
AUTONOMOUS AGGRESSIVE DRIVING: THEORY & EXPERIMENTS

A Dissertation
Presented to

The Academic Faculty

By

Changxi You

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace

Georgia Institute of Technology

May 2019

Copyright © Changxi You 2019

AUTONOMOUS AGGRESSIVE DRIVING: THEORY & EXPERIMENTS

Approved by:

Dr. Panagiotis Tsiotras, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Karen Feigh
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Samuel Coogan
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Eric Marie J Feron
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Byron Boots
College of Computing
Georgia Institute of Technology

Date Approved: January 22, 2019

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisor Dr. Panagiotis Tsio-
tras for his continuous support of my PhD study on the interesting research, for his great
patience, immense knowledge and professional instructions. I also would like to thank
the labmates in DCSL for the helpful discussions, comments and fun in the last four
years. I obtain more than what I could imagine from a PhD program.

I am also grateful to the members of my committee: Dr. Karen Feigh, Dr. Samuel
Coogan, Dr. Byron Boots and Dr. Eric Marie J Feron, for their patience, insightful com-
ments and encouragement throughout writing this thesis.

Besides my advisor, I would like to thank Dr. Jianbo Lu and Ford Motor Company
for their long term support, who provided me precious experimental data and a great
opportunity to join them as an intern. I also would like to thank Justin Zheng, Luis Pi-
mentel, Brian Goldfain, Kamil Saigol, Kelsey Hawkins and Grady Williams for their great
assistance in the Auto-Rally experiments. Without their support it would not be possible
to conduct this research.

Last but not the least, I would like to thank my family for supporting me spiritually
throughout my PhD program.

iii

TABLE OF CONTENTS

List of Tables . xi

List of Figures . xiii

Chapter 1: Introduction . 1

1.1 Motivation . 1

1.2 Literature Review . 1

1.2.1 Driver Modeling . 2

1.2.2 Autonomous Vehicles . 3

1.2.3 Planning for Autonomous Driving 5

1.3 Goals and Challenges . 9

1.4 Contributions . 11

1.5 Outline of the Dissertation . 12

Chapter 2: Kalman Filters . 13

2.1 Introduction . 13

2.2 Nonlinear Kalman Filter . 13

iv

2.3 Adaptive Limited Memory UKF . 15

2.4 Nonlinear State Constraints . 20

2.5 Conclusion . 21

Chapter 3: Driver Modeling and Parameter Estimation 22

3.1 Introduction . 22

3.2 System Modeling and Problem Formulation 23

3.2.1 Driver Model . 24

3.2.2 Road and Perception Model . 24

3.2.3 Problem Formulation . 26

3.3 Field Tests . 28

3.4 Data Analysis and Results . 30

3.4.1 GPS Data Processing . 30

3.4.2 Driver Parameter Identification . 31

3.4.3 Driver Model Refinement . 34

3.5 Driver Comparison and Analysis . 36

3.5.1 Driver Parameter Analysis . 37

3.5.2 Wavelet Analysis of Driver Steering Torque Command 39

3.6 Conclusion . 43

v

Chapter 4: Vehicle Modeling and Parameter Estimation 44

4.1 INTRODUCTION . 44

4.2 VEHICLE MODELING . 44

4.2.1 Single-Track Model . 44

4.2.2 Double-Track Model . 45

4.2.3 Full Vehicle Model . 46

4.2.4 Tire Force Model . 47

4.3 Parameter Estimation . 49

4.4 Results and Discussion . 50

4.4.1 Standard UKF . 50

4.4.2 Adaptive Limited Memory UKF . 51

4.4.3 Experiments . 53

4.5 Conclusion . 54

Chapter 5: Highway Traffic Modeling and Optimal Decision Making 56

5.1 Introduction . 56

5.2 Traffic Modeling . 57

5.2.1 Markov Decision Process . 58

5.2.2 System Modeling . 58

5.2.3 Dynamic Cell . 61

vi

5.3 Reinforcement Learning . 63

5.3.1 Reinforcement Learning Algorithms 63

5.3.2 Reward Function . 64

5.3.3 Q-Learning . 65

5.4 Maximum Entropy Principle . 68

5.4.1 Maximum Entropy Principle . 69

5.4.2 Nonparameterized Features . 70

5.4.3 Parameterized Features . 72

5.5 Inverse Reinforcement Learning . 73

5.5.1 Reward Approximator . 73

5.5.2 MaxEnt Deep IRL Algorithm . 74

5.5.3 IRL Algorithm Refinement . 76

5.6 Results and Analysis . 79

5.6.1 Driving Behavior from Reinforcement Learning 79

5.6.2 Driving Behavior from Inverse Reinforcement Learning 83

5.7 Conclusion . 85

Chapter 6: Path Planning and Control: Highway Overtaking 87

6.1 Introduction . 87

6.2 Path Planning . 88

vii

6.2.1 Preliminaries . 88

6.2.2 Joint Quadratic Bézier curves . 88

6.2.3 Fourth Order Bézier Curves . 91

6.3 Speed Control . 94

6.4 Lane-Switching Control . 97

6.4.1 Optimal Driver Model . 97

6.4.2 Output Regulation . 101

6.5 Results and Analysis . 102

6.5.1 Optimal driver parameters . 103

6.5.2 Path Planning . 105

6.5.3 Path Tracking Control . 107

6.5.4 Overtaking Behavior . 108

6.6 Conclusion . 109

Chapter 7: Path Planning and Control: Off-Road Rally Racing 110

7.1 Introduction . 110

7.2 High-Speed Cornering Trajectories . 111

7.2.1 Problem Formulation . 112

7.2.2 Optimal Trajectories . 113

7.3 Trajectory Learning . 114

viii

7.3.1 Generative Model . 114

7.3.2 Primitive High-Speed Cornering Trajectory 118

7.4 Differentially Flatness Trajectory Generation 120

7.4.1 Differential Flatness . 120

7.4.2 Differential Flatness of Vehicle Model 121

7.5 High-Speed Cornering Trajectory Planning 122

7.5.1 Sliding Trajectory . 123

7.5.2 Guiding Trajectory . 124

7.6 Control Design . 130

7.6.1 Tracking Controller . 131

7.6.2 Sliding Controller . 133

7.6.3 Exiting Controller . 134

7.7 Numerical Simulations . 134

7.7.1 Trajectory Design . 135

7.7.2 Tracking Control . 136

7.7.3 Late-Apex High-Speed Cornering 138

7.8 Experimental Validation . 140

7.8.1 CarSim Simulation . 140

7.8.2 Auto-Rally Experiments . 141

ix

7.9 Conclusion . 145

Chapter 8: Conclusions & Future Research Directions 147

8.1 Conclusions . 147

8.2 Future Work . 148

References . 167

Vita . 168

x

LIST OF TABLES

1.1 Available path generating methods. 8

2.1 The EKF procedures. 14

2.2 The UT procedures. 15

2.3 The UKF procedures. 16

2.4 The ALM-UKF procedures. 18

3.1 Steering handling course (constant velocity); CW=clockwise, CCW=counter clockwise. 29

3.2 Constant parameters of the system. 32

3.3 Driver model parameters;
JEKF=Joint EKF, DEKF=Dual EKF, UB=upper bound, LB=lower bound. 33

3.4 Driver model parameters. 37

4.1 Known / Unknown Vehicle model parameters. 50

5.1 The selected features and the weights for reinforcement learning. 81

5.2 IRL results summary. 84

6.1 Constant parameters of the vehicle. 103

xi

6.2 Driver model parameters. 104

6.3 H2-norms regarding to various drivers. 105

6.4 Vehicle model parameters. 107

7.1 Initial conditions. 113

7.2 Boundary conditions . 124

7.3 Equilibrium for steady-state cornering. 135

7.4 Boundary conditions . 135

7.5 Road geometry and high-speed cornering trajectory setup. 138

7.6 “Late apex” specification. 139

7.7 Boundary conditions . 140

7.8 Vehicle/tire model parameters. 142

xii

LIST OF FIGURES

1.1 A two point visual driver model of steering: the far-field visual point (white
cross) and the near-field visual point (white dot) in different driving sce-
narios [24]. 3

1.2 Five levels of autonomous driving defined by the Society of Automobile
Engineers [33]. 4

1.3 Autonomous control architecture at different levels. 5

1.4 Path planning using Rapidly-exploring Random Trees (RRT) in a merge
test. Red paths are unsafe since they may cause a collision with the traffic
vehicle [48]. 6

1.5 Path planning based on joint cubic Bézier curves [63]. 7

1.6 Typical high-speed cornering trajectory for rally racing. Three typical fea-
tures of such trajectories may be observed: large sideslip angle, counter
steering and “late apex”. 10

3.1 Human-vehicle-road closed-loop system. 23

3.2 Road geometries, vehicle states and driver’s visual perception. 25

3.3 The proving ground by the google map. 28

3.4 Experiment vehicles and some apparatus. 1st row: Fiesta (left), MKS (medium),

F150 (right); 2nd row: power source (left), power converter (medium), CAN case

(right). 28

3.5 Illustration of the CAN network on MKS. 29

xiii

3.6 Illustration on the different coordinate systems. 31

3.7 The data, the training curve and the simulated curve for the steering wheel
torque. 32

3.8 The data, the training curve and the simulated curve from the Joint/Dual
E-/UKF. 34

3.9 The time histories of the driver parameters during the training process.
Steady state is reached after 45 seconds. 34

3.10 The data, the training curve and the simulated curve from the Joint UKF. 35

3.11 The trajectory of the driver parameters with ±2σ error during the training
process. 36

3.12 Detail of estimate of `s along with the 2σ confidence bounds. 36

3.13 The bode plots of Gc for the novice, the experienced and the racing drivers,
45 mph. 37

3.14 The bode plots of Gfb for the novice, the experienced and the racing drivers
(45 mph). 38

3.15 The plots of Ka vs Kc for the three types of drivers. 39

3.16 The steering wheel torque of the racing, experienced and novice driver
(MKS, 45 mph). 40

3.17 Wavelet transform of Tdr of the racing (above), experienced (medium) and
novice (below) driver. 40

3.18 The absolute CWT coefficients |W f (s,τ)|. 41

3.19 The histogram of the Lipschitz exponents α for the experienced and rac-
ing driver. 42

3.20 The histogram of the Lipschitz exponents α for the novice and experi-
enced driver. 42

xiv

4.1 Single-track vehicle model. 45

4.2 Double-track vehicle model. 46

4.3 Riding model. 47

4.4 Rolling and pitching model. 48

4.5 The magic formula. 48

4.6 The test track and the Auto-Rally vehicle model. 49

4.7 State estimation for the single-track model using JUKF. 51

4.8 Simulation results of the estimated vehicle models using standard UKF. . 52

4.9 Convergence of the vehicle parameters along with the estimation process. 52

4.10 Simulation results of the estimated vehicle models using ALM-JUKF. . . . 53

4.11 MPPI implementation using a neural-network model (left) and a single-
track model (right). 54

4.12 Sideslip angle of Auto-Rally. 54

5.1 The agent-environment interaction. 57

5.2 The traffic on multi-lane road. 59

5.3 The cells and the definition of the state: 1© 9-cell internal-lane state, 2©
6-cell left-boundary state and 3© 6-cell right-boundary state 59

5.4 Overtaking during cornering. 60

5.5 State transition process. 61

5.6 Dynamic cells. 62

xv

5.7 Deep neural-network feature function and reward. 71

5.8 Structures of the deep neural-network reward functions. 74

5.9 The convergence performance of the policy π in the learning process. . . 81

5.10 Overtaking scenarios in simulation by implementing π∗
1 82

5.11 The initial setup for simulation. 83

5.12 The tailgating in simulation by implementing π̂2. 85

6.1 Path planning for the single lane change. 89

6.2 Path planning for the single lane change. 90

6.3 A symmetric fourth order Bézier curve. 93

6.4 Bézier curve reconstruction for smooth transition at endpoints. 94

6.5 Slip ratio circle. 96

6.6 Two-point visual steering control driver model. 98

6.7 Path tracking error. 101

6.8 Road and vehicle used in Carsim. 102

6.9 Trajectory of H2 vs. the number of iterations. 103

6.10 Comparison of tracking errors for all four drivers. 104

6.11 Quadratic Bézier curves for lane switching. 105

6.12 The curvature of the quadratic Bézier curves. 105

6.13 Fourth order Bézier curves for lane switching. 106

xvi

6.14 The curvature of the fourth order Bézier curves. 106

6.15 Tracking control for fourth order Bézier curves. 107

6.16 Overtaking scenarios in simulation by implementing π∗
1 108

7.1 Road geometry. 113

7.2 Optimal trajectories for different initial positions and velocities. 114

7.3 Graphical observation model with time indexing τk
j 116

7.4 Multiple demonstrations and the learned primitive trajectory. 118

7.5 The velocity, side-slip and yaw motion of the learned primitive. 119

7.6 Road geometry and high-speed cornering trajectory. 123

7.7 Path planning for guiding control. 125

7.8 Scheme of flatness-based vehicle dynamics control. 132

7.9 The desired and simulated trajectories. 135

7.10 The desired and simulated controls. 136

7.11 The desired and simulated output. 137

7.12 The desired and simulated lateral tire forces. 137

7.13 Switching-mode control for steady-state cornering. 138

7.14 Trail braking maneuver generation for different road geometries. 139

7.15 Closed track in CarSim. 140

7.16 Simulated trajectories. 141

xvii

7.17 The test track and the Auto-Rally vehicle platform. 142

7.18 The estimated lateral tire force. 142

7.19 The trajectories of Auto-Rally (counter clockwise). 143

7.20 The speed profile of Auto-Rally. 143

7.21 Online path replanning. 144

7.22 Online speed profile generating. 144

7.23 The posture of Auto-Rally in a typical round. 145

xviii

SUMMARY

This dissertation intends to understand expert driving maneuvers in different sce-
narios such as highway overtaking and off-road rally racing, which are referred to as
“aggressive” driving in the context of this work. By mimicking expert driving styles, one
expects to be able to improve the vehicle’s active safety and traffic efficiency in the de-
velopment of autonomous vehicles. This dissertation starts from the system modeling,
namely, driver modeling, vehicle modeling and traffic system modeling, for which we
implement different Kalman type filters for nonlinear parameter estimation using ex-
perimental data. We then focus on the optimal decision making, path planning and
control design problems for highway overtaking and off-road autonomous rally racing,
respectively.

The main contributions of this dissertation can be summarized as follows. 1) The
Kalman type filters require good knowledge of the system noise, which makes it chal-
lenging to design the hyperparameters for a Kalman filter. In order to estimate the un-
known model parameters from real-world driving data, we develop a new adaptive lim-
ited memory UKF (ALM-UKF) for nonlinear parameter estimation. The ALM-UKF is
much easier to use since it is able to estimate the unknown noise statistics on-the-fly. 2)
By estimating the driver parameters in the two-point visual driver model using exper-
imental data, we are the first to show that the driver parameters are slightly changing
with time, as far as the authors know. 3) We perform a wavelet analysis on the steering
commands of different drivers and show that the steering command of an experienced
driver is smoother than a novice driver, according to the number of singularities of the
steering command and the corresponding Lipschitz exponents. 4) Based on driver mod-
eling and the result of driver behavior analysis, we design a robust ADAS controller for
lane-keeping using output regulation to assist all drivers having the parameters entering
certain region in the parameter space. 5) We propose to use a stochastic MDP for high-
way traffic modeling. The new concept of “dynamic cell” is introduced to dynamically
extract the essential state of the traffic according to different vehicle velocities, driver in-
tents (signals) and sizes of the surrounding vehicles (i.e., truck, sedan, etc.). This allows
us to solve the (inverse) reinforcement learning problem efficiently since the dimen-
sionality of the state space can be maintained in a manageable level. This approach
is easily scalable. 6) We propose new path planning algorithms using Bézier curves to
generate everywhere C 2 continuous curvature-constrained paths for highway real-time
lane-switching. We demonstrate expert overtaking maneuver by implementing the pro-
posed decision making, path planning and control algorithms on an in-house devel-
oped traffic simulator. 7) Based on the trajectory learning result, we model high-speed
cornering with a segment of steady-state cornering. We then propose a geometry-based
path/nominal planning algorithm using the vehicle’s differential flatness. Our approach
requires low computation effort since it avoids solving optimal control problems on-
the-fly, while guaranteeing good racing performance in terms of the highest speed the
vehicle achieved in off-road racing.

xix

CHAPTER 1

INTRODUCTION

1.1 Motivation

More than six million motor vehicle crashes occurred in the US in 2015 alone, of which
27 percent resulted in injury or death [1]. From 2014 to 2015 the total number of vehicle
crashes increased by 3.8 percent, and the number of fatal crashes increased by 7 per-
cent [2]. Another study, sponsored by NHTSA, investigated 723 crashes and showed that
driver behavioral error caused or contributed to 99 percent of these crashes [3].

Given the increased sophistication of automotive active safety systems, these stud-
ies show that driver behavior still remains the most important factor contributing to
accidents. It is therefore necessary to understand, characterize and, if possible, predict
driver behavior so as to design better, and more proactive (as opposed to merely reac-
tive) advanced driver-assist systems (ADAS). Nevertheless, driver modeling is a difficult
task since driver behavior is affected by different individual factors, such as gender, age,
experience and driver’s aggression. Such diverse driver behaviors have a significant ef-
fect on the performance of ADAS [4, 5].

Self-driving vehicles offer a solution to avoid driver behavioral error, by completely
freeing the human from the burden of driving. Hence, instead of developing an ADAS
controller based on the understanding of driver behavior characteristics, one can also
mimic the driving behavior of an expert driver for optimal decision making and path
planning in order to generate the desired driving style for autonomous vehicles. Au-
tonomous vehicles are expected to significantly improve traffic congestion, reduce col-
lisions and resulting injuries, enhance mobility for the children, the elderly and the dis-
abled, and reduce the need for parking space in cities [6]. They represent a major trend
in future intelligent transportation systems.

This dissertation reviews different driver modeling methodologies in the literature
and selects the well-known two-point visual driver model to characterize the steering
behavior of the driver. We then build the driver model, vehicle model and traffic system
model. We implement different Kalman filters for nonlinear system parameter estima-
tion. Expert driving maneuvers for autonomous vehicles are generated for two typical
driving scenarios, namely, highway overtaking and off-road autonomous rally racing.

1.2 Literature Review

In this section we review the driver modeling methodologies and the techniques used to
develop autonomous vehicles.

1

1.2.1 Driver Modeling

A controller for vehicle handling stability should take into account the diverse driver
skills, habits and handling behavior of different drivers, and persistently provide good
“intuitive” performance. In order to characterize driver behavior, researchers have pro-
posed different driver models based on several methodologies over the past four decades
[7, 8, 9, 10, 11, 12, 13, 14, 15].

Wier and McRuer [7] used transfer functions to describe the result of the driver’s
actions on the vehicle’s position error and yaw angle, and built a quasi-linear model
(crossover model) to approximately describe the nonlinear steering behavior of the driver.
This model uses feedback control to eliminate tracking error, but it does not take the
driver’s preview behavior into consideration. MacAdam [8, 9] assumed that the driver
wants to minimize a pre-defined previewed output error, and modeled the driver’s steer-
ing strategy as an optimal preview process with a time lag. Hess and Modjtahedzadeh
[10, 16] introduced a control-theoretic model for the steering behavior of the driver. This
model consisted of a preview component along with low- and high-frequency compen-
sation elements. The above models successfully achieve lane-tracking using only lat-
eral control; braking is not considered in these works. Burgett and Miller [12] designed
and optimized a parameterized driver model using a multi-variable nonlinear regres-
sion approach, based on data collected from test tracks and driving simulations. This
model investigated the driver’s braking strategy in order to avoid rear-end driving con-
flicts. Chatzikomis and Spentzas [17] proposed a path-following driver model that reg-
ulated both the steering wheel and the throttle/brake by previewing the path ahead of
the vehicle. Keen and Cole [18] linearized the vehicle model at different working points
and used a multi-model structure to characterize the ability of the driver to predict the
future vehicle path. By using different combinations of the internal models, this model
predictive controller (MPC) achieves various driver expertises in the path-following task.

The driver’s mental work has also been taken into consideration for driver modeling.
In [15] Flad et al. proposed a steering-primitive optimal selection driver model by defin-
ing a set of elementary control primitives to describe the driver’s neuromuscular system,
limbs and control actions. This model assumes that the driver has a mental model of
the vehicle and the steering task and determines the optimal sequence of control prim-
itives to achieve the target maneuver. Different artificial intelligence approaches have
also been introduced to model the driver’s mental work and behavior. In [11] the au-
thors evaluated the driver’s mental influence from the environment with respect to a
“risk level” and proposed a driver model based on fuzzy control theory. Lin et al. [13]
built a neural network driver model and compared three typical model configurations
in great detail. More recently, Hamada et al. [19] proposed a beta process autoregressive
hidden Markov model (HMM). This model was trained in an unsupervised way using
real driving data, and was used to predict the driving behaviors of the drivers.

All previous driver control-theoretic models can be categorized into three groups ac-
cording to the methodology used to develop them: 1) classical control theory such as [7,
10, 16], where the system is represented using transfer functions and the stability is an-
alyzed using frequency-response methods; 2) modern control theory such as [8, 9, 12,

2

17, 18], where the system is represented in state space and the stability is analyzed in
the time domain; and 3) intelligent control theory such as [11, 13, 19], where the arti-
ficial intelligence approaches including neural network, fuzzy logic and HMM are used
to develop the driver models [20]. These driver models focus on three kinds of driving
tasks, including longitudinal control [12], lateral control [7, 8, 9, 10, 16, 13, 18, 15] and
combined longitudinal-lateral control [11, 17, 19].

Non-parameterized models such as neural networks or HMMs have also been used
to predict driver behavior. They have to be trained off-line by using supervised/unsupervised
machine learning techniques and they typically need large amounts of data. We prefer
to use the parameterized, transfer function based driver models, such as the crossover
model [7, 21], the control theoretic model [10], and the two-point visual driver model [22,
23, 24] for control design tasks, since they are quasi/- linear and transparent to the user.
The two-point visual driver model (see Figure 1.1) is considered to have both satisfactory
model accuracy and good identification feasibility [25].

Figure 1.1: A two point visual driver model of steering: the far-field visual point (white
cross) and the near-field visual point (white dot) in different driving scenarios [24].

Such parameterized, transfer function based driver models have certain number of
unknown parameters requiring the researchers to design. One can either determine
these parameters by solving an optimization problem, or alternatively, one can esti-
mate these unknown parameters using real driving data. The most commonly used
techniques for parameter estimation include least-squares fitting [26, 27], robust tech-
niques [27, 28, 29], and various Kalman filtering techniques [27, 30, 31, 32].

Based on the understanding of driver’s handling characteristics, one can either de-
sign an ADAS controller for better lane/path tracking performance, or develop fully au-
tonomous vehicles to completely free the driver from the burden of driving, such that
the driver behavioral error could be effectively eliminated.

1.2.2 Autonomous Vehicles

An autonomous vehicle is able to detect the environment and navigate without the
driver’s input, by using a variety of sensing techniques such as radar, lidar, ultrasound,
localization and computer vision, along with advanced control techniques that can an-
alyze the sensory data, in order to plan and achieve the desired path to the desired des-

3

tination. Autonomous vehicles are expected to significantly improve traffic congestion,
reduce collisions and resulting injuries, enhance mobility for the children, the elderly
and the disabled, and reduce the need for parking space in cities [6]. Figure 1.2 shows
the definitions of different automated driving levels provided by the Society of Automo-
bile Engineers (SAE). Levels 1-3 require a licensed driver to be behind the steering wheel,
while levels 4 and 5 allow driverless operations.

Figure 1.2: Five levels of autonomous driving defined by the Society of Automobile En-
gineers [33].

Due to the rapid development of sensing and computing technologies over the past
two decades, research in the field of autonomous vehicles has shown great progress, and
related self-driving vehicle technology has matured significantly in the recent years [6].

The first autonomous vehicle was developed by Carnegie Mellon University’s Navlab
in 1988, and it was able to achieve lane-following using camera images [34]. Navlab
completed the first autonomous coast-to-coast trip across the United States in 1995,
traveling 2,849 miles between Pittburgh and San Diego at an average speed of 63.8 mph[35].
Another important milestone in the self-driving vehicle technology was the DARPA Grand
Challenge, which was held three times between 2004 and 2007 [36]. In these races the
vehicles were required to drive autonomously in an off-road course (2004 and 2005) or
an urban area course (2007) without any human intervention. These tests showed that
fully autonomous off-road driving and fully autonomous urban driving are indeed tech-
nologically possible. Since then, many commercial companies, startups, and research
organizations have launched their own development of autonomous vehicles.

4

Sensoring

Filtering

Decision Making

Path Planning

Mission Planning

Path Tracking Control

System Modelling

System Learning

Path Planning

Pe
rc

et
io

n
Pl

an
ni

ng
Co

nt
ro

l

Figure 1.3: Autonomous control architecture at different levels.

Google started the self-driving car project in 2009 (called Waymo after 2016) and has
already tested autonomous vehicles for more than 10 million miles in six states of the
US. Waymo introduced a minivan based on a mass-production platform for the pur-
pose of full autonomy [37]. The ride-sharing company Uber tested its first self-driving
program in the mobility service sector in Pittsburgh in 2016, and plans to eventually re-
place all its drivers with self-driving cars in the not-so-distant future [38]. Tesla currently
provides auto steering, lane changing and parking capabilities in their “Autopilot" sys-
tem and plans to bring semi-autonomous and autonomous vehicle features to the mass
market with the 2017 Model 3 [39]. In 2016, Ford became the first automaker to test
its autonomous vehicles on snow and in darkness, and plans to deliver a commercially
available fully autonomous vehicle by 2021 [40]. Volvo introduced the first large-scale
autonomous drive project and plans to give 100 customers early-access to autonomous
XC90 on Swedish public roads by 2017[41]. Although there were about 44 large corpo-
rations and numerous automotive driving startups working on autonomous vehicles by
May 2017 [42], vehicles currently permitted on public roads are not fully autonomous
and they all require a driver to take over control of the vehicle at a moment’s notice.

1.2.3 Planning for Autonomous Driving

The main technical issues in developing fully autonomous vehicles exist at three levels,
namely, perception, planning and control, as shown in Figure 1.3. The perception level
comprises of sensing and filtering of environmental data. The sensing system consists of
a number of sensors and provides information about the vehicle’s state and the environ-
ment. The filtering system denoises the signals from the sensing system and provides
a reasonable estimate for the unmeasurable states[30, 43, 44, 45]. The planning level

5

completes three tasks, which include mission planning, where the vehicle solves a rout-
ing problem in order to complete a task, decision making, where the vehicle chooses an
appropriate action for the next time step from an available action set, and path plan-
ning, where the vehicle plans its future trajectory as a function of space or time [46, 47,
48, 49]. Finally, the control level receives the signals from the planning level, maintains
the stability of the vehicle, and tracks the desired path.

Many vehicle control techniques have been developed to enhance stability and han-
dling performance, such as differential braking [50, 51], torque vectoring [52, 53], ac-
tive steering[54, 55] and integrated chassis control[56, 57] and advanced driver assist
systems [58, 18, 59, 60]. Numerous control techniques are available to use at the con-
trol level. Higher-level path planning and decision making is another essential part for
developing fully autonomous vehicles. During the past decade many techniques have
been developed to solve the high-level planning problems for autonomous vehicles [46,
48, 61, 62, 63, 64, 65, 66, 67].

Figure 1.4: Path planning using Rapidly-exploring Random Trees (RRT) in a merge test.
Red paths are unsafe since they may cause a collision with the traffic vehicle [48].

In [48] the authors proposed a real-time path planning algorithm based on Rapidly-
exploring Random Trees (see Figure 1.4). This algorithm was implemented on an au-
tonomous vehicle which completed a 60 mile simulated military supply mission in the
2007 DARPA Urban Challenge. The path planning approaches using RRTs can efficiently
explore the space to handle obstacle avoidance problems. Nevertheless, since the tree is
built incrementally from the direction of the samples randomly from the search space,
an additional smoother may be required to smooth the path. Cimurs et al. used Dijk-
stra’s algorithm to find the shortest viable path by connecting the Vonoroi vertices, such
that the path keeps a safe distance from all the obstacles in the environment [61]. They
then used the Bézier curves to smooth the path with respect to the maximum curvature
constraint by selecting and aligning the control points.

In order to generate a smooth path for an autonomous vehicle, Choi et al. [62, 63]
presented a series of path planning algorithms based on Bézier curves. The planned
paths have continuous curvature and satisfy the road boundary constraints (see Fig-

6

ure 1.5). Shim et al. [64] used a parameterized 6th-order polynomial to represent a
smooth path, and planned a feasible path for the autonomous vehicle satisfying both
the initial/final conditions and the constraint conditions. They implemented their path-
planning algorithm in static/moving obstacle avoidance tasks and designed the tracking
control module using model predictive control techniques. Instead of planning a path
geometrically by solving an optimization problem [62, 63, 64], one can also design a path
using optimal control theory. Mousavi et al. [65] applied an extended Kalman filter to
predict the future trajectory of an autonomous vehicle, and used a linear time-varying
model predictive control scheme to determine the optimal path and the associated op-
timal control. This approach was designed to achieve collision avoidance and stochastic
target tracking in a dynamic environment. Similar work was devoted to developing fast
path planning or decision making algorithms to achieve fully autonomous driving in
real world scenarios. Ulbrich and Maurer [66] focused on real-time decision making for
lane changes of an autonomous vehicle. They used a partial observable Markov decision
process (POMDP) to model the decision making for lane changes, and implemented a
two-step algorithm in real-time to obtain the optimal action for an autonomous vehicle
in an urban driving task.

Figure 1.5: Path planning based on joint cubic Bézier curves [63].

Regarding to the single lane change maneuver, there are many path generating meth-
ods available in the literature[68, 69, 70, 71, 72]. A single lane change maneuver is re-
quired to be smooth and safe. A mathematical description of this maneuver naturally
leads to two separated tasks, namely, path planning and path tracking. Traditional path
planning algorithms are mainly based on sampling and searching, probability theory
and geometry, among which the geometry-based methods are most practical for real-
time planning. We summarize the advantages and disadvantages of some typical meth-
ods in Table 1.1. These approaches either plan a path without guaranteeing the continu-

7

ity or the constraint requirements on the curvature [68, 71], or require additional time
for computing clothoids [69, 70] or tuning parameters [72]. A more extensive survey on
path planning for autonomous vehicles can be found in [73, 36].

Table 1.1: Available path generating methods.

Method: circular trajectory[68].
Description: two constant radius arcs connected with a line segment.
Advantage: short computation time.
Disadvantage: discontinuities of the curvature.

Method: arcs combination[68].
Description: several arcs having different radii.
Advantage: smoother transition between arcs.
Disadvantage: discontinuities of the curvature.

Method: arcs and clothoids [69].
Description: constant radius arcs connected with clothoids.
Advantage: continuous curvature.
Disadvantage: More computing time.

Method: polynomial trajectory [68].
Description: the path is a 5th order polynomial trajectory.
Advantage: continuous curvature.
Disadvantage: hard to modify the shape of trajectory.

Method: Joint clothoids[70].
Description: four connected clothoids (use polynomial approximation).
Advantage: continuous curvature, lower costs than using clothoids.
Disadvantage: No obvious disadvantage.

Method: Joint Bézier curves [71, 72].
Description: two symmetrical cubic Bézier curves.
Advantage: curvature is continuous and minimized.
Disadvantage: curvature constraint is not guaranteed.

Other techniques using ideas from artificial intelligence (AI) have also been devel-
oped to solve planning problems for autonomous vehicles. These include supervised
learning [74], deep learning [75] and reinforcement learning [76]. Lange et al. [67] used
a deep neural encoder to extract feature representations from the raw visual input of
camera images for a racing vehicle, and successfully learned the optimal control actions
(i.e., steering, accelerating and braking) using reinforcement learning. The control per-
formance was even better than an experienced human, in the sense that the car was
able to move along a closed track as fast as possible without crashing. The approach
in [67] concentrated on improving the driving performance of a single vehicle without
considering the traffic. Shalev-Schwartz et al. [46] took the traffic into consideration
and divided the planning problem into two phases. They first modeled the state tran-
sition of the traffic using a deep neural network, such that they could apply supervised
learning to predict the near future states of the system. Subsequently, they used a re-
current neural network to model the trajectory and learn the optimal driving policy of

8

the autonomous vehicle. This approach does not rely on any Markovian assumption,
and hence it is considered to be robust to the stochastic behavior of the environment.
The learning procedure was validated using both an adaptive cruise control task and a
roundabout merging task.

Application of reinforcement learning requires knowledge of the reward function,
which needs to be carefully designed. An alternative is to learn the optimal driving strat-
egy using demonstrations of the desired driving behaviors. Abbeel and Ng [77] used a
driving simulator to collect two minutes of driving data from an expert driver, and as-
sumed that the reward function of this expert driver is a linear combination of a number
of known features. In order to recover the reward function and the expert driving policy,
they proposed a max-margin algorithm along with a projection algorithm to solve the in-
verse reinforcement learning problem. Although one can approximately recover expert
driving behaviors using this approach, the matching between the optimal policy/reward
and the features is ambiguous, as indicated by Ziebart and his colleagues [78]. In order
to address this ambiguity, Ziebart introduced the maximum entropy principle (MEP)
to uniquely match the rewards with the features. He proposed the maximum entropy
inverse reinforcement learning (MaxEnt IRL) algorithm [78, 79], which was shown to
be computationally efficient in [78]. It was implemented on a routing problem (mis-
sion planning). The researchers in [80, 81, 82, 83] developed different versions of the
MaxEnt IRL algorithm based on [78, 79]. Among these, the authors of [82] formulated
the maximum entropy inverse reinforcement learning problem using a deep neural net-
work (DNN) to represent the unknown reward function. All the above formulations of
the MaxEnt IRL problem require complete knowledge of the environment dynamics.

1.3 Goals and Challenges

Most of the existing control driving techniques are designed to minimize, or restrict,
the tire sideslip angle within the linear operation region, so that an average driver can
maintain control of the vehicle during an emergency [84]. Instead of restricting the lat-
eral dynamics of the vehicle, a better control strategy may be to take advantage of the full
handling capacity of the vehicle and perform an accident avoidance maneuver. Such an
approach has been studied in [85], where the authors used aggressive, but controlled,
yaw motion to mitigate the effects of a T-bone collision. Good knowledge of aggressive
driving maneuvers may be required in order to achieve better collision avoidance and
mitigation strategies.

The present study deals with a form of aggressive driving that involves driving at high
speed along with speeding/braking actions. Such maneuvers are performed primarily
by expert drivers. These aggressive maneuvers may be utilized to improve vehicle safety
of (semi-)autonomous vehicles and traffic efficiency, by duplicating expert driver behav-
ior in different driving scenarios.

The authors in [86, 87, 88] suggested different definitions of aggressive driving, all of
which, however, assumed that there exists at least one victim, and the driver intended
to inflict psychological or physical harm to the victim or even attempts to injure or kill

9

the victim. A more precise definition of aggressive driving was provided by Tasca in [89],
who performed a review on aggressive driving research. He concluded that, a driving
behavior is aggressive if it is deliberate, likely to increase the risk of collision and is mo-
tivated by impatience, hostility and/or attempt to save time. Some typical aggressive
driving behaviors on the road may include tailgating, weaving in and out of traffic, im-
proper lane change, driving at speeds far in excess of the norm, improper passing etc.
[89, 90]. These aggressive driving behaviors may violate traffic rules, and irritate the
other drivers, and hence considered to be dangerous. These behaviors do not require
the driver to have good driving skills, and the vehicle may not be driving at a high speed.

Figure 1.6: Typical high-speed cornering trajectory for rally racing. Three typical fea-
tures of such trajectories may be observed: large sideslip angle, counter steering and
“late apex”.

The term “aggressive driving” in this dissertation mainly represents certain high speed
controlled driving maneuvers mostly performed by expert drivers, which may involve
steering at high speed, along with certain speeding/braking operations possibly. We
consider this kind of aggressive driving behavior since it is possible to be utilized to im-
prove vehicle safety and traffic efficiency. This dissertation focuses on generating the ag-
gressive driving maneuvers for autonomous vehicles in two different scenarios, namely,
highway overtaking and off-road autonomous rally racing (see Figure 1.6). To this end,
we need to solve high level optimal decision making problem and design low level path
planning and control algorithms for the two driving tasks, respectively.

The goal of this dissertation is to solve the following problems:

1) Driver/vehicle modeling and parameter estimation. We use Kalman filters (i.e.,
EKF, UKF) for system parameter estimation. The main difficulty of this problem is the
design of the unknown hyperparameters for the Kalman filter, such as the statistics of
the process noise and the measurement noise.

2) Highway traffic modeling and optimal decision making for intelligent vehicles.

10

The first difficulty of this problem is the traffic modeling, where one must take into ac-
count the different velocities, different sizes (i.e., truck, sedan etc.) and different driving
intents (i.e., lane-switching, braking etc.) of the surrounding vehicles during the deci-
sion making process.

Another difficulty of this problem is the design of the reward function for expert driv-
ing in order to achieve the desired driving styles. One may have to solve an inverse opti-
mal control (inverse reinforcement learning) problem in order to recover the unknown
parameters in the parameterized reward function using data.

3) Planning and control for highway overtaking. The main difficulty of this problem
is the design of the path planning algorithms for lane switching, where a C 2 continuous,
curvature constrained path is required to be generated in real-time. Reliable low-level
controllers need to be designed for both longitudinal and lateral motion control for the
autonomous vehicles.

4) Planning and control for off-road autonomous racing. The main difficulty of this
problem is to generate high-speed cornering in real time without solving any optimal
control problem on-the-fly. One needs to plan the nominal trajectory and design the
corresponding controller using only the geometry of the path.

1.4 Contributions

The main contributions of this dissertation can be summarized as follows:

1) The design of the model-based controller for autonomous vehicles requires to
model the system (i.e., driver, vehicle) with sufficient modeling accuracy. To this end,
one needs to estimate the unknown model parameters from real-world driving data, us-
ing certain parameter estimation algorithms such as Kalman filters. Nevertheless, the
Kalman type filters require good knowledge of the system noise, which makes it chal-
lenging to design the hyperparameters for a Kalman filter. We develop a new adaptive
limited memory UKF (ALM-UKF) for nonlinear parameter estimation. The ALM-UKF is
much easier to use since it is able to estimate the unknown noise statistics on-the-fly.

2) By estimating the driver parameters in the two-point visual driver model using ex-
perimental data, we are the first to show that the driver parameters are slightly changing
with time, as far as the authors know. The design of ADAS controller should take this
result into consideration for better control stability.

3) To better understand the steering behavior of different types of drivers, this disser-
tation performs a wavelet analysis on the steering commands of different drivers. The
number of singularities and the corresponding Lipschitz exponents indicate that the
steering command of an experienced driver is smoother than a novice driver.

4) Based on driver modeling and the result of driver behavior analysis, we design
a robust ADAS controller for lane-keeping using output regulation to assist all drivers
having the parameters entering certain predesigned polyhedron.

5) In order to reproduce the overtaking behavior of an expert driver in highway traf-

11

fic, we propose to use a stochastic MDP for highway traffic modeling. The new concept
of “dynamic cell” is introduced in this dissertation to dynamically extract the essential
state of the traffic according to different vehicle velocities, driver intents (signals) and
the sizes of the surrounding vehicles (i.e., truck, sedan, etc.), such that we are able to
solve the (inverse) reinforcement learning problem efficiently since the dimensionality
of the state space can be maintained in a manageable level. This approach is easily scal-
able.

6) We propose new path planning algorithms using Bézier curves to generate every-
where C 2 continuous curvature-constrained paths for highway real-time lane-switching.
We demonstrate expert overtaking maneuver by implementing the proposed decision
making, path planning and control algorithms on an in-house developed traffic simula-
tor.

7) Based on the trajectory learning result, we propose to model high-speed cor-
nering with a segment of steady-state cornering. We then propose a geometry-based
path/nominal planning algorithm using the vehicle’s differential flatness. Our approach
requires low computation effort since it avoids solving optimal control problems on-
the-fly, while guaranteeing good racing performance in terms of the highest speed the
vehicle achieved in off-road racing.

1.5 Outline of the Dissertation

The contents of this dissertation are as follows. In Chapter 2 we introduce the Kalman
type filters used in this work for system parameter estimation. In Chapters 3 and 4 we
introduce the driver model and the vehicle models and estimate the unknown parame-
ters using experimental data. Chapter 5 models the traffic and determines the optimal
decision making strategy using (inverse) reinforcement learning techniques. Chapter 6
solves the path planning problem and designs tracking control for autonomous vehicles
in highway traffic. Chapter 7 designs the controller for aggressive driving and generates
real-time high-speed cornering using an auto-rally robotic platform. Finally, in Chap-
ter 8 we summarize the main contribution of the dissertation and we propose several
possible directions for future research.

12

CHAPTER 2

KALMAN FILTERS

2.1 Introduction

The most commonly used techniques for parameter estimation include least-squares
fitting [26, 27], robust techniques [27, 28, 29], and various Kalman filtering techniques [27,
30, 31, 32]. Among these, Kalman filtering is especially suitable for problems where the
measurements are collected in a sequential manner.

The extended Kalman filter (EKF) and the unscented Kalman filter (UKF) are proba-
bly the most popular filters used for system identification of nonlinear systems. Never-
theless, they can only achieve good performance under some prior knowledge includ-
ing: 1) an accurate system model, 2) complete information of noise statistics, and 3)
properly selected initial conditions, all of which may be either not accurate or not avail-
able in practice [91]. A commonly used approach to solve these problems is to make the
Kalman filters work adaptively, by dynamically modifying the filtering algorithm using
various schemes [92, 93, 94, 91, 95].

The adaptive limited memory filter (ALMF) in [95] estimates the process and ob-
servation noise statistics on-line, based on the past state estimations and observations.
This algorithm improves the state estimation performance at little computational ex-
pense. Nonetheless, the ALMF was derived using a linear system model, and it has not
been validated in parameter estimation applications, at least as far as the authors know.
This dissertation builds on the work in [95], and develops a new adaptive limited mem-
ory unscented Kalman filter (ALM-UKF) for nonlinear applications.

This chapter is structured as follows. Section 2.2 introduces the standard Kalman fil-
ters for nonlinear state estimation. Section 2.3 proposes a new adaptive limited memory
UKF for process and measurement noises estimation, while Section 2.4 solves the con-
strained state estimation problem. Finally, Section 2.5 summarizes the results of this
chapter.

2.2 Nonlinear Kalman Filter

The extended Kalman filter is a classical approach to solve nonlinear estimation prob-
lems. This is achieved by means of linearizing the nonlinear state transition and nonlin-
ear observation models. Let the discrete system

xk+1 = f (xk ,uk , wk), (2.1a)

yk = h(xk ,uk , vk), (2.1b)

13

where wk and vk are the process noise and the measure noise, respectively, both of
which are assumed to be with zero-mean white Gaussian with covariances given by

E(wt wT
s) =Qwδt s , E(wt vT

s) =Qcδt s , E(vt vT
s) =Qvδt s , (2.2)

where Qw , Qc and Qv are the covariance matrices and δt s is the Kronecker delta function
defined by

δt s =
{

1 if t = s,

0 if t 6= s.
(2.3)

We assume that wt and vs are independent Gaussian random variables and hence the
cross term Qc in (2.2) is zero. The state estimates can then be computed using the EKF
algorithm [44].

EKF Algorithm

1: Initialize with:

x̂0 = E[x0]

P̂0 = E[(x0 − x̂0)(x0 − x̂0)T]

2: Prediction (time update):

x̂−
k = f (x̂k−1,uk−1)

ŷ−
k = h(x̂−

k ,uk)

P̂−
k = Fk−1P̂k−1F T

k−1 +Qw

3: Measurement update:

εk = yk − ŷ−
k

Sk = Hk P̂−
k H T

k +Qv

Kk = P̂−
k H T

k S−1
k

x̂k = x̂−
k +Kkεk

P̂k = P̂−
k −Kk Sk K T

k

Algorithm 2.1: The EKF procedures.

where x̂−
k is the predicted state estimate, ŷ−

k is the predicted measurement, P̂−
k is the

predicted estimate covariance, εk is the measurement residual, Sk is the innovation co-
variance, Kk is the Kalman gain, and x̂k and P̂k are the updated state estimate and the
updated estimate covariance, respectively. The matrix-valued functions Fk−1 and Hk are
the Jacobian matrices of f and h in (2.1) and are given by

Fk−1 =
∂ f

∂x

∣∣∣
x̂k−1

, Hk = ∂h

∂x

∣∣∣
x̂−

k

. (2.4)

An alternative to EKF is to use an unscented Kalman filter (UKF). A UKF implements
the unscented transform (UT) [30], and avoids calculating the Jacobian matrices at each
time step. Hence, it captures the true mean and the covariance of the state Gaussian
random variable to at least second order accuracy for any nonlinearity. If x is an L-

14

dimensional Gaussian random variable given by x ∼ (x̂,Px) and g :RL →RM is a nonlin-
ear function, then the UT Algorithm calculates the statistics of y = g (x) as follows:

UT Algorithm

λ=α2(L+κ)−L

W (m)
0 =λ/(L+λ)

W (c)
0 =λ/(L+λ)+1−α2 +β

W (m)
i =W (c)

i = 0.5/(L+λ), i = 1, . . . ,2L

γ=p
L+λ

X0 = x̂

Xi = x̂ + (γ
p

Px)i , i = 1, . . . ,L

Xi = x̂ − (γ
p

Px)i , i = L+1, . . . ,2L

Yi = g (Xi), i = 0, . . . ,2L

ŷ ≈
2L∑

i=1
W (m)

i Yi

Py ≈
2L∑

i=1
W (c)

i (Yi − ŷ)(Yi − ŷ)T

Algorithm 2.2: The UT procedures.

where Xi , i = 1, . . . ,2L are called sigma points, λ is the principal scaling parameter, α
determines the spread of sigma points around the mean x̂ and is usually set to a small
positive value, κ is a secondary scaling parameter which is usually set to zero or 3 −
L, and β is used to incorporate prior knowledge of the distribution of x. For Gaussian
distribution, β = 2 is optimal [30, 31, 96, 32]. In the previous UT Algorithm (γ

p
Px)i is

the i th column of the matrix square root.

