
Extraction of Topologically Simple Isosurfaces from Volume Datasets

Andrzej Szymczak and James Vanderhyde

Georgia Tech

Figure 1: Buddhas of increasing genus. First, the two handles formed by the arms are created, then one on the bottom and, finally,
two on the sides.

Abstract

There are numerous algorithms in graphics and visualization whose
performance is known to decay as the topological complexity of the
input increases. On the other hand, the standard pipeline for 3D
geometry acquisition often produces 3D models that are topologi-
cally more complex than their real forms. We present a simple and
efficient algorithm that allows us to simplify the topology of an iso-
surface by altering the values of some number of voxels. Its utility
and performance are demonstrated on several examples, including
signed distance functions from polygonal models and CT scans.

I.3.5 [Computing Methodologies]: Computer Graphics—
Computational Geometry and Object Modeling

Keywords: isosurface, topology, genus

1 Introduction
The performance of a number of algorithms in graphics and vi-
sualization is known to decay with the increase of the topological
complexity of the input. Examples include work on resampling and
parametrization [25, 16, 19], geometry compression [35, 17, 2, 27],
texturing [32] and many others. On the other hand, the standard
3D geometry reconstruction algorithms often produce 3D models
that are topologically much more complex than their real forms.
This is due to both inaccuracy and noise generated by the present
3D scanning devices and the insensitiveness of the reconstruction
algorithms to the topological structure of the reconstructed object.
This paper introduces a simple and efficient technique allowing to
extract topologically simple approximate isosurfaces from volume
datasets. It can either work directly with 3D acquisition methods in
which the data is captured in a volumetric form (like CT or MRI)
or when a volumetric model is one of the intermediate stages [26].

It can also be used as a component in a volumetric topology sim-
plification procedure for polygonal models in a manner similar to
[30].

2 Overview of the Algorithm
Our algorithm takes as input a volume dataset with an isovalue and
a nonnegative integer T specifying the desired genus of the output
isosurface. Without any loss of generality, we can assume that the
isovalue is equal to zero, the voxels inside the volume bounded by
the isosurface are negative and the voxels outside that volume are
positive. We will also assume that the isosurface does not intersect
the boundary of the volume, i.e. that the boundary voxels have a
positive value. This assumption can easily be enforced by adding a
‘border’ of width 1 consisting of voxels of a positive value around
the original volume.

Volume datasets that appear in practice frequently contain con-
siderable amount of noise. In particular, it is common that the iso-
surface in the input volume consists of several connected compo-
nents, some of them small and insignificant. In many cases, one is
interested only in the largest connected component. Therefore, be-
low we will concentrate on a variant of our procedure that produces
the outer connected component of the part of isosurface contained
in the largest connected component of the union of all negative vox-
els. An alternative variant of the algorithm (treating the sum of the
connected component count and the geni of all connected compo-
nents of the isosurface as a measure of topological complexity and
providing the user with control over this quantity for the output sur-
face) is briefly discssed in Section 7. We will proceed in five stages:

1. Cleanup. The largest connected component of the union of neg-
ative voxels is computed. The values of all of the negative
voxels that do not belong to it are changed to an arbitrary pos-



Figure 2: Top: snapshots of the carving process (with just one resolution level) for the bonsai dataset. Bottom: the isosurface extracted
using our algorithm (left, genus 0, obtained using no topology-altering voxel removals) and the largest connected component of the original
isosurface (right, genus 463).

itive number. After this operation, the union of all negative
voxels is connected.

2. Distance Function Approximation. The values of the voxels
outside the isosurface are altered so that they are close to the
distance to the isosurface. This is done in a way preserving
the geometry of the isosurface, i.e. so that the isosurfaces in
the original and altered volumes are the same.

