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SUMMARY

Cardiac Arrhythmia is a leading cause of death in the western industrialized world. To

date, multiple pathways to examine and treat this disease exist. In this thesis, we focus on

computational modeling and nonlinear analysis of cardiac dynamics. While a variety of

cardiac models exist, we examine minimal models that produce phenomenological proper-

ties of cardiac dynamics. The usefulness of such models is that they are intuitively easy to

understand and manipulated.

From our results, we first demonstrate the usefulness of minimal models by using a

two variable model to produce a novel technique to predict the onset of instability. By

reducing current models to a minimal version, we show through graphical and nonlinear

methods that action potential amplitude alternans is of equal importance to action poten-

tial duration alternans. By further reduction of the two-variable model through fitting to

simple equations, we show that phenomenological models can reproduce results that bet-

ter fit experimental data. Moreover, not only can our constructed minimal model produce

common phenomena, they can also demonstrate novel dynamics with the adjustment of a

small group of parameters. To further expand the usefulness of minimal models, in the

last chapter, I construct a minimal model of not only voltage but also the calcium cycling

system. Overall, while mathematically complex models are useful and necessary, in this

thesis, we present an alternative perspective to study arrhythmia.

xxii



CHAPTER 1

INTRODUCTION AND MOTIVATION

Sudden cardiac death(SCD) is the leading cause of natural death in the western world [1].

Claiming more than 300,000 lives per year, it constitutes half of all heart disease deaths[2].

Unlike heart attacks, which are known as myocardial infarction and is the loss of oxy-

genated blood to the heart tissue, SCD occurs when the electrical system of the heart mal-

functions due to arrhythmia. Unfortunately, while in some cases victims has symptoms

prior to SCD, many of the cases do not. Thus, it is of utmost importance to detect, target,

and prevent cardiac electrical dysfunction.

SCD is preceded by untreated ventricular fibrillation, VF, in a significant portion of

cases[3]. In a healthy human heart the electrical signal propagates in coordinated waves

which produces coordinated contraction, while VF occurs when the electrical system is

uncoordinated, which in turn results in uncoordinated contraction that if left untreated will

lead to cardiac death within minutes. While advancement in this field has changed signifi-

cantly in the past decades, the underlying mechanisms of VF are still poorly understood.

As a whole, arrhythmia is treated through multiple techniques such as drug thera-

pies, implantable defibrillators, and ablation[4][5][6]. Correspondingly, mammalian ex-

periments and computational models are also methods of understanding the underlying

mechanisms that do not require invasive surgery on humans subjects. Alongside computa-

tional modeling, nonlinear dynamics analysis is used to probe and investigate the excitable

nonlinear nature of the cardiac systems. In this thesis, we apply computational methods and

nonlinear dynamics to construct and analyze minimal models of cardiac dynamics based

on laboratory experimental data.

The outline of this thesis is as follows: In section I, we describe the state of current

models and highlight important properties such as cable equation and mechanisms for ar-
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rhythmia. In Section II, we introduced a novel framework to predict arrhythmia by ex-

amining the action potential amplitude(APA). In section III, we investigate a drawback in

current cardiac models and propose a solution. In section IV, we introduce a minimal model

with novel dynamics that provides an alternate route to fibrillation. In the last section, we

construct a minimal model for the calcium system of the heart and fit to experimental data.

1.1 Chapter I: Introduction to the Heart

Figure 1.1: Figure shows a schematic diagram of the human heart and its electrical conduction

system. Regular stimulus originates from the Sino-Atrial(SA node, then propagates to the ventricles

through the AV node [7].

The human heart has four chambers, consisting of two atria and two ventricles, as shown

in figure 1.1. In normal contraction conditions, the atria fill with blood, release it into the
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ventricles, and then the ventricles pump the blood into the body. This cycle initiates with

an electrical stimulus at the pacemaking site, the sinoatrial node(SA node), shown in the

top left corner of the image 1.1. The signal spreads through the atria which elicits its con-

traction, then after a delay, to the AV node and to the purkinje fibers. The purkinje fibers

are modified cardiomyocytes that conduct the electrical signal to the ventricles, which con-

tracts and pump the blood into the body. This contraction stage is termed the systole, while

the following rest stage is diastole. After systole, the muscles rest to recover its previous

stage and prepare for the next contraction. As a whole structure, the heart’s electrical signal

is detected through the ECG. In the figure 1.2 in the bottom panel, we plot a typical ECG

in a normal beating heart. The P wave marks the excitation of the atria, and the QRS wave

corresponds to the ventricular excitation and contraction. The T-wave is the duration of

ventricular repolarization. The time duration between the segments and the amplitudes can

give insight to the observer about the major dysfunction of the heart.
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Figure 1.2: Top image: A schematic diagram of an action potential with all 4 phases and the active

currents in each phase. Middle panel: this section plots the currents that affect the action potential

shape in time series. In ward currents increase the voltage, and outward currents decrease the

voltage. Bottom image: A typical ECG signal for a beat, where P wave is the excitation of atria,

QRS is the wavefront across the ventricles, and the T wave is the repolarization of the ventricles.[8]

At the cellular level, or at the cardiac myocyte, each cell’s electrical signal is termed

the action potential(AP), shown in the figure 1.2. The action potential(AP) is a nonlinear
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all-or-none electrical cellular response to an external stimulus. Normal myocytes are typ-

ically at rest, near −85mV[9]. Between the intracellular and extracellular medium, there

is a difference of concentration in sodium, calcium, and potassium ions to allow for fast

signaling. When the stimulus elevates the voltage to threshold, the inward fast current,

sodium, sharply raises the AP to a high voltage[10].

The action potential, shown in the figure 1.2, has 4 distinct phases. Phase 4 is when

the cell at resting potential and the heart is at diastole. Phase 0, lasting less than 2ms, is

when stimulus current in a myocyte raises the potential such that the cell has a fast influx

of mostly sodium. Phase 1 is when the potassium channels opens and sodium close. Phase

2 is when the slow current, most notably the calcium current enters and the outward flux

of potassium balance out, defining this stage as the plateau. Next, in phase 3 the calcium

current attenuates and the potassium returns the system’s transmembrane voltage to rest in

phase 4[11].

The contraction of the heart follow calcium release, which follows the action poten-

tial[12]. As the transmembrane voltage rise, the L-type transmembrane calcium current

enters the cell, raising the internal calcium concentration. In ventricles, huge stores of

calcium are induced to release by the L-type calcium current. This large gain in internal

calcium activates the contractile machinery of the cardiomyocyte. In the figure 1.3, the

timing of AP and contraction is shown. Unless under arrhythmogenic conditions, the heart

will not spontaneously contract.
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Figure 1.3: Image plots an example, scaled diagram of the action potential(black), calcium transient

release(red) and contraction(dashed lines) in time series[13]. Note the time difference in calcium

release and onset of AP

1.1.1 Important properties

All-or-none

The firing of the action potential is independent of amplitude of stimulus current, thus

leading to the all-or-none terminology. Rather, the Action potential amplitude(APA) is

dependent on the state of recovery of its ionic channels. The more the system has been

allowed to recover, the larger the subsequent currents. If the stimulus is strong enough

such that the inward currents is larger than the outward flux, the myocyte will fire with a

sharper upstroke.

Conductivity

The heart is an excitable medium capable of conducting electrical signal to onset contrac-

tion. Each myocyte is connected to its neighbors through gap junctions, termed connexons,

where ionic current is passed. A signal from a pacemaker site can spread and induce con-
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traction if the source is strong enough[14].

Refractoriness

Subsequent to an excitation, cardiac myocytes enter an absolute refractory period, ARP,

where an action potential is impossible to elicit. The subsequent period to the ARP is the

relative refractory period, RRP, where excitation is possible if a stronger than usual stimulus

is applied due to the partial recovery of the sodium channels. The refractory periods allow

the system to rest and refill the atria with blood. In addition, refractory periods prevent the

electrical wave from conduction in multiple directions.

Automaticity

Automaticity is the property in which a cardiac myocyte can spontaneously self excite. The

Sino-atrial(SA) node of the heart contains this property. Latent pacemakers such as the

atriventricular(AV) node and purkinje fibers can self-excite, but under normal conditions

are overdriven by the SA node[15].

Contractibility

Contractibility is the ability of a myocyte to contract after an action potential response.

Action potentials precipitate calcium release in ventricular myocytes, which induces con-

traction. Acutely regulated coordination between the voltage and contraction is vital[12].

Nernst/Reversal Potential

The majority of ionic currents are composed by sodium, potassium, and calcium. Due to

selective membrane channels that allow one type of ion through, each ion has an equilib-

rium potential given by the Nernst potential that drives the flux through the membrane. The

Nernst, or reversal, potential is the transmembrane voltage value at which the net flow of an

ion is zero across the membrane, due to a balance of concentration difference and electrical
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difference. For a myocyte with multiple ions, the reversal potential can be computed using

the Goldman-Hodgkin-Katz equation.

1.1.2 Modeling the Electrical System

Cardiomyocytes use ionic gradients as a source of fast signalling[16]. By separating differ-

ent species of ions across the membrane, cells can be induced to change the transmembrane

voltage value quickly as a signaling mechanism. Physiologically, the cardiac myocyte

membrane is composed of two layers of lipids which are hydrophobic at the tail ends and

hydrophilic at the heads. Adjacent cells are connected through gap junctions in which ionic

current flows through[17][16].

As the SA node stimulates the heart, signals conduct along the atrial and ventricular

myocytes by changing the transmembrane voltage difference. If sufficient, the stimulus

raises the transmembrane voltage of a myocyte to a threshold, then depolarizes due to the

fast release of the sodium current. As a cell’s neighbor depolarizes, the voltage gradient

between the two leads to diffusion of electric current from the higher voltage to low. Gap

junctions, or connexons, allow for these ions to pass[14].

As an approximation, the myocyte and its neighbors can be abstracted as resistors and

capacitors in series and result in an equation known as the cable equation[18]. The cell

bilipid membrane acts as a capacitor, while the ionic channels dynamics behave like resis-

tors with voltage dependent resistance.

The monodomain cable theory equation is derived in this manner. First, an assumption

is made which is that the extracellular fluid is grounded at 0V and essentially constant as

position varies. The membrane is approximated as a 1 dimensional cable with the trans-

membrane voltage conducting from one section to adjacent sections. Thus, the two types of

currents that pass are the transmembrane currents, Im across the membrane, and the axial

currents, I(x) along the cable, in figure 1.4[16].
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Figure 1.4: Schematic diagram of cable theory and the currents in the cable theory, I(x) and Im,

the axial and transmembrane currents.

Figure 1.5: Schematic diagram of the cable theory resistors and capacitors, where cm and cm are

the membrane parameters and rl is the axial resistance.

Intracellularly in the axial direction, the currents that travel through ionic medium are

termed il. Through the membrane, the currents are designated as Im. To calculate the

currents, it is necessary to obtain the capacitance and resistance along the membrane. The

resistance and capacitance value of a cell can be calculated by obtaining the specific re-

sistance and specific capacitance, Rm, Cm, and ρl, which have units of Ωm2, F/m2, and

Ωm respectively. But since we are approximating the membrane as a 1 dimensional cable,

the values are divided by units of area to be redefined as a resistance and capacitance per
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length[16].

rm =
Rm

2πa

cm =
Cm
2πa

rl =
ρl
πa2

(1.1)

a is the radius of the cable.

To derive the cable equation, first, we consider the axial voltage at two positions x+dx

and x. The voltage at x is V (x) and at x+ dx is V (x+ dx). The voltage drop between the

two is equal to the resistance multiplied by the current.

V (x+ dx)− V (x) = −ilrl∆x
V (x+ dx)− V (x)

∆x
= −ilrl

dV

dx
= −ilrl

1

rl

dV

dx
= −il

(1.2)

The negative sign in front of the current is due to the fact that positive current flows towards

negative potentials. Next, the axial current value will change if there is transmembrane

current moving in or out. Thus, between two positions x and x+ dx, the current change by

position is equal to the total amount of Im[16]. If the rate of change of axial current is im,

or current leaked out per distance unit dx, then

il(x+ dx)− il(x) = −im∆x

il(x+ dx)− il(x)

∆x
= −im

dil
δx

= −im

(1.3)

Since im is equal to the current through the transmembrane resistor and the membrane

capacitor, we can replace it with the capacitive current and the ionic currents, where cm is

10



the membrane capacitance.

im = ic + iion

ic = cm
dV

dt

im = cm
dV

dt
+ ion

−dil
dx

= cm
dV

dt
+ iion

(1.4)

By replacing the equation for −dil
dx

, we come to the cable equation, shown below. iion

are the currents of sodium, potassium, and calcium that pass through the membrane.

1

rl

dV 2

dx2
= cm

dV

dt
+ iion

−cm
dV

dt
= − 1

rl

dV 2

dx2
+ iion

cm
dV

dt
=

1

rl

dV 2

dx2
− iion

(1.5)

cm
dV

dt
=

1

rl

dV 2

dx2
− iion (1.6)

By dividing the equation with cm, we obtain the more popular form

dV

dt
=

1

rlcm

dV 2

dx2
− iion
cm

(1.7)

Cm is usually given with a value of 1 and the factors in front of the second partial

derivative are combined into the letter D.

dV

dt
= D

dV 2

dx2
− iion (1.8)

The equation above is the commonly used form for the cable equation.
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1.1.3 Instability of the Electrical System

Research in the past decades have targeted multiple mechanisms as a pathway towards VF.

In figure 1.6, we summarize the main types of mechanisms towards arrhythmia [19].

Figure 1.6: A summary diagram of the basic pathways towards arrhythmia[19]. Reentry and abnor-

mal pulse form the two main mechanisms, with multiple causes leading to each.

1.1.4 Abnormal Pulse Formation

Abnormal pulse formation is the appearance of an ectopic stimulus that deviates from nor-

mal SA node activty, shown in the left branch in figure 1.6. In regular conditions, the auto-

maticity of the SA node overdrives other pacemakers[19]. While other self-exciting tissue

such as the AV node and the purkinje fibers can spontaneously stimulate surrounding tis-

sue, under normal conditions this behavior is latent[19]. In irregular conditions, a common

mechanism by which the SA node dominance is disrupted is due to irregular expression of

potassium channels[19]. When extracellular potassium is increased, the resting membrane
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potential increases and influx currents are stronger against repolarizing currents. Secondly,

if latent pacemaker is surrounded by diseased tissue, signaling from the SA node can be

blocked. The SA node typically overdrives other pacemakers, but when it is prevented by

dysfunctional tissue, the latent pacemakers can produce abnormal pulses[19].

A second mechanism for increased ectopic pulses is through triggered activity, most

commonly known afterdepolarizations[20][21]. Triggered activity is defined as superflu-

ous depolarizations following a previous depolarization to stimulus. Depending on the

timing of triggered activity, it can be named Early after-depolarizations or Delayed after-

depolarizations, in phase 2, and phase 3 of the AP respectively. If a group of adjacent cells

of sufficient size produce triggered activity, the surrounding tissue can be depolarized, de-

viating the tissue from normal pacemaker activity[20]. Conditions that lead to EADs and

DADs are LQT syndrome, calcium system malfunction, and late sodium channel activity.

In the ECG, triggered activity can induce Torsade de Pointes and Polymorphic Ventricular

Tachycardia[20].

Figure 1.7: [22]Image shows examples of the early-afterdepolarizations(EAD) and Delayed after-

depolarizations(DADs) in a cardiomyocyte action potential time series.EADs are extra excitations

in phase 2 or phase 3 of the action potential, and DADs are excitations during early phase 4.
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1.1.5 Reentry

Reentry, depicted in the right branch of 1.6, is the phenomena when the same stimulus

re-excites the tissue. It differs from triggered activity in that the triggered activity follows

a stimulus, whereas reentry is the re-excitation from the same stimulus. A widely studied

phenomena of reentry is the spiral wave, a rotating electrical wave that overdrives the SA

node, sending tissue into tachycardia, shown in figure 1.8.

Figure 1.8: Image captures a snapshot of a simulation of cardiac tissue demonstrating a typical

spiral wave on the left panel. Orange is areas of depolarization while black are areas of rest. On the

right, the spiral wave breakup and tissue enters chaos[23]

Since cardiac tissue is three dimensional, the analog of the spiral wave in a heart

is the rotor. While a single rotor can be stable and not immediately fatal, spiral wave

breakup(SWB) is critical. When a single spiral wave breakups into multiple waves, the

heart no longer contracts in a coordinated fashion and will quiver in place , and sudden

cardiac death can result[24][25][26][27]. Due to the intricate complexities of the heart,

multiple pathways to spiral waves can exist. An ectopic pulse in the correct substrate can

induce a wave that propagates in a circular motion. On the other hand, conduction block

in a region of diseased tissue can cause the adjacent excitation to propagate by curling into

the blocked region after recovery. Anatomical objects such as atria or vessels can pro-

vide regions of block as well. Moreover, accessory pathways shown in conditions such

as Wolff-Parkinson-White syndrome,in figure 1.9, can produce signals that disturb the SA

node’s dominance. For the WPW syndrome, an extra pathway between the atria and ven-
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tricles creates a circular pathway for the stimulus to re-excite the ventricles, as shown in

figure 1.9.

