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GLOSSARY 

 

Failure: is an unexpected behavior, deviation from the normal behaviors, negative effects 

to the system, major plan breakdowns, substantial material damage, or complete 

breakdown. 

Fault: is a physical or operational indication of abnormality in the system that indicates 

an incipient failure. 

FMECA: Failure Modes and Effects Criticality Analysis. 

Fault (Failure) Detection: an abnormal operating condition is detected and reported. 

Fault (Failure) Isolation: determining which component (subsystem, system) is failing or 

has failed. 

Fault (Failure) Identification: estimating the extent of the fault (failure). 

Diagnostics: detecting, isolating and identifying an impending or incipient failure 

condition. 

Prognostics: predicts the time window over which maintenance must be performed 

without compromising the system’s operational integrity. 

CBM: condition-based maintenance, determines the “optimum” time to perform 

maintenance. 

Verification: it answers the question: “Have I built the system right?” (that is, does the 

system as built meet the performance specifications as stated?) 
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Validation: it answers the question: “Have I built the right system?” (that is, is the system 

model close enough to the physical system and are the performance specifications and 

system constraints correct?) 

Detectability: is the extent to which the diagnostic scheme can detect the presence of a 

particular fault; it relates to the smallest failure signature that can be detected and the 

percentage of false alarms 

Identifiability: goes one step further in distinguishing between various failure modes, 

once the presence of a failure has been established. It targets questions such as the source, 

location, type, and consequence of a failure and the distinguishability between sensor, 

actuator or system component failures. 

Quantified-Directed-Graph (QDG): a quantitative approach proposed to model fault 

propagation within a system’s range.  
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SUMMARY 

 

This research addresses the problem of sensor localization/selection for fault diagnostic 

purposes in Prognostics and Health Management (PHM)/Condition-Based Maintenance 

(CBM) systems. The performance of PHM/CBM systems relies not only on the 

diagnostic/prognostic algorithms used, but also on the types, location, and number of 

sensors selected. Most of the research reported in the area of sensor localization/selection 

for fault diagnosis focuses on qualitative analysis and lacks a uniform figure of merit. 

Moreover, sensor localization/selection is mainly studied as an open-loop problem 

without considering the performance feedback from the on-line diagnostic/prognostic 

system. In this research, a novel approach for sensor localization/selection is proposed in 

an integrated diagnostic/prognostic architecture to achieve maximum diagnostic 

performance. 

First, a fault detectability metric, which expresses the capability of a sensor to detect a 

fault, is defined quantitatively. A novel graph-based approach, the Quantified-Directed 

Model, is called upon to model fault propagation in complex systems and an appropriate 

figure-of-merit is defined to maximize fault detectability and minimize the required 

number of sensors while achieving optimum performance. 

Secondly, the proposed sensor localization/selection strategy is integrated into a viable 

and cost-effective diagnostic/prognostic system architecture together with mode 

identification, diagnostics, and prognostics while exhibiting attributes of flexibility and 

scalability. Moreover, the performance of the sensor localization/selection strategy is 

validated and verified in the integrated diagnostic/prognostic architecture, and the 
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performance of the integrated diagnostic/prognostic architecture acts as useful feedback 

information for further optimizing the sensors considered. The approach is tested through 

a five-tank simulation system and is validated in the integrated diagnostic/prognostic 

architecture. 

This research has led to the following major contributions: 

• A generalized methodology for sensor localization/selection for fault diagnostic 

purposes. 

• A quantitative definition of fault detection ability of a sensor, a novel Quantified-

Directed Model (QDG) method for fault propagation modeling purposes, and a 

generalized figure of merit to maximize fault detectability and minimize the required 

number of sensors while achieving optimum diagnostic performance at the system 

level. 

• A novel, integrated architecture for a diagnostic/prognostic system to integrate the 

functions of sensor localization/selection, feature extraction, mode identification, and 

fault diagnosis and prognosis. 

• Validation of the proposed sensor localization/selection approach in the integrated 

diagnostic/prognostic architecture. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

In the industrial and manufacturing arenas, Prognostics and Health Management (PHM) 

is a complex task that involves finding the “optimum” time to perform maintenance 

within the window prescribed by prognostic algorithms while meeting a host of 

constraints. With advances in computing power, diagnostic/prognostic techniques are 

becoming more efficient in detecting the presence of a fault and predicting the remaining 

useful life time of a faulty component. Meanwhile, optimum type, number, and location 

of sensors (sensor localization/selection) improve the diagnostic and prognostic 

capabilities of PHM systems. However, few researchers have worked on the problem of 

how to find optimum types, location, and number of sensors for fault diagnosis. 

Therefore, the first motivation of this research is to study the sensor localization/selection 

for fault diagnostic purposes.  

Previous PHM applications focus on either diagnostics or prognostics while assuming 

sensor information required by diagnostics and prognostics was always available. Even if 

sensor localization/selection was considered, the performance of the sensor 

localization/selection method was not validated and verified with diagnostic/prognostic 

results, and the available sensor localization/selection methodology was an open-loop 

process without considering on-line performance of fault detection.   
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To overcome these limitations, this research proposes a novel approach to address the 

sensor localization and selection problem for fault diagnostic purposes in a 

flexible/open/scalable diagnostic/prognostic architecture.  

1.2 Problem Definition 

In this dissertation, a novel approach to address sensor localization/selection problems in 

a diagnostic/prognostic architecture is developed. Specifically, the following areas are 

addressed: 

• Define the ability of a sensor to detect a fault quantitatively. Many factors 

contribute to the detection ability, for example, Signal-to-Noise Ratio (SNR) and 

detection sensitivity. Factors such as these contribute to define sensor fault 

detectability.  

• Propose a Quantified Directed Graph (QDG) method to model fault propagation 

and to calculate the sensor fault detectability. Previous research efforts, such as 

Directed-Graph (DG), Signed-Directed-Graph (SDG), and fault tree methods, 

primarily focused on model fault propagation qualitatively. These methods were 

unable to specify fault propagation information quantitatively using these models. 

In this dissertation, a QDG method is defined and utilized to analyze the sensor 

fault detectability quantitatively. 

• Define a generalized Figure-Of-Merit (FOM) and optimize it using a particle 

swarm optimization method to achieve the optimal sensor localization/selection 

for fault diagnostic purposes.  
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• Propose and implement an integrated and generic architecture for diagnostic and 

prognostic systems to take advantage of the proposed sensor localization/selection 

approach as well as rapidly emerging diagnostic and prognostic algorithms.  

The remainder of this dissertation includes five chapters. In Chapter 2, the state-of-

the-art techniques are briefly reviewed. In Chapter 3, an integrated system architecture is 

proposed for sensor selection/localization, mode identification, diagnosis and prognosis. 

In Chapter 4, a novel sensor localization/selection approach for fault diagnosis at the 

system level is presented. In Chapter 5, the proposed architecture is illustrated in a 

laboratory process demonstrator, and the proposed sensor localization/selection approach 

is validated with a five-tank simulation system. Finally, the research is summarized and 

contributions are provided in the last chapter. 

1.3 Assumptions 

The following assumptions are applied to this research. 

• A system is assumed to have multiple faults and failures with different symptoms. 

• Failures are assumed to be progressive in nature; abrupt failures such as spikes or 

sudden breakdowns are not considered in this research. 

• The term fault identification will be used interchangeably with fault isolation. 

• A system can be approximated linearly within a relatively small dynamic range 

for the purpose of building a quantified-directed-graph model. 
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CHAPTER 2 

BACKGROUND 

 

A typical diagnostic/prognostic architecture is shown in Figure 1  [40]. It includes 

sensor/sensing, data preprocessing/management, feature extraction, diagnostics, 

prognostics, and Condition-Based Maintenance (CBM). Each module is critical to system 

performance. In this research, we will focus on only two topics: the diagnostic/prognostic 

architecture and sensor localization/selection for fault diagnosis of complex systems.  
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Fault
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Figure 1: Typical diagnostic/prognostic architecture. 
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2.1 Integrated Diagnostic/Prognostic Architecture 

The objective of machine health management is to diagnose a fault (incipient failure) as 

early as possible and to prognose the remaining useful lifetime of the faulty component. 

In this section, relevant work on the diagnostic/prognostic algorithms and the associated 

architecture are summarized.  

2.1.1 Integrated Diagnostic/Prognostic Algorithms 

A large number of approaches to diagnostics/prognostics have been reported in the 

technical literature. Diagnostics, or Fault Detection and Identification (FDI), attempts to 

recognize impending or incipient failures in processes and systems and forms a solid 

basis for Condition-Based Maintenance (CBM). Fault diagnosis is a relatively mature 

field with contributions ranging from model-based techniques to data-driven 

configurations that capitalize on soft computing and other “intelligent” tools  [27] [28]. 

Model-based techniques utilize a physical model and require a detailed and thorough 

understanding of the system  [32]. As manufacturing facilities become complex and 

highly sophisticated, they are characterized by highly nonlinear dynamics coupling a 

variety of physical phenomena in the temporal and spatial domains. It is not surprising, 

therefore, that these processes are not well understood, making it difficult to build a 

precise model  [29]. In a data-driven model, data is analyzed and used directly by various 

classification tools, such as Fuzzy Logic and Artificial Neural Networks (ANN)  [33], 

 [34],  [35]. Some of the techniques can also be combined together to achieve higher fault 

diagnostic accuracy. A method of combining the discrete cosine transform technique with 

neural networks was considered to identify orbits of shaft centerlines of rotating 

machinery  [36]. A wavelet transform and ANNs were combined and applied to 
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machinery fault diagnosis  [37] [38]. An integrated diagnostic algorithm, which combined 

Wavelet Neural Network (WNN) for the classification of high-frequency data and fuzzy 

logic for classification of low frequency data, was addressed in  [39]. Combining the 

results from WNN and fuzzy logic using the Dempster-Shafer theory, the integrated 

diagnostic algorithm is able to identify both the low-frequency process faults and high-

frequency faults.  

In the industrial and manufacturing arenas, prognosis answers the question: what is the 

remaining useful lifetime of a machine or a component once an impending failure 

condition is detected and identified? During the past years, prognostic algorithms were 

developed based on stochastic models  [41], knowledge-intensive expert systems  [42], 

polynomial neural networks  [43] and other techniques. However, these methods have yet 

to produce a systematic, efficient and robust approach to the prognostic problems.  More 

recently, two main approaches have emerged as potential candidates for prognosis 

 [44] [59]. The first one relies on system models and state estimation techniques (Kalman 

and Alpha-Beta-Gamma tracking filters) to determine the remaining useful lifetime.  The 

second uses a feature extractor and a learned association method, typically a neural 

network construct. The first category is hampered by the need for accurate system models 

while the second requires a sufficient database that covers the dynamic range of the 

machine or process for training and validation purposes. Within the second category, 

Dynamic Wavelet Neural Networks (DWNN)  [12] incorporate temporal information and 

storage capacity into their functionality so that it can predict into the future and carry out 

fault prognostic tasks. An example  [12] was presented where a trained static wavelet 



 7

neural network and a dynamic wavelet neural network successfully diagnose and 

prognose a defective bearing with a crack in its inner race.  

In addition to predicting the remaining useful lifetime, it is crucial to assess the 

confidence of the prediction as well  [58]. Over the past years, confidence interval 

estimation using sophisticated techniques has been developed. Some of these techniques 

are found in the classical forecasting literature  [45] [46] [47], while others are devised for 

modern prediction models such as ANNs  [48] [49] [50]. Unlike the traditional model-

based methods, ANNs are data-driven and self-adaptive and make very few assumptions 

about the models for problems under study. ANNs learn from examples and capture the 

subtle functional relationship among the data. Thus, ANNs are well suited for practical 

problems where it is easier to have data than to have knowledge governing the system 

being studied. Werbos  [52] reported that ANNs trained with the back propagation 

algorithm outperformed the traditional statistical methods such as the regression and 

Box-Jenkins approaches. The Confidence Prediction Neural Network (CPNN) was 

designed based on the General Regression Neural Network as a universal approximator 

for smooth functions  [51]. It was built upon the features of its predecessors and employed 

a confidence distribution approximator node in its structure to represent uncertainty in the 

form of a confidence distribution.  

2.1.2 Integrated Diagnostic/Prognostic Architecture 

An integrated diagnostic/prognostic architecture is required to provide better information 

for condition-based maintenance approaches.  

Su et al.  [13] presented a generic prognostic framework by using model-based 

reasoning to integrate embedded test and sensor data into diagnostic and prognostic 
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information. Phoha  [17] established distributed system architectures for electronic 

delivery of on-line equipment Monitoring, Diagnostics and Prognostics (MD&P) 

services. Roemer and his coworkers  [18] integrated component, subsystem, and system 

level health monitoring strategies, with a modeling architecture that addresses failure 

mode mitigation and life cycle costs. Keller et al.  [60] introduced a flexible and 

extensible architecture that directly supported the implementation of Integrated Vehicle 

Health Management (IVHM) systems. IVHM systems provided a reduction in the amount 

of data traffic required among systems, more accurate diagnostic capability, the addition 

of a prognostic capability, and lower support costs. The IVHM architecture consisted of 

six layers that spanned the processing of sensor data through decision support: signal 

processing, condition monitoring, health assessment, prognostics, decision support, and 

presentation.  