3. Topology-Sensitive Carving. An operation that removes a
boundary voxel with a positive value while preserving the
topology (more precisely: homotopy type) is performed iter-
atively, starting from a bounding box of the isosurface that is
a union of voxels. If no topology-preserving boundary voxel
removal operation is possible, a topology-altering one is exe-
cuted. The total number of topology-altering operations can
be at most T . Thus, the procedure terminates either when
all positive voxels have been removed or when no topology-
preserving operation is possible and T topology-altering op-
erations have already been executed. In Section 6 we will
see that the number of topology-altering voxel removal oper-

ations practically gives the user precise control over the genus
of the output isosurface. To make the boundary of the carved
set close to the original isosurface (in particular, open large
handles before small ones) we apply the greedy heuristic: the
voxels are removed in the order of decreasing value (i.e. ap-
proximate distance to the isosurface). Snapshots of the carv-
ing process are shown in Figure 2. Figure 1 shows isosurfaces
obtained from the signed distance field of the Buddha model
for T = 0,1,2,3,4 and 5.

4. Volume Update. The positive voxels in the set constructed in
the previous step are made negative.

5. Isosurfacing. A variant of the Marching Cubes algorithm that
produces an isosurface bounding a volume of the same homo-
topy type as the union of negative voxels [4, 20] is applied.

Our procedure can be made considerably more efficient by
adopting a multiresolution approach. After the distance function
approximation stage, a pyramid representation of the volume (see



[5]) is built based on the ‘minimum’ filter, which computes the min-
imum of voxel values in a 2×2×2 block. The carving stage (with-
out topology-altering voxel removals) of our algorithm is first per-
formed on the lowest resolution. Then, the resolution is increased
by subdividing the voxels and the carving algorithm is restarted.
This process is repeated until the original resolution is reached.
All the remaining stages of the algorithm, including the topology-
altering voxel removal operations, are run on the original resolution.

3 Related Work

Our algorithm is related to a number of results concerning topology
simplification, level set methods, reconstruction from point clouds
and the issue of computing and representing topological features in
3D data.

3.1 Topology Simplification

The problem of simplifying the topology of 3D surfaces has been
studied by a number of researchers. A three-dimensional hole-
filling algorithm very similar in spirit to ours is discussed in [1].
However, it is limited to binary volumes, while our approach offers
sub-voxel accuracy of the output surface. We also provide a simple
way of specifying the desired genus of the output and an efficient
multiresolution implementation.

The algorithm of [37] aims to achieve the same goal as ours: to
simplify the topology of an isosurface by introducing small and lo-
cal changes to the volume. However, in contrast to our approach,
it explicitly analyzes the topology of the input isosurface based
on its Reeb Graph. For each small handle, an associated non-
separating loop in the isosurface is found and the values of voxels
located along its spanning disk are changed so that the handle disap-
pears. Since we do not explicitly find and annihilate non-separating
loops in the isosurface, our algorithm is more efficient for highly
complex datasets. For example, the bonsai dataset of resolution
256× 256× 256 shown in Figure 2 took 73 seconds to process on
an 850MHz P3 machine (together with the isosurface extraction
phase), while [37] reports the running time of 2.8 minutes for a
brain dataset of resolution 125× 255× 255 and with an isosurface
of a comparable topological complexity (on a dual P4 machine).
Our algorithm is also significantly simpler.

The work [18] discusses a procedure for removing topological
noise (i.e. small handles) from triangulated 3D surfaces based on a
principle similar to [37]. First, small loops on the input surface that
are not contractible are found. Then, the surface is cut along these
loops and the resulting boundary loops are filled with triangulated
topological disks.

An algorithm that simplifies the topology as well as the geometry
of a surface by rolling a sphere over it and filling up the regions that
are not accessible to it is proposed in [12]. The method is reported
to work very well with CAD models. Our approach is different
in that it performs solely topological simplification, attempting to
minimize the changes to geometry. In particular, our method would
not fill cavities that are merely geometric features of the isosurface.

A way to incorporate both preservation and controlled simplifi-
cation of topology of isosurfaces into a geometric volume simplifi-
cation procedure is described in [13]. The multiresolution variant
of the algorithm discussed in this paper can be viewed as a super-
position of simplification (building a pyramid representation) and
a topology-preserving refinement operations (supersampling and
carving). However, our goal is to simplify the topology of an iso-
surface while attempting to preserve its geometry as faithfully as
possible. It is not clear how the algorithm of [13] can be used for
this task in an equally straighforward way.