Figure 1.9: Image demonstrates an example of an accessory pathway for excitation that leads to

reentry. This syndrome is termed the Wolfe-Parkinson-White syndrome, where an extraneous con-

nection between the ventricles and atria exists[28]. As a result, the excitation in the ventricles return

to the atria through the accesory pathway and re-excites the tissue

1.1.6 Alternans to Arrhythmia

Described in the seminal paper by Nolasco and Dahlen in 1968, the authors provided an

conceptually insightful method to analyze a type of instability known as action potential

duration alternans[29][30]. Action Potential Duration, APD, is the duration in which the

action potential remains above a voltage threshold, and the diastolic interval, DI, is the

time of recovery. The two time variables have a direct coupled relationship because the

longer the system has to recover, or in other words a longer DI, more excited the system

will be due to the recovery of the currents and have a larger APD[29][30]. In a typical

normal heart with a constant pacing length, the APD and DI are relatively constant beat

to beat. APD and DI relationship can be experimentally measured in different cardiac

tissues[31]. Given such a relationship between the two, we can predict the onset of the

alternans through period doubling bifurcation and graphically visualize different states. For

instability analysis, two functions are necessary to iterate forward in discrete time given an
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initial pacing length and APD or DI[30]. The first function is the restitution relationship,

which relates DIn to APDn+1, indicating that for a larger previous DI, a larger APD will

follow. Here, we examine the simplest relationship, which is a monotonically increasing

function, but it should be noted that the relationship can be non-monotonic as well. The

second function is the period,T, relationship, where the DI and APD of the same beat are

related. In the return diagram, the two function are shown, with the function being the

restitution function and the second being the period function.

APDn+1 = R(DIn)

Tn = APDn +DIn

(1.9)

Given a DI at beat n, we can predict the subsequent APDn+1 using the restitution, then the

DI for beat n+1 using the period function, then the APD for beat n+2, etc. This forward

iteration can be plotted in a return map in figure 1.10. When plotted, the crossing of the two

functions is an equilibrium state. Bifurcation analysis indicates that by linearizing around

the fixed point, we can predict that when the local slope of the restitution function has a

magnitude greater than 1, then the fixed point will descend into alternans[30][29]. In the

return map, two common behaviors are shown as well. If the system is at a normal state,

the iteration forward converge to a fixed point value that indicates constant APD and DI. If

the system is in alternans mode, the APD and DI value switch between two sets of points.
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Figure 1.10: [32]The top image shows the definitions of the APD and DI according a period, or

PCL. The bottom image is the APD return map for two different types of behaviors depending on

the slope of the APD restitution function of DI. If the slope is greater than 1, then the system will

have alternans(right). If not, the system will have a steady value of APD and DI(left)

The danger in alternans lies not just in its irregularity but also in its spatial effects.

The most arrhythmogenic type of alternans are that which lead to dispersion of behavior

in space[31][33][34]. When the tissue is uniformly in the alternans state, or spatially con-

cordant alternans, the whole tissue may alternate, but the contraction is still coordinated.

On the other hand, if spatially discordant alternans, or SDA, occurs, there is a gradient of

recovery between adjacent tissue[33], shown in figure 1.12. If a well timed ectopic beat

appear at location B in the figure, if would encounter unrecovered tissue in one direction

and not the other. Thus, the beat would propagate laterally. While in the meantime, the

adjacent tissue would recover, and the lateral beat may curl around induce reentry[33].
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Figure 1.11: [33]Image demonstrating a cardiac tissue simulation showing spatially discordant al-

ternans. In certain areas the cellular action potential signal, shown in the right, alternans long short,

and in other areas alternates short long. This causes a gradient of behavior, show in the left, such

that if an ectopic beat at b occurred, it would propagate laterally, then curl in causing reentry.

1.2 Some open Questions in Cardiac Research

1.2.1 Phenomenological vs. Complex Models

A spectrum of perspectives exists on the topic of modeling the cardiac system. As a whole,

the heart is an intricately complex system with a myriad of ionic currents, proteins, and

structure. Models within the community such as Ten-Tusscher and O’hara-Rudy endeavor

to reconstructed realistic dynamics of the heart[35][36]. Unfortunately, such models have

hundreds of dynamical equations and often more than 20 state variables, which renders sim-

ulations of thousands of cells simultaneously difficult. On the other hand, minimal models

such as Beeler-Reuter, Noble, Fenton-Karma, and Fitzhugh-Nagumo have less than 10 vari-

ables[17][37][38][15]. In addition, they can be relatively easily fitted to experimental plots

and mimic behavior such as spiral waves and alternans. Unfortunately, such simplicity also

means that many of the underlying dynamics are condensed into single variables. For sim-

ulations that produce the effects of drugs on the system, especially, such simple models are

less useful than complex models. Using cardiac modeling to solve problems often requires

an understanding of the specificity of the problem itself, whether it requires a particular

ionic current or simply needs a general type of phenomena.
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1.2.2 APD Alternans

APD alternans is a widely accepted path towards instability. However, experimental data

have shown that even when the APD restitution function has a flat shape, alternans can

occur[39][40][41]. Calcium cycling has been nominated as the source of instability because

of its coupling to the APD. However, we observe in experimental laboratory data that even

without the calcium cycling system, VF can occur if amplitude alternans appear[40][41].

Amplitude of action potentials are important because of its effects on conduction block.

Because conduction block can often lead to reentry and alternans increase the likelihood of

conduction block, previously, APD alternans were studied to examine the conditions such

phenomena. However, conduction block occurs when the amplitude of the AP is too small,

and not only the APD. Moreover, literature search reveals that amplitude alternans are more

correlated to VF than APD alternans[41]. Other sources of instability must be examined to

gain a wider understanding of the path towards to arrhythmia.

1.2.3 Spiral Waves as a Path to Arrhythmia

Spiral wave breakup is a highly studied path towards arrhythmia. The induction, persis-

tence and breakup of spiral waves are acutely examined in cardiac research. However,

distinct spiral waves branches do not persist for long in experimental data. In a manuscript

by Gray published in 2008, the author notes that an underlying excitable and oscillatory

nature in cardiac models produce chaotic patterns such as circular target waves. Even if the

tissue begins with a spiral waves, the shape of the wave destabilizes into target patterns and

general chaotic behavior. In fact, hearts in VF show more globular oscillations rather than

distinct spiral wave shapes. In our lab, we produce experimental data that do not conform

to the typical VF simulations of spiral wave breakup.
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Figure 1.12: Image depicts a snapshot of our laboratory’s experimental rabbit ventricle data during

VF. The yellow spots indicate excitation, while blue indicates rest. Most notably, there are not many

distinct spiral wave branches.

1.2.4 Calcium Alternans

While APD alternans were previously accepted as a path towards arrhythmia, current re-

search indicates that APD can alternate even if the restitution function is flattened[40][39][33].

A source of instability can originate from the calcium cycling system due to its nonlinear

bidirectional coupling to the voltage system. The calcium system can produce alternans

like that of the voltage system and is more complex spatially, even within one cardiac cell.

While a single cell can be considered as a single voltage unit, the calcium system within

one cell is composed of hundreds of calcium units. Thus, increases in the complexity of

calcium models can exponentially increase the difficulty of simulations in tissue. In select-

ing the correct model for cardiac simulations, it is difficult to capture every ionic current

dynamic and also have a computationally inexpensive simulations. While many calcium

models exist that reproduce fine details of cardiac dynamics, minimal calcium models are
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lesser in number. Moreover, some minimal models do not capture the major aspects of cal-

cium cycling system, such as graded release from sparks, and the major sources of calcium

alternans. To further calcium cycling research and simulation, an updated minimal calcium

model must be constructed.
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1.3 Acronyms

AP=Action Potential

APA=Action Potential Amplitude

APD=Action Potential Duration

BR =Beeler-Reuter

CICR=Calcium Induced Calium Release

DI=Diastolic Interval

ECG=Electrocardiogram

Ica=L-Type calcium current

Inaca=Sodium-calcium exchanger current

JSR=Junctional Sarcoplasmic Reticulum

LR=Luo-Rudy

NSR=Network Sarcoplasmic Reticulum, or bulk SR.

Ryr=Ryanodine receptors

SA=Sinoatrial

SCD=Sudden Cardiac Death

SDA=spatially discordant alternans

SR=Sarcoplasmic Reticulum

SWB=Spiral Wave Breakup

VF=Ventricular Fibrillation
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CHAPTER 2

ACTION POTENTIAL AMPLITUDE ALTERNANS

Figure 2.1: Top panel plots experimental rabbit APD alternans in time series. Middle panel show

rabbit ventricles in VF with distinct amplitude alternans. Bottom panel is the Fenton-Karma model

in time series showing VF in tissue simulations[40] In these plots, data in time series demonstrates

that APD alternans can be stable and that amplitude alternans are more correlated to VF.

..

While APD alternans analysis is intuitive, its predictive power often falls short[41]. In re-

ality, many factors exert influence on the APD, such ionic memory and calcium dynamics,

and alternans can commonly occur even when the restitution function is flat[42][43][44][45].

Moreover, experimentally, one can record large APD differences from beat to beat without

degeneration into VF in figure 2.1. In this section, we introduce another perspective in

targeting the precursors to arrhythmia by examining the action potential amplitude(APA)

rather than only the APD. From experimental data, we observe that in the second panel in

figure 2.1, VF follows when there are significant alternans in amplitude of action potential.
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Other experimental data from literature demonstrate that T-wave alternans, the ECG man-

ifestation of APD alternans, is a relatively poor indicator of VF [41][46]. Rather, recent

literature have shown that amplitude is more critical[41]. Furthermore, conduction block,

a mechanism for reentry, is not possible if the amplitude is too small. Pure APD alternans

with no amplitude alternans will have less chance of conduction block.

2.1 Minimal Model for APA Alternans

To study action potential amplitude, we construct a minimal model to reproduce experi-

mental data. We use the Beeler-Reuter rabbit ventricle model as a basis and reduce to the

minimum number of variable to unmask APA alternans[47]. In addition, we make simpli-

fications in equation form for ease of manipulation.

2.1.1 Formulation of Model

Many cardiac models’ ionic currents are typically structured the Hodgkin-Huxeley form[48].

Using Ohm’s law, the currents for a specific ion, such as sodium, is equal to the transmem-

brane voltage divided by the resistance[47].

Ina = G(V − Ena) (2.1)

Where the ena is the Nernst equilibrium potential of the sodium ion, V is the transmem-

brane voltage, and g is inverse of resistance[47].

G is formulated to represent the likelihood of ionic gating channels opening and clos-

ing, mimicking resistance in a wire. In real life, the sodium protein channels have complex

stochastic dynamics that can be modeled with markovian style equations[49]. As a simpli-

fication, Hodgkin-Huxeley models abstract the channel as an object with multiple gates that

open and close with time dependence. In the sodium current, 3 gates are generally used,

m the activation gate, and h and j the inactivation gates. Each gate variable represents the
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proportion of the gates that are opened. Thus, the model’s equation for the sodium channel

is non-zero when the 3 types of gates have non-zero values[49].

Ina = gnam
3hj(V − Ena) (2.2)

The style of the gating equations are as follows:

dh

dt
= αh(1− h)− βhh (2.3)

the α value is a rate constant that determines the proportions of closed h gates that will

fire per discrete unit of time. The β value is a rate constant that determines the proportions

of open gates. In certain formulations, the dynamical h variable equation can be rearranged

as:

h∞ = αh/(αh + βh)

τh = 1/(αh + βh)

dh

dt
= (h∞ − h)/τh

(2.4)

In the restructured gating equation, the h∞ is a steady state value that the system ap-

proaches with the time constant τ
h

In our construction of an APA model, we delete the Beeler-Reuter currents that do

not have a direct effect on the amplitude, including the calcium currents and extraneous

potassium currents. As a further simplification, we construct the potassium current so that

it is voltage dependent only and has no time dependence, thus reducing the phase space of

our model[40]. What remains are the standard currents for depolarizing and repolarizing,

which are the sodium and potassium currents. In the sodium current, while there are three

types of time dependent gates, the m activation gates time constants are relatively small, so

we make this gating variable time independent. Finally, we remove the j gate in the sodium

channel equations since only one gate is necessary to close the current at high voltage
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values. The resulting model is shown in equation ?? and plotted in 2.2. It has two time

dependent variables Voltage, v and h gate, h, and two currents sodium and potassium. Both

variables are plotted in scale, and we observe that amplitude alternans occur after a pacing

threshold.See supplementary of Chen 2017 et.al. for model details.
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Figure 2.2: Image shows a typical signal from our two variable model. The x axis is time in

milliseconds, and the y axis is voltage in time series(solid line) and h gate value(dotted line, scaled).

This signal is demonstrating APA alternation due to the h gate alternating[40].

∂V

∂t
= D

∂2V

∂x2
− gnam3

∞h(V − Ena)− Ik
∂h

∂t
=
h∞ − h
τh

(2.5)
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2.1.2 Derivation of the APA Map

Figure 2.3: Figure visualizes the three important relationships we extracted from observations of

the 2 variable model: h gate and DI, h gate and amplitude, and amplitude and APD[40].Top image

shows that the h gate value at the end of a beat is proportional to the DI, the second image shows

that the amplitude of a beat is proportional to the h h gate value of the previous beat, and the last

bottom image shows that the APD and APA are directly related.

From the minimal model of amplitude alternans, we extract three key relationships among

the state variables of the system when simulated in a single cell. In our two variable model,

the amplitude is determined by the sodium current strength, which is related to how much

the h gate recovers at the end of the previous beat. Thus, the APA at beat n+1 is proportional

to h variable by end of beat n, as indicated in figure 2.3[40]. The h variable is proportional
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to the DI of the same beat because the longer the cell has time to recover, the larger the

h variable at the end of that beat, shown by arrows in figure 2.3 . For the same beat, the

larger the amplitude, the longer it takes for the cell to recover to rest. The three relations are

summarized below, with n being the pacing index. The functions L, F, and G are abstract

functions that relate variables. In simulation, we will numerically calculate these function

relationships[40].

DIn = L(hn) (2.6)

APAn+1 = F (hn) (2.7)

APDn = G(APAn) (2.8)

With these three relationships above, we can define the APA return map, analogous to

the APD return map. Firstly, we note that the APD map is defined by a restitution function

and a period function[29].

APDn+1 = R(DIn) (2.9)

APDn +DIn = T (constant). (2.10)

Because the 3 relationships we observe relate APD, DI, h, and APA, we can take the

relationship from the APD period function and replace DI and APD with h and APA[40].

First, the APD period function rewritten as:

T = G(APAn) + L(hn). (2.11)

Then, we rearrange the equation to this form.

APAn = G−1(T − L(hn)) = Y (hn, T ), (2.12)
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Next, since APD is directly related to APA, and DI is directly related to h, the APD

restitution function can be rewritten as an APA restitution function

APDn = G(APAn) (2.13)

APAn+1 = F (hn) (2.14)

Now, given the full APA restitution map, with the restitution function and the period

function, we can analyze the fixed point.

The period function can be rearranged to the following form.

Y (hn+1, T ) = F (hn). (2.15)

By inverting the period function, we can obtain the following form for the period func-

tion[40].

hn+1 = Y −1(F (hn), T ). (2.16)

Now, given the return map, we linearize around the fixed point h∗.

δhn+1

δhn

∣∣∣∣
h∗

=

(
δY −1(F (hn), T )

δF (hn)

)(
δF (hn)

δhn

) ∣∣∣∣
h∗

=

δF
δhn

∣∣∣∣
h∗

δY
δhn

∣∣∣∣
h∗

(2.17)

By interpreting the equation above, we see that the stability of the fixed point is the

ratio of two derivatives of the function F and Y[40].

1 ≤
∣∣∣∣slope of APA restitution function

slope of period function

∣∣∣∣ ∣∣∣∣
h∗
≡ |ρ| . (2.18)

This equation indicates that the stability of the fixed point is the ratio of the slope of the

two functions around the fixed point. If this ratio is larger than 1 in magnitude, amplitude

alternans will occur[40].
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Figure 2.4: Top: Amplitude versus h gate restitution curve and period curves, solid and dashed line

respectively, for five different periods (320,340,360,380, and 400 ms). Bottom: A cobweb diagram

for a period with a stable fixed point (450ms dashed) and for a period with alternans (368ms solid

line)[40].