Atlas and his coworkers discussed an evolvable tri-reasoner for IVHM  [16] systems, 

as shown in Figure 2. In this architecture, an anomaly reasoner, a diagnostic reasoner, and 

prognostic reasoner were integrated to monitor the vehicle’s health.  
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Figure 2: The tri-reasoner integrated vehicle. 

 

 

Saeks  [57] designed a hybrid supervised/unsupervised neural network architecture that 

was able to detect faults and fault precursors that were not included in the diagnostic 

database used to train the neural network (Figure 3). 

Carl and his coworkers presented a “toaster” model  [15] to illustrate the concept for 

“plug and play” functionality of the modules (Figure 4). In this architecture, each module, 

including anomaly detection, diagnostics, prognostics, human system interface, and 

others were integrated in an open system architecture. Prognostics was regarded as 

horizontal or vertical modules in this architecture. A horizontal module used anomaly 

detection and failure mode diagnosis information to make a prognosis. This was usually a 
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more accurate method, in which the knowledge about the type of failure and its severity 

was integrated into the time series prediction. By contrast, a vertical prognostic module 

was not explicitly dependent on the diagnostic information and its inputs consisted of 

either time and usage conditions or some additional measured data. For instance, 

experience-based statistical failure distributions can be applied to determine the 

probability of failure within a future time period given the prior time/usage history.  
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Figure 4: “Plug and Play” Toaster Model. 

 

 

2.1.3 Open Questions 

A flexible and extensible architecture for diagnostics and prognostics is not currently 

available to integrate results from different modules: sensor localization/selection, feature 

extraction, mode identification, diagnostics, and prognostics. Meanwhile, this 

architecture must specify a communication interface shared by different modules and a 

data sharing mechanism to exchange data between modules.  

As a critical component in the architecture and another important issue in this 

research, the state-of-the-art of sensor localization/selection is reviewed in the next 

section. 

2.2 Optimum Sensor Localization/Selection (SLS) 

System performance is strongly dependent on available sensor measurements. Inaccurate 

measurements resulting from improper sensor localization/selection or insufficient 
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measurements can significantly deteriorate system performance. Therefore, SLS has 

received considerable attention and has been studied in different areas.  

Traditionally, sensors are placed mainly to meet control or monitoring objectives. 

Faulds and Belinda  [1] introduced the sensor placement problem for feedback control. 

Al-Shehabi and Newman  [2] employed root locus principles to choose optimum sensor 

positions for aeroelastic vehicle feedback control applications. Giraud and Jouvencel  [10] 

addressed the problem of sensor selection in an automatic task, such as a process of data 

fusion, a sensing task or the design of a perceptual system for a mobile robot. Chen and 

Li  [14] presented an automatic sensor placement technique for robot vision in inspection 

tasks. One aspect of the NASA Aircraft Morphing program was to determine the 

optimum number of active control devices (for example, piezoelectric actuators) and their 

placement in the structure. In this program, Padula and Kincaid  [3] provided a good 

review of sensor and actuator placement problems (Table 1). They grouped the sensor 

and actuator placement research based on different types of applications (non-aerospace 

placement problems and aerospace placement problems).  
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Table 1: Review of sensor placement methods  [3]. 

First  Author  Journal  Volume 
(Issue) 

Year  Optimi-
zation 
Method 

Poten- 
tial 
Loca-
tions 

Number 
Selected 

Naimimoasses  Measurement Science Tech. 6(9)  1995  other 6  2 
Oh  Nuclear Eng. And Design 152(1)  1994  other  52  14 
Reis  J. Water Resources Plan. & 

Manag. 
123(6)  1997  GA  25  3 

Mattingly  Int. J. Hyperthermia 14(4)  1998  none  NA  4 
Emery  J. Heat Transfer  119(4)  1997  none  NA  NA 
Sunar  AIAA Journal  34(10)  1996  none  NA  2 
Liang  J. Intelligent Mat. Sys. & 

Structures 
6(4)  1995  none  8 3 

Bhargava  J. Intelligent Mat. Sys. & 
Structures 

6(3)  1995  none  5  2 

Kang  AIAA Journal  34(9)  1996  none  NA  2 
Hac  J. Sound and Vibration 167(2)  1993  none  10  2 
Wang  J. Acoustical Society of 

America 
90(5)  1991  none  NA  3 

Kang  AIAA Journal 36(9)  1998  NLP  NA  1 
Papadopoulos  AIAA Journal  36(2)  1998  other  NA  NA 
Simpson  Noise Control Engineering J. 44(4)  1996  GA  40  15 
Gawronski  J. Sound and Vibration 208(1)  1997  other  36  2 
Kammer  J. Sound and Vibration 171(1)  1994  other  321  15 
Pottie  Internoise 96   1996  GA  90  14 
Manolas  Internoise 96   1996  GA  80  48 
Wang  J. Acoustical Society of 

America 
99(5)  1996  GA  NA  3 

Katsikas  Mechanical Sys. & Signal 
Processing 

9(6)  1995  GA  80  26 

Maghami  IEEE T. on Aero.&  Elect.  
Sys. 

29(2)  1993  NLP  98  3 

De Fonseca  SPIE  3041  1997  NLP  NA  4 
Dhingra  Int. J. for Num. Methods in 

Eng. 
38(20)  1995  GA 12  5 

Wang  J. Intelligent Mat. Sys. and 
Structures 

5(1)  1994  NLP  NA  3 

Liu  J. Aerospace Eng.  10(3)  1997  SA  90  4 
Chattopadhyay  SPIE  3329  1998  GA  NA  NA 
Kincaid  Location Science  1(2)  1993  SA  1608  32 
Kincaid  J. Combinatorial Optimization 1(3)  1997  TS  102  32 
Furuya  J. of Spacecraft and Rockets 33(3)  1996  GA  1608  8 
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Some recent works have been concerned with other nontraditional activities, such as 

target tracking, fault detection, and reliability analysis. This research mainly focuses on 

sensor placement for fault diagnosis. 

Sensor localization/selection for fault diagnosis has been studied at two different 

levels: component level vs. system level (Figure 5). Some of the sensor placement 

problems attempted to position sensors in a component’s range  [1] [5], for example, a 

bearing or an object in 3D view. Critical systems of interest are characterized as large-

scale systems consisting of multiple components. For such systems, a fault may 

propagate through several components when it occurs. Therefore, it is possible that 

sensors can be placed at any of the components to detect the fault. With hundreds or 

thousands of possible locations of sensors in a system, the selection of a crucial and 

optimum sensor location, sensor types, and number of sensors poses an important 

problem that needs to be solved at the system level before the detailed spatial distribution 

in a component can be determined.  

 

 

Sensor Placement

System Level Component Level

 

Figure 5: Different views of Sensor placement. 
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Although a large body of research work has emerged, the various approaches vary 

only in their choices of the three basic components (Figure 6): model, Figure-of-Merit, 

and optimization algorithm. The following discussion of sensor placement is based on 

these three components.  

 

 

Model

Figure-of-Merit
Selection

Optimization

 

Figure 6: Basic components of sensor placement for fault diagnosis. 

 

 

2.2.1 Component Level Sensor Localization 

Models used at the component level usually are mathematical models or data-driven 

models. In a mathematical model, the physical system is described through the 

application of scientific principles. For example, Faulds and King  [1] used a partial 

differential equation formulation as their system model. A mathematical model is precise 

without considering disturbances and is suitable for qualitative and quantitative analysis.  

However, building a mathematical model requires a thorough understanding of the 
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physical system, a difficult task for a complex system with highly nonlinear dynamics 

coupling a variety of physical phenomena in the temporal and spatial domains. A data-

driven model is a black-box model that requires a large number of training data. Many 

intelligent tools can be used as the modeling tools. For example, a neural network is 

trained when it is fed enough template data and makes a decision based on the knowledge 

it has learned from the data. Theoretically, given enough training data, the neural network 

should be able to simulate a real system very well. As an example, a Multi-Layer 

Perceptron (MLP) is employed in Naimimohasses’s work to model a system  [5]. 

An objective function or a Figure-of-Merit (FOM) needs to be defined. Lim  [30] 

determined the sensor locations for the purpose of disturbance rejection. Wang and his 

coworker  [4] adopted the Signal-to-Noise Ratio (SNR) as the FOM in their study of a 

sensor placement strategy for in-situ bearing defect detection. Sensitivity of the system 

was used as a FOM in  [5].  

After a FOM is selected, an algorithm needs to be decided to optimize this FOM. 

Various optimization algorithms, from random search to heuristic algorithms such as 

Genetic Algorithms (GAs), have been used for optimizing the sensor location. Random 

search is suitable for a small and simple sensor placement problem since it is 

straightforward and easily implemented. But it is time consuming and inefficient when 

dealing with a large system. A Simulated Annealing (SA) method  [3] [20] based on 

random search is used to select a single random subset while seeking to improve the cost 

function by moving to one of the nearest neighbors of the selected subset. The Tabu 

search method  [21] uses probabilistic events for the search of better solutions. GAs, 

based on the Darwinian principle of natural selection, are widely applied in different 
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domains, among the heuristic methods. Sen  [31] designed his sensor network of the linear 

mass flow process using the GA method. Other examples using the GA method to solve 

sensor placement problems can be found in  [6] and  [7]. 

2.2.2 System Level Sensor Localization/Selection 

More recently, interest has been focused on the sensor placement problem for fault 

diagnosis at the system level. 

For the purpose of Fault Detection and Identification (FDI), Xu and Jiang  [8] 

addressed a systematic analysis on where to pick-up the best signal to generate the 

residual: the controller outputs, the plant outputs, or some other locations (Figure 7). The 

control system is modeled by transfer functions. Recently, Cause-Effect (CE) analysis 

methods, such as graph theory, Petri-Net method, and fault tree method, have been 

widely used as the modeling tools for the sensor placement problem for fault diagnosis at 

the system level because of their simple graphical representations of the process. 

Raghuraj  [9] used a Directed Graph (DG) model to represent the CE behavior of the 

process. Wang, Song, and Li built a DG model to represent the cause and effect 

relationships of process variables  [19]. Another popular model is the Signed Directed 

Graph (SDG). Its structure is identical to that of DG and signs are placed on the arcs of a 

DG to obtain an SDG  [23]. 

 



 18

 

Figure 7: Closed-loop control system. 

 

 

Many factors can contribute to a FOM. Xu and Jiang  [8] adopted a sensitivity 

approach to build the FOM. The optimal location to obtain information for detecting 

different system component faults was determined based on the criteria of maximal 

sensitivity with respect to the variations of that component by analyzing Bode’s 

sensitivity function. Raghuraj  [9] and Wang  [19] used fault observability and fault 

resolution to build the FOM. Observability refers to the condition that every fault defined 

for the process can be observed by at least one sensor, and fault resolution is defined as 

the ability to identify the exact fault that has occurred. In Raghuraj’s work, the 

optimization objective is to maximize fault observability and resolution. As an extension 

to Raghuraj’ work, Bhushan and his coworkers  [23] used observability and reliability as 

the FOM for locating sensors. A fault monitoring system is considered highly reliable if 

the probability of any fault occurring without being detected is low. With the philosophy 

that a chain can be no stronger than its weakest link, Bhushan et al. proposed to 

maximize the minimum reliability for fault detection among all the faults. Because the 

faults of the process have certain probabilities of occurrence and the various available 

sensors have certain probabilities of failure, a fault can occur without being detected if all 

the sensors detecting that fault fail simultaneously. The reliability of detecting a fault is 
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inversely proportional to the unobservability value of that fault, which is given as the 

product of the fault occurrence and corresponding sensor failure probabilities: 
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where 

fi: the probability of the occurrence of fault i;  

sj: the probability of the failure of sensor j;  

xj: the number of sensors to be placed on node j; 

dij is non-zero if fault i affects node j.  

Bagajewicz  [22] considered cost as the FOM. He presented a minimum cost model for 

the design of reliable sensor networks:  
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Reliability of specific variables, as well as other constraints, such as bounds on the 

degree of observability and precision of key variables, can be easily incorporated into the 

minimum cost model  [24] [25] [26]. 

In addition to the optimization approaches mentioned in Section 2.2.1, a graph-based 

method is utilized as the optimization tool for sensor placement for fault diagnosis at the 

system level  [9]. A greedy search algorithm based on a bipartite graph was proposed by 

Raghuraj  [9] to generate a minimal set of sensors to meet observability and maximum 

resolution requirements. A bipartite graph is one whose vertex set can be partitioned into 
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two sets in such a way that each edge joins a vertex of the first set to a vertex of the 

second set. Whenever there is a directed path from a root node to a key component, an 

arc from that root node to the key component is drawn in the bipartite graph. Two 

optimization algorithms based on graph theory are listed in the Appendix A and 

Appendix B.  

