALIF algorithm.

Since ALIF algorithm is really adaptive and data dependent, each component

derived from a given signal is also dependent on the signal itself. Each component is

an oscillatory signal and we do not have other prior knowledge of these components. It

is well known that the solutions of some second order ordinary differential equations
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are oscillations. If a signal is generated from such a system, ALIF algorithm may

reveal the intrinsic characters of the system.

Consider the duffing equation

ẍ− x+ x3 = f, (195)

with the initial condition










x(0) = 1.1,

ẋ(0) = 0.

(196)

We solve this initial value problem numerically with two different f functions f1(t)

and f2(t) where

f1(t) = 0, (197)

f2(t) = 2 sin (25t). (198)

When f = f1(t), the solution x1 of the initial value problem is an single oscillation as

shown in Figure 41.
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Figure 41: The solution of (195) with the initial condition (196) with f(t) = 0.

When f = f2(t), the solution x2 of the initial value problem is a function where

an oscillation is coupled with a faster oscillation as shown in Figure 42.
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Figure 42: The solution of (195) with the initial condition (196) with f(t) = 2 sin (25t).

The solution x1 is a shift of an IMF since it is oscillatory and symmetric with

respect to a constant around 1. The solution x2 is not a shift of an IMF any more

since it contains more than one oscillation modes. Take the decomposition of x2, we

get following result:
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Figure 43: two components of the decomposition of x2.

From Figure 43, we see that ALIF algorithm generates two components for the

solution x2, one has faster oscillation and the other has slow oscillations. Both of
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these two components are quite regular. Then we compare these two components

with x1 and the forcing term focusing on their oscillation modes. In Figure 44, we

plot the comparison between two component of x2, the forcing function f2(t) and the

solution x1. It is clear that the first component of x2 is due to the impact of the

nonzero forcing function f2(t) while the second component of x2 reveals the same

oscillation mode as the solution x1.
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Figure 44: The comparison between the two components of x2 and f2(t), x1: (a) the

comparison between the first component of x2 with f2(t); (b) the comparison between

the second component of x2 with x1.

The significance of this example is that for certain dynamical systems with periodic

solutions, ALIF algorithm reveals the intrinsic oscillation modes of it. It includes the

intrinsic mode of the dynamical system without any external forcing as well as the

intrinsic mode of a faster periodic forcing term. In fact, not only ALIF can do this,

EMD and IF algorithm both can achieve the same results. Note that the forcing

function f2(t) has faster oscillation than the intrinsic mode x1. When the frequency

of the forcing function reduces, resonance will occur. We shall illustrate this point by

an example of the linear ordinary differential equations. Let us consider the linear
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equation

ẍ+ x = f (199)

with the initial condition

x(0) = 2 , ẋ = 0. (200)

When f(t) = 0, we get the solution x0 as 2 cos t. When f is given as a signal shown

in Figure 45, the solution x for the same initial value problem is plotted in Figure 46.

It is clear that the magnitude of x mainly increases twice significantly: one growth is

located around from 80 to 90 and the other is right after 150.
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Figure 45: the forcing function in (199)
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Figure 46: the solution of (199) with f(t) given in Figure 45.

We take the decomposition of the function f(t) and resolve the linear equation
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(199) with different initial conditions. The aim is to see if the decomposition helps

in understanding of the behaviour of x. Let us consider the first two components

plotted in Figure 48 in the decomposition. It is clear that the first component has

larger amplitude than the second component. Let f1(t) be the first component and

f2(t) be the second component.
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Figure 47: The first two components in the decomposition of x.

Solve the linear equation (199) with the forcing function f = f1(t) and f = f2(t)

and the initial condition given in the following

x(0) = 1 , ẋ = 0. (201)

The respective solutions x1 and x2 are plotted in Figure 49. The amplitude of the

solution x1(t) has almost no change from 0 to 400 while the amplitude of the solution

x2(t) has two significant changes at the same positions where the magnitude changes

in x. Although f1(t) has larger magnitude than f2(t), it does not lead to a large

magnitude in the solution x1(t). So the large amplitude in the forcing function does

not necessarily generate the significant changes in the amplitude of the solution.
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Figure 48: The solutions x1 and x2 for (199) with f1(t) and f2(t) respectively.

We take the instantaneous frequencies of f1(t) and f2(t) into account as shown

in Figure 49 where we only plot the time interval from 0 to 200. The instanta-

neous frequency of f1(t) is higher than the instantaneous frequency of x0(t). So their

instantaneous frequencies does not intersect. On the other side, the instantaneous

frequency of f2(t) intersects with the instantaneous frequency of x0(t) occasionally.