3.2 Level Set Methods

A method to ensure preservation of topology in deformable mod-
els is described in a series of papers [20, 21]. It can also be used
to extract topologically simple isosurfaces, but its reliance on de-
formable models makes it significantly harder to code and less effi-
cient.

The level-set–based surface reconstruction algorithm with hole
filling capability described in [39] also bears some similarities to
our approach. It presents a method of reconstructing a surface from
an arbitrary 3D set. It uses level set method to find a surface that
is minimal with respect to an objective function defined using the
distance from the input set (essentially, the Lp norm of the sidtance
restricted to the surface). The carving stage of our algorithm can be
thought of as a greedy approach to a similar optimization problem:
to supplement a voxel set with more voxels that are as close to it as
possible in a way that reduces its topological complexity.

3.3 Reconstruction from Point Clouds

The papers [10, 14, 15] restate the problem of reconstructing 3D
models from unorganized points using the terminology of dynam-
ical systems, which also applies to our approach. Setting smooth-
ness and discretization issues aside, the carving stage of our algo-
rith is similar to computing the global attractor of the gradient vec-
tor field defined by the distance function from the isosurface. The
topology-altering operations are, in turn, analogous to the reduction
operations by pairing and cancellation as described in [14].

3.4 Computing and Representing Topology

The papers [31, 6, 34, 36] present efficient algorithms for analyz-
ing the topological structure of the level sets. In [11], the authors
consider the topology simplification problem in the context of al-
pha shapes. We feel that the techniques introduced in these papers
can help provide guaranteed control over the topology of the out-
put surface of our scheme as well as more precisely describe its
topological properties.

4 The Basic Algorithm
In this section we describe the five basic steps of our algorithm,
leaving the discussion of the multiresolution implementation for the
next section.

4.1 Cleanup
In many cases, especially for common CT scans, the union of the
negative voxels in the input volume contains small connected com-
ponents due to noise. Such components might also appear as sam-
pling artifacts in distance fields. The purpose of this stage is to
remove these connected components.

First, we label all the connected components and compute their
sizes (in our case, the numbers of voxels, but other size measures
can also be used) using the depth-first search algorithm [8]. Then,
all values of the negative voxels outside of the largest connected
component are altered to arbitrary positive values.

4.2 Distance Function Approximation
The distance function approximation step influences the order in
which the voxels are removed in the carving phase, making it close
to the ordering with respect to decreasing distance from the iso-
surface. This allows us to avoid the topological locks discussed in
Section 7 and keeps the distance between the exact isosurface and
its approximation produced by our algorithm small.



���
�

�������
�

Figure 3: Does the removal of the red voxel change the topology
(of the set A formed by red and black voxels)? The set I(A,V ) is
shown in blue. In the case shown on the left, the set δV \ I(A,V )
is empty (has zero connected components). Therefore, the removal
of V changes the topology. In the case shown in the middle, both
I(A,V ) and δV \ I(A,V ) have one connected component and there-
fore there is no topology change. Finally, for the configuration
shown on the right, the set I(A,V ) has three connected components.
Therefore, the removal of V induces a topology change.

The values of the positive samples away from the isosurface are
altered so that they increase together with the distance from the iso-
surface. In order to preserve the original geometry of the isosurface,
we do not change values of the positive samples that are adjacent
to a negative sample. We first compute the maximum value M of
a positive sample connected to a negative sample by a grid edge.
Then, we compute the distance d(V ) of each sample V from the set
of negative samples. Our implementation uses the Manhattan dis-
tance rather than the Euclidean distance for efficiency (clearly, fast
marching-based distance algorithm of [33] can be used instead). Fi-
nally, the value of each positive sample that is not connected by a
grid edge to a negative sample is changed to M +d(V ).

4.3 Carving
We start from a bounding box A of the output isosurface that is a
union of voxels. The order in which the voxels are carved out of
A is governed by a priority queue, initialized to hold all positive
voxels on the boundary of A and ordered by the voxel values. The
following loop (L) forms the basis of our procedure.