Particle swarm optimization (PSO) is a population based stochastic optimization 

technique developed by Eberhart and Kennedy in 1995  [64], inspired by social behavior 

of bird flocking or fish schooling. 

PSO shares many similarities with evolutionary computation techniques such as 

Genetic Algorithms (GA). The system is initialized with a population of random 

solutions and searches for optima by updating generations. However, unlike the GA, PSO 

has no evolution operators such as crossover and mutation. In PSO, the potential 

solutions, called particles, fly through the problem space by following the current 

optimum particles.   

Each particle keeps track of its coordinates in the problem space which are associated 

with the best solution (fitness) it has achieved so far. The fitness value is also stored. This 

value is called pbest. Another "best" value that is tracked by the particle swarm optimizer 

is the best value, obtained so far by any particle in the neighborhood of the particle. This 

location is called “lbest.” When a particle takes all the population members as its 

topological neighbors, the best value is a global best and is called “gbest”  [65]. 
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Figure 8: Particle swarm optimization. 

 

 

The particle swarm optimization concept consists of, at each time step, changing the 

velocity of (accelerating) each particle toward its pbest and lbest locations (local version 

of PSO), as shown in Figure 8. Acceleration is weighted by a random term, with separate 

random numbers being generated for acceleration toward pbest and lbest locations.  

In the past several years, PSO has been successfully applied in many research and 

application areas. It is demonstrated that PSO gets better results in a faster, cheaper way 

compared with other methods.   

Another reason that PSO is attractive is that there are few parameters to adjust. One 

version, with slight variations, works well in a wide variety of applications. Particle 

swarm optimization has been used for approaches that are employed across a wide range 

of applications, as well as for specific applications focused on a specific requirement. 
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2.2.3 Sensor Uncertainty 

At the fault initiation stage, the symptoms are usually difficult to be detected due to 

uncertainty. Therefore, uncertainty analysis is a key factor for selecting sensors for fault 

diagnostic purposes and should be used to assist in the selection of sensors based on their 

relative performance. 

Sources of Error 

Uncertainty arises from three major sources: 

• Environment uncertainty [67] is a common type of source of uncertainty. Air 

temperature, wind, and barometric pressure are examples of the sources of 

environment uncertainty.  

• Model uncertainty is produced due to the model inaccuracy. The selection of 

modeling techniques may also lead to uncertainty in a system. 

• Measurement uncertainty, the final source of uncertainty, is introduced during the 

measurement process: human perception, calibration error, sensor error, etc.  

This research will focus on the measurement uncertainty related to sensors. 

Environment uncertainty may impact the measurement results through noise and 

interference. This type of uncertainty will be considered as a part of measurement 

uncertainty as well.  

The sensor measurement process consists of three distinct steps: calibration, data 

acquisition, and data reduction. Errors that enter during each of these steps will be 

grouped under their respective error source heading: calibration errors, data acquisition 

errors, and data reduction errors. 

Common elemental calibration errors include:  
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• Primary to interlab standard 

• Interlab to transfer standard 

• Transfer to lab standard 

• Lab standard to measurement system 

• Calibration technique, etc. 

Data acquisition error sources: 

• Measurement system operating conditions 

• Sensor-transducer stage (instrument error) 

• Signal conditioning stage (instrument error) 

• Output stage (instrument error) 

• Process operating conditions 

• Sensor installation effects 

• Environment effects 

• Spatial variation error 

• Temporal variation error 

Data Reduction Error:  

• Calibration curve fit 

• Truncation error 

Representation of Uncertainty  

All measurements of a variable contain inaccuracy or uncertainty. We will take the 

word accuracy to refer to the closeness of agreement between a measured value and the 

true value. The degree of inaccuracy or the total measurement error (δ) is the difference 

between the measured value and the true value. The total error is the sum of the 
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systematic (or bias) error and the random (or precision) error. The systematic error (β) is 

the fixed or constant component of the total error and is sometimes referred to simply as 

the bias. The random component (ε) of the total error is sometimes called the 

repeatability, repeatability error, or precision error. Therefore, uncertainty can be grouped 

into two general categories: bias error and precision error. Measurement blunders that 

result in obviously fallacious data will not be considered.  

The precision error, or random error, of a measurement system refers to the ability of 

the system to indicate a particular value upon repeated but independent applications of a 

specific input value. Precision error is a measure of the random variation to be expected 

during such repeatability trials.  

Random error is based on the assumption that the distribution is Gaussian or normal:  
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However, an experimenter never has at his disposal an infinite population of data, but 

just a sample of n data points with which to calculate the standard deviation:  
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Where:  

 Xi: the value of the ith X in the sample 

 X : the sample average 
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 (n-1): the degrees of freedom for the sample. 

The interval ( X ±Sx) contains ≈ 68% of the data sample. When there are less than 30 

degrees of freedom, SX cannot be used. Instead, “t” distribution is used. Usually, 

( X ±t95Sx) contains 95% of the data sample. 

The average error in a series of repeated calibration measurements defines the error 

measure known as a bias. Bias error is the difference between the average and true 

values. The bias error, β, is never known, its limits is estimated with the bias limit, B, in 

which  

–B ≤ β ≤ B      (2-6) 

Measurement uncertainty is defined as the combination of both the bias and precision 

errors of uncertainty. Two methods are provided for that combination: the addition model 

and the root-sum-square model. 

The Addition (Add) Uncertainty Model ((Symmetrical Bias Limits) 

UADD = ±[B + t95S]     (2-7) 

The Root-Sum-Square (RSS) Uncertainty Model (Symmetrical Bias Limits) 

URSS=±[B2+(t95S)2]1/2     (2-8) 

From statistical analysis of the data set and an analysis of sources of error that 

influence this data, we can estimate x’ as  

xxx µ±='
      (2-9)  
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Where x represents the most probable estimate of x’ based on the available data and 

xµ the confidence interval or uncertainty in that estimate at some probability level (P %), 

usually 95%. based both on an estimate of the precision error and the bias error in the 

measurement of x.  Either UADD or URSS can be used as xµ . 

Two stages are of concern while considering the effect of sensor uncertainty on the 

sensor fault detectability: design stage and implementation stage. 

Design Stage Uncertainty Calculation 

In every design there is an initial stage where the measurement system and its 

procedure are but a concept. At this point in the design, what is usually known about the 

sensors stems from the manufacturers and previous experience.  

In the design stage, distinguishing between bias and precision errors is too difficult to 

be of concern. Instead, consider only sources of uncertainty in general. Even when all 

errors are otherwise zero, the value of the measurand is affected by the ability to resolve 

the information provided by the instrument. This is called the zero-order uncertainty of 

the instrument, 0µ . At the zeroth order, it is assumed that the variation expected in the 

measurand will be less than that due to instrument resolution and that all other aspects of 

the measurement are perfectly controlled. Basically, 0µ  is an estimate of the expected 

uncertainty caused by the data scatter due to reading the instrument. 

As an arbitrary rule, assign a numerical value to 0µ of one-half of the instrument 

resolution with a probability of 95%: 

0µ  = ½ resolution     (2-10) 
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The second piece of information that is usually available is the manufacturer’s 

statement concerning instrument errors. The value stated in specification is some typical 

value for a specific instrument under ideal conditions. We can assign this stated value as 

the uncertainty due to the instrument, cµ . Sometimes the instrument errors will be stated 

in parts, each part due to some contributing factor. A probable estimate of cµ can be 

made by treating the propagation of errors to the instrument uncertainty using the error 

propagation law. This is an estimate of the bias error due to the instrument.  

The design-stage uncertainty, dµ , for the instrument can be approximated by 

combining the instrument uncertainty with the zero-order uncertainty:  

(P%)   22
0 cd µµµ +=     (2-11) 

Implementation-Stage Uncertainty Calculation 

In design-stage uncertainty analysis, only errors due to a measurement system’s 

resolution and estimated intrinsic errors are considered. Implementation-stage uncertainty 

analysis takes one step further by considering procedural and test control errors that 

affect the measurement.  

For zero-order uncertainty, all variables and parameters that affect the outcome of the 

measurement, including time, are assumed to be fixed except for the physical act of 

observation itself. Thus: 

0µ  = ½ resolution     (2-12) 
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Higher-order uncertainty estimates consider the controllability of the test operating 

conditions. For example, at the first-order level, the effect of time as an extraneous 

variable in the measurement might be considered: 

1µ  = ±tv95Sx      (2-13) 

As the final estimate, instrument calibration characteristics are entered into the scheme 

through the instrument uncertainty, cµ , given by 
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Uncertainties Analysis Techniques 

The use of an analysis approach to estimate the effect of uncertainties is referred as 

uncertainty propagation. Several categories of methods exist in the literature. The first 

category is the conventional sample-based approach such as Monte Carlo Simulations 

(MCS)  [68]. Monte Carlo simulation provides an efficient approach for integrating and 

propagating probability distributions through a risk model. Although alternative sampling 

techniques such as Quasi Monte Carlo Simulations including Halton sequence, 

Hammersley sequence, and Latin Supercube Sampling  have been proposed, none of 

these techniques are computationally feasible for problems that require complex 

computer simulations, each taking at least a few minutes or even hours or days  [69]. The 

second category of uncertainty propagation approach is based on analytical analysis  [70]. 

Some of the widely used analytical methods for sensitivity/uncertainty are: (a) 

differential analysis methods, (b) Green's function method, (c) spectral based stochastic 



 29

finite element method, and (d) coupled and decoupled direct methods. The third category 

of uncertainty propagation approach is computer algebra based methods. Computer 

algebra based methods involve the direct manipulation of the computer code  [70], 

typically available in the form of a high level language code (such as C or FORTRAN), 

and estimation of the sensitivity and uncertainty of model outputs with respect to model 

inputs. These methods do not require information about the model structure or the model 

equations, and use mechanical, pattern-matching algorithms, to generate a ``derivative 

code'' based on the model code. One of the main computer algebra based methods is the 

automatic differentiation, which is sometimes also termed automated differentiation.  

2.2.3 Open Questions 

Previous reported work in this area does not address some key concerns:  

• To determine the sensor localization for fault diagnostic purposes, the severity of 

failure effects and the probability of occurrence of failures must be considered.  

• Sensor uncertainty must be accounted in the research of SLS for fault diagnostic 

purposes.  

• Qualitative models, such as DG and SDG, are unable to express some important non-

qualitative information: how large the SNR at a sensor node is; how sensitive and 

how fast a sensor node can measure a fault.  

• Most of the available research findings are aimed at designing sensor locations in a 

new system, assuming there is no sensor installed in the current system. It is not 

always true in a current industrial environment. Many systems have sensors on board 

already, though they may be used for other purposes, such as measurement and 

control. In these situations, the objective of sensor placement for fault diagnosis is to 
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select available sensors as well as to design additional sensors needed for FDI 

purposes. 

2.3 Research Focus 

The research focuses on the following topics: 

• An integrated architecture for diagnostics and prognostics is proposed and 

implemented. 

• Fault detectability is defined to quantify the sensor’s ability for fault detection, 

considering sensor uncertainty. 

• A Quantified Directed Graph (QDG) model is proposed to model the fault 

propagation in a system.  

• A generalized Figure-of-Merit is defined for the sensor localization/selection problem 

for fault diagnosis at the system level and a sensor localization/selection method will 

be introduced based on particle swarm optimization method. 

• Validation of the proposed sensor localization/selection approach in the integrated 

diagnostic/prognostic architecture. 

. 



 31

CHAPTER 3  

INTEGRATED DIAGNOSTIC/PROGNOSTIC ARCHITECTURE 

 

Diagnostics and prognostics are complex tasks that involve various functional 

components, such as sensor localization, sensor selection, data acquisition, feature 

extraction, diagnosis, and prognosis. As such, it is important to design an open and 

flexible architectre. With contributions from my colleagues  [63], a proposed integrated 

system architecture for diagnostics and prognostics is shown in Figure 9.  
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Figure 9: Integrated system architecture for diagnostics/prognostics. 

 

 

My contributions to the architecture include the following: 

• Design of the sensor localization/selection module.  

• System Integration. Most of the modules in the architecture have been developed 

independently and their data structures and interfaces are not consistent. The 

integration at the system level is aimed to manage all the separate modules. 

• Database management & user interface development. A database management 

module is developed to efficiently store and access sensor data, features, and 
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diagnostic and prognostic results and a graphic user interface is developed to 

provide real-time interface to display, configuration, and operate the system. 

3.1 Subsystem Modules 

As shown in Figure 9, this architecture consists of several on-line modules and an off-

line module. In the on-line phase, complete diagnostics and prognostics are implemented 

using various functional components as follows: 

• Data Acquisition (DAQ)/Data Management Module: provides an interface for data 

acquisition from real systems or other software. 

• Feature Extractor (FE)  [61]: extracts useful information in the form of a feature 

vector from the raw sensor data according to the requirements imposed by diagnostic 

and prognostic modules.  