Let us consider the system in (2.1a)-(2.1b). The UKF redefines the state vector as
xa

k = [xT
k , w T

k , vT
k]T and estimates xa

k recursively. The UT sigma point selection scheme is
applied to calculate the sigma matrix X a

k for the augmented state xa
k .

Although the UKF based algorithms (joint/dual UKF) are expected to have better ac-
curacy, the choice between the joint estimation and the dual estimation is still not clear,
since they show different performances when they are applying to different problems.
More discussions can be found, for instance, in [30, 43]. The UKF equations are summa-
rized in Algorithm 2.3.

2.3 Adaptive Limited Memory UKF

We propose a new estimation algorithm for nonlinear systems called Adaptive Limited
Memory UKF (ALM-UKF). First, recall that the adaptive Kalman filter algorithm [95] ad-
justs the mean and the covariance of the noise on-line, which is expected to compensate
for time-varying modeling errors. Define the set of unknown time-varying hyperparam-

15

eters for the Kalman filter corresponding to the noise statistics at the i th time step, as

Si , {qi ,Qi ,ri ,Ri }. (2.5)

Si is estimated simultaneously with the system state and parameters. Since an optimal
estimator for Si does not exist, and many suboptimal schemes are either too restrictive
for nonlinear applications or too computationally demanding [92, 93, 94, 91], this dis-
sertation adopts the adaptive limited memory algorithm in [95], with the following two
extensions: a) the algorithm is developed for a nonlinear application (i.e., UKF); b) we
wish to estimate the unknown parameters of the system along with the state, instead of
just the system state. In the following, we assume that Si is constant and is denoted by
S = {q,Q,r,R}.

UKF Algorithm

1: Initialize with:

x̂0 = E[x0]

P0 = E[(x0 − x̂0)(x0 − x̂0)T]

x̂a
0 = E[xa

0] = [x̂T
0 0 0]T

P a
0 = E[(xa

0 − x̂a
0)(xa

0 − x̂a
0)T] =


P0 0 0

0 Qw 0

0 0 Qv


2: Sigma-point calculation and prediction:

X a
k−1 = [x̂a

k−1 x̂a
k−1 +γ

√
P a

k−1 x̂a
k−1 −γ

√
P a

k−1]

X x
k|k−1 = f (X x

k−1,uk−1,X w
k−1)

x̂−
k =

2L∑
i=0

W (m)
i X x

i ,k|k−1

P−
k =

2L∑
i=0

W (c)
i (X x

i ,k|k−1 − x̂−
k)(X x

i ,k|k−1 − x̂−
k)T

Yk|k−1 = h(X x
k|k−1,uk−1,X v

k|k−1)

ŷ−
k =

2L∑
i=0

W (m)
i Yi ,k|k−1

3: Measurement update:

Pyk yk =
2L∑

i=0
W (c)

i (Yi ,k|k−1 − ŷ−
k)(Yi ,k|k−1 − ŷ−

k)T

Pxk yk =
2L∑

i=0
W (c)

i (X x
i ,k|k−1 − x̂−

k)(Yi ,k|k−1 − ŷ−
k)T

K = Pxk yk P−1
yk yk

x̂k = x̂−
k +K (yk − ŷ−

k)

Pk = P−
k −K Pyk yk K T

Note: xa = [xT w T vT]T, X a = [(X x)T (X w)T (X v)T]T.

Algorithm 2.3: The UKF procedures.

For the observation noise statistics r and R, we consider the nonlinear observation

16

at time k, which is given by yk = h(xk ,uk)+vk . Since the true value of xk is unknown, vk

is approximated by

rk ≈ yk − ĥ(xk ,uk), (2.6)

where rk represents a sample of the observation noise v at time k, and

ĥ(xk ,uk) =
2L∑

i=0
W (m)

i h(X x
i ,k ,uk), ĥk . (2.7)

We define a new random variable ξ∼ (r,Cr), and assume that there are N samples rk (k =
1, . . . , N), such that the rk ’s are N empirical measurements for ξ. An unbiased estimator
for r can be given by the sample mean

r̂ = 1

N

N∑
k=1

rk , (2.8)

where the term “unbiased” implies that E[r̂] = E[ξ] = r . An unbiased estimator for the
covariance of ξ can be given by

Ĉr = 1

N −1

N∑
k=1

(rk − r̂)(rk − r̂)T, (2.9)

where the term “unbiased” implies E[Ĉr] = E[(ξ− r)(∗)T]. Since yk = h(xk ,uk)+ vk , it
follows from (2.6) that

rk = h(xk ,uk)− ĥk + vk . (2.10)

We can therefore calculate the covariance of ξ as follows

E[(ξ− r)(∗)T] = 1

N

N∑
k=1

E[(rk − r)(∗)T]

= 1

N

N∑
k=1

E[(h(xk ,uk)− ĥk + vk − r)(∗)T]

= 1

N

N∑
k=1

E[(h(xk ,uk)− ĥk)(∗)T]+ 1

N

N∑
k=1

E[(vk − r)(∗)T]+ 2

N

N∑
k=1

E[(h(xk ,uk)− ĥk)(vk − r)T]

= 1

N

N∑
k=1

(
E
[
(h(xk ,uk))(∗)T]− (ĥk)(∗)T)+R. (2.11)

where

E[(h(xk ,uk))(∗)T] =
2L∑

i=0
W (m)

i (h(X x
i ,k ,uk))(∗)T. (2.12)

17

Adaptive Limited Memory UKF

1: Initialize with:

x̂0 = E[x0], q̂0 = E[q0], r̂0 = E[r0]

P0 = E[(x0 − x̂0)(∗)T]

Q0 = E[(q0 − q̂0)(∗)T]

R0 = E[(r0 − r̂0)(∗)T]

x̂a
0 = E[xa

0] = [x̂T
0 q̂T

0 r̂ T
0]T

P a
0 = E[(xa

0 − x̂a
0)(∗)T] = bl kdi ag

([
P0, Q0, R0

])
2: Sigma-point calculation and prediction:

X a
k−1 = [x̂a

k−1 x̂a
k−1 +γ

√
P a

k−1 x̂a
k−1 −γ

√
P a

k−1]

X x
k|k−1 = f (X x

k−1,uk−1)+X w
k−1

x̂−
k =

2L∑
i=0

W (m)
i X x

i ,k|k−1

P−
k =

2L∑
i=0

W (c)
i (X x

i ,k|k−1 − x̂−
k)(∗)T

Yk|k−1 = h(X x
k|k−1,uk−1)+X v

k|k−1

ŷ−
k =

2L∑
i=0

W (m)
i Yi ,k|k−1

3: Observation noise estimation (k ≥ N):

rk = yk−1 − ĥk−1

Γk =
2L∑

i=0
W (m)

i (h(X x
i ,k−1,uk−1))(∗)T − (ĥk−1)(∗)T

r̂k = r̂k−1 + 1
N (rk − rk−N)

Rk = Rk−1 + 1
N−1

(
(rk − r̂k)(∗)T − (rk−N − r̂k)(∗)T+

1
N (rk − rk−N)(∗)T + N−1

N (Γk−N −Γk)
)

4: Measurement update:

Pyk yk =
2L∑

i=0
W (c)

i (Yi ,k|k−1 − ŷ−
k)(∗)T

Pxk yk =
2L∑

i=0
W (c)

i (X x
i ,k|k−1 − x̂−

k)(Yi ,k|k−1 − ŷ−
k)T

K = Pxk yk P−1
yk yk

x̂k = x̂−
k +K (yk − ŷ−

k)

Pk = P−
k −K Pyk yk K T

5: Process noise estimation (k ≥ M):

qk = x̂k − f̂k−1

Πk =
2L∑

i=0
W (m)

i

(
f (X x

i ,k−1,uk−1)
)(∗)T − (f̂k−1)(∗)T −Pk

q̂k = q̂k−1 + 1
M (qk −qk−M)

Qk =Qk−1 + 1
M−1

(
(qk − q̂k)(∗)T − (qk−N − q̂k)(∗)T+

1
M (qk −qk−N)(∗)T + M−1

M (Πk−M −Πk)
)

Note: xa = [xT w T vT]T, X a = [(X x)T (X w)T (X v)T]T.

Algorithm 2.4: The ALM-UKF procedures.

18

Note that we assume that xk and vk are independent in (2.11). By replacing E[(ξ−
r)(∗)T] in (2.11) with the expression in (2.9), an unbiased estimate of R is given following
(2.9) and (2.11):

R̂ = 1

N −1

N∑
k=1

(
(rk − r̂k)(∗)T − N −1

N

(
E[(h(xk ,uk))(∗)T]− (ĥk)(∗)T

))
. (2.13)

For the process noise statistics q and Q, we consider the nonlinear state propagation at
time k, which is given by xk = f (xk−1,uk−1)+wk−1. Since the true values of xk and xk−1

are unknown, wk−1 is approximated by

qk ≈ x̂k − f̂ (xk−1,uk−1), (2.14)

where qk represents a sample of the process noise w at time step k −1, and

f̂ (xk−1,uk−1) =
2L∑

i=0
W (m)

i f (X x
i ,k−1,uk−1), f̂k−1. (2.15)

We define a new random variable ζ ∼ (q,Cq), and assume that there are M samples qk

(k = 1, . . . , M), where the qk ’s are M empirical measurements for ζ. An unbiased estima-
tor for the mean value of ζ is given by the sample mean

q̂ = 1

M

M∑
k=1

qk . (2.16)

Similarly with (2.8), the term “unbiased” indicates that E[q̂] = E[ζ] = q . An unbiased
estimator for the covariance of ζ is given by

Ĉq = 1

M −1

M∑
k=1

(qk − q̂)(qk − q̂)T, (2.17)

such that E[Ĉq] = E[(ζ−q)(∗)T], where E[(ζ−q)(∗)T] is calculated by the following equa-
tion

E[(ζ−q)(∗)T] = E[(ζ−qk +qk −q)(∗)T]

= 1

M

M∑
k=1

E
[(

(xk − x̂k)− (f (xk−1,uk−1)− f̂k−1)+ (qk −q)
)(
∗

)T]
= 1

M

M∑
k=1

(
E[(xk − x̂k)(∗)T]+E[(qk −q)(∗)T]+2E[(xk − x̂k)(qk −q)T]

+E[(f (xk−1,uk−1)− f̂k−1)(∗)T]−2E[(xk − x̂k)(f (xk−1,uk−1)− f̂k−1)T]

−2E[(f (xk−1,uk−1)− f̂k−1)(qk −q)T]
)

= 1

M

M∑
k=1

(
E[(f (xk−1,uk−1))(∗)T]− (f̂k−1)(∗)T −Pk

)
+Q, (2.18)

19

where

E[(f (xk−1,uk−1))(∗)T] =
2L∑

i=0
W (m)

i (f (X x
i ,k−1,uk−1))(∗)T. (2.19)

Then Q can be estimated unbiasedly following the equations (2.17)-(2.18),

Q̂ = 1

M −1

M∑
k=1

(
(qk − q̂k)(∗)T − M −1

M

(
E[(f (xk−1,

uk−1))(∗)T]− (f̂k−1)(∗)T −Pk

))
. (2.20)

Equations (2.8), (2.13), (2.16) and (2.20) provide unbiased estimates for r , R, q and Q,
which are based on N observation noise samples and M process noise samples, respec-
tively. All samples rk and qk are assumed to be statistically independent and identically
distributed. We summarize the algorithm of the Adaptive Limited Memory UKF based
on equations (2.6)-(2.20), as shown in Algorithm 2.4.

2.4 Nonlinear State Constraints

The Kalman filtering constrained state estimation problem has been solved using a num-
ber of algorithms [97, 98, 99]. The available approaches for solving linear equality con-
straint problems include model reduction [100], perfect measurement [101], estimate
projection [97], system projection [102] and soft constraints [103]. The available meth-
ods for solving nonlinear equality constraints problems include Taylor expansion ap-
proximation [104], smoothly constrained Kalman filter [105], moving horizon estima-
tion [106], unscented Kalman filtering [107] and particle filters [108]. In this study, we
use the estimate projection algorithm and the first-order Taylor expansion approxima-
tion method to solve the state estimation problem with nonlinear inequality constraints.

Geometrically, the idea is to project the unconstrained estimate x̂(k) onto the con-
straint surface. Mathematically, we solve the following minimization problem

x̃k = argmin
x

(x−x̂k)TW (x − x̂k), (2.21a)

such that g (x) É b, (2.21b)

where x̂k and x̃k are the unconstrained estimate and the constrained estimate of the
state at the time step k, respectively, W is the weighting matrix, and g :Rn →Rm is a non-
linear vector-valued function. Performing a Taylor series expansion of (2.21b) around
x̂(k), yields

g (x)≈ g (x̂k)+ g ′(x̂k)(x − x̂k)+·· · , (2.22)

and after ignoring higher order terms, we obtain a linear approximation of the constraint

20

inequalities in (2.21b),

g ′(x̂k)x É b − g (x̂k)+ g ′(x̂k)x̂k . (2.23)

The minimization problem (2.21a) subject to the linear inequality constraints in (2.23)
can be solved using standard quadratic programming [12, 109].

2.5 Conclusion

This chapter introduces two typical nonlinear state estimators, namely, the EKF and
UKF. The design of the standard EKF/UKF is hindered by the lack of knowledge of the
unknown noise statistics. By tuning the noise statistics of the standard EKF/UKF, sat-
isfactory estimates of the system state and model parameters can be obtained, but the
tuning process is time consuming and hence can only be implemented off-line. We in-
troduced an adaptive limited memory UKF algorithm (ALM-UKF), which estimates the
system state and the Kalman filter hyperparameters related to the noise simultaneously,
hence making possible to provide on-line estimates of the model parameters. The fol-
lowing work will implement the nonlinear state estimators for driver and vehicle param-
eters estimation.

21

CHAPTER 3

DRIVER MODELING AND PARAMETER ESTIMATION

3.1 Introduction

In the development of advanced driver-assist systems (ADAS) for lane-keeping or cor-
nering, one important design objective is to appropriately share the steering control
with the driver. The steering behavior of the driver must therefore be well characterized
for the design of a high-performance ADAS controller. A controller for vehicle handling
stability should take into account the diverse driver skills, habits and handling behavior
of different drivers, and persistently provide good “intuitive” performance. In order to
characterize driver behavior, researchers have proposed different driver models based
on several methodologies over the past four decades [7, 8, 9, 10, 11, 12, 13, 14, 15].

The two-point visual driver model used in this chapter is derived from the concept
of the two-level steering mechanism observed in a series of psychological experiments
involving human drivers [110, 111, 112]. In [110] Donges divided the driver’s steering
task into a guidance level and a stabilization level, and thereby built a two-level steering
model. The guidance level interprets the driver’s perceptual response with respect to
the oncoming road in an anticipatory open-loop control mode. The stabilization level
interprets the driver’s compensatory behavior with respect to the deviation from the ref-
erence path in a closed-loop control mode. This idea has been widely accepted and has
been further developed by subsequent researchers [111, 112, 24, 23, 113]. Among these
researchers, Salvucci [24] first introduced the concepts of visual “near point” and “far
point” into the model. By taking appropriate choices of the “near point" and “far point,”
the two-point visual driver model achieves different tasks such as lane tracking [24] and
collision avoidance [114].

The work of this chapter can be summarized as follows: First, we adopt the two-
point visual driver model from [23], since this model characterizes driver steering be-
havior more precisely. This driver model combines both a two-level visual strategy and
high-frequency kinesthetic feedback. The latter accounts for the interaction between
the driver’s arms and the steering wheel [10]. Saleh et al in [115, 116, 22] also adopted
the two-level visual strategy, but instead of the high-frequency kinesthetic feedback in
[10, 23], a well-designed neuromuscular system was used. The identification of the pa-
rameters of the model in [115, 116, 22] was done using simulated data. We show the
validity of the proposed model by comparing with actual recorded driver data collected
during field experiments. Although previous work has validated the two-point visual
driver model and identified the driver model parameters using a driving simulator [23,
115], this is the first instance that the model is validated using actual field test data.
Second, by applying four different identification methods, namely, the joint EKF/UKF
and the dual EKF/UKF [30, 43, 44] it is shown that the model parameters are indeed
identifiable using minimal data, but that some of these parameters are not necessarily

22

constant but may vary with time. Our results thus reveal that parameter-varying ver-
sions of the two-point visual driver model may provide a much better explanation of
actual human driver behavior. It is expected that these observations will pave the way
for on-line driver behavior and cognitive driver state identification, which can be used
downstream in the ADAS architecture in order to adapt the controller gains to the spe-
cific driver/vehicle/traffic configuration. Finally, we show that when comparing differ-
ent driving types, the smoothness of the driver steering command may be a good dis-
criminating feature for driver classification. Using wavelet signal analysis, it is shown
that different driver styles correspond to different signal smoothness (i.e., degree of dif-
ferentiability), as measured by the rate of decay of the wavelet coefficients. As far as we
know, this is the first work that wavelet analysis has been applied to determine driver
categories.

The chapter is structured as follows. Section 3.2 introduces the mathematical mod-
eling of the driver. Section 3.3 describes the equipment and the driving scenarios used
for the field tests. Section 3.4 outlines the data processing task and presents the results.
Section 3.5 analyzes and compares different driver styles. Finally, Section 3.6 summa-
rizes the results of this study and provides some directions for future work.

3.2 System Modeling and Problem Formulation

The proposed human-vehicle-road system consists of four subsystems, as shown in Fig-
ure 3.1: (a) the driver model that exerts a steering torque on the steering wheel; (b) the
steering column model that converts steering torque to steering angle; (c) the vehicle
model that provides the necessary position and state information of the vehicle; and (d)
the road and perception model that provides the road geometry and kinematics, and
also determines the driver’s visual perception angles. The input to the system is the cur-
vature of the road ρref, which can be treated either as an external reference command to
be tracked or a disturbance to be rejected, depending on the problem formulation. The
primary performance variable is the lateral deviation∆y of the so-called “near point” di-
rectly in front of the vehicle to the centerline of the road (see Figure 3.1 and Figure 3.2).

Gc (s)

Ga (s)

(Delay)

Gnm (s)

Tcom

Tant

Gk2 (s) Gk1 (s)

Steering
Column

δ

Vehicle
δ

Tdr

Tcon

Road and Perception

θ
θ

β

r

Taln

ρ Δy

Driver Execution Model
S

far
near

ref

desired (=0) nearθ

G L (s)

Figure 3.1: Human-vehicle-road closed-loop system.

23

3.2.1 Driver Model

We use the driver model proposed in [23], which introduces a kinesthetic force feedback
from the steering wheel. The structure of this model is shown in the red rectangular
box in Figure 3.1. The transfer functions Ga(s) and Gc(s) account for the anticipatory
control and the compensatory control actions of the driver, respectively. The system
Gnm(s) approximately describes the neuromuscular response of the driver’s arms. The
“Del ay” block indicates the driver’s processing delay in the brain, and the transfer func-
tions Gk1(s) and Gk2(s) account for the driver’s kinesthetic perception of the steering sys-
tem. The variables Tant and Tcom denote the driver’s steering torques corresponding to
the anticipatory control and the compensatory control paths, respectively; δs denotes
the steering wheel angle; and the inputs θnear and θfar denote the near field and the
far field visual angles, respectively (see Figure 3.2). Finally, Tdr denotes the driver’s to-
tal steering torque delivered at the steering wheel. The transfer functions of the blocks
shown in Figure 3.1 are given below

Ga(s) = Ka, Gc(s) = Kc
TLs +1

TIs +1
,

Gnm(s) = 1

TNs +1
, Gk1 (s) = KD

Tk1 s

Tk1 s +1
,

GL(s) = e−tps , Gk2 (s) = KG
Tk2 s +1

Tk3 s +1
, (3.1)

where Ka and Kc are static gains for the anticipatory and compensatory control subsys-
tems, respectively; KD and KG are static gains for the kinesthetic perception feedback
subsystems, respectively; TL and TI (TL > TI) are the lead time and lag time constants,
respectively; Tk1 , Tk2 and Tk3 are the three time constants of the driver’s kinesthetic per-
ception feedback from the steering wheel, tp is the delay for the driver to process sensory
signals, and TN is the time constant of the driver’s arm neuromuscular system. Ka, Kc,
KD, KG, TL, TI, TN, Tk1 , Tk2 , Tk3 and tp are the eleven parameters of the two-point visual
driver model.

3.2.2 Road and Perception Model

The road and perception model interacts with both the vehicle model and the driver
model (refer to Figure 3.1) and achieves two functions: (a) it determines the vehicle’s
position and posture relative to the road geometry; and (b) it determines the location
of the driver’s near and far visual points on the upcoming road. The near visual point is
fixed at a certain distance along the heading direction of the vehicle, while the far visual
point is taken as the tangent point on the inner road boundary for driving on a curved
road, or the vanishing point of the road for driving along a straight road [24]. Figure 3.2
illustrates the relations between the geometry of driver’s visual perception, the vehicle
and the curved road[117, 118].

In Figure 3.2 the frame XI-O-YI is fixed on the road. It is assumed that the vehicle
is cornering with a certain lateral deviation from the road centerline. Let ψ denote the

24

vehicle’s yaw angle, let ψt denote the angle between the tangent to the road centerline
and the XI axis, and let M denote the current position of the vehicle’s center of mass.
Let also A denote the driver’s “lookahead” point in front of M at a distance `s along the
vehicle’s heading direction, let B denote the intersection of OA with the road centerline,
let E denote the intersection of AB with the tangent to the road centerline, and let C
denote the point of tangency of the line along the gaze direction on the road’s inner
boundary. Furthermore, let Ls denote the distance between C and M, let θfar denote
the visual angle between the gaze direction of the driver from a far away point and the
heading direction of the vehicle, and let θnear denote the near point visual angle between
MB and the heading direction of the vehicle. Finally, in Figure 3.2 ∆y denotes the length
of the line segment AB—the predicted deviation from the road centerline at the near
look-ahead point if the vehicles continues with the current heading, Rref denotes the
radius of the road’s inner boundary, d denotes the distance from M to the road’s inner
boundary, and D denotes the width of the road. Henceforth, it will be assumed that
d and D are small compared to Rref. From Figure 3.2, the near and far distance visual
perception angles can be approximated as [110, 23, 117, 119, 118, 59]

θnear ≈ ∆y

`s
, (3.2a)

θfar ≈
Ls

Rref
+∆ψ≈ Lsρref +∆ψ, (3.2b)

where ρref = 1/Rref is the road curvature, and ∆ψ=ψt −ψ is the angle between the tan-
gent of the road centerline and the vehicle’s heading direction.

O

AB

θ

θ

Δψ

XI

YI

ψ

ψ

Rref

Ls

ls

gaze direction

he
ad

in
g

di
re

ct
io

n

road centerline

d

D

Δy

C

M

far

near

 t

E

Figure 3.2: Road geometries, vehicle states and driver’s visual perception.

25

3.2.3 Problem Formulation

We formulate the driver parameter estimation problem based on the driver model, road
and perception model, steering column model and vehicle model summarized in the
previous section. For notational simplicity, let p1 = Ka, p2 = Kc, p3 = TL, p4 = TI, p5 = TN

and p6 = tp. The driver’s near field look-ahead distance `s is also an important feature
of the driver steering characteristics. We thus take `s as an additional parameter, and
let p7 = `s. We further let p8 = KD, p9 = KG, p10 = Tk1 , p11 = Tk2 and p12 = Tk3 for the
high frequency kinesthetic feedback in the driver model. Since the human driver has
physical limits, each model parameter is restricted to lie within some compact interval,
pi ∈ [pi , pi], i = 1,2, . . . ,12. Let p = (p1, p2, . . . , p12)T ∈ P = [p1, p1] × [p2, p2] × ·· · ×
[p12, p12] ⊂ R12. The upper and lower bounds (pi and pi) that define P are given in
Table 3.3.

The combined system of the driver model and the road and perception model can
be written in the form

ẋc = Ac(p)xc +B c(p)uc, (3.3a)

yc =C cxc, (3.3b)

where the system state is xc = (∆ψ,δy, xd1, xd2,T ff
dr, xd3, xd4,T fb

dr)T, the input is uc = (ρ,β,

r,δs)T and the output is yc = T ff
dr +T fb

dr = Tdr. In the previous expressions T ff
dr and T fb

dr
denote the two components of the driver’s steering torque, resulting from the feedfor-
ward path and the feedback path of the driver model, respectively. Specially, referring to
Figure 3.1, T ff

dr and T fb
dr can be expressed as follows

T ff
dr = (Tcom +Tant)GLGnm, (3.4a)

T fb
dr =−δsGk1 (1+Gk2)Gnm. (3.4b)

By measuring uc and yc we can identify the driver parameter vector p in (3.3a)-
(3.3b). To this end, we define an alternative parameter vector ν = (ν1,ν1, . . . ,ν12)T as
follows

ν1 = 1

p4
, ν2 = 1

p6
, ν3 = 1

p5
, ν4 = p1

p5
,

ν5 = p2p3

p4p6p7
, ν6 = p2

p4p7
, ν7 = p7, ν8 = p8,

ν9 = p9, ν10 = 1

p10
, ν11 = p11, ν12 = 1

p12
. (3.5)

The mathematical expressions in the sequel can be simplified by usingν instead of p.
The system matrices in (3.3a)-(3.3b) are given explicitly by (3.6). It is worth mentioning
that, Vx is assumed to be constant in (3.6). One can add Vx to the input vector uc for
varying velocity cases. Since we are interested in identifying the parameter vector ν, we

augment the state with ν and define the new augmented state x = [
(xc)T νT

]T
. The

26

[
Ac(ν)B c(ν)

C c 0

]
=

0 0 0 0 0 00 0 Vx 0 −1 0
Vx 0 0 0 0 00 0 Vxν7 −Vx−ν7 0
0 ν6 − ν1ν5

ν2
−ν1 0 0 00 0 0 0 0 0

4ν2ν4
ν3

4ν5 4ν2−2ν2 0 00 0 4 Lsν2ν4
ν3

0 0 0
−ν4 −ν5ν3

ν2
−ν3 ν3 −ν300 0 −Lsν4 0 0 0

0 0 0 0 0 00 −ν3ν10ν12 0 0 0 0
0 0 0 0 0 10−ν3ν10 −ν3ν12 −ν10ν12 0 0 0 −ν3ν8ν12(ν9 +1)
0 0 0 0 0 01 −ν3 −ν10 −ν12 0 0 0 −ν3ν8(ν9ν11ν12 +1)
0 0 0 0 1 00 1 0 0 0 0


.

(3.6)

augmented-state system is then given by

ẋ =
[

Ac(ν)
0

]
x +

[
B c(ν)

0

]
u, (3.7a)

y = [
C c 0

]
x, (3.7b)

where u = uc. Notice that although the system in (3.3a)-(3.3b) is linear, the system
in (3.7a)-(3.7b) is nonlinear, since the matrices Ac and B c depend on the augmented
state x. If we discretize the system in (3.7a)-(3.7b), we obtain the following discrete aug-
mented system with additive noise terms

xk+1 = AD(ν)xk +BD(ν)uk +wk , (3.8a)

yk =CDxk + vk , (3.8b)

where wk and vk are the process noise and the measure noise, respectively. As usual,
these noise terms are included to model neglected/unmodeled uncertainties.

In the following sections we estimate the state vector of the system in (3.3) or (3.7)
based on the available data, subject to the following constraints

pi É gi (ν) É pi , i = 1,2, . . . ,12, (3.9)

where gi (ν) is the i th element of the vector-valued function g (ν) given by

g (ν) = [1/ν1 1/ν2 1/ν3 ν4/ν3 ν5/(ν2ν6)

(ν6ν7)/ν1 ν7 ν8 ν9 1/ν10 ν11 1/ν12]T. (3.10)

Note that some of the parameters in the feedback model, in particular in the neuro-
muscular system Gnm(s), can be considered to be constants that do not change signifi-
cantly from driver to driver [120, 10]. These parameters will be discussed in Section 3.5.1.

27

3.3 Field Tests

Several field tests were conducted to validate the previous driver model. The field tests
took place at the Ford Dearborn Proving Ground (DPG) in Michigan during November
2015. The Ford DPG is about 1,750 meters from West end to East end and about 900 me-
ters from South end to North end. The width of the double-lane road is about 6 meters.
Three kinds of tests were conducted. A steering handling course (SHC) test, a fixed-
radius circling (FRC) test and the public road test (PRT). The SHC and FRC tests were
conducted at zone 1 and zone 2 of the proving ground, respectively (see Figure 3.3).

1

2

1750 m

900 m

S

W

Figure 3.3: The proving ground by the google map.

Three vehicles differing in size and engine power were prepared and were driven by
a professional driver mimicking three different types of drivers having distinct driving
skills (novice, experienced, and racing). This was done mainly for safety reasons, as
untrained novice drivers were not allowed to use the DPG. Consequently, a natural next
step along this research direction would be the collection of more data (primarily from
untrained novice drivers on the road) in order to further corroborate the conclusions of
this chapter.

Figure 3.4: Experiment vehicles and some apparatus. 1st row: Fiesta (left), MKS (medium),

F150 (right); 2nd row: power source (left), power converter (medium), CAN case (right).

28

In both the SHC test and the FRC test, the driver was required to maintain the vehicle
at a constant velocity throughout the road, while in the PRT test, the driver drove freely
on a section of a pre-chosen public road, considering the specific traffic conditions. The
proving ground, the experimental vehicles and the drivers were provided by the Ford
Motor Company. Figure 3.4 shows the experimental vehicles and the main equipment
used for the tests.

All data were collected through a controller area network (CAN) analyzer that inter-
connected the computer and the in-vehicle CAN buses. There are two CAN channels,
namely, the HS-CAN and INFO-CAN channel, both of which have a data transfer rate
of 500 [kB/s]. The HS-CAN connects to most of the regular on-board electronic con-
trol units (ECU), such as the anti-skip braking system (ABS), the electric power assisted
steering (EPAS) system and the restraints control module (RCM). These ECUs share the
data on the HS-CAN bus. The INFO-CAN connects to the in-vehicle communications
and entertainment system – called the SYNC system, which incorporates the global po-
sition system (GPS) and the navigation module.

INFO-CAN

EPASRCMABSBCMEMSPCT …

OBD II

PC

CAN
collector

GPS SYNC-GEN3…

yaw
roll
pitch

SWA
SWT

wheel speed
slip ratio

…
……

longitude
latitude
…

… …

HS-CAN

Figure 3.5: Illustration of the CAN network on MKS.

The data collected during the tests were the steering wheel angle, the steering col-
umn torque, the yaw rate, and the longitude and the latitude of the vehicle. The signals
of the steering wheel angle and the steering column torque were provided by the EPAS,
the yaw rate signal was provided by the RCM and position information was provided by
the on-board GPS system. Additional variables such as the vehicle yaw angle, the veloc-
ity/acceleration of the vehicle, the side slip angle and the road curvature were estimated
based on the yaw rate and the GPS position data. The CAN bus network of the MKS is
shown in Figure 3.5. The setup of the test conditions for the SHC, FRC and PRT tests are
summarized in Table 3.1.

Table 3.1: Steering handling course (constant velocity); CW=clockwise, CCW=counter clockwise.

SHC Novice Experienced Racing
30 [mph] 1 lane, unsmooth 1 lane, smooth 2 lanes, smooth
45 [mph] 1 lane, unsmooth 1 lane, smooth 2 lanes, smooth

FRC R=85 [m] R=200 [m]
30 [mph] CW and CCW CW and CCW
45 [mph] CW and CCW CW and CCW

PRT Novice Experienced
Westward unsmooth smooth
Eastward unsmooth smooth

29

3.4 Data Analysis and Results

In this section we summarize the data processing step from the driving tests and we ap-
ply the joint EKF/UKF and the dual EKF/UKF to estimate the parameters of the assumed
driver model. Based on the data analysis, a refined driver model is proposed to better
reproduce the actual steering wheel torque command of the driver.

3.4.1 GPS Data Processing

Since the road curvature and the side slip angle of the vehicle were not directly mea-
sured, we first obtain the missing values by processing the GPS data, which are given in
the form of latitude and longitude. We refer to the method proposed in [121], by which
the GPS coordinates are transformed to local navigation coordinates East, North and Up
(in this work, the height is zero since the vehicle is traveling on the ground). Three use-
ful coordinate systems used in this transformation are shown in Figure 3.6, namely, the
World Geodetic System 1984 (WGS84), the Earth Centered Earth Fixed (ECEF) system
and the East, North and Up (ENU) system. The WGS84 system expresses the position
vector in terms of the longitude, the latitude and the height (φ,λ,h) of the vehicle, while
the ECEF system is in terms of the vehicle Cartesian coordinates (x, y, z). The ENU sys-
tem is represented locally, which usually works as the navigation coordinate system.

We first converted the GPS coordinates to ECEF coordinates using the following equa-
tions:

x = a cosφcosλ

χ
, y = a cosφsinλ

χ
, z = a(1−e2)sinφ

χ
, (3.11)

where χ=
√

1−e2 sin2φ, a ≈ 6.39×106 [m] and e2 ≈ 6.69×10−3 are the semi-major axis
and the first numerical eccentricity of the earth, respectively. By performing a Taylor ex-
pansion of equation (3.11) about φ and λ and omitting terms higher than second order,
we obtain

d x =−a cosλsinφ(1−e2)

χ3
dφ− a sinλcosφ

χ
dλ+ 1

4
a cosφcosλ(−2

−7e2 +9e2 cos2φ)dφ2 − a sinλsinφ(1−e2)

χ3
dφdλ− a cosλcosφ

2χ
dλ2,

d y =−a sinλsinφ(1−e2)

χ3
dφ+ a cosλcosφ

χ
dλ+ 1

4
a cosφsinλ(−2

−7e2 +9e2 cos2φ)dφ2 − a cosλsinφ(1−e2)

χ3
dφdλ− a sinλcosφ

2χ
dλ2,

d z = a cosφ(1−e2)

χ3
dφ+ 1

4
a sinφ(−2−e2 +9e2 cos2φ)dφ2.

We finally rotate the ECEF coordinates to obtain the ENU coordinates using the fol-

30

lowing equations:

(
de
dn

)
=

(
−sinλ cosλ 0

−sinφcosλ −sinφsinλ cosφ

) d x
d y
d z

 . (3.13)

The trajectory of the vehicle can be obtained by integrating the ENU coordinates de
and dn in (3.13). The side slip angle β is estimated using the equation [122],

β= arctan
(Vy

Vx

)
−ψ, (3.14)

where Vx and Vy are the longitudinal velocity and the lateral velocity of the mass cen-
ter of the vehicle chassis, respectively, and ψ is the yaw angle. The road curvature ρ is
calculated by

ρ =
Y ′′

cog

(1+Y ′2
cog)3/2

, (3.15)

where Y ′
cog = ∂Ycog/∂Xcog, Y ′′

cog = ∂Y ′
cog/∂Xcog, and Xcog and Ycog are the coordinates of

the vehicle in the local ENU system.

x

y

z

φ
λ

h

'φPr
im

e
M

er
id

ia
n

Equator

P(x,y,z)
e

un
(λ,Φ,h) — WGS84
(x, y, z) — ECEF
(e, n, u) — ENU

N

S

Figure 3.6: Illustration on the different coordinate systems.

3.4.2 Driver Parameter Identification

This section shows the results from the previous driver parameter identification and val-
idation procedure, and provides a comparative analysis. Before processing the field test
data, we first implemented the identification approach on a set of data obtained from
CarSim/Matlab simulation. This was done in order to confirm the correctness and limi-
tations of the identification algorithm.

31

CarSim Data Processing

The vehicle model used in the simulation was configured with Carsim 8.0 [123] and was
initialized with a constant speed of 15[m/sec](54[km/h]). Other vehicle constants can
be found in Table 3.2. In addition, we assumed a high-adhesion asphalt pavement with
a constant friction factor of 0.89 for all simulations. The length and the width of the road
were configured as 1,000[m] and 6[m], respectively.

Table 3.2: Constant parameters of the system.

m Mass of vehicle 1653 kg
`f Distance from center of gravity to front axis 1.402 m
`r Distance from center of gravity to rear axis 1.646 m
Ls Distance from center of gravity to far field visual point 15 m
Iz Moment of inertia of the vehicle 2765 kgm2

Js Moment of inertia of the steering column 0.11 kgm2

A path composed of a sequence of straight segments, circular segments, and clothoids
was given as an input. The configured road curvature was obtained through a sensor
provided by Carsim. Since the road curvature data from Carsim are noisy, we applied
a first-order lowpass filter with a cut-off frequency at 2.5 rad/sec to eliminate the noise
before inputting this signal to the driver model.

After collecting the necessary simulation data, namely, the steering wheel angle δs,
the road curvature ρ, the side slip angle β and the yaw rate r in the input vector uc, and
the steering wheel torque Tdr in the output yc. We then implemented the joint EKF to
estimate the driver model parameters. The results are given in Figure 3.7. We only show
the results of the joint EKF here, since the results given by the other filters were quite
similar.

0 5 10 15 20 25 30 35 40
-10

-5

0

5

10

15

Time [sec]

S
te

er
ig

n
w

he
el

 to
rq

ue
 [

 N
m

] Measured T
dr

 from data

T
dr

 in the identification process

Simulated T
dr

 for Joint EKF validation

Figure 3.7: The data, the training curve and the simulated curve for the steering wheel
torque.

In Figure 3.7, the blue curve shows the steering wheel torque from the data, the green
curve shows the estimation of the steering wheel torque during the training process,
and the red curve shows the validation result, which is obtained by using the identified
driver model parameters from the training process in the simulation. The simulated

32

Table 3.3: Driver model parameters;
JEKF=Joint EKF, DEKF=Dual EKF, UB=upper bound, LB=lower bound.

Parameter JEKF s© JEKF JUKF DEKF DUKF UB LB
Ka 56.56 22.10 21.62 21.29 21.29 100 5
Kc 19.82 149.87 152.35 151.88 150.96 200 5

TL [sec] 0.90 0.33 0.34 0.33 0.33 5 0
TI [sec] 0.48 0.26 0.26 0.26 0.26 0.5 0
TN [sec] 0.30 0.18 0.19 0.19 0.20 0.3 0.01
tp [sec] 0.19 0.11 0.11 0.11 0.11 0.5 0.01
`s [m] 3.47 12.06 12.16 12.25 12.07 15 3
KD [m] 1.50 0.37 0.27 0.11 0.31 1.5 0.1
KG [m] -0.41 -0.74 -0.64 -0.79 -0.43 -0.4 -1.5
Tk1 [m] 1.05 1.50 1.54 1.97 1.57 6 1
Tk2 [m] 5.13 3.82 3.71 3.42 3.81 6 1
Tk3 [m] 0.01 0.01 0.01 0.01 0.01 0.03 0.01

result agrees well with the data. The identified driver model parameters are given in the
second column of Table 3.3.

Field Test Data Processing

We processed the field test data using the joint EKF, the joint UKF, the dual EKF and the
dual UKF separately, so that we can compare the identified driver parameters obtained
from these four different methods. For instance, we took the set of data from the SHC
tests corresponding to the conditions of a “Racing Driver” with a constant velocity of
45 [mph] in Table 3.1. In each implementation, we used the first 60% of the data for
parameter training and then used the remaining 40% of the data for validation.

By designing the appropriate Kalman filter parameters, such as the process noise co-
variance, the measurement noise covariance and the initial state covariance matrix, we
obtained reasonably good estimation of the parameters. The process noise covariance
is considered to be the most critical, and therefore had to be carefully tuned [124, 125].
Figure 3.8 illustrates the steering wheel torque from data, the training curve for each
filter and the simulated output corresponding to the identified model parameters.

The green plots in Figure 3.8 show how the prediction of the steering wheel torque at
the current time step, provided by the joint/dual E-/UKF based on past data, agrees with
the current data. After about 1 minute the prediction results get stabilized and agree well
with the data.

The trajectories of the estimated states (we only show the driver parameters, and
each parameter is scaled such that the initial value is one) corresponding to the joint
EKF are given in Figure 3.9. The red plots in Figure 3.8, which are drawn to validate the
identified driver parameters, agree well with the data. Although one sees some differ-
ence between the validation results and the data, the results are reasonable, since the
parameters of the real driver may change slowly with time. This effect is investigated
next.

33

-4

0

4

S
te

er
in

g
w

he
el

 to
rq

ue
 [

N
m

]

Measured Tdr from data Tdr in identification process Simulated Tdr for validation

-4

0

4

-4

0

4

0 20 40 60 80 100

-4

0

4

Time [sec]

Dual UKF

Joint UKF

Joint EKF

Dual EKF

Figure 3.8: The data, the training curve and the simulated curve from the Joint/Dual
E-/UKF.

0 10 20 30 40 50 60 70
0

0.5

1

1.5

2

2.5

3

3.5

Time [sec]

Dr
ive

r p
ar

am
et

er
s

[-
]

 ν
1

ν
2

ν
3

ν
4

ν
5

ν
6

ν
7

ν
8

ν
9

ν
10

ν
11

ν
12

Figure 3.9: The time histories of the driver parameters during the training process.
Steady state is reached after 45 seconds.

3.4.3 Driver Model Refinement

Based on the results from the previous section, we refined the model by assuming that
the process noise for the parameter vector ν is colored. To this end, we let

ν̇= ζ, ζ̇= ξ, (3.16)

where ξ is a zero-mean white process noise and ζ is a colored process noise with un-
known time-varying mean. By discretizing (3.16) with a sampling interval ∆t , one ob-

34

tains

νk = νk−1 +∆t ζk−1, ζk = ζk−1 +∆t ξk−1. (3.17)

If ξk−1 is uncorrelated with ζk−1, ζk is colored process noise in the sense that ζk is
correlated with itself at different time steps [126]

E(ζkζ
T
k−1) = E(ζk−1ζ

T
k−1 +∆t ξk−1ζ

T
k−1) = E(ζk−1ζ

T
k−1),Qζ, (3.18)

where Qζ 6= 0 is the covariance matrix. For the noise ζ at any two different time steps t
and s (t > s) one obtains that E(ζtζ

T
s) = E(ζt−1ζ

T
s) = ·· · = E(ζsζ

T
s) =Qζ, and hence one can

summarize the covariances for ζ and ξ as follows

E(ζtζ
T
s) =Qζ, E(ζtξ

T
s) = 0, E(ξtξ

T
s) =Qξδt s , (3.19)

where Qξ is the covariance matrix and δt s is given by (7.32a).

Equations (3.16) allow the parameter vector ν to drift with time. We implemented
all filters using this model and recorded the estimates of ν at each time step. We then
performed simulations with the time-varying parameters. Figure 3.10 shows the results
for the Joint UKF case. The results with the other filters are similar, and are thus, omitted.

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

Time [sec]

S
te

er
in

g
w

he
el

 to
rq

ue
 [

N
m

]

Measured Tdr from data Tdr in identification process Simulated Tdr for validation

Figure 3.10: The data, the training curve and the simulated curve from the Joint UKF.

Figure 3.10 indicates that, the parameterized driver model with time-varying param-
eters characterizes the driver’s steering behavior much more accurately. This implies
that the parameterized two-point visual driver model architecture shown in Figure 3.1
is valid, but the parameters are not necessarily constant, and may vary slowly with time.

The driver parameters convergence with time, along with their 2σ-bounds, are shown
in Figure 3.11. Figure 3.12 shows in greater detail the estimate (solid red line) and the
confidence levels (blue dotted line) for `s . The plots for the other parameters are sim-
ilar. From Figure 3.11 one observes that, although most of the parameters converge to
some constants, some of them exhibit drift, specifically, Ka, Kc and TL. This behavior
accounts for the difference between the simulation result (red line) and the test data
(blue line) shown in Figure 3.8. In terms of driver parameter identification, this result
suggests that Ka, Kc and TL are the most important parameters to track in an on-line

35

identification scheme.

Figure 3.11: The trajectory of the driver parameters with ±2σ error during the training
process.

Figure 3.12: Detail of estimate of `s along with the 2σ confidence bounds.

3.5 Driver Comparison and Analysis

The previous section estimates the identified driver parameters using four different non-
linear filters. Our main motivation for parameter estimation is to be able to distinguish
the different driver styles based on the identified driver parameters from experimental
data. Empirical evidence suggests that one potential strong distinguishing feature of
driver style is the smoothness of the applied steering command [127, 128]. In order to
test this theory we first analyzed the driver’s steering behavior according to the identified
driver parameters, and we then analyzed the driver’s steering behavior by comparing the
wavelet transform of the control signals from different drivers, since it is well-known that
wavelet transform contains information about the local smoothness of a signal [129].