1. Extract a voxel from the priority queue

2. If the removal of that voxel (call it V ) would not change the
topology:

2a. Remove V from A
2b. Insert all positive voxels that belong to A and are neigh-

bors of V into the priority queue, unless they are already
queued

3. If the queue is not empty, go to 1.

The test for topology change in step 2 is based on counting con-
nected components of the intersection of the boundary of V (de-
noted by δV ) and the set A with voxel V removed (i.e. the union of
all voxels in A except for V ). If both that intersection (which we de-
note by I(V ;A)) and its complement in δV , i.e. δV \ I(V ;A), each
have exactly one connected component, the voxel removal does not
change the topology (for an illustration in the 2D case, see Figure
3). Otherwise, it does. Clearly, this test can be completed in con-
stant time. In practice, performing it offline for all possible config-
urations of a voxel’s neighbors and storing the results in a lookup
table leads to considerable savings of computational time. Since
each voxel has 26 neighbors and each of them can be in two pos-
sible states (in A or not), there are 226 configurations. Thus, the
lookup table requires 226 bits or 8MB of memory. Clearly, it is
possible to reduce the number of configurations and therefore also
the size of the lookup table by exploiting symmetry, but it does not
appear to be worthwhile in practice.

Figure 4: Three topology-preserving voxel removals from a 2D two
by two square. Each row shows a deformation of the set prior the
removal onto the set resulting from the removal.

Our topology preservation test for a voxel removal operation is
equivalent to verifying the contractibility of I(V ;A). A topolog-
ical space X is contractible if and only if it can be continuously
deformed to a point within itself, i.e. if there exists a continuous
family of continuous mappings Ft : X → X with t ∈ [0,1] such that
F0 is the identity and F1 is a constant map. Another topological con-
cept closely related to this procedure is that of strong deformation
retract. A topological space Y ⊂ X is a strong deformation retract
of X if X can be deformed (collapsed) continuously into Y with-
out moving the points of Y , i.e. if there exist a continuous family of
maps (called a deformation) Ht : X → X such that each Ht restricted
to Y is the identity, H0 is the identity on X and the image of H1 is
equal to Y . In fact, the set generated by the loop (L) described at
the beginning of this section is a strong deformation retract of the
bounding box that it started with. The loop (L) can be viewed as
a construction of the deformation of one onto the other (Figure 4).
Since the bounding box is contractible and any strong deformation
retract of as contractible set is known to be contractible [23], the fi-
nal set is also contractible. In particular, it has no voids or handles.

The procedure as described thus far always produces a con-
tractible voxel set containing all the negative voxels. In order to
give the user control over the topology of the output, we allow a
user-prescribed number of voxel removals that do change the topol-
ogy. A topology-altering voxel removal can be executed whenever
the priority queue becomes empty and A still contains positive vox-
els. The removed voxel is chosen as the boundary voxel in A of the
largest value or, equivalently, the one in A that has a positive value
and failed the topology preservation test (line 2) at the earliest time
during the carving phase. In particular, this choice causes large
handles of the set represented by the negative voxels to be opened
before the small ones (see Figure 1). Our implementation simply
keeps all voxels that failed the test in a FIFO queue and searches it
for the first voxel that has not been removed yet. After the topology-
altering voxel removal is performed, all neighbors of the removed
voxel that belong to A are inserted into the priority queue and the
loop (L) is restarted. The whole process is iterated until there are
no positive voxels in A or until T topology-altering voxel removal
operations have been performed and no topology-preserving voxel
removal operation is possible.

Clearly, the total running time of the distance function approxi-
mation and carving stages is O(n logn), where n is the number of
voxels in the bounding box.



Figure 5: Example entry in the lookup table of [4]. Samples of pos-
itive value are shown in blue and the negative samples - in red. The
yellow spheres are put at the midpoints of edges joining samples of
different signs. The triangles that are stored in the lookup table are
shown in green.

4.4 Volume Update
This part of the procedure forces the signs of the voxels to be con-
sistent with the set carved in the previous step (positive outside
and negative inside). Since no negative voxels are outside A, this
amounts to changing the values of all positive voxels that are inside
A to negative values.