• Operating Mode / Usage Pattern Identifier  [62]: decides upon a specific operating 

mode and usage pattern of the system.  

• Classifier: employs the Dempster-Shafer theory as a knowledge fusion tool to 

combine the classification results from a fuzzy inference engine, static Wavelet 

Neural Networks (WNN  [59]), and an Arrangement Fuzzy Neural Network (AFNN) 

 [61]. The occurrence of a fault mode is determined and identified on-line based upon 

the fusion result.   

• Prognosticator: capitalizes upon a virtual sensor to provide fault dimensions and a 

dual approach to prediction — a Dynamic Wavelet Neural Networks (DWNN  [59]) 

(supervised/unsupervised) for fault trending and a Confidence Prediction Neural 

Network (CPNN  [58]) assisted by the Fuzzy Analytic Hierarchy Process (FAHP) 
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aimed primarily at accommodating causal adjustments to the prediction curve and 

managing uncertainty bounds.  

• Performance Assessor: assesses the performance of the sensor localization/sensor 

selection/diagnostic/prognostic modules. 

One important aspect of the architecture is to divide a dynamic system into subsystems 

according to the operating modes/usage patterns. Each subsystem has a classifier and a 

prognosticator with a limited number of inputs, thereby reducing not only the number of 

neurons in the network, but also the run time and training time required for the network, 

contributing to improved speed for failure isolation and detection. System resource 

consumption is also reduced as well as computational complexity. Moreover, instead of 

using one single classifier for the whole system, fewer changes to the existing networks 

are required when additional classifiers are added to the central database as new features 

are derived, new devices are inserted, or new operating modes/usage patterns are defined. 

In this way, the architecture is open and flexible. Finally, if a hybrid system can be 

divided into several continuous sub-systems according to operating modes or usage 

patterns, the diagnostic and prognostic issues in the hybrid system can be addressed by 

dealing with the problems in subsystems in the continuous domain. 

The sensor localization/selection (SLS) module is included at the off-line phase. The 

SLS module determines optimum types, location, and number of sensors for fault 

diagnosis at the system level.  

3.2 Software Architecture  

The software architecture is shown in Figure 10. All the modules introduced in Section 

3.1 are built into a Component Object Model (COM)/Distributed Component Object 
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Model (DCOM) infrastructure in order to be accessed in an open and flexible manner 

accommodating a variety of development languages.  
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Figure 10: Software architecture.  

 

 

This software architecture has several characteristics: 

• The architecture is scalable and language independent.  

• The architecture is open and flexible. Components can be developed and upgraded  

independently. This component-based architecture encourages flexible “plug-and-

play”extensibility and evolution of systems. New components can be added easily 

when new algorithms are developed. 
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• Real time distributed computing can be realized. 

• Various products and technologies (such as Integrated Condition Assessment 

System, or ICAS, prognostic modules, and other plug-and-play modules) can work 

together with maximum compatibility and efficiency. 

• Event driven  and call back technologies increase the communication efficiency 

among components.  

3.3 COM/DCOM  

The modules, including feature extractor, operating mode / usage pattern identifier, 

classifiers, and prognosticators in this diagnostic/prognostic architecture are developed in 

different programming languages, such as Matlab, C/C++, and Visual Basic. It is 

inefficient and not necessary to rewrite all the modules using a unified programming 

language. This raises a problem in integrating all the modules. Among others, the 

Component Object Model (COM)/Distributed Component Object Model (DCOM) 

structures defined by Microsoft Corporation are able to solve this problem. 

The COM supports interoperability and reusability of distributed objects by allowing 

developers to integrate objects from different vendors in the same machine. DCOM is an 

extension of COM that allows network-based component interaction. Under the 

COM/DCOM structure, all the current modules in different programming languages can 

be utilized if they are transferred into the COM/DCOM structure. Also, for those future 

modules, no strict programming language requirements are enforced.  

3.4 Database Management 

A relational database management module is developed as a COM object to efficiently 

store and access raw data, features, diagnostic and prognostic results, and system 
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configuration parameters. The database interface provides functions to access the central 

database by means of a COM interface and to simplify the database programming and 

management. It hierarchically relates the main system to its components, which in turn 

relates to the sensors and their data and fault conditions. This scheme provides high 

cohesiveness, while at the same time isolating the actual database from the rest of the 

system.  

The speed and performance of the database interface are crucial requirements since 

every component of the diagnostic/prognostic system is accessing the central database. 

Several improvements have been made since its initial design, resulting in significant 

efficiency improvements.  

3.5 Graphical User Interface (GUI) and Communication  

A user-friendly GUI displays real-time values and historical records of sensors and 

features, as well as diagnostic/prognostic results. Meanwhile, the diagnostic/prognostic 

functions can be accessed through this interface. The communication between modules is 

event based and does not require an overall scheduler to manage all the modules.  

• The architecture’s main routine runs continuously at a nominal rate (typically same 

as the real sampling rate of the data acquisition system). In each cycle, data are 

collected from external data sources to the central database through API, drivers, or 

database queries. Also, features are extracted continuously.  

• When the features are ready for all the fault modes of interest, a “feature ready” 

event is fired.  

• With the firing of a “feature ready” event, diagnostic modules begin to determine 

whether a fault mode exists or not. If a fault is detected, the “fault detected” event is 
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fired after the fault is confirmed. Otherwise, if no fault is detected, all the modules are 

in an idle state until the next cycle.  

• With a “fault detected” event, the prognostic modules are activated to predict the 

time-to-failure and related information and an event of “prognostics ready” is fired.  
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CHAPTER 4 

SENSOR LOCALIZATION/SELECTION FOR FAULT DIAGNOSIS 

 

The purpose of sensor localization/selection (SLS) in this research is to specify the types, 

location, and number of sensors for fault diagnosis. SLS for fault diagnosis can be studied 

from two perspectives: system level and component level, as shown in Figure 11. Since 

component-level SLS relies greatly on the sensor types and is usually application 

specific, only system-level sensor localization/selection is studied in this research. 

 

 

Component-level
Sensor placement

System-Level Sensor placement

Component-level
Sensor placement

Component-level
Sensor placement

 

Figure 11: Sensor localization/selection hierarchical structure. 

 

 

4.1 Sensor Localization/Selection Architecture 

In this research, sensor localization/selection entails several functional modules: 

requirements analysis, Failure Mode and Effects Criticality Analysis (FMECA) study, 
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quantitative model, Figure-of-Merit (FOM), optimization, and performance assessment, 

as shown in Figure 12. This figure illustrates how the sensor localization/selection 

modules are integrated together and interconnect with a diagnostic/prognostic system. 

First, in the requirement analysis module, sensor localization/selection requirements 

are analyzed and basic definitions needed for other modules are provided.  

 

 

 

Figure 12: Sensor localization/selection architecture.  

 

 

Secondly, since the purpose of sensor localization/selection in our research is to 

achieve maximum fault detection performance with applicable constraints, it is critical to 

analyze and understand each fault mode/failure mode. A FMECA study is widely 

employed to identify failure modes and specifies severity of failures and frequency of 

their occurrence.  

Diagnostic/Prognostic 
System Performance Assessment 

Optimization
System 

Reconfiguration

Sensor 
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Selection 

FOMModel FMECA 

Requirements Analysis
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Current research work on sensor localization/selection is focused on qualitative 

analysis that usually leads to a qualitative fault propagation model. With the information 

from the FMECA study and the definition given in the requirements analysis module, a 

quantitative model, Quantified-Directed-Graph (QDG) model is introduced to build the 

fault propagation model quantitatively in the proposed architecture.  

The thorough analysis of the sensor localization/selection requirements is also 

employed to establish a generalized Figure-of-Merit (FOM) to cover the most important 

issues in current research. Having selected a generalized FOM, a popular evolution 

computation technique, particle swarm optimization, is employed considering the rich 

heuristic information during sensor localization/selection process.  

Finally, with selected sensors for fault diagnosis, systems are configured for on-line 

diagnostics/prognostics and the diagnostic performance is evaluated through a 

performance assessment module. Meanwhile, the feedback information from the 

performance assessment module is utilized by the other sensor localization/selection 

modules to fine-tune the selected sensors and improve the on-line diagnostic 

performance.  

In the following sections, these components in the architecture are discussed in detail.  

4.2 Requirements Analysis 

Four main requirements need to be met to optimally place sensors for fault diagnostic 

purposes: detectability, identifiability, fault detection reliability, and a requirement 

associated with limited resources. Meanwhile, sensor uncertainty needs to be addressed 

since uncertainty is always related to the sensor measurement capability. 
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4.2.1 Detectability 

Definition: Total Fault Detectability (D) is defined as the extent to which the diagnostic 

scheme can detect the presence of a particular fault. The detectability of a fault relies on 

the sensors selected to detect the fault, therefore, “sensor fault detectability” is defined 

first. 

Definition: Sensor Fault Detectability is the extent to which a sensor can detect the 

presence of a particular fault. It depends on the following factors:  

Signal-to-Noise Ratio (SNR): A low SNR implies that it is hard for the sensor to 

detect the fault. Thus, the sensor fault detectability is poor by considering the SNR only. 

On the other hand, a high SNR implies a good sensor fault detectability if all other factors 

are equal. 

Time-To-Detection to Time-To-Failure Ratio: “time-to-detection” is the time span 

between the initiation of a fault (potential failure) and the detection of the fault by the 

sensor; “time-to-failure” refers to the duration between the initiation of the fault and the 

time when the failure occurs. A low ratio implies that the sensor can detect the fault in a 

relatively short period of time and the sensor fault detectability is good; while a high ratio 

implies that a relatively long period of time is needed to detect the fault and the sensor 

fault detectability is poor. Also note that, if the ratio is equal to or greater than 1, i.e., the 

fault is detected by a sensor when or after the fault leads to a failure, for this case we 

would have no reason to select this sensor to detect the fault and the sensor fault 

detectability is regarded as 0.  

Fault detection sensitivity of a sensor: if the sensor data can be used to map known 

measurements to a “fault measurement,” the fault detection sensitivity of the sensor can 
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be defined as the ratio of the change of the fault measurement to the change of the sensor 

measurement:     , where ∆s is the change of the sensor measurement, and ∆f is the 

change of the fault measurement. The sensor fault detectability increases with the fault 

detection sensitivity of the sensor. 

The definition of fault detection sensitivity must account for the resolution of a sensor 

and the “resolution” of a fault, which is the minimum measurable fault of intereste. For 

each fault, minimum observable symptoms can be determined based on the expert 

knowledge or past experiences. Thus, the definition of the fault detection sensitivity of a 

sensor can be rexpressed as:  

Sensitivity = 
min/

Resolution/
ff

s
∆∆

∆     (4-1) 

Let us now pose the following example for clarity. Let there be three sensor nodes A, 

B and C, in the presence of a fault f1. The fault changes 1 unit, which is also the 

minimum measurable fault, the sensor measurement changes A, B, and C, are 0.1, 0.2, 

and 0.4 units, respectively, a resolution of sensors A, B, and C are 0.01, 0.001, and 1, 

respectively.  

Not considering the resolutions of these sensors, the fault detection sensitivity would 

be 0.1, 0.2, and 0.4. Sensor C is most sensitive to the fault. However, the change of 

sensor C is smaller than its resolution. Thus, it would not be able to pick up the true 

sensor value.  

Taking into account both the sensor resolutions and the sensor measurement changes, 

we can update the calculation for this example: the fault detection sensitivity of sensors 

A, B, and C would be 10, 200, and 0.4, respectively. 

f
s

∆
∆
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Symptom Duration to Time-to-Failure Ratio: “symptom duration” is the time period of 

a fault affecting the measurement of a sensor. In most cases, if a fault occurs, affected 

sensors can measure the fault until the fault evolves to a failure. But it is possible that 

some sensors may return to their normal measurement states after a short time period. In 

this case, the symptom duration to time-to-failure ratio is small, and these sensors may 

not be good for detecting the fault.  

Based on empirical experiences and these factors, the sensor fault detectability is 

normalized within 0 to 1 and given by the following equation: 
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Where, 

i: Fault index; j: Sensor index;  

Vij : Fault detection sensitivity of sensor j for fault i; 

b, c: Shape control parameters of fault detection sensitivity, application specific 

with typical values of 10 and 0.5, respectively; 

SNRj: Signal-to-noise ratio of sensor j; 

g, h : Shape control parameters of SNR, application specific with typical values of 

1 and 0.5, respectively; 

TTDij: Time-to-detection for fault i of sensor j; 

TTFij: Time-to-failure for fault i of sensor j;  
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α: Shape control parameter of the time-to-detection to time-to-failure ratio, 

application specific with a typical value of 0.5; 

β: Shape control parameter of the symptom duration to time-to-failure ratio, 

application specific, typical value is 0.2; 

SyDij: Symptom duration for fault i of sensor j.  

A typical sensor fault detectability is given by the following equation: 

 

(4-3) 

By varying the sensitivity, SNR, time-to-detection to time-to-failure ratio, and the 

symptom duration to time-to-failure ratio, different sensor fault detectability outcomes 

are given in Figure 13:  
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Figure 13: The relationships of detectability and the affecting factors. 