2.1.3 Confirmation of the Stability Condition Through Numerical Analysis

Using these two functions, we plot a return map analogous to that of the APD[29][30].

Through the S1S2 protocol, we calculate approximate relationships between DI, APD,

APA, and h to fit the abstract functions L, G, and F.

The protocol is as follows: By taking our model, we pace the system at a relatively long

period, 500ms. This produces a steady train of pulses with steady APDs, which we term

S1 pulses. After 20 paces, we pace the system with a decreased period. This produces a

smaller DI, APD, h gate, and APA for the subsequent S2 pulse that is proportionate to the

second period T. See figure 2.5 for details.
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Figure 2.5: Image demonstrates the S1S2 pacing protocol[29]. The S1 is the first beat shown in the

plot, and the S2 are the following beats. Depending on the timing of the second action potential,

the S2 beat’s shape and amplitude will vary. The longer the DI after the S1, the larger the APA and

APD of the S2

We apply this protocol for many periods to construct a set of data between DI, APD, h

variable, and APA to visualize the relationships between the state variables.

Next, we numerically calculate the APA return map functions and plot in the figure

2.4[40]. For both the APD and APA maps, we have a restitution function and a period

function. A key difference between the two is qualitative shape. The period function for

the APA return map is curved rather than a diagonal line[29]. In addition, as the period

increases, the slope around the fixed point increases for the period function as well, whereas

for the APD return map the period relationship shifts but maintains a slope of 1. Since the

amplitude alternans occur at lower periods, this properties corroborates the ratio condition.

In figure 2.4, we demonstrate two different dynamics in our model using the APA return

map. When paced slowly with a high period, the period function have a large slope at the

fixed point, which leads to a lower ratio for the stability condition. When iterating forward

in a cobweb diagram, the dynamics converge to a fixed point. On the other hand, if the

period is small, the intersection between the functions have a larger ratio. The slope of the

period function is small, so the ratio is large. If we iterate forward in discrete time, the APA

alternates between two values every beat[40].
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2.1.4 Physiological Connection with Parameters

While numerical calculations confirm the validity of our equations, we proceeded to gain a

deeper understanding of the equation by connecting it to physiological parameters and de-

riving explicit instability conditions instead of numerically fitting to L, G, and F functions.

First, we approximated the relationships with simple functions such as logarithmic and lin-

ear equations. The relationship between DI and h gate is exponential in nature while APD

vs APA and APA vs h are more linear. In addition, local to the fixed point, these functions

can fit the linearized neighborhood dynamics well. Now, the equations have parameters,

seen below.

APAn+1 = βhn +B1 (2.19)

APDn = αAPAn + C1 (2.20)

h = 1− ae−DI/τh (2.21)

By inserting these relationships through the stability condition, we now have a stability

equation with explicit parameters.

ρ = βα(1− h∗)/τh. (2.22)

From the equation above, we deduce that if the combination of the parameters are such

that the variable ρ is greater than 1 in magnitude, then amplitude alternans will occur. By

examining the model and looking at the instability equation, we can extract information

about the factors that increase amplitude alternans. The parameter β is related to the max-

imum excitability parameter of the sodium channel current,Gna. What this implies is that

the more excitable, the more likely for amplitude alternans. The α is related to the mag-

nitude of the potassium current, which returns the cell to its resting state. If the current is

low in magnitude, then the amplitude alternans are more likely to occur. The τ is the time
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constant of the h gate, which indicates that the smaller the time constant, the more likely

the alternans. The h∗ is related to the period of pacing, and through observation we note

that the faster the stimulus, the more likelihood of amplitude alternans occurrence.

2.2 Discussion

In this project, we present a novel method to examine the instability of AP. From laboratory

experimental data and literature, we note that APD alternans does not necessarily guarantee

conduction block, rather APA alternans is more correlated to arrhythmia. From the BR

model, we construct a minimal two variable model to unmask APA alternans. By observing

the dynamics, we extract three relationships between DI, APD, h, and amplitude of voltage.

From the APD return map, we replace APD and DI with h and amplitude and derive the

APA alternans return map. Furthermore, we connected the APA map to physiological

parameters and formulated an equation that predicts on the onset of APA alternans.

A possible use for our analysis may be as follows. Using a Pseudo ECG protocol,

we simulate our model in a cable and calculate its ECG. The result, in figure 2.6, shows

distinct QRS alternans. Since the QRS wave is a whole heart visualization of the spreading

the wave front, a smaller amplitude wave front will result in a lower voltage difference

between the ends of the heart tissue. This result suggests that in the future detection of

QRS wave alternans may be a possible marker of arrhythmia.
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Figure 2.6: A pseudo-ECG of our model in cable when amplitude alternans occur[40]. ECG shows

distinct QRS alternans.
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CHAPTER 3

TAKE-OFF POTENTIAL

Current cardiac models, which number to more than 50, vary in number of variables and

style of equations[15]. Models with minimal amount of variables capture the most salient

dynamics phenomenologically. The advantage to such reduction is that the dynamics can be

much more easily understood, manipulated, and simulated. However, its limitation is that

it does not accurately reflect the detailed ionic dynamics of the real system. On the other

hand, complex models can reproduce specific ionic movements, yet they are computation-

ally expensive and difficult to analyze[15]. A particular phenomena which cardiac models

aspire to reproduce is fibrillation, when the electrical signal in hearts becomes chaotic and

can lead to SCD. Certain aspects such as the APD and DI, and amplitude all vary dramati-

cally during VF, and most cardiac models reproduce these qualities when modeled spatially

extended system. However, a characteristic that many models do not capture is the take-off

potential, also known as the highest value at which the action potential can excite, variation

of the action potential during VF, shown in figure 3.1 in the top panel[50]. During regular

heart rhythm, the action potential recovers to resting state before re-exciting. When paced

faster however, the take-off potential will slowly rise, and during fibrillation especially, the

take off potential of the electrical signal varies significantly[51][52]. In simulations of a

significant portion of models in fibrillation, the action potential almost always returns to

rest, even during fibrillation. This restricts the complexity of solutions in phase space. By

allowing for large and small amplitude oscillations, we countenance for richer dynamics in

phase space. In this section, we constructed methods to increase take off potential using

typical cardiac minimal models.
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Figure 3.1: [50]Image shows Fenton-Karma four variable model in VF in top panel and experi-

mental data showing VF in the bottom panel. A distinct difference is the lack of variation in the

model’s take off potential even during VF. The FK model is fit to experimental restitution curves

and matches in frequency to the VF time series, but shows qualitatively unrealistic VF due to the

variation in TOP

In this project, we focus on Hodgkin-Huxeley model equations of commonly used mod-

els such as Noble, Luo-Rudy, and Beeler-Reuter models[47][37][53]. We target a source

of the low take-off potential, and simplify and adjust the models’ equations to ameliorate

this issue.

3.1 Cause of Low TOP

For the sodium current to depolarize the cell, the values of the gating variables must all be

non-zero and large enough for the sodium current to overcome the repolarizing potassium

current.

Ina = gnam
3hj(V − Ena) (3.1)

After the stimulus induces response from the sodium current, the inactivation gates, h and

j, close quickly at high voltage by dropping to 0, which inactivates the sodium current,

hence the reason for their names. As the action potential value drops during phase 3, the

inactivation gates slowly recover to a larger value to prepare for the next firing. The time

constant of the gating variables determines how fast these gates recover, and only when

they recover sufficiently can the system fire again. From observations of the simplified

models, we note that the h gate and especially the j gate have large time constants, which
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increases the recovery duration for the cell to fire again. Since the action potential drops

during recovery, the longer the recovery duration necessary for sodium current to fire, the

lower the potential before excitation. Therefore, with the Luo-Rudy, noble, and Beeler-

reuter models, we adjust the j gate and its time constants to change the TOP.

3.2 Time constant adjustment

Each gating variable m, h, and j are time dependent functions that recover with time con-

stant τ . In the equation below, we demonstrate a fitting of the Beeler-Reuter rabbit ventric-

ular j gate variable time constant[47].

dj

dt
=
j∞ − j
τj

τj =
1

0.055e−0.25(v+78)

e−0.2(v+78)+1
+ 0.3

e−0.1(v+32)+1

(3.2)

The time constant equations for the gating variables are complex functions, shown in

3.2. This complexity makes it difficult to understand the role of the h and j gate in the

take potential and adjust its values for our purposes. To address this issue, we reduce the

complexity by fitting the original time constant equations to simpler forms. The time con-

stant of the j gate is voltage dependent, and its typical shape when plotted against voltage

is an asymmetrical gaussian-like form. To simplify the equations, we use two hyperbolic

tangents posed in opposite directions to fit in piecewise form to the asymmetrical gaussian

shape of the time constant equation plot, shown in figure 3.2. The original time constant

and our simpler form are also displayed in 3.2.

τ−i = τ−0 [δ− − tanh(a−(Vm − V −i ))]/2

τ+i = τ+0 [δ+ + tanh(a+(Vm − V +
i ))]/2

(3.3)

τ−i is the time constant function for Vm above a threshold voltage. τo,δ, Vi and a repre-

sent the amplitude, asymptotic value, inflection and steepness respectively.
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Figure 3.2: [50]Time constants functions for the j gate of Noble and BR model. Solid lines are

the original time constant values with a dependence on voltage. Dashed lines are the shifted time

constant functions fitted with modified equations.

With the simplified equations for the time constant, the parameter space is significantly

reduced. Moreover, we can relatively easily adjust the shape of the time constant by chang-

ing its parameters. As an initial exploratory test, we shifted each of the parameters to see

the effect on the take off potential. The piecewise equations were manipulated to have dif-

ferent widths, amplitude, and asymmetry in the gaussian form. Overall, the adjustment that

created the most change in TOP was the shifting voltage dependence of the time constant

equations[50].

In the figure 3.3, we compare the difference between the Luo-Rudy model and the mod-

ified Luo-Rudy model. In the modified LR equations, we shifted the j gate time constant

equation’s peak to the right from the value of -66mV to -60, -51,-36mV. The plot depicts

the sodium current response as a function of time. As the peak of the time constant is

shifted, the occurrence of inward sodium flux happens earlier, which allows for a higher

take-off potential because the system is less recovered.
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Figure 3.3: Plot demonstrates the sodium current response as a function of time. The peak of the j

gate time constant is shifted and the resulting sodium response are plotted in time against the original

sodium response in black[50]. Image demonstrates that the modified time constant equations can

increase the sodium response to allow the system to fire earlier in time

Next, we modify the Beeler-Reuter and Noble model in cable form. The results are

shown in 3.4 and 3.5.For the BR model, we carry simulations in cables of 500 cell elements

and for the Noble we use a cable of 100 cell elements. The stimulus site is at the first 10

elements, and we recorded the action potential at various sites along the cable. To highlight

the effect the time constant shift and reduce complexity in analysis, we eliminate the j gate

and use the h gate for inactivation for BR and Noble. We shift the peak of h gate time

constant by 40 mV and observe the highest take-off potential value for both models. For

the Noble model, the take off potential is elevated by 11.5mV, and for the BR model, the

take off potential increases by 14mV.
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Figure 3.4: Image depicting comparison of modified Noble model with the original Noble model.

Left panel is original, right panel is the modified result with an elevation of 11.5mV in TOP[50].

Figure 3.5: Image comparison of modified BR model. Red time series line is modified BR model

and dashed black line is original BR model. Modifications results in 14mV elevation in TOP[50].

Finally, in the figure 3.6, we pace the modified noble model with the changed j gate very

quickly to imitate fibrillation dynamics. Pacing at 500ms initially and rapidly at 60ms,

the take off potential elevates for 14mV for many beats, and then shift back to normal

resting potential, demonstrating the success in raising the TOP with the adjust of j gate

time constant[50].
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Figure 3.6: [50]Modified Noble model with j gate of time constant shifted. Initially paced at 500ms

and then rapidly paced at 60ms to mimic VF, the take off potential is raised significantly indicating

our success in raising TOP.

3.3 Discussion

We target the slowly recovering j gate of the sodium current as the culprit in a model’s

low take off potential due to its relatively slow recovery time. We simplify the complex

equations of the gating variable to piecewise hyperbolic tangents to easily manipulate the

asymmetric gaussian shape of the voltage dependent time constant equations. By adjusting

the parameters of the equations, we manipulated the model equations to result in high take

off potentials by shifting the dependence on voltage. The results are shown the above

sections for Luo-Rudy, BR, and Noble models. The hyperbolic tangent function suited

our purposes for fitting and simplifying the equations, but it should be noted that other

types of simplified functions can be explored. We are successful in adjusting the TOP, but

a greater insight is that simplified equations, including hyperbolic tangents, polynomials,

and exponentials can and should be used to reduce cardiac models while still retaining

key characteristics and possibly reproducing added phenomena such as high TOP. Cardiac

modeling has advanced research by providing for non-invasive studies, but certain aspects

of its equations are unnecessarily complex to use as an analysis tool.

A limitation to this simplification is that we are changing the derivation of the model
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equations. The original noble model arrives at the time constant and steady state equations

by using first rate chemical kinetics, which designate the probability of a gate opening as

α and closing as β. The time constant equation is therefore coupled to the steady state

equation since they both depend on these probability rates. In this project, we decouple the

equations, thereby making the model more phenomenological. We successfully reproduce

the dynamics, but the underlying mathematics are less physiologically based. In the sub-

sequent project, we utilize this technique to produce a novel, 2 variable model with unseen

cardiac dynamics that lead to fibrillation.
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CHAPTER 4

EXCITO-OSCILLATORY BEHAVIOR

In this section, we introduce a cardiac-derived model with novel dynamics in space. Our

model’s behavior deviates from cardiac researchers’ focus on spiral wave and breakup, al-

ternans, and ectopic pulses[19]. We introduce a route to fibrillation without the need of

SWB. Rather, our model has both excitable and oscillatory behavior and produces oscil-

lations in tissue that resemble boiling water ”bubbles”, whose appearance sustains chaotic

behavior, shown in figure 4.1. In the sections below, we highlight the notable characteristics

of our bubbly model, probe and interpret its dynamics, and connect it to cardiac dynamics.

Figure 4.1: Tissue simulation of our bubbly model with 500x500 grid size time integrated 2000ms.

Tissue is initially paced from left bottom corner at 99.5ms.
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4.1 Experimental Evidence

Figure 4.2: Top left image: spiral wave breakup in a tissue simulation[54]. Top right image: the

bubbly model in a tissue simulation. Bottom image: experimental rabbit ventricle data showing

more bubble-like oscillations than distinct spiral wavelets.

Spiral wave breakup, SWB, is an ubiquitously accepted mechanism for fibrillation in the

cardiac community[55][26]. However, in certain cases, the cardiac simulations leading to

SWB does not qualitatively mimic realistic behavior. During fibrillation in experiments,

tissue excitation can be sporadic and be globular in shape rather than more distinctly wave-

like curls, as shown in laboratory experimental data in figure 4.2. In the figure, we snapshot

experimental rabbit ventricular data on the bottom, with the yellow color denoting regions

of excitement. The shape and movement of the patterns of excitation for this case is qual-

itatively less similar to spiral wave breakup, in the top left of the figure, than our bubbly

model, top right.
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4.2 Model in Tissue Simulations

Figure 4.3: Progression of our bubbly model from steady state to chaos. Top left image: tissue is

paced steadily from corner. Bottom left image: a wave ignites in the backwards direction, covering

site of stimulus. Top right: subsequent waves eventually ignite forward and backward covering the

tissue in curved stripes. Bottom right image: eventually stripes curve and round out, and bubble-like

oscillations occur.

In figure 4.3, we begin with a two dimensional grid of size 500x500 and a steady pacing

stimulus of 99.5ms, the model initially produces a series of traveling wave solutions. As

the period decreases, at first the initial sets of waves are normal traveling solutions, in

section 1 of figure. After the first two pulses in this simulation, the subsequent traveling

wave ignites in the reverse direction, which we term tail-ignition. This type of reentry is

differs from circular reentry in that no conduction block or dispersion of refractoriness is

necessary, and no distinct spiral wave movement persists. Following the first tail-ignition,

subsequent waves propagate in both forward and backward directions and submerge the

entire grid with cells in various state of recovery(2). In time, the diffusion effects round

out the curvature of small wavelets and circular spots of oscillation appear, which we term

”bubbles”(4). When voltage is recorded at position [140,140], the AP is pictured in figure

4.4:
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Figure 4.4: Image of our model with recording at a site in tissue simulation recorded in time series.

TOP varies significantly and the time series is chaotic.