36

Table 3.4: Driver model parameters.

Parameter Ka Kc TL TI TN tp `s KD Kg Tk1 Tk2 Tk3

30
mph

Racing 21.7 153.5 0.33 0.26 0.19 0.11 12.1 0.28 -0.66 1.57 3.72 0.013
Experienced 21.9 158.6 0.35 0.28 0.20 0.11 12.1 0.66 -0.40 5.95 3.73 0.013

Novice 17.1 113.5 0.25 0.20 0.15 0.10 8.7 0.37 -0.40 2.92 3.29 0.013

45
mph

Racing 21.9 155.8 0.33 0.26 0.19 0.11 12.1 0.30 -0.66 1.53 3.72 0.013
Experienced 21.8 156.8 0.35 0.28 0.19 0.11 12.2 0.35 -0.78 2.31 3.73 0.013

Novice 17.4 121.4 0.27 0.21 0.16 0.08 8.8 0.33 -0.81 5.65 3.21 0.013

3.5.1 Driver Parameter Analysis

Table 3.4 shows the parameters for the racing, experienced and novice driver in the SHC
tests (MKS vehicle). Since some of the parameters are varying with time (namely, Ka, Kc

and TL), we only show their time-average values in Table 3.4.

41

42

43

44

45

46

M
ag

ni
tu

de
 (d

B
)

10
-1

10
0

10
1

10
2

0

2

4

6

8

P
ha

se
 (d

eg
)

Driver comparison

Frequency (rad/s)

Novice
Experienced
Racing

Figure 3.13: The bode plots of Gc for the novice, the experienced and the racing drivers,
45 mph.

From the tests shown in Table 3.4, one observes that Kc is much larger than Ka. This
indicates that in the lane-keeping task the driver pays more attention to θnear than θfar,
as expected. This result may change, however, for a different driving task [23]. In this
section we wish to compare the experienced driver steering command with the novice
driver steering command for the same task. The question we wish to answer is whether
we are able to distinguish between these two (supposedly) distinct driver styles by an-
alyzing only the driver steering command. From Table 3.4 one sees that the parame-
ters Ka, Kc, TL and TI for the novice driver are smaller than that for the experienced
driver. The anticipatory gain Ka and the compensatory gain Kc represent the attention
the driver pays to θfar and θnear, respectively. An increase of Ka leads to dθfar/dt < 0
(oversteering), and the vehicle gets closer to the inner curb of the road. An increase of
Kc leads to more compensation (dθnear/dt < 0), and the vehicle gets closer to the road

37

centerline. The authors of [115] mention that Kc may depend on the driver’s cautious-
ness (e.g., the driver avoids driving too close to the border line) and small Kc leads to a
great tendency to cut around the bends. The parameters TL and TI define a lead com-
pensation in the compensatory control path of the driver. A larger TL corresponds to
higher compensation rate of θnear (the speed of θnear to reach the desired value), but
the system will be oscillating if TL is too large [115]. TI determines the bandwidth of the
frequencies of θnear to be compensated. Small values of TI mean that the driver compen-
sates all frequencies including the high frequency noise, hence leading to an oscillatory
system. If TI is large (TI < TL), the bandwidth of the compensatory loop is narrow such
that most frequencies of θnear are filtered.

The Bode plots of the lead compensator Gc are shown in Figure 3.13. One sees that
the magnitude of Gc for the novice driver is the smallest and the center frequency is the
highest. This indicates that the compensatory control of the novice driver is slow and
the driver is more likely to compensate the high frequencies of θnear.

The near field of view visual distance `s for the novice driver in Table 3.4 is smaller
than that for the experienced and the racing drivers. This does not necessarily imply,
however, that the larger the preview distance `s the better. For instance, the authors
in [130] observed that the driver’s compensatory behavior is reduced with increasing
preview distance (5 - 100 [m]) and pointed out that, with a preview distance above a
certain point, the drivers no longer minimize the lateral error but use the additional
preview to obtain a smooth path. The preview distance may also depend on the road
geometry [131].

We analyzed the high frequency feedback part Gfb = Gk1(1+Gk2) of the model (see
Figure 1.3), where Gk1 and Gk2 are given by (1). The Bode plots for the three drivers using
the identified parameters are shown in Figure 3.14.

-80

-60

-40

-20

0

20

40

60

M
ag

ni
tu

de
 (d

B
)

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

180

225

270

315

360

405

450

P
ha

se
 (d

eg
)

Driver comparison

Frequency (rad/s)

Novice
Experienced
Racing

Figure 3.14: The bode plots of Gfb for the novice, the experienced and the racing drivers
(45 mph).

Figure 3.14 shows that Gfb has phase lead and high pass properties, and the three

38

Bode plots look quite close to each other. Considering that the input signal to Gfb (steer-
ing wheel angle) typically does not have many high frequency components, and the low
frequencies are filtered, only a narrow band of frequencies can effectively pass through
Gfb as feedback to the driver. This result indicates that the effect of the high frequency
feedback may be small, and hence the visual information is more important to the driver
than the steering feel in his/her hands during a lane-keeping task. Figure 3.14 also indi-
cates that the parameters in Gfb do not distinguish between the drivers since the Bode
plots are close to each other. We may thus be able to fix the parameters in Gfb to rep-
resent the steering behaviors of different drivers, as in [10, 23] where KD and Tk1 are
considered to be constants (i.e., KD = 1, Tk1 = 2.5). It is worth mentioning that, besides
KD and Tk1 in [10, 23], the time delay tp and the parameter TN in the neuromuscular
system are also treated as constants (i.e., tp = 0.151, TN = 0.11).

Figure 3.15 shows the plots of Ka vs Kc. As shown from the analysis of the experi-
mental data in Section 3.4.3, the gains Ka and Kc drift with time. Furthermore, the pa-
rameters of the novice driver change faster and take values in a larger range than both
the experienced driver and the racing driver. This result may indicate that, at least for a
lane-keeping task, the steering behavior of the experienced driver and the racing driver
is smoother than the novice driver. To confirm this conjecture, in the next section we
perform a wavelet analysis of the control signals of the experienced/racing driver and
the novice driver and compare the two.

155 156 157 158 159
21.5

22

22.5

Kc

K
a

151 152 153 154 155 156
21

21.5

22

K
a

Kc
157 158 159 160 161

21.5

22

22.5

K
a

Kc

119 120 121 122 123 124
16.8

17
17.2
17.4
17.6

K
a

Kc

111 112 113 114 115 116
16.5

17

17.5

K
a

Kc

153 154 155 156 157 158
21.5

22

22.5

K
a

Kc

45
 m

ph
30

 m
ph

Racing Experienced Novice

Figure 3.15: The plots of Ka vs Kc for the three types of drivers.

3.5.2 Wavelet Analysis of Driver Steering Torque Command

In this section we compare the steering commands of the novice, experienced and rac-
ing drivers in terms of their frequency characteristics and local smoothness properties.
Recall that the continuous wavelet transform (CWT) for a given signal f at scale s Ê 0
and translation τ ∈R is written as [132, 133]

W f (s,τ) = 1p
s

∫ +∞

−∞
f (t)ψ∗(t −τ

s

)
dt , (3.20)

where ψ∗ is the complex conjugate of the mother wavelet ψ. Many wavelet bases are
available, such as Morlet, Paul, Haar, Daubechies, Coiflets and Symlets [134, 135].

39

-4

0

4

Tdr - Racing (above), Experienced (medium) and Novice (below) Driver

-4

0

4
S

te
er

in
g

W
he

el
 T

or
qu

e
[N

m
]

0 20 40 60 80 100 120
-4

0

4

Time [sec]

Figure 3.16: The steering wheel torque of the racing, experienced and novice driver
(MKS, 45 mph).

Figure 3.16 shows the steering wheel torques for the novice, experienced and racing
driver, respectively. In order to compare the frequency content of the signals, we per-
formed a CWT of the steering wheel torques shown in Figure 3.16 using the real-valued
Daubechies wavelet 3 function with respect to Equation (3.20). The graphs of the ab-
solute coefficients of the CWT of the steering wheel torques in Figure 3.16 are shown in
Figure 3.17. The color regions of the graph indicate the local modulus maxima.

Figure 3.17: Wavelet transform of Tdr of the racing (above), experienced (medium) and
novice (below) driver.

The results in Figure 3.17 show that, in the same steering handling course, the CWT
of the control signal of the novice driver has more local maxima than the experienced
and the racing driver. This may be used to evaluate the performance of the steering
behavior of the driver. The local maxima can be used to detect the position of the lo-
cal singularities, as well as to determine the associated Lipschitz exponents using the
following theorem [129].

40

Theorem 3.5.1 Suppose that the wavelet ψ(t) is the nth derivative of a smooth function,
is n times continuously differentiable, and has compact support. Let f (t) be a tempered
distribution whose wavelet transform is well defined over [a,b], and let τ0 ∈ [a,b]. Assume
that there exists s0 > 0 and a constant C , such that for all τ ∈ [a,b] and s < s0, the modulus
maxima of W f (s,τ) belong to the cone defined by

|τ−τ0| ÉC s. (3.21)

Then f (t) is uniformly Lipschitz n in a neighborhood of τ, for all τ ∈ [a,b],τ 6= τ0. Fur-
thermore, f (t) is Lipschitzα (α< n) at τ0, if and only if there exists a constant A such that
at each modulus maximum (s,τ) in the cone (3.21)

|W f (s,τ)| É Asα. (3.22)

By taking the logarithm of both sides of Equation (3.22), one obtains

log |W f (s,τ)| É log A+α log s. (3.23)

The Lipschitz exponent α is therefore determined by the maximum slope of the
straight lines of log |W f (s,τ)| on a logarithmic scale. Here we only perform CWT of the
steering wheel torque of the experienced driver and show the process to determine the
Lipschitz exponent. We adopt the Daubechies wavelet 3 that is orthogonal, compactly
supported and has three vanishing moments, by which we can determine Lipschitz ex-
ponentsα< 3. Figure 3.18 plots the absolute CWT coefficients in the time-scale domain.

Figure 3.18: The absolute CWT coefficients |W f (s,τ)|.

We find the lines of maxima from Figure 3.18 and determine the positions of the
singularities. The singularities are all the points on the time axis that the lines of maxima
converge to. There may be multiple lines of maxima converging to the points that are
close to each other, due to the number of the vanishing moments of the mother wavelet
or the Lipschitz exponent of the singularity [129].

Figure 3.19 illustrates the histogram showing the distribution of the Lipschitz expo-
nents corresponding to the experienced and racing driver. By comparing the results in
Figure 3.19, one observes that the control signal (Tdr) of the racing driver has a smaller
number of singularities. This result indicates that the steering wheel torque command
of the racing driver is smoother than the experienced driver. The distribution of the

41

Lipschitz exponent α of the racing driver shows a smaller minimal, maximal and mean
value than the experienced driver. This statistical result indicates that the singularities
of the steering wheel torque command of the racing driver are likely to be more irregular
and impulsive than the experienced driver. The racing driver perhaps tends to sacrifice
smoothness locally (smaller Lipschitz exponents) by making good use of the double-
lane road, such that (s)he could obtain overall better smoothness (fewer singularities)
than the experienced driver. The experienced driver, who was only allowed to drive
within a single lane of the road, behaved less aggressively since the mean and minimal
value of the Lipschitz exponents are larger than the racing driver.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

Lipschitz Exponent

Nu
m

be
r

Experienced
Racing

0

50

100

150

200

Cu
m

ul
at

ive
 S

um

Experienced
Racingmin=-0.0601 max=1.8857 mean=0.832 std=0.4755 range=1.9458 mode1=0.7766

min= 0.0842 max=1.949 mean=1.017 std=0.5549 range=1.865 mode1=0.7694

Figure 3.19: The histogram of the Lipschitz exponents α for the experienced and racing
driver.

Figure 3.20 illustrates the histogram showing the distribution of the Lipschitz expo-
nents corresponding to the novice driver and the experienced driver. By comparing the
results in Figure 3.20, one observes that the control signal (Tdr) of the novice driver has a
larger number of singularities, and the Lipschitz exponent α shows a larger range from
−0.1074 to 2.204, with a larger standard deviation of 0.6876. This result implies that the
steering wheel torque command of the novice driver is more noisy than the experienced
driver (see Figure 3.16). Furthermore, the distribution ofα exhibits multiple modes, and
the first mode on the left is smaller than that of the experienced driver. These features
observed from the distribution of the Lipschitz exponents may be used to distinguish
the control signals of different drivers and hence classify drivers into different groups.

-1 -0.5 0 0.5 1 1.5 2 2.5 3
0

2

4

6

8

10

12

Lipschitz Exponent

N
um

be
r

Novice
Experienced

0

50

100

150

200

 C
um

ul
at

iv
e

Su
m

Novice
Experiencedmin= 0.0842 max=1.949 mean=1.017 std=0.5549 range=1.865 mode1=0.7694

min=-0.1074 max=2.204 mean=1.048 std=0.6876 range=2.311 mode1=0.7417 mode2=1.4021

Figure 3.20: The histogram of the Lipschitz exponents α for the novice and experienced
driver.

42

3.6 Conclusion

This chapter adopts the parameterized two-point visual driver model to characterize
the steering behavior of a driver, and conducts a series of field tests to investigate the
validity of this model to predict human driver behavior and driving style. We have im-
plemented four nonlinear filters, namely, the joint EKF, the joint UKF, the dual EKF and
the dual UKF to estimate the parameters based on field test data conducted at Ford’s
Dearborn Development Center (DDC) test facility. The validation results agree well with
the data. The UKF is considered to be more accurate than the EKF in propagating the
Gaussian random variables, but the difference is not obvious in this work. The results of
our investigation indicate that some of the driver parameters are not exactly constant,
but rather vary slowly during a driving task more that few minutes long. This observa-
tion suggests that similar parameterized driver models need to incorporate this effect to
faithfully represent reality.

The main difficulty to use the two-point visual driver model may be the inconve-
nience of measuring the two visual angles θnear and θfar. This dissertation calculates the
road curvature ρref using the GPS data and adopts a linear estimator in (3.2) to obtain
the values of θnear and θfar. One needs to estimate ρref if it is unavailable [119].

The parameters of the driver model provide some interesting features to better un-
derstand the steering behavior of different types of drivers. An experienced driver is
likely to pay more attention to both the anticipatory control (θfar) and the compensatory
control (θnear) than a novice driver. The model parameters may also depend on the driv-
ing task [23]. The wavelet transform provides insights into the driver’s control signal, in
terms of the number and the location of the singularities of the signal and the distribu-
tion characteristics of the associated Lipschitz exponents. These can be used to char-
acterize the control signal into different levels of smoothness. Our analysis showed that
the steering wheel torque of an experienced driver has fewer singularities, and the Lips-
chitz exponents seem to follow a comparatively more concentrated distribution. Based
on this work, a potential next step would be to use machine learning ideas to distinguish
the behaviors of the drivers, and to classify the drivers into distinct categories based on
features arising from the wavelet transform.

43

CHAPTER 4

VEHICLE MODELING AND PARAMETER ESTIMATION

4.1 INTRODUCTION

Several vehicle models can be used to represent a vehicle’s behavior and help with con-
troller implementation and testing. Such vehicle models are important for the design of
advanced control algorithms related to vehicle’s active safety. In the past, many mod-
els have been proposed for studying the vehicle dynamics and for investigating stability
and handling characteristics of vehicles. Examples include the single track model [84,
136], the double track model [136, 137], and the full vehicle model [138, 139]. Commer-
cial software such as CarSim use high-fidelity vehicle models for simulation and anima-
tion [123].

The values of the parameters of each vehicle model are critical for accurately predict-
ing the behavior of the vehicle under various operating regimes. We apply the ALM-UKF
to estimate the vehicle model parameters for three different vehicle models using both
simulation data and experimental data, and we compare its performance against a UKF
tuned manually by a human expert.

This chapter is organized as follows: Section 4.2 introduces the three mathematical
vehicle models used in this work. Section 4.3 presents the experimental platform we
used to collect data. Section 4.4 shows and validates the parameter estimation results.
Finally, Section 4.5 summarizes the results of this study.

4.2 VEHICLE MODELING

In this section, we describe the three vehicle models used in this work, namely, the
single-track model, the double-track model and a full 11-dof vehicle model [138, 84, 136,
137, 140, 139]. The single-track model incorporates the effect of load transfer arising
from the longitudinal acceleration or deceleration of the vehicle, while the double-track
model takes into account the effect of load transfer arising from the lateral accelera-
tion of the vehicle. Besides the acceleration caused by the load transfer, the full vehicle
model takes also into consideration the suspension dynamics and hence also the addi-
tional load transfer arising from the rolling and pitching motions of the vehicle sprung
mass.

4.2.1 Single-Track Model

The single-track model takes into consideration the longitudinal and lateral displace-
ment, as well as the yaw motion of the vehicle, as shown in Figure 4.1.

44

XBβ

YB

αf

αr

δ

R
ref

lr
lf

CG
Ψ

vf

vr

v

r

fF
x

fF
y

fRy

fRx

XI
YI

O

Figure 4.1: Single-track vehicle model.

In this figure, XI −O −YI and XB −CG −YB denote the inertial frame fixed on the
ground and the body frame fixed on the vehicle, respectively. Vf, Vr and V denote the
velocities at the front and rear wheels and the vehicle’s center of gravity (CG), and αf,
αr and β denote the sideslip angles of the front and the rear wheel and CG, respectively.
The parameters `f and `r denote the distances of the CG to the front and rear axles,
fi j (i = F,R and j = x, y) denote the longitudinal and lateral friction forces at the front
and rear wheels, and ψ and r denote the yaw angle and the yaw rate of the vehicle,
respectively. Finally, δ is the steering angle of the front wheel. The equations of motion
of the model can be expressed in a body-fixed frame with the origin at CG as follows [84]:

V̇x = (fFx cosδ− fFy sinδ+ fRx)/m +Vyψ̇, (4.1a)

V̇y = (fFx sinδ+ fFy cosδ+ fRy)/m −Vxψ̇, (4.1b)

ṙ = (
(fFy cosδ+ fFx sinδ)`f − fRy`r

)
/Iz, (4.1c)

where Vx and Vy are the components of V along the XB and YB directions, respectively;
m is the total mass, and Iz is the moment of inertia of the vehicle about the vertical axis.
If we include the vehicle position and the orientation into the state vector x such that
x = [Vx,Vy,r, xI, yI,ψ]T, we then obtain the following kinematic equations:

ẋI =Vx cosψ−Vy sinψ, (4.2a)

ẏI =Vx sinψ+Vy cosψ, (4.2b)

ψ̇= r, (4.2c)

where xI and yI are the coordinates of CG in the inertial frame.

4.2.2 Double-Track Model

The double-track model takes into consideration the longitudinal, lateral and yaw mo-
tion of the vehicle, but considers the load difference between the left and right wheels
arising from the lateral load transfer. The velocity and the tire friction forces correspond-
ing to each wheel must be calculated separately. The double-track model is shown in

45

Figure 4.2.

XI

YI

αrf
δ

vrf

v

O

fR
Fx

fR
Fy

fRRy fRRx

αlf
δ

lr
lf

vlf

vlr

fLF
x

fLF
y

fLRy fLRx

XBYB

CG

r
β
Ψ

αlr

αrr vrr

Figure 4.2: Double-track vehicle model.

In this figure, fi , j ,k (i = L,R, j = L,R and k = x, y) denote the longitudinal or lateral
friction force for each wheel, respectively. The remaining notation is similar to Figure 4.1
and hence is omitted. The vehicle’s equations of motion in the body-fixed frame are
given by:

V̇x =
(
(fLFx + fRFx)cosδ− (fLFy + fRFy)sinδ+ fLRx + fRRx

)
/m +Vyψ̇, (4.3a)

V̇y =
(
(fLFx + fRFx)sinδ+ (fLFy + fRFy)cosδ+ fLRy + fRRy

)
/m −Vxψ̇, (4.3b)

ṙ =
((

(fLFy + fRFy)cosδ+ (fLFx + fRFx)sinδ
)
`f − (fLRy + fRRy)`r

)
/Iz, (4.3c)

4.2.3 Full Vehicle Model

The full vehicle model considers the dynamics of the sprung and unsprung mass of the
vehicle separately. The equations of motion for the total mass are the same as (4.3a)-
(4.3c) for the double-track model. To make the model more accurate, we take the air
resistance into account and modify (4.3a) as follows

V̇x =
(
(fLFx + fRFx)cosδ− (fLFy + fRFy)sinδ+ fLRx

+ fRRx
)
/m +Vyψ̇−CDρair AV 2

x /2, (4.4)

where CD is the air resistance coefficient, ρai r is the air density, and A is the frontal area
of the vehicle. The vertical translation is accounted for by a riding model as shown in
Figure 4.3. The rolling and pitching model are given in Figure 4.4.

In Figure 4.3, Ki and Ci (i = f ,r) denote the spring stiffness and the damping coeffi-
cient of the suspension system related to each wheel, mi ,tire (i = f ,r) denotes the mass
of the front and rear tire, respectively, ms is the sprung mass, and φ̇ and θ̇ are the rolling
and pitching rate about XB and YB axis, respectively.

46

XB

ZB
YB

Kr, Cr

Kr, Cr

Kf, Cf

Kf, Cf

mf,tire

mf,tire

mr,tire

mr,tire

ms

r

ϕ
θ

Figure 4.3: Riding model.

Figure 4.4(a) shows the rolling motion arising from the lateral acceleration and the
gravity center offset from the rolling center. The parameters hs and hc are the heights
of the sprung mass center and the rolling center (CR), respectively. Figure 4.4(b) shows
the pitching motion arising from the longitudinal acceleration and the gravity center
offset from the pitching center (CP) that is assumed to be on the ground. The dynamical
equations of the vertical, rolling and pitching motion of the sprung mass are given by

V̇ s
z =

(
−2(Kf +Kr)θ−2(Cf +Cr)V s

z +2(`fKf −`rKr)φ

+2(`fCf −`rCr)θ̇
)
/ms, (4.5a)

θ̈ =
(
2(`fKf −`rKr)zs +2(`fCf −`rCr)V s

z −2(`2
f Kf +`2

r Kr)θ

−2(`2
f Cf +`2

r Cr)θ̇+msg hs sinθ+msas
xhs cosθ

)
/I P

y , (4.5b)

φ̈=
(
−w2

f Kfφ/2−w2
f Cfφ̇/2−w2

r Krφ/2−w2
r Crφ̇/2

+msg (hs −hc)sinφ+msas
y(hs −hc)cosφ

)
/I R

x , (4.5c)

where wi (i = f ,r) denote the front and rear track , respectively; as
x and as

y are the longi-
tudinal and lateral acceleration of the sprung mass center in the body-fixed frame, and
I R

x and I P
y are the moments of inertia of the sprung mass about the rolling axis and the

pitching axis, respectively.

4.2.4 Tire Force Model

The tire slip is defined by the non-dimensional relative velocity of each tire with respect
to the road, which is given by

si j x = Vi j x −ωi j xR j

ωi j xR j
, si j y =

Vi j y

ωi j xR j
, (4.6)

where i = L,R and j = F,R. Vi j k (k = x, y) is the tire frame component of the vehicle

velocity of each tire. The total slip of each tire is defined by si j =
√

s2
i j x + s2

i j y . The total

47

θ

φ

-mSay

h

ch

s

mSg mSg

mSax

CP
(a) (b)

CR

Figure 4.4: Rolling and pitching model.

friction coefficient related to each tire is calculated using Pacejka’s “magic formula" (MF)
as follows [141, 84, 137]:

µi j = D sin
(
C atan

(
BSE −E

(
BSE −atanSE

)))+Sv (4.7)

where B ,C ,D,E are the stiffness, shape, peak and curvature factors, respectively; SE =
si j −Sh, where Sh is the horizontal shift. Sv is the vertical shift. The MF is sketched in
Figure 4.5.

Sv

Sh

D
atan(BCD)

ya

xm
y Y

X

x

Figure 4.5: The magic formula.

The tire friction force components are given by

fi j k =− si j k

si j
µi j fi j z , i = L,R; j = F,R; k = x, y. (4.8)

where fi j z is the normal load on the corresponding tire and can be calculated following
[84, 140]. We do not show the details on the calculation for the normal load fi j z due to
lack of space.

48

4.3 Parameter Estimation

In the following, we use data collected from a fifth-scale Auto-Rally vehicle (see Fig-
ure 4.6) and estimate the unknown parameters of all three of the vehicle models. Ta-
ble 4.1 (bottom) summarizes the unknown parameters to be estimated for the three dif-
ferent vehicle models.

Figure 4.6: The test track and the Auto-Rally vehicle model.

The fifth-scale Auto-Rally vehicle is driven by two rear wheels, and the top speed can
reach up to 27 [m/s]. The size of the whole model measures about 1×0.6×0.4 [m3]. The
other known parameters of the Auto-Rally vehicle model are given in Table 4.1 (top). The
perimeter of the centerline of the test track is about 63 [m], and the width is about 3.4
[m]. More detailed descriptions about the vehicle model and the test track can be found
in [142].

We use a joint-state UKF algorithm to estimate the unknown parameters of the sys-
tem. For the system given in (2.1a)-(2.1b), we introduce the following dynamics for the
parameter vector p,

pk+1 = pk +w p
k , (4.9)

where w p
k ∼ N (qp,Qp) is Gaussian process noise. We define the augmented state xa =

[xT, pT]T. It then follows from (2.1a)-(2.1b) and (4.9) that

xa
k+1 = F (xa

k ,uk)+w a
k , (4.10a)

yk = H(xa
k ,uk)+ vk , (4.10b)

where w a
k = [w T

k , (w p
k)T]T.

It is noticed that R̂ and Q̂ in (2.13) and (2.20) may become negative definite during
the process of the implementation (this is also mentioned in [95]). This dissertation
calculates the nearest positive definite matrices of R̂ or Q̂ when negative eigenvalues of
R̂ or Q̂ are observed, such that a symmetric positive definite matrix nearest to R̂ or Q̂ in
terms of the Frobenius norm can be obtained [143, 144].

It is worth mentioning that the artificial Gaussian process noise w p
k in (4.9) is used to

change the parameter p when the UKF is working. However, if the value of w p
k is large,

49

the parameter p will be changed by a large amount at each time step. This condition
may further cause the filter to diverge, since the parameterized vehicle models in Sec-
tion 4.2 are sensitive to p and may thus become unstable for unreasonable values of p.
We addressed this problem by rescaling the diagonal entries of Qp to be some small pos-
itive values at each time step. Other discussions on the numerical instability problems
of the UKF can be found in [95, 145, 144].

4.4 Results and Discussion

In this section we implement the proposed filter, show and validate the results from the
parameter estimations using Algorithms I and II, respectively.

4.4.1 Standard UKF

We first implemented the standard joint-state UKF using the three different vehicle mod-
els in Section 4.2, respectively. The hyperparameters of the filter are critical for the filter
design, especially the process noise covariance Q [124, 125]. In this section, we tune the
diagonal elements of these matrices recursively, until the parameterized vehicle model
shows satisfactory simulation results that have good agreement with data.

We selected 113 seconds of experimental data of the Auto-Rally vehicle [142]. The
first 100 seconds data were used to tune the hyperparameters and estimate the vehicle
parameters, and the remaining 13 seconds (a complete cycle around the testing track)
were used to validate the results. Figure 4.7 shows the estimates for several selected
states of the system for the single-track model. It can be seen that the estimates of the
states agree well with the data. The results for the other vehicle models were similar and
hence are omitted.

Next, we validated the estimated parameters in simulation. This was done in order to
ensure that the parameters we obtained were able to satisfactorily reproduce the data,
hence accurately predicting the vehicle’s motion in practical applications. Figure 4.8
shows the simulated trajectories for different vehicle models configured with the esti-
mated parameters. The results in Figure 4.8 indicate that the larger the number of de-
grees of freedom (DoF) of the model, the more accurate the results and the better the

Table 4.1: Known / Unknown Vehicle model parameters.

m[kg] 21.5 total mass ms[kg] 18.03 sprung mass
mf[kg] 0.84 front wheel mass mr[kg] 0.89 rear wheel mass
wf[m] 0.44 front track wr[m] 0.46 rear track
L[m] 0.57 wheel base R[m] 0.095 wheel radius

Tire forces model B ,C ,D,E ,Sh,Sv

Single/Double-track model Iz,`f,h, g∗
s

Full vehicle model Iz,`f,h, g∗
s ,CD, I R

x , I P
y ,Kf,Kr,Cf,Cr,hc

* gs is the gear ratio defined by the steering command divided by δ

50

3

6

9

Lo
ng

. s
pe

ed
 [

m
/s

] True Vx
Estimated Vx

-3

0

3

La
t.

sp
ee

d
[m

/s
] True Vy

Estimated Vy

-2

0

2

Y
aw

 r
at

e
[r

ad
/s

]

True r
Estimated r

0 10 20 30 40 50 60 70 80 90 100

Time [sec]

0

20

40

60

Y
aw

 a
ng

le
 [

ra
d

]

True A
Estimated A

Figure 4.7: State estimation for the single-track model using JUKF.

agreement with the experimental data. This should be expected, although it typically
takes more time to estimate the parameters and perform the prediction than the lower
dof vehicle models.

The process of manually tuning the hyperparameters of the UKF one-by-one until
we achieve good performance is time consuming, and can be done only off-line.

4.4.2 Adaptive Limited Memory UKF

Instead of tuning the noise, we implemented the ALM-UKF to find the suboptimal esti-
mation of the noise statistics on-line, during which the augmented-state and the noise
are estimated simultaneously. Both simulation data collected using CarSim and experi-
mental data collected with the Auto-Rally vehicle were used to validate Algorithm II. The
noise samples at each time step k are from the estimation based on the last 10 seconds
of data (defined by N and M in Algorithm II).

The estimation for only the states (i.e., the velocities, yaw angle and positions) is not
difficult. We only show the estimation results of the unknown vehicle parameters. We
implemented the adaptive limited memory joint-state UKF (ALM-JUKF) to estimate a
full vehicle model’s parameters using the Auto-Rally experimental data. Figure 4.9 shows
the time trajectories of several parameters (see Table 4.1) during the estimation process,
where all the parameters converge fast and get stabilized after about 20 seconds.

Since CarSim provides a complete full-scale vehicle model and data from the sim-

51

-15

-10

-5

0

5

Simulated trajectory
True trajectory

58

60

62

64

66

-20

-15

-10

-5

0

5
N

or
th

w
ar

d
[m

]

56

58

60

62

64

66

Y
aw

 A
ng

le
 [

ra
d

]

Simulated yaw angle
True yaw angle

-15 -10 -5 0 5 10 15

Eastward [m]

-20

-15

-10

-5

0

100 105 110 115

Time [sec]

56

58

60

62

64

Single-track

Double-track

Full vehicle

Figure 4.8: Simulation results of the estimated vehicle models using standard UKF.

ulation using CarSim show little irregular noise, the ALM-JUKF was also implemented
using simulation data for validation purposes. In Figure 4.10, we show the estimated
vehicle parameters corresponding to the CarSim vehicle model and the Auto-Rally ve-
hicle model from simulations. We simulated a full vehicle model using the estimated
parameters and compared the model output with data. It can be seen that the iden-
tified vehicle model can satisfactorily reproduce the data, especially when the system
uses simulated data, as expected. The experimental data collected using the Auto-Rally
vehicle show obvious non-Gaussian noise which may have some effect on the estima-
tion process. Compared with the results in Figure 4.8, the simulated trajectories of the

2

4 Iz

0.28

0.36 lf

0.24

0.32 h

0.4

0.8

D

0 20 40 60

Time [sec]

0.2

0.4

g
s

0 20 40 60

Time [sec]

0.2

0.4 C
D

Figure 4.9: Convergence of the vehicle parameters along with the estimation process.

Auto-Rally vehicle in Figure 4.10 show larger deviation from the data. The reason may

52

be that Algorithm I was intended to tune the estimation of the noise statistics to be op-
timal (in some degree), but Algorithm II was using a suboptimal estimator for the noise
statistics. Algorithm I may obtain a better estimation of the noise statistics, as long as
it keeps tuning the noise. The advantages of Algorithm II are, of course, that it is more
efficient and can work on-line. We also expect that Algorithm II is especially useful for
time-varying parameters estimation problems (i.e., identification of a linear parameter
varying (LPV) driver model), since the algorithms that work only off-line cannot capture
the real-time change of the parameters due to its low implementation speed.

90 100 110
Time [sec]

19

21

23

25

Ya
w

 A
ng

le
 [

ra
d

]

True yaw angle
Simulated yaw angle

75 80 85 90
Time [sec]

43

45

47

49

51

Ya
w

 A
ng

le
 [

ra
d

]

-100 -50 0 50 100
Eastward [m]

-50

0

50

N
or

th
w

ar
d

[m
]

True trajectory
Simulated trajectory

-10 0 10
Eastward [m]

-15

-10

-5

0

5

N
or

th
w

ar
d

[m
]

CarSim

Auto-Rally

Auto-Rally

CarSim

Figure 4.10: Simulation results of the estimated vehicle models using ALM-JUKF.

4.4.3 Experiments

Next, we compare the performance of the above vehicle models, namely, the single-
track model, the double-track model and the full vehicle model, with a neural-network
(NN) model in a vehicle behavior prediction task. To this end, we implement the model
predictive path integral (MPPI) controller [142] using different models. We show only
the results corresponding to the single-track model and the NN model. The double-
track model and the full vehicle model have been shown to be able to provide better
prediction result than the single track model (see Figure 4.8). The description of the test
track and the Auto-Rally vehicle platform are found in Section 7.8.2.

Figure 4.11 shows the color map of the vehicle’s speed profile along the trajectories.
The maximum speed corresponding to the NN model is about 7.7 [m/s], while the max-
imum speed corresponding the single-track model is about 7.8 [m/s], which are very

53

close. The maximum speeds achieved using both the two models are below 8 [m/s],
while the target speed was setup to 12 [m/s] for both cases in the experiments. The
Auto-Rally vehicle cannot reach the target speed in the experiments. The reason may be
that the friction condition of the track is not good enough during the experiments. The
performance of the two models are close.

-10 -5 0 5 10 15
X [m]

-5

0

5

10

15

Y
[m

]

5

5.5

6

6.5

7

7.5

-10 -5 0 5 10 15
X [m]

-5

0

5

10

15

Y
[m

]

5

5.5

6

6.5

7

7.5

Figure 4.11: MPPI implementation using a neural-network model (left) and a single-
track model (right).

We also plot the slip angle in a typical round for both the two cases, as shown in
Figure 4.12. Sometimes the physical model is able to predict the vehicle’s behavior more
accurately than an NN model, since the performance of an NN model mainly depends
on its learning set that was used to train the model parameters.

0 1 2 3 4 5 6 7 8 9

Time [sec]

-0.6

-0.4

-0.2

0

0.2

 [
ra

d
]

physical

Figure 4.12: Sideslip angle of Auto-Rally.

4.5 Conclusion

In this chapter we introduced three vehicle models, namely, a single-track model, a
double-track model and a full vehicle model, and we estimated the model parameters
using the joint-state UKF algorithms based on both simulation and experimental data.
By tuning the noise statistics of the standard joint-state UKF, satisfactory estimates of
the model parameters can be obtained, but the tuning process is time consuming and

54

hence can only be implemented off-line. In contrast, we implement an adaptive lim-
ited memory joint-state UKF algorithm (ALM-JUKF), which estimates the system state,
model parameters and the Kalman filter hyperparameters related to the noise simulta-
neously, hence making possible to provide on-line estimates of the model parameters.
The algorithm was validated with both CarSim simulation data and experimental data
from a fifth-scale Auto-Rally vehicle.

55

CHAPTER 5

HIGHWAY TRAFFIC MODELING AND OPTIMAL DECISION MAKING

5.1 Introduction

Autonomous vehicles promise to improve traffic safety while, at the same time, increase
fuel efficiency and reduce congestion. They represent the main trend in future intel-
ligent transportation systems. In order to determine the optimal driving strategy for
autonomous vehicles in traffic, different techniques have been developed for optimal
decision making and path planning [66, 48, 73, 36, 67, 46]. Application of reinforce-
ment learning requires knowledge of the reward function, which needs to be carefully
designed. An alternative is to learn the optimal driving strategy using demonstrations of
the desired driving behaviors.

Abbeel and Ng [77] used a driving simulator to collect two minutes of driving data
from an expert driver, and assumed that the reward function of this expert driver is a
linear combination of a number of known features. In order to recover the reward func-
tion and the expert driving policy, they proposed a max-margin algorithm along with
a projection algorithm to solve the inverse reinforcement learning problem. Although
one can approximately recover expert driving behaviors using this approach, the match-
ing between the optimal policy/reward and the features is ambiguous, as indicated by
Ziebart and his colleagues [78]. In order to address this ambiguity, Ziebart introduced
the maximum entropy principle (MEP) to uniquely match the rewards with the features.
He proposed the maximum entropy inverse reinforcement learning (MaxEnt IRL) algo-
rithm [78, 79], which was shown to be computationally efficient in [78]. It was imple-
mented on a routing problem (mission planning). The researchers in [80, 81, 82, 83] de-
veloped different versions of the MaxEnt IRL algorithm based on [78, 79]. Among these,
the authors of [82] formulated the maximum entropy inverse reinforcement learning
problem using a deep neural network (DNN) to represent the unknown reward function.
All the above formulations of the MaxEnt IRL problem require complete knowledge of
the environment dynamics, and they all employ a state reward instead of a state-action
reward so that they cannot learn a complicated driving behavior showing preference on
certain actions. This chapter focuses on the problem of planning for autonomous vehi-
cles in traffic. Specifically, we wish to reproduce the decision making of an expert driver,
that is, we wish to duplicate the optimal driving strategy involving several typical driver
actions such as lane-shifting, lane and speed maintaining, accelerating and braking, by
also considering the stochastic driving behaviors of the environmental vehicles in traf-
fic.

The contribution of this chapter is summarized as follows: 1) We propose a new MDP
model to represent the stochastic behaviors of the environmental vehicles in highway
traffic. This model differs from previous similar MDP models [146, 147, 148, 149] in the
sense that we take the road geometry into consideration in order to compare and ana-

56

lyze different driving strategies during cornering. Another advantage is that the model is
easily scalable to have more vehicles and more lanes in traffic. Unlike the MDP models
[148, 149] that need to discretize the velocity of each vehicle in traffic, which, conse-
quentially, tend to make the problem have a large state space, we remove the velocities
of the vehicles from the MDP model and consider them either in the perception layer
or in the control layer. The optimal control policy for the proposed MDP is solved using
both reinforcement learning (RL) and inverse reinforcement learning (IRL). 2) We gen-
eralize the formulation of the MaxEnt IRL by using a reward function in the form of a
linear combination of the parameterized features, and we show, for the first time, that
the reward function in the MaxEnt IRL formulation can take any nonlinear form. Previ-
ous results of MaxEnt IRL either assumed that the reward function can be represented
using a linear combination of fixed features[78, 79, 80, 81, 83], or directly used a deep
neural network (DNN) to represent the reward function in the MaxEnt IRL formulation
without clarifying the relation between the DNN and the parameterized feature func-
tions [82]. 3) We propose three new MaxEnt deep IRL algorithms to solve the model-free
MDP problem. Although several researchers have proposed different versions of MaxEnt
IRL algorithms [78, 79, 80, 81, 82, 83], these algorithms cannot be used to solve a model-
free problem. Specifically, we use a deep neural network to approximate the state-action
reward, instead of the state reward, as in most of existing MaxEnt IRL formulations.

The rest of the chapter is organized as follows: Section 5.2 introduces the traffic
model using a stochastic MDP. Section 5.3 designs the reward function and solves the
MDP problem using Q-learning. Section 5.4 introduces the maximum entropy princi-
ple and formulates the inverse optimal control problem. Section 5.5 summarizes and
refines the MaxEnt deep IRL algorithms, and Section 5.6 implements both RL and IRL
algorithms, and analyzes the results. Finally, Section 5.7 summarizes the results of this
study.

Agent

Environment

action

state
reward

Figure 5.1: The agent-environment interaction.

5.2 Traffic Modeling

In this section we first introduce a Markov decision process (MDP) to model the inter-
action between the autonomous vehicle and the surrounding vehicles in raffic. In the
following sections we use both RL and IRL techniques to solve the MDP problem for the
optimal policy that achieves the desired driving behaviors. We start with a brief sum-
mary of MDPs.

57

5.2.1 Markov Decision Process

Markov decision processes (MDPs) are used in a wide area of applications such as robotics,
economics, manufacturing and automatic control. An MDP is a mathematical frame-
work that probabilistically models the interaction between an agent and the environ-
ment, pioneered by the work of Bellman [150]. The agent is assumed to be a learner
or decision maker, who interacts with the environment[76]. It receives a reward and a
representation of the environment’s state at each time step, and exerts an action on the
environment that may change its future state. This interaction between the agent and
the environment is shown in Figure 5.1.

A typical MDP is represented using a 6-tuple (S, A,T ,γ,D,R), where S is a (finite) set
of possible states that represent a dynamic environment, A is a (finite) set of available
actions that the agent can select at a certain state 1, T is the state transition probability
matrix that provides the probability of the system transition between every pair of the
states, γ ∈ [0,1) is the discount rate that guarantees the convergence of total returns, D
is the initial-state distribution, and R is the reward function that specifies the reward
gained at a specific state by taking a certain action.

MDPs assume that the effect of taking an action at a given state only depends on the
present state-action pair, and not on the previous states and actions, that is,

P(st+1|st , at , st−1, at−1, . . . , s0, a0) =P(st+1|st , at). (5.1)

Equation (5.1) is called Markov property[151].

The core problem of an MDP is to find a policy π for the agent, where the policy
π : S → A specifies the action to take at the current state st . The goal is to find the optimal
policy π∗ that maximizes the cumulative discounted reward over an infinite horizon:

π∗ = argmax
π

E
[∞∑

t=0
γt R(st ,π(st))

]
, (5.2)

where the term R(st ,π(st)) represents the reward the agent receives by taking an action
determined by policy π at the present state st . Given a policy π, the MDP in (5.1) is
reduced to a Markov chain with transition probabilities Pπ, given by

Pπ(st+1|st) =P(st+1|st ,π(st)). (5.3)

5.2.2 System Modeling

The MDP to be used to model the traffic is based on the following observations. Consider
a typical scenario of traffic on a multi-lane road as shown in Figure 5.2. Each vehicle
moves in the middle of each lane with the average speed of the traffic flow.

Let us now consider the driving behavior of the blue vehicle in the middle of the
red rectangular shown in Figure 5.2. There are several actions the blue vehicle can take.

1WLOG we will assume that all actions are available in each state.

58

For instance, it can maintain its current speed, accelerate or brake to occupy the vacant
positions ahead of it or behind it, or move to the left or to the right lane if there is no
chance for a collision. Assuming that each driver intends to maximize a certain reward
function, if one can obtain the reward function of an “expert” driver by either construct-
ing it manually or from observing real driving data, one should be able to reproduce this
expert driver’s behaviors using reinforcement learning techniques [76].

Figure 5.2: The traffic on multi-lane road.

In the following, we designate the vehicle we want to control as the host vehicle (HV),
and all remaining vehicles in traffic as the environmental vehicles (EVs). We assume that
the drivers of different vehicles do not communicate with one another, and also that the
vehicles do not share data with each other. Hence, the MDP system has only a single
actively controlled agent. The available action set for each vehicle in traffic is given by
A , {“maintain”, “accelerate”, “brake”,“left-turn”, “right-turn”}.

State Definition

By considering the positions of the HV, and the number and positions of the EVs around
the HV, we define the state of the MDP as shown in Figure 5.3.

1 2 3

1

2

3

Figure 5.3: The cells and the definition of the state: 1© 9-cell internal-lane state, 2© 6-cell
left-boundary state and 3© 6-cell right-boundary state

59

In Figure 5.3, we use the white dashed lines to divide the road into small cells and use
the green vehicle to denote the HV. The states of the MDP represent either of the three
conditions shown in Figure 5.3: 1) the HV is in the middle lane of the road, where we use
nine cells to represent the state, and 2) and 3) where the HV is next to the road bound-
aries and we use six cells to represent the current state. Taking all possible combinations
into account, the number of the internal-lane states is 28 = 256, and the number of the
left(right)-boundary states is 25 = 32. Hence the total number of the states of the MDP is
256+2×32 = 320. Note that the approach can be easily extended to highways with any
number of lanes and vehicles 2.

Figure 5.4: Overtaking during cornering.

Figure 5.4 shows a possible overtaking behavior of the HV (green car) during a left-
turn corner. The HV driver may prefer overtaking the pink car in front from the left
rather than from the right. In order to investigate the effect of the road geometry on
the observed driving behaviors of different drivers, in this work we take the road curva-
ture into account and consider three kinds of roads, namely, left-turn, right-turn, and
straight roads. The total number of the states is therefore 320 × 3 = 960. It is worth
mentioning that, although we only consider three kinds of road geometries, one can,
similarly, divide the road characteristics into more classes, as needed. For instance, one
could also take into account different slopes of the roads, such as downhill, uphill, flat
roads etc.