 

 

From the plots of Figure 13, the sensor fault detectability increases with the SNR, the 

fault detection sensitivity, and the symptom duration, and decreases with the time-to-

detection to time-to-failure ratio.  

Based on the definition of sensor fault detectability, the total fault detectability of a 

fault can be computed.  

(A): Sensitivity-detectability. 

(SNR = 20dB; TTD/TTF=0.1; SyD/TTF=1). 

(B): SNR-detectability. 

(V=1; TTD/TTF=0.1; SyD/TTF=1). 

(C): TTD to TTF ratio vs. detectability. 

(V = 1; SNR = 20dB; SyD/TTF=1).

(D): SyD to TTF ratio vs. detectability. 

(V = 1; SNR = 20dB; TTD/TTF=0.1).
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If sensors in the set Ai={Si1, Si2, …, Sim} are selected to detect fault i, the detectability 

of fault i is defined as the mean value of the sensor fault detectability of all the sensors in 

Ai: 

m

SD
D

m

j
ij

i

∑
== 1       (4-4) 

4.2.2 Uncertainty Issues in Detectability 

This thesis focuses on the measurement uncertainty which is related to sensors. 

Environment uncertainty may impact the measurement results through noise and 

interference. Thus, this type of uncertainty will be considered as a measurement 

uncertainty as well.  

As in Equation 4-4, total fault detectability is defined as the mean value of the sensor 

fault detectability of those sensors selected to detect the fault. Therefore, the uncertainty 

of total fault detectability originates from the individual sensor fault detectability.  

Considering the four factors contributing to the sensor fault detectability, uncertainty 

plays an important role in the definition of fault detection sensitivity of a sensor and the 

SNR of a sensor. The others can be calculated statistically by averaging the experimental 

data.  

The uncertainty affects the detection sensitivity. Also, only one type of error, random 

error, needs to be considered. This is because we are only interested in the change of 

sensor measurements, and the bias error would be removed from the change of 

measurements.  
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The most common type of noise is the zero mean Gaussian white noise; therefore, the 

latter part of the above equation becomes 0, and:  

( )
f
sE

f
sE

∆
∆

=
∆
∆ )()(       (4-6) 

For other types of noises, we can consider their effects using this SNR formulation. 

The uncertainty of sensor fault detectability can be calculated by the law of 

propagation of uncertainty.  

Assume Y is determined from N other quantities X1, X2, ... , XN through a functional 

relation f:  

( )NXXXfY ,...,, 11=
   (4-7) 

The output estimate y, which is the result of the measurement, is given by  

   (4-8) 

The combined standard uncertainty of the measurement result y, designated by uc(y) 

and taken to represent the estimated standard deviation of the result, is the positive square 

root of the estimated variance uc
2(y) obtained from the law of propagation of uncertainty: 

  (4-9) 

Assume all the factors contributing to sensor fault detectability are independent to 

each other: sensitivity, SNR, time-to-detection to time-to-failure, and symptom duration 

to time to failure ratio, then only the second item in equation 4-9 is removed. Then the 

( )Nxxxfy ,...,, 21=
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uncertainty in the sensor fault detectability can be characterized by a random variable and 

the propagation law is applied: 

 

 

(4-10) 

The uncertainty of total fault detectability can be easily calculated as:  
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4.2.3 Identifiability 

Since more than one fault may occur in a system, sensors should be placed not only to 

detect faults, but also to isolate or identify them. This assumption leads to the need for 

defining an identifiability term.  

Claim 4.1: Assume fault i affects sensors in the set Ai={Si1, Si2, …, Sim}, and fault k 

affects sensors in the set Ak={Sk1, Sk2, …, Skq}. If Ai ∩ Ak is empty, then, clearly, fault i 

and fault k can be easily distinguished. If Ai ∩ Ak is not empty, a virtual fault g is created 

that affects sensors in Ai or Ak, but not in both, i.e. in the set Bg= Ai ∪ Ak - Ai ∩ Ak. 

Under the single-fault assumption, if the faults i, k, and virtual fault g can be detected, 

then fault i and fault k can be identified.  
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Proof of claim 4.1: if fault g can be detected by the sensors selected, i.e., the 

detectability of the virtual fault g is positive, then at least one sensor from set Bg is 

selected. This sensor is either in Ai or Ak, but not in both, which can imply that this 

sensor can measure either fault i or fault k, but not both, if a fault occurs. Thus, fault i and 

fault k can be identified. 

This idea is also applicable to double-fault and multi-fault scenarios. For example, if 

two faults i and k can possibly occur at the same time, virtual faults measured 

by kiik AAA ∪=  can be generated and added to the FOM to solve the double-fault 

scenario.  

The above claim is enough for fault identification without considering the sequence of 

fault symptoms. However, false positive rate may exist. Consider the following example. 

Example 4-1: If fault f1 occurs, sensor value S1 decreases after time t1 and S2 increases 

after time t2;   

If fault f2 occurs, sensor value S1 decreases after time t4 and S3 increases after time t3. 

To detect these two faults, f1 and f2, with a minimum number of sensors, we can select 

S1 and S2. If S1 decreases and S2 increases, fault f1 is detected; If S1 decreases and S2 

keeps constant, fault f2 is detected. If t2 < t1, we have no problem to identify each fault. 

Ai Ak Bg 

Figure 14: identifiability.
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However, if t1 < t2 and fault f1 occurs, between time t1 and time t2, S1 decreases and S2 is 

constant, fault f2 will be claimed. This is of course a false positive alarm. Therefore, the 

following claim can be easily proved.  

Claim 4.2: Assume sensors in the set Ak={Si1, Si2, …, Sim} are selected to detect fault 

k without considering the sensor directions, and  sensors in the set Ai= Ak∪{Sk1, Sk2, …, 

Skq} are selected fault i without considering the sensor directions. Also, if fault i occurs, 

the sensors in the set Ak are affected earlier than any other sensors. In this case, if fault k 

occurs, a false positive alarm of fault k will be fired.  

Proof of claim 4.2: if fault i occurs, all the sensors in Ak are affected first, therefore, 

fault k will be claimed, and a false positive alarm will be fired.  

To reduce this type of false alarm, a penalty in the objective function can be applied if 

this situation occurs. 

4.2.4 Fault Detection Reliability (R) 

When a fault occurs, it may not be detected because of the failure of sensors. Fault 

detection reliability is defined as the probability that a fault is detected when it occurs. If 

a fault is detected by sensors that are prone to failure, then the fault detection reliability is 

low. In a system, each sensor has a Probability of Failure (PF). If sensors S1, …, and Sq 

are selected to detect fault fi, and number of each sensor is nn1, …, nnq; then the 

probabilities of failure are FR1, …FRq, respectively. Let FRi be the probability that a fault 

fi is detected when it occurs. This is detection reliability of fault fi, which is given by: 
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4.2.5 Limited Resources 

In some situations, sensor localization cost needs be taken into account because of limited 

resources. Sensor localization cost includes sensor price, cost induced by installation, 

data processing, data fusion, and others.  

4.3 FMECA Study 

A FMECA study identifies failure modes and specifies the severity of failures and 

frequency of their occurrence. When the consequence of a fault is more severe, or the 

occurrence is more frequent, higher detectability and fault detection reliability 

requirements must be imposed. In other words, detectability, identifiability, and fault 

detection reliability requirements are determined by the criticality and frequency of an 

occurrence of a fault based on the FMECA study.  

On the basis of the FMECA study, failure modes are classified according to their 

severity and frequency of occurrence.  

S: severity index; an assessment of how serious the effect of the potential failure mode 

is. 

O: frequency of occurrence; an assessment of the likelihood that a particular fault will 

occur and result in a failure mode during the intended life and use of the product. 
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The severity index categorizes a failure mode according to its ultimate consequence. 

The severity index is defined on a scale from 1 to 4, with 4 being the most severe: 

1 — Minor: a failure that does not cause injury or equipment damage, but may result 

in equipment failure if left unattended, down time, or unscheduled maintenance/repair. 

2 — Marginal: a failure that may cause minor injury, equipment damage, or 

degradation of system performance. 

3 —Critical: a failure that may cause severe injury, equipment damage, and 

termination  

4 — Catastrophic: a failure that results in death, significant injury, or total loss of 

equipment. 

The frequency of occurrence can be defined on a scale from 1 to 4 (or possibly more 

divisions) with 1 being the lowest probability to occur. The classification number is 

derived based on failure occurrence for the particular event standardized to a specific 

time period and broken down into unlikely, occasional, probable, and likely. For 

example, with a Mean Time Between Failure (MTBF) range of 1000 hours, the 

classification number is 

1 — Unlikely: cumulative failures less than 1.0 

2 — Occasional: cumulative failures from 1.0 to 10 

3 — Probable: cumulative failures from 10 to 100 

4 — Likely: cumulative failures greater than 100 

4.4 The Modeling Approach 

Fault propagation information is necessary and important for sensor 

localization/selection at the system level. Different approaches, such as Petri nets, fault 
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trees and digraph-based methods are available to model the fault propagation. Among 

them, the Directed Graph (DG) and Signed Directed Graph (SDG) methods, with simple 

graphical representations of a system that represent the cause-effect analysis of fault 

propagation, are widely used  [9] [23]. A DG model of a process consists of a set of nodes 

and directed branches. The nodes represent process variables and the branches represent 

the causal influences between the nodes. There is a branch connecting one node to 

another if the first node affects the latter. In a SDG model, each branch has a sign (+ or -) 

associated with it, which indicates whether the cause and effect variables tend to change 

in the same (+) or opposite (-) direction  [53]. The SDG of the process can be built from 

the process equations that are used to model the process  [54]. 

Neither a DG model nor a SDG model includes any quantitative information related to 

fault diagnosis, i.e., how large the Signal-to-Noise Ratio (SNR) at a sensor node is and 

how sensitive and how fast a sensor node can measure a fault. The quantitative 

information can be acquired by testing the system thoroughly, which is expensive in most 

cases. A Quantified Directed Graph (QDG) model is proposed to simplify such a test.  

In a QDG model, each node stands for a possible sensor location and is assigned a 

SNR in dB with it. Each arc has a “+” or “-” sign associated with it, as well as the fault 

propagation time and the fault propagation gain between the two nodes connected by the 

arc. The fault propagation time and the propagation gain are defined based on the step 

response that is defined as the response of a system to a step input. The fault propagation 

time (PT) is defined as the rise time when the response reaches 10% of the steady gain, 

while the fault propagation gain (PG) is defined as the steady-state gain.  

Type and Location of Possible Sensors 
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Based on the QDG model, possible type and possible location of sensors can be easily 

determined by scanning all the sensors in the fault propagation path.    

Sensor Fault Detectability  

If a propagation path exist from fault i to sensor j, and the propagation gains along the 

path are {PGj1, PGj2,, …, PGjn}, then the propagation gain of this path can be calculated 

by multiplying all the propagation gains along the path, which is ∏
=

n

k
jkPG

1

. If the 

propagation time along the path are { PTj1, PTj2,, …, PTjn }, then the time-to-detection of 

sensor j to fault i is estimated as the summation of the propagation time along this path, 

which is ∑
=

n

k
jkPT

1

 

If multiple propagation paths exist from fault i to sensor j, then the overall propagation 

gain from the fault i to sensor j is defined as the summation of all the propagation gains 

of each path, and the time-to-detection of sensor j to fault i is defined as the minimum 

propagation time of all the paths. The symptom duration at sensor j is calculated as the 

maximum symptom duration at sensor j for each path.  

Therefore, sensor fault detectability can be calculated using the QDG model. The 

QDG model is validated using an example.  

Example 4.2. Let there be three sensor nodes A, B, and C, and two faults f1 and f2. 

Assume the SNR at sensor nodes A, B, and C are -2dB, 15dB, 10dB, respectively and all 

the sensor resolutions are 1.   

Fault f1 : assume it takes 2 minutes to be measured at sensor node A after fault f1 is 

initiated; 25 minutes to propagate from A to B, 2 minutes to be measured at sensor node 

C; the fault detection sensitivity at sensor nodes A and C is 0.9; the propagation gain 
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from A to B is 1.0; the symptom duration measured at sensor nodes A, B, and C is 

equivalent to the time-to-failure, which is 100 minutes. 

Fault f2: assume it takes 2 minutes and 100 minutes to be measured at sensor nodes B 

and C after f2 is initiated, respectively; the fault detection sensitivity at sensor nodes B 

and C is 0.9; the symptom duration measured at sensor nodes A, B, and C is equivalent to 

the time-to-failure, which is 100 minutes. 

The resultant QDG model is shown in Figure 15. The fault detection sensitivity for 

fault f1 at nodes A, B, and C can be calculated from the QDG model: V1A = 0.9; V1B = 0.9 

*1=0.9; V1C = 0.9.  

 

 

BA

C

f1

f2

(0.9, 2) (1, 25)

(0.9, 100)
-2dB

15dB

10dB
(0.9, 2)

(0.9, 2)  

Figure 15: A QDG example. 