4.5 Isosurface Extraction
So far our algorithms have concentrated on voxel sets, while virtu-
ally any real application requires sub-voxel accuracy in the output.
The isosurfacing algorithm that is to work with our scheme needs to
be able to transfer the topology from the voxel set consisting of neg-
ative voxels to the volume bounded by the isosurface. The standard
algorithm introduced in the classical paper [28] would not work for
this task: a simple counterexample can be obtained by placing neg-
ative values at two opposite corners of a grid cube and making all
the other samples positive. The volume bounded by the isosurface
extracted based on the [28] is disconnected while the voxel set de-
fined by the negative value voxels is connected. However, for the
three-dimensional variant of the scheme of [4], the isosurface turns
out to be connected. In general, one can prove that its inside always
has the same homotopy type (see [23] for the definitions) as the
union of all negative voxels. The overall scheme of their algorithm
is the same as that of [28]: the vertices of the isosurface are points
on the grid edges joining samples of different signs. Their locations
are computed assuming that the value varies linearly over the edge.
The vertices within a single grid cube are then joined by triangles
using the information stored in a lookup table. The lookup table is
indexed by all possible configurations of positive and negative val-
ues at the vertices of a grid cube. In [4], it is built as follows. Let H
be the convex hull of the set of points consisting of all of the cube’s
vertices of negative value and all centers of edges joining vertices
having values of different signs. All triangles of H that are not con-
tained in the boundary of the grid cube are put into the lookup table
(Figure 5).

5 Multiresolution Implementation
The idea of image pyramids [5] allows us to considerably speed
up our algorithm. We use subsampling to reduce the resolution of
the volume after the distance function approximation stage. We use
the minimum function as the subsampling filter. Thus, we group
the voxels in 2 × 2 × 2 blocks and form the subsampled volume

Figure 8: A closeup of a handle in the dragon model. On the left, we
show a view through the handle of the original isosurface. The other
two images show a similar view of two genus zero approximate
isosurfaces extracted using our method (single resolution variant in
the center and multiresolution variant with 3 resolution levels on
the right).

from the minimum values of voxels within each of the blocks. In
particular, this means that the voxels in the lower resolution volume
corresponding to blocks which have at least one negative voxel of
the higher resolution volume will be negative, and therefore spared
in the carving phase. The loop (L) described in Section 4.3 is then
run on the subsampled volume. When it terminates, the resolution
is increased by replacing each voxel with the corresponding eight
voxels of the original dataset. The carving stage as described in
Section 4.3 is then executed with the priority queue initialized to
hold all positive boundary voxels. Finally, the volume update and
isosurfacing stages are performed (on the original resolution).

Clearly, the idea described above can also work for more than
two levels of resolution, leading to additional speedup for large vol-
umes. Our running time measurements show that the multiresolu-
tion implementation is an order of magnitude faster than an imple-
mentation of the basic algorithm. Figure 6 shows images of the
voxel sets carved by our algorithm on consecutive levels of resolu-
tion for the signed distance function from the Buddha model.

Let us note that the speedup may come at a price of lower quality
of the output mesh in the areas where the volume has been modi-
fied. This is because the multiresolution approach distorts the or-
dering of the voxel removal operations by their value (approximate
distance from the input isosurface). This is not an important is-
sue when the handles to be removed are small, since the change to
the original volume is confined to their small neighborhood. For
large handles, the multiresolution variant produces results that ap-
pear more irregular than the single-resolution algorithm. However,
the two surfaces always tend to stay close to each other. For ex-
ample, the Hausdorff distance (measured using the MESH tool [3])
between genus zero reconstructions of the Dragon model obtained
using the single resolution variant of our algorithm and a multireso-
lution variant with 3 levels is equal to about 6.5 times the length of
edges of the grid, while the distance from both of the reconstructed
models to the original isosurface are about three times more. For
genus 1 reconstructions for the same model, the Hausdorff distance
between any of the two reconstructions and the original turns out to
be less than the edge length of the grid. We have observed similar
results for other models. Figure 8 shows closeups of reconstruc-
tions obtained using single resolution and multiresolution variants
of our algorithm in the area inside the largest handle of the original
isosurface. genus zero reconstruction of the dragon model. When
removing large handles and the quality of the output surface in the
areas where the volume is altered is of importance, one can use sur-
face smoothing algorithms to improve the smootness of the output
isosurface obtained either using the single resolution or multireso-
lution variant of the algorithm.