State Transitions

We want to model the state transition process by mimicking the traffic in real world
scenarios. To this end, we make the following assumptions: 1) the number of lanes
n is free and greater than equal to two (n ≥ 2), 2) the number of EVs N is free but no
larger than eight, given the cell geometry of Figure 5.3 (0 ≤ N ≤ 8), 3) the EVs have their

2The traffic model is also possible to be used for modeling urban traffic by adjusting the state definition.
For instance, the cell size may be defined to change with the size of each EV and its velocity relative to the
HV.

60

own policies that may be different from the HV, 4) the EVs take a random action, 5) no
collision arises from the actions of the EVs, and 6) each vehicle takes a single action at
each time step.

The state transition procedure from the current state st to the next state st+1 is given
in two steps: First, the HV observes the current state st and selects an action π(st) fol-
lowing its current policy. Second, the EVs respond to the action of the HV, and take an
action following their own policies in a random sequence. The new positions of the HV
and the EVs around the HV define the next state st+1. This state transition process is
demonstrated in Figure 5.5.

1 2

Figure 5.5: State transition process.

The current state st is defined using the nine cells in the red rectangular on the left
graph in Figure 5.5. Based on st , the HV may brake or switch to the right lane but these
actions will result in an collision. The available safe actions of the HV are maintaining,
accelerating and switching to the left lane. For instance, suppose that the HV acceler-
ates and occupies the cell in front of it. As a consequence, the red rectangular also moves
since the EVs surrounding the HV change. Next, all EVs respond to the action of the HV
and take an action following a certain policy in a random order (see Algorithm 7). The
next state st+1 is obtained after all vehicles complete their actions (see the red rectangu-
lar on the right graph in Figure 5.5).

5.2.3 Dynamic Cell

The traffic model in Section 5.2.2 does not consider different vehicle sizes (i.e., truck,
sedan etc.), and the vehicle velocities in real traffic are changing. Instead of discretizing
the velocity of each vehicle in traffic [148, 149], which, consequentially, tends to make
the problem have a large state space, we introduce a new layer, namely, the “dynamic
cell” layer, into the control architecture.

We assume that each vehicle intends to keep a safe distance from the front vehicle

61

depending on its current longitudinal velocity. The length of the dynamic cell for the
host vehicle is therefore defined by

LHV =∆T ×VHV +`HV (5.4)

where ∆T is the time constant that defines the minimum distance one wants to keep
from the front vehicle, and `HV is the chassis length of the host vehicle. When the host
vehicle is static, LHV equals to the length of the vehicle itself. The 9-cell state of the
traffic MDP model is therefore defined with a specified size as shown in the first picture
in Fig. 5.6.

Figure 5.6: Dynamic cells.

Similar to (5.4), the definition of the cell length for the TVs requires a modification
term depending on the relative velocity of the TV to the HV (longitudinal velocity differ-
ence),

LTV =∆T ×VTV +`TV +|∆V |∆t , (5.5)

where VTV and `TV are the longitudinal velocity and the chassis length of the TV, respec-
tively and ∆t is the time constant that determines how much the TV approaches the HV
in the next step. We can look at the second picture in Fig. 5.6 for instance. If the green
TV is slower than the HV, the cell this TV occupies will move backward with a distance
|∆V |∆t due to the relative velocity ∆V , and hence it overlaps on the cell on the left of
the HV. As a consequence, the left cell of the HV is not available for the lane-switching
action. Some special cases, such as when there is a truck or some static obstacle in traf-
fic, can also be handled by dynamically changing the cells. One can see Fig. 5.6 for the
graphical explanation.

The cell width for either the HV or the TVs is naturally defined using the lane width.

62

The signal light indicates the driver’s intent and the HV is able to predict the motion of
a TV by its signal light (i.e., the left/right turn signals and the braking light) and avoid
taking dangerous actions. One can change the cell width of a TV according to its signal
lights to indicate the area this TV occupies.

5.3 Reinforcement Learning

In order to obtain the desired driving policy for the HV, in this section we design the
reward function and use reinforcement learning techniques to solve the MDP problem
formulated in Section 5.2.

5.3.1 Reinforcement Learning Algorithms

The main methods used in reinforcement learning can be classified into two categories,
namely, tabular solution methods and function approximation methods. The tabular
solution methods are suitable for solving MDP problems with a finite (small) number of
states and actions. Such methods mainly include dynamic programming, Monte Carlo
and temporal-difference learning [76].

Classical dynamic programming algorithms use the value function to organize the
search for the optimal policies. Such algorithms include value iteration and policy it-
eration methods. These algorithms require perfect knowledge of the environment, and
cannot be easily applied to problems having continuous state and action spaces. Unlike
dynamic programming, Monte Carlo does not require complete knowledge of the envi-
ronment, but only the agent’s experience, namely, the sample sequences of the states,
actions and rewards from actual or simulated interactions of the agent with the envi-
ronment. Monte Carlo methods are based on averaging sample returns in an episode-
by-episode manner, which means that the learning of the values and the corresponding
policies is performed only upon completion of each episode. Hence, Monte Carlo meth-
ods cannot update the values and policies in an on-line fashion.

Temporal-difference learning is a combination of the ideas from dynamic program-
ming and Monte Carlo methods. The most obvious advantage of temporal-difference
learning over Monte Carlo is that it can be naturally implemented in an on-line fash-
ion. Unlike Monte Carlo methods, one does not need to wait till the completion of ev-
ery episode to receive the return. The most obvious advantage of temporal-difference
learning over dynamic programming is that it does not require full knowledge of the en-
vironment and hence it can be implemented without a model. The two main temporal-
difference learning algorithms are Sarsa and Q-learning[152, 76].

The main difference between Sarsa and Q-learning is the future (state-action) values
they refer to in order to update the current (state-action) values. Sarsa stands for “state-
action-reward-state-action” and uses the value of the real action the agent takes in the
next step following the current control policy in order to update the value of the action
at the present state. Q-learning explores the maximum possible action value the agent
can have in the next step, and uses this value to update the value of the action at the

63

present state. Hence, Sarsa is an on-policy algorithm, while Q-learning is an off-policy
algorithm. For many problems, both Sarsa and Q-learning are able to learn a good policy
with good performance. Q-learning can potentially provide a better policy where death
can be easily caused in each episode using the ε-greedy policy in an on-policy method
[152]. The term “death” indicates the termination of an episode caused by the agent ar-
riving at certain states (i.e., the goal state). However, Q-learning is also known to diverge
in certain cases where function approximation is used [152, 153]. More details on the
tabular solution methods can be found in Chapters 4-6 of [76].

Function approximation methods are used to address large or continuous state space
problems, where one may use a series of (nonlinear) functions to represent the values,
policies and rewards. Theoretically, all methods used in the area of supervised learning
are possible to use in reinforcement learning as function approximators, such as artifi-
cial neural network [154], naive Bayes [155], Gaussian processes [156], or support vector
machines [157].

Since the MDP model in Section 5.2 has a finite number of states and actions and
assumes that the agent cannot predict the behavior of the EVs, we prefer to use a tabular,
model-free method to solve the corresponding optimal control problem in (5.2). In the
following section, we first define the reward function, and then use Q-learning to learn
the optimal policy that maximizes the cumulative discounted future rewards.

5.3.2 Reward Function

The design of the reward function is a difficult task, since the driver behavior is hard
to characterize and the real reward function is unknown. The reward function also dif-
fers from driver to driver and it may be even change with time. A widely used approach
to design the reward function is to represent it as a function of some manually chosen
features. These features depend on the action of the agent and the state of the environ-
ment. We use a linear combination of the features to represent the reward function [77,
78, 79, 158, 80]:

R(s, a) = w TΦ(s, a), (5.6)

where w is the weight vector, and Φ(s, a) is the feature vector with each component
representing a single feature point in the state-action space. Possible choices of feature
points may be the binary values indicating whether a certain argument is true or not. In
this work we define the features inΦ(s, a) as follows:

1) Action features. The driver may prefer taking certain actions than others if he
receives a higher reward from these actions.

2) Position of the HV. It indicates if the HV is driving next to the road boundaries. The
driver may prefer to drive in different lanes, depending on the road geometry.

3) Overtaking strategy. This feature is used to achieve different overtaking behaviors
of drivers during cornering. The driver may have a different preference in regards to
overtaking the car in front either from the left or from the right.

64

4) Tailgating. The value of this feature is “true” if the HV is behind an EV and “false”
otherwise.

5) Collision incident. Collision occurs if the HV and a EV appear in the same cell.

One can design the weight vector w to encourage or penalize certain features using
the given reward function, and then use reinforcement learning to learn the correspond-
ing optimal policy by maximizing the total reward. Another idea is to design the reward
function using a parameterized function approximator such as a Gaussian process [158,
80] or a DNN [82]. The parameters of the function approximator are hard to design man-
ually since they may not be directly related to features that have clear physical meaning,
and hence they can only be learned from data. This approach will be discussed in Sec-
tion 5.5.

5.3.3 Q-Learning

Q-learning was first introduced in Watkins’s PhD thesis in 1989 [159]. In 1992 Watkins
and Dayan proved that Q-learning converges to the optimum action values with prob-
ability 1 if all actions are repeatedly sampled in all states [160]. Different variants of
Q-learning were developed to solve various reinforcement learning problems, such as
double Q-learning that reduces overestimation [161], deep Q-learning that uses a deep
neural-network to represent the value function for large state space problems[162], fuzzy
Q-learning that uses fuzzy logic rules to interpret and refine the imprecise environment
knowledge[163], and minimax-Q [164], Nash-Q [165], correlated-Q [166] and friend-or-
foe-Q [167] that solve multi-agent reinforcement learning problems.

Next, we briefly introduce the basic Q-learning algorithm. To this end, we need to
introduce two important concepts used extensively in the reinforcement learning liter-
ature, namely, the state value and the state-action value (also referred to as the action
value). The value of a state st under policy π is denoted as V π(st), which indicates the
expected discounted cumulative reward starting at state st and then following policy π,
that is,

V π(st) = E
[∞∑

k=0
γk Rt+k

∣∣∣st ,π
]

, (5.7)

where γ is the discount rate, and

Rt ,R(st , at) = ∑
st+1∈S

P(st+1|st , at)R(st , at , st+1), (5.8)

stands for the immediate reward the agent receives by taking action at at present state
st , and where the term R ′(st , at , st+1) represents the reward the agent receives by tak-
ing action at at present state st to obtain the next state st+1 (see Section 5.5.1 for more
discussion).

The values of two sequential states of the MDP are related and satisfy the following

65

equation,

V π(st) = E
[

Rt +γV π(st+1)
∣∣∣st ,π

]
= ∑

at∈A
π(st , at)

∑
st+1∈S

P(st+1|st , at)
(
R ′(st , at , st+1)+γV π(st+1)

)
. (5.9)

Equation (5.9) is called the Bellman evaluation equation. The optimal policyπ∗ max-
imizes the associated value function at each state, which, mathematically, can be deter-
mined by solving the following problem,

π∗ = argmax
π

V π(s), ∀s ∈ S. (5.10)

The associated value function V ∗ corresponding to the optimal policy π∗ satisfies
the Bellman optimality equation [76],

V ∗(st) = max
at∈A

E
[

Rt+1 +γV ∗(st+1)
∣∣∣st ,π

]
= max

at∈A

∑
st+1∈S

P(st+1|st , at)
(
R(st , at , st+1)+γV ∗(st+1)

)
. (5.11)

The state-action value is denoted as Qπ(st , at). In contrast to the state value V π, the
state-action value Qπ emphasizes the value of the choice of the first action starting at the
current state. Qπ(st , at) indicates the expected discounted cumulative reward starting at
state st , taking action at and then following policy π, afterwards

Qπ(st , at) = E
[∞∑

k=0
γk Rt+k

∣∣∣st , at ,π
]

. (5.12)

Similarly with (5.9), the evaluation equation for the state-action value Qπ is derived
as follows,

Qπ(st , at) = E
[

Rt +γQπ(st+1, at+1)
∣∣∣st , at ,π

]
= ∑

st+1∈S
P(st+1|st , at)

(
R ′(st , at , st+1)+γ ∑

at+1∈A
π(st+1, at+1)Qπ(st+1, at+1)

)
.

(5.13)

The state value V π in (5.7) and the state-action value Qπ in (5.12) are related and they
satisfy the Bellman equation as follows,

V π(st) = ∑
at∈A

π(st , at)Qπ(st , at). (5.14)

The optimal policy π∗ satisfying (5.10) also satisfies the following equation, which
means that one can determine π∗ by either solving (5.10) or, equivalently, by solving

66

(5.15),

π∗ = argmax
π

Qπ(s, a), ∀(s, a) ∈ S × A. (5.15)

The optimal state-action value Q∗ corresponding to the optimal policy π∗ satisfies
the following Bellman optimality equation,

Q∗(st , at) = E
[

Rt +γ max
at+1∈A

Q∗(st+1, at+1)
∣∣∣st , at ,π

]
= ∑

st+1∈S
P(st+1|st , at)

(
R ′(st , at , st+1)+γ max

at+1∈A
Q∗(st+1, at+1)

)
. (5.16)

Algorithm 1 Q-Learning Algorithm

Input: S, A, α, γ, ε, R
Output: Q∗, π∗

1: Q ←Q0

2: Q(sfinal, ·) ← 0
3: Converge ← False
4: while not Converge do
5: s ← s0

6: EpisodeOver ← False
7: while not EpisodeOver do
8: a ← max

a∈A
Q(s, a) (i.e., ε-greedy)

9: s′ ← state after taking action a
10: if s′ ∈ sfinal then
11: EpisodeOver ← True
12: else
13: Q(s, a) ←Q(s, a)+α

(
R(s, a)+γmax

a∈A
Q(s′, a)−Q(s, a)

)
14: s ← s′

15: if Q converges then
16: Converge ← True

17: Q∗ ←Q
18: π∗(s) = max

a∈A
Q∗(s, a)

The above definitions and equations in (5.7)-(5.16) are the basis for understanding
most reinforcement learning algorithms such as value iteration, policy iteration, Sarsa
and Q-learning. The Q-learning algorithm works directly on the Q values. The update
law of the Q values can be expressed as follows [159, 76],

Q(st , at) ←Q(st , at)+α
(
Rt +γ max

at+1∈A
Q(st+1, at+1)−Q(st , at)

)
, (5.17)

where α ∈ [0,1] is the learning rate (step size), which determines how much the newly

67

acquired information overrides the current Q values. If α = 0 one learns nothing since
Q(st , at) remains the same. If α = 1 one abandons the old Q value and keeps only the
newly learned value Rt +γ max

at+1∈A
Q(st+1, at+1). In particular, if α = α(t) is time-varying

and equals to 1/(t + 2), where t + 2 represents the total number of visits to the state-
action pair (st , at), one obtains the sample-average result for all observed Q values. The
well-known conditions on α to guarantee convergence of the Q values with probability
1 are given as follows [76],

∞∑
t=0

α(t) =∞, (5.18)

∞∑
t=0

α2(t) <∞, (5.19)

where the first condition in (5.18) is used to overcome the random fluctuations, and the
second condition in (5.18) guarantees convergence as t →∞. However, the conditions
in (5.18) are seldom used in practice. For instance, a constant step size α 6= 0 does not
satisfy (5.18), but it has been shown to perform well in many problems. In this disserta-
tion we also use a constant step size (i.e., α= 0.75) in all the examples.

The discount rate γ ∈ [0,1) in (5.17) describes the importance of future rewards for
the agent. Specifically, γ = 0 indicates that the agent only considers the immediate re-
ward after taking action at , and hence the agent is “myopic”. The agent becomes more
“far-sighted" as γ approaches 1, since more cumulative future rewards are taken into
account to update the Q values. A value of γ≥ 1 may lead to divergence.

We summarize the Q-learning algorithm in Algorithm 1. In Section 5.6 we design the
weight vector w in the reward function (5.6), and the values of the parameters α, γ and
ε, in Algorithm 1 to learn the optimal policy π∗.

5.4 Maximum Entropy Principle

In Section 5.3 the driver’s reward was designed and we learned the desired driving policy
using reinforcement learning. Nonetheless, in some cases one may have little knowl-
edge about the reward function, and it is hard to design the required reward function
to achieve the desired driving behavior. The approach in Section 5.3 is not convenient
to use if the prior knowledge of the reward function is not sufficient. However, one can
avoid designing the reward function and directly learn the optimal driving policy from
demonstrations performed by an expert driver. This type of problem is called inverse
reinforcement learning or inverse optimal control [168, 80].

Before proceeding with the discussion on inverse reinforcement learning, we intro-
duce the maximum-entropy principle, and explain how this principle can be used to
recover the unknown reward function, which can then be used to learn the driving pol-
icy using the given demonstrations.

68

5.4.1 Maximum Entropy Principle

The maximum entropy principle was first introduced by Jaynes [169], and since then it
has been used in many areas of computer science and statistical learning. In the basic
maximum entropy formulation, one is given a set of samples from a target distribution
and a set of constraints on this distribution, and then one estimates this distribution
using the maximum entropy distribution that satisfies these constraints [170]. Mathe-
matically, the idea can be demonstrated as the following theorem.

Theorem 5.4.1 Suppose xi ∈ X , i = 1, . . . ,n are independent and identically distributed
(i.i.d) samples from a certain distribution xi ∼ p∗. Let

µ̂ j = 1

n

n∑
i=1

f j (xi), j = 1, . . . ,m, (5.20)

where f j : X → R are real-valued functions and µ̂ j are the empirical expectations of f j .
The maximum entropy estimate p̂ of the distribution p∗ satisfies

p̂ = argmax
p

∫
X
−p(x) log p(x)ν(d x), (5.21a)

subject to E[f j (x)] =
∫
X

p(x) f j (x)ν(d x) = µ̂ j , (5.21b)∫
X

p(x)ν(d x) = 1, j = 1, . . . ,m, (5.21c)

where ν is a base measure. The solution p̂ of (5.21) is given by

p̂(x) = 1

Z (θ)
e

m∑
j=1

θ j f j (x)
, (5.22)

where Z (θ) is the partition function having the following form

Z (θ) =
∫
X

e

m∑
j=1

θ j f j (x)
ν(d x), (5.23)

and where θ j ∈R are parameters satisfying the following equations,

∫
X

f j (x)

Z (θ)
e

m∑
k=1

θk fk (x)
ν(d x) = µ̂ j . (5.24)

The maximum entropy principle finds a distribution satisfying the constraints with
the largest remaining uncertainty, so that one does not introduce any additional as-
sumptions or biases into the computation of p̂.

In inverse reinforcement learning problems, one is given a number of time histories
of the agent’s behaviors consisting the past states and actions. These past states and
actions are usually called demonstrations. Ziebart [78] first applied the maximum en-
tropy principle to solve inverse reinforcement learning problems, for cases where the

69

reward function depends only on the current state, and it was represented via a linear
combination of feature functions, namely,

R(s) =∑
i

wiφi (s) = w TΦ(s), (5.25)

where w and Φ(s) are the weight and feature vectors, respectively. Note that in [78] the
feature vector Φ(s) is a function of state s only, and the actions were not considered.
The probability of a demonstration ζ, {s0, a0, . . . , sT , aT } over all paths of duration T is
calculated following Theorem 5.4.1 [78],

P(ζ|w) = 1

Z (w)
e

∑
s∈ζ

wTΦ(s)
, (5.26a)

P(ζ|w) = 1

Z (w)
e

∑
s∈ζ

wTΦ(s) ∏
(s,a,s′)∈ζ

P(s′|s, a), (5.26b)

where the partition function Z (w) is a normalization constant, and (5.26a) and (5.26b)
provide the solutions corresponding to a deterministic MDP, where the future state can
be uniquely determined with the given action at the present state, and a stochastic MDP,
where the future state is unpredictable with the given action at the present state, respec-
tively.

Note that in order to simplify the expressions, in the following we use the notations
s ∈ ζ, (s, a) ∈ ζ and (s, a, s′) ∈ ζ to denote the cases when the state s, the state-action pair
(s, a) and the state-action-state triple (s, a, s′) are demonstrated in ζ, respectively. Either
equation in (5.26) presents a distribution over paths (demonstrations) and indicates that
the probability of a path is proportional to the exponential of its total reward, which
implies that the paths having higher rewards are more preferable by the agent.

The goal of an inverse reinforcement learning problem is to find the optimal weight
w∗, such that the likelihood of the observed demonstrations is maximal under the dis-
tribution in (5.26). In the following, we formulate the inverse reinforcement learning
problem using different reward structures. The necessary derivations are provided for
IRL problems satisfying the following requirements: 1) Instead of using the state reward
R(s) and the state feature Φ(s) as in [78, 82], we use R(s, a) and Φ(s, a), and 2) We fo-
cus only on the stochastic MDP. The demonstrations are required to start from the same
state s0 and are observed over the same time horizon ranging from t = 0 to t = T . We
use the following notation: D denotes the set of demonstrations, N denotes the number
of demonstrations in D, Ω ⊇ D denotes the complete path space, and Φζ denotes the
feature counts along the path ζ ∈D which is given byΦζ =

∑
(s,a)∈ζ

Φ(s, a).

5.4.2 Nonparameterized Features

The (nonparameterized) features Φ(s, a) are functions of only the states and actions.
One may then consider reward functions as a linear combination of features in the fol-

70

lowing form

R(w ; s, a) = w TΦ(s, a). (5.27)

In order to explicitly show the dependency of the reward function on the unknown
weight vector w , we use the notation R(w ; s, a) instead of R(s, a) in (5.27). It follows
from [169] that maximizing the entropy of the distribution overΩ subject to the feature
constraints from observations D implies the maximization of the likelihood of D under
the maximum entropy distribution in (5.26b), that is,

w∗ = argmax
w

LD(w) = argmax
w

1

N

∑
ζ∈D

logP(ζ|w)

= argmax
w

1

N

(∑
ζ∈D

(
w TΦζ+

∑
(s,a,s′)∈ζ

P(s′|s, a)
))
− log Z (w). (5.28)

In order to use gradient-based optimization methods to solve the problem in (5.28), we
take the partial derivative of LD with respect to the partial derivative of w , to obtain

∂LD

∂w
= 1

N

∑
ζ∈D

Φζ−
1

Z (w)

∑
ζ∈Ω

ΦζewTΦζ
∏

(s,a,s′)∈ζ
P(s′|s, a) = Φ̃− ∑

ζ∈Ω
P(ζ|w)Φζ

= Φ̃−E[Φζ], (5.29)

where Φ̃, 1
N

∑
ζ∈D

Φζ is the expected empirical feature count, and the expectation of the

feature countΦζ can be calculated by

E[Φζ] = ∑
s∈S

∑
a∈A

E[µ(s, a)]Φ(s, a), (5.30)

and where the term E[µ(s, a)] denotes the expected state-action pair visitation counts.
One may refer to Algorithm 3 in Section 5.5.2 for the calculation of E[µ(s, a)].

st
1

st
2

st
3

st
n

at
1

at
m

R(st,at)

Feature

w

Figure 5.7: Deep neural-network feature function and reward.

71

5.4.3 Parameterized Features

The use of nonparameterized features in Section 5.4.2 requires one to design the features
manually, which may be a difficult task, in general, since it may not always be possible
to approximate a certain unknown reward function having a complicated form. Hence,
we consider the use of parameterized features instead of nonparameterized features, so
that one can refine the feature design by optimizing the parameters of the features.

In order to formulate the maximum entropy IRL problem, we still consider a reward
function given as a linear combination of the features, but the features now depend ex-
plicitly on a parameter vector θ,

R(w,θ; s, a) = w TΦ(θ; s, a). (5.31)

Instead of tuning only the weight vector w in (5.28), we also tune the vector θ asso-
ciated with w to maximize the likelihood LD as follows,

w∗,θ∗ = argmax
w,θ

LD(w,θ) = argmax
w,θ

1

N

∑
ζ∈D

logP(ζ|w,θ)

= argmax
w,θ

1

N

(∑
ζ∈D

(
w TΦζ(θ)+ ∑

(s,a,s′)∈ζ
P(s′|s, a)

))
− log Z (w,θ). (5.32)

The derivations of ∂LD/∂w are similar with (5.29)-(5.30) and hence are omitted.
Thus, we only show the derivation of ∂LD/∂θ, which following the chain rule yields

∂LD(w,θ)

∂θ
= ∑

s∈S

∑
a∈A

∂LD(w,θ)

∂R(w,θ; s, a)

∂R(w,θ; s, a)

∂θ
, (5.33)

where

∂LD(w,θ)

∂R(w,θ; s, a)
=

1
N

∑
ζ∈D

∑
(ŝ,â)∈ζ

R(w,θ; ŝ, â)

∂R(w,θ; s, a)
− 1

Z (w,θ)

∑
ζ∈Ω

ewTΦζ
∏

(ŝ,â,ŝ′)∈ζ
P(ŝ′|ŝ, â) (5.34)

∂
∑

(ŝ,â)∈ζ
R(w,θ; ŝ, â)

∂R(w,θ; s, a)
=µD(s, a)− ∑

ζ∈Ω
P(ζ|w,θ)

∂
∑

(ŝ,â)∈ζ
R(w,θ; ŝ, â)

∂R(w,θ; s, a)
=µD(s, a)−E[µ(s, a)],

and where µD(s, a) is the expected empirical state-action pair visitation counts over the
demonstrations D. The expression ∂R(w,θ; s, a)/∂θ in (5.33) is given by

∂R(w,θ; s, a)

∂θ
= ∂w TΦ(θ; s, a)

∂θ
= w T∂Φ(θ; s, a)

∂θ
, (5.35)

where the (i , j) entry of the matrix ∂Φ(θ; s, a)/∂θ is defined as follows[
∂Φ(θ; s, a)

∂θ

]
i , j

= ∂φi (θ; s, a)

∂θ j
, (5.36)

72

and where φi (θ; s, a) is the i th element ofΦ(θ; s, a).

Equations (5.33)-(5.36) provide the necessary ingredients to improve the design of
the feature functions by tuning their parameters. One interesting application of these
results is to use a DNN having multiple outputs to represent the features (see Figure 5.7).
In Figure 5.7 the reward R(st, at) is given by a linear combination of features represented

by a DNN, where the inputs si
t and a j

t of the DNN represent the i th and j th elements
of the n-dimension state vector and the m-dimension action vector, respectively. One
can then calculate ∂R(w,θ; s, a)/∂θ by back propagating the network following the delta
rule[171].

It is worth mentioning that one can let w = 1 and directly use a single DNN feature
to represent the reward function. In this case the maximum entropy distribution over
the path spaceΩ is obtained by tuning only the parameters θ in the DNN. For instance,
Wulfmeier [82] used a DNN to express the state reward R(s) and determined the maxi-
mum entropy distribution of the path ζ by training a DNN.

5.5 Inverse Reinforcement Learning

Based on the theoretical derivation in Section 5.4, we next summarize the inverse rein-
forcement learning algorithm, which was used in this work to learn the optimal policy
from driving demonstrations.

One can use a DNN as a parameterized reward function in order to apply the max-
imum entropy principle to solve the inverse reinforcement learning problem. In the
following, we first discuss the structure of the DNN reward function, and next, we intro-
duce two new IRL algorithms to learn the unknown parameters of the DNN.

5.5.1 Reward Approximator

In order to recover the unknown reward function from demonstrations, we use a uni-
versal approximator that has the ability to represent any function, such as a DNN with
multiple layers [172, 173].

We consider three definitions of the reward functions from the literature, namely, the
state reward R : S → R [77, 78, 81, 82], the state-action reward R : S × A → R [76, 47, 80]
and the state-action-state reward R : S × A ×S → R [76]. We denote the corresponding
reward functions as R(s), R(s, a) and R(s, a, s′), respectively. R(s) is used when the agent
wants to reach a goal state or avoid certain dangerous states by taking any action. This
definition indicates that the agent has no specific preference over the existing actions.
In contrast, R(s, a) takes the action into consideration, so that it can be used to show
the agent’s preference on a specific action. The last definition R(s, a, s′) takes into con-
sideration also the resulting state s′ after the agent takes action a at the present state s.
Nevertheless, since the resulting state s′ depends on the response of the environment
after the agent takes action a, the agent can only make a decision according to the ex-
pected reward of taking action a without knowing the future state s′. Thus R(s, a, s′) and

73

R(s, a) are expected to be equivalent in terms of learning the same policy. See also equa-
tion (5.8). According to the above discussion, we will use the state-action reward R(s, a)
to reproduce driving behaviors having different preference on the available actions.

st1

st2

st3

stn

at1

atm

R(st,at)

st1

st2

st3

st4

st5

st6

stn

R(st,A1)

R(st,Am)

HiddenInput OutputHiddenInput Output

Figure 5.8: Structures of the deep neural-network reward functions.

The two structures of the DNNs we have in mind are shown in Figure 5.8. In the first

structure we use both the state st and the action at as the input, where si
t and a j

t repre-
sent the i th and j th elements of the n-dimensional state vector and the m-dimensional
action vector at time step t , respectively. In the second structure we use only the state
st as the input to the network, and use different channels of the output to represent
the reward corresponding to different actions in the action set A. The output R(st, A j),
j = 1, . . . ,5 represents the reward received by the agent by taking action A j at present
state st, where A j represents the j th action in the action set A. The present action at

is not an explicit input for the second structure. Both of these two DNN structures in
Figure 5.8 can be used as an approximator for the state-action reward function, and one
can take either form that is most convenient for the learning task at hand.

5.5.2 MaxEnt Deep IRL Algorithm

We summarize the IRL algorithm used to learn the unknown parameters of the DNN
in Figure 5.8, using the maximum entropy principle based on the results in Section 5.4.
Since the calculation of the expected state-action visitation number requires knowledge
of the model, we first discuss the model learning.

Model Learning

We consider a totally model-free case, where no knowledge about the state transition
model P(s′|s, a) is available. The idea of model learning is that one can analyze the
visitation count of each state-action-state triple and calculate the probability for each
possible result of the state transitions, which is given by

P(s′|s, a) = ν(s, a, s′)∑
s′∈S

ν(s, a, s′)
, (5.37)

74

where ν(s, a, s′) is the total number of the state transition from s to s′ by taking action
a. The probability P(s′|s, a) approaches its actual value as the state visitation count
ν(s, a, s′) approaches infinity. Model learning can be implemented along with the Q-
learning (see Algorithm 1). The algorithm for Q-learning with model learning is sum-
marized in Algorithm 2.

IRL Algorithm

In this section we summarize the MaxEnt Deep IRL algorithm according to (5.32)-(5.36).
To this end, we first introduce the following algorithm to calculate the expected state-
action visitation counts E[µ(s, a)] in (5.34), using the model learning resultP(s′|s, a) from
Algorithm 2.

Algorithm 2 Q-Learning with Model Learning

Input: S, A, α, γ, ε, R, ν0

Output: Q∗, π∗, ν, P
1: ν← ν0

2: Q(s0, a0) ←Q0

3: Q(sfinal, ·) ← 0
4: Converge ← False
5: while not Converge do
6: s ← s0

7: EpisodeOver ← False
8: while not EpisodeOver do
9: a ← max

a∈A
Q(s, a) (i.e., ε-greedy)

10: s′ ← state after taking action a
11: ν(s, a, s′) ← ν(s, a, s′)+1
12: if s′ ∈ sfinal then
13: EpisodeOver ← True
14: else
15: Q(s, a) ←Q(s, a)+α

(
R(s, a)+γmax

a∈A
Q(s′, a)−Q(s, a)

)
16: s ← s′

17: if Q converges then
18: Converge ← True

19: Q∗ ←Q
20: π∗(s) = max

a∈A
Q∗(s, a)

21: P(s′|s, a) ← ν(s,a,s′)∑
s′∈S

ν(s,a,s′)

In Algorithm 3 the state sfinal denotes the terminal state or the goal state, after which
the state of the system will not change, meaning that no future state transitions can
occur at sfinal. Next, one calculates the gradient ∂LD/∂θ using (5.41), and updates the

75

parameters θ of the DNN using gradient decent. The expression of∆θ can be calculated
as follows,

∆θ =λ∂LD

∂θ
, (5.38)

where λ is the learning rate (time step). One can also introduce a weight decay term as
a model regularizer into ∆θ, such as an L1 regularizer [78], an L2 regularizer [82], and
other forms of regularizers [174, 83]. The regularizers are used to convexify the problem,
mitigate overfitting, or introduce other properties to the optimization problem such as
monotonicity by adding a self-defined cost term.

Algorithm 3 Expected State-Action Visitation Counts

Input: T , S, A, π(s, a), P(s|s′, a)
Output: E[µ(s, a)]

1: Calculate expected state/state-action visitation counts:
2: E[µ(s0)] ← 1
3: E[µ(s0, a)] ←π(s0, a)
4: for i = 1 : T do
5: Ei [µ(sfinal)] ← 0
6: Ei [µ(sfinal, a)] ← 0
7: Ei+1[µ(s)] ← ∑

s′∈S

∑
a∈A

P(s|s′, a)π(s′, a)Ei [µ(s′)]

8: Ei+1[µ(s, a)] ←π(s, a)Ei+1[µ(s)]

9: E[µ(s, a)] ←
T∑

i=1
Ei [µ(s, a)]

The proposed MaxEnt Deep IRL algorithm is summarized in Algorithm 4.

5.5.3 IRL Algorithm Refinement

Learning of the model may not yield good results before one has a large number of vis-
itations for each state-action pair. The error of the state transition probability P(s′|s, a)
may lead to errors in calculating ∂L D/∂R(s, a) in Algorithm 4, which leads to further
errors in calculating the gradients ∂L D/∂θ that are used to update the parameters θ
in the neural-network. To address this issue, one can pre-learn the model until it con-
verges before using it in Algorithm 4. Nevertheless, the demonstrations in D may not be
enough to represent the environment’s random behavior, especially in the case where
the system is complicated and the demonstrations are required to represent the long-
term behavior of the stochastic system. One can then either split the demonstrations
into small pieces to avoid a large error in predicting the long-term behavior of the sys-
tem, or, alternatively, try to avoid using the state transition terms in the calculation of
the gradients in (5.29) and (5.34).

In this work we regenerate a number of new sets of the demonstrations Dτ = {ζi
τ, i =

1, . . . , Nτ} using the original demonstrations D. The element ζi
τ satisfies the following

76

conditions: 1) ζi
τ starts at the state τ ∈ S, 2) The length of ζi

τ is constant ∆T for all τ ∈ S,
and 3) There exists a path ζ ∈ D such that ζi

τ ⊆ ζ. The corresponding path space for ζi
τ

is denoted as Ωτ. We then maximize the entropy of the joint distribution over all Ωτ

subject to the constraints from the demonstrations Dτ,

θ∗ = argmax
θ

LD(θ) = argmax
θ

∑
τ∈S

1

Nτ

∑
ζ∈Dτ

logP(ζ|θ)

= argmax
θ

∑
τ∈S

(1

Nτ

(∑
ζ∈Dτ

(∑
(s,a)∈ζ

R(θ; s, a)+ ∑
(s,a,s′)∈ζ

P(s′|s, a)
))
− log Zτ(θ)

)
, (5.39)

where the partition function Zτ is given by

Zτ(θ) = ∑
ζ∈Ωτ

e

∑
(s,a)∈ζ

R(θ;s,a)
. (5.40)

The partial derivative of LD with respect to the partial derivative of θ is given by

∂LD(θ)

∂θ
= ∑

s∈S

∑
a∈A

∂LD(θ)

∂R(θ; s, a)

∂R(θ; s, a)

∂θ
, (5.41)

where

∂LD(θ)

∂R(θ; s, a)
= ∑
τ∈S

(1
Nτ

∑
ζ∈Dτ

∑
(ŝ,â)∈ζ

R(θ; ŝ, â)

∂R(θ; s, a)
− 1

Zτ(θ)

∑
ζ∈Ωτ

e

∑
(ŝ,â)∈ζ

R(θ;ŝ,â) ∏
(ŝ,â,ŝ′)∈ζ

P(ŝ′|â, ŝ)

∂
∑

(ŝ,â)∈ζ
R(θ; ŝ, â)

∂R(θ; s, a)

)
= ∑
τ∈S

(
µDτ(s, a)− ∑

ζ∈Ωτ
P(ζ|θ)

∂
∑

(ŝ,â)∈ζ
R(θ; ŝ, â)

∂R(θ; s, a)

)
= ∑
τ∈S

(
µDτ(s, a)−E[µτ(s, a)]

)
, (5.42)

and where µDτ is the expected empirical state-action pair visitation counts over the
demonstrations Dτ. The term ∂R/∂θ in (5.41) can be obtained by backward propagating
the DNN.

The expected state-action pair visitation counts E[µτ(s, a)] is calculated over∆T steps.
Specifically, we let ∆T = 1 and consider only the one-step action case, such that we
avoid using the unknown model transition probabilities to calculate ∂LD(θ)/∂R(θ; s, a)
in (5.42), which is given by

∂LD(θ)

∂R(θ; s, a)
= ∑
τ∈S

(1
Nτ

∑
(ŝ,â)∈Dτ

R(θ; ŝ, â)

∂R(θ; s, a)
− 1

Zτ(θ)

∑
(ŝ,â)∈Ωτ

eR(θ;ŝ,â)∂R(θ; ŝ, â)

∂R(θ; s, a)

)
=µDs (s, a)−P(s, a|θ),πD(s, a)−π(s, a), (5.43)

where µDs is the expected empirical state-action pair visitation counts over the demon-
strations Ds, which, can be defined as the expected empirical policy πD(s, a). The result

77

of (5.43) indicates that, by using the demonstrations with∆T = 1, the maximum entropy
IRL formulation in (5.39) learns a reward function R(θ; s, a) such that the learned policy
equals the expected empirical policy, namely, π(s, a) =πD(s, a).

Algorithm 4 MaxEnt Deep IRL Algorithm

Input: µD(s, a), T , S, A, α, β, γ, λ, ε, ν0

Output: π∗, θ∗, R∗, P
1: θ← θ0

2: ν← ν0

3: Converge ← False
4: while not Converge do
5: Update reward function:
6: R ← N N (θ)
7: Update policy:
8: π, ν, P← Q-learning with model learning(S, A, α, γ, ε, R, ν) from Algorithm 2
9: Calculate expected state/state-action visitation counts:

10: E[µ(s0)] ← 1
11: E[µ(s0, a)] ←π(s0, a)
12: for i = 1 : T do
13: Ei [µ(sfinal)] ← 0
14: Ei [µ(sfinal, a)] ← 0
15: Ei+1[µ(s)] ← ∑

s′∈S

∑
a∈A

P(s|s′, a)π(s′, a)Ei [µ(s′)]

16: Ei+1[µ(s, a)] ←π(s, a)Ei+1[µ(s)]

17: E[µ(s, a)] ←
T∑

i=1
Ei [µ(s, a)]

18: Determine Maximum-Entropy gradients:
19:

∂LD
∂R(θ;s,a) ←µD(s, a)−E[µ(s, a)]

20: Update neural-network weights:
21: ∂R(θ;s,a)

∂θ
← backward propagating neural-network

22:
∂LD
∂θ

← ∂LD
∂R(θ;s,a) · ∂R(θ;s,a)

∂θ

23: θ← θ+λ∂LD
∂θ

+βθ (in case of using an L2 regularizer)
24: if θ converges then
25: Converge ← True
26: θ∗ ← θ

27: R∗ ← N N (θ∗)
28: π∗ ← Q-learning(S, A, α, γ, ε, R∗, ν) from Algorithm 2

We summarize the refined algorithms using (5.42) and (5.43), respectively, which are
given by Algorithms 5 and 6. As a special case when the data length is∆T = 1, the single-
step IRL algorithm in Algorithm 5 totally avoids calculating the expected state-action
visitation counts, and hence the policy is learned without any knowledge of the model.
The selection among the three IRL algorithms proposed in this dissertation depends on
the data and the MDP model one has for the problem. For instance, if the behavior of

78

the MDP model is not difficult to predict (i.e., deterministic MDP) and one has collected
a long set of data starting from the same initial state, one can use Algorithm 4 to recover
the reward function and learn the policy. If the data have different lengths and were
collected with different initial states, one may have to reorganize the data and consider
using Algorithms 5 and 6, especially for problems having complicated stochastic behav-
ior.

Algorithm 5 Single-Step Joint Maximum-Entropy Deep IRL Algorithm

Input: πD(s, a), S, A, α, β, γ, λ, ε, ν0

Output: π∗, θ∗, R∗, P
1: θ← θ0

2: ν← ν0

3: Converge ← False
4: while not Converge do
5: Update reward function:
6: R ← N N (θ)
7: Update policy:
8: π, ν, P← Q-learning with model learning(S, A, α, γ, ε, R, ν) from Algorithm 2
9: Determine Maximum-Entropy gradients:

10:
∂LD

∂R(θ;s,a) ←πD(s, a)−π(s, a)
11: Update neural-network weights:
12: ∂R(θ;s,a)

∂θ ← backward propagating neural-network

13:
∂LD
∂θ

← ∂LD
∂R(θ;s,a) · ∂R(θ;s,a)

∂θ

14: θ← θ+λ∂LD
∂θ

+βθ
15: if θ converges then
16: Converge ← True
17: θ∗ ← θ

18: R∗ ← N N (θ∗)
19: π∗, P← Q-learning(S, A, α, γ, ε, R∗, ν) from Algorithm 2

5.6 Results and Analysis

In this section we implement the previous RL and IRL algorithms for the traffic model of
Section 5.2 and analyze the results.

5.6.1 Driving Behavior from Reinforcement Learning

We show two different driving behaviors using RL, namely, overtaking and tailgating. To
this end, we use the features defined in Section 5.3.2 and design the weights w1 and w2

to achieve the two desired driving behaviors, respectively. The weights are provided in
Table 5.1.

79

Algorithm 6 Multiple-Step Joint Maximum-Entropy Deep IRL Algorithm

Input: µDτ(s, a), ∆T , S, A, α, β, γ, λ, ε, ν0

Output: π∗, θ∗, R∗, P
1: θ← θ0

2: ν← ν0

3: Converge ← False
4: while not Converge do
5: Update reward function:
6: R ← N N (θ)
7: Update policy:
8: π, ν, P← Q-learning with model learning(S, A, α, γ, ε, R, ν) from Algorithm 2
9: Calculate expected state/state-action visitation counts:

10: for τ in S do
11: E[µτ(s0 = τ)] ← 1
12: E[µτ(s0 = τ, a)] ←π(s0, a)
13: for i = 1 :∆T do
14: Ei [µτ(sfinal)] ← 0
15: Ei [µτ(sfinal, a)] ← 0
16: Ei+1[µτ(s)] ← ∑

s′∈S

∑
a∈A

P(s|a, s′)π(s′, a)Ei [µτ(s′)]

17: Ei+1[µτ(s, a)] ←π(s, a)Ei+1[µτ(s)]

18: E[µτ(s, a)] ←
∆T∑
i=1

Ei [µτ(s, a)]

19: Determine Maximum-Entropy gradients:
20:

∂LD
∂R(θ;s,a) ←

∑
τ∈S

(
µDτ(s, a)−E[µτ(s, a)]

)
21: Update neural-network weights:
22: ∂R(θ;s,a)

∂θ ← backward propagating neural-network

23:
∂LD
∂θ

← ∂LD
∂R(θ;s,a) · ∂R(θ;s,a)

∂θ

24: θ← θ+λ∂LD
∂θ

+βθ
25: if θ converges then
26: Converge ← True
27: θ∗ ← θ

28: R∗ ← N N (θ∗)
29: π∗ ← Q-learning(S, A, α, γ, ε, R∗, ν) from Algorithm 2

The desired driving behavior by designing w1 is to show overtaking, which can be
described as follows: 1) The HV accelerates to occupy the front cell if it is available; 2)
The HV maintains its velocity if there is an EV in front of it and no overtaking is possible;
3) The HV overtakes the front EV if only one side is available for overtaking, by lane-
shifting first and then accelerating and maintaining constant speed; 4) The HV overtakes
the front EV from the inner side of the corner if both the left and right sides are available
for overtaking; 5) The HV does not change lane unless for overtaking; 6) The HV does
not brake to occupy the rear cell. 7) No collision is allowed.

80

Table 5.1: The selected features and the weights for reinforcement learning.

Φ(s, a) w1 Interpretation w2 Interpretation
maintain 0 NA 0 NA

accelerate 0.075 Prefer accelerating 0.05 Prefer accelerating
brake -0.625 Avoid braking -0.5 Avoid braking

left-turn -0.05 Reduce lane-shifting -0.025 Reduce lane-shifting
right-turn -0.05 Reduce lane-shifting -0.025 Reduce lane-shifting

HV position 0 NA 0 NA
overtake 0.05 Prefer inner overtaking 0.025 Prefer inner tailgating
tailgate 0 NA 0.225 Prefer tailgating

collision -0.15 Avoid collision -0.15 Avoid collision

0 1000 2000 3000 4000 5000
Episode number

0

5

10

15

20

25

30

35

Po
lic

y
er

ro
rs

Overtaking
Tailgating

Figure 5.9: The convergence performance of the policy π in the learning process.

The desired driving behavior by designing w2 is to demonstrate tailgating, which can
be described as follows: 1) The HV maintains its velocity if there is an EV in front of it;
2)The HV accelerates to occupy the front cell if it is available and no tailgating will occur
by changing lanes; 3) The HV changes lane to tailgate an EV if there is no EV in front of
it; 4) The HV prefers to tailgate the vehicle in the lane closer to the inner curb of the road
in a corner; 5) The HV does not change lanes unless for tailgating; 6) The HV does not
brake to occupy the rear cell; 7) No collision is allowed.