What is more important, these intersections occur at the positions where the mag-

nitude of x2(t) increases significantly. The growth in the magnitude is due to the

intersections of the instantaneous frequencies.
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Figure 49: The instantaneous frequency for f1(t) and f2(t) and the comparison with

the instantaneous frequency of x0(t).

The intersection positions of the instantaneous frequencies indicate where the

resonances occur. Based on this knowledge, the forcing function can be replaced by

a combination of some of its IMFs and the solution to the linear system does not

get hurt. The substitute of the forcing function is derived by summing up only the

components whose instantaneous frequency has intersections with the instantaneous

frequency of the intrinsic mode of this system.
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CHAPTER VI

CONCLUSIONS

In this thesis, we develop Adaptive Local Iterative Filtering (ALIF) algorithms. We

show the convergence of iterative filtering algorithm with both uniform filters and

adaptive filters for general signals and the adaptivity of ALIF algorithm is guided by

these convergence theorems. We also design a local filter based on the solution of

Fokker-Planck equation and it can be used in ALIF algorithm to ensure the locality.

The ALIF algorithm we propose gives neat and clean decompositions for different

signals. Moreover, numerical examples show that ALIF algorithm yields stable de-

compositions under noise or perturbation.

With the aim of computing the instantaneous frequency locally, we also present

a new definition of the instantaneous frequency based on the speed of the rotation

in a perturbation of the unit circle. The examples show that this new definition has

similar results with the instantaneous frequency defined based on Hilbert transform

for relatively smooth signals and better performance for signals with sudden changes

in the magnitude.

We apply the proposed ALIF algorithm to the gas detection application. The

results show that ALIF algorithm does help on increasing the accuracy of prediction.

We also analyze the solutions of some second order ODEs with the decomposition by

ALIF algorithm. With these analysis, we attempt to explain the good performance

of ALIF algorithm, IF algorithm or EMD. We believe that those algorithms reveal

the intrinsic oscillatory patterns of some second order ODEs. Future work need to

be done to certify our belief.
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[24] Deléchelle, E., Lemoine, J., and Niang, O., “Empirical mode decompo-
sition: an analytical approach for sifting process,” Signal Processing Letters,
IEEE, vol. 12, no. 11, pp. 764–767, 2005.

[25] Demir, B. and Erturk, S., “Empirical mode decomposition pre-process for
higher accuracy hyperspectral image classification,” in Geoscience and Remote
Sensing Symposium, 2008. IGARSS 2008. IEEE International, vol. 2, pp. II–
939, IEEE, 2008.

[26] Demir, B. and Erturk, S., “Empirical mode decomposition of hyperspec-
tral images for support vector machine classification,” Geoscience and Remote
Sensing, IEEE Transactions on, vol. 48, no. 11, pp. 4071–4084, 2010.

[27] DiPietro, R. S., Manolakis, D. G., Lockwood, R. B., Cooley, T.,
and Jacobson, J., “Hyperspectral matched filter with false-alarm mitigation,”
Optical Engineering, vol. 51, no. 1, pp. 016202–1, 2012.

[28] Du, R. D., Yuan, Y. B., and Chen, M., “Empirical mode decomposition
application for structural seismic responses,” Applied Mechanics and Materials,
vol. 256, pp. 2096–2101, 2013.

[29] Dugatkin, D., Zhou, H., Chan, T., and Effros, M., “Lagrangian opti-
mization of a group testing for eno wavelets algorithm,” in Proceedings to the
2002 Conference on Information Sciences and Systems, Princeton University,
New Jersey, pp. 20–22, 2002.

[30] Echeverria, J., Crowe, J., Woolfson, M., and Hayes-Gill, B., “Ap-
plication of empirical mode decomposition to heart rate variability analysis,”
Medical and Biological Engineering and Computing, vol. 39, no. 4, pp. 471–479,
2001.

[31] Fan, G.-F., Qing, S., Wang, H., Hong, W.-C., and Li, H.-J., “Support
vector regression model based on empirical mode decomposition and auto re-
gression for electric load forecasting,” Energies, vol. 6, no. 4, pp. 1887–1901,
2013.

[32] Fawcett, T., “An introduction to roc analysis,” Pattern recognition letters,
vol. 27, no. 8, pp. 861–874, 2006.

[33] Flandrin, P., Rilling, G., andGoncalves, P., “Empirical mode decompo-
sition as a filter bank,” Signal Processing Letters, IEEE, vol. 11, no. 2, pp. 112–
114, 2004.
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