 

 

The ratio of the time-to-detection to the time-to-failure at each node A, B, and C, is 

(TTD/TTF)1A= 2 / 100 = 0.02, (TTD/TTF)1A=  (2+25)/ 100 = 0.27, and (TTD/TTF)1A=  2 

/ 100 = 0.02, respectively.  

Meanwhile, V2B = 0.9; V2C = 0.9; (TTD/TTF) 2B= 100/100 = 1; (TTD/TTF)2C= 2/100 = 

0.02. 
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The sensor detectability of faults f1 and f2 for each sensor can be calculated as: SD1A = 

0.07, SD1B = 0.83, SD1C = 0.96, SD2A = 0, SD2B = 0, and SD2C = 0.96.  

4.5 FOM 

The proposed FOM maximizes the fault detectability and minimizes the required number 

of sensors while achieving optimum sensor localization/selection. The FOM is in the 

form of the weighted sum of the fault detectability and the number of sensors. The 

weights are adjustable and are mainly determined by the severity of failure effects and the 

probability of failure occurrence.  

The following constraints apply: 

• All faults can be detected, i.e. the detectability of each fault is greater than 0; 

A binary matrix B is generated to indicate the sensor-fault mapping. The rows of the 

matrix B correspond to the faults, while the columns correspond to the sensors. Entry 

bij is 1 if sensor j is selected to detect fault i; otherwise, bij is 0. Thus, the total fault 

detectability of fault i is calculated by  
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• The fault detectability for selected faults is required to be greater than predefined low 

bounds that are determined by the fault severity and the probability of occurrence; 

• The fault detection reliability for selected faults is required to be greater than 

predefined low bounds that are determined by the fault severity and the probability of 

occurrence; 
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• The resource may be limited explicitly (<=C*). Let the cost of a sensor j be Cj, 

including its price and other cost induced by installation, data processing, data fusion, 

and maintenance. To simply the case, it is assumed that the cost to install any 

additional sensor j is the same as to install the first sensor j. If the number of sensor j 

is Xj, then  

*

1
* CXC

M

j
jj <=∑

=     (4-14)  

Also, let the maximum possible number of sensors be Mmax, then the constraint of 

number of sensors can be written as: 

0
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1
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j
j
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MCX

     (4-15)  

In the above formulation, Cs is a slack variable, which takes nonnegative integer 

values. Thus, to minimize the number of sensors (∑
=

M

j
jX

1
) is equivalent to maximizing 

the slack variable Cs. 

• All faults can be identified, i.e., the detectability of each virtual fault is greater than 0.  

• The number of sensors at selected locations may be limited explicitly.  

• A penalty is applied if the symptom sequence requirement is not satisfied.  

In summary, the FOM can be written in the following formula: 
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Where, 

Ki: weight of detectability decided by fault severity & occurrence; 

SDij: the sensor detectability of fault fi for sensor sj; 

Di: detectability of fault fi; 

α: weight of the cost of sensor j; 

β: penalty weight; 

PFPij: penalty of false positive alarm; 
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α: weight of the cost of sensor j; 

Cs: slack variable of number of sensors; 

Cj: cost of sensor j. 

C*: resource limit; 

bij: binary variable indicating the sensor-fault relationship: 1 if sensor j is selected to 

detect fault i, otherwise, 0; 

Xj:  number of sensor at sensor location j. 

Di
*: low bound of detectability of fault fi decided by fault severity & occurrence; 

N: number of original faults;  

M: number of original sensors; 

N’: number of faults, including “virtual faults”; 

Ri: fault detection reliability of fault fi; 

Ri
*: low bound of fault detection reliability of fault fi decided by fault severity & 

occurrence; 

MR: the fault set that has fault detection reliability requirement;  

MD: the fault set that has fault detectability requirement; 

FRj: the probability of failure of sensor j; 

Nj: the maximum sensors that can be put at location j. 

Any other requirement can be added easily as a constraint. Therefore, this FOM is 

flexible expandable.  

4.6 Optimization 

The optimization step includes two main tasks: optimize sensor locations and optimize 

selected sensors. The selected FOM is an Integer Nonlinear Programming (INLP) model. 
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Current commercial INLP solvers, such as SBB and DICOPT, can be used to find the 

optimal number of sensors. In the optimization module, not long the number of sensors at 

each location needs to be optimized, but also the sensors selected for each fault needs to 

be determined. To detect and identify N fault modes by placing sensors at M possible 

sensor locations, in the worst case, the maximum optimization variables will be 

M*N(1+(N-1)/2)). For example, N = 50 and M = 100, the maximum number of variables 

to be optimized becomes 127500!  

To reduce the optimization scale, an optimization algorithm is proposed in this 

research to optimize the formularized Figure-of-Merit. This algorithm combines particle 

swarm optimization method with a heuristic search algorithm. The possible number of 

sensor locations is optimized based on particle swarm optimization method and the 

sensors selected for each fault is selected based on a heuristic search algorithm.  

Sensor Localization 

PSO method is originally designed for continuous variables optimization with the 

following format:  

HL

n

XXX
RX

ts
Xf

<<

∈

..
)}(min{

     (4-17) 

The formulized FOM has discrete variables and both equality and inequality 

constraints. We need to convert the INLP problem to a standard PSO problem.  

Penalty functions are usually used to convert the constraint optimization problem to an 

unconstrained problem. Since the detectability requirements are more important to the 
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reliability requirements in most cases, the penalty for breaking the detectability 

requirements are set to be larger than breaking the detection reliability requirements. 

The number of sensors at each location is a discrete variable; therefore, the real 

number variables need to be rounded to integer numbers.  

Therefore, the original INLP problem can be rewritten as the following equation.  
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 (4-18) 

Each particle is an integer array indicating the number of sensors selected at each 

location: {S1, S2, …, Sn}. PSO is initialized with a group of random particles and then 

searches for optima by updating generations. In every iteration, each particle is updated 

by following two "best" values. The first one is the best solution it has achieved so far. 

This value is called pbest. Another "best" value that is tracked by the particle swarm 

optimizer is the best value, obtained so far by any particle in the population. This best 

value is a global best and called gbest. When a particle takes part of the population as its 

topological neighbors, the best value is a local best and is called lbest  [64]. 

After finding the two best values, the particle updates its velocity and positions with 

following equations. 

v[] = w*v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (4-19) 

NewNumber[] = present[] + v[]        (4-20) 
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v[] is the particle velocity, persent[] is the current particle (solution). pbest[] and 

gbest[] are defined as stated before. rand () is a random number between (0,1). c1, c2 are 

learning factors. Usually c1 = c2 = 2.  

The pseudo code of the procedure is as follows. 

Initialize matrix B0 = {bij}.  

bij = 1   if the sensor fault detectability of sensor j to detect fault i is greater 

than 0;  

bij = 0;   otherwise. 

For each particle  

Initialize particle based on the initial matrix B0 

END 

Do 

    For each particle 

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

End 

    Choose the particle with the best fitness value of all the particles nearby as the gBest 

    For each particle  

        Calculate particle velocity according equation  

        Update particle position according equation  

    End  

While maximum iterations or minimum error criteria is not attained 
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Particles' velocities on each dimension are clamped to a maximum velocity Vmax. If 

the sum of accelerations would cause the velocity on that dimension to exceed Vmax, 

which is a parameter specified by the user. Then the velocity on that dimension is limited 

to Vmax. 

Sensor Selection 

At each iteration for each particle, an important issue is how to select sensors for each 

fault to achieve maximum FOM based on the sensors selected, i.e., determine matrix 

B={bij} based on selected sensor set A={S1, S2, …, Sn}, with the minimum detectability 

Dmin(i), minimum reliability Rmin(i), and other requirements. A heuristic search algorithm 

is proposed. For each fault: 

1) All the sensors in the sensor set A are sorted by the sensor fault detectability in a 

descendent order. Assume the sorted sensor set is {S1, S2, …, Sn}, S1 with the 

highest sensor fault detectability.  Check each possible sensor for detectability 

and reliability requirements, and find the sensor with maximum detectability that 

meets all the constraints. If several sensors have the same detectability, select the 

one with maximum reliability; if no such sensor exists, the constraints can not be 

met and penalty will apply, go to step 3. Let the selected sensor be Sk. Selected 

number of sensor location is set to 1: ns=1. Let the index I = k. Calculate the 

current fault detectability D(i) and detection reliability R(i). Construct a new 

sensor set SS: {Sj|j<I}.  

2) Try to find another sensor in the set with detectability greater than the current 

fault detectability D(i) and the probability that it will not fail is no less than 

(Rmin(i) -  ns * (R(i) – Rmin(i))). If such a sensor is found, calculate the new 
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detection reliability as the mean value of the probability that the selected sensors 

will not fail:
1ns
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D . If no such a sensor exists, go to the 

next step; otherwise, ns:=ns + 1, remove the selected sensor from the sensor set 

SS, and repeat this step. 

3) Calculate current Figure-Of-Merit based on the selected sensors. 

Consider the example 4.2 again, it is assumed that all the detectability weights in 

the FOM are equal to 1 and the cost weight is -1. Additionally no resource limits or low 

bounds of detectability and reliability exist. A virtual fault f3 is created to distinguish 

between faults f1 and f2. Sensors B and C are selected after solving the INLP model. The 

detectability of faults f1, f2, and the virtual fault f3 is 0.9, 0.96, and 0.83, respectively.  

If the DG model approach is used based on the algorithm proposed by  [9] whose 

purpose is to minimize the number of sensors, sensors A and B (or A and C) are selected 

to detect and identify faults f1 and f2. If sensors A and B are selected, the fault 

detectability of fault f2 is 0 since SD2A = 0 and SD2B = 0. If sensors A and C are selected, 

sensor A is expected to distinguish fault f1 from fault f2. However, it is difficult to 

distinguish between them since SD1A and SD2A are both very small. 

If the SDG model approach is used  [23], sensor B is selected to detect and identify 

faults f1 and f2. However, fault f2 is not able to be detected by sensor B since SD2B = 0. 

Therefore, the proposed sensor localization/selection approach based on the QDG 

model is able to detect faults with high detectability and a small number of sensors. 
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4.7 Performance Assessment 

The performance of the sensor localization/selection strategy is validated and verified in 

the integrated diagnostic/prognostic architecture. 

The first goal of the performance module is to estimate the fault detection error rate 

with selected sensor suite. For a fault that is concerned, it may not be detected by selected 

sensors, or the selected sensors may claim other faults happening by mistake. Therefore, 

for each fault, Single False Positive Rate (SFPR) and Single False Negative Rate (SFNR) 

are defined as the performance metrics.  

• Single False Positive Rate (SFPR) 

interestedfaultsofNumber 
faults misfired ofNumber 

=SFPR       (4-21) 

• Single False Negative Rate (SFNR) 


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


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=
detectednot  isfault   theif                            0

detected isfault   theif                             1
SFNR    (4-22) 

 

Based on the definitions of SFPR and SFNR of each fault, the Average False Positive 

Rate (AFPR) and the Average False Negative Rate (AFNR) are defined in the flowing 

equations.  

• AFPR 

interestedfaultsofNumber 
∑=

SFPR
AFPR       (4-23) 

• AFNR 

interestedfaultsofNumber 
∑=

SFNR
AFNR       (4-24) 
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To estimate how fast a fault is detected after it is initiated, time delay is defined.  

• Time Delay (TD) – time span between the initiation and the detection/isolation/ 

identification of a fault (failure) event. 

TD = Td-Ti       (4-25) 

Where,  

Td: fault (failure) detected/identified/isolated time; 

Ti: detection initiation time. 

If the performance is not satisfactory, i.e., the SFPR, SFNR, AFPR, AFNR, or time 

delay does not meet pre-defined specifications, the sensor suite may not be well selected 

for fault diagnosis. Sensors needs to be re-selected, and the following steps can be taken, 

which is also shown in Figure 16:  

• The detectability weights can be adjusted in the FOM accordingly.  

• The Detectability and the reliability definitions can be adjusted according to the 

diagnostic performance information. The original definitions of detectability and 

reliability can be revised as follows: 
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• By going back to the FMECA study level, the fault propagation and fault cause-

effect relationships can be re-examined. 

 

 

 

 

Figure 16: Performance Assessment Feedback 
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CHAPTER 5 

APPLICATION EXAMPLES 

 

5.1 Process Demonstrator 

The proposed integrated diagnostic/prognostic architecture is applied to a three-tank 

process demonstrator where faults are seeded and detected, and the remaining useful 

lifetime of the failing component is calculated. 

The process demonstrator is a model of a continuous fluid process typical of those 

found in industry, as shown in Figure 17. The demonstrator consists of tanks, pipes, 

valves, pumps, mixers, and electric heaters.  By activating these devices, fluid can be 

stirred, heated, and circulated among the tanks.  Honeywell Smart Transmitters installed 

in the system monitor fluid level, fluid flow and fluid temperature. 
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There are three tanks in the system: two 25-gallon tanks and one 50-gallon tank.  Each 

tank has a pump on the output line.  There are flow valves and flow meters on the lines 

into and out of tanks 1 and 2.  In addition, there is a flow valve and flow meter on the line 

from tank 1 to tank 2. There are hand valves into tanks 1 and 2 for introducing 

disturbances into the system. Tank 1 and Tank 2 each have a mixer to stir the fluid in the 

tank.  