We implemented the Q-learning algorithm (Algorithm 1 or 2) to learn the optimal
policies using both w1 and w2, with learning rate α = 0.75, discount rate γ = 0.5, and
ε = 8e−2 for the ε-greedy principle. Figure 5.9 shows the convergence behaviors of the
policies π∗

1 and π∗
2 corresponding to w1 and w2, respectively. One sees that, after 5,000

to 6,000 episodes the policies π1 and π2 get stabilized with the current setup of α, γ and
ε. In both cases, it takes less than five minutes to obtain the results shown in Figure 5.9
on a dual-core 2.27 GHz Intel Xeon processor running 64-bit Windows 10 Enterprise
operating system and programmed using Python 3.6.

81

Figure 5.10: Overtaking scenarios in simulation by implementing π∗
1 .

Next, we implemented the policies π∗
1 and π∗

2 in simulation. We show only the simu-
lated result from the implementation of π∗

1 (overtaking). The tailgating results by imple-
menting the IRL algorithms are given in the next section. Figure 5.10 shows four different
driving scenarios (each single row of pictures).

The first row of Figure 5.10 shows a scenario where there is a vacant space in front
of the HV (green). The HV accelerates to occupy the front space and then maintains
its distance behind the yellow vehicle. The second row shows a scenario where there
is one vehicle in front of the HV and both the left and right lanes are available for the
HV to overtake the front vehicle. Since the road is straight, the HV is free to use either
the left or the right lane to complete the overtaking task. One sees from this figure that
the HV first switches to the left lane, and then accelerates to overtake the front yellow
vehicle, which switches to the right lane, until meeting the blue vehicle in the front. The
third scenario shows one vehicle (red) in front of the HV but the right lane of the HV is
occupied by another vehicle (pink). The HV can only use the left lane to overtake the
front vehicle. The last scenario shows another driving scenario during cornering, which
has one vehicle (cyan) in front of the HV and both the left and right lanes of the HV are

82

available to use for overtaking. The HV first switches to the right lane, which is closer to
the inner curb of the corner, and then tries to overtake the cyan vehicle by accelerating.
Overtaking is not completed since the cyan vehicle also moves forward. All these driving
behaviors in the simulation using π∗

1 agree with the desired behaviors, which validates
the design of the reward function and the approach to find the optimal policy.

5.6.2 Driving Behavior from Inverse Reinforcement Learning

In this section we use the simulated data by implementingπ∗
1 andπ∗

2 to learn the reward
functions represented using DNNs, and obtain the estimated policies π̂∗

1 and π̂∗
2 for π∗

1
and π∗

2 , respectively, using the maximum entropy principle.

We first select a structure of the DNN as shown in Figure 5.8 to represent the reward
function. We use the second structure due to its convenience, since it uses only the state
st as the input of the DNN and provides the rewards for taking every available action in
the action set A. One then just needs to select the right output channel according to the
current action at. The state vector st contains the information of the positions of nine
vehicles (one HV and eight EVs) and the type of the road, hence, the DNN requires ten
input channels to receive the ten-dimensional state st. The DNN requires five output
channels since there are five actions in A. We define a DNN with the numbers of the
neurons in each layer given by [10,20,20,20,5], which has three hidden layers and each
hidden layer has twenty neurons. We use the hyperbolic tangent activation function
(tanh) instead of the sigmoid activation function, since the tanh function is unbiased at
the origin, and it has a larger range [-1,1] than the sigmoid function which has a range
[0,1].

Figure 5.11: The initial setup for simulation.

Next, we collect simulated data by implementing theπ∗
1 andπ∗

2 learned in Section 5.6.1.
The initial state s0 is shown with the rectangular zone in Figure 5.11, where the HV is lo-
cated in the middle lane of a five-lane road surrounding by three EVs.

Each EV in the simulator implements a random policy. For each EV, we define a nom-
inal state sEV using all the vehicles (HV and EVs) around it and find the safe actions for

83

this EV not leading to a collision. We then generate a random policy for this EV by as-
signing a random probability to each action in the safe action set. Algorithm 7 shows the
procedures to generate a random policy πEV for an EV in the simulation. For each EV, we
only implement Lines 1-3 once, and we update the policy using Lines 4-8 when the safe
action set and the state change. For either π∗

1 and π∗
2 , we collected 500 demonstrations

with a fixed simulation period T = 1,500.

Algorithm 7 Generate EV policy

Input: sEV

Output: πEV

1: Generate five random number between [0,1]:
2: πEV

0 ← random(5)
3: πEV ← sort(πEV

0)
4: Check availability of each action:
5: for a ∈ A do
6: if a is not available for sEV

t then
7: πEV(a|sEV) ← 0

8: πEV ← normalize(πEV) over available actions

We then implemented the three MaxEnt IRL algorithms in Algorithms 4-6, respec-
tively, to learn the policy using the simulated data. The parameters to setup the algo-
rithms are as follows: learning rate for Q-learning α = 0.75, discount rate γ = 0.5, DNN
learning rate λ = 5e−3, regularizer coefficient β = −1e−4, and ε = 8e−2 in the ε-greedy
principle. A summary of the results is shown in Table 5.2.

Table 5.2: IRL results summary.

data length Convergence Time Policy recovery
Algorithm 4 T = 1500 No NA NA
Algorithm 5 ∆T = 1 Yes 1 hour ≥ 99%
Algorithm 6 ∆T = 5 Yes 1-3 hours ≥ 99%

One notices from Table 5.2 that Algorithm 4 does not converge, due to the large
data length and the stochastic system behavior. The proposed refined algorithms (Algo-
rithm 5 and 6) provide better convergence performance and learn the policy effectively.
In contrast to Algorithm 6, Algorithm 5 saves some running time since one skips the
learning of the model and avoids calculating the expected state-action visitation counts.

We also implemented the learned policies π̂∗
1 and π̂∗

2 in simulation3. We show only
the tailgating behavior by implementing π̂∗

2 (see Figure 5.12), since the result by imple-
menting π̂∗

1 is similar with π∗
1 , which has already been shown in Figure 5.10.

3Movies for both overtaking and tailgating by implementing π̂∗
1 and π̂∗

2 are available at: https:
//www.youtube.com/watch?v=I3ecd9DXmBQ and https://www.youtube.com/watch?v=
lVZcRR-Q2PE

84

https://www.youtube.com/watch?v=I3ecd9DXmBQ
https://www.youtube.com/watch?v=I3ecd9DXmBQ
https://www.youtube.com/watch?v=lVZcRR-Q2PE
https://www.youtube.com/watch?v=lVZcRR-Q2PE

Figure 5.12 shows four driving scenarios. The first row shows a driving scenario hav-
ing a vacant space in front of the HV and the HV cannot tailgate any EV by changing
lanes. The HV accelerates to occupy the space behind the gray vehicle in front of it. The
second driving scenario shows that the HV changes the lane to the left to tailgate the red
vehicle. The third driving scenario is similar with the second, but it shows a driving be-
havior during cornering. The last driving scenario shows that there are two EVs in front
of the HV in the neighboring lanes, and the HV can change to either the left or the right
lane to tailgate an EV. By designing w2 we have constructed a policy π∗

2 to tailgate the EV
closer to the inner curb of the road in a corner. One sees from this simulation that the HV
changes to the left lane to tailgate the gray vehicle in a left-turn corner. All these driving
behaviors using π̂2 agree with the desired tailgating behaviors we want to achieve using
π∗

2 , which validates the effectiveness of the IRL algorithms proposed in this dissertation.

Figure 5.12: The tailgating in simulation by implementing π̂2.

5.7 Conclusion

We use a stochastic Markov decision process to model the traffic, and achieve desired
driving behaviors using both reinforcement learning and inverse reinforcement learn-
ing. The definition of the state and the MDP traffic model are flexible and can be used

85

to model traffic with any number of lanes and any number of EVs. We also take the road
geometry into consideration such that the driving policy may change depending on the
road curvature.

By designing the driver’s reward function, we are able to show typical driving be-
haviors such as overtaking and tailgating, using the Q-learning algorithm to learn the
corresponding optimal policies. We have demonstrated these policies using a road with
five lanes and with each EV implementing a random policy. In order to be able to recover
the policy and the reward function from data, we propose three new model-free inverse
reinforcement learning algorithms based on the maximum entropy principle. Instead
of using a state reward as in most of existing literature [77, 78, 82], we use a state-action
reward, which is capable for the design of more diverse driving behaviors. This is the
first work to generalize the formulation of the maximum entropy inverse reinforcement
learning problem with any parameterized, continuously differentiable function approx-
imators (i.e., a DNN). In order to refine the inverse reinforcement learning algorithm,
we show that long demonstrations are hard to use for this problem if one has limited
knowledge of the (stochastic) system behavior. The error stems from two factors: First,
the capacity of the demonstrated data may not be enough to represent the stochastic
behavior of the system. Second, the prediction error for a stochastic system is accu-
mulated and becomes large for long term prediction horizons in a model-free problem.
We refine our inverse reinforcement learning algorithm by maximizing the entropy of
the joint distribution over short data pieces. The proposed algorithms are validated in
simulation.

Future work will focus on designing the necessary controls to achieve the driving be-
havior in a high-fidelity simulation or a real driving task. Other possible extensions in-
troduce multiple agents incorporated into the MDP traffic model to coordinate multiple
vehicles simultaneously to better control the traffic flow (i.e., traffic congestion mitiga-
tion).

86

CHAPTER 6

PATH PLANNING AND CONTROL: HIGHWAY OVERTAKING

6.1 Introduction

In Chapter 5 we solve the high level optimal decision making problem for autonomous
vehicles in traffic. In order to realize the optimal action, one still needs to solve low
level path planning problem and develop the necessary control system. Numerous al-
gorithms have been developed over the past decade for real-time path planning for au-
tonomous vehicles, which can be categorized into three groups according to the method-
ology used to develop them, namely, sampling-based [48, 175], graph-search meth-
ods [176, 61], and geometry-based path planning [62, 63, 64].

Cimurs et al. used Dijkstra’s algorithm to find the shortest viable path by connect-
ing the Vonoroi vertices, such that the path keeps a safe distance from all the obstacles
in the environment [61]. They then used the Bézier curves to smooth the path with re-
spect to the maximum curvature constraint by selecting and aligning the control points.
The authors in [48] proposed a real-time path planning algorithm based on Rapidly-
exploring Random Trees (RRTs). This algorithm was implemented on an autonomous
vehicle which completed a 60 mile simulated military supply mission in the 2007 DARPA
Urban Challenge. The path planning approaches using RRTs can efficiently explore the
space to handle obstacle avoidance problems. Nevertheless, since the tree is built in-
crementally from the direction of the samples randomly from the search space, an ad-
ditional smoother may be required to smooth the path. In order to generate a smooth
path for an autonomous vehicle without using an additional smoother, Choi et al. [62,
63] presented a series of path planning algorithms based on the Bézier curves. The
planned paths have continuous curvature and satisfy the road boundary constraints. In
[64] Shim et al. used a parameterized 6th-order polynomial to represent a smooth path,
and planned a feasible path for the autonomous vehicle satisfying both the initial/final
conditions and the constraint conditions. They implemented their path planning al-
gorithm in static/moving obstacle avoidance tasks . A more extensive survey on path
planning for autonomous vehicles can be found in [73, 36].

Built on the work in Chapter 5, this chapter focuses on developing low level path
planning and control algorithms for autonomous vehicles in highway traffic. The work
of this chapter is summarized as follows: 1) We propose two path planning algorithms
using both joint quadratic Bézier curves and fourth order Bézier curves. The optimal
choices of the control points are provided in terms of the desired maximum curvature,
hence a path satisfying the given curvature constraints can be generated in real-time.
The fourth order Bézier curves are C 2 continuous and show better tracking performance
when an output regulation tracking controller is implemented. 2) We design controller
for path tracking/lane-keeping using three different ideas: a) driver parameters opti-
mization, b) single output regulation controller and c) driver-based ADAS controller.

87

The rest of this chapter is organized as follows: Section 6.2 generates the smooth
paths using Bézier curves. Section 6.3 and 6.4 design the low-level controllers for speed
maintaining and lane keeping/switching. Section 6.5 implements the controllers on a
simulator. Finally, Section 6.6 summarizes the results of this study.

6.2 Path Planning

Regarding to path planning for lane-switching, one important design objective is to limit
the maximum curvature of the path, which depends on the road friction conditions and
the velocity of the vehicle. We also expect the curvature to be continuous in order to
have better smoothness and riding comfort. In this work we use Bézier curves for path
planning during lane-switching. Such designed path is smooth and can be implemented
efficiently for real-time planning.

6.2.1 Preliminaries

Bézier curves were introduced by Pierre Bézier in 1960 [177]. Since then Bézier curves
become widely used in computer graphics and related fields. A Bézier curve of degree n
with control points P0, . . . ,Pn is expressed in terms of Bernstein polynomials, which are
given by

γ(t) =
n∑

i=0
B n

i (t)Pi , t ∈ [0,1], (6.1)

where

B n
i (t) =

(
n
i

)
(1− t)n−i t i , (6.2)

and where the binomial coefficients are

(
n
i

)
=


n!

i !(n −1)!
if 0 É i É n,

0 otherwise.
(6.3)

The curve γ(t) in (6.1) is completely contained in the convex hull of its control points
P0, . . . ,Pn . It is worth mentioning that the curve is tangent to the segments P0P1 and
Pn−1Pn at both the two ends. By designing the control points, one is able to reshape the
curve to have the desired features.

6.2.2 Joint Quadratic Bézier curves

Built on the result of [178], we use piecewise quadratic Bézier curves to plan the path for
lane switching.

88

P0 P2(P’2)

A
B

C

D

P’0

W

L

M

X

Y

N
P1

*

Figure 6.1: Path planning for the single lane change.

Let us assume that we have the following path planning problem to solve (see Fig. 6.1).
The lane width is denoted by W . Without loss of generality, we can assume the trajectory
is symmetric with respect to the point P2, which is located at a distance L in front of the
vehicle. The quadratic Bézier curve γ is given by

γ(P1, t) = (1− t)2P0 +2t (1− t)P1 + t 2P2, t ∈ [0,1]. (6.4)

Mathematically, we want to solve the following problem,

P∗
1 = arg min

P1∈P0D
max
t∈[0,1]

κ(P1, t) = |γ′(P1, t)×γ′′(P1, t)|
‖γ′(P1, t)‖3

, (6.5)

where κ denotes the curvature. Let M denote the midpoint of segment P0P2. We provide
Theorem 6.2.1 to determine the optimal solution P∗

1 .

Theorem 6.2.1 Let N be the intersection of P0D and the perpendicular bisector to the
segment P0P2 (see Fig. 6.1). The optimal choice of P∗

1 is on the segment AN , which satisfies

∠N MP∗
1 = tan−1

p
8tan2∠P2P0D+9−3

2tan∠P2P0D . The minimal maximum curvature κ̄∗ is given by

κ̄∗(P∗
1) = 3tan∠N MP∗

1

‖P0M‖cos∠N MP∗
1

. (6.6)

The maximum curvature κ̄(P1) decreases monotonically as P1 moves from P0 to P∗
1 , and

then increases monotonically as P1 moves from P∗
1 to D.

Proof: 1) P1 is on P0 A: Since P1 is located inside the disc of diameter ‖P0M‖, and
‖P0P1‖ < ‖P1P2‖, the maximum curvature is determined by

κ̄(P1) = A

‖P0P1‖3
= W

2‖P0P1‖2
. (6.7)

The result in (6.7) indicates that κ̄(P1) decreases when P1 approaches A from the direc-
tion of P0, and the minimum value is given by κ̄(A) = 2W /L2.

89

P0

P2

A
B C

D

W
L

M

P1
*

(P1)

(Q)

N

E

X

Y

Figure 6.2: Path planning for the single lane change.

2) P1 is on BC : Since P1 is located inside the disc of diameter ‖P2M‖ and ‖P0P1‖ >
‖P1P2‖, the maximum curvature is determined by

κ̄(P1) = A

‖P1P2‖3
= W ‖P0P1‖

2‖P1P2‖3
. (6.8)

When P1 moves from B to C , ‖P0P1‖ increases monotonically while ‖P1P2‖ decreases
monotonically. Hence κ̄(P1) increases monotonically and the minimum value of κ̄(P1)
is obtained at B .

3) P1 is on C D : Since P1 is outside of the two discs, the maximum curvature is deter-
mined by

κ̄(P1) = ‖P1M‖3

A 2
= ‖P1M‖

(‖P0P1‖sin∠MP1P0)2
= ‖P1M‖

‖P0Q‖2
, (6.9)

where Q is the intersection of line C M and the first disc (see Fig. 6.2). One can observe
that ‖P0Q‖ reduces monotonically as P1 moves from C to D (this holds even if P1 is on
the right of D till infinity). The minimum value of κ̄(P1) is obtained at C .

4) P1 is on N B : The proof is similar with 3) and is hence omitted. In this case, κ̄(P1)
increases monotonically as P1 approaches B from N . The minimum value of κ̄(P1) is
obtained at N .

The results from 2) to 4) imply that κ̄(N) < κ̄(B) < κ̄(C) < κ̄(D), and hence κ̄ increases
monotonically as P1 moves from N to D .

5) P1 is on AN : We connect P1 and M and denote the intersection of P1M and the
circle as E . We then connect P0E . In order to simplify the notation, we use α to denote
the angle ∠MP0E (∠N ME), and use θ to denote the angle ∠MP0D . The maximum
curvature is determined by

κ̄(α) = ‖P1M‖3

A 2
= ‖P1M‖

‖P0E‖2
= tanα+ tan(θ−α)

‖P0M‖cosα

= sinθ

‖P0M‖cos2αcos(θ−α)
. (6.10)

90

By taking the partial derivative of κ̄ with respect to partial derivative of α, one obtains

∂κ̄(α)

∂α
= sinθ

‖P0M‖
2sinαcos(θ−α)−cosαsin(θ−α)

cos3αcos2(θ−α)
. (6.11)

By letting ∂κ̄(α)/∂α= 0, we obtain the following result:

tan(θ−α∗) = 2tanα∗. (6.12)

Equation (6.12) implies that ‖P∗
1 E‖ = 2‖ME‖. We can solve (6.12) for α∗, which yields

α∗ = tan−1

p
8tan2θ+9−3

2tanθ
. (6.13)

Equations (6.11)-(6.13) imply that κ̄(P∗
1) is the minimum on AN , and hence it is the

unique minimum on P0D . ä
The path planning algorithm is summarized in Algorithm 8.

Algorithm 8 Path Generation Using Joint Quadratic Bézier Curves

Input: W , P0, κ̄max

Output: L, γ(t)
1: ∠P2P0D , ∠N MP∗

1 ← by solving:

∠N MP∗
1 = tan−1

√
8tan2∠P2P0D +9−3

2tan∠P2P0D
,

3tan∠N MP∗
1

‖P0M‖cos∠N MP∗
1

− κ̄max = 0,

‖P0M‖ = W

2sin∠P2P0D
.

2: L ←W /tan∠P2P0D , ∠AMP∗
1 ←∠P2P0D −∠N MP∗

1
3: P2 ← (±W /2,L), P1 ← P0 + (0,L/2+W tan∠AMP∗

1 /4)
4: ζ(t) = (1− t)2P0 +2t (1− t)P1 + t 2P2, t ∈ [0,1]

5: Curve: γ(τ) =
{

ζ(2τ) τ ∈ [0,0.5),

(±W,2L)−ζ(2−2τ) τ ∈ [0.5,1].

6.2.3 Fourth Order Bézier Curves

The joint quadratic Bézier curves are easy to implement for path planning. Neverthe-
less, this approach only guarantees C 1 continuity and the curvature is not continuous
at both P0 and P2. In this section, we use fourth order Bézier curves to generate paths
with continuous curvature. A typical fourth order Bézier curve is constructed using five
control points, namely, P0, . . . ,P4, and is represented by

γ(t) =
4∑

i=0
B 4

i (t)Pi , t ∈ [0,1]. (6.14)

91

In order to generate a symmetric path (see Fig. 6.3), we let P2 = (P0 +P4)/2, and ~∆ =
P1 −P0 = P4 −P3. Equation (6.14) is simplified as

γ(t) = (1− t)2(1+2t)P0 +4t (1− t)(1−2t)~∆+ t 2(3−2t)P4. (6.15)

To calculate the curvature of γ(t), we first calculate γ′(t) and γ′′(t),

γ′(t) = 4
3∑

i=0
B 3

i (t)(Pi+1 −Pi) = 4~∆+12t (1− t)~Γ, (6.16a)

γ′′(t) = 12
2∑

i=0
B 2

i (t)(Pi+2 −2Pi+1 +Pi) = 12(1−2t)~Γ, (6.16b)

where~Γ, (P4 −P0)/2−2~∆. We then calculate the curvature as follows,

κ(t) = |γ′(t)×γ′′(t)|
‖γ′(t)‖3

= 24(1−2t)|~∆× (P4 −P0)|
‖γ′(t)‖3

. (6.17)

From (6.17) one sees that κ(0.5) = 0 and κ(0) =−κ(1) = 3|~∆× (P4 −P0)|/8‖~∆‖3 (property
of symmetry). Hence, we can just analyze the first half of the curve by letting t ∈ [0,0.5]
since the curve is symmetric. Taking the partial derivative of κ(t) with respect to t yields

κ′(t) = 24|~∆× (P4 −P0)| F (t)

‖γ′(t)‖5
, t ∈ [0,0.5]. (6.18)

where F (t) =−2‖γ′(t)‖2−3(1−2t)γ′(t)•γ′′(t). It is easy to see that the sign of κ′(t) is the
same as F (t). We then simplify this equation, to obtain

F (x(t)) = 16
(
90‖~Γ‖2x(t)2 − (

27‖~Γ‖2 −24~∆•~Γ)
x(t)−2‖~∆‖2 −9~∆•~Γ

)
. (6.19)

where x(t) = t (1− t) ∈ [0,0.25] for t ∈ [0,0.5] and~Γ, (P4 −P0)/2−2~∆. .

Theorem 6.2.2 The curvature of the fourth order Bézier curve κ(t) is monotonically de-
creasing from t = 0 to t = 1 if and only if ‖~∆‖ ≤ 9L/32. The maximum curvature is given
by κ(0) = 3|~∆× (P4 −P0)|/8‖~∆‖3.

Proof: We just need to show the monotonicity on t ∈ [0,0.5] due to symmetry. To this
end, we can equivalently show that F (x(t)) ≤ 0 for x(t) ∈ [0,0.25] and ‖~∆‖ ≤ 9L/32. Since
F (x(t)) is parabolic and the coefficient of the second order term is positive, we need to
ensure that F (x(t)) ≤ 0 at the two endpoints of the interval of x(t). Hence,

F (x = 0.25) =−‖3
p

2~Γ+4
p

2~∆‖2 ≤ 0, (6.20a)

F (x = 0) =−8
(
9L‖~∆‖−32‖~∆‖2

)
≤ 0, ∀ ‖~∆‖ ≤ 9L/32. (6.20b)

and the result follows. ä

92

For the case that ‖~∆‖ > 9L/32, the maximum curvature is obtained atγ′(t∗) = F ′(x∗(t∗)) =
0, where

x∗(t∗) = t∗(1− t∗) =

9‖~Γ‖2 −8~∆•~Γ−
√

81‖~Γ‖4 +64(~∆•~Γ)2 +216‖~Γ‖2(~∆•~Γ)+80‖~∆‖2‖~Γ‖2

60‖~Γ‖2
. (6.21)

P0 P2

A

B
P4

L

P1

P3W

O D

Figure 6.3: A symmetric fourth order Bézier curve.

Theorem 6.2.3 The fourth order Bézier curve κ(t) has the minimal jerk energy when
‖~∆∗‖ = L/4, where~∆∗ mathematically solves the following minimization problem

~∆∗ = argmin
~∆

E(γ) =
1∫

0

‖γ′′′(~∆, t)‖2 d t . (6.22)

Proof: It follows from the equation (3.2) in [177] that, the jerk energy of the fourth order
Bézier curve generated using control points P0, . . . ,P4 can be represented by

E(γ) = 3350‖Q0‖2 +1440‖Q1‖2, (6.23)

where Q0 = P0 − 4P1 + 6P2− 4P3 +P4 and Q1 = −P0 + 2P1 − 2P3 +P4. Recall that P2 =
(P1 +P4)/2, P1 = P0 +~∆ and P3 = P4 −~∆, then one can simplify the expressions for Q0

and Q1, which are given by Q0 = (0,0), Q1 = 4~∆− (P4 −P0). Hence, in order to minimize
E(γ) we just need to minimize ‖Q1‖. The minimal ‖Q1‖ (|P4O|) is obtained under the

condition that
−−→
P4O ⊥~∆ (see Fig. 6.3), which represents the minimal distance from P4 to

P0D . This result indicates ‖~∆∗‖ = L/4. ä
We notice that the curvature of the fourth order Bézier curve is not zero at both the

two endpoints P0 and P4 (see Fig. 6.3). Consequentially, the transition between the
Bézier curve and the straight line is not smooth. One may consider to use clothoids
to smooth the transition. However, clothoid computation takes time. This dissertation
proposes another method by extending the fourth order Bézier curve in order to obtain
zero curvature at both the two endpoints.

93

P0

P2

A

B

P4

P1

P3

Figure 6.4: Bézier curve reconstruction for smooth transition at endpoints.

Algorithm 9 Path Generation Using 4th Order Bézier Curves

Input: W , A, κ̄max

Output: B , L, γ(t)

1: K ←
√(√

1+ 144
W 2κ̄2

max
−1

)
/2

2: L ← K W , d ←
p

1+K 2

4K W , `← 2K d , B ← A+ (±W,L)

3: θ← arctan `
2d , α← 2θ−π/2

4: ~∆← (0,`/4) (Minimal jerky solution)
5: P0 ← (0,0), P4 ← (±d ,`), P2 ← (P0 +P4)/2, P1 ← P0 +~∆, P3 ← P4 −~∆
6: γ̂(t) =

4∑
i=0

B 4
i (t)Pi , t ∈ [0,1]

7: ~i ← (1,0)

8: ζ(τ) =


2(γ̂(0.5−2τ) ·~i ,0)− γ̂(0.5−2τ) τ ∈ [0,0.25),

γ̂(2τ−0.5) τ ∈ [0.25,0.75],

2(γ̂(2.5−2τ) ·~i ,`)− γ̂(2.5−2τ) τ ∈ (0.75,1].
9: Translation: ζ(τ) ← ζ(τ)+ A+ (∓d/2,`/2)

10: Rotation: γ(t) ← ζ(τ) rotated about A by ∓(π/2−θ)

One notices that the curvature at the midpoint of a symmetric fourth order Bézier
curve is always zero. The curvature of the curve between P0 and P2 changes gradually
from κ(0) to zero (similar as a clothoid). Based on this fact, one can use half of the Bézier
curve to smooth the path, as shown in Fig. 6.4. We reflect the curve segments ÚP0P2 andÚP2P4 about the axises passing through P0 and P4, respectively. Such designed path from
A to B is everywhere C 2 continuous, with the curvature κ(A) = κ(B) = 0 at the endpoints.
We summarize the path planning algorithm using fourth order Bézier curves subject to
the given maximum curvature constraints κ̄max in Algorithm 9.

6.3 Speed Control

Except lane-switching, the other actions such as maintaining, accelerating and braking
are taking place in a single lane. These actions can be completed by maintaining the

94

longitudinal speed of the vehicle, associated with implementing certain lane tracking
controllers (i.e., waypoint follower, two-point visual driver model, etc.). Here, we design
the speed control and lane-switching control separately.

Speed control is mainly designed to achieve the maintaining, accelerating and brak-
ing actions. Based on this fact, one may assume that the vehicle behind will always yield
to the vehicle in front. Consequentially, we only need to check the speed of the vehicle
in front in order to decide the maximum allowed speed of the vehicle we want to control.

Maintaining: The design objective for maintaining control is to maintain certain
constant speed or certain constant distance from the vehicle in front.

Accelerating: The design objective for accelerating control is to speed up the vehicle
and maintain certain high speed afterwards if there is speed limit. The target speed of
the vehicle in steady state should not exceed the speed of the front vehicle.

Braking: The design objective for braking control is to slow down the vehicle and
maintain certain low speed. Under the assumption that every vehicle in traffic will yield
to the vehicle in front, there is no need to consider the speed of the vehicle behind be-
fore taking braking action. Nevertheless, we still have to maintain the minimum safe
distance from the front vehicle during braking.

We only show the controller design for constant distance maintaining from the front
vehicle. We assume that ∆L is the desired distance between vehicle A and B .

We let e1 = YA −YB −∆L, e2 =VA −VB. The error dynamics are given by

ė1 = e2, ė2 = V̇A − V̇B =λ1e1 +λ2e2, (6.24)

By designing λ1 and λ2, one can drive the errors e1 → 0 and e2 → 0 as time t → ∞.
Now let us assume that the front wheel steer angle is small and that the vehicle’s lateral
motion can be neglected during the distance maintaining task. For the vehicles having
a rear wheel drive differential type, the longitudinal dynamics can be simplified to

mBV̇B = fRx. (6.25)

Let V̇B = V̇A −λ1e1 −λ2e2. Since the tire force must be bounded due to the friction con-
dition, we define the following saturation function,

sat(V̇B) =


f Rx/mB, fRx ≥ f Rx,

V̇A −λ1e1 −λ2e2, f
Rx

< fRx < f Rx,

f
Rx

/mB, fRx ≤ f
Rx

,

(6.26)

where f Rx and f
Rx

denote the upper and lower bounds for fRx (to be discussed later).
The wheel dynamics is given as follows,

Iwω̇= TR − fRxRw, (6.27)

where TR is the propulsion torque on the rear wheel, and Iw and Rw are the rotationary

95

inertia and the radius of the rear wheel, respectively. Under the assumption for the zero-
slip rolling condition, the equation VB = ωRw holds. The control torque is determined
as follows,

TR = sat(V̇B)Rw

(
mB + Iw/R2

w

)
. (6.28)

Next, we discuss how to determine f Rx and f
Rx

if the lateral velocity Vy and the longitu-
dinal velocity Vx (approximated by VB) are given. The longitudinal load transfer arising
from the longitudinal acceleration indicates the following equation,

fRx =µRx fRz, fRz = fRxh +mg`f

`f +`r
, (6.29)

where h is the height of the mass center and µRx =−µRsRx/sR. It follows from (6.29) that

fRx = mg`f

(`f +`r)/µRx −h
. (6.30)

Based on the fact that the wheel base `f +`r is larger than the height of the mass cen-
ter h, the maximum longitudinal tire force f Rx (f

Rx
) is obtained when µRx reaches its

maximum value µRx (µ
Rx

).

Furthermore, we assume that the lateral sideslip is small, and for the sake of simplic-
ity, we assume that the total slip of the rear tire does not exceed s∗R, where s∗R corresponds
to the peak of µRx. This assumption indicates that µR increases monotonically with |sR|.
Based on the definition of the slip ratio in (4.6), we can derive the following equation

sRy = (1+ sRx)
VRy

VRx
≈ (1+ sRx) tanβ. (6.31)

In order to find µRx (µ
Rx

), we plot the slip ratio circle in Figure 6.5. The norm of the red

vx

vy

SR

tan β
O

A

B

C

R=SR*

β

β

Figure 6.5: Slip ratio circle.

96

arrow staring from O denotes |sR|. The equation in (6.31) indicates that, when the value
of sRx changes, the arrow representing sR moves along the segment BC . When sRx = 0,
|sR| = |sRy| = tanβ (for β> 0).

Recall that µRx =−µRsRx/sR, since both −sRx/sR and µR reaches their maximum val-
ues at B , the upper bound µRx is therefore obtained at B (maximal acceleration force).
Similarly, the lower bound µ

Rx
is obtained at C (maximal braking force). The results are

summarized as follows

f Rx =
mg`fµ

∗
R

(√
sec2βs∗R

2 − tan2β+ tan2β
)

(`f +`r)s∗R sec2β−hµ∗
R

(√
sec2βs∗R

2 − tan2β+ tan2β
) , (6.32a)

f
Rx

=−
mg`fµ

∗
R

(√
sec2βs∗R

2 − tan2β− tan2β
)

(`f +`r)s∗R sec2β+hµ∗
R

(√
sec2βs∗R

2 − tan2β− tan2β
) , (6.32b)

where u∗
R is the peak friction coefficient, namely, the magnitude D of the magic formula

(4.7), and s∗R = (1/B) tan(π/2C) (let Sh = SV = E = 0).

It is worth mentioning that the results in (6.32a)-(6.32b) only guarantee suboptimal-
ity. In order to find the optimal solution, one can take partial derivative of µRx with
respect to sRx,

∂µRx

∂sRx
=−µR

sR
+

(sRx

s2
R

µR − sRx

sR

∂µR

∂sR

) ∂sR

∂sRx
= 0, (6.33)

which can be solved numerically. The results in (6.32a)-(6.32b) are sufficiently accurate
for this work.

6.4 Lane-Switching Control

We generate a smooth path for lane switching using Algorithm 8 or 9. We still need to
design the tracking controller to follow the Bézier curve. This section designs tracking
controls using an optimal two-point visual driver model and the output regulation the-
ory.

6.4.1 Optimal Driver Model

We simplify the driver model in Figure 3.1 by removing of the kinesthetic perception
feedback since it is not detrimental to the model accuracy and can be neglected [59],
which is shown in Figure 6.6. The mathematical model of the driver subsystem is then
formulated as

ẋd = Adxd +Bdud, (6.34)

yd =Cdxd +Ddud, (6.35)

97

where the state is xd = (xd1, xd2,Tdr)T, the input is ud = (θnear,θfar)T and the output is
yd = Tdr. The system matrices in (6.34) are given explicitly by

Ad =

 − 1
TI

0 0
4
tp

2
tp

0

− 1
TN

1
TN

− 1
TN

 , Bd =


Kc

TI−TL

T 2
I

0

4 KcTL
tpTI

4 Ka
tp

−KcTL
TNTI

− Ka
TN

 ,

Cd = [
0 0 1

]
, Dd = [

0 0
]

,

where Ka, Kc, TL, TI, TN and tp are the six tunable parameters of this driver model. The
model of the overall vehicle-driver-perception system in Figure 3.1 is summarized by

ẋ = Ax +Bu, (6.36)

y =C x, (6.37)

where x = (ωs,δs,β,r,φ,∆y, xd1, xd2,Tdr)T, u = ρref and y =∆y .

Gc (s)

Ga (s)

Delay Gnm (s)

Tcom

Tant

Tdr

θ

Driver Execution Model

near

θfar

desired (=0) nearθ

Figure 6.6: Two-point visual steering control driver model.

Next, we optimize the driver parameters in (6.36)-(6.37) by minimizing the H2 norm
of the closed loop system. For notational simplicity, let p1 = Ka, p2 = Kc, p3 = TL, p4 = TI,
p5 = TN, p6 = tp. In addition to the parameters p1, . . . , p6, the driver’s near field look-
ahead distance `s is also an important feature of the driver steering characteristics. We
therefore consider `s as an additional tunable parameter and let p7 = `s. Considering
the physical limits of the human driver, each model parameter is restricted to lie within
some compact interval, pi ∈ [pi , pi], i = 1,2, . . . ,7. Let p = (p1, p2, . . . , p7) ∈ R7, and let

P = [p1, p1]× [p2, p2]×·· ·× [p7, p7] ⊂R7. Note that the matrices A and B in (3.13)-(3.14)
depend on p. In the following, we will use the notation A(p) and B(p) to emphasize this
explicit dependence on p, when needed, for clarity. The partial derivative of a matrix-
valued function Z : Rm → Rn×n with respect to the vector x ∈ Rm takes the following
form

∂Z (x)

∂x
,

[∂Z (x)

∂x1
,
∂Z (x)

∂x2
, . . . ,

∂Z (x)

∂xm−1
,
∂Z (x)

∂xm

]
∈Rn×mn ,

98

where xk denotes the kth element of the vector x, where

∂Z (x)

∂xk
=


∂Z11(x)
∂xk

∂Z12(x)
∂xk

. . . ∂Z1n (x)
∂xk

∂Z21(x)
∂xk

∂Z22(x)
∂xk

. . . ∂Z2n (x)
∂xk

...
...

. . .
...

∂Zn1(x)
∂xk

∂Zn2(x)
∂xk

. . . ∂Znn (x)
∂xk

 ∈Rn×n

and where Zi j (x) is the (i , j) entry of Z (x), with k = 1,2, . . . ,m and i , j = 1,2, . . . ,n.

First, note that system (6.36)-(6.37) is strictly proper. We need to keep the state ma-
trix A(p) in (6.36) Hurwitz by choosing appropriate driver parameter vector p ∈P . This
condition imposes a set of nonlinear constraints on the parameter vector p. Further-
more, the H2-norm of the system from u = ρref to y = ∆y (when Tcon = 0) can be com-
puted from [179]

‖G(s, p)‖2
2 = tr[CWc(p)C T], (6.38)

where G(s, p) =C (sI − A(p))−1B(p). The matrix Wc(p) satisfies the Lyapunov equation

Wc(p)AT(p)+ A(p)Wc(p)+B(p)B T(p) = 0, p ∈P . (6.39)

Assuming the pair (A(p),B(p)) is controllable for all p ∈ P , it follows (6.39) that
Wc(p) > 0 for all p ∈ P . The optimal parameters of the driver should minimize (6.38),
that is, we want to solve the following problem

min
p∈P

tr[CWc(p)C T], (6.40a)

s.t. Wc(p)AT(p)+ A(p)Wc(p)+B(p)B T(p) = 0, ∀p ∈P , (6.40b)

Wc(p) > 0, ∀p ∈P . (6.40c)

Note that the parameter vector p enters nonlinearly in the expressions for A(p) and
B(p). We use a gradient descent algorithm to find the minimum value of the constrained
nonlinear problem (6.40). To this end, let J (p) = tr[CWc(p)C T]. The partial derivative of
J (p) with respect to the vector p is computed as follows

∂J (p)

∂p
= ∂

∂p
tr [CWc(p)C T] =C

∂Wc(p)

∂p
(Im ⊗C T), p ∈P , (6.41)

where Wc(p) satisfies the Lyapunov equation in (6.39), and m is the length of p. Note
that the solution of (6.39) can be written as [179]

Wc(p) =−vec1
−1

(
[A(p)⊕ A(p)]−1vec1[B(p)B T(p)]

)
, (6.42)

where vec1 :Rn×m →Rnm is the vectorization operator. The matrix A(p)⊕ A(p) in (6.42)
is always invertible for all p ∈ P if the matrix A(p) is Hurwitz. By taking the partial

99

derivative of (6.42) with respect to the parameter vector p, one obtains

∂Wc(p)

∂p
= vec1

−1
(
vec2

(
[A(p)⊕ A(p)]−1∂[A(p)⊕ A(p)]

∂p

(
Im ⊗ [A(p)⊕ A(p)]−1

)(
Im⊗

vec1[B(p)B T(p)]
)
− [A(p)⊕ A(p)]−1vec−1

2 vec1

(∂B(p)

∂p

(
Im ⊗B T(p)

)
+B(p)

∂B T(p)

∂p

)))
,

(6.43)

where vec2 :Rn2×m →Rn2m is the vectorization operator. The partial derivative of A(p)⊕
A(p) with respect to p in (6.43) is given by

∂[A(p)⊕ A(p)]

∂p
= ∂[A(p)⊗ In]

∂p
+ ∂[In ⊗ A(p)]

∂p
= ∂A(p)

∂p
⊗ In +

(
In ⊗ ∂A(p)

∂p

)
Ψm,n , (6.44)

whereΨm,n has the form

Ψm,n =


Im ⊗e1 ⊗ In

Im ⊗e2 ⊗ In
...

Im ⊗en ⊗ In

 ,

where ek denotes the n-dimensional unit row vector, having only the kth element equal
to 1 and all other elements are 0. By substituting (6.43) into (6.41), one obtains the partial
derivative of J (p) with respect to the parameter vector p.

An indirect, alternative method to determine the gradient of J (p) is given as follows.
By taking the partial derivative of the Lyapunov equation in (6.42) with respect to p, one
obtains

∂Wc(p)

∂p

(
Im ⊗ AT(p)

)
+Wc(p)

∂AT(p)

∂p
+ ∂A(p)

∂p

(
Im ⊗Wc(p)

)
+ A(p)

∂Wc(p)

∂p

+ ∂[B(p)B T(p)]

∂p
= 0. (6.45)

One can then solve (6.45) for the partial derivative of Wc(p) with respect to p as fol-
lows

∂Wc(p)

∂p
=−vec1

−1
((

[Im ⊗ A(p)]⊕ A(p)
)−1

vec1

(∂A(p)

∂p

(
Im ⊗Wc(p)

)
+Wc(p)

∂AT(p)

∂p

+∂B(p)

∂p

(
Im ⊗B T(p)

)
+B(p)

∂B T(p)

∂p

))
, p ∈P . (6.46)

The solutions for ∂Wc(p)/∂p given by (6.43) and (6.46) are the same (the proof to
show this conclusion is not provided due to lack of space). Given A(p) and B(p), we can
calculate ∂A(p)/∂p, ∂AT(p)/∂p, ∂B(p)/∂p and ∂B T(p)/∂p and further obtain ∂Wc(p)/∂p
with (6.43) or (6.46). Then the partial derivative of J (p) with respect to p follows directly

100

from (6.41)

∂J (p)

∂p
=−C

(
vec1

−1
((

[Im ⊗ A(p)]⊕ A(p)
)−1

vec1

(∂A(p)

∂p
[Im ⊗Wc(p)]+Wc(p)

∂AT(p)

∂p

+∂B(p)

∂p
[Im ⊗B T(p)]+B(p)

∂B T(p)

∂p

)))
(Im ⊗C T), p ∈P , (6.47)

where Wc(p) is given by (6.42).

6.4.2 Output Regulation

Instead of optimizing the driver parameters, we can develop a tracking controller for
lane keeping/switching, such as an MPC controller or an output regulator [59]. This
chapter designs tracking control using the output regulation theory (ORT). To this end,
we use Fig. 6.7 to calculate the heading error ∆ψ and the lateral error ∆y [60].

In Fig. 6.7, the red curve denotes the reference path we what to track, `s denotes the
preview distance along the vehicle’s heading direction, ψt denotes the angle between
the tangent direction of the reference curve at current location (M) and the XI axis. The
lateral error ∆y denotes the distance between the preview point A and the reference
point B on the target path. The heading error is given by ∆ψ=ψt −ψ, where ψ denotes
the vehicle’s yaw angle. The dynamics equations for ∆y and ∆ψ can be approximatedly

O

A
B

Δψ

YI

ψ

ψ

ls

he
ad

in
g

di
re

ct
io

n

Δy

M

 t

XI

Rref

Figure 6.7: Path tracking error.

given by

∆ẏ =−Vx(β−∆ψ)−`sr +Vx`sρref, (6.48a)

∆ψ̇=Vxρref − r. (6.48b)

where ρref = 1/Rref denotes the reference road curvature. We then linearize the vehi-
cle model in (4.1a)-(4.1c) and combine the vehicle model and the perception model in

101

(6.48a)-(6.48b). We treat the road curvature ρref as the noise term and write the dynam-
ics equation in the form of ẋ = Ax +Bu +Ew , where the state is x = [β,r,∆y,∆ψ]T, the
control is u = δ and the noise is w = ρref.

We design the path tracking control following the approach of [180], with the aim
of eliminating the tracking error at the near preview point, namely, limt→∞∆y(t) = 0.
Such a controller is referred to as the Output Regulation Theory (ORT) controller in that
paper. The control input δ of the ORT controller is a linear combination of a feedback
term and a feedforward term as follows,

δ=Gx +Hρref, (6.49)

where the matrix G is chosen such that the matrix A +BG is Hurwitz. Then H is deter-
mined by solving the following equations, for some matrices Γ andΠ

H = Γ−GΠ, (6.50a)

AΠ+BΓ+E = 0, (6.50b)

CΠ= 0. (6.50c)

The unknown G and H can also be determined by solving a series of linear matrix in-
equalities (see [60]). We can also take the driver into consideration and design a driver-
based ORT controller for the vehicle-driver-perception system in (6.36)-(6.37), following
the equations in (6.49)-(6.50) similarly. More discussion can be found in [60].

6.5 Results and Analysis

In this section we first show the optimal driver parameters and implement the optimal
driver model for lane keeping in simulations using CarSim [123]. We then demonstrate
the overtaking policy learned in Chapter 5 using a traffic simulator along with imple-
menting the path planning algorithms in Section 6.2 and the low level controllers de-
signed in Section 6.3-6.4.

Figure 6.8: Road and vehicle used in Carsim.

102

6.5.1 Optimal driver parameters

The vehicle model is configured with Carsim 8.0 and is initialized with a constant speed
of 15[m/sec](54[km/h]). Other constants can be found in Table 6.1. In addition, we
assume a high-adhesion asphalt pavement with a constant friction factor of 0.89 in the
simulations. The length and the width of the road are configured as 1000[m] and 12[m],
respectively. Figure 6.8 gives a view of the vehicle and the road used in the numerical
simulations. The road curvature is obtained through a sensor provided by CarSim.