When the phase space trajectory of this cell is plotted, shown in figure 4.5, the oscil-

lations have two distinct types, a small and large amplitude oscillation. The bubble-like

excitations in tissue take place when the cell is at the state of the large amplitude action

potential, and the remainder of the time spent in small amplitude oscillations.
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Figure 4.5: Phase space plot of a trajectory of our model from a signal from a location in tissue

simulation. Y axis is h gate variable, and the x axis is voltage variable. System shows small

amplitude and large amplitude oscillations.

4.3 Model Equations

Our model has two variables, v for voltage, and h for the recovery gating variable of the

sodium. There are two currents, sodium and potassium, for the depolarization and repolar-

ization. The parameter sf is a scaling variable to manipulate the APD.

Its sodium current is derived from the Beeler-Reuter model following the standard form

of gating variables, with the gates m and h[47][56]. gna is a constant, and ena is the nernst

potential. The j gate is removed to simplify the model, and the m gate is reduced to its

steady state values. Furthermore, the steady state of the m gate is also reduced to a simpler

equation that retains BR behavior. A notable difference between this model and typical

cardiac models is that the time constant of the h gate, τh, is decoupled from steady state of

the h gate, in the style given by the Chapter 3, Take-off potential section of thesis.

The potassium current is a time independent current proportional to voltage. As a

simplification, it follows a monotonic relationship to voltage and it sets the baseline of
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the resting potential to be −84mV. Through these reductions, the resulting model has two

variables and easily manipulated, analyzed, and simulated.

dh

dt
= sf(

h∞ − h
τh

)

∂V

∂t
= sf(D

∂2V

∂x2
− Ina − Ik)

ena = 50

gna = 3

sf = 0.38328

INa = gnam
3
∞h(V − Ena)

IK = 5(1− e−10(V+84))

m∞ = 1− e−0.07(V+84)

αh = 0.126e(−0.25)(V+77)

βh =
1.7

(e(−0.082)(V+22.5) + 1)

h∞ =
αh

αh + βh

τh =


60e−(V+62.5)2/98 + 0.7, V ≤ −15mV

0.7 + 3.8
(1+e−1(V −10))

, otherwise

(4.1)

4.4 Phase Space Analysis of Excito-Oscillatory behavior

With a two variable model, we analyze trajectories in phase space. In the figure 4.6, we

plot the nullclines of the two variables, voltage versus h. From the image, we observe that

there are three fixed points in the system, a rest, saddle, and unstable oscillatory fixed point.

We confirmed the nature of the fixed points by linearizing in the near neighborhood. The

stable rest point identifies the system as an excitable system.
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Figure 4.6: Image of the phase space and nullclines of our model, h gate versus voltage. The black

line is the voltage equation nullcline, and the purple line is the h gate nullcline. The points circled

in green are the fixed points of the system, including a stable rest, saddle, and unstable oscillatory

fixed point.

A unique phase space behavior is the trajectories near the unstable oscillatory fixed

point. Without pacing, when the initial condition is relatively close to the unstable point,

the trajectory recovers, then self-excites once, and recovers to the rest if undisturbed. This

trajectory is plotted in red in figure 4.7. When the initial conditions are farther away from

the unstable oscillatory fixed point, the sequence of events where the system recovers then

self excites does not occur.

Figure 4.7: The trajectory of the system when initialized near the unstable oscillatory fixed point.

This trajectory occurs with no stimulus, and it proceeds to recover, then self-excite once.

Even at the single cell, we note the coexistence of excitable and oscillatory behavior,

and its effects are discussed in the following sections. In the following section, we will also
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discuss two models, the Fitzhugh-Nagumo model and the Gray-Scott model. All three of

the models, the bubbly model, FN, and GS have two variables and three fixed points under

certain parameters[57][58][38]. Their behavior has striking similarities.

4.4.1 Ubiquity of 3 fixed points and Excito-Oscillatory behavior

Under certain parameter regimes, the Gray-Scott model, Fithzugh-Nagumo and our model

all have 3 fixed points of saddle, rest, and unstable oscillatory. Correspondingly, all have

both excitable and oscillatory behavior in tissue simulations. The existence of the rest

stable insures an excitable system, but the oscillatory fixed point adds complexity to phase

space.

The Fitzhugh Nagumo model is a commonly used excitable model in cardiac research.

While phenomenological, it reproduces properties of cardiac tissue such as spiral wave,

refractory period, and alternans[58][38]. The Gray-Scott model is a widely used reaction-

diffusion model of two diffusing species. Created in the 1980s, it is a flexible model capable

of diverse phenomena such as waves, Turing patterns and repetitive moving patterns[57].

This model is widely used in various fields, such as chemical diffusing systems, and its

ample variety of behavior is well documented in literature. Yet despite its complex spatial

behavior, the model only contains two variables, which allows for nullcline and phase space

analysis. This model is typically not used in cardiac dynamics. Yet, it is capable of small

and large amplitude oscillations and tail ignition, like that of our bubbly cardiac model.
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Figure 4.8: Tissue simulation of the Gray-Scott model with specific set of parameters. Dynamics

show similar qualities to our bubbly model[59]. Simulations begins with an excitation from the left

bottom corner

4.5 Elevated Take-off Potential

During fibrillation, the resting potential of electrical signals vary chaotically, shown in fig-

ure 4.9. In spite of this, a majority of cardiac models do not reflect this property, such

as the Beeler-Reuter rabbit ventricular model and the complex Ten-Tusscher model, both

of which have a relatively constant baseline even during VF[35], shown in 4.10. The con-

tention with low TOP is that restricting the amplitude of oscillations to a large value reduces

the complexity of solutions in phase space. By allowing for higher TOP, we allow for small

amplitude oscillations and thus richer behavior in phase space.

For the bubbly model, the source of high TOP is the unstable oscillatory fixed point and

its influence on its neighborhood in phase space. The sphere of influence of the unstable os-

cillatory fixed point is near all the trajectories that recover to rest. Slight perturbation from

electrotonic effects in tissue simulation can change a recovering AP to a small amplitude

excitation
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Figure 4.9: [50]An image showing Fenton-Karma four variable model in VF in above panel and

experimental data showing VF in the bottom panel. A distinct difference is the lack of variation in

the model’s take off potential even during VF.

Figure 4.10: Top panel: left image is of tissue simulation of BR model in VF, right image is the

electrical signal recorded at a site showing low take-off potential. Right image is of Ten-Tusscher

tissue simulation in VF, the electrical signal is recorded at a site and shows low take off potential.

For a specific set of parameters for the Fitzhugh Nagumo model in tissue simulations,

the author Gray notes that the presence of the unstable oscillatory point destabilizes the

system and allows for not only high take-off potential, but also chaos[60]. In Gray’s

manuscript, the author notes that when the nullclines of FN are adjusted such that only
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a stable rest point exists, spiral waves are stable in tissue simulations. When the nullclines

are adjusted so that they match our model in number and type of fixed points, circular os-

cillations, high resting potential, and chaos ensues[60]. An image showing an example of

high TOP is shown in figure 4.11.

Figure 4.11: Solid line is the voltage and dashed line is the slow variable in FN model when simu-

lated in tissue and undergoing chaos. The nullclines adjusted such that 3 fixed points exists[60].

The Gray-Scott model, when adjusted such that it contains an unstable oscillatory fixed

point, has elevated and varying TOP when simulated in tissue as well. When the diffusion

constant of the u variable is lowered, its behavior is strikingly similar to our model. In

phase space, we observe unstable oscillatory behavior around the fixed points.

For all three models, we take note of the stability of the system in absence of the unsta-

ble oscillatory fixed point and instability when it appears.

4.6 Tail-ignition

A striking behavior of our model that typically precedes chaotic behavior is tail-ignition of

the waveback. This phenomena ensures that even with regular pacing chaos will appear in a

cable or tissue simulation of our model. We pace the model in a cable form at 99.5ms with

no flux boundary conditions. The stimulus site are the first 100 discrete units. Initially, the

system responds with steady pulses at first. Then, after the 3th or 4th pulse, the back of the

wave ignites and re-excites the pacing site, as shown in 4.12 and 4.13, which are snapshots

of the simulation in time progression. All subsequent pulses all ignite in both directions,
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and the dynamics eventually becomes chaotic.

Figure 4.12: Our model in cable form with the x axis as position and y axis as voltage and h variable

scaled. Image shows the conditions before tail-ignition. The focus is on the position between 100

and 500.

Figure 4.13: Our model in cable form with the x axis as position and y axis as voltage and h variable

scaled. Image shows the conditions 10 ms after tail-ignition. The voltage signal between position

10 and 500 fires without a pacing stimulus.
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This waveback behavior, when plotted in voltage time series, can appear to be Early-

Afterdepolarizations or Delayed After-depolarizations in typical cardiac simulations. EADs

and DADs are triggered responses following during the plateau or recovery phase of an AP.

As a single AP passes, during recovery the window calcium or sodium current is strong

enough to reverse recovery and re-excite. Here, we note that our model’s behavior, while

seemingly EAD-like, is not an EAD. For an EAD to occur, a preceding AP will trigger a

secondary response. In our model, a single AP is incapable of triggering an EAD or DAD

in single cell or in tissue simulations. Waveback ignition appears when the pacing period

moves subsequent pulses closer to preceding ones. At threshold, it is the interaction of

neighboring pulses precedes waveback propagation.

Both FN model and Gray-Scott model can produce wave-back propagation as well un-

der certain parameter regimes[58][61]. When the GS model has similar nullcline behavior,

a pacing site in the same region as our tissue simulation will produce a tail-ignition after

the first few beats. Very similar to our model, subsequent waves propagate forward and

backward and cover the tissue with bubble-like oscillations, shown in figure 4.14.

Figure 4.14: Image shows time snapshots of the Gray-Scott model paced in with a steady rate from

corner. Initial pulse propagates[59], After initial pulse propagates, the waveback tail-ignites, similar

to bubbly model[59].

For the FN model, Cytrynbaum notes the tail ignition behavior when the cable system is
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tuned to a specific initial condition, an intrinsic unstable periodic orbit[61]. As the system

is tuned closer to the unstable periodic orbit, it fires action potentials in both forward and

backward indefinitely[61]. The difference between FN and our model is that while FN

model can ignite backwards, the initial conditions must be acutely met to produce such

behavior. For the bubbly model and GS, the tail-ignition behavior can be relatively easily

produced, through regular or ectopic pacing[57].

4.7 Multistability

Our model is notably capable of multistable solutions when coupled in cable form. With-

out varying parameters except initial conditions, the bubbly model in cable can support

multiple states of solutions, including a traveling wave or chaotic solutions.

To demonstrate the multistability of our model, we begin with a cable simulation with

no flux boundaries conditions in a cable size of 3500 gridpoints, or 3500 cells. In the first

case which produces chaotic solutions, we begin with asymmetrical initial conditions of

the fast and slow variable, schematically illustrated 4.15. The cable is at rest except for

explicit sections, where the V and h are not at equilibrium and symmetry is broken.

Figure 4.15: Initial condition of our cable, where the two variables are assymetrically profiled, thus

resulting in chaotic solutions in the cable. This style of initial conditions is the same style of initial

conditions as Cytrynbaum et.al.[61].
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Figure 4.16: Time progression plot of the our model in cable form with the Cytrybaum initial

conditions. Yellow lines indicate the voltage value at cable position. At the first time interval, the

system produces two waves in opposite directions. In the second time interval, the wavebacks ignite,

and by the third time interval chaos ensues.

When the initial conditions are evolved in time, two waves in opposite propagate ini-

tially, but then tail ignite in opposite direction, exciting the stimulus site. The stimulus site

sends two waves in opposite directions, which in turn back propagates again. Eventually,

cable system degenerates into a chaotic state, shown in 4.16.

In the second case, we begin the simulation with the following initial conditions, shown

in figure 4.17.
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Figure 4.17: Initial condition of our cable, where the two variables are more symetrically profiled,

thus resulting in steady action potential solutions in the cable. This style of initial conditions is the

same style of initial conditions as Cytrynbaum et.al.[61].

Figure 4.18: Our model’s time progression in a cable with the same parameter values as previous

trial except with symmetrical initial conditions. At the first time interval two waves propagate into

opposite directions and by the second interval, they are sufficiently apart and non-interacting . No

wavebacks take place, and the solutions remain steady traveling waves.

The system, with exactly the same parameters as the first case, produces stable traveling

waves traveling in opposite directions with no back propagation, depicted in figure 4.18.

The two qualitatively different behavior with the exact same model and parameter val-

ues indicate the multi-stable nature of our excito-oscillatory model.
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4.8 Chaotic Nature of our Model

In single cell simulations with periodic pacing, the bubbly model demonstrates chaotic be-

havior, and in this section we confirm the chaotic nature through poincaré section analysis.

4.8.1 Homoclinic Tangle

At the single cell level, we discern that chaotic behavior is apparent when we pace the cell

at a decreasing period, plotted in figure 4.19.

Figure 4.19: Our model paced model at single cell with T= 18ms. The image shows the voltage

values in time series. A notable characteristic is the varying TOP, chaotic behavior time, very similar

to voltage time series recorded in tissue simulations.

We note that for particular pacing periods at around 20ms and 50ms, the signal becomes

chaotic.

In the image 4.20, we exhibit the APD value versus pacing period. For the model,

chaotic behavior occurs at around 50ms.
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Figure 4.20: Our model in single cell is paced at different periods. The resulting APD is plotted

against the corresponding period. Model shows multiple regions where the APD value becomes

chaotic.

To further inspect the chaotic nature of our model, we search for periodic orbits in

phase space and analyze their stability. The 3 time dependent variables are voltage, h, and

periodic time due to pacing.

For pacing period 18ms , we next used a newton solver to search for periodic orbits,

plotted in the image 4.21.
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Figure 4.21: Panel A and B: periodic orbits in our paced single cell system,at 18ms, found through

Newton root search with the top being a 3 cycle and the bottom being a 1 cycle. Panel C: the

periodic orbits plotted in phase space.

Using poincaré section analysis, we insert a poincaré section at time = 10ms. The

periodic orbit depicted in panel A of 4.21 is a fixed point on the section.

From our calculations we obtain the eigenvalues, [31.6, 0.06],which indicate that the

periodic orbit is a saddle on the poincaré section. Next we used newton solver to calculate

the stable and unstable eigendirections and manifolds. In our model, the stable and unstable

manifolds cross transversally in homoclinic orbits, shown in figure 4.22. This implies that

the manifolds will cross infinite number of times and that there are an infinite number of

periodic orbits within the system, which strongly indicates the presence of a chaotic saddle.
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Figure 4.22: Poincaré section plot of a periodic orbit and its stable and unstable manifolds. Green

arrow indicates the periodic orbit on the section, the magenta line is the stable manifold and black

line is unstable manifold. Black arrow indicates a second periodic orbit on the Poincaré section.

4.9 Solutions in a Traveling Wave

We observe that the tail ignition behavior befalls when the pacing frequency is high and

the distance between pulses shortens. At a certain threshold of pacing, the traveling pulse

becomes unstable through tail ignition. To investigate the mechanisms for this instability,

we numerically solve for the traveling wave solutions in periodic boundary conditions. To

mimic a faster pacing frequency, we decrease the domain length with periodic boundary

conditions, numerically calculate the pulse solution, and find its stability eigenvalues.

Using a Newton-Krylov solver, we calculated solutions for a domain size of 3500 cells

in a cable with dx = 0.00125 and dt = 0.001. The solution is visualized in the figure 4.23.
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Figure 4.23: Figure shows the voltage versus position plot of the calculated traveling wave solution.

Cable has 3500 discrete units with dx =0.00125cm

When time integrated, the solution remains a steady traveling wave indefinitely, plotted

in time series in figure 4.24.
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Figure 4.24: Figure shows the voltage time series of the calculated traveling wave solution with

cable size at 3500 discrete units and dt = 0.001ms. Image demonstrates the stability of the solution

in time. Solution form persists without instability.

In the process of calculating the solution, we extract the stability of the pulse by con-

structing the upper Hessenberg matrix through the Arnoldi iteration. From this matrix, we

calculate the eigenvalues to discern the stability of the solution. For the cable size 3500, the

eigenvalues with the largest magnitude are smaller than 1, with real and imaginary parts, [

0.767 + 0.585i, 0.767 -0.585i ] , which indicates a stable solutions.

4.9.1 Hopf Bifurcation of Traveling Wave Solution

As we decrease the cable size of the simulation during our calculation for the traveling

wave solution, at a threshold domain size of 3400 discrete units, we calculate the solution

and depict it in figure 4.25.
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Figure 4.25: Image visualizes the voltage versus position of the calculated solution. Cable size is

3400 discrete units at dx = 0.00125cm. Y axis is the voltage, and the x axis is the position.