A Labview interface of the process demonstrator for data collection and control 

purposes is shown in Figure 18.  

 

 

 

Figure 17: A process demonstrator. 
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Figure 18: Process demonstrator diagram in Labview. 

 

 

5.1.1 Problem Statement 

To simplify the case, two operating modes are detected, “idle” mode and “pump-on” 

mode.  

In the “idle” operating mode, the pumps are off and the valves are in their closed 

positions. Only a fault, “Tank 1 leakage”, is considered under this operating mode.  

In the “pump-on” mode, water is pumped from Tank 1 to main reservoir continuously. 

Under this mode, a “Tank 1 level low” fault is claimed when the Tank 1 level is lower 

than 8 inches.  

The fault modes, operating modes, and associated features are summarized in Table 2. 
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Table 2: Failure modes, operating modes, and features. 

Failure Mode Feature 1 Feature 2 Feature 3 Operating 

Mode 

Tank1 

leakage 

Tank 1 level 

slope 

Tank 2 level 

slope 

Tank 1 

level 

Transfer water 

from Tank 1 to 

Tank 2 

Tank 1 

leakage 

Tank 1 level 

slope 

Tank 1 level  System idle 

Tank 1 level 

low 

Tank 1 level   Transfer water 

from Tank 1 to 

Tank 2 

Tank 1 level 

low 

Tank 1 level   System idle 

 

 

5.1.2 Diagnostic/Prognostic Results 

Following these two operating modes, “idle” and “pump on” modes, two sets of 

classifiers and prognosticators were employed to reduce the system resource consumption 

and speed up the neural network training and prediction process.  

The user interface is shown in the Graphical User Interface (GUI, Figure 19) and the 

diagnostic result is shown in Figure 20.  
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Figure 19: Graphical user interface. 

 

 

Figure 20: A Diagnostic Result example. 
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Table 3 is an example of the diagnostic results from individual diagnostic module and 

an overall belief calculated by the Dempster-Shafer theory.  

 

 

Table 3: Fault belief of Tank1 leakage. 

Fuzzy  WNN AFNN Overall 

84.17 99.44 99.43 99.93 

 

 

After a fault is detected, the DWNN module is called to read the fault information 

from the database and predict the remaining useful lifetime of the failing component, as 

shown in Figure 21. In the figure, the green line is the sampled Tank 1 level data from the 

demonstrator, and the yellow line gives the prediction at that time. An example of the 

prognostic result analysis for the Tank 1 leakage fault is given in Table 4. 

 

 

Table 4: Prognostic results analysis of Tank 1 leakage. 

Prediction Given Time Step 32 51 70 

Predicted Failure Time Step 77 66 63 
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Figure 21: A prognostic result example. 

 

The failure occurs at time step 63. It can be seen that the prediction is updated with 

more incoming data. 

5.1.3 Diagnostic Performance Assessment 

Ten sets of data were collected from the Process Demonstrator for performance 

assessment. These 10 data sets were split into two groups; the first group includes 3 data 

sets used for training purpose, while the second group including 7 data sets was used to 

validate the trained parameters.  The following tables list the diagnostic performance 

analysis results for different diagnostic modules: Fuzzy, WNN, AFNN, and Dempster-

Shafer.  
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Table 5: Fuzzy results. 

Fuzzy 

Data Source Threshold FPR (%) FNR (%) FAR (%) TTD (s) 

D0923151 0.8 9.62 2.89 87.5 3

D0923152 0.8 0 3.96 96.04 16

D0923153 0.8 6.67 2.86 90.48 12

D0923161 0.8 4.90 3.92 91.18 15

D0923162 0.8 0 9.90 90.10 19

D0523 0.8 0 9.26 90.74 19

D061203151 0.8 0 1.01 98.99 7

D061203152 0.8 0 10.58 89.42 17

D061203154 0.8 0 20.41 79.59 21

 

Table 6: WNN results. 

WNN 

Data Source Threshold FPR (%) FNR (%) FAR (%) TTD (s)  

D0923151 0.6 2.89 2.89 94.23 3

D0923152 0.6 0 3.96 96.04 16

D0923153 0.6 3.81 4.76 91.43 15

D0923161 0.6 0 3.92 96.08 15

D0923162 0.6 0 10.89 89.11 19

D0523 0.6 0 12.04 87.96 23

D061203151 0.6 0 1.01 98.99 7

D061203152 0.6 0 11.54 88.46 17

D061203154 0.6 0 21.43 78.57 24
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Table 7: AFNN results. 

AFNN 

Data Source Threshold FPR (%) FNR (%) FAR (%) TTD (s) 

D0923151 0.9999 8.65 2.89 88.46 3 

D0923152 0.9999 0 3.96 96.04 16 

D0923153 0.9999 6.67 3.81 89.52 12 

D0923161 0.9999 4.90 3.92 91.18 15 

D0923162 0.9999 0 10.89 89.11 19 

D0523 0.9999 0 10.19 89.81 19 

D061203151 0.9999 0 1.01 98.99 7 

D061203152 0.9999 0 10.58 89.42 17 

D061203154 0.9999 0 20.41 79.59 21 

 

Table 8: Dempster-Shafer results. 

Overall 

Data Source Threshold FPR (%) FNR (%) FAR (%) TTD (s) 

D0923151 0.95 5.77 2.89 91.35 3 

D0923152 0.95 0 3.96 96.04 16 

D0923153 0.95 4.76 4.76 90.48 15 

D0923161 0.95 1.96 3.92 94.12 15 

D0923162 0.95 0 10.89 89.11 19 

D0523 0.95 0 11.11 88.89 19 

D061203151 0.95 0 1.01 98.99 7 

D061203152 0.95 0 10.58 89.42 17 

D061203154 0.95 0 20.41 79.59 21 
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The minimum time-to-detection is 3 seconds, which is the time to read the sensor data 

from the database, extract the features, and classify the results.  And the time-to-failure 

for the leakage fault is about 3600 seconds. Therefore, the time-to-detection to time-to-

failure is small for all the results. Also, the FPRs and FNRs are small except the data set 

of “D061203154.” The high FNR for this data set (around 20%) is due to the leakage is 

much smaller than others.  

5.1.4 Prognostic Performance Assessment 

To validate and verify the performance of prognostic modules, six sets of faulty data 

were used from the Process Demonstrator. For each data set, a leakage fault is initiated 

and evolved to a failure. For each data set, the prediction results converge to the real 

failure time, which is the time span between a fault is initiated and a failure occurs, as 

shown in Figure 22. 
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Figure 22: DWNN prediction results. 

 

 

We evaluate the prognostic performance from two aspects: horizontal and vertical. 

Vertical Metrics are defined to assess the prognostic performance for a single fault 

propagation data: 

• Rising Time: the time when the predicted time-to-failure reaches 80 percent of the 

real time-to-failure. 

• Settling Time: the time when the error between predicted time-to-failure and the 

real time-to-failure is less than 20% of the real time-to-failure. 

These metrics are evaluated in the following table. In this table, the rise time and the 

settling time are calculated and are normalized using the real failure time.   
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Table 9: Rise time and settling time analysis. 

Data Set Rise Time 

(Seconds) 

Rise Time/ 

Failure 

Time 

Settling Time 

(Seconds) 

Settling Time/ 

Failure Time 

Failure 

Time 

(Seconds) 

D05060416 100 6.67% 200 13.32% 1502

D05060417 500 34.82% 700 34.82% 1436

D05060418 100 7.33% 300 21.99% 1364

D05060419 100 6.61% 200 13.23% 1512

D05070410 100 4.81% 600 28.86% 2079

D05070412 100 2.53% 2000 50.67% 3947

Mean 10.46% 27.15% 

 

 

From the results given in the table, the mean ratio of rise time to real failure time is 

10.46%, and the mean ratio of settling time to Failure Time is 27.15%. 

Horizontal Metrics are based on repeated fault propagation data and statistical 

prediction results. Accuracy is commonly used as a horizontal metrics  [66].  

In Table 10, the accuracy is calculated at the following time intervals: 1/10 Failure Time, 

2/10 Failure Time… 9/10 Failure Time.  
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 Table 10: Accuracy results. 

Exp(-Di(t)/D0): t =  Failure Time *   

Data 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

D0506-

0416 0.939 0.976 0.893 0.911 0.954 0.952 0.979 0.993 0.998 

D0506-

0417 0.526 0.754 0.817 0.885 0.911 0.919 0.928 0.945 0.975 

D0506-

0418 0.367 0.867 0.919 0.947 0.959 0.964 0.992 0.998 0.997 

D0506-

0419 0.936 0.981 0.947 0.970 0.986 0.998 0.988 0.988 0.994 

D0507-

0410 0.000 0.695 0.819 0.906 0.939 0.943 0.976 0.975 0.984 

D0507-

0412 0.000 0.000 0.000 0.641 0.838 0.927 0.978 0.998 0.998 

Mean/ 

Accura

cy 0.461 0.712 0.732 0.877 0.931 0.950 0.973 0.983 0.991 
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The accuracy results are plotted in the following figure. 
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Figure 23: Accuracy analysis. 

 

 

As we can see from the above plot, the accuracy is approaching to 1 with continuous 

prediction. 

5.2 Optimum Sensor Placement 

5.2.1 Problem Statement 

A more complex five-tank system (originally from Chang et al.  [56]) is employed to 

demonstrate the proposed sensor localization/selection approach, which is shown in 

Figure 24.  
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Figure 24: A five-tank system. 

 

 

Thirteen faults are to be identified that are listed in  

Table 11. The objective is to optimally place sensors to maximize the fault 

detectability and minimize the number of sensors.  

To simplify the case, the following assumptions are made: 

• No two faults occur simultaneously; 

• The fault detection sensitivity for each fault at the first sensor that the fault affects 

is 1 and the time-to-detection at this sensor is 1 minute; 

• The detectability for each fault shares the same weight: 1; 

• The SNRs of all sensor nodes are the same: 20dB; 

• The cost for each sensor is 100 and the resource limit is 1000; 

• Maximum number of sensors is 30. 
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Table 11: Faults & sensors. 

Set Fault Sensor Nodes 

A1 L1 [L1-, L2-, L3-, L4-, L5-, F6-, F7-, F8-, F9-, F10-, F11-, F12-] 

A2 L2 [L2-, F8-] 

A3 L3 [L3-, L4-, L5-, F9-, F10-, F11-, F12-] 

A4 L4 [L4-, F11-] 

A5 L5 [L5-, F12-] 

A6 V6 [L1+, L2-, L3+, L4+, L5+, F6-, F7+, F8-, F9+, F10+, F11+, F12+] 

A7 V7 [L1+, L2+, L3-, L4-, L5-, F6+, F7-, F8+, F9-, F10-, F11-, F12-] 

A8 V8 [L2+, F8-] 

A9 V9 [L3+, L4+, L5-, F9-, F10+, F11+, F12-] 

A10 V10 [L3+, L4-, L5+, F9+, F10-, F11-, F12+] 

A11 V11 [L4+, F11-] 

A12 V12 [L5+, F12-] 

A13 qi+ [L1+, L2+, L3+, L4+, L5+, F6+, F7+, F8+, F9+, F10+, F11+, F12+] 

 

 

The time-to-detection, the propagation time, and propagation gain information are 

summarized in Table 12. Meanwhile, required information for sensors and faults are 

given in Table 13 and Table 14 , respectively. 
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Table 12: Factors to determine the fault detectability. 

Sensor Sensor 

From To 

Direc-

tion 

Gain PT/ 

SyD* From To 

Direc-

tion 

Gain PT/ 

SyD 

F-L1** L1 - 0.65 1/TTF F-L2 L2 - 24.4 4/TTF 

F-L3 L3 - 0.14 1/TTF F-L4 L4 - 1.1 4/TTF 

F-L5 L5 - 5.34 4/TTF F-V6 F6 - 19.8 0/TTF 

F-V7 F7 - 99 0/TTF F-V8 F8 - 19.8 0/87 

F-V9 F9 - 44 0/TTF F-V10 F10 - 55 0/TTF 

F-V11 F11 - 55 0/11 F-V12 F12 - 44 0/23 

F-Qi+ L1 + 0.34 2/TTF      

L1 F6 + 5 0/TTF F6 L1 - 0.03 2/TTF 

F6 L2 + 0.8 12/ 

TTF 

F7 L3 + 0.01 21/ 

TTF 

L2 F8 + 1.25 0/TTF F8 L2 - 0.95 4/TTF 

L1 F7 + 25 0/TTF F7 L1 - 0.04 1/TTF 

L3 F9 + 36 0/TTF F9 L3 _ 0.01 1/TTF 

F9 L5 + 0.2 81/ 

TTF 

F10 L4 + 0.06 20/ 

TTF 

L5 F12 + 5.05 0/TTF F12 L5 _ 0.23 4/TTF 

L3 F10 + 45 0/TTF F10 L3 _ 0.01 1/TTF 

L4 F11 + 16.1 0/TTF F11 L4 - 0.07 4/TTF 

*PT/SyD: PT stands for propagation time; SyD stands for symptom duration. 