Table 6.1: Constant parameters of the vehicle.

m Mass of vehicle 1653 kg
Vx Longitudinal velocity of vehicle 15 m/sec
`f Distance from center of gravity to front axis 1.402 m
`r Distance from center of gravity to rear axis 1.646 m
Ls Distance from center of gravity to far field visual point 15 m
Iz Moment of inertia of the vehicle 2765 kgm2

Js Moment of inertia of the steering column 0.11 kgm2

Cf Front tires cornering power 42000 N/rad
Cr Rear tires cornering power 81000 N/rad
bs Steering gear friction coefficient 0.57 Nm/rad/sec
gs Steering gear ratio 16 –

Kaln Equivalent alignment torque coefficient 359.1 Nm/rad

0 50 100 150 200 250 300
0

50

100

150

200

250

300

Number of iterations

H
2 n

or
m

Figure 6.9: Trajectory of H2 vs. the number of iterations.

We choose the parameters of Driver1 as the initial driver parameters, and perform
the optimization following the steps outlined in equations (3.17)-(3.24). Table 6.2 pro-
vides the upper and lower bounds of each parameter and shows the optimal driver pa-
rameters (Driver4). The H2-norm initially is about 275.83, which is decreased to 33.78

103

as a result of the optimization process. Figure 6.9 illustrates the value of the H2-norm
during the optimization process.

Table 6.2: Driver model parameters.

Parameter Driver1 Driver2 Driver3 Driver4 Upper bound Lower bound
Ka 22 30 45 70 70 10
Kc 14 20 27 50 50 5

TL [sec] 1.6 2.4 3.5 3.03 5 0
TI [sec] 0.35 0.2 0.1 0.02 0.5 0
TN [sec] 0.12 0.12 0.12 0.01 0.2 0.01
tp [sec] 0.1 0.06 0.04 0.01 0.3 0.01
`s [m] 5 5 5 3 15 3

To test the results, the other driver parameters (Driver2 and Driver3) were set as ini-
tial conditions as well, but the optimal parameters turned out to be quite close. By ob-
serving the optimal driver parameters we can note some interesting features. Except for
the lead time constant TL, all optimal parameters are close to their respective bound-
aries. The optimal static gain constants Ka and Kc are at their upper boundaries, while
the time constants TI, TN and tp are at their lower boundaries. These results indicate
that the optimal driver spares no effort in the anticipatory/compensatory control paths,
with negligibly small time delay.

0 10 20 30 40
-3

-2

-1

0

1

2

3

Time [sec]

La
te

ra
l d

ev
ia

tio
n

 [
m

]

Driver1
Driver2
Driver3
Driver4

Figure 6.10: Comparison of tracking errors for all four drivers.

Figure 6.10 comparatively depicts the simulation results from all four drivers. In this
figure, one sees that Driver3 behaves better than Driver1 and Driver2 because the pa-
rameters of Driver3 correspond to a higher driving skill; Also, as expected, Driver4 corre-
sponding to the optimal parameters has the overall best performance. These results are
validated using the H2-norm of the closed-loop system. Table 6.3 shows the H2-norms

104

of the systems with different drivers, and shows that the smaller H2-norm, the smaller
the tracking error. Figure 6.10 and Table 6.3 agree well with each other.

Table 6.3: H2-norms regarding to various drivers.

Driver1 Driver2 Driver3 Driver4
H2 275.83 145.18 108.90 33.78

6.5.2 Path Planning

We implemented both Algorithms 8 and 9 to plan paths for lane switching. The maxi-
mum curvature of each curve is assigned with different values, namely, κ̄max = 0.05,0.1,
0.15,0.2 and 0.25. The width of the lane is W = 4 [m]. We plot the paths in Fig. 6.11.

Given the different requirements on the maximum curvature, the longitudinal lane-

-8 -6 -4 -2 0 2 4 6 8
X [m]

-5

0

5

Y
[m

]

max=0.05

max=0.1

max=0.15

max=0.2

max=0.25

Figure 6.11: Quadratic Bézier curves for lane switching.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t [-]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [1
/m

]

max=0.05

max=0.1

max=0.15

max=0.2

max=0.25

Figure 6.12: The curvature of the quadratic Bézier curves.

switching distance is also different. We then plot the curvature profile for each path, as
shown in Fig. 6.12.

105

Fig. 6.12 shows that the maximum curvature for each path satisfies the design re-
quirement. This result validates the effectiveness of Algorithm 8. Nevertheless, we no-
tice that such designed Bézier curves are only C 1 continuous, since the curvature changes
sign at the joint point of the two quadratic Bézier curves. In order to generate paths with
better smoothness properties, we use Algorithm 9. Next, we implement Algorithm 9 to

-10 -8 -6 -4 -2 0 2 4 6 8 10
X [m]

-5

0

5

Y
[m

]

max=0.05

max=0.1

max=0.15

max=0.2

max=0.25

Figure 6.13: Fourth order Bézier curves for lane switching.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
t [-]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

 [
1/

m
]

max=0.05

max=0.1

max=0.15

max=0.2

max=0.25

Figure 6.14: The curvature of the fourth order Bézier curves.

construct the paths using the fourth order Bézier curves. We keep the same setup for the
road width and the maximum allowed curvatures. The fourth order Bézier curve paths
are shown in Fig. 6.13. We also plot the curvature profile for each path in Fig. 6.14.

The results in Fig. 6.14 and Fig. 6.12 show that the maximum curvature for each path
satisfies the design requirement. This result validates the effectiveness of both Algo-
rithm 8 and 9. Nevertheless, we notice that the quadratic Bézier curves are only C 1 con-
tinuous, since the curvature changes sign at the joint point of the two Bézier curves.
The fourth order Bézier curves are C 2 continuous and the curvature is continuous ev-
erywhere. Since the paths have zero curvature at both the two endpoints, Algorithm 9
provides much better smoothness than Algorithm 8.

106

6.5.3 Path Tracking Control

We then implemented the tracking controller in Section 6.4 to follow the Bézier curves.
Since the optimal driver model has been validated using simulation in a lane-keeping
task in Section 6.5.1, we only show the result by implementing the ORT controller for
lane switching. The vehicle model parameters are summarized in Table 6.4.

Table 6.4: Vehicle model parameters.

m[kg] 850 total mass Iz[kg m2] 1401 rotational inertia
Iwr[kg m2] 0.6 wheel rotational inertia `f[m] 1.5 distance to front axle

h[m] 0.5 height of mass center `s[m] 1 preview distance
L[m] 2.4 wheel base R[m] 0.311 wheel radius

Tire force model parameters B = 3.9 C = 5.4 D = 0.7 E = Sh = Sv ≈ 0

We first generate several reference paths using both the joint quadratic Bézier curves
and the fourth order Bézier curves, respectively. Next, the tracking controller in 6.4 is im-
plemented to track the reference paths for lane switching. Since the fourth order Bézier
curves have better smoothness, we show only the result for tracking the fourth order
Bézier curves to conserve the space (see Figure 6.15).

-30 -20 -10 0 10 20 30
X [m]

0

10

20

30

40

50

Y
 [

m
]

Reference Bezier curves
Simulated path-- max=0.01

Simulated path-- max=0.03

Simulated path-- max=0.05

Simulated path-- max=0.07

Simulated path-- max=0.09

-30 -20 -10 0 10 20 30
X [m]

0

10

20

30

40

50

Y
 [

m
]

Reference Bezier curves
Simulated path-- max=0.01

Simulated path-- max=0.05

Simulated path-- max=0.10

Simulated path-- max=0.15

Simulated path-- max=0.17

V= 10 m/s V= 7 m/s

Figure 6.15: Tracking control for fourth order Bézier curves.

Fig. 6.15 (left) indicates that, given the vehicle velocity approximatedly fixed at 10
[m/s], the controller is not able to track the reference path when the maximum curvature
is larger than 0.09 [1/m]. Tracking errors for small curvature paths are satisfactory. Next,
we reduce the velocity of the vehicle to 7 [m/s] and implement the controller again. The
results are plotted in Fig. 6.15 (right). One sees from Fig. 6.15 that, a larger maximum
curvature may be allowed for tracking control if the velocity of the vehicle is lower.

We recall that the maximum friction coefficient between the tire and the ground is
defined as µmax = D = 0.7 in Table 6.4. One can evaluate the maximum curvature for
path tracking using κmax = µmaxg /V 2, which further indicates that κmax = 0.07 [1/m]
and 0.14 [1/m] for V = 10 [m/s] and 7 [m/s], respectively. This result agrees with 6.15.

107

The fourth order Bézier curves have better smoothness, and the controller designed in
Section 6.4 is able to track the Bézier curves even if κmax is close to κmax.

Figure 6.16: Overtaking scenarios in simulation by implementing π∗
1 .

6.5.4 Overtaking Behavior

We implemented the optimal overtaking policies π∗
1 from Chapter5 and the controllers

designed in Section 6.3-6.4 in simulation. Fig. 6.16 shows four different driving scenarios
(each single row of pictures).

The first row of Fig. 6.16 shows a scenario where there is a vacant space in front of the
HV (green). The HV accelerates to overtake the two trucks in the front on the neighbor
lanes and then maintains certain high speed. The second row shows a scenario where
there is one vehicle in front of the HV and both the left and right lanes are available for
the HV to overtake the front vehicle. Since the road is straight, the HV is free to use either
the left or the right lane to complete the overtaking task. One sees from this figure that
the HV first switches to the left lane, and then accelerates to overtake the front yellow
vehicle. The HV cannot successfully overtake the yellow vehicle since it detects another
car (dark blue) in the front and has to brake to maintain a minimal distance. The third

108

scenario shows one vehicle (blue) in front of the HV but the left lane of the blue TV is
occupied by another vehicle (dark blue). Nevertheless, the HV finds that the dark blue
TV has a higher speed than the blue TV and hence it is possible to overtake the blue TV
from the left lane. The HV then switch to the left lane. The dark blue TV disappears from
the screen since it is running away. The HV then accelerates and maintains a high speed
since there is no vehicle in its front. The last scenario shows another driving scenario
during cornering, which has one vehicle (truck) in front of the HV and only the right
lane of the HV are available to use for overtaking. The HV first switches to the right lane,
which is closer to the inner curb of the corner, and then tries to overtake the truck by
accelerating. However, the HV detects a new vehicle (dark blue) in the front and has to
switch to its right lane again until overtaking is possible. These driving behaviors using
π∗

1 agree with the desired behaviors, which validates the design of the reward function
and the approach of using “dynamic cells” to deal with complicated traffic information1

(i.e., different vehicle velocities, sizes and signals).

6.6 Conclusion

We use a stochastic Markov decision process to model the traffic, and achieve desired
driving behaviors using reinforcement learning. The “dynamic cell” approach is pro-
posed to address the different vehicle velocities, vehicle sizes and driver intents in traf-
fic. We also take the road geometry into consideration such that the driving policy may
change depending on the road curvature.

By designing the driver’s reward function, we are able to show typical driving be-
haviors such as overtaking and tailgating, using the Q-learning algorithm to learn the
corresponding optimal policies. We have demonstrated these policies using a road with
five lanes and with each TV implementing a random policy on a self-developed simu-
lator based on Pygame. In order to complete lane-switching, we separate the task into
a path planning task and a tracking control task. We then formulate two different algo-
rithms to generate the smooth paths using both the joint quadratic Bézier curves and
the fourth-order Bézier curves subject to certain maximum curvature constraint. The
joint quadratic Bézier curves use less space to create a path. Nevertheless, the path is
only C 1 continuous and it is more difficult to track than the fourth-order Bézier curves,
which are C 2 continuous and have better smoothness. We design the tracking control
based on the output regulation theory. Simulation results validate the effectiveness of
both the path planning algorithms and the design of the controller.

Future work will focus on improving the work to incorporate pedestrians, traffic sig-
nals and more road intersections.

1The videos are available on the DCSL youtube channel: https://www.youtube.com/watch?
v=maUt8Cac2WU and https://www.youtube.com/watch?v=393MJA6Kp3I.

109

https://www.youtube.com/watch?v=maUt8Cac2WU
https://www.youtube.com/watch?v=maUt8Cac2WU

CHAPTER 7

PATH PLANNING AND CONTROL: OFF-ROAD RALLY RACING

7.1 Introduction

High-speed cornering is a technique used especially in rally racing, during which the
vehicle is driving at high sideslip angles while cornering to shave off excess speed. Ad-
vanced control system design for (semi-) autonomous vehicles requires understanding
of such aggressive driving maneuvers in order to be able to take advantage of the full
handling capacity of the vehicle, resulting to enhanced stability and safety vehicle char-
acteristics.

Velenis in [181, 182, 183] modeled high-speed cornering (so called trail braking) and
showed that high-speed cornering can be generated as the solution of a minimum-time
cornering problem subject to appropriate boundary conditions. Tavernini [184] investi-
gated minimum-time cornering strategies for a vehicle with different transmission lay-
outs (front-wheel-drive, rear-wheel-drive and all-wheel-drive) using different road sur-
faces, and showed that the minimum-time driving strategy under low-friction condi-
tions turned out to be an aggressive high-drift cornering maneuver. Hindiyeh [185] an-
alyzed the stability of the vehicle under high sideslip drifting conditions and revealed
the existence of unstable equilibria corresponding to a steady-state cornering maneu-
ver. The unstable equilibria during steady-state cornering were also shown by Yi [186],
who proposed a hybrid tire/road model and analyzed the effect of the longitudinal slip
on the lateral stability.

The above papers indicate that high-speed cornering may be approximately mod-
eled using a steady-state cornering process. Nevertheless, the evidence is not clear and
limited work exists on trajectory planning and motion control to generate high-speed
cornering maneuver in real time. To better understand high-speed cornering, this dis-
sertation first generates a series of demonstrations of high-speed cornering trajectories
by solving the minimum-time cornering problem subject to several different initial con-
ditions [182].

Based on these demonstrations, next we learn a primitive trajectory using an itera-
tive EM algorithm, by utilizing an unscented Kalman filter (UKF) along with a dynamic
time warping (DTW) algorithm to align the time indexing of all the demonstrations. The
result is a primitive trajectory, which can be used as the unique prototype to follow dur-
ing high-speed cornering.

This primitive high-speed cornering maneuver indicates the existence of a segment
of sustained steady-state cornering. This observation leads to a decomposition of high-
speed cornering into three stages, namely, guiding, sliding and exiting. Subsequently,
we design a hybrid-mode control strategy for different stages separately, using a combi-
nation of linear and nonlinear control techniques such as the linear quadratic regulator

110

theory (LQR) [187] and differential flatness [188, 189, 190, 191].

This chapter is organized as follows: Section 7.2 formulates the optimization prob-
lem and solves a series of demonstrations of high-speed cornering trajectories. Sec-
tion 7.3 obtains a primitive trajectory from these demonstrations using trajectory learn-
ing. Section 7.4 introduces differential flatness, shows the flatness property of the ve-
hicle model, and explains how differential flatness can be used for trajectory genera-
tion during the entry stage for this problem. Section 7.5 introduces high-speed corner-
ing segmentation and plans the trajectory. Sections 7.6 and 7.7 design and implement
the controller in simulations. Section 7.8 generates real-time high-speed cornering us-
ing auto-rally experimental platform. Finally, Section 7.9 summarizes the results of this
study.

7.2 High-Speed Cornering Trajectories

As a demonstration of high-speed cornering, a high-speed high-sideslip cornering tra-
jectory can be obtained by solving either a minimum-time or a maximum-exit velocity
path optimization problem [181, 192].

The minimum-time path compromises between shortest distance to travel and high-
est average velocity through the corner. The vehicle decelerates until the point of min-
imum radius and accelerates afterwards. In contrast, the maximum-exit velocity path
does not penalize time of travel, but instead maximizes the available time for accel-
erating and hence obtains a larger exit corner velocity. To this end, the maximum-
velocity path compromises between the maximum lowest-velocity during cornering and
the largest available time for accelerating after the vehicle reaches the lowest-velocity.
Oversteering combined with intense braking may be required to get the vehicle ready
for accelerating as soon as possible. A detail analysis can be found in [192].

By comparing the minimum-time and maximum-exit velocity solutions, one sees
that the maximum-exit velocity path has a larger side-slip during cornering, but the av-
erage velocity is smaller and hence the time of travel is longer than the minimum-time
path. This dissertation takes the minimum-time solution as the demonstration of high
speed cornering, since it shows better the high-speed high sideslip cornering ability of
the vehicle.

It is worth mentioning that one distinctive feature of a high-speed cornering trajec-
tory generated by an expert rally driver is the “late apex”, in which the vehicle exits the
corner close to the inner edge of the road [182]. This feature can be observed from the
maximum-exit velocity path, as well as the minimum-time path subject to the fixed fi-
nal positioning of the vehicle after the corner. The vehicle is likely to have to enter the
corner from the outer edge of the road in order to observe a trajectory that exhibits the
“late apex” feature[192].

In this section we formulate the optimization problem. We then obtain high-speed
cornering trajectories by solving the minimum-time cornering problem using numeri-
cal optimization techniques.

111

7.2.1 Problem Formulation

For the sake of convenience, we use V , β and r to represent the state of the vehicle and
rewrite the dynamics equations in (4.1) as follows

V̇ = 1

m

(
fFy sin(β−δ)+ fFx cos(β−δ)+ fRy sinβ+ fRx cosβ

)
, (7.1a)

β̇=−r + 1

mV

(
fFy cos(β−δ)− fFx sin(β−δ)+ fRy cosβ− fRx sinβ

)
, (7.1b)

ṙ = 1

Iz

(
(fFy cosδ+ fFx sinδ)`f − fRy`r

)
, (7.1c)

where the control is chosen as u = [δ, fFx, fRx]T. The lateral tire forces fFy and fRy are
calculated by

fi y = Di sin(Ci atan(Biαi)), i = F, R, (7.2)

where Di ,Ci and Bi are constants, and the tire sideslip angles are given by

αF = δ−atan
(V sinβ+`fr

V cosβ

)
, (7.3a)

αR =−atan
(V sinβ−`rr

V cosβ

)
. (7.3b)

For a 90deg cornering the road geometry is plotted in Figure 7.1. In this figure S1 and
S2 denote the lengths of the two straight road segments before and after the corner, and
Rref and O denote the radius and the center of the centerline of the corner, respectively.
The vehicle enters from Point A and exits from Point D with certain initial and final
velocities.

We momentarily assume that the general case of a high-speed cornering maneuver
does not have to show the “late apex” feature (but later we still generate high-speed
cornering with “late apex”), and hence we relax the fixed positioning condition of the
vehicle after the corner. The minimum-time cornering optimal control problem is then
formulated as follows

min
u

tf, (7.4)

subject to dynamics (4.1a) and (4.1c) and boundary conditions

X (t0) = XA, Y (t0) = YA, ψ(t0) = π

2
,

V (t0) =V0, β(t0) = 0, r (t0) = 0,

X (tf) = XD, ψ(tf) =π,

and the constraints − d

2
<∆s < d

2
for ∀t ∈ [t0, tf],

where t0 and tf are the initial and final time, respectively; (XA,YA) are the coordinates of

112

the initial position A, XD is the horizontal coordinate of final position D , and V0 is the
initial velocity. ∆s is the deviation of the vehicle’s mass center from the centerline of the
road, which is calculated by

∆s =


X −Rref, if atan2(Y , X) < 0,√

X 2 +Y 2 −Rref, if 0 É atan2(Y , X) É π

2
,

Y −Rref, if atan2(Y , X) > π

2
,

(7.5)

where atan2(·, ·) is a function that returns the four quadrant arctangent of the arguments.

O

YI

R re
f

A

B

S 2

C

XI

d

D

S 1

Figure 7.1: Road geometry.

7.2.2 Optimal Trajectories

In this section, we specify the geometry of the road and solve for the optimal trajectories
of the vehicle subject to different initial conditions. For instance, by assigning the road
geometry parameters S1 = S2 = 5 [m], Rref = 10 [m], d = 2 [m] (see Figure 7.1), and the
fifteen different initial positions and velocities (see Table 7.1), the minimization problem
in (7.4) can be solved numerically. The vehicle model parameters we use to solve (7.4)
are summarized in Table 4.1, which are from an actual fifth-scale auto-rally platform
(see Section 7.8.2 for more descriptions).

Table 7.1: Initial conditions.

Initial Position A [(m,m)] (9.5,−5), (10,−5), (10.5,−5)
Initial Velocity V0 [m/s] 6, 7, 8, 9, 10

The optimal control solver GPOPS II [193] was used to obtain numerically the solu-
tion. The results, for all fifteen trajectories are shown in Figure 7.2(left).

Based on the results in Figure 7.2(left), one sees that the minimum-time cornering
solutions tend to pass through the corner close to the inner boundary of the road. We

113

-5 0 5 10 15

X [m]

-5

0

5

10

Y
 [

m
]

Optimal Trajectories

-5 0 5 10 15

X [m]

-5

0

5

10

Y
 [

m
]

Optimal Trajectories

Figure 7.2: Optimal trajectories for different initial positions and velocities.

can also see how “late apex” is effected by different initial positions. Figure 7.2(right)
keeps three of the trajectories and shows their tangential points to the inner edge of the
road. All trajectories in Figure 7.2(right) are generated using the same initial velocity (6
[m/s]). “Late apex” is more obvious if the initial position is closer to the outer edge of
the road. This result indicates that, in order to generate high-speed cornering with “late
apex”, one may require to steer the vehicle to the outer boundary before entering the
corner, which is typically how expert human rally drivers initiate a high-speed cornering
maneuver [ref].

7.3 Trajectory Learning

In this section we present an algorithm to learn a primitive high-speed cornering tra-
jectory from the demonstrations shown in Figure 7.2. The algorithm is based on the
approach initially proposed in [194], which assumes that each demonstration is an in-
dependent, noisy observation of some (unknown) primitive trajectory, along with a pos-
sible time reparameterization.

7.3.1 Generative Model

To proceed with the analysis, we suppose that we are given M representative demon-
strations of length Nk for k = 0,1, · · · , M −1. Each trajectory is assumed to be a discrete
sequence of states xk

j and controls uk
j , which are composed into the augmented state:

yk
j =

[
xk

j

uk
j

]
, j = 0,1, · · · , Nk −1, k = 0,1, · · · , M −1. (7.6)

We then define the “hidden" target trajectory z∗ of length T , which is denoted by

z∗
t =

[
x∗

t
u∗

t

]
, t = 0,1, · · · ,T −1. (7.7)

114

The hidden trajectory in (7.7) must satisfy the system dynamics in (7.1)-(??). Assuming
the control in the hidden trajectory does not change fast with time, the hidden trajectory
satisfies the following equations,

ẋ∗ = f (x∗,u∗), (7.8a)

u̇∗ = η, (7.8b)

η̇= 0, (7.8c)

After discretizing (7.8) and assuming some external noise, yields

z∗
t+1 = f ∗(z∗

t)+w (z)
t , (7.9a)

ηt+1 = ηt +w (η)
t , (7.9b)

where w (z)
t ∼N (0,Σ(z)) and w (η)

t ∼N (0,Σ(η)) are Gaussian process noises. The value of
Σ(η) determines the smoothness of u∗ for the hidden trajectory. The function f ∗ is given
by

f ∗(z∗
t) =

[
f (x∗

t ,u∗
t) dt +x∗

t
ηt dt +u∗

t

]
, t = 0,1, · · · ,T −1. (7.10)

The demonstrations are independently observed from (7.9). The observations are
therefore given by

yk
j = z∗

τk
j
+w (y)

j , (7.11)

where w (y)
j ∼N (0,Σ(y)) is Gaussian observation noise. Here τk

j is the time index in the

hidden trajectory to which the observation yk
j is mapped. The observation model is

shown graphically in Figure 7.3(left). Since τk
j are not observed, we assume the following

distribution with parameters d k
i

P
(
τk

j+1|τk
j

)
=



d k
1 if τk

j+1 −τk
j = 1,

d k
2 if τk

j+1 −τk
j = 2,

d k
3 if τk

j+1 −τk
j = 3,

0 otherwise,

(7.12)

with τk
0 = 0, where

3∑
i=1

d k
i = 1, d k

i Ê 0. (7.13)

For the sake of simplicity, in this work we apply inter/extrapolation to each demon-
stration with the given time index τk

j , such that the demonstrations have the same length

115

as the hidden trajectory. This idea is shown in Figure 7.3(right).

*
0z *

1z *
2z *

3z *
4z

k
0y k

1y k
2y

k
0τ k

1τ k
2τ

*
0z *

1z *
2z *

3z *
4z

k
0y k

1y k
2y k

3y k
4y

k
0τ k

1τ k
2τ k

3τ k
4τ

Figure 7.3: Graphical observation model with time indexing τk
j .

By comparing the two plots in Figure 7.3, one sees that the unobserved states z∗
2

and z∗
4 in Figure 7.3(left) are observed in Figure 7.3(right). The new observation in Fig-

ure 7.3(right) is considered to be reasonably accurate if the sampling interval is small
and the demonstrations yk

j in (7.6) are smooth. Since the demonstrations now have the
same length as the hidden trajectory, we can rewrite Equation (7.11) as follows

y0
j

y2
j

...
y M−1

j

=


I
I
...
I

z∗
j +


0w (y)

j
1w (y)

j
...

M−1w (y)
j

 , (7.14)

where the M Gaussian observation noises 0w (y)
j , . . . ,M−1w (y)

j are assumed to be indepen-
dent and identically distributed. The most likely hidden trajectory is then obtained by
solving the following maximization problem

max
τ,d ,Σ(·)

log P(y ;τ,d ,Σ(·)), (7.15)

where P is the joint likelihood of the observed trajectories y for the learned parameters
τ,d ,Σ(·).

To optimize the function in (7.15) we alternatively optimize over τ,d and Σ(·). The
procedure of optimization is described as follows. Given the initial values of τ,d and
Σ(·), one can implement an UKF to obtain the estimates for the distribution of the “hid-
den” target trajectory z∗. We denote the result as z̄ ∼ N (µt |t−1,Σt |t−1). For the current
estimate z̄, the measurements y , and the initial values of τ and d , one updates the co-
variances Σ(·) in the M-step using the standard EM algorithm. Next, for the updated
covariances Σ(·), we optimize the time indexing τ that maximizes the joint probability
P(z̄, y,τ) using a dynamic time warping program. We optimize d in the last step. The
algorithm is summarized in Algorithm 10.

116

Algorithm 10 Trajectory Learning Algorithm

Input: y
Output: z∗, τ∗, d∗, ∗Σ(·)

1: Σ(·) ← I ,d k
j ← 1

3 ,τk
j ← j T−1

N k−1
2: Converge ← False
3: while not Converge do
4: E-step: run UKF to find the distributions zt ∼N (µt |t−1,Σt |t−1) using observations

y
5: M-step: update the covariances Σ(·) using the standard EM update
6: E-step: run dynamic time warping to find τ that maximizes P(z̄, y,τ), where z̄ =
µt |t−1 (or µt |T−1)

7: M-step: estimate d from τ directly
8: if z converges then
9: Converge ← True

10: z∗ ← z, τ∗ ← τ, d∗ ← d , ∗Σ(·) ←Σ(·)

In the trajectory learning algorithm, Step 4) and Step 5) are standard. We show more
detail about Step 6), in which we use a dynamic time warping algorithm to find τ to
maximize P(z̄, y,τ), where z̄ is the mode of the distribution of the latent state computed
using UKF. Mathematically, we want to solve

τ̄= arg max
τ

log P(z̄, y,τ)

= arg max
τ

log P(y |z̄,τ)P(z̄)P(τ)

= arg max
τ

log P(y |z̄,τ)P(τ), (7.16)

where z̄ is fixed to µt |t−1. Using `(·) to denote the log-likelihood, then τ̄ in (7.16) is com-
puted by

τ̄= arg max
τ

M−1∑
k=0

(Nk−1∑
j=0

`(yk
j |z̄τk

j
,τk

j)+
Nk−1∑

j=1
`(τk

j |τk
j−1)

)
, (7.17)

where `(yk
j |z̄τk

j
,τk

j) is given by

`(yk
j |z̄τk

j
,τk

j) = `(yk
j |µτk

j
,τk

j) = (2π)−
L
2 ‖Σ−1

τk
j
‖ 1

2 e
− 1

2 (yk
j −µτk

j
)TΣ−1

τk
j

(yk
j −µτk

j
)

, (7.18)

where L is the length of the vector z̄τk
j
, µτk

j
= µτk

j |τk
j −1 and Στk

j
= Στk

j |τk
j −1 are calculated

in Step 2) of the Trajectory Learning Algorithm. Since the M observations are indepen-
dent, the likelihoods for the M observations in (7.17) can be maximized separately. The
maximization problem in (7.17) can be solved using dynamic programming.

117

7.3.2 Primitive High-Speed Cornering Trajectory

After implementing the previous Trajectory Learning Algorithm we obtain the result
shown in Figure 7.4.

-5 0 5 10

X [m]

-5

0

5

10
Y

 [
m

]

Learned Trajectory

Figure 7.4: Multiple demonstrations and the learned primitive trajectory.

The primitive trajectory in Figure 7.4 is likely to share a segment of a circle that is
tangent to the inner road boundary, and the vehicle seems to keep a constant side-slip
angle β during the cornering. This observation leads to the conjecture that there is a
segment of steady-state cornering in the primitive trajectory.

Steady-state cornering is characterized by a trajectory of constant radius R, nego-
tiated at a constant speed V , constant yaw rate, and constant side-slip angle [84], as
follows

R = Rss = const., V =V ss = const., β=βss = const., r = r ss = V ss

Rss
= const., (7.19)

where the steady-state triplet (V ss,βss,r ss) are obtained using (7.1) by letting V̇ = β̇= ṙ =
0 as follows

0 = 1

m

(
fFy sin(βss −δss)+ f ss

Fx cos(βss −δss)+ fRy sinβss + f ss
Rx cosβss

)
, (7.20a)

0 =−r ss + 1

mV ss

(
fFy cos(βss −δss)− f ss

Fx sin(βss −δss)+ fRy cosβss − f ss
Rx sinβss

)
, (7.20b)

0 = 1

Iz

(
(fFy cosδss + f ss

Fx sinδss)`f − fRy`r
)
, (7.20c)

where the control components δss, f ss
Fx and f ss

Rx are the steering angle and longitudi-

118

nal tire forces during steady-state cornering. By denoting the constant vector uss =
[δss, f ss

Fx , f ss
Rx]T, the equilibrium (V ss,βss,r ss) with the corresponding control uss are cal-

culated following the equations in Section 3 of [84].

0 0.5 1 1.5 2 2.5 3 3.5
time [sec]

7

7.5

8

8.5

V
[m

/s
]

0 0.5 1 1.5 2 2.5 3 3.5
time [sec]

-1

-0.5

0

0.5

be
ta

 [
ra

d
]

0 0.5 1 1.5 2 2.5 3 3.5
time [sec]

-1

0

1

2

r [
 ra

d/
s

]

A B C

A B C

A B C

Figure 7.5: The velocity, side-slip and yaw motion of the learned primitive.

In order to see the existence of steady-state cornering in the primitive trajectory, we
plot the velocity, side-slip angle and yaw rate of the primitive maneuver in Figure 7.5.
From Figure 7.5 one observes that V ,β and r are quite close to constants from 1.4 second
to 2.4 second, which is typical of steady-state cornering. One also notices that, steady-
state cornering begins after the vehicle has entered the corner for a while and terminates
before the vehicle has left the corner. The large values of V and β indicate that the prim-
itive maneuver indeed performs a high-speed, high-sideslip cornering maneuver.

Based on the result in Figure 7.5, we may divide a high-speed cornering trajectory
into three segments. The first segment allows the vehicle to complete the transition from
straight-line driving to steady-state cornering. Before the vehicle enters the corner, the
vehicle gradually changes its velocity using certain steering and accelerating/braking
operations, until it reaches the target steady state near the entry of the corner. The
vehicle then maintains steady-state cornering during the second segment, until it gets
(close) to the exit of the corner. Finally in the last segment, the vehicle leaves steady-state
cornering and is steered back to straight-line driving after the vehicle exits the corner.

One may generate a high-speed, high-sideslip high-speed cornering maneuver us-
ing this idea. To this end, one first needs to calculate the equilibrium for steady-state
cornering. The main problem occurs after one obtains the target steady state that, one

119

has to guide the vehicle from certain initial condition into the target steady state when
the vehicle enters the corner. This task is challenging, since we need to find a feasible
trajectory for the vehicle to follow such that the vehicle reaches the target steady-state
exactly when the vehicle enters the corner. In order to solve this problem, in this disser-
tation we design the vehicle’s trajectory and the corresponding tracking control using
differential flatness.

7.4 Differentially Flatness Trajectory Generation

In this section we briefly introduce the concept of differential flatness and show that ve-
hicle model (7.1) is differentially flat. This property of the vehicle will allow us to plan the
vehicle’s trajectory and build the corresponding control for the vehicle by using the de-
sired output of the system, which is, indeed, the main theoretical base we use to generate
the target high-speed cornering maneuvers in the following sections of this chapter.

7.4.1 Differential Flatness

Differential flatness theory and flatness-based control were introduced in the late 1980s
by Michel Fliess and his colleagues. It provides an efficient solution to several nonlin-
ear control and state estimation problems [188, 189]. A differentially flat system can be
linearized and controlled through linear control methods[189, 195].

A nonlinear system ẋ = f (x,u) is differentially flat if there exists an output variable
y ∈Rm in the following form

y = h(x,u, u̇, ü, · · · ,u(r)), (7.21)

where x ∈Rn and u ∈Rm , such that

x =Ψ(y, ẏ , ÿ , . . . , y (r)), (7.22a)

u =Φ(y, ẏ , ÿ , . . . , y (r)), (7.22b)

where f is a smooth vector field and h,Ψ and Φ are smooth functions. Equations (7.22)
imply that the state x and the control u can be recovered using the m algebraic output
variables yi , i = 1,2, . . . ,m. The output y given in (7.21) is the flat output of the system.

The authors in [195, 196, 197, 198] designed a tracking control based on the differ-
ential flatness property of the single-track vehicle model, but only [198] used this for
planning trajectories. Although [198] generated the reference trajectories for different
cases from geometric path constraints, the assumptions were strong and the tire was
required to work within its linear region. This dissertation plans the motion of a vehicle
that involves a desired steady-state cornering, and analyzes the conditions on the trajec-
tory in order to be recovered using the differential flatness theory, taking into account of
the road condition and the steering capacity of the vehicle.

120

7.4.2 Differential Flatness of Vehicle Model

In this section we show that the equations (7.1) of the vehicle model are differentially
flat with respect to a particular output. This property is stated in Theorem 7.4.1.

Theorem 7.4.1 The vehicle model in (7.1) is differentially flat with respect to the follow-
ing output [196] [

y1
y2

]
=

[
V cosβ

V sinβ−
(
Iz/m`f

)
r

]
. (7.23)

Proof: To show Theorem 7.4.1, we just need to find the expressions of the state x and
control u in the form of (7.22). To this end, we recall from (7.2) that the lateral tire forces
fi y (i = F,R) are smooth functions of the sideslip angles αi at the front and rear wheels,
respectively. We can then derive the state of the system in (7.1) in terms of the flat output
in (7.23) as follows

V =
√

y2
1 +

(
y2 + Izr

m`f

)2, (7.24)

β= atan
(m`f y2 + Izr

m`f y1

)
, (7.25)

where r = r (y1, y2, ẏ2) is given by solving the following implicit equation,

DR sin
(
CRatan

(
BRatan

((m`f`r − Iz)r −m`f y2

m`f y1

)))
− m`f(ẏ2 + y1r)

`f +`r
, g (y1, y2, ẏ2,r) = 0.

(7.26)

Equations (7.24)-(7.26) give the expressions of the state x in terms of the flat out-
put in (7.23). The control u = [δ, fFx, fRx]T can be recovered from (7.23) by solving the
following equations

fFy(δ, y1, y2, ẏ2)cosδ`f + fFx sinδ`f − Izṙ (y1, ẏ1, y2, ẏ2, ÿ2)− fRy(y1, y2, ẏ2)`r = 0, (7.27a)

m
(

ẏ1 − y2r (y1, y2, ẏ2)− Iz

m`f
r 2(y1, y2, ẏ2)

)
− fRx + fFy(δ, y1, y2, ẏ2)sinδ− fFx cosδ= 0,

(7.27b)

Γ(fFx, fRx) = 0, (7.27c)

where the rear wheel lateral tire force is given by

fRy(y1, y2, ẏ2) = ẏ2m`f + y1r (y1, y2, ẏ2)m`f

`f +`r
, (7.28)

and where Γ(fFx, fRx) in (7.27c) is a force distribution function related to the specific
drive type of the vehicle. Proper choices of Γ(fFx, fRx) for different drive types are given

121

as follows:
a) All-Wheel-Drive (AWD): All four wheels provide accelerating and braking forces,

Γ(fFx, fRx) = κ fFx − (1−κ) fRx, (7.29)

where κ ∈ [0,1] is a constant that need to be specified.
b) Front-Wheel-Drive (FWD): All four wheels provide braking force but only the front
wheels provide accelerating force,

Γ(fFx, fRx) =
{

fRx, if fFx Ê 0,

κ fFx − (1−κ) fRx, if fFx < 0.
(7.30)

c) Rear-Wheel-Drive (RWD): All four wheels provide braking force but only the rear wheels
provide accelerating force,

Γ(fFx, fRx) =
{

fFx, if fRx Ê 0,

κ fFx − (1−κ) fRx, if fRx < 0.
(7.31)

Specifically, the auto-rally vehicle model introduced in Section 7.2 uses only the rear
wheels for accelerating and braking and hence fFx = 0. We can then simplify (7.27) and
determine the remaining control variables δ and fRx by solving the following equations

fFy(δ, y1, y2, ẏ2)cosδ`f − Izṙ (y1, ẏ1, y2, ẏ2, ÿ2)− fRy(y1, y2, ẏ2)`r = 0, (7.32a)

m
(

ẏ1 − y2r (y1, y2, ẏ2)− Iz

m`f
r 2(y1, y2, ẏ2)

)
− fRx + fFy(δ, y1, y2, ẏ2)sinδ= 0. (7.32b)

ä
Equations(7.23)-(7.32) show the differential flatness of the vehicle model in (7.1). In

the following sections, we design a tracking controller based on this differential flatness
property of the single-track vehicle model in order to generate the high-speed cornering
maneuver.

7.5 High-Speed Cornering Trajectory Planning

As mentioned earlier, based on the trajectory learning result in Section 7.3, we assume
that a high-speed cornering maneuver consists of three stages: 1) An entry stage before
the vehicle enters the corner; 2) a sliding stage where the vehicle passes through the
corner at a steady-state; and 3) an exiting stage after the vehicle leaves the corner.

We consider two different scenarios of high-speed, high-slip cornering maneuvers,
as shown in Figure 7.6. In the first scenario, we assume that the vehicle is required to
pass through the corner next to the road centerline. Figure 7.6(left) shows the entire
cornering process for this scenario. S1 and S2 denote the lengths of the straight road
segments, Rref and O denote the radius and the center of the centerline of the corner, Rss

and Oss denote the radius and the center of the arc BPC , and D denotes the road width.

122

O

YI

R re
f

S1

P

A

B

V

S2

C

E

XI

D

d

R
 ss

 ssO

O

YI

R re
f

S1

A

B

V

S2
E

XI

D

 ssO

C

P

R
 ss

1

2
34

θ

Figure 7.6: Road geometry and high-speed cornering trajectory.

d denotes the distance between the inner and outer constraint lines on the vehicle’s
trajectory in the corner, such that the vehicle keeps close to the road centerline. The
points B and C are located on the outer constraint line and indicate the entering and
exiting position of the corner, and P is a tangent point on the inner constraint curve.
The vehicle starts at position A and enters the corner from position B . The trajectory of
the vehicle is divided into three parts: the arc trajectory connecting BC for the steady-
state cornering; and the two pieces of the trajectories connecting AB and C E where the
vehicle enters/leaves the corner.

The second scenario shows the feature of “late apex”, where the vehicle exits the
corner next to the inner edge of the road. This scenario does not require the vehicle to be
close to the road centerline. Figure 7.6(right) shows this maneuver, which postpones the
tangent point P to the second half of the corner and removes the inner/outer constraint
lines. Similarly with the first scenario, the steady-state cornering begins from B , passes
through P and ends up at C . We introduce∠1, · · · ,∠4 to describe the position and length
of the arc BPC . The nonnegative angles∠1 and∠4 denote the vehicle’s late entering and
early exiting positions of the steady-state cornering.

7.5.1 Sliding Trajectory

With the given road geometry shown in Figure 7.6, one can first determine the radius Rss

of the arc BPC for steady state cornering. By assigning appropriate values of ∠1, · · · ,∠4,
one can change the position of the tangent point P and the length of the arc BPC , and
hence obtain a trajectory with the desired “late apex” feature.

We denote the steady-state of the vehicle using the triplet xss = [V ss,βss,r ss]T. As
mentioned before, we can determine the equilibrium xss with the desired cornering
speed V ss, or the desired sideslip angle βss, following (7.20) and the equations in Sec-
tion 3 of [84].

In this dissertation we calculate the equilibrium of the steady-state cornering and
design the sliding mode trajectory offline.

123

7.5.2 Guiding Trajectory

The steady-state triplet xss = [V ss,βss,r ss]T obtained in Section 7.5.1 defines the state of
the vehicle at position B . We assume that the initial state of the vehicle is known at A
and we use the notations in Table 7.2 to represent the boundary conditions.

Table 7.2: Boundary conditions

Speed Slip angle Yaw rate X position Y position Yaw angle
Position A VA βA rA XA YA ψA

Position B V ss βss r ss XB YB ψB

In order to determine a feasible trajectory of the vehicle from A to B , we claim that
the trajectory must be designed to satisfy equation (7.26). To clarify the idea, let us as-
sume that one has designed a trajectory x(t) = [V (t),β(t),r (t)]T, t ∈ [t0, tf], and has cal-
culated the flat outputs y1(t) and y2(t) using the trajectory x(t) following (7.23). How-
ever, it is not possible to recover x(t) = [V (t),β(t),r (t)]T using the flat outputs y1(t) and
y2(t), unless x(t) is designed to satisfy equation (7.26). We summarize this condition in
Proposition 7.5.1.

Proposition 7.5.1 A trajectory defined by x(t) = [V (t),β(t),r (t)]T, t ∈ [t0, tf], can be re-
covered from the output in (7.23) if and only if y1(t), y2(t) and r (t) satisfy equation (7.26).

Proof: a) To show necessity, We need to show that for given x(t) = [V (t),β(t),r (t)]T the
flat outputs y1(t) and y2(t) satisfy the constraint equation (7.26). Recall from (7.23) that

y2 = V sinβ−
(
Iz/m`f

)
r . Then the Lie derivative of y2 along the vector field in (7.1) is

given by

ẏ2 =L f y2(x,u) = `f +`r

m`f
fRy −V r cosβ, (7.33)

where, following equations (7.2) and (7.3b), fRy is given by

fRy =−DR sin
(
CRatan

(
BRatan

(V sinβ−`rr

V cosβ

)))
. (7.34)

Substituting (7.34) into (7.33), and replacing V cosβ and V sinβwith y1 and y2+Izr /m`f,
respectively, we then obtain the equation

DR sin
(
CRatan

(
BRatan

((m`f`r − Iz)r −m`f y2

m`f y1

)))`f +`r

m`f
− ẏ2 − y1r = 0. (7.35)

Equation (7.26) is implied by (7.35) .

b) To show sufficiency, we need to prove that for given flat outputs y1(t), y2(t), one
can solve for the trajectory x∗(t) = [V ∗(t),β∗(t),r ∗(t)]T that generates y1(t) and y2(t).
This is, indeed, guaranteed by the property of differential flatness of the system. The

124

implicit function theorem [199, 200] guarantees the local solvability of (7.26). The condi-
tions are summarized in Theorem 7.5.2, from which one can recover the yaw rate r ∗(t).
The states V ∗(t) and β∗(t) are then calculated directly using the equations (7.24) and
(7.25) in Section 7.4.2. ä

Theorem 7.5.2 Suppose there exists an open setΩ⊆R4 and a point P∗ = (y∗
1 , y∗

2 , ẏ∗
2 ,r ∗) ∈

Ω, such that g (P∗) = 0 and

∂g

∂r

∣∣∣∣
P∗

= DRCRBR

cos
(
CRatan

(
BRatan

(
Π(y∗

1 , y∗
2 ,r ∗)

)))(
m`f`r − Iz

)
(
1+B 2

Ratan2
(
Π(y∗

1 , y∗
2 ,r ∗)

))(
1+Π2(y∗

1 , y∗
2 ,r ∗)

) − m`f y∗
1

`f +`r
6= 0, (7.36)

where

Π(y∗
1 , y∗

2 ,r ∗) = (m`f`r − Iz)r ∗−m`f y∗
2

m`f y∗
1

, (7.37)

then there must be some neighborhood N (P∗) ⊆Ω about P∗ and a continuous function
G : R3 7→ R such that r = G(y1, y2, ẏ2) for all (y1, y2, ẏ2,r) ∈ I , where I , {(y1, y2, ẏ2,r) ∈
N (P∗)|g (y1, y2, ẏ2,r) = 0}.

For details about the implicit function theorem one can refer to [200]. Based on the
idea in Proposition 7.5.1, a feasible trajectory for the vehicle from A to B that satisfies all
boundary conditions in Table 7.2 can be designed as follows.