Using the upper Hessenberg matrix, we calculate the eigenvalues of the matrix, and we

observe that the largest magnitude of the eigenvalues are now greater than 1, being [0.793

+ 0.641 i, 0.793 -0.641 i]

In a time integration of this solution, the dynamics indeed are unstable for the traveling

wave. After a train of pulses, the traveling wave becomes unstable and a relative periodic

orbit appears, visualized in time series in figure 4.26.
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Figure 4.26: Plot shows time series of the action potential of a location in the cable with domain

size 3400. Dx = 0.00125cm, dt = 0.001ms Pulse evolves from stable traveling wave to a relative

periodic orbit.

From the eigenvalues, we note that the values are complex conjugate pair, and the

bifurcation is a Hopf bifurcation.
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Figure 4.27: Image is of a schematic bifurcation diagram of the spatial solutions of our model in

a cable form. Y axis is the velocity of a solution, and x axis the inverse of the length. Initially

at relatively larger cable lengths, the solution is a pair of traveling waves. After the cable lengths

decrease to a certain threshold, the traveling solution becomes unstable and evolves into an RPO.

In the image 4.27, we plot a schematic diagram of the cable behavior. Initially at a

large cable size, the solution describes a fast, steady pulse. At the threshold domain size,

the pulse solution becomes unstable and a relative periodic orbit appears.

4.10 Future Work

The transition from steady state to chaos travels through moving pulse to relative periodic

orbit to turbulence. The next step in our research is to calculate the relative periodic orbit

through Newton-Krylov solver and find its stability.

As a connection to electrophysiology, we observe that the relative periodic orbit ap-

pearance corresponds to spatially discordant alternans, or alternans with a traveling node,

in cable form. As mentioned in the introductory section, SDA is arrhythmogenic in that the

tissue becomes a substrate for unidirectional block and the initiation of arrhythmia.
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4.11 Applications to Ohara-Rudy Human Ventricular Model

The Ohara-Rudy model is a relatively advanced human ventricular model with a large

number of variables[36]. It is useful in simulations of drug effects on the human cardiac

tissue. We observe that for cases where its Ikr, the potassium recovery current, is reduced,

the model is capable of similar behavior such as tail ignition and bubble-like oscillations.

Snapshots in image 4.28 depict a tail ignition behavior and oscillations instead of the typical

spiral wave dominating the dynamics.

Figure 4.28: Image shows a progression in time of the O’hara-Rudy model of human ventricles with

Ikr current at 78 percent of full magnitude. The progression of the model in tissue from left to right

echoes similar characteristics as our model, the tail propagation and bubbles like oscillations[36].

The system is paced from the left bottom corner. Image 1 shows a wave that is moving in the

forward direction towards the upper right hand corner. Image 2 shows the same wave firing in the

reverse direction. Bottom panel is a signal recorded at site in tissue simulation. Data courtesy of Dr.

Abouzar Kaboudian.

The O’hara-Rudy model is far more complex in structure and variable size than our
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bubbly model. Thus, because our 2 variable model is computationally efficient and easily

analyzed, we can use our model to understand fundamentals of tail-ignition and apply it to

more complex models such as the O’hara Rudy model.

4.12 Discussion

We introduce a model which produces chaotic behavior without spiral waves or spiral wave

breakup. Current cardiac research heavily emphasizes spiral waves, however, we demon-

strate alternate routes to turbulence. Moreover, our model captures realistic aspects of

fibrillation in figures shown in introductory section.

In tissue simulations, our model show tail-ignition behavior that induces a state where

seemingly random circular excitation shapes appear. Even at the single cell level, our model

produces chaotic behavior through regular pacing, and we confirm this through poincaré

section analysis. We attribute the unique characteristics of our model, such as high take-off

potential and tail-ignition, to the coexistence of excito-oscillatory behavior. Our model,

like version of Gray-Scott and Fitzhugh Nagumo has both a stable rest and an unstable

oscillatory fixed point, which together renders the system sensitive to perturbations. Our

work can be applied to cardiac dynamics through its striking similarities to the O’hara Rudy

ventricular model. For future work, we will calculate the relative periodic orbit that appears

in a cable and find the threshold at which it becomes unstable.
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CHAPTER 5

CALCIUM ALTERNANS

Figure 5.1: [62]Panel A is a detailed diagram of the contractile system in a cardiomyocyte, showing

sections of the SR and T-tubules, alongside myofibrils that contract for the heart to pump blood.

Panel B visualizes the T-tubules structure in a rat ventricle, showing the intricate and three dimen-

sional structure. Panel C is a schematic diagram of the local calcium release unit. Panel D is an

example time series of the action potential and calcium release amplitude, showing the approximate

time scales for each event.

Acute regulation of the calcium system is vital to the function of the heart[12]. Excitation-

contraction coupling, in which an action potential elicits calcium release which in turn

binds to troponin protein complex and allows for the initiation of contraction, is one of

the fundamental cardiac relationships. For ventricular non-pacemaker cells, the majority

of calcium is released intracellularly, which allows the cell to contract and then relax back

to equilibrium[17]. Therefore, timed coordination between adjacent myocytes, calcium

release units, and the action potential currents is essential[12].
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The calcium cycling system mirror the electrical system in that the two systems are ca-

pable of alternans and chaotic dynamics. Under clamped voltage conditions, experiments

convincingly demonstrate calcium alternans independent from the voltage system[63]. Fur-

thermore, the two systems can synergistically induce instability bidirectionally[33]. If an

instability originates in one system, it can be amplified through the interaction with the

other. During arrhythmia, this property leads to difficulty in pinpointing the source of ar-

rhythmia.

Growing evidence indicates that a majority of arrhythmia may be due to the calcium

cycling instability rather than voltage, especially when alternans occur when the APD resti-

tution is flat[64]. Unlike the voltage system, however, the calcium cycling has greater

complexity spatially within one cell[39]. While a cardiac myocyte may be approximated

as a single voltage unit, within one cell there are thousands of localized calcium release

units[39].

A multitude of calcium models exist. However, phenomenological calcium models that

capture salient characteristics such as graded release, mechanism of calcium instability,

and calcium bidirectional coupling are few[65]. In this section, we introduce a minimal

phenomenological calcium model capable of the key properties of calcium dynamics, most

specifically in calcium alternans and its effects on voltage. We fit this model to experimen-

tal data and demonstrate its utility for analyzing the origin of cardiac instability.

5.1 Calcium Release Unit and Calcium Cycling

A typical ventricular calcium release unit(CRU) is schematically pictured in figure 5.1,

panel C. In a CRU, bundles of actin and myosin fibers are striated periodically. During

calcium release, calcium ions bind to the contractile machinery that causes the fibers to

move in a criss-crossed fashion to contract the cell[17].

Wrapping around the fibers are sarcolemmal membrane invaginations into the cell,

called T-tubules, which serve as even distributors of calcium currents, shown in figure 5.1
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panel B. In the cell next to a T-tubule, a section of the SR of the cell stores the calcium

ready for release[17]. The junction between the T-tubule and the SR is termed the dyadic

space, where calcium currents interact with receptors on the SR[17].

A ventricular calcium cycle begins with the action potential raising the transmembrane

voltage, and during the plateau phase, the L-type calcium(LCC) current enters the cell

through the T-tubule channels. As this occurs, the dyadic junction’s free calcium concen-

tration increases, which opens the Ryanodine receptor gates, or Ryr gates, on the JSR termi-

nus[66][67]. As these clusters of gates open, relatively large amounts of calcium is released

into the cytoplasm, a phenomena termed calcium induced calcium release, or CICR[68].

The sum of the clusters of release is termed the calcium transient, and the timing of the AP

and the calcium release are depicted in figure 5.1 panel D.. As the cytoplasmic calcium

concentration rises, it binds to the contractile machinery of the sarcomere, and precipitates

shortening the cell. Following the release current, the SERCA pump removes calcium from

the cytoplasm and return them to the SR. The sodium-calcium exchanger protein in the cell

membrane removes the L-type calcium ions.
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5.1.1 Calcium Sparks

Figure 5.2: Illustration of spark phenomena through a line scan of a cardiomyocyte that is producing

calcium sparks. Bright yellow and red spots represent these local excitations while the rest of the

system is at rest [69].

The ventricular calcium system in one myocyte is estimated to consists of 20,000 of dis-

crete units of release, also known as CRUs[70]. Calcium is released from each CRU, they

are buffered relatively quickly and locally, resulting in a phenomena which researchers

term a calcium ”spark”[71][72], or a local spike in free calcium concentration, shown in

figure 5.2. Sparks are generally elicited both by LCC induction and spontaneous firing.

Free calcium ions in high concentration is toxic to the cell, thus, when calcium is released

in the cytoplasm, they are buffered relatively quickly, resulting in slow diffusion of ions

across the cytoplasm and the localized nature of calcium dynamics.

Unlike the voltage system, which has a nonlinear response to stimulus, the calcium

system is graded in release due to its localized nature of sparks. In general cases, the

larger the LCC current, the more sparks, and the result is graded release of calcium into the

cytoplasm.
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5.2 3 Important Properties for Calcium Alternans

Multiple mechanisms lead to instability within the calcium cycling system. In the past, the

different mechanisms seemed to contradict one another, but was ultimately summarized

in the unified theory of calcium alternans by Qu et al[70]. Qu named this theory the ”3R

theory”, where the three major properties of calcium dynamics are discussed and related

to calcium alternans[70], and also derived a comprehensive return map to unify the major

mechanisms of calcium alternans.

5.2.1 Randomness

Calcium release units fire stochastically with a probability constant. Because of the ran-

domness of the sparks, the system can be approximated into a one-body problem with

mean field theory, where the amount of CRUs firing in our model is proportional to the

probability of firing. These sparks are termed ”alpha sparks”[70].

5.2.2 Recruitment

An alpha spark is generally localized to its own CRU. However, in cases where the release

from a CRU is relatively large, the calcium release can diffuse to neighboring CRUs and

elicit ”secondary sparks”[17]. A major factor in secondary sparks is the increase in SR

calcium level before the next release, also known as the load, as it leads to a larger local

release. The amplitude of calcium release per spark is related to the gradient between the

SR calcium load and dyadic calcium concentration. If the load is larger, the release flux will

be larger and is more likely to diffuse to surrounding CRUs and recruitment for secondary

firing[70].
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5.2.3 CRU Refractoriness

Subsequent to a CRU firing, a period of refractoriness follows. Ryanodine receptor gates(Ryr)

that let calcium through, though they are sensitive to SR calcium alternans, are observed

to have their own opening probability and time constant for recovery. Though their role

in calcium release is still unclear, it is known that manipulating sensitivity to SR luminal

calcium affects the opening and closing of Ryr gates[73][74][75], or in other words, the

higher the SR load the higher probability of Ryr gates opening, and the more quickly the

time constant of recovery. Depending on the pacing period, the fraction of Ryr that are

ready to fire vary before the next beat. The larger the fraction, the greater the release[73].

5.3 Mechanisms of Calcium Alternans

Two main mechanisms of calcium alternans are generally accepted in the cardiac commu-

nity currently. The first is the release-load relationship concluded experimentally by Diaz

et.al.[76][45], which is a return relationship between the previous load(SR) value and the

subsequent release. The second mechanisms is founded on the refractory period of the

CRU after spark release.

5.3.1 Release-Load Mechanism of alternans

Diaz et. al. produced experimental data that demonstrated the nonlinear dependence of

calcium release per beat on the load prior to release[76][45]. In the image shown in figure

5.3, the release’s functional relationship is initially steady, but then sharply increases at

high load. This property is due to the recruitment characteristic of calcium. Though sparks

are generally local phenomena, if the the spark release is large enough and the coupling

distance between CRU’s is sufficiently close, secondary sparks can follow primary sparks.

Moreover, mini-waves of calcium release can take place if the load is high enough[77].

Because of this nonlinear relationship, if the load is at a very high value, the release can
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be abnormally large. The next beat, however, will have a small release because the uptake

machinery did not return a large fraction of the calcium back into the SR, shown in figure

5.4. However, after this beat, a large release will occur again because the system will

have had two beats to recover the SR load again. Depending on the pacing period, this

alternation can perpetuate and induce instability.

Figure 5.3: Figure depicts the highly nonlinear release-load relationship that is a mechanism for

calcium transient alternans. The y axis is the calcium transient amplitude and the x axis is the

SR calcium load before the release. For a larger SR load, the following release current will be

exponentially larger[45].
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Figure 5.4: Experimental evidence from Diaz et. al. shows the relationship between cytoplasmic

calcium release amplitude and SR load before large and small release beats. Before a large release,

it has been shown that the load is large. On the other hand, before a small cytoplasmic calcium

release, the SR load is measured to be small[45].

5.3.2 Calcium Release Unit Refractoriness

Figure 5.5: [73][78]Experimental data of SR calcium concentration demonstrating that alternans in

calcium cycling can occur despite lack of alternans in the loading value before the next release. Y

axis is SR calcium content, and x axis is time is seconds.
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This mechanism lies in the refractoriness of the CRU after firing[73]. Depending on the

length of the refractory period, a CRU may enter alternans mode if for the pacing period

the fraction of Ryr recovered alternates as well. For a particular beat, if the pacing cycles

shortens, the RyR only partially recover, which results in a smaller release in the subsequent

beat. After this, a larger fraction of Ryr recover, which will lead to a larger release. The

beat after this will have a smaller release due to a large number of unrecovered Ryr, and so

on in alternating form.

In early studies of calcium alternans, the mechanism seemingly contradicted the ac-

cepted release-load mechanism because load is not necessarily alternating in this case[70].

Experimental data exhibited in figure 5.5 have shown that alternans in calcium transient

amplitude can occur despite lack of alternation is load.

5.3.3 Bidirectional Coupling

In cardiac systems, the transmembrane voltage is coupled to the calcium system through

the L-type and sodium calcium exchanger currents. Voltage can influence calcium through

APD prolongation, and the inverse can occur as well. This bidirectional coupling is a

source of mutual influence and creates difficulty in investigating the origin of cardiac ar-

rhythmia[79].

In the voltage to calcium direction, graded release coupling is present. If the previous

APD is long, the current DI is short and the recover of L-type channel gates is less than

the previous beat. The subsequent beats L-type magnitude is smaller, and thus the calcium

release is smaller, shown in figure 5.6 top panel. On the other hand, the calcium system

can influence the voltage in two main manners, positive and negative coupling. If the

calcium transient is large, the sodium calcium exchanger will flow inward with sodium

and outward with calcium leading to a net inflow of positive charge, which can lengthen

the APD. For negative coupling, the calcium transient is large and it inactivates the L-type

calcium current, which shortens the APD, visualized in figure 5.6 bottom panel. Depending
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on which current’s effect is stronger, the calcium coupling favors positive or negative.

Figure 5.6: [79]An illustration of the bidirectional coupling between voltage and calcium systems.

Voltage affects the calcium through the graded release mechanism. If the system has a longer DI,

the L-type calcium current will be larger, the calcium release will be correspondingly increased.

Calcium couples and influences the APD of voltage through the transmembrane calcium currents.

If the calcium transient is large in amplitude, the L-type calcium current will be inactivated earlier

calcium sensitive gates. On the other hand, if the calcium transient is large, the sodium calcium

exchanger will remove a calcium ion for 3 sodium ions, which increases the inward current and thus

the APD.

5.4 Calcium Modeling

Models for calcium cycling diverge in dimension size and character. Early versions of

calcium modeling, prior to the discovery of the spark phenomena, depicted a ”common

pool” version of modeling, where the calcium system is not discrete units in one cell but

one pool of calcium that releases currents due to a stimulus. Following stern the sparks

phenomena is more readily captured in models[72]. In the following section, we describe

prototypical examples of qualitatively different calcium models.
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5.4.1 Luo-Rudy model

The Luo-Rudy model was published in 1991 and again 1994[53][80]. Its calcium cy-

cling system consists of the LCC calcium current, sodium calcium exchanger,and its SR is

compartmentalized into two sections. This model is a common pool model and does not

capture graded release, the release-load, and CRU refractoriness. While this model can

be tuned to fit experimental data, the fundamental principles in which it is created is not

accurate[53][80], especially with the the lack of graded spark release.

5.4.2 The Shiferaw model

The shiferaw model published in 2003 is a relatively minimal model that captures graded

release, release load mechanism, and transmembrane and intracelulluar calcium dynamics.

Unlike the Luo-Rudy 1994 model, it captures graded release through a phenomenological

current, Irel, that is directly proportional to the L-type calcium current. This proportionality

mimics the spark phenomena, in which the more L-type calcium current enters, the more

sparks release calcium into the cytoplasm[65].

dN(t)

dt
= gIcaA(c(j′)) (5.1)

In the equation above, N is the number of calcium sparks occurring at time t, and the rate

that N changes is proportional to the Ica, the l type calcium current. The release current

Irel, the sum of all the sparks, is proportional to dN(t)
dt

[65].