Figure 6: Volumes of increasing resolutions produced by the multiresolution algorithm for the signed distance function from the Buddha
model. The last picture shows the output isosurface (genus 0).

Figure 7: Isosurfaces obtained using our procedure. The dragon has genus 1 (and was obtained with T = 1), brain and blade - genus 0 (T = 0).

dataset size running time (seconds)
Buddha1 215×214×516 102
Buddha2 181×181×434 58
Dragon1 365×233×516 160
Dragon2 307×196×434 101
Blade1 239×306×516 151
Blade2 206×263×444 100

Bonsai (CT scan) 256×256×256 73
Brain (CT scan) 256×256×167 70
Skull (CT scan) 256×256×68 20

Engine (CT scan) 256×256×110 43

Table 1: Running times (on an 850MHz P3 system) for the test
datasets.

6 Experimental Results

We have tested our algorithm for several signed distance functions
from well known polygonal volumes and CT scans.

The information about the test datasets and the running time of
our procedure is given in Table 1. We do not show the dependence
of the running time on the number of topology-altering voxel re-
movals since it is a matter of only a fraction of a second for all the
test cases.

Figure 7 shows examples of isosurfaces obtained using our pro-
cedure. In spite of lack of theoretical guarantee (see Section 7), for
all our test datasets genus of the output exhibits the same behavior:

it is equal to the user-specified number T of topology altering op-
erations, until it reaches the first Betti number (i.e. the number of
through-holes) of the largest connected component of the union of
all negative voxels in the input volume.

7 Discussion
We introduced a simple and efficient algorithm algorithm for ex-
tracting topologically simple isosurfaces from regularly sampled
volume data. Experiments show that our method provides the user
with precise control over the genus of the extracted isosurface. Such
control is particularly desirable when the true topology of the iso-
surface to be extracted is known a priori. In such cases, our algo-
rithm can be used to filter out the topological noise present in the
isosurface.

We have concentrated on a variant of the algorithm that can only
produce a connected isosurface. Alternatively, the cleanup step can
be given up. This allows one to construct isosurfaces approximat-
ing the union of all outer components of the input isosurface. In this
case, the parameter T i.e. the number of allowed topology-altering
operations provides the user control over the topological complexity
of the output isosurface. The topological complexity of a (possibly
disconnected) surface is computed by summing the geni of all con-
nected components and the number of connected components.

Even though our algorithm is so well behaved in practice, it
seems to have few provable properties. We can certainly guaran-
tee that if no topology-preserving operations are performed then
the output isosurface has genus zero (see Section 4.3). However,



Figure 9: The house with two rooms. It defines two ‘rooms’ R1 and
R2. In order to enter Ri one has to walk through the corridor through
the other room, starting with the ‘door’ Ei. The house consists of
the walls of the two rooms with the corridors’ entrances and exits
removed, the corridors’ boundaries and the two rectangular walls
connecting each of the corridors to the outer wall.

if the input isosurface is connected and has genus zero, the output
isosurface does not have to be the same as the input surface. An
example can be constructed using one of the well-known subsets of
the 3D space that are retracts of R3 but are not collapsible, e.g. the
dunce hat [38] or the house with two rooms [7, Section I.2], briefly
described in Figure 9. Consider a house with two rooms built of
small voxels. Select its contractible ‘dense’ subset of voxels A (i.e.
such that every cube intersecting the House has a cube of A close
to it). For example, A can be a maximal voxel tree of this sub-
set of voxels. By a voxel tree we mean a set of voxels for which
the graph having the voxels as its nodes and with edges joining the
nodes corresponding to intersecting voxels is a tree. Let the voxel
values in this set be negative and the values of all the other voxels
be positive. The algorithm will start by computing the approximate
distance from the negative voxels, which is roughly equal to the
distance from the House itself. Therefore, during the carving stage,
our algorithm will be carving the House. When the set becomes
one voxel wide, the algorithm will fail to find a voxel whose re-
moval preserves the topology and will terminate. The final set will
resemble the House and will be different from the tree consisting
of negative voxels. We have not observed any topological locks as
described above for any of our test datasets.