1) Path design: We need to generate a smooth path connecting A and B in Figure 7.6,
which is denoted as ÙAB . The tangent lines to ÙAB at A and B must be parallel with the
direction of the vehicle’s velocity (see Figure 7.7). We use the cubic Bézier curve to gen-
erate ÙAB [62], which is constructed using four control points, namely, P0, . . . ,P3, and is
represented by

γ(t) = (1− t)3P0 +3(1− t)2tP1 +3(1− t)t 2P2 + t 3P3, t ∈ [0,1], (7.38)

where P0 = A, P3 = B , and the points P1, P2 are unknown and need to be designed.

A (P0)

VA

VB

P 1 P2

O

B (P3)

B’
C’

C

A’

A (P0)

VA
VB

P2

B (P3)

B’

P1

P’2
C’

C

A’

Figure 7.7: Path planning for guiding control.

In this work the optimal choices for the control points P1, P2 are determined by min-
imizing the jerk energy of the Bézier curve ÙAB , namely, we want to solve the following

125

optimization problem,

P∗
1 ,P∗

2 = arg min
P1,P2

E(γ) =
1∫

0

‖γ′′′(P1,P2, t)‖2 d t . (7.39)

By substituting (7.38) into the jerk energy functional E(γ) in (7.39), one obtains the fol-
lowing equation,

E(γ) = 36‖−P0 +3P1 −3P2 +P3‖2. (7.40)

We recall that a Bézier curve lies inside the convex hull defined by its control points.
The path ÙAB must satisfy the road boundary constraints if the control points P1 and
P2 are inside the lane. Hence, if one can find two points P1, P2 inner the lane such
that P1P2 ∥ P0P3 and the length ‖P1P2‖ = ‖P0P3‖/3 (see Figure 7.7(left)), then such P1,
P2 are the optimal solution and the optimal jerk energy is E∗(γ) = 0. Nevertheless, in
some cases the optimal jerk energy E∗(γ) cannot be zero and the corresponding op-
timal control points P∗

1 and P∗
2 may not be obtained inner the lane. For instance, in

Figure 7.7(right) the optimal control point P∗
1 is selected on the road boundary in or-

der to minimize the jerk energy, which is given by E∗(γ) = 324‖P1P ′
2‖2 in this case. We

summarize the path planning algorithm in Algorithm 11.

Algorithm 11 Path Generation Using Cubic Bézier Curves

Input: A, B , VA, VB

Output: P∗
1 , P∗

2 , γ(τ)
1: P0 ← A, P3 ← B
2: Determine C on segment AB : ‖BC‖ = ‖AB‖/3
3: Determine B ′ on the outer boundary where BB ′ ∥VB

4: Determine C ′ on the outer boundary where CC ′ ∥ BB ′
5: Determine A′ on the inner/outer boundary where A A′ ∥VA

6: if A′ ∈ outer boundary then
7: if A A′ crosses CC ′ (ideal case: E∗(γ) = 0) then
8: P∗

1 ← intersection of A A′ and CC ′

9: Determine P∗
2 on BB ′ where P∗

1 P∗
2 ∥ AB

10: else
11: P∗

1 ← A′

12: Determine P∗
2 on BB ′ where C ′P∗

2 ∥ AB

13: else
14: P∗

1 , P ′
2 ← arg min

P1∈A A′,P ′
2∈CC ′

‖P1P ′
2‖ (see [201])

15: Determine P∗
2 on BB ′ where P ′

2P∗
2 ∥ AB

16: γ(τ) = (1−τ)3P0 +3(1−τ)2τP∗
1 +3(1−τ)τ2P∗

2 +τ3P3, τ ∈ [0,1]

2) Speed profile design: In order to achieve maximum speed, this work refers to [202]
to design the speed profile along the trajectory generated using Algorithm 11, with the

126

extension that we use a single track model instead of a single mass model as in [202].
This allows to take into account the longitudinal load transfer arising from the acceler-
ating/braking of the vehicle.

We formulate an optimal control problem to find the optimal speed profile. Let f̂i j

(i = F,R and j = x, y) denote the longitudinal and lateral friction forces at the front and
rear wheels represented in the frame XV−C .M .−YV (fixed on the chassis, see Figure 1.3).
The components f̂i j should not be confused with the components fi j in (4.1a)-(4.1c). In
the case of the vehicle having rear wheel drive of a differential type, we assume that: a)
The lateral tire force of the front wheel f̂Fy is always able to balance the moment arising
from the lateral tire force of the rear wheel f̂Ry, and b) The time derivative of the yaw rate
along the trajectory is small, namely, ṙ (s) ≈ 0, where s denotes the length of the path.
Hence, one can approximate the front wheel tire forces from

f̂Fy = f̂Ry`r/`f, (7.41a)

f̂Fx =− f̂Fy tan(δ−αF) =− f̂Ry`r(`f +`r)/`fR(s), (7.41b)

where R(s) denotes the radius. We use µ̄ to denote the peak friction coefficient and as-
sume that the velocity V (s) satisfies V 2(s)−µ̄g R(s) ≤ 0. Then the limit of the acceleration
a can be determined by solving (7.41a)-(7.41b) and the equations (7.42a)-(7.42d),

f̂Ry = mV 2(s)`f
/

(`f +`r)R(s), (7.42a)

ma = f̂Rx + f̂Fx, (7.42b)

µ̄ fRz =
√

f̂ 2
Ry + f̂ 2

Rx, (7.42c)

fRz(`f +`r) = mah +mg`f, (7.42d)

The result is given by

amin =−B−p
∆

2A
, (7.43)

amax =−B+p
∆

2A
, (7.44)

where A = µ̄2h2/(`f +`r)2 −1, B = 2µ̄2g h`f/(`f +`r)2 −2V 2`r/R2, and ∆ = B2 −4AC ,
and where C = µ̄2g 2`2

f /(`f − `r)2 −V 4`2
r /R4 −V 4`2

f /(`f − `r)2R2. If we define the new

states z1 , s, z2 , ds/dt =V , the state equations may be written as

ż1 = z2, (7.45a)

ż2 =−B(z1, z2)+u
p
∆(z1, z2)

2A
, u ∈ [−1,1]. (7.45b)

Next, we derive the feasibility condition for (7.45). Since it is not possible to speed up
the vehicle when the total tire force of the driving wheel reaches its peak value, it follows

127

that mż2 = f̂Rx + f̂Fx = 0, while (7.42c) holds. The feasibility region for (7.45) is given by

S ,
{

(z1, z2) : C0(z1, z2), z2
2 − µ̄g R(z1)

/√
1+`2

r (`f +`r)2
/
`2

f R2(z1) ≤ 0
}

. (7.46)

We want to determine the optimal control u that drives (7.45) along a given trajectory in
minimum time tf subject to (7.46). Mathematically, we want to solve the optimization
problem

min
u

tf, (7.47)

subject to (7.46) and the following boundary conditions

z1(t0) = z10, z1(tf) =z1f, z2(t0) = z20, z2(tf) = z2f.

Next, we solve problem (7.47). The Hamiltonian for this problem is given by

H(z,κ,u) = 1+κ1z2 −κ2
B(z1, z2)+u

p
∆(z1, z2)

2A
+κ3C0(z1, z2). (7.48)

The dynamics equations for the adjoint states are κ̇1 = −∂H/∂z1 and κ̇2 = −∂H/∂z2,
which are given by

κ̇1 = κ2

2A

∂B(z1, z2)

∂R(z1)
R ′(z1)+ κ2u

4A
p
∆(z1, z2)

∂∆(z1, z2)

∂R(z1)
R ′(z1)

+κ3µ̄g
1+2`2

r (`f +`r)2
/
`2

f R2(z1)(
1+`2

r (`f +`r)2
/
`2

f R2(z1)
)3/2

R ′(z1), (7.49a)

κ̇2 =−κ1 + κ2

2A

∂B(z1, z2)

∂z2
+ κ2u

4A
p
∆(z1, z2)

∂∆(z1, z2)

∂z2
+ µ̄g R ′(z1)−2κ3z2, (7.49b)

Lemma 7.5.3 Assume R ′(z1) 6= 0 and R ′(z1) 6= −Γ(R(z1))/Π(R(z1)) for any z1 ∈ (z1(t0), z1(tf)),
where

Γ(R(z1)) =
(
2µ̄g`f`r

/√
`2

f R2(z1)+`2
r (`f +`r)2 − µ̄2g h`f

/
(`f +`r)

)/
(1+ µ̄2h2), (7.50)

Π(R(z1)) = µ̄g
(
1+2`2

r (`f +`r)2/`2
f R2(z1)

)/
2
(
1+`2

r (`f +`r)2/`2
f R2(z1)

)3/2
. (7.51)

Then the manifold ∂S , {(z1, z2) : C0(z1, z2) = 0} is not invariant for the system (7.45) for
any control u.

Proof: Invariance of ∂S implies the following equation,

z2ż2 −Π(R(z1))R ′(z1)ż1 = 0, (7.52)

128

Since ż1 = z2 > 0, (7.52) is equivalent to

ż2 −Π(R(z1))R ′(z1) = 0. (7.53)

Given C0(z1, z2) = 0, one is able to derive the following condition using (7.41) and (7.42),

ż2
2 + ż2Γ(R(z1)) = 0. (7.54)

Equations (7.53) and (7.54) imply either ż2 = R ′(z1) = 0 or R ′(z1) = −Γ(R(z1))/Π(R(z1)),
which contradicts the given conditions in Lemma 7.5.3. ä

The paths satisfying R ′(z1) = −Γ(R(z1))/Π(R(z1)) are not common to see. An inter-
esting result of Lemma 7.5.3 is that ∂S may be invariant under (7.45) only for the paths
having constant curvature.

Proposition 7.5.4 Assuming that C0(z1, z2) < 0 holds throughout the optimal trajectory,
then there can be no singular subarcs.

Proof: The Kuhn-Tucker condition implies that κ3C0(z1, z2) = 0 and the transversality
condition implies H(tf) = 0. Since the Hamiltonian does not depend explicitly on time,
it follows that

H(t) = 0, ∀ t ∈ [t0, tf]. (7.55)

Assume that the constraint is inactive, namely, C0(z1, z2) < 0, hence one obtains κ3 =
0 (Kuhn-Tucker condition). It follows from Pontryagin’s Maximum Principle that the
optimal control is given by

u∗ = arg min
u∈[−1,1]

H(z,κ,u) =
{
−1, for κ2 > 0,

1, for κ2 < 0,
(7.56)

which further implies that u∗ =−sgn κ2(t) where κ2 is the switching function. Suppose
there exists a singular control interval (t1, t2) ⊂ [t0, tf] such that κ2(t) = 0 for ∀t ∈ (t1, t2).
κ2(t) = 0 also implies that κ̇2(t) = 0. Then it follows from (7.49b) that κ1 = 0 and hence
H(t) = 1 for t ∈ (t1, t2), which contradicts condition (7.55). ä

Proposition 7.5.5 Assuming that C0(z1, z2) < 0 holds throughout the optimal trajectory
and the curvature of the trajectory is constant or monotonically decreasing/increasing,
then there can be at most one switching in the control from u = 1 to u =−1.

Proof: Suppose there exists a switching time t1 ∈ (t0, tf) such that κ2(t1) = 0. Then the
transversality condition (7.55) implies κ1(t1) =−1/z2(t1). Based on the fact that the ve-
locity z2 > 0, one obtains κ1(t1) < 0 and hence κ̇2(t1) > 0. Therefore κ2 changes sign from
negative to positive at t1, and the control switches from u = 1 to u =−1.

Similarly, one can see that any other switching point in (t0, tf) has to be from u = 1
to u =−1. Since there can be no two consecutive switching points from u = 1 to u =−1

129

without a switching point from u =−1 to u = 1 inbetween, t1 can be the only switching
point in the interval (t0, tf) ä

Proposition 7.5.5 indicates that for a given path from A to B with constant or mono-
tonically decreasing/increasing curvature, one can construct the speed profile by for-
ward integration of (7.45) from (zA

1 , zA
2) with u = 1 and by backward integration of (7.45)

from (zB
1 , zB

2) with u = −1. This result is enough for this work since we want to gener-
ate the speed profile for the vehicle driving on a segment of straight road, where the
path curvature can be approximately treated as 0. For more general cases where the
path is composed of a finite number of segments of constant curvature and segments
of monotonically decreasing/increasing curvature, the optimal control solutions for a
single mass vehicle model can be found in [202].

3) Yaw motion design: According to Proposition 7.5.1, the yaw motion of the vehicle
ψ(t) must be carefully designed with respect to the following boundary conditions and
the nonlinear constraint in (7.57),

ψ(t = 0) =ψA, ψ(t = tf) =ψB, ψ̇(t = 0) = rA,

ψ̇(t = tf) = r ss, g (ψ̇(t)) = 0, (7.57)

where the constraint function g was defined in (7.26).

4) Feasibility analysis: The trajectory designed following equations (7.38)-(7.57) does
not take into account the steering range of the front wheel, and hence the trajectory is
required to satisfy the following condition,

min
δ∈[δ,δ]

fFy(δ)cos(δ) ÉΛ(t) É max
δ∈[δ,δ]

fFy(δ)cos(δ), (7.58)

where δ and δ denote the allowed minimal and maximal steering angles of the front
wheel. The termΛ(t) in (7.58) has the following expression,

Λ= my1r`r +mẏ2`r − Izṙ (1+`r/`f)

`f +`r
. (7.59)

The inequality (7.58) provides the necessary condition a feasible trajectory has to
satisfy. One can design a path γ(τ) following Algorithm 11, and then one can design V (t)
and r (t) subject to the constraint in (7.58).

7.6 Control Design

A switching control is designed to achieve the tasks for the three different stages. In the
guiding stage, a tracking controller is designed such that the vehicle is driven to reach
the desired steady-state at the entry of the corner. Afterwards, a stabilizing controller is
designed such that the vehicle follows the steady-state along the desired path. In the ex-
iting stage, the vehicle leaves the corner and switches to a new control mode depending
on the specific task. In this chapter we design a state feedback controller that aligns the

130

posture of the vehicle to be parallel with the road in the exiting stage.

Next, we design the tracking controller that drives the vehicle from A to B following
the trajectory designed in Section 7.5.2 and also design a stabilizing controller that keeps
the vehicle along BPC in steady state using LQR theory.

7.6.1 Tracking Controller

We denote the desired flat output as yd(t) and denote the current output from the plant
as y(t). Then the tracking error is e(t) = y(t)− yd(t) and the accumulated tracking error
is ζ(t) = ∫ t

0 e(τ) dτ+ζ0. The following design drives ζ(t),e(t) → 0 as t →∞ with proper
choices of λ and ν,

ė1 =−λ1e1 −λ2ζ1, (7.60a)

ë2 =−ν1ė2 −ν2e2 −ν3ζ2. (7.60b)

To design λ and ν, we further let E = [ζ1,e1,ζ2,e2, ė2]T. Then the dynamics of the error E

is given by Ė = AE , where

A =


0 1 0 0 0

−λ2−λ1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 −ν3−ν2−ν1

 . (7.61)

If we denote the set of the eigenvalues of A as mspec(A) = {s1, s2, s3, s4, s5}, then it can be
shown that

λ1 =−s1 − s2, (7.62a)

λ2 = s1s2, (7.62b)

ν1 = s3s4 + s3s5 + s4s5, (7.62c)

ν2 =−s3 − s4 − s5, (7.62d)

ν3 =−s3s4s5. (7.62e)

Hence λ and ν can be determined by assigning the eigenvalues s1, s2, . . . , s5 with appro-
priate negative real parts. It then follows from (7.60) that

ẏ1 = ẏd
1 −λ1e1 −λ2ζ1, (7.63a)

ÿ2 = ÿd
2 −ν1ė2 −ν2e2 −ν3ζ1, (7.63b)

and the control u is obtained by solving the following equations:

L f y1(x,u) = ẏ1, L 2
f y2

2(x,u) = ÿ2, (7.64)

131

where L f y1(x,u) and L 2
f y2

2(x,u) are given by

L f y1(x,u) =−sinδ

m
fFy + cosδ

m
fFx + 1

m
fRx +V r sinβ, (7.65a)

L 2
f y2

2(x,u) =
(r

m
sinδ− `fV

Iz
cosδcosβ

)
fFy + `rV

Iz
cosβ fRy −

(r

m
cosδ+ `fV

Iz
sinδsinβ

)
fFx

− r

m
fRx −V r 2 sinβ+ `f +`r

m`f

∂ fRy

∂αR

(∂αR

∂V
V̇ + ∂αR

∂β
β̇+ ∂αR

∂r
ṙ
)
, (7.65b)

and where

∂ fRy

∂αR
= DR cos(CRatan(BRαR))CRBR

1+ (BRαR)2
, (7.66a)

∂αR

∂V
=− `rr cosβ

V 2 cos2β+ (V sinβ−`rr)2
, (7.66b)

∂αR

∂β
=− V 2 −V `rr sinβ

V 2 cos2β+ (V sinβ−`rr)2
, (7.66c)

∂αR

∂r
= V `r cosβ

V 2 cos2β+ (V sinβ−`rr)2
. (7.66d)

The (local) solvability of equations in (7.64) is guaranteed following the implicit func-
tion theorem if and only if the following conditions are satisfied

IzV sinβ(∂ fRy/∂V)+ Iz cosβ(∂ fRy/∂β)+mV `f(∂ fRy/∂r)

m2`2
f

− V 2 cosβ

`f +`r
6= 0, (7.67)

fFy sinδ− ∂ fFy

∂δ
cosδ 6= 0. (7.68)

where
∂ fRy

∂V ,
∂ fRy

∂β and
∂ fRy

∂r are calculated following (7.66) using the chain rule, and
∂ fFy

∂δ is
given by

∂ fFy

∂δ
= DF cos(CFatan(BFαF))CFBF

1+ (BFαF)2
. (7.69)

One can refer to [196] for more analysis on the solvability of (7.64). The scheme of the
controller design can be shown in Figure 7.8.

Tracking
controller

State
feedback

Vehicle
model

y

x, fRy, fFy

uyd e 1y 2y,

Figure 7.8: Scheme of flatness-based vehicle dynamics control.

132

7.6.2 Sliding Controller

After the vehicle reaches position B in Figure 1.3, the controller switches from the track-
ing control mode to the stabilizing control mode. To this end, we first linearize the vehi-
cle model about the steady state xss = [V ss,βss,r ss]T [84] as follows,

ẋ = Assx +B ssu, (7.70a)

y =C x, (7.70b)

where

x =
V −V ss

β−βss

r − r ss

 , u =
 δ−δss

fFx − f ss
Fx

fRx − f ss
Rx

 . (7.71)

Then the optimal control that minimizes the following performance index

min
u

J =
∫ tf

0

(
xTQx +uTRu

)
dt , (7.72)

is given by u =−R−1(B ss)TP x, where P > 0 is the solution of the algebraic Riccati equa-
tion

(Ass)TP +PAss −PB ssR−1(B ss)TP +C TQC = 0. (7.73)

It is worth mentioning that, the controller designed using (7.70)-(7.72) only main-
tains the state of the vehicle in the velocity level, which does not fix the tracking errors
about certain predesigned trajectory. In order to improve the performance of the vehi-
cle for successfully passing though the corner, we consider the following methods: 1)
We calculate a couple of available steady states that have similar V ss but the cornering
radii Rss are different. The controller switches to different steady states to change the
cornering radius such that it is able to avoid hitting onto the road boundaries. 2) We
could redefine the nominal trajectory by including the desired position/orientation into
the reference state vector, such that the controller is able to maintain the distance of the
vehicle from certain predesigned cornering center (fix the cornering radius).

Let us consider the polar coordinates (R,θ) of the vehicle in the corner (see Fig-
ure 7.6(right)), where R denotes the distance of the vehicle from the cornering center
OSS and θ denotes the angle between the position vector and the XI axis. The kinemat-
ics equations can be formulated as follows:

Ṙ =V cos(β+ψ−θ), (7.74a)

θ̇ =V sin(β+ψ−θ)/R, (7.74b)

We then linearize the vehicle model about the new nominal state xref = [V ss,βss,r ss,Rss,
θ,ψ]T at each time step, and redesign the state feedback stabilizing controller following
(7.70)-(7.72), similarly.

133

7.6.3 Exiting Controller

After the vehicle exits steady-state cornering, we want to steer the vehicle to run along
the straight line. We consider the steady state for straight-line driving x̂ss = [V̂ ss, β̂ss, r̂ ss]T =
[V ss,0,0]T, where V ss takes the value of the exit velocity of the vehicle after the corner.
In order to align the vehicle to be parallel with the road, we include a target yaw an-
gle ψss into the state vector, that is, xss = [V ss,0,0,ψss]T. The corresponding control for
steady-state straight-line driving is ûss = [δ̂ss, f̂ ss

Fx , f̂ ss
Rx]T = [0,0,0]T. We linearize the vehi-

cle model about the new equilibria x̂ss and ûss

˙̂x = Âssx̂ + B̂ ssû,

ŷ = Ĉ x̂, (7.75a)

where

x̂ =


V − V̂ ss

β− β̂ss

r − r̂ ss

ψ− ψ̂ss

 , û =
 δ− δ̂ss

fFx − f̂ ss
Fx

fRx − f̂ ss
Rx

 . (7.76)

In order to drive x̂ → 0 as t → ∞, we consider the state feedback control law û = K̂ x̂,
where K̂ is taken such that the matrix Âss + B̂ ssK̂ is Hurwitz. To this end, we solve the
following linear matrix inequalities (LMIs) for the matrices Q and S,

ÂQ +BS+Q ÂT +STB̂ T < 0, (7.77a)

Q > 0. (7.77b)

It follows from (7.77) that K̂ = SQ−1. The state feedback gain K̂ can also be designed
using an LQR solution (see Section 7.6.2).

We then apply acceleration control to speed up the vehicle after it enters steady-state
straight-line driving, using the following control law

fFx = sat(fFx), fRx = sat(fRx), (7.78)

where sat is the saturation function.

7.7 Numerical Simulations

In this section we implement and validate the proposed control architecture in simula-
tions and analyze the results. We plan the high-speed cornering trajectories for different
corner angles and implement the tracking controller, the stabilizing controller and the
exit feedback controller, to generate the entry, sliding and exiting stages of the high-
speed cornering maneuvers respectively.

134

7.7.1 Trajectory Design

We first calculate the equilibrium for the steady-state cornering using the vehicle model
introduced in Section 7.2. Table 7.3 shows the equilibria for steady state-cornering with
different speeds.

Table 7.3: Equilibrium for steady-state cornering.

1 2 3 4 5 6 7 8 9
V ss [m/s] 5 8.5 9.4 10.8 11.9 12.1 13.9 15 6
βss [deg] -2.8 -30 -20 -20 -28 -20 -23 -32 -14.3

r ss [deg/s] 11.3 48.7 35.9 30.9 34.1 27.7 26.5 28 57.3
Rss [m] 25.4 10 15 20 20 25 30 30.7 6

A feasible trajectory that includes the target steady-state cornering process is de-
signed following (7.38)-(7.58). In order to demonstrate the proposed trajectory planning
and controller design, we take the first equilibrium in Table 7.3 and use the segmen-
tation in Figure 7.6(left) for instance. The radius Rref of the corner is 10 [m], and the
straight line segments have lengths S1 = 20 [m] and S2 = 15 [m]. The distance d between
the inner and outer constraints is 2 [m].

Table 7.4: Boundary conditions

t [s] V [m/s] β [deg] r [deg/s] X [m] Y [m] ψ [deg]
Position A 0 9 0 -9.6 0 0 78
Position B 4 5 -2.8 11.3 1 20 122

-4 -2 0 2 4 6 8

X [m]

0
10
20
30

Y
 [

m
] Planned path

Simulated Path

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

50

100

150

 [
de

g
]

Planned
Simulated

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

6

8

10

V
 [

m
/s

]

Planned V
Simulated V

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

-20

0

20

r [
 d

eg
/s

]

Planned r
Simulated r

Figure 7.9: The desired and simulated trajectories.

135

For the boundary conditions and the designed time t given in Table 7.4, we plan the
trajectory and the motion of the vehicle and plot them using green curves in Figure 7.9.
The designed trajectory in Figure 7.9 must satisfy the feasibility condition in (7.58). We
assume that the maximal steering angle is δ = −δ = 0.5 [rad] (28.6 [deg]), and the peak
friction coefficient of the road surface is 0.5. Figure 7.10 shows the required steering
and traction commands with their allowed maximal/minimal values due to the steering
limit of the vehicle and the road condition. The dashed lines indicate the upper/lower
bounds for δ and fRx , respectively. Since the green lines in Figure 7.10 are within the
upper/lower bounds, this trajectory should be possible to be tracked with the current
vehicle model.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

-20

0

20

 [
de

g
]

Recovered
Simulated

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

-100

0

100

f R
x [

N
] Recovered f

Rx

Simulated f
Rx

Figure 7.10: The desired and simulated controls.

7.7.2 Tracking Control

We assign the eigenvalues of the matrix A to be s1 = s2 = s3 =−10 and s4 = s5 =−5 such
that the matrix A is Hurwitz. It follows from (7.62) that the corresponding parameters
for the tracking controller are

λ1 = 20, λ2 = 100, ν1 = 125, ν2 = 20, ν3 = 250. (7.79)

We can then implement the tracking controller using numerical simulations. The
plots in Figure 7.11 show that the desired flat outputs y1 and y2 and the simulated results
agree well with each other.

We compare the simulated trajectory with the trajectory we designed in Section 7.7.1.
The results in Figure 7.9 and Figure 7.11 show that the flatness-based tracking controller
is able to track the trajectory designed following the procedure in (7.38)-(7.58).

Since the system is differentially flat, the control u = [δ, fRx]T (fFx = 0 and hence omit-
ted) to achieve the desired trajectory can be recovered from the designed flat output
by solving equations (7.32). We plot the calculated control and the simulated result in
Figure 7.10. The results in Figure 7.10 also verify the feasibility conditions provided in
(7.58)-(7.58). Finally, we recover the lateral tire forces fi y (i = F,R) using (7.2), which are

136

plotted against the simulation results in Figure 7.12.

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [sec]

0

5

10

15

F
la

t o
ut

pu
t y

1 Planned y
1

Simulated y
1

0 0.5 1 1.5 2 2.5 3 3.5 4
Time [sec]

-1

0

1

2

F
la

t o
ut

pu
t y

2 Planned y
2

Simulated y
2

Figure 7.11: The desired and simulated output.

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

-20

0

20

f Fy
 [

N
]

Calculated f
Fy

Simulated f
Fy

0 0.5 1 1.5 2 2.5 3 3.5 4

Time [sec]

-100

0

100

f R
y [

N
]

Calculated f
Ry

Simulated f
Ry

Figure 7.12: The desired and simulated lateral tire forces.

The above results show that if the reference trajectory and the tracking controller are
properly designed, the entire system can be accurately recovered using the history of the
flat outputs, including the state, the control and the other internal variables such as the
forces.

We then implement the LQR controller after the vehicle reaches position B and im-
plement the state feedback controller after the vehicle exits the corner. The complete
trajectory is plotted in Figure 7.13. The desired high-speed cornering maneuver of the
vehicle can be achieved using the hybrid-mode control that switches between the flatness-
based controller, the LQR controller and the state feedback controller for the exiting
stage.

137

-30 -25 -20 -15 -10 -5 0 5 10 15

X [m]

0

5

10

15

20

25

30

35

Y
 [

m
]

desired path
simulated path

Figure 7.13: Switching-mode control for steady-state cornering.

7.7.3 Late-Apex High-Speed Cornering

In this section we generate high-speed cornering trajectories having “late apex” as shown
in Figure 7.6(right), following the similar control design procedures in Section 7.6.1-
7.6.3. We use the second and the third equilibria in Table 7.3 for steady-state cornering
to achieve a high-speed, high-slip sliding maneuver.

Table 7.5: Road geometry and high-speed cornering trajectory setup.

Road
geometry

S1 [m] S2 [m] Rref [m] D [m] Corner angle [deg]
15 15 10 5 60/90/120/180

Initial
condition

V [m/s] β [deg] r [deg/s] (X ,Y) [(m,m)] ψ [deg]
15 0 0 (Rref,−S1) 90

V ss [m/s] βss [deg] r ss [deg/s] ∠1 [deg] ∠2 [deg] ∠3 [deg] ∠4 [deg]
60 deg 9.4 -20 35.9 6 30 18 6
90 deg 9.4 -20 35.9 9 54 18 9

120 deg 8.5 -30 48.7 12 84 12 12
180 deg 8.5 -30 48.7 18 126 18 18

The road geometry is defined using the parameters in Table 7.5. It is worth mention-
ing that the other equilibria in Table 7.3 have steady-state cornering radius Rss > 20 [m],
which seems too large and is not convenient to use for the road geometry in Table 7.5,
especially when the corner angle is larger than 90 deg. For high-speed cornering with
different corner angles, Table 7.5 provides appropriate choices of the equilibria and the
angles ∠1, . . . ,∠4 that determine the geometry of different high-speed cornering trajec-
tories.

138

We plan high-speed cornering trajectories for different corner angles and implement
the proposed switch-mode controller accordingly. The planned and simulated trajecto-
ries are plotted in Figure 7.14.

-20 -15 -10 -5 0 5 10 15 20 25

X [m]

-15

-10

-5

0

5

10

15
Y

 [
m

]
desired path
simulated path

-15 -10 -5 0 5 10 15

X [m]

-15

-10

-5

0

5

10

15

Y
 [

m
]

desired path
simulated path

-20 -15 -10 -5 0 5 10 15

X [m]

-15

-10

-5

0

5

10

15

Y
 [

m
]

desired path
simulated path

-15 -10 -5 0 5 10 15

X [m]

-15

-10

-5

0

5

10

15

Y
 [

m
]

desired path
simulated path

Figure 7.14: Trail braking maneuver generation for different road geometries.

Figure 7.14 shows the computed high-speed cornering trajectories for 60 deg, 90 deg,
120 deg and 180 deg cornering, respectively. In each figure, the simulated trajectory
agrees well with the planned trajectory. By designing the angles ∠1, . . . ,∠4, one achieves
high-speed cornering with different “late apex” features.

The design of the angles ∠1, . . . ,∠4 must take into account the target equilibrium of
the steady-state cornering. If the radius of the trajectory is very large (i.e., more than
two times of the corner radius), high-speed cornering with “late apex” will be hard to
generate since the target path may cut the outer boundary of the road. One can use
another equilibrium with a smaller steady-state cornering radius or change the angles
∠1, . . . ,∠4 properly (i.e., to reduce ∠2 to move the tangent point P farther from the exit
of the corner). Recommended values of ∠1, . . . ,∠4 are given in Table 7.6:

Table 7.6: “Late apex” specification.

Corner angle ∠1 ∠2 ∠3 ∠4
Ω 0.1Ω (0.5 ∼ 0.7)Ω (0.1 ∼ 0.3)Ω 0.1Ω

139

7.8 Experimental Validation

In this section we generate high-speed cornering maneuvers by implementing the switch-
mode controller on a closed track, using both the high-fidelity CarSim vehicle model and
the auto-rally platform [203].

7.8.1 CarSim Simulation

We first show the simulated high-speed cornering trajectories using CarSim/Simulink
software [123]. The vehicle model parameters are given by Table 6.4.

The geometry of the track is shown in Figure 7.15, where the width of the track is
16 [m], and the inner and the outer corner radii are 5[m] and 21 [m], respectively. The
distance between the two corner centers is 60 [m]. The friction coefficient of the road is
set to be 0.6.

Figure 7.15: Closed track in CarSim.

We then calculate the steady state of the vehicle model using the parameters in Ta-
ble 6.4. In this work we generate high-speed cornering using the initial condition and
the steady state in Table 7.7.

Table 7.7: Boundary conditions

Speed [km/h] Sideslip [deg] Yaw rate [rad/s]
Initial condition 65 0 0

Target SS 29.44 -50 0.68

The switch-mode controller is implemented in the following orders: 1) Given any
current state of the vehicle is in the straight road, the tracking controller calculates the
entry point B of the corner based on the given map of the track. 2) Next, the tracking con-
troller plans a smooth path connecting vehicle’s current position and point B following
Algorithm 11. We implement the tracking control for the next 0.2 seconds. The control

140

commands (i.e., steering angle, throttle and braking wheel cylinder pressures) are pub-
lished at 100 Hz. 3) Repeat step 2 until the vehicle reaches the desired steady-state at the
target position B. 4) Switch to LQR controller after the vehicle enters the corner for SS
sliding (100 Hz). 5) Switch to exiting controller to align the vehicle to follow the straight
road after the vehicle is about to leave the corner (100 Hz). 6) Speed up the vehicle after
it exits the corner to the maximum allowable velocity. 7) Repeat steps 1-6 to finish a cou-
ple of circles along the track. Figure 7.16 shows the velocity, sideslip angle and yaw rate
of the vehicle for a complete circle on the track. The vehicle slides through the corners
at the two ends in the desired steady state from t = 5.5 [sec] to t = 7.5 [sec] and from
t = 17 [sec] to t = 19 [sec], respectively. The animation is available on the DCSL Youtube
channel 1.

0 5 10 15 20 25
Time [sec]

0

50

S
pe

ed
 [k

m
/h

]

simulation
steady state

0 5 10 15 20 25
Time [sec]

-40

-20

0

 [d
eg

]

0 5 10 15 20 25
Time [sec]

-1

0

1

r
[r

ad
/s

]

Figure 7.16: Simulated trajectories.

7.8.2 Auto-Rally Experiments

The simulation results using CarSim validates the control design by applying it on a
high-fidelity vehicle model. Nevertheless, these simulations do not consider the per-
formance of hardware and assume there is no computational delay, which is not realis-
tic for real-time maneuvers. We therefore validated the control design on an fifth-scale
Auto-Rally platform developed at Georgia Tech. The Auto-Rally platform and the test
track are shown in Figure 7.17.

The Auto-Rally platform is driven by two rear wheels, and its top speed can reach up
to 27 [m/s]. The size of the vehicle measures about 1[m]×0.6[m]×0.4[m]. The perimeter
of the centerline of the test track is about 63 [m], and the width is about 3.4 [m]. A more
detailed description of the vehicle model and the test track can be found in [203].

1https://www.youtube.com/watch?v=VN9Tpr8D1tk

141

https://www.youtube.com/watch?v=VN9Tpr8D1tk

Figure 7.17: The test track and the Auto-Rally vehicle platform.

The vehicle and tire model parameters in Table 7.8 are estimated using the approach
in [45, 204] with the data collected from the field test.

Table 7.8: Vehicle/tire model parameters.

m [kg] 21.5 total mass ms [kg] 18.03 sprung mass
mf [kg] 0.84 front wheel mass mr [kg] 0.89 rear wheel mass
wf [m] 0.44 front track wr [m] 0.46 rear track
L [m] 0.57 wheel base R [m] 0.095 wheel radius

Iz [kgm2] 1.02 rotationary inertia `f [m] 0.46 distance of CM to front axle

BF CF DF [N] BR CR DR [N]
4.03 0.02 1192.16 2.45 0.02 5414.88

Figure. 7.18 shows the estimated tire force calculated using the expression in (7.2)
with the identified tire parameters from Table 7.8. The lateral tire force fi y (i = F,R) can
be approximated using (7.2) with satisfactory accuracy.

0 5 10 15 20 25 30

t [sec]

-150

-100

-50

0

50

100

fR
y

[N
]

estimated fRy

data

Figure 7.18: The estimated lateral tire force.

We developed the controller using the ROS software framework. The controller serves
as a ROS node and publishes a throttle command and a steering command at 50 Hz. In
order to validate the control design before running a test on the real track, we imple-
mented the controller on the Gazebo simulator (see [203]) and the trajectory is shown in
Figure 7.19. The target steady state is given by the last column of Table 7.3.

142

-5 0 5 10

X [m]

-5

0

5

10

15

Y
 [

m
]

5

6

7

8

9

V [m/s]

-10 -5 0 5 10 15

X [m]

-5

0

5

10

15

Y
 [

m
]

trajectory

Figure 7.19: The trajectories of Auto-Rally (counter clockwise).

The start and end points of the trajectory are marked with a triangle and a square
signs, respectively. The red stars indicate the target points where the vehicle starts steady
state cornering (point B in Figure 7.6), and the red arcs indicate the desired steady state
cornering trajectories. We measure the boundaries of the track and show them in black
curves. The result shows that the flatness-based tracking controller is able to steer the
vehicle into the corner with the desired speed, and the fixed-radius stabilizing controller
is able to maintain the high sideslip sliding process of the vehicle following the desired
trajectories. The speed of the vehicle is shown in Figure 7.19 using a color map. The
minimum speed is about 6 [m/s] in the corner and the maximum speed is about 9.6
[m/s] near the midpoint of the straight road segments.

Figure 7.20: The speed profile of Auto-Rally.

Next, we implemented the controller using the Auto-Rally platform on the real track.
Figure 7.20 shows the speed profile of the vehicle for a couple of rounds in the tests. The
maximum speed is 9.7 [m/s], which is similar to the highest speed achieved in previ-

143

ous work [142]. The online path replanning process during the guiding stage is demon-
strated by the green curves in Figure 7.21, where a new Bézier curve is generated ev-
ery 0.1 seconds. We also compared the speed profile generated using the single track

-10 -5 0 5 10 15

X [m]

-5

0

5

10

15

Y
 [

m
]

Figure 7.21: Online path replanning.

-10 -5 0 5 10 15

X [m]

-5

0

5

10

15

Y
 [

m
]

0 2 4 6 8 10 12

S [m]

2

4

6

8

10

12

V
 [

m
/s

]

experiment
single-track profile
single-mass profile

Figure 7.22: Online speed profile generating.

model and the speed profile generated using the single mass model [202]. We show the
result in Figure 7.22 (right), which corresponds to the green trajectory in Figure 7.22
(left). The maximum tire friction coefficient in the experiments is about 0.8. One sees
from Figure 7.22 that the speed profile generated using the single track model agrees
better with the experimental result than the speed profile generated using the single
mass model. One also notices that the speed profile generated using the single mass
model is symmetric about the axis through the peak. The reason is that the single mass

144

model does not take into account the longitudinal load transfer arising from the accel-
erating/braking operations, and assumes that the maximum longitudinal tire forces for
accelerating and braking are equal in magnitude. Moreover, the single mass model uses
all wheels for the longitudinal control of the vehicle, which is not true for the Auto-Rally
that has a rear wheel drive differential type, and consequentially, overestimates the max-
imum speed the vehicle is able to achieve.

Figure 7.23 shows a typical trajectory of the Auto-Rally vehicle in a complete round of
experiment, where the vehicle enters the corner from the desired position (the red stars)
and slides through the corner at high speed (5.5-6.5 [m/s]) and high sideslip (10-20 deg).
The video demonstrating this high-speed cornering maneuver is available on the DCSL
Youtube channel2.

-5 0 5 10

X [m]

-5

0

5

10

15

Y
 [

m
]

4.5

5

5.5

6

6.5

7

7.5

8

8.5

9

Figure 7.23: The posture of Auto-Rally in a typical round.

7.9 Conclusion

High-speed cornering is a technique often used by expert rally racing drivers. This dis-
sertation provides a methodology to generate high-speed cornering maneuvers in semi-
analytic form. We first use a trajectory learning technique to find a primitive trajectory
that captures the “essence” of a high-speed cornering maneuver, using a series of high-
speed cornering demonstrations. Based on this primitive trajectory we approximately
divide the high-speed cornering trajectory into three stages, namely, the entry, sliding
and exiting stages, and we show that the middle the sliding stage includes a segment of
steady-state cornering. We then develop a switching-mode control for each stage using
different control techniques to generate high-speed cornering.

2https://youtu.be/3vJDdW6BEiY

145

https://youtu.be/3vJDdW6BEiY

Based on the differential flatness property of the vehicle, we provide a method to
plan the trajectory and design a tracking control. By changing the position of the tan-
gential point of the vehicle’s trajectory and the inner boundary of the road, we can suc-
cessfully generate 60 deg, 90 deg, 120 deg and 180 deghigh-speed cornering maneuvers
at will with different“late apex” features. We demonstrate high-speed cornering ma-
neuvers by implementing the switch-mode controller either in simulations using Car-
Sim/Simulink software or on an Auto-Rally experimental platform. Since our approach
plans the nominal trajectory based on geometry, one does not need to solve optimal
control problems on-the-fly, and hence the computation effort is sufficiently low for
real-time high-speed cornering maneuvers generation.

146

CHAPTER 8

CONCLUSIONS & FUTURE RESEARCH DIRECTIONS

8.1 Conclusions

Autonomous vehicles represent the main trend in future intelligent transportation sys-
tems, which promise to improve traffic safety while, at the same time, increase fuel
efficiency and reduce congestion. In order to develop the control techniques for au-
tonomous vehicles, this dissertation intends to understand and mimic the behavior of
the expert human driver. We successfully generate two typical expert (aggressive) driv-
ing maneuvers in two different scenarios, namely, highway overtaking and off-road au-
tonomous rally racing.

The parameterized two-point visual driver model is utilized to characterize the steer-
ing behavior of a human driver. In order to validate this driver model, we conducted a
series of field tests at Ford’s Dearborn Development Center (DDC) test facility. We show
that the two-point visual driver model is able to satisfactorily predict human driver be-
havior and driving style. Moreover, the results of our investigation indicate that some of
the driver parameters are not exactly constant, but rather vary slowly during a driving
task. Reliable design of an ADAS controller should take into account this effect in order
to consistently provide good performance.

The wavelet transform provides insights into the driver’s control signal, in terms of
the number and the location of the singularities of the signal and the distribution char-
acteristics of the associated Lipschitz exponents. Our analysis shows that the steering
wheel torque of an experienced driver has fewer singularities, and the Lipschitz expo-
nents seem to follow a comparatively more concentrated distribution. These can be
used to characterize the control signal into different levels of smoothness.

Instead of using the standard EKF/UFK for nonlinear parameter estimation, we pro-
pose an adaptive limited memory UKF algorithm (ALM-UKF) that is able to estimate the
system state, model parameters and the Kalman filter hyperparameters related to the
noise simultaneously, hence making possible to provide on-line estimates of the model
parameters. We validate the ALM-UKF with both CarSim simulation data and experi-
mental data from a fifth-scale Auto-Rally vehicle.

In order to reproduce the expert driving style in highway traffic, we use a stochas-
tic Markov decision process to model the behaviors of the surrounding vehicles in traf-
fic, and achieve desired driving maneuvers using both reinforcement learning (RL) and
inverse reinforcement learning (IRL). We propose and validate the new concept of “dy-
namic cell” on an in-house developed traffic simulator. Since the “dynamic cell” is able
to dynamically extract the essential state of the traffic according to different vehicle ve-
locities, driver intents (i.e., lane-switching, braking, etc.) and the sizes of the surround-
ing vehicles (i.e., truck, sedan, etc.), the dimensionality of the state space can be main-

147

tained in a manageable level, and hence the reinforcement learning problem is easily
scalable.

The driver’s reward function can also be recovered from driving data using IRL. We
generalize the formulation of the MaxEnt IRL by using a reward function in the form
of a linear combination of the parameterized features, and we show, for the first time,
that the reward function in the MaxEnt IRL formulation can take any nonlinear form.
Particularly, we propose and validate three new MaxEnt deep IRL algorithms to solve
the model-free MDP problem.

The lane-switching task can be separated into a path planning task and a tracking
control task. We formulate two different algorithms for real-time path planning using
both the joint quadratic Bézier curves and the fourth-order Bézier curves subject to cer-
tain curvature constraint. The fourth-order Bézier curves are everywhere C 2 continu-
ous, and hence it is smooth and easy for tracking control.

Highway overtaking is an expert driving technique where the autonomous vehicle
needs to be able to safely interact with the surrounding traffic vehicles. High-speed cor-
nering is another expert driving maneuver we want to generate. This technique is often
used by experienced drivers in off-road rally racing.

Based on the trajectory learning results, we are the first to show the existence of a
segment of sustained steady-state cornering. Hence, we approximately divide the high-
speed cornering trajectory into three stages, namely, the entry, sliding and exiting stages.
We design a hybrid-mode control strategy for different stages separately, using a com-
bination of linear and nonlinear control techniques. We propose a path planning al-
gorithm that utilizes cubic Bézier curves to minimize the jerk energy, which leads to
smooth paths with gradually changing curvature.

In order to generate minimum-time-travel speed profiles for high-speed cornering,
we extend the approach proposed in [202] by using a single track vehicle model, instead
of a point mass model. The new speed profile generation algorithm is able to consider
the longitudinal load transfer arising from the accelerating/braking process, which bet-
ter represents reality. Since our approach avoids solving optimal control problems on-
the-fly, this approach requires low computation effort, while guaranteeing good racing
performance in terms of the highest speed the vehicle achieved in off-road racing.

8.2 Future Work

Future work may consider the following directions to extend this research:

1) Based on driver parameter estimation, a potential next step would be to use ma-
chine learning ideas to distinguish the behaviors of the drivers, and to classify the drivers
into distinct categories using the features arising from the wavelet transform (i.e., num-
ber of singularities, Lipschitz exponents, etc.).

2) This dissertation assumes there is only one agent (intelligent vehicle) in traffic.
A possible direction for extension may introduce multiple agents incorporated into the
MDP traffic model to coordinate multiple vehicles simultaneously, such that one can

148

better control the traffic flow (i.e., traffic congestion mitigation).