**F-: fault. 
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Table 13: Sensors information. 

Sensor Cost SNR Probability of Failure (*0.001) Resolution 

L1 100 6 1 0.01 

L2 100 10 1 0.01 

L3 100 10 1 0.01 

L4 100 10 1 0.01 

L5 100 10 1 0.01 

F6 100 10 1 0.01 

F7 100 10 1 0.01 

F8 100 10 1 0.01 

F9 100 10 1 0.01 

F10 100 10 1 0.01 

F11 100 10 1 0.01 

F12 100 10 1 0.01 
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Table 14: Faults information. 

Set Fault Occurrence 

Probability 

Severity Minimum 

Detectability/Reliability 

A1 L1 1 1 0.5/0.9 

A2 L2 1 1 0.5/0.9 

A3 L3 1 1 0.5/0.9 

A4 L4 1 1 0.5/0.9 

A5 L5 1 1 0.5/0.9 

A6 V6 1 1 0.5/0.9 

A7 V7 1 1 0.5/0.9 

A8 V8 1 1 0.5/0.9 

A9 V9 1 1 0.5/0.9 

A10 V10 1 1 0.5/0.9 

A11 V11 1 1 0.5/0.9 

A12 V12 1 1 0.5/0.9 

A13 Qi+ 1 1 0.5/0.9 

 

 

5.2.2 Results Based on QDG model 

The QDG model of the five-tank system is built in Figure 25 and the detectability is 

calculated.  
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Figure 25: The QDG model  of the five-tank system. 

 

 

Besides the 13 original faults, an additional 55 virtual faults are created for identifying 

each fault. Also, since each sensor is affected by the faults in both directions, 12 virtual 

sensors are created and the mapping between the virtual sensors and the original sensors 

are built. The FOM is in the following equation: 
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The optimization results are then compared with the design obtained by using the SDG 

model  [55]  in Table 15. 

 

 

Table 15: Analysis of Results. 

 

Algorithm  

# of 

Sensors 

Sensors 

Selected 

Minimum 

Detectability 

# of Faults  

(D <= 0.5) 

Average 

Detectability 

SDG/QD

G (α=1)* 

3 [L2, L4, L5] 0.31 8 0.7 

QDG 

(α=0.5)* 

6 [L2, L4, L5, 

F7, F9, F10] 

0.799 0 0.882 

*: α is the weight of cost. 
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If the SDG-based approach in the appendix is used, only three sensors are selected. 

Because the SDG model does not contain any quantitative information, the detectability 

of some faults is low and the minimum detectability is 0.31 only, which means this fault 

can hardly be detected. Also, the detectability of 16 faults is lower than 0.5 and the 

average detectability is only 0.7. 

With the QDG model, α, the weight of the cost in the objective function, can be 

adjusted easily according to different customer’s requirements. The optimization results 

with different sensor number requirements by changing α are listed. With α = 0.5, six 

sensors are selected and the average detectability is significantly improved to 0.8 if 

compared with the result based on the SDG model.  

5.2.3 Results Considering Detectability Uncertainty 

Uncertainty affects the sensor suite optimization results. Considering the fault V7 as 

an example. V7 is detected and identified by sensors S2 and S7. Assume the uncertainty 

associated with sensor fault detectability SD(7,7) varies from 0.78 ± 0.1 to 0.78 ± 0.7. If 

not considering uncertainty in the optimization, the worst-case total fault detectability 

decreases with the variation of sensor fault detectability uncertainty. Instead, if 

considering the uncertainty issue in the optimization, another sensor suite is selected as 

summarized in Table 16, and the total fault detectability is kept high, as shown in Figure 

26. 
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Table 16: QDG method considering uncertainty. 

Algorithm  # of 

Sensors 

Sensors 

Selected 

Minimum 

Detectability

# of Faults  

(D <= 0.5) 

Average 

Detectability 

QDG 

Considering 

Uncertainty 

(α=0.5)* 

6 [L2, L4, 

L5, F8, F9, 

F10] 

0.727 8 0.875 

QDG 

Without 

Considering 

Uncertainty  

(α=0.5)* 

6 [L2, L4, 

L5, F7, F9, 

F10] 

0.03 13 0.212 
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Figure 26: detectability comparison considering uncertainty 

 

 

5.2.3 Performance Assessment 

The optimized sensor suite is validated using the integrated diagnostic/prognostic 

architecture. And the performance is evaluated and compared with SDG methods (Table 

17, Table 18, and Table 19).  
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Table 17: SDG performance analysis. 

Fault Sensors Selected False Positive Rate 

(%) 

False Negative Rate 

(%) 

TTD/TTF 

(%) 

L1 [L2, L4, L5] 7.69 0 34 

L2 [L2, L4] 0 0 4.75 

L3 [L2, L4, L5] 7.69 0 28 

L4 [L2, L4, L5] 0 0 6.5 

L5 [L2, L4, L5] 0 0 3 

V6 [L2, L4] 7.69 0 21.2 

V7 [L2, L4, L5] 7.69 0 53 

V8 [L2, L4] 0 0 33.5 

V9 [L2, L4, L5] 7.69 0 6 

V10 [L2, L4, L5] 7.69 0 25 

V11 [L2, L4, L5] 0 0 30.25 

V12 [L2, L4, L5] 0 0 9.25 

Qi+ [L2, L4] 7.69 7.69 > 1 
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Table 18: QDG performance analysis. 

Fault Sensors Selected False Positive 

Rate (%) 

False Negative 

Rate (%) 

TTD/TTF 

(%) 

L1 [L2, F7] 0 0 24.75 

L2 [L2, F7] 0 0 4.75 

L3 [F7, F9, F10] 0 0 10 

L4 [L4, F7, F9, F10] 0 0 6.5 

L5 [L5, F7, F9] 0 0 3 

V6 [L2, F7] 0 0 11.25 

V7 [L2, F7] 0 0 13 

V8 [L2, F7] 0 0 6 

V9 [F7, F9, F10] 0 0 3.75 

V10 [F7, F9, F10] 0 0 3.25 

V11 [L4, F7, F9, F10] 0 0 9.25 

V12 [F5, F7, F9, F10] 0 0 6.25 

Qi+ [L2, F7] 0 0 45.5 
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Table 19: Performance comparison. 

Average  

Algorithm 

Selected 

Sensor 

Number 

 

Sensors 

Selected 

AFPR 

(%) 

AFNR 

(%) 
TTD2TTF D 

SDG/ 

QDG 

(α=1)* 

3 [L2, L4, L5] 4.14 0.59 0.184 0.7 

QDG 

(α=0.5)* 

6 [L2, L4, L5, 

F7, F9, F10]

0 0 0.113 0.8 

*: α is the weight of cost. 

 

 

The Average False Positive Rate (AFPR) and Average False Negative Rate (AFNR) 

are greater than 0, while they are 0 if using our approach. Also, the time-to-detection is 

smaller with QDG method. Generally speaking, the performance of QDG method is 

better than SDG method.  

5.2.4 Performance Assessment Feedback 

From the performance assessment module, the ratios of time-to-detection to time-to-

failure of faults 1, 6, 7, 8, 13 are larger than 10%. Therefore, we need to improve the 

diagnostic performance by re-adjusting the selected sensor suite.  

One solution is to change the weights for these faults and run the particle-swarm 

optimization routine again. The results are summarized in the following tables. 
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Table 20: Results after performance feedback. 

Fault Sensors Selected False 

Positive 

Rate (%) 

False 

Negative Rate 

(%) 

TTD/TTF 

(%) 

Detectability

L1 [F6, F7] 0 0 5.75 0.97 

L2 [L2, F6] 0 0 4.75 0.98 

L3 [F6, F7, F9, F10] 0 0 10 0.98 

L4 [L4, F6, F7, F9, 

F10, F11] 

0 0 6.5 0.97 

L5 [L5, F6, F7, F9] 0 0 3 0.97 

V6 [F6, F7] 0 0 2.75 0.98 

V7 [F6, F7] 0 0 3.75 0.99 

V8 [L2, F6, F7] 0 0 6 0.96 

V9 [F6, F7, F9, F10] 0 0 3.75 0.97 

V10 [F6, F7, F9, F10] 0 0 3.25 0.98 

V11 [L4, F6, F7, F9, 

F10] 

0 0 9.25 0.98 

V12 [L5, F6, F7, F9, 

F10] 

0 0 6.25 0.97 

Qi+ [F6, F7] 0 0 18 0.98 
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Table 21: Results comparison with performance feedback. 

Average  

Algorithm  

# of 

Sensors 

 

Sensors 

Selected 

FPR  

(%) 

FNR 

(%) 

TTD2TTF D 

SDG/ 

QDG 

(α=1)* 

3 [L2, L4, L5] 4.14 0.59 0.184 0.7  

QDG 

(α=0.5)* 

6 [L2, L4, L5, 

F7, F9, F10] 

0 0 0.113 0.8 

QDG 

(Performance 

Feedback) 

7 [L2, L4, L5, 

F6, F7, F9, 

F10] 

0 0 0.064 0.992 

*: α is the weight of cost. 

 

 

We can see from the above tables that the time-to-detection to time-to-failure ratio 

decreases after reselecting the sensors according to the performance feedback 

information. Also, the average detectability increases with the readjustment of the 

weights.  
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CHAPTER 6 

CONCLUSIONS & CONTRIBUTIONS 

 

6.1 Conclusions 

The performance of PHM/CBM systems relies on the diagnostic/prognostic techniques 

used and the sensor suite selected. Although many sensor localization/selection, 

diagnostic and prognostic techniques exist in the real world, most of them were studied 

independently without an integrated architecture. The objective of this research is to 

develop an open/flexible architecture to integrate the functions of sensor 

localization/selection, feature extraction, mode identification, diagnostics, and 

prognostics, with a focus on a novel sensor localization/selection methodology for fault 

diagnosis.  

The integrated diagnostic/prognostic architecture described in Chapter 3 provides a 

description of the system that is able to tackle the basic issues rising from sensors, 

features, and faults. Developing a diagnostic/prognostic architecture is only the first step 

toward an engineering solution. The next step is the actual implementation in a real-world 

scenario. Toward that end, the software framework necessary for support of sensor 

localization/selection, fault diagnostics, and prognostics has been described in this 

dissertation. This software framework glues individual modules together using 

Component Object Model (COM) technology. Also, this software framework provides an 

event-based communication mechanism and a common database interface that make the 

architecture open and scalable.  
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In the second part of this dissertation, a complete sensor localization/selection 

methodology is presented for fault diagnostic purposes. In the proposed methodology, 

sensor localization/selection starts with the requirements analysis; and then studies 

Failure Modes and Effects Criticality Analysis (FMECA), which specifies the failure 

modes and their criticality and probability of occurrence; quantitatively model fault 

propagation and calculate the sensor fault detectability and total fault detectability; 

formularizes and optimizes the Figure-of-Merit; and finally analyzes the performance of 

the diagnostic/prognostic algorithms and accordingly adjusts the sensors selected.  

6.2 Significant Contributions 

The significant contributions of this research include:   

• A generalized methodology for sensor localization/selection for fault diagnosis. 

• A quantitative definition of fault detection ability of a sensor; a novel Quantified 

Directed Model (QDG) method to model for the fault propagation modeling purpose; 

and a generalized Figure-of-Merit to maximize fault detectability and minimize the 

required number of sensors while achieving optimum sensor localization/selection at 

the system level; 

• A novel, integrated architecture for diagnostic/prognostic system with an operating 

mode/usage pattern identifier to adapt to various industrial environments; 

• Validation and Verification (V&V) of the proposed sensor localization/selection 

approach in the integrated diagnostic/prognostic architecture; 

• The implementation of the integrated architecture under COM/DCOM structure. 
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6.3 Future Work 

Potential for extending the research in this thesis exists in the following: 

• Automate the system configuration process in the diagnostic/prognostic 

architecture: include feature selection, system initial configuration and 

reconfiguration. Currently, the features are selected manually. Feature 

selection algorithms are not integrated in this architecture. Meanwhile, system 

configuration and on-line reconfiguration are not fully supported.  

• Validation of the sensor localization/selection using a physical system. The 

proposed methodology has been validated using a simulation system. It is 

necessary to test and validate the methodology using a real application.  

·  
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APPENDIX A 

FLOW CHART FOR GREEDY SEARCH ALGORITHMS II TO SOLVE 

OBSERVABILITY  [9] 
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APPENDIX B 

FLOW CHART FOR GREEDY SEARCH ALGORITHM III TO ACHIEVE 
MAXIMUM FAULT RESOLUTION  [9] 
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