Furthermore, Shiferaw divides the cellular space into 4 distinct areas, JSR for the SR

membrane near the T-tubules, NSR for the bulk SR, Cs for submembrane and dyadic space,

and Ci for cytoplasm calcium concentration, which correctly mirrors the large difference

in concentration of calcium between different areas of the cell.

One notable characteristic that Shiferaw does not explicitly highlight is the CRU re-

fractoriness of the cell. Experimental data demonstrate alternans even when the load is not
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changing. This property is important for alternans bifurcation, and we will include this in

our model.

5.4.3 The Nivala model

Figure 5.7: [62] A diagram of the markovian style of modeling in Nivala 2012. LCC variable(A)

and RyR(B) transition between various states with certain rates. The k’s indicate transition rates,

while ”C” and ”O” indicate closed and open states for the gating variables.

The Nivala model is a 3 dimensional, compartmentalized, and stochastic model which car-

ries the major characteristisc of calcium dyanmics[62]. The model equations have both

Hodgkin-Huxley and Markovian forms. The L-type calcium channels are no longer repre-

sented as gates that are either “open” or “closed”, but rather as a gate transitioning between

multiple conformations with probabilistic rate constants, shown in figure 5.7. The stochas-

ticity is implemented through Gillespie’s Method, a variant of Monte Carlo[62]. Because

of the high number of equations and parameters. Simulations of voltage is difficult in itself

in large scale, and the calcium dynamics only add to the complexity. Furthermore, in a

cardiomyocyte there are on the order of 104 junctions[81]. With the numerous Markovian

equations and stochastic methods, computation on a large scale with hundreds of cells is

not practical nor is it useful for understanding the overall dynamics of the system during

VF.
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5.4.4 Minimal Model of Calcium Alternans

We propose a minimal phenomenological model of calcium instability that captures the

main mechanisms of alternans, bidirectionally couples to voltage, and captures salient

properties such as graded release. Additionally, our model is relatively easy to understand

and computationally tractable. We aim to capture different forms of calcium and voltage

alternans as well. Our model draws inspiration from the Shiferaw calcium model[65].

We divide the CRU into two compartments, cytoplasm and SR, and give calcium con-

centration variables to each, Ccyto and Csr. Two variables represent the two alternans

mechanisms, r for CRU refractoriness, and q, for the release-load mechanism. To cap-

ture sparks leading to graded release, we define a variable, n, that denotes the number of

spark occurring at time t. Our last calcium variable is the inactivation gate f in the L-type

calcium current. In the figure 5.8, we schematically delineate our model. Four currents,

of which the equations are combinations of the variables, influence the dynamics. Irel and

Iup change the calcium concentration in the SR, and the Ica and Inaca change the cytoplas-

mic calcium concentration. Finally, we simplify the L-type calcium and Inaca greatly into

intuitive forms.

Figure 5.8: Schematic diagram of our two compartment model. The two compartments are the

sarcoplasmic reticulum(SR) and cytoplasm(CYTO). The currents that affect each compartment are

also visualized above. Uptake and release contribute to the SR calcium concentration, and the

L-type calcium current and Sodium calcium exchanger affect the cytoplasmic calcium transient

concentration.
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5.4.5 Model Equations

The model equations are given below: For the calcium system, there are 6 state variables.

R and q gates for the two main mechanisms of calcium alternans, Ccyto and Csr for the SR

and cytoplasm calcium concentrations, and f gate for the L-type calcium current Ica.
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Grel = 0.005 cup=0.003

bncx =0.83636 mncx =-0.02182

mca =-0.4 bca =13

k = 1/26 gca =-200

can =0.0001 τq =30

d∞ =
1

1 + e
−V −20
6.24

f∞ =
1

1 + e
V +40
8.6

q∞ =


0, Csr ≤ 0.3

0.6(Csr − 0.3), Csr ≤ 0.8, Csr > 0.3

5Csr − 3.7, otherwise

dq

dt
=
q∞ − q

30

r∞ =
1

1 + e
−Csr+0.7

0.01

τr =


τr1, Csr ≤ C1

τr2, otherwise

dr

dt
=
r∞ − r
τr

an = 0.0001Icaq

n∞ = r
an

an + bn

τn =
1

an + bn
dn

dt
=
n∞ − n
τn

dccyto
dt

= Irel − Iup + c1 ∗ Ica + c2 ∗ Inaca
dcsr
dt

= −Irel + Iup

(5.2)
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Irel = grelnCsr

Iup =
0.003C2

cyto

C2
cyto + 0.001

Enaca = log(
Nao3Ccyto
Nai3Cao

)

Inaca = Cnaca(0.83636− 0.02182V )Ccyto(e
(V−Enaca)k − 1)

Ica = gcad∞f(−0.4V + 13)

(5.3)

5.5 Variables

5.5.1 Ccyto [uM/L]

Ccyto is the free concentration of calcium in the cytoplasm. In Shiferaw 2003, the free

concentration of calcium in the cytoplasm is of order 1 microMolar/L, which is our units in

the model. Four currents affect the changes in the cytoplasm: Irel, Iup, Inaca, and Ica[65].

5.5.2 Csr[uM/L][vsr/vcyto]

Csr is the concentration of free calcium in the SR. Its concentration is affected by the Irel

current and the Iup current. Since the release and uptake are scaled in terms of the cytosol,

a scaling factor of vsr/vcyto is needed. The order of the Csr is scaled to 1 [uM/L].

5.5.3 r [dimensionless]

Qu et. al. unified theory calcium alternans denotes the recovery time as an exponentially

increasing function dependent on the period, T[70]. The r variable indicates the fraction

of the CRUs in the cell that have recovered and available to fire. This variable is time de-

pendent with a steady-state relationship r∞function of Csr. As Csr recovers, the r gate will

recover due to its opening probability increasing[74][75]. The steady state dependence of
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r is directly proportional to Csr, and the time constant of r directly determines how quickly

the CRUs recover to resting state. we simplify this calcium alternans mechanism to a

Hodgkin-Huxeley variable to capture the minimum properties of time constant of recovery,

and a dependence on load.

r∞ = F [Csr] (5.4)

Figure 5.9: Plot demonstrating the steady state of the r gate variable, R∞, versus Csr for our model.

At high SR content, the r gate has a higher probability of recovering to its resting values, indicating

that a large portion of the CRUs are available to fire.

5.5.4 q [dimensionless]

This variable denotes the release versus load relationship variable. Q is the fraction of

the available CRUs that are releasing at a time t. The release-load signifies that the larger

the load, the larger fraction of CRUs will release. This variable is time-dependent with a

steady-state relationship that is a function of Csr. As Csr recovers, the q gate will recover
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as well to full value. Below in figure 5.10, we plot the relationship between the q steady

state and the Csr. For further simplification, we depict this nonlinear relationship in simple,

linear functions.

q∞ = G[Csr] (5.5)

Figure 5.10: Plot visualizing the steady state of the q gate variable of our model and its dependence

on the SR calcium concentration. The relationship is determined by 3 piecewise linear functions.

This relationship is a major source of the nonlinear relationship between calcium release into the

cytoplasm and SR load.

The q variable is very similar to Shiferaw’s Q(Cjsr), which also indicates the fraction

of release depending on load. However, our variable has a time constant because the re-

lationship between q and Csr is not instantaneous, unlike Shiferaw model. In his model,

the fractional release relationship Q(Cjsr) is dependent on the JSR, not the NSR. Our Csr

variable is the equivalent of the NSR concentration in Shiferaw’s model, so we have a time

constant to indicate the delay between the NSR and JSR compartments.
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5.5.5 n[dimensionless]

n is the number of sparks in the cell at time t. For a minimal model, we make its formulation

analogous to standard Hodgkin-Huxeley gating variables since the CRUs have an intrinsic

recovery time constant.

Here, we derive the n variable in the same manner as an HH variable, starting with rate

kinetics. We define αn and βn, which are the opening and closing rate constants, and they

have units of [1/[ms]]. For an interval of time ∆t, the n variable rate kinetics are

n(t+ ∆t) = n(t) + αn(N − n)∆t− nβn∆t (5.6)

Where N is the number of available CRUs, which is on the order of thousands within a

cardiac myocyte,

N = Nor (5.7)

Where No is the total junctions in the cell, and r indicates the proportion that is recov-

ered by time t.

αn is the proportional of the available CRu’s sparking in an interval, and βn is the

proportion of sparks stopping their release in an interval ∆t.

The equation 5.6 can be rewritten in the Hodgkin Huxeley style with a steady state

equation.

n∞ = Nor
an

an + bn

,

For our model, we scale N and n by No to unity and absorb its value into the release

constant grel
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n∞ = r
an

an + bn

,

5.5.6 f gate [dimensionless]

Inactivation gate for the L-type calcium current. This variable’s steady state is voltage

dependent, and is therefore sensitive to APD alternans.

5.6 Derivations of equations

5.6.1 Currents

The units of current are uM/ms. Since the volume of the cytosol and the SR are significantly

different, the concentration is divided by the volume of cytosol, so all currents in each

compartment are of same value.

5.6.2 Release current

Irel = grelnCsr (5.8)

The release current is directly dependent on the the number of sparks, n. n variable is the

number of sparks at time t, n(t), and proportional to the recovery variable r and the fraction

of release q, and the L-type calcium to denote graded release. The amplitude of a spark

is proportional to the gradient between the SR and the cytoplasm calcium concentrations.

However, since the Ccyto is so much smaller physiologically, the term is neglected and Csr

is left.

5.6.3 Uptake current

Iup =
0.003C2

cyto

(C2
cyto + 0.001)

(5.9)
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The uptake current is the standard LR94 form used in Luo-Rudy and Shiferaw 2003[53][80][65].

5.6.4 Sodium Calcium Exchanger

For the Inaca, we simplify the equation significantly through making a few assumptions and

rearranging the format of the equations. The Standard sodium calcium exchanger current

in LR94 and Shiferaw 2003 is [80]

Inaca = gnaca
1

kmNa3 +Nao3
1

KmCa+ Cao

⇒ esV kNai3Cao− e(s−1)V kNao3Cai
1 + ksate(s−1)V k

(5.10)

gnaca, kmNa,KmCa,ksat, s are the sodium calcium exchanger constant, half-maximal

response concentration constant for sodium and calcium, saturation constant, and energy

barrier constants respectively. For Shiferaw’s model, s = 0.35, ksat = 0.25, and k =

1/26mV . Nao,Cao,Cai,and Nai are the external sodium, external calcium, internal cal-

cium, and internal sodium concentrations respectively. While Nai, Cao, and Nao can vary,

we noted that their variance has less of an effect on the qualitative shape of the the sodium-

calcium exchanger than the internal calcium concentration changes[17]. For our model to

minimize the amount of necessary variables, we assume the Nai, Cao, and Nao concentra-

tions to be constants. The remaining Cai is the dynamical calcium variable that the current

depends on. In our model, we define Cai as Ccyto

The section

esV kNai3Cao− e(s−1)V kNao3Ccyto
1 + ksate(s−1)V k

(5.11)

is the dynamical portion of the current.
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we define the nernst potential of sodium calcium exchanger as

Enaca = log
Nao3Ccyto
Nai3Cao

1

k
(5.12)

The dynamical portion of the current as now be written as

e(s−1)vk

1 + ksate(s−1)vk
Nao3Ccyto(e

(V−Enaca)k − 1) (5.13)

Next, we show that the fraction

e(s−1)vk

1 + ksate(s−1)vk
(5.14)

can be simplified to a linear dependence. s− 1 = −0.65, and −0.65/26mV = −0.025

Plotting the following equation over the range [-90,20]mV

e−v/40

1 + 0.25e−v/40
(5.15)
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Figure 5.11: Equation 49 in plotted form. The value of equation versus voltage can e fitted with a

line.

Figure 5.12: Comparison of sodium calcium exchanger current.Top: LR sodium calcium exchanger

current and bottom: our models sodium calcium exchanger current[80].
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The current can now be redefined as

Inaca = gnaca(a− bV )Ccyto(e
(V−Enaca)k − 1) (5.16)

In figure 5.12 above we exhibit our simplified Inaca equation and compare it to the stan-

dard LR Inaca, and we observe that the form is qualitatively similar. We can see from this

simplified form the direct effect of calcium alternans on the sodium exchanger. Moreover,

the equation are more intuitive and easier to manipulate.

The linear fit of the voltage dependence shows deviation at high voltage values of the

action potential. However, the sodium-calcium exchanger’s main effect manifests at values

less than 0mV.

5.6.5 L-Type Calcium current

Like the Inaca, we make similar reductions to the Ica current and rearrange the form to

create a minimal simplified equation. The Shiferaw L-type calcium current is[65]:

Ica = gcad∞fqica (5.17)

With the single channel ica current as:

ica =
V

e2vk − 1
(csube

2vk − 0.341Cao) (5.18)

The csub is 1000 times smaller than Cao. The order the term multiplying Csub is less

than 1 for most values of voltage and at largest around 8 when the voltage is at its peak.
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Thus, the term

csube
2vk (5.19)

will be omitted from the model. The remaining small channel current is proportional to

ica = gica
V

e2vk − 1
(5.20)

It is possible to reduce this fraction further by linearly fitting the relationship. Dur-

ing relatively normal AP conditions, the L-type calcium current is non-zero for a certain

interval of voltage. The linear fit needs to be accurate for this interval only.

Thus, the full current can be reduced to

Ica = gcad∞f(aV + b) (5.21)

In the figure 5.13, we compare the typical Ica equation to our simplified form.

94



Figure 5.13: Time series plot showing comparison of L-type calcium currents of the Shiferaw 2003

model and our minimal calcium model.[65] Top: Image of Shiferaw L-type calcium current. Bot-

tom: Image of our simplified L-type calcium current. Both models’ L-type calcium current has

shark peaks and a small late current.

5.7 Results

To test the validity of our model, we aim to reproduce experimental results. A main focus

of our model is the variables that contain mechanisms for alternans. To investigate each

aspect of the alternans variables, we isolated each mechanism to test its ability to produce

calcium alternans independent of electrical instability. At this stage, the model is voltage
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clamped with an action potential-like waveform, plotted in figure 5.14, and the total calcium

is unchanging. We simulate our minimal model in a single cell with dt = 0.001ms. See

Appendix for modeling parameters.

Figure 5.14: Image visualizes the clamped voltage waveform used in both scenarios of calcium

alternans and no calcium alternans. Clamped waveform demonstrates that voltage does not contain

the source of alternans and is not necessary for calcium transient to alternate independently.

5.7.1 Alternans from Q

The release load mechanism is captured in the variable q and is a distinct mechanism from

the refractoriness of the CRU’s, captured in r. For the release load mechanism, the load(Csr)

alternates every beat, resulting in alternating release. We assume that the total calcium

in the cell is relatively constant beat to beat, or varies slowly, and the resting calcium

concentration will vary as well. To isolate this mechanism so that the r gate is not the

culprit in alternans, we change the time constant of r gate such that it recovers very quickly

to the same value despite changes in pacing period, shown in figure 5.15, and we adjust its

steady state function so that it begins recovering relatively early. In addition, we clamp the

voltage to a steady action potential waveform.
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Figure 5.15: Time series plot illustrating the r gate of the system in the previous two scenarios of

both alternans and no alternans in cytoplasmic calcium concentration. The r gate recovers fully to

the value of 1 before each beat, indicating that it is not the source of alternans.

Next, we tested two cases of q gate. Since the release load mechanism depends on the

nonlinear relationship between release fraction and load,captured in the steady state value

of q, we change steady state function of q from nonlinear to linear and observe its effects

on the appearance of alternans.

In case 1, the steady state q is nonlinear, shown in figure 5.17, and alternans appear in

calcium, shown in time series in figure 5.16.
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Figure 5.16: Figure depicts the cytoplasmic calcium concentrations plotted in time series showing

distinct alternans due to q gate steady state’s nonlinear dependence on SR calcium concentration.

For this scenario, both the peak and the end-diastolic calcium values alternate.

Figure 5.17: Image depicts the Q gate steady state relationship with SR calcium concentration. 3

piecewise functions contribute to the shape of the relationship. If the relationship is nonlinear, as

shown in the image, the resulting calcium transient is capable of producing alternans.
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In case 2, the steady state of the q gate variable is adjusted such that it is aa linear func-

tion of the SR calcium concentration, shown in 5.18. Now, when the model is simulated

and paced in a steady period in single cell, the calcium transient alternans disappear, plotted

in time series in 5.19.

Figure 5.18: Image depicts the Q gate steady state relationship with SR calcium concentration. 1

linear function determines the shape of the relationship. If the relationship is linear, as shown in the

image, the resulting calcium transient is incapable of producing alternans.
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Figure 5.19: Cytoplasmic calcium concentration plotted in time series. The calcium transient is not

alternating, due to the manipulations in the q gate equations.