3) Other possible directions for extension may consider more driving scenarios by
incorporating traffic merging/splitting, pedestrians, traffic signals and more road inter-
sections.

4) The path planning and control algorithms for highway overtaking has been vali-
dated on a traffic simulator. Future work may implement and validate these algorithms
in a real-world traffic system.

5) The Auto-Rally experimental platform uses only the rear wheels for longitudinal
control. Future work may consider to generate high-speed cornering using the plat-
forms having different differential types (i.e., FWD, AWD, etc.).

149

REFERENCES

[1] NHTSA(2015), “Traffic safety facts 2014: A compilation of motor vehicle crash
data from the fatality analysis reporting system and the general estimates sys-
tem,” Department of Transportation, National Highway Traffic Safety Adminis-
tration, Washington, DC, USA, Tech. Rep. DOT HS 812 261.

[2] NHTSA et al., “2015 motor vehicle crashes: Overview,” Traffic safety facts research
note, vol. 2016, pp. 1–9, 2016.

[3] D. Hendricks, J. Fell, and M Freedman, “The relative frequency of unsafe driving
acts in serious traffic crashes,” Report no: DOT-HS-809-206, 2001.

[4] W. G. Najm, M. D. Stearns, H. Howarth, J. Koopmann, and J. Hitz, “Evaluation of
an automotive rear-end collision avoidance system,” Department of Transporta-
tion, National Highway Traffic Safety Administration, Washington, DC, USA, Tech.
Rep. Technical Report DOT HS 810 569, 2006.

[5] G. Li, S. E. Li, and B Cheng, “Field operational test of advanced driver assistance
systems in typical chinese road conditions: The influence of driver gender, age
and aggression,” International Journal of Automotive Technology, vol. 16, no. 5,
pp. 739–750, 2015.

[6] S. D. Pendleton, H. Andersen, X. Du, X. Shen, M. Meghjani, Y. H. Eng, D. Rus, and
M. H. Ang, “Perception, planning, control, and coordination for autonomous ve-
hicles,” Machines, vol. 5, no. 1, p. 6, 2017.

[7] D. H. Weir and D. T. McRuer, “Measurement and interpretation of driver steering
behavior and performance,” SAE Technical Paper, Tech. Rep., 1973.

[8] C. C. MacAdam, “An optimal preview control for linear systems,” Journal of Dy-
namic Systems, Measurement, and Control, vol. 102, no. 3, pp. 188–190, 1980.

[9] ——, “Application of an optimal preview control for simulation of closed-loop
automobile driving,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 11,
no. 6, pp. 393–399, 1981.

[10] R. Hess and A Modjtahedzadeh, “A control theoretic model of driver steering be-
havior,” IEEE Control Systems Magazine, vol. 10, no. 5, pp. 3–8, 1990.

[11] I Kageyama and H. Pacejka, “On a new driver model with fuzzy control,” Vehicle
System Dynamics, vol. 20, no. sup1, pp. 314–324, 1992.

150

[12] A. Burgett and R. Miller, “Using parameter optimization to characterize driver’s
performance in rear end driving scenarios,” in Proceedings: International Tech-
nical Conference on the Enhanced Safety of Vehicles, National Highway Traffic
Safety Administration, vol. 2003, Nagoya, Japan, 2003, p. 21.

[13] Y Lin, P Tang, W. Zhang, and Q. Yu, “Artificial neural network modelling of driver
handling behaviour in a driver-vehicle-environment system,” International Jour-
nal of Vehicle Design, vol. 37, no. 1, pp. 24–45, 2005.

[14] C. Cacciabue, Modelling Driver Behaviour in Automotive Environments: Critical
Issues in Driver Interactions with Intelligent Transport Systems. Springer, 2007.

[15] M. Flad, C. Trautmann, G. Diehm, and S. Hohmann, “Individual driver model-
ing via optimal selection of steering primitives,” in World Congress, vol. 19, Cape
Town, South Africa, 2014, pp. 6276–6282.

[16] A Modjtahedzadeh and R. Hess, “A model of driver steering control behavior for
use in assessing vehicle handling qualities,” Journal of Dynamic Systems, Mea-
surement, and Control, vol. 115, no. 3, pp. 456–464, 1993.

[17] C. Chatzikomis and K. Spentzas, “A path-following driver model with longitudi-
nal and lateral control of vehicle’s motion,” Forschung im Ingenieurwesen, vol. 73,
no. 4, p. 257, 2009.

[18] S. D. Keen and D. J. Cole, “Application of time-variant predictive control to mod-
elling driver steering skill,” Vehicle System Dynamics, vol. 49, no. 4, pp. 527–559,
2011.

[19] R. Hamada, T. Kubo, K. Ikeda, Z. Zhang, T. Shibata, T. Bando, K. Hitomi, and
M. Egawa, “Modeling and prediction of driving behaviors using a nonparamet-
ric Bayesian method with AR models,” IEEE Transactions on Intelligent Vehicles,
vol. 1, no. 2, pp. 131–138, 2016.

[20] C. W. De Silva, Modeling and control of engineering systems. CRC Press, 2009.

[21] D. L. Wilson and R. A. Scott, “Parameter determination for a Crossover driver
model,” Department of Mechanical Engineering and Applied Mechanics, Tech.
Rep. UM-MEAM-83-17, 1983.

[22] L. Saleh, P. Chevrel, F. Claveau, J.-F. Lafay, and F. Mars, “Shared steering control
between a driver and an automation: Stability in the presence of driver behav-
ior uncertainty,” IEEE Transactions on Intelligent Transportation Systems, vol. 14,
no. 2, pp. 974–983, 2013.

151

[23] C. Sentouh, P. Chevrel, F. Mars, and F. Claveau, “A sensorimotor driver model for
steering control,” in IEEE International Conference on Systems, Man and Cyber-
netics, San Antonio, TX, 2009, pp. 2462–2467.

[24] D. D. Salvucci and R. Gray, “A two-point visual control model of steering,” Per-
ception, vol. 33, no. 10, pp. 1233–1248, 2004.

[25] J. Steen, H. J. Damveld, R. Happee, M. M. van Paassen, and M. Mulder, “A review
of visual driver models for system identification purposes,” in IEEE International
Conference on Systems, Man, and Cybernetics, Anchorage, AK, 2011, pp. 2093–
2100.

[26] J. V. Beck and K. J. Arnold, Parameter estimation in engineering and science. New
York: John Wiley and Sons, 1977.

[27] Z. Zhang, “Parameter estimation techniques: A tutorial with application to conic
fitting,” Image and Vision Computing, vol. 15, no. 1, pp. 59–76, 1997.

[28] F. R. Hampel, “Robust estimation: A condensed partial survey,” Probability The-
ory and Related Fields, vol. 27, no. 2, pp. 87–104, 1973.

[29] D. A. Belsley, E. Kuh, and R. E. Welsch, Regression diagnostics: Identifying influ-
ential data and sources of collinearity. John Wiley & Sons, 2005, vol. 571.

[30] E. A. Wan and R. Van Der Merwe, “The unscented Kalman filter for nonlinear es-
timation,” in Adaptive Systems for Signal Processing, Communications, and Con-
trol Symposium, Alberta, Canada, 2000, pp. 153–158.

[31] M. Wu and A. W. Smyth, “Application of the unscented Kalman filter for real-
time nonlinear structural system identification,” Structural Control and Health
Monitoring, vol. 14, no. 7, pp. 971–990, 2007.

[32] S. Hong, T. Smith, F. Borrelli, and J. K. Hedrick, “Vehicle inertial parameter iden-
tification using extended and unscented Kalman filters,” in IEEE Conference on
Intelligent Transportation Systems, 2013, pp. 1436–1441.

[33] T. Litman, Autonomous vehicle implementation predictions. Victoria Transport
Policy Institute Victoria, Canada, 2017.

[34] C. Thorpe, M. H. Hebert, T. Kanade, and S. A. Shafer, “Vision and navigation for
the Carnegie-Mellon NAVLAB,” IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, vol. 10, no. 3, pp. 362–373, 1988.

152

[35] T. Jochem, D. Pomerleau, B. Kumar, and J. Armstrong, “PANS: A portable naviga-
tion platform,” in Proceedings of the Intelligent Vehicles’ 95 Symposium, Detroit,
MI, 1995, pp. 107–112.

[36] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transac-
tions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[37] A. J. Hawkins. (2017). Google’s new self-driving minivans will be hitting the road
at the end of January 2017, (visited on 01/08/2017).

[38] J. Berr. (2016). Uber’s audacious plan to replace human drivers, (visited on 08/25/2016).

[39] C. Thompson. (2016). Tesla just revealed new cars and Model 3 will have fully
self-driving hardware, (visited on 10/19/2016).

[40] D. Lee. (2016). Ford’s self-driving car ‘coming in 2021’, (visited on 08/17/2016).

[41] V. Carlström. (2017). Volvo just launched the world’s most ambitious autonomous
driving trial in Gothenburg, (visited on 01/10/2017).

[42] Auto Tech. (2017). 44 corporations working on autonomous vehicles, (visited on
05/18/2017).

[43] A Farina, B Ristic, and D Benvenuti, “Tracking a ballistic target: Comparison of
several nonlinear filters,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 38, no. 3, pp. 854–867, 2002.

[44] G. Chowdhary and R. Jategaonkar, “Aerodynamic parameter estimation from flight
data applying extended and unscented Kalman filter,” Aerospace Science and Tech-
nology, vol. 14, no. 2, pp. 106–117, 2010.

[45] C. You and P. Tsiotras, “Vehicle modeling and parameter estimation using adap-
tive limited memory joint-state UKF,” in American Control Conference, Seattle,
WA, 2017, pp. 322–327.

[46] S. Shalev-Shwartz, N. Ben-Zrihem, A. Cohen, and A. Shashua, “Long-term plan-
ning by short-term prediction,” arXiv preprint arXiv:1602.01580, 2016.

[47] S. Brechtel, T. Gindele, and R. Dillmann, “Probabilistic MDP-behavior planning
for cars,” in 14th International IEEE Conference on Intelligent Transportation Sys-
tems (ITSC), Washington, DC, 2011, pp. 1537–1542.

153

[48] Y. Kuwata, J. Teo, G. Fiore, S. Karaman, E. Frazzoli, and J. P. How, “Real-time mo-
tion planning with applications to autonomous urban driving,” IEEE Transac-
tions on Control Systems Technology, vol. 17, no. 5, pp. 1105–1118, 2009.

[49] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion plan-
ning,” The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894,
2011.

[50] K. Yi, T. Chung, J. Kim, and S. Yi, “An investigation into differential braking strate-
gies for vehicle stability control,” Proceedings of the Institution of Mechanical En-
gineers, Part D: Journal of Automobile Engineering, vol. 217, no. 12, pp. 1081–
1093, 2003.

[51] S. Di Cairano, H. E. Tseng, D. Bernardini, and A. Bemporad, “Vehicle yaw sta-
bility control by coordinated active front steering and differential braking in the
tire sideslip angles domain,” IEEE Transactions on Control Systems Technology,
vol. 21, no. 4, pp. 1236–1248, 2013.

[52] L. De Novellis, A. Sorniotti, P. Gruber, and A. Pennycott, “Comparison of feedback
control techniques for torque-vectoring control of fully electric vehicles,” IEEE
Transactions on Vehicular Technology, vol. 63, no. 8, pp. 3612–3623, 2014.

[53] L. De Novellis, A. Sorniotti, P. Gruber, L. Shead, V. Ivanov, and K. Hoepping, “Torque
vectoring for electric vehicles with individually controlled motors: State-of-the-
art and future developments,” in 26th Electric Vehicle Symposium, Los Angeles,
CA, 2012.

[54] J Ackermann, T Bünte, and D Odenthal, “Advantages of active steering for vehi-
cle dynamics control,” in Proceedings of the 32nd International Symposium on
Automotive Technology and Automation, Vienna, Austria, 1999, pp. 263–270.

[55] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive active steer-
ing control for autonomous vehicle systems,” IEEE Transactions on Control Sys-
tems Technology, vol. 15, no. 3, pp. 566–580, 2007.

[56] Y. A. Ghoneim, W. C. Lin, D. M. Sidlosky, H. H. Chen, and Y.-K. Chin, “Integrated
chassis control system to enhance vehicle stability,” International Journal of Ve-
hicle Design, vol. 23, no. 1-2, pp. 124–144, 2000.

[57] Y. Kou, “Development and evaluation of integrated chassis control systems,” PhD
thesis, The University of Michigan, 2010.

[58] J. C. McCall and M. M. Trivedi, “Video-based lane estimation and tracking for
driver assistance: Survey, system, and evaluation,” IEEE Transactions on Intelli-
gent Transportation Systems, vol. 7, no. 1, pp. 20–37, 2006.

154

[59] S. Zafeiropoulos and P. Tsiotras, “Design of a lane-tracking driver steering assist
system and its interaction with a two-point visual driver model,” in American
Control Conference, Portland, OR, 2014, pp. 3911–3917.

[60] C. You, J. Lu, and P. Tsiotras, “Driver parameter estimation using joint E-/UKF
and dual E-/UKF under nonlinear state inequality constraints,” in IEEE Interna-
tional Conference on Systems, Man, and Cybernetics, Budapest, Hungary, 2016.

[61] R. Cimurs, J. Hwang, and I. H. Suh, “Bezier curve-based smoothing for path plan-
ner with curvature constraint,” in IEEE International Conference on Robotic Com-
puting, Taichung, Taiwan, 2017, pp. 241–248.

[62] J.-w. Choi, R. Curry, and G. Elkaim, “Path planning based on bézier curve for au-
tonomous ground vehicles,” in Advances in Electrical and Electronics Engineering-
IAENG Special Edition of the World Congress on Engineering and Computer Sci-
ence., IEEE, San Francisco, CA, 2008, pp. 158–166.

[63] J.-w. Choi, R. E. Curry, and G. H. Elkaim, “Continuous curvature path genera-
tion based on Bézier curves for autonomous vehicles.,” International Journal of
Applied Mathematics, vol. 40, no. 2, 2010.

[64] T. Shim, G. Adireddy, and H. Yuan, “Autonomous vehicle collision avoidance sys-
tem using path planning and model-predictive-control-based active front steer-
ing and wheel torque control,” Proceedings of the Institution of Mechanical En-
gineers, Part D: Journal of automobile engineering, vol. 226, no. 6, pp. 767–778,
2012.

[65] M. A. Mousavi, Z. Heshmati, and B. Moshiri, “LTV-MPC based path planning of
an autonomous vehicle via convex optimization,” in 21st Iranian Conference on
Electrical Engineering (ICEE), Mashhad, Iran, 2013, pp. 1–7.

[66] S. Ulbrich and M. Maurer, “Probabilistic online POMDP decision making for lane
changes in fully automated driving,” in 16th International IEEE Conference on
Intelligent Transportation Systems, Hague, Netherlands, 2013, pp. 2063–2067.

[67] S. Lange, M. Riedmiller, and A. Voigtlander, “Autonomous reinforcement learn-
ing on raw visual input data in a real world application,” in International Joint
Conference on Neural Networks (IJCNN), Brisbane, QLD, Australia, 2012, pp. 1–8.

[68] W. Chee and M. Tomizuka, “Vehicle lane change maneuver in automated high-
way systems,” 1994.

[69] T. Fraichard and A. Scheuer, “From reeds and shepp’s to continuous-curvature
paths,” IEEE Transactions on Robotics, vol. 20, no. 6, pp. 1025–1035, 2004.

155

[70] N Montés and J Tomero, “Lane changing using s-series clothoidal approxima-
tion and dual-rate based on bezier points to controlling vehicle.,” WSEAS Trans-
actions on Circuits and Systems, vol. 3, no. 10, pp. 2285–2290, 2004.

[71] J. Chen, P. Zhao, T. Mei, and H. Liang, “Lane change path planning based on
piecewise bezier curve for autonomous vehicle,” in Vehicular Electronics and
Safety (ICVES), 2013 IEEE International Conference on, 2013, pp. 17–22.

[72] D Korzeniowski and G Ślaski, “Method of planning a reference trajectory of a
single lane change manoeuver with bezier curve,” in IOP Conference Series: Ma-
terials Science and Engineering, IOP Publishing, vol. 148, 2016, p. 012 012.

[73] C. Katrakazas, M. Quddus, W.-H. Chen, and L. Deka, “Real-time motion planning
methods for autonomous on-road driving: State-of-the-art and future research
directions,” Transportation Research Part C: Emerging Technologies, vol. 60, pp. 416–
442, 2015.

[74] T. Hastie, R. Tibshirani, and J. Friedman, “Overview of supervised learning,” in
The Elements of Statistical Learning, Springer, 2009, pp. 9–41.

[75] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553,
pp. 436–444, 2015.

[76] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction, 1. MIT
Press Cambridge, 1998, vol. 1.

[77] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse reinforcement learn-
ing,” in Proceedings of the 21st International Conference on Machine Learning,
Banff, Canada, 2004, p. 1.

[78] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum entropy inverse
reinforcement learning.,” in AAAI, Chicago, IL, vol. 8, 2008, pp. 1433–1438.

[79] ——, “Human behavior modeling with maximum entropy inverse optimal con-
trol.,” in AAAI Spring Symposium: Human Behavior Modeling, 2009, p. 92.

[80] S. Levine and V. Koltun, “Continuous inverse optimal control with locally optimal
examples,” arXiv preprint arXiv:1206.4617, 2012.

[81] K. M. Kitani, B. D. Ziebart, J. A. Bagnell, and M. Hebert, “Activity forecasting,” in
European Conference on Computer Vision, Florence, Italy, 2012, pp. 201–214.

[82] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep inverse rein-
forcement learning,” arXiv preprint arXiv:1507.04888, 2015.

156

[83] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse optimal
control via policy optimization,” in International Conference on Machine Learn-
ing, New York, NY, 2016, pp. 49–58.

[84] E. Velenis, E. Frazzoli, and P. Tsiotras, “Steady-state cornering equilibria and sta-
bilisation for a vehicle during extreme operating conditions,” International Jour-
nal of Vehicle Autonomous Systems, vol. 8, no. 2-4, pp. 217–241, 2010.

[85] I. Chakraborty, P. Tsiotras, and J. Lu, “Vehicle posture control through aggres-
sive maneuvering for mitigation of t-bone collisions,” in 50th IEEE Conference
on Decision and Control and European Control Conference, Orlando, FL, 2011,
pp. 3264–3269.

[86] A. R. Hauber, “The social psychology of driving behaviour and the traffic environ-
ment: Research on aggressive behaviour in traffic,” Applied Psychology, vol. 29,
no. 4, pp. 461–474, 1980.

[87] L. Mizell, M. Joint, and D. Connell, “Aggressive driving: Three studies,” AAA Foun-
dation for Traffic Safety, pp. 1–13, 1997.

[88] D. Shinar, “Aggressive driving: The contribution of the drivers and the situation,”
Transportation Research Part F: Traffic Psychology and Behaviour, vol. 1, no. 2,
pp. 137–160, 1998.

[89] L. Tasca, A review of the literature on aggressive driving research. Ontario, Canada:
Ontario Advisory Group on Safe Driving Secretariat, Road User Safety Branch,
Ontario Ministry of Transportation, 2000.

[90] M. Abou-Zeid, I. Kaysi, and H. Al-Naghi, “Measuring aggressive driving behavior
using a driving simulator: An exploratory study,” in Third International Confer-
ence on Road Safety and Simulation, Indianapolis, 2011.

[91] J. Han, Q. Song, and Y. He, Adaptive Unscented Kalman filter and its applications
in nonlinear control. INTECH Open Access Publisher, 2009.

[92] C. G. Hilborn and D. G. Lainiotis, “Optimal estimation in the presence of un-
known parameters,” IEEE Transactions on Systems Science and Cybernetics, vol. 5,
no. 1, pp. 38–43, 1969.

[93] D Alspach, “A parallel filtering algorithm for linear systems with unknown time
varying noise statistics,” IEEE Transactions on Automatic Control, vol. 19, no. 5,
pp. 552–556, 1974.

[94] A. H. Jazwinski, Stochastic Processes and Filtering Theory. Courier Corporation,
2007.

157

[95] K. Myers and B Tapley, “Adaptive sequential estimation with unknown noise statis-
tics,” IEEE Transactions on Automatic Control, vol. 21, no. 4, pp. 520–523, 1976.

[96] G. Marafioti, S. Tebbani, D. Beauvois, G. Becerra-Celis, A. Isambert, and M. Hovd,
“Unscented Kalman filter state and parameter estimation in a photobioreactor
for microalgae production,” in International Symposium on Advanced Control of
Chemical Processes, Istanbul, Turkey, 2009.

[97] D. Simon and T. L. Chia, “Kalman filtering with state equality constraints,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 38, no. 1, pp. 128–136,
2002.

[98] N. Gupta and R. Hauser, “Kalman filtering with equality and inequality state con-
straints,” arXiv preprint arXiv:0709.2791, 2007.

[99] D. Simon, “Kalman filtering with state constraints: A survey of linear and nonlin-
ear algorithms,” IET Control Theory & Applications, vol. 4, no. 8, pp. 1303–1318,
2010.

[100] W Wen and H. F. Durrant-Whyte, “Model-based multi-sensor data fusion,” in
IEEE International Conference on Robotics and Automation, Nice, 1992, pp. 1720–
1726.

[101] L.-S. Wang, Y.-T. Chiang, and F.-R. Chang, “Filtering method for nonlinear sys-
tems with constraints,” IEEE Proceedings-Control Theory and Applications, vol. 149,
no. 6, pp. 525–531, 2002.

[102] S. Ko and R. R. Bitmead, “State estimation for linear systems with state equality
constraints,” Automatica, vol. 43, no. 8, pp. 1363–1368, 2007.

[103] M. Tahk and J. L. Speyer, “Target tracking problems subject to kinematic con-
straints,” IEEE Transactions on Automatic Control, vol. 35, no. 3, pp. 324–326,
1990.

[104] C. Yang and E. Blasch, “Kalman filtering with nonlinear state constraints,” IEEE
Transactions on Aerospace and Electronic Systems, vol. 45, no. 1, pp. 70–84, 2009.

[105] J. De Geeter, H. Van Brussel, J. De Schutter, and M. Decréton, “A smoothly con-
strained Kalman filter,” IEEE Transactions on Pattern Analysis and Machine In-
telligence, vol. 19, no. 10, pp. 1171–1177, 1997.

[106] H. Michalska and D. Q. Mayne, “Moving horizon observers and observer-based
control,” IEEE Transactions on Automatic Control, vol. 40, no. 6, pp. 995–1006,
1995.

158

[107] B. O. S. Teixeira, L. A. Tôrres, L. A. Aguirre, D. S. Bernstein, et al., “Unscented
filtering for interval-constrained nonlinear systems.,” in Proceedings of the IEEE
Conference on Decision and Control, Canxun, Mexico, 2008, pp. 5116–5121.

[108] D. Crisan and A. Doucet, “A survey of convergence results on particle filtering
methods for practitioners,” IEEE Transactions on Signal Processing, vol. 50, no. 3,
pp. 736–746, 2002.

[109] S. Boyd and L. Vandenberghe, Convex Optimization. England: Cambridge Uni-
versity Press, 2004.

[110] E. Donges, “A two-level model of driver steering behavior,” Human Factors, vol. 20,
no. 6, pp. 691–707, 1978.

[111] M. F. Land and D. N. Lee, “Where do we look when we steer.,” Nature, vol. 369,
no. 6483, pp. 742–744, 1994.

[112] M. F. Land, “The visual control of steering,” Vision and Action, pp. 163–180, 1998.

[113] H. Neumann and B. Deml, “The two-point visual control model of steering – new
empirical evidence,” in Digital Human Modeling, Springer, 2011, pp. 493–502.

[114] G. Markkula, O. Benderius, and M. Wahde, “Comparing and validating models of
driver steering behaviour in collision avoidance and vehicle stabilisation,” Vehi-
cle System Dynamics, vol. 52, no. 12, pp. 1658–1680, 2014.

[115] L. Saleh, P. Chevrel, F. Mars, J.-F. Lafay, F. Claveau, et al., “Human-like cyber-
netic driver model for lane keeping,” in Proceedings of the 18th World Congress of
the International Federation of Automatic Control, Milano, Italy, 2011, pp. 4368–
4373.

[116] F. Mars, L. Saleh, P. Chevrel, F. Claveau, and J.-F. Lafay, “Modeling the visual and
motor control of steering with an eye to shared-control automation,” in Proceed-
ings of the Human Factors and Ergonomics Society Annual Meeting, vol. 55, Las
Vegas, 2011, pp. 1422–1426.

[117] S. Noth, I. Rañó, and G. Schöner, “Investigating human lane keeping through
a simulated driver,” in Proceedings of the Driver Simulation Conference, Paris,
France, 2012.

[118] I. Rano, H Edelbrunner, and G Schoner, “Naturalistic lane-keeping based on hu-
man driver data,” in Intelligent Vehicles Symposium (IV), Gold Coast, Queens-
land, 2013, pp. 340–345.

159

[119] C. Sentouh, B. Soualmi, J. C. Popieul, and S. Debernard, “Cooperative steering
assist control system,” in IEEE International Conference on Systems, Man, and
Cybernetics, Manchester, 2013, pp. 941–946.

[120] D. T. McRuer, “Human pilot dynamics in compensatory systems,” DTIC Docu-
ment, Wright Air Development Center, Air Research Development Command,
United States Air Force, Wright/Patterson Air Force Base, Dayton, OH, Tech. Rep.,
1965.

[121] S. P. Drake, “Converting GPS coordinates [φ,λ, h] to navigation coordinates (ENU),”
Tech. Rep. DSTO-TN-0432, 2002.

[122] H. Zhao and H. Chen, “Estimation of vehicle yaw rate and side slip angle using
moving horizon strategy,” in The Sixth World Congress on Intelligent Control and
Automation, vol. 1, Dalian, 2006, pp. 1828–1832.

[123] VERSION 4.5, This manual describes the CarSim Educational software., Mechan-
ical Simulation Corporation, 709 W. Huron, Ann Arbor, MI 48103, Jan. 2000.

[124] M. Saha, B. Goswami, and R. Ghosh, “Two novel costs for determining the tuning
parameters of the Kalman filter,” arXiv preprint arXiv:1110.3895, 2011.

[125] M Ananthasayanam, “Kalman filter design by tuning its statistics or gains?” In
International Conference on Data Assimilation, Mumbai, India, 2011.

[126] D. Simon, Optimal State Estimation: Kalman, H∞, and Nonlinear Approaches.
John Wiley & Sons, 2006.

[127] Y. L. Murphey, R. Milton, and L. Kiliaris, “Driver’s style classification using jerk
analysis,” in IEEE Workshop on Computational Intelligence in Vehicles and Ve-
hicular Systems, 2009, pp. 23–28.

[128] T. Flash and N. Hogan, “The coordination of arm movements: An experimentally
confirmed mathematical model,” Journal of Neuroscience, vol. 5, no. 7, pp. 1688–
1703, 1985.

[129] S. Mallat and W. L. Hwang, “Singularity detection and processing with wavelets,”
IEEE Transactions on Information Theory, vol. 38, no. 2, pp. 617–643, 1992.

[130] H. Damveld and R Happee, “Identifying driver behaviour in steering: Effects of
preview distance,” in Proceedings of the Measuring Behavior, Utrecht, The Nether-
lands, 2012, pp. 44–46.

160

[131] Y. Hassan and T. Sayed, “Effect of driver and road characteristics on required
preview sight distance,” Canadian Journal of Civil Engineering, vol. 29, no. 2,
pp. 276–288, 2002.

[132] A Grossmann, R. Kronland-Martinet, and J Morlet, “Reading and understanding
continuous wavelet transforms,” in Wavelets, Springer Berlin Heidelberg, 1989,
pp. 2–20.

[133] B. Jawerth and W. Sweldens, “An overview of wavelet based multiresolution anal-
yses,” SIAM Review, vol. 36, no. 3, pp. 377–412, 1994.

[134] C. Torrence and G. P. Compo, “A practical guide to wavelet analysis,” Bulletin of
the American Meteorological Society, vol. 79, no. 1, pp. 61–78, 1998.

[135] Y.-U. Zhou and J.-Q. Cheng, “Wavelet transformation and its applications,” Acta
Physica Sinica, vol. 37, pp. 24–32, 2008.

[136] K. Lundahl, J. Åslund, and L. Nielsen, “Investigating vehicle model detail for close
to limit maneuvers aiming at optimal control,” in 22nd International Sympho-
sium of Dynamic on Vehicle, Manchester Metropolitan University, Manchester,
UK, 2011.

[137] M. S. Burhaumudin, P. M. Samin, H. Jamaluddin, R. A. Rahman, S. Sulaiman, et
al., “Integration of magic formula tire model with vehicle handling model,” Inter-
national Journal of Research in Engineering and Technology, vol. 1, no. 3, pp. 139–
145, 2012.

[138] J. D. Setiawan, M. Safarudin, and A. Singh, “Modeling, simulation and validation
of 14 dof full vehicle model,” in International Conference on Instrumentation,
Communications, Information Technology, and Biomedical Engineering, 2009,
pp. 1–6.

[139] F Hunaini, I Robandi, and N Sutantra, “The optimal steering control system us-
ing imperialist competitive algorithm on vehicles with steer-by-wire system,”
Iranian Journal of Electrical & Electronic Engineering, vol. 11, no. 1, p. 25, 2015.

[140] R. N. Jazar, Vehicle Dynamics: Theory and Application. Springer Science & Busi-
ness Media, 2013.

[141] E. Bakker, L. Nyborg, and H. B. Pacejka, “Tyre modelling for use in vehicle dy-
namics studies,” SAE Technical Paper, Tech. Rep., 1987.

[142] G. Williams, P. Drews, B. Goldfain, J. M. Rehg, and E. A. Theodorou, “Aggressive
driving with model predictive path integral control,” in International Conference

161

on Robotics and Automation (ICRA), IEEE, Stockholm, Sweden, 2016, pp. 1433–
1440.

[143] N. J. Higham, “Computing a nearest symmetric positive semidefinite matrix,”
Linear Algebra and its Applications, vol. 103, pp. 103–118, 1988.

[144] J. Qi, K. Sun, J. Wang, and H. Liu, “Dynamic state estimation for multi-machine
power system by unscented kalman filter with enhanced numerical stability,”
arXiv preprint arXiv:1509.07394, 2015.

[145] L. Perea, J. How, L. Breger, and P. Elosegui, “Nonlinearity in sensor fusion: Di-
vergence issues in EKF, modified truncated SOF, and UKF,” in AIAA Guidance,
Navigation and Control Conference and Exhibit, vol. 6514, Hilton Head, South
Carolina, 2007.

[146] M. Ardelt, P. Waldmann, F. Homm, and N. Kaempchen, “Strategic decision-making
process in advanced driver assistance systems,” IFAC Proceedings Volumes, vol. 43,
no. 7, pp. 566–571, 2010.

[147] R. Zheng, C. Liu, and Q. Guo, “A decision-making method for autonomous vehi-
cles based on simulation and reinforcement learning,” in International Confer-
ence on Machine Learning and Cybernetics, vol. 1, Tianjian, China, 2013, pp. 362–
369.

[148] N. Li, D. Oyler, M. Zhang, Y. Yildiz, A. Girard, and I. Kolmanovsky, “Hierarchical
reasoning game theory based approach for evaluation and testing of autonomous
vehicle control systems,” in IEEE 55th Conference on Decision and Control, Las
Vegas, NV, 2016, pp. 727–733.

[149] D. W. Oyler, Y. Yildiz, A. R. Girard, N. I. Li, and I. V. Kolmanovsky, “A game theo-
retical model of traffic with multiple interacting drivers for use in autonomous
vehicle development,” in American Control Conference (ACC), 2016, Boston, MA,
2016, pp. 1705–1710.

[150] R. Bellman, “A Markovian decision process,” Journal of Mathematics and Me-
chanics, pp. 679–684, 1957.

[151] P. Brémaud, Markov chains: Gibbs fields, Monte Carlo simulation, and queues.
Springer Science & Business Media, 2013, vol. 31.

[152] A. Defazio and T. Graepel, “A comparison of learning algorithms on the arcade
learning environment,” arXiv preprint arXiv:1410.8620, 2014.

162

[153] L. Baird et al., “Residual algorithms: Reinforcement learning with function ap-
proximation,” in Proceedings of the 12th International Conference on Machine
Learning, Miami, Florida, 1995, pp. 30–37.

[154] S.-C. Wang, “Artificial neural network,” in Interdisciplinary Computing in Java
Programming, Springer, 2003, pp. 81–100.

[155] J. M. Bernardo and A. F. Smith, Bayesian Theory. John Wiley & Sons Canada, 2001.

[156] J. Q. Shi and T. Choi, Gaussian Process Regression Analysis for Functional Data.
CRC Press, 2011.

[157] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines
and Other Kernel-Based Learning Methods. Cambridge University Press, 2000.

[158] S. Levine, Z. Popovic, and V. Koltun, “Nonlinear inverse reinforcement learning
with Gaussian processes,” in Advances in Neural Information Processing Systems,
2011, pp. 19–27.

[159] C. J.C. H. Watkins, “Learning from delayed rewards,” PhD thesis, King’s College,
Cambridge, 1989.

[160] C. J.C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no. 3-4,
pp. 279–292, 1992.

[161] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
Q-learning.,” in AAAI, 2016, pp. 2094–2100.

[162] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller, “Playing Atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[163] H. R. Berenji, “Fuzzy Q-learning: A new approach for fuzzy dynamic program-
ming,” in Proceedings of the 3rd IEEE Conference on Fuzzy Systems, Orlando, FL,
1994, pp. 486–491.

[164] M. L. Littman, “Markov games as a framework for multi-agent reinforcement
learning,” in Proceedings of the 11th International Conference on Machine Learn-
ing, vol. 157, New Brunswick, NJ, 1994, pp. 157–163.

[165] J. Hu and M. P. Wellman, “Nash Q-learning for general-sum stochastic games,”
Journal of Machine Learning Research, vol. 4, no. Nov, pp. 1039–1069, 2003.

163

[166] A. Greenwald, K. Hall, and R. Serrano, “Correlated Q-learning,” in Proceedings of
the 12th International Conference on Machine Learning, vol. 3, Washington, DC,
2003, pp. 242–249.

[167] M. L. Littman, “Friend-or-foe Q-learning in general-sum games,” in Proceedings
of the 18th International Conference on Machine Learning, vol. 1, Williamstown,
MA, 2001, pp. 322–328.

[168] A. Y. Ng and S. J. Russell, “Algorithms for inverse reinforcement learning.,” in
Proceedings of the 17th International Conference on Machine Learning, Stanford,
CA, 2000, pp. 663–670.

[169] E. T. Jaynes, “Information theory and statistical mechanics,” Physical Review,
vol. 106, no. 4, pp. 620–630, 1957.

[170] M. Dudık and R. E. Schapire, “Maximum entropy distribution estimation with
generalized regularization,” in International Conference on Computational Learn-
ing Theory, San Diego, CA, 2006, pp. 123–138.

[171] R. Hecht-Nielsen et al., “Theory of the backpropagation neural network.,” Neural
Networks, vol. 1, no. Supplement-1, pp. 445–448, 1988.

[172] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are
universal approximators,” Neural Networks, vol. 2, no. 5, pp. 359–366, 1989.

[173] K. Hornik, “Approximation capabilities of multilayer feedforward networks,” Neu-
ral Networks, vol. 4, no. 2, pp. 251–257, 1991.

[174] J. Audiffren, M. Valko, A. Lazaric, and M. Ghavamzadeh, “Maximum entropy semi-
supervised inverse reinforcement learning.,” in International Joint Conferences
on Artificial Intelligence, Buenos Aires, Argentina, 2015, pp. 3315–3321.

[175] L. Jaillet, J. Cortés, and T. Siméon, “Sampling-based path planning on configuration-
space costmaps,” IEEE Transactions on Robotics, vol. 26, no. 4, pp. 635–646, 2010.

[176] M Garcia, A. Viguria, and A. Ollero, “Dynamic graph-search algorithm for global
path planning in presence of hazardous weather,” Journal of Intelligent & Robotic
Systems, vol. 69, no. 1-4, pp. 285–295, 2013.

[177] H. Erişkin and A. Yücesan, “Bézier curve with a minimal jerk energy,” Mathemat-
ical Sciences and Applications E-Notes, vol. 4, no. 2, pp. 139–148,

[178] H. Deddi, H. Everett, and S. Lazard, “Interpolation with curvature constraints,”
PhD thesis, INRIA, 2000.

164

[179] J. B. Hoagg, W. M. Haddad, and D. S. Bernstein, Linear-Quadratic Control: Theory
and Methods for Continuous-Time Systems. Princeton University Press on Prepa-
ration.

[180] B. A. Francis, “The linear multivariable regulator problem,” SIAM Journal on Con-
trol and Optimization, vol. 15, no. 3, pp. 486–505, 1977.

[181] E. Velenis, P. Tsiotras, and J. Lu, “Modeling aggressive maneuvers on loose sur-
faces: The cases of trail-braking and pendulum-turn,” in European Control Con-
ference, Kos, Greece, 2007, pp. 1233–1240.

[182] ——, “Trail-braking driver input parameterization for general corner geometry,”
SAE Technical Paper, Tech. Rep., 2008.

[183] ——, “Optimality properties and driver input parameterization for trail-braking
cornering,” European Journal of Control, vol. 14, no. 4, pp. 308–320, 2008.

[184] D. Tavernini, M. Massaro, E. Velenis, D. I. Katzourakis, and R. Lot, “Minimum
time cornering: The effect of road surface and car transmission layout,” Vehicle
System Dynamics, vol. 51, no. 10, pp. 1533–1547, 2013.

[185] R. Y. Hindiyeh and J. C. Gerdes, “Equilibrium analysis of drifting vehicles for con-
trol design,” in ASME 2009 Dynamic Systems and Control Conference, American
Society of Mechanical Engineers, Hollywood, CA, 2009, pp. 181–188.

[186] J. Yi and E. H. Tseng, “Nonlinear stability analysis of vehicle lateral motion with
a hybrid physical/dynamic tire/road friction model,” in ASME Dynamic Systems
and Control Conference, American Society of Mechanical Engineers, Hollywood,
CA, 2009, pp. 509–516.

[187] K. Zhou, J. C. Doyle, K. Glover, et al., Robust and Optimal Control. Prentice hall
New Jersey, 1996, vol. 40.

[188] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Differential flatness and defect:
An overview,” in Workshop on Geometry in Nonlinear Control, Banach Center
Publications, Warsaw, 1993.

[189] ——, “Flatness and defect of non-linear systems: Introductory theory and exam-
ples,” International Journal of Control, vol. 61, no. 6, pp. 1327–1361, 1995.

[190] M Fliess, J Lévine, P. Martin, F Ollivier, and P Rouchon, “Controlling nonlinear
systems by flatness,” in Systems and Control in the Twenty-first Century, Springer,
1997, pp. 137–154.

165

[191] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “A Lie-Backlund approach to equiv-
alence and flatness of nonlinear systems,” IEEE Transactions on Automatic Con-
trol, vol. 44, no. 5, pp. 922–937, 1999.

[192] E. Velenis, “Analysis and control of high-speed wheeled vehicles,” PhD thesis,
Georgia Institute of Technology, 2006.

[193] M. A. Patterson and A. V. Rao, “GPOPS-II: A MATLAB software for solving multiple-
phase optimal control problems using hp-adaptive Gaussian quadrature collo-
cation methods and sparse nonlinear programming,” ACM Transactions on Math-
ematical Software, vol. 41, no. 1, p. 1, 2014.

[194] A. Coates, P. Abbeel, and A. Y. Ng, “Learning for control from multiple demonstra-
tions,” in Proceedings of the 25th International Conference on Machine Learning,
Helsinki, Finland, 2008, pp. 144–151.

[195] Y. Wang, S. Shi, and L. Li, “Flatness-based vehicle coupled control for steering
stability and path tracking,” in Proceedings of SAE-China Congress 2015: Selected
Papers, Springer, 2016, pp. 49–60.

[196] S. Fuchshumer, K. Schlacher, and T. Rittenschober, “Nonlinear vehicle dynamics
control-a flatness based approach,” in Proceedings of the 44th IEEE Conference on
Decision and Control, Seville, Spain, 2005, pp. 6492–6497.

[197] H. Souilem and N. Derbel, “Vehicle control by flatness,” Proceedings Engineering
& Technology-Vol, vol. 4, pp. 37–42, 2013.

[198] J. Villagra, B. d’Andrea Novel, H. Mounier, and M. Pengov, “Flatness-based vehi-
cle steering control strategy with sdre feedback gains tuned via a sensitivity ap-
proach,” IEEE Transactions on Control Systems Technology, vol. 15, no. 3, pp. 554–
565, 2007.

[199] G. M. Scarpello and D. Ritelli, “A historical outline of the theorem of implicit
functions,” Divulgaciones Matemáticas, vol. 10, no. 2, pp. 171–180, 2002.

[200] S. G. Krantz and H. R. Parks, The implicit function theorem: history, theory, and
applications. Springer Science & Business Media, 2012.

[201] P. Bourke. (1988). Points, lines, and planes.

[202] E. Velenis and P. Tsiotras, “Minimum-time travel for a vehicle with acceleration
limits: Theoretical analysis and receding-horizon implementation,” Journal of
Optimization Theory and Applications, vol. 138, no. 2, pp. 275–296, 2008.

166

[203] B. Goldfain, P. Drews, C. You, M. Barulic, O. Velev, P. Tsiotras, and J. M. Rehg,
“Autorally: An open platform for aggressive autonomous driving,” arXiv preprint
arXiv:1806.00678, 2018.

[204] C. You, J. Lu, and P. Tsiotras, “Nonlinear driver parameter estimation and driver
steering behavior analysis for ADAS using field test data,” IEEE Transactions on
Human-Machine Systems, vol. 47, no. 5, pp. 686–699, 2017.

167

VITA

Changxi You received his B.S. and M.S. degrees from the Department of Automotive En-
gineering, Tsinghua University of China, and M.S. degree from the Department of Au-
tomotive Engineering, RWTH-Aachen University of Germany. He joined the DCSL lab
since August 2014 and became a Ph.D. student under the supervision of Prof. Panagi-
otis Tsiotras at the School of Aerospace Engineering, Georgia Institute of Technology.
His research interests are in system identification, aggressive driving, path planning and
control of (semi)autonomous vehicles.

168

	Title Page
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	 Introduction
	Motivation
	Literature Review
	Driver Modeling
	Autonomous Vehicles
	Planning for Autonomous Driving

	Goals and Challenges
	Contributions
	Outline of the Dissertation

	 Kalman Filters
	Introduction
	Nonlinear Kalman Filter
	Adaptive Limited Memory UKF
	Nonlinear State Constraints
	Conclusion

	 Driver Modeling and Parameter Estimation
	Introduction
	System Modeling and Problem Formulation
	Driver Model
	Road and Perception Model
	Problem Formulation

	Field Tests
	Data Analysis and Results
	GPS Data Processing
	Driver Parameter Identification
	Driver Model Refinement

	Driver Comparison and Analysis
	Driver Parameter Analysis
	Wavelet Analysis of Driver Steering Torque Command

	Conclusion

	 Vehicle Modeling and Parameter Estimation
	INTRODUCTION
	VEHICLE MODELING
	Single-Track Model
	Double-Track Model
	Full Vehicle Model
	Tire Force Model

	Parameter Estimation
	Results and Discussion
	Standard UKF
	Adaptive Limited Memory UKF
	Experiments

	Conclusion

	 Highway Traffic Modeling and Optimal Decision Making
	Introduction
	Traffic Modeling
	Markov Decision Process
	System Modeling
	Dynamic Cell

	Reinforcement Learning
	Reinforcement Learning Algorithms
	Reward Function
	Q-Learning

	Maximum Entropy Principle
	Maximum Entropy Principle
	Nonparameterized Features
	Parameterized Features

	Inverse Reinforcement Learning
	Reward Approximator
	MaxEnt Deep IRL Algorithm
	IRL Algorithm Refinement

	Results and Analysis
	Driving Behavior from Reinforcement Learning
	Driving Behavior from Inverse Reinforcement Learning

	Conclusion

	 Path Planning and Control: Highway Overtaking
	Introduction
	Path Planning
	Preliminaries
	 Joint Quadratic Bzier curves
	 Fourth Order Bzier Curves

	Speed Control
	Lane-Switching Control
	Optimal Driver Model
	Output Regulation

	Results and Analysis
	Optimal driver parameters
	Path Planning
	Path Tracking Control
	Overtaking Behavior

	Conclusion

	 Path Planning and Control: Off-Road Rally Racing
	Introduction
	High-Speed Cornering Trajectories
	Problem Formulation
	Optimal Trajectories

	Trajectory Learning
	Generative Model
	Primitive High-Speed Cornering Trajectory

	Differentially Flatness Trajectory Generation
	Differential Flatness
	Differential Flatness of Vehicle Model

	High-Speed Cornering Trajectory Planning
	Sliding Trajectory
	Guiding Trajectory

	Control Design
	Tracking Controller
	Sliding Controller
	Exiting Controller

	Numerical Simulations
	Trajectory Design
	Tracking Control
	Late-Apex High-Speed Cornering

	Experimental Validation
	CarSim Simulation
	Auto-Rally Experiments

	Conclusion

	 Conclusions & Future Research Directions
	Conclusions
	Future Work

	References
	Vita