In future, we are planning to investigate ways to minimize the
changes to the volume (e.g. the number of voxels whose values are
altered in the volume update stage) needed to obtain an isosurface
of prescribed topology. An approach that appears promising is to
combine the results of our algorithm and a variation that grows the
voxel set from a seed voxel inside the isosurface instead of carving
it from its bounding box. The growing approach would work better
for removing thin and long handles, for which it may be more nat-
ural to cut them. We are also planning to modify our algorithm so
that it works for partially defined volume datasets like those consid-
ered in [9]. Even though our procedure requires volume traversal in
a non memory coherent way, it is possible to implement it using an
adaptive octtree representation rather than a full volume pyramid as
described in this paper. Therefore, we hope that it will be effective
for large volume datasets as well.

References

[1] Z. Aktouf, G. Bertrand, and L. Perroton. A three-dimensional holes closing
algorithm. Pattern Recognition Letters, pages 523–531, 2002.

[2] Pierre Alliez and Mathieu Desbrun. Valence-driven connectivity encoding for
3D meshes. In Eurographics 2001 Proceedings, pages 480–489, 2001.

[3] N. Aspert, D. Santa-Cruz, and T. Ebrahimi. Mesh: Measuring the errors be-
tween surfaces using the hausdorff distance. In Proc. of the IEEE Conference in
Multimedia and Expo (ICME) 2002, volume 1, pages 705–708, August 2002.

[4] P. Bhaniramka, R. Wenger, and R. Crawfis. Iso-contouring in higher dimensions.
In Proceedings IEEE Visualization 2000, pages 267–273, 2000.

[5] Peter J. Burt and Edward H. Adelson. The laplacian pyramid as a compact image
code. IEEE Transactions on Communication, 31(4):532–540, 1983.

[6] H. Carr, J. Snoyink, and U. Axen. Computing contour trees in all dimensions.
Computational Geometry, 24(2):75–94, 2003.

[7] M. M. Cohen. A Course in Simple-Homotopy Theory. Springer-Verlag, 1970.

[8] T. Cormen, C. Leiserson, and R. Rivest. Introduction to Algorithms. McGraw-
Hill, 1990.

[9] B. Curless and M. Levoy. A volumetric method for building complex models
from range images. In Proceedings of SIGGRAPH 1996, pages 4–9, August
1996.

[10] H. Edelsbrunner. Surface reconstruction by wrpping finite point sets in space.
In B. Aronov, S. Basu, J. Pach, and M. Sharir, editors, Ricky Pollack and Eli
Goodman Festschrift, to appear.

[11] Herbert Edelsbrunner, David Letscher, and Afra Zomorodian. Topological per-
sistence and simplification. In IEEE Symposium on Foundations of Computer
Science, pages 454–463, 2000.

[12] Jihad El-Sana and Amitabh Varshney. Controlled simplification of genus for
polygonal models. In Roni Yagel and Hans Hagen, editors, IEEE Visualization
’97, pages 403–412, 1997.

[13] Thomas Gerstner and Renato Pajarola. Topology preserving and con-
trolled topology simplifying multiresolution isosurface extraction. In T. Ertl,
B. Hamann, and A. Varshney, editors, Proceedings IVisualization 2000, pages
259–266, 2000.

[14] J. Giesen and M. John. Surface reconstruction based on a dynamical system.
Computer Graphics Forum, 21:363–371, 2002.

[15] J. Giesen and J. Matthias. The flow complex: A data structure for geometric
modeling. In Symposium on Discrete Algorothms 2003, pages 285–294, 2003.

[16] X. Gu, S. Gortler, and H. Hoppe. Geometry images. In Proceedings of ACM
SIGGRAPH 2002, pages 355–361, 2002.

[17] Stefan Gumhold and Wolfgang Strasser. Real time