5.7.2 Alternans from R

The r gate captures the intrinsic refractoriness of a CRU. To isolate this mechanism, we first

construct the q gate so that it is incapable having alternans in manner of the previous sec-

tion, by making the steady state of q a linear function of calcium. In addition, we increase

the pacing period of the voltage significantly such that the system no longer alternates.

Next, we adjust the steady state values of r such that it begins recovering after the load

has almost recovered to full value. Below, we compare two cases of r gate phenomena. In

case 1, the time constant of the r gate is relatively large at 200ms. In the figure 5.21, we

plot the clamped waveform, Ccyto, and r gate.
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Figure 5.20: Cytoplasmic calcium concentration in time series, showing no alternans due to r gate

dynamics.
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Figure 5.21: R gate variable in the corresponding time series to figure 5.22 showing no alternans.

Next, we maintain the same values of parameters but increase the r gate’s time constant

to 50ms.

Even with load recovering to almost full value before each beat, q steady state being

linear, and voltage being clamped, the r gate, shown in figure 5.21, alternates every beat,

resulting in calcium alternans. In this case, the calcium resting state concentration does not

vary greatly and neither does the load. Thus, this mechanism is distinct from the release-

load mechanism.
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Figure 5.22: Cytoplasmic calcium concentration in time series showing alternans due to r gate

dynamics. For this scenario, the peak of the cytoplasmic calcium concentration is alternating sig-

nificantly, but the end-diastolic value is alternating relatively less.

Figure 5.23: R gate variable in time series showing distinct alternans, indicating that it is the cause

of alternans.Figure corresponds to cytoplasmic calcium concentration plot in figure 5.22
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Figure 5.24: Q gate variable in the corresponding time series to figure 5.22, showing relatively less

variation in value before each beat than the r gate variable time series in figure 5.23

To note, there are structurally two types of calcium alternans captured in figure 5.25.

The value of the cytoplasm calcium concentration before the next beat is the end-diastolic

calcium concentration. This value can experimentally vary beat to beat.
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Figure 5.25: Image above depicts two different types of cytoplasmic calcium alternans in time series

in two different animals, rabbit ventricle and cat atrium tissue. The resting calcium value after each

beat varies in rabbit ventricle, but not in cat atrium, giving evidence of different sources for calcium

alternans.

We note that when the end-diastolic calcium concentration varies, the release-load

mechanism is a likely culprit of alternans due to the SR load variation. If the end-diastolic

calcium is not varying greatly, the load is not varying as well, then we observe that the

CRU refractoriness is a likely culprit of alternans. A limitation to our hypothesis may oc-

cur if the total calcium entering and leaving the cell changes significantly, especially during

arrhythmia.

5.7.3 Driven Alternans from Bidirectional Coupling

Since calcium and voltage are coupled physiologically, we construct the action potential

waveform so that it produces action potential alternans so observe its effects on calcium

dynamics. The calcium system is made unable to have alternans in this instance. R gate

time constant is 200ms and the q gate steady state is a linear function of load.

In the figure 5.26, we give the action potential a period of 500ms, and its alternans drive
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the calcium system to alternans despite the calcium alternans mechanisms inactive.

Figure 5.26: Figure plots the clamped action potential waveform in time series that is coupled to

our minimal calcium model. The action potential is tuned to have alternans every other beat and in

turn produces alternans in calcium transient.

Figure 5.27: Plot demonstrating the resulting cytoplasmic calcium concentration corresponding to

5.26. Y axis is cytoplasmic calcium concentration and x axis is time. The calcium system is tuned

to be incapable of alternans independently, but the voltage system drives the calcium system to

alternans nonetheless.
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Next, with the same parameters for the calcium model, we clamp the action potential

waveform to a periodic state for the same period. The calcium alternans disappear.

5.7.4 Application to Experimental Data

We test our bidirectionally coupled calcium by applying it to laboratory experimental data.

First, we unclamp the voltage and add Inaca and Ica to the cytoplasm calcium concentration,

which varies the total calcium slightly. Unlike the previous sections, we now replace the ac-

tion potential waveform with a minimal two variable model. Details of models parameters

contained in appendix sections. From our laboratory experiments, we obtain simultaneous

voltage and calcium alternans for the rabbit ventricles and cat atria.

The cat atrium data time series, given in figure 5.28, is shown with voltage series in

the top panel and calcium in the bottom. The voltage signal does not appear to alternate,

but the calcium signal is. An observation to note is that the diastolic calcium concentration

before each release is relatively similar. Moreover, the peak calcium release is relatively

steady, so we deduce that in this case, the SR load is not alternating before each beat.

Figure 5.28: Laboratory experimental voltage and cytoplasmic calcium cat atrium time series. Volt-

age is in red in top panel and calcium is in green bottom panel. The voltage system is not visibly

showing alternans, but the calcium transient is demonstrating alternans in peak amplitude.

To fit such data, we tune our model such that the release-load variable q is not alternat-

ing and the refractoriness variable r gate is. To fit the r gate, we change the time constant
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such that it recovers with 50ms, and furthermore adjust the steady state so the r gate begins

its recovery after the load(Csr) has recovered to almost its full value. This ensures that the

load does not vary beat to beat. The result, shown in figure 5.29, is qualitatively similar

to the experimental data in voltage and calcium form. Its diastolic calcium is steady, but

the peak release varies beat to beat. To prevent the calcium system from bidirectionally in-

fluencing the voltage system to alternans, we decrease the strength of the sodium calcium

exchanger current, as it is affects the APD.

Figure 5.29: Our model tuned to mimic experimental cat atrium data in figure 5.28. Top panel is

voltage in red and bottom panel is cytoplasmic calcium concentration in green. Note, like the cat

atrium data, the voltage system is not alternating visibly but the calcium transient is alternating in

peak amplitude. The end-diastolic calcium level is not changing significantly.

For the rabbit ventricular time series, shown in figure 5.30 , we tune our model to

capture both voltage and calcium alternans.
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Figure 5.30: Figures gives experimental laboratory data of rabbit ventricles showing simultaneous

voltage and cytoplasmic calcium signals in time series. Red line is the voltage time series and Green

line is the calcium time series. Calcium shows distinct alternans in both peak and end-diastolic

values, while voltage shows relatively less alternans.

For the rabbit ventricular voltage calcium data, we note that the resting calcium varies

greatly with each beat. Moreover, while the action potential is alternating in APD, its

alternans gradient is relatively small compared to the calcium system. Thus we hypothesize

that the SR load release mechanism is affecting the calcium alternans and is the source of

the voltage alternans.

Since both systems are alternating, we first adjust the parameters in our calcium model

to reproduce SR calcium alternans to match the shape of the signal, shown in figure 5.31.

Action potential is clamped to a periodic waveform.
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Figure 5.31: We plot the single cell paced system’s voltage(red) and cytoplasmic calcium con-

centration(green) in time series. Voltage is clamped to a periodic action potential waveform, and

cytoplasmic calcium persists in alternans mode due to q gate parameters.

Next we bidirectionally couple this model to a simple voltage system that mimics the

shape of the experimental voltage data, and result is alternans in voltage time series, shown

in figure 5.32. In this case, we increase the effect the transmembrane currents on the volt-

age.
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Figure 5.32: Image gives plot in time series showing our model in single cell with the q gate ma-

nipulated such that the calcium cycling system produces alternans. Red line is voltage system in

time series and green line is cytoplasmic calcium concentration in time series. Because we adjusted

the steady state of the q gate such that dependence on the cytoplasmic calcium concentration is

nonlinear, the resulting cytoplasmic calcium concentration and voltage system are both alternating.

When we tune the calcium system such that the q gate is no longer capable of alternans,

shown in figure 5.33, the voltage alternans disappear.
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Figure 5.33: Image gives plot in time series showing our modelin single cell with the q gate ren-

dering system incapable of alternans. Red line is voltage system in time series and green line is

cytoplasmic calcium concentration in time series. Because we adjusted the steady state of the q gate

such that dependence on the cytoplasmic calcium concentration is linear, the resulting cytoplasmic

calcium concentration and voltage system are not alternating.

To confirm that calcium is the source of alternans, we clamp the calcium and note that

alternans in voltage disappear, in figure 5.34.
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Figure 5.34: Image illustrates a time series plot, in single cell, of voltage signal in red and calcium

transient in green. The cytoplasmic calcium system is clamped to a steady form and coupled to the

voltage system. The result shows no alternans in the electrical system.

Finally, in the figure 5.35 we compare the voltage system with calcium alternans and

no calcium alternans, and conclude that the voltage alternates due to calcium.
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Figure 5.35: Image visualizes a plot of voltage time series before and after clamping the calcium

cycling system. The green signal is the voltage system when the cytoplasmic calcium is clamped

and is not alternating, and the red signal is the voltage system when cytoplasmic calcium is clamped.

This comparison gives evidence to the fact that the calcium system is the source of instability.

From this type of fitting and testing, we can hypothesize the origin of alternans through

fitting and clamping.

5.8 Limitations

Several important limitations are apparent for our model. Firstly, minimal modeling carries

the disadvantage of most phenomenological models in that it reproduces behavior but not

necessarily the specific ionic mechanism from realistic experiments. Our model, while

capable of alternans, is a dynamical reduction to the most salient properties for alternans.

Normally in physiology, the two alternans mechanisms are coupled. but here, we decouple

them.
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5.8.1 Spark Lifetime

In Shiferaw’s 2003 model, the author characterizes sparks as transient release that have a

lifetime[65]. In our model, the sparks are phenomenologically represented but they do not

have a lifetime. However, we believe that this lack of lifetime does not have a large effect

on the release because the release current is relatively short in duration.

5.8.2 Buffers

A limitation to our phenomenological model is the lack of calcium buffering equations in

our model. Calcium is highly buffered in the myocyte due to its potential toxicity. For

example, in the SR, calsequestrin bind free calcium and affects the rate of release and for

uptake, the SERCA protein binds calcium to the SR. Our model does not capture the intri-

cacies of calcium buffering and is thus a dynamical model meant to understand the causes

of alternans. However, Shiferaw’s 2003 paper reduces its dynamic buffering to instanta-

neous buffering, and our model is capable of doing this as well. Furthermore, our model is

simple and flexible enough to add further complexities such as buffering dynamics.

5.8.3 Total calcium variation

The total calcium in a cell can vary beat to beat. However, this limitation is physiologically

grounded because typically the net change in total calcium in a cell is small compared to

total release of calcium, unless the cell is in an arrhythmogenic state[65]. Our model thus

far does not include this feature, and it may affect the release load mechanism. However,

it is possible to add an equation that scales the total calcium in the cell to fit to realistic

parameters.

5.8.4 Contraction

Our model is a calcium release model and does not include contraction modeling, which

is the fundamental process for the hearts pumping of blood. However, we note that it is
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possible to add a contraction model to our phenomenological model.

5.8.5 Reduction in Compartmentalization

A significant reduction of our model is the compartmentalization of the calcium system.

In Shiferaw 2003, the submembrane space is a necessary compartment to capture the dra-

matic local rise in calcium concentration[65]. The cytoplasm calcium concentration is

significantly different than the submembrane concentration, which affects the dynamics of

the transmembrane calcium currents. Yet, to create a phenomenological model that repro-

duces calcium signaling that mimics experimental data, we did not need the submembrane

space compartment. For future work, it is possible to add this variable to reproduce real-

istic dynamics. A second reduction in compartmentalization is the absorption of the JSR

calcium concentration variable from Shiferaw’s model into our SR calcium concentration.

Between the two compartments, a delay of transfer of calcium occurs, but we accounted

for this delay in the q variable time constant.

Figure 5.36: Plot illustrates the sodium calcium exchanger current in time series from Shiferaw

2003 model due to the compartmentalization of spaces[65]. Because the concentration rise in the

submembrane space is sharp and the sodium-calcium exchanger equation is dependent on its value,

the shape of the resulting time series differes from our model.
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5.9 Customization of Calcium Modeling

In this project, we constructed a minimal calcium model for alternans inspired by Shiferaw’s

2003 calcium model. We focus on two main mechanism for calcium alternans, the release

load relationship, and the refractoriness of CRUs. For each mechanism, we assigned a

Hodgkin Huxely style variable to capture the fundamental properties of alternans. As a re-

sult, our model is capable of reproducing graded release, independent alternans with both

mechanisms separately, and bidirectional influence. Furthermore, our models equations,

especially those of the Ica and Inaca currents, are significantly simplified. While there are

several limitations to our phenomenological model, the model itself is computationally

tractable and intuitive for understanding. In addition, the model is flexible in expansion for

more detail and less phenomenology. Currents such as troponin, buffering can be added.

More importantly, contraction models can be used to create a complete model for cardiac

contraction. Here with our model, we provide a flexible framework for the study of the

calcium system by allowing for adjustment and customization.
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CHAPTER 6

CONCLUSION

In this thesis, we investigated the mechanisms for arrhythmia through studies of minimal

models for both the voltage and calcium systems. I developed several simplified and min-

imal models, and these models were used to investigate and uncover new mechanism that

can destabilize cardiac dynamics. Because these models are minimal, they can now be

used by others researchers to guide the construction of more complex models and investi-

gate other arrhythmic mechanisms.

6.1 Action Potential Amplitude Alternans

APD alternans, in the past, was a widely accepted path towards instability. However, both

literature search and experimental laboratory data show that the appearance of APD alter-

nans does not necessarily indicate the onset of fibrillation. From experimental data, we

observe that the appearance of APA alternans is more inducive to the likelihood of conduc-

tion block and therefore fibrillation. In the first project introduced, we used a two-variable

model to produce a novel stability return map that predicted the onset of action poten-

tial amplitude alternans instead of action potential duration. By examining the model, we

extracted three key relationships between APD, DI, h gate, and voltage amplitude. With

analogous derivations to the APD return map, we formed the APA return map and de-

rived that stability equation that if met, will result in APA alternans in the model. From

our derived APA return map, we successfully predict the occurrence of APA alternans in

our 2 variable model. Furthermore, we related the parameters of the simple model to the

stability condition for amplitude alternans and gave a more intuitive understanding of the

underlying mechanisms. This new mechanism could be now used to further investigate

how conduction block initiation and prevention can be enhanced or suppressed in models

118



and experiments.

6.2 Take-off Potential

For the take-off potential project, we observed a key deficiency in current models because

a majority of the models do not reproduce the varying TOP during VF. This deficiency

creates qualitatively different solutions in models compared to recorded experimental data,

even when models were fitted to experimental restitution curves. From a dynamical per-

spective, unvarying TOP restricted the complexity of solutions in phases space significantly.

We targeted the source of low take-off potential, the sodium current gating variables and

their time constant functions. We fitted the equations with simpler forms and adjusted the

equations so that the take-off potentials are raised. An important observation from this

project is that simpler equations are useful and should be used for future minimal model-

ing. In fact, simplified equations led to our third project, which demonstrated that not only

minimal models reproduce observed phenomena, it can also reproduce novel occurrences

as well.

6.3 Excito-Oscillatory Behavior

In the third project, we introduced a novel, two-variable model that produces chaotic be-

havior without spiral waves or spiral wave breakup. Furthermore, by the tuning of various

parameters, this model can produce a spectrum of behavior ranging from distinct spiral

waves to circular oscillations. Experimentally, our model’s behavior is validated because

during VF, the electrical waves are not perfect spiral waves, but rather globular oscilla-

tions. For this model, we analyzed the nullclines in the phase space and observed three

fixed points. Through literature reviews, we also connected this model to other simple two

variables models with the same type of fixed points. In the three models, we observe behav-

ior such as tail-ignition of a wave, chaos without SWB, and high TOP. For all three models,

we also detect both excitable and oscillatory behavior. Despite the fact that the models are
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from different fields of research, they have striking similarities, which suggests that fur-

ther studies should be done on models with nullclines of this type. From this project, we

conclude again that minimal models are useful in producing a variety of behavior and are

easily manipulated. In addition, we note that the combination of excitable and oscillatory

behavior produces richer dynamics in space.

6.4 Minimal Calcium Alternans Model

In experiment, calcium alternans and voltage alternans can occur in various combinations

and forms. Using the current complex calcium models to fit to such data can be detrimen-

tal to the understanding of underlying mechanisms for instability. For the last project, we

introduce a minimal calcium model that is bidirectionally coupled to voltage. We focus on

two main mechanisms for calcium alternans and constructed a minimal calcium model that

is capable of alternans even when the voltage is clamped. In addition, we simplify trans-

membrane calcium currents to simplified forms and still retained their main characteristics.

Next, we couple this calcium model to a minimal voltage model and reproduce experimen-

tal results. By fitting the model to the laboratory data, we were able to hypothesize on the

origin of alternans in both voltage and calcium systems in different mammals.

6.5 Limitations

In general with minimal modeling, the main limitation with such practice is that the equa-

tions are less physiologically based than realistic, and more complex models with signifi-

cantly more variables. For example, the Bubbly model has 1 potassium current to recover

the system to rest, but in reality multiple time dependent potassium currents exists, which

dramatically affects the dynamics of the system because the nullclines of the system will

no longer give the 3 types of fixed points that lead to the excito-oscillatory behavior. For

the APA alternans project, the stability condition predicted the onset of alternans with the

simple two variable model, but for models with 10 times as many variables, the condition
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may break down because the voltage amplitude is not only dependent on the h gate. For the

calcium minimal modeling, the spatial dynamics of calcium cycling, even within one cell,

are neglected. While our model produces alternans, the foundation of the variables are due

to a mean-field averaging of the system.

6.6 Future Work

For our future work, we will continue with the bubbly model and calculate the stability of

the traveling wave solution in a cable system. As of now, we show through calculations that

the traveling wave destabilizes into a relative periodic orbit. The next step is to calculate the

stability matrix of the RPO. For the calcium system, we will fit the model to more animals

in laboratory settings. Furthermore, we will fit the model to restitution curves derived from

experiment to validate our model.
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APPENDIX A

CONTRIBUTIONS IN EXPERIMENT AND SIMULATIONS

Experimental laboratory data used in this thesis are extracted from published peer-reviewed

research manuscripts, or are conducted through the author’s laboratory experimental re-

searchers. A majority of the data from the author’s laboratory were produced by other

researchers. However, the author did contribute to extraction of mammalian hearts from

test subjects. Simulations in this thesis were done by the author unless specified otherwise.

Mathematical derivations and equations were also done by author under the guidance of

members of the thesis committee. For the APA alternan and TOP papers, the author was

guided by Professor Flavio Fenton and Dr. Richard Gray. For the Bubbly excito-oscillatory

model paper, the research was heavily guided by Professor Roman Grigoriev. For the min-

imal calcium model, the author was guided by Professor Yohannes Shiferaw.
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APPENDIX B

NUMERICAL METHODS AND SIMULATIONS

For all projects and models, we simulated the ordinary and partial differential equations

with Fortran 77 and Fortran 95. In addition, the method used for simulations was for-

ward Euler method for dt ranging from 0.01 to 0.0001ms. The main exception was the

excito-oscillatory ”Bubbly” model in chapter 4, where Runge-Kutta 4 was used to inte-

grate forward in time. In addition, for the excito-oscillatory model’s cable solutions in 1D,

we used a semi-implicit backward Euler method to calculate the solution.

For chapter 4, where simulations were done in square lattice tissue, OpenAcc and We-

bGL were both utilized to enhance the speed. OpenAcc is a programming language for

parallel computing with GPUs and is developed by Cray, Nvidia, and PGI.

A significant benefit of OpenAcc is that it allows for parallelization by slight modifi-

cations to the original code. To use OpenAcc, we installed the PGI fortran compiler. In

addition, we inserted several lines of code into the sectioins of the simulation program that

are loopable. The structure of the parallelization code is as follows:

1. $ acc data copyin(variable1, variable2)

This line of code copies the variables on the CPU to the GPU. Line must be inserted

into the code before any other calculations.

2. $acc kernels

[Loopable code]

$acc end kernels

This section of code runs the loopable code in the GPU. For example, if the code has a

do loop, the do loop section will have the first line inserted before its run, and the second

line after its run in the original code. The result is that the loop will be parallelized in the

GPU

124



3. $acc update host(variable1, variable2)

This line updates the results from the loop in the GPU and sends the variables values

back into the host, or the CPU

4. $acc end data

This last line signifies the end of the GPU computations.

WebGL also utilizes GPU to produce simulations, but is compatible with any web

browser, allowing the user real-time simulations alongside simultaneous changes in the

model parameters as long as a device is connected to a web browser.

An example code is given below:

USE DISLIN

implicit real*8(a-h,o-z)

parameter(nx=200,ny=200,nz=1)

integer i,k,p,ntime1

integer cellnumx, cellnumy, nstep1

dimension u(0:nx+1,0:ny+1)

dimension ut(0:nx+1,0:ny+1)

dimension h(0:nx+1,0:ny+1)

cellnumx=100

cellnumy=100

ena=50d+0

gna=3d+0

duf=0.076656d+0*5d+0

xamp=200d+0

xtime=0.4d+0

uinitial = -84d+0

hinitial= 1d+0

dt=0.01d+0
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dx=.02d+0

dx2=dx**2

dif=0.001d+0

time1=1000000d+0

period=99.3d+0

nstep1=time1/dt

!$acc data copyin(u,ut,h)

!$acc kernels

! closed do loop

do k=0,ny+1

do i=0,nx+1

u(i,k)=uinitial

ut(i,k)=uinitial

h(i,k)=hinitial

enddo

enddo

!$acc end kernels

t=0d+0

do ntime1=0,nstep1

pacet=dmod(t,period)

xistim=xamp*exp(-(pacet-0.3d+0)**2d+0/

(2d+0*0.05d+0**2d+0))

!$acc kernels

do i=0,nx

u(i,ny+1)=u(i,ny-1)

u(i,0)=u(i,2)

enddo
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do k=0,ny

u(nx+1,k)=u(nx-1,k)

u(0,k)=u(2,k)

enddo

!$acc end kernels

!$acc kernels!parallel loop

! closed do loop

do k=1,ny

do i=1,nx

ah = (0.126d+0 *exp((-0.25d+0 )*(u(i,k)+77d+0 )))

bh = 1.7d+0 /(exp((-0.082d+0)*(u(i,k)+22.5d+0 ))+1d+0)

ssh = (ah/(ah+bh))

ssm=1d+0-exp(-0.07d+0*(u(i,k)+84d+0))

if(u(i,k).le.(-15d+0) )then

tauh=60d+0*exp(-(u(i,k)+62.5d+0)**2d+0/

(2d+0*7d+0**2d+0) ) + 0.7d+0

else

tauh1=0.7d+0

tauh2n=3.8d+0

tauh2=tauh2n/(1d+0+exp(-1d+0*(u(i,k)-10d+0)))

tauh=tauh1+tauh2

endif

xina = (gna*(ssm**3d+0)*h(i,k))*(u(i,k)-ena)

dh = duf*(ssh-h(i,k))/tauh

h(i,k)=h(i,k)+dh*dt

gk=5d0

if(u(i,k).ge.(-82d+0))then
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xik = gk

else

xik = (gk/2d+0)*u(i,k)+(gk/2d+0)*84d+0

endif

xlap=(u(i+1,k)+u(i-1,k)+u(i,k-1)+

u(i,k+1)-4d+0*u(i,k))/dx2

if((i.ge.0).and.(i.le.10).and.(k.ge.0).and.(k.le.10))then

du= duf*(-xina-xik+xistim+dif*xlap)

else

du= duf*(-xina-xik+dif*xlap)

endif

ut(i,k)=u(i,k)+du*dt

enddo

enddo

!$acc end kernels

t=t+dt

!$acc kernels

! closed do loop

do k=1,ny

do i=1,nx

u(i,k)=ut(i,k)

enddo

enddo

! closed do loop

!$acc end kernels

if(mod(ntime1,100).eq.0)then

! update cpu
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!$acc update host(u(1:nx,1:ny),h(1:nx,1:ny))

write(1000,*)t,u(cellnumx,cellnumy),

h(cellnumx,cellnumy)

! Dislin plotting

CALL METAFL(’GL’)

CALL DISINI()

CALL PAGERA()

!CALL HWFONT()

CALL TITLIN(’2-D model’,2)

!CALL TITLIN(’F(X,Y) = 2 * SIN(X) * SIN(Y)’,4)

!CALL NAME(’X-axis’,’X’)

!CALL NAME(’Y-axis’,’Y’)

CALL NAME(’Voltage’,’Z’)

CALL INTAX()

CALL AUTRES(nx,ny)

CALL AXSPOS(600,1850)

CALL AX3LEN(1500,1500,1500)

CALL GRAF3(0.,REAL(nx),0.,100.,1.,REAL(ny),0.,140.

,-90.,50.,-80.,10.)

CALL CRVMAT(real(u),nx+2,ny+2,1,1)

CALL HEIGHT(50)

CALL TITLE()

CALL ENDGRF()

CALL ERASE()

endif

enddo
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!$acc end data

end
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APPENDIX C

POINCARÉ SECTION ANALYSIS

In chapter 4, we use a poincaré section analysis to find the periodic orbits existing in the

system. Time is periodic since the stimulus paces the system periodically, so we use the

section time = 10ms.

The periodic orbit is a fixed point on the section and satisfies

x∗ = F (x∗) (C.1)

or

0 = F (x∗)− x∗ = P (x∗) (C.2)

To find the periodic orbit, we use a newton solver on the equation equaling 0 above, to

solve for x∗, or in our case ~x∗ is a vector consisting of v∗ and h∗.

I estimate the general location of the periodic orbit and sample three points on the

section near this general location. The first point is a chosen estimate point. The sec-

ond and third points are separately deviated from the first point by δv and δh respectively.

The values for δv and δh are generally order of 10−7. I integrate the 3 fixed points for-

wards in time till the section is crossed and record the crossing values on the poincaré

section. Let us denote the initial points as ~x1, ~x2, ~x3, and their crossing after integration as

~F (x1), ~F (x2), ~F (x3) . Depending on the periodic orbit, some orbits repeat after multiple

crossings of the section.
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Now, since the 3 points are in the neighborhood of the periodic orbit, they can be

approximated as ~x∗ + dx and the points satisfies

P ( ~x∗ + dx) = P ( ~x∗) +
dP

dx
~dx|x∗ (C.3)

P ( ~x∗ + dx) = 0 +
dP

dx
dx|x∗ (C.4)

Now, I select ~x1 and designate that as ~x∗ + dx. To solve for the ~dx correction, which is

composed of corrections on v and h, we find the matrix dP
dx
dx|x∗ , which we will name A,

by calculating:

A = (
P2 − P1

δv
|P3 − P1

δh
) (C.5)

Now, the newton equation for the first point is:

P (x1) = 0 + A ~dx (C.6)

If we multiply both sides by the inverse of A, we can solve for .

A−1P (x1) = ~dx (C.7)

This , which is composed of dv and dh, can be used to correct the guess.
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APPENDIX D

CHAPTER 5: CALCIUM MODEL PARAMETERS

D.1 alternans from Q

dccyto
dt

= Irel − Iup
dcsr
dt

= −Irel + Iup

Irel = grelnCsr

dn

dt
=
n∞ − n
τn

n∞ = r
an

an + bn

τn =
1

an + bn

an = canIcaq

q∞ =


0, Csr ≤ 0.1

0.6(Csr − 0.1), Csr ≤ 0.8, Csr > 0.1

7Csr − 5.18, otherwise

dq

dt
=
q∞ − q
τq

r∞ =
1

1 + e
−Csr+0.6

0.01

τr =


τr1, Csr ≤ 0.7

τr2, otherwise

dr

dt
=
r∞ − r
τr

Iup =
cupC

2
cyto

C2
cyto + 0.001

(D.1)
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Ica = gcad∞fV

d∞ =
1

1 + e
−V −20
6.24

f∞ =
1

1 + e
V +40
8.6

df

dt
=
f∞ − f

30

(D.2)

Grel 0.45 cup 0.0025

mca -0.4 bca 13

gca -160 can 0.0001

τq 50 τr1/τr2 10
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D.2 alternans from R

dccyto
dt

= Irel − Iup
dcsr
dt

= −Irel + Iup

Irel = grelnCsr

dn

dt
=
n∞ − n
τn

n∞ = r
an

an + bn

τn =
1

an + bn

an = canIcaq

q∞ = 1.3Csr

dq

dt
=
q∞ − q
τq

r∞ =
1

1 + e
−Csr+0.95

0.01

τr =


τr1, Csr ≤ 0.7

τr2, otherwise

dr

dt
=
r∞ − r
τr

Iup =
cupC

2
cyto

C2
cyto + 0.001

(D.3)

Ica = gcad∞fV

d∞ =
1

1 + e
−V −20
6.24

f∞ =
1

1 + e
V +40
8.6

df

dt
=
f∞ − f

30

(D.4)
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Grel 0.45 cup 0.0025

mca -0.4 bca 13

gca -160 can 0.0001

τq 50 τr1/τr2 50

D.3 alternans for cat atrium

Our voltage model is phenomenologically at the order of 1. Therefore, to fit to realistic

values, we scale the voltage. We will denote the unscaled voltage as V and scaled voltage

as v. The scaled v is used in the calcium model.

∂V

∂t
= D

∂2V

∂x2
− Ina − Ik − c1Ica − c2Inaca

INa =


−h(V − VC)(1− V )/τNa, V ≥ VCmV

0, otherwise

v = V ∗ 100− 84

IK =


1/τK1, V ≥ VCmV

V/τK2, otherwise

τ−h =


τ−h1, V ≤ VhmV

τ−h2, otherwise

dh

dt
=


−h/τ+h , V ≥ VCmV

(1− h)/τ−h , otherwise

(D.5)
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τNA 0.6729 D 0.001

Tk1 405 Tk2 241

T−h1 40 T−h1 40

T+
h 3.5 c1 0.000007

c2 0.0056

dccyto
dt

= Irel − Iup + c3Ica + c4Inaca

dcsr
dt

= −Irel + Iup

Irel = grelnCsr

dn

dt
=
n∞ − n
τn

n∞ = r
an

an + bn

τn =
1

an + bn

an = canIcaq

q∞ =


0, Csr ≤ 0.3

0.6(Csr − 0.3), Csr ≤ 0.8, Csr > 0.3

5Csr − 3.7, otherwise

dq

dt
=
q∞ − q
τq

r∞ =
1

1 + e
−Csr+0.97

0.01

dr

dt
=
r∞ − r
τr

Iup =
cupC

2
cyto

C2
cyto + 0.001

(D.6)
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Inaca = Cnaca(mncxv + bncx)Ccyto(e
(v−Enaca)k − 1)

Enaca = log(
Nao3Ccyto
Nai3Cao

)

Ica = gcad∞f(−0.4v + 13)

d∞ =
1

1 + e
−v−20
6.24

f∞ =
1

1 + e
v+40
8.6

(D.7)

Grel 1.2 cup 0.0018

c3 -0.000008 c4 0.004

can 0.0001 τq 30

Cnaca 0.1 τr 50

bncx 0.83636 mncx -0.02182

Nao 140000 Nai 10000

Cao 1800 gca -40

k 1/26

D.4 alternans rabbit ventricles

Our voltage model is phenomenologically at the order of 1. Therefore, to fit to realistic

values, we scale the voltage. We will denote the unscaled voltage as V and scaled voltage
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as v. The scaled v is used in the calcium model.

∂V

∂t
= D

∂2V

∂x2
− Ina − Ik − c1Ica − c2Inaca

INa =


−h(V − VC)(1− V )/τNa, V ≥ VCmV

0, otherwise

v = V ∗ 100− 84

IK =


1/τK1, V ≥ VCmV

V/τK2, otherwise

τ−h =


τ−h1, V ≤ VhmV

τ−h2, otherwise

dh

dt
=


−h/τ+h , V ≥ VCmV

(1− h)/τ−h , otherwise

(D.8)
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τNA 0.6729 D 0.001

Tk1 405 Tk2 241

T−h1 40 T−h1 40

T+
h 3.5 c1 0.000007

c2 0.0056

dccyto
dt

= Irel − Iup + c3Ica + c4Inaca

dcsr
dt

= −Irel + Iup

Irel = grelnCsr

dn

dt
=
n∞ − n
τn

n∞ = r
an

an + bn

τn =
1

an + bn

an = canIcaq

q∞ =


0, Csr ≤ 0.3

0.6(Csr − 0.3), Csr ≤ 0.8, Csr > 0.3

5Csr − 3.7, otherwise

dq

dt
=
q∞ − q
τq

r∞ =
1

1 + e
−Csr+0.7

0.01

dr

dt
=
r∞ − r
τr

Iup =
cupC

2
cyto

C2
cyto + 0.001

(D.9)
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Inaca = Cnaca(mncxv + bncx)Ccyto(e
(v−Enaca)k − 1)

Enaca = log(
Nao3Ccyto
Nai3Cao

)

Ica = gcad∞fv

d∞ =
1

1 + e
−v−20
6.24

f∞ =
1

1 + e
v+40
8.6

(D.10)

Grel 1.2 cup 0.0017

c3 -0.000008 c4 0.004

can 0.0001 τq 30

Cnaca 0.1 τr 100

bncx 0.83636 mncx -0.02182

Nao 140000 Nai 10000

Cao 1800 gca -40

k 1/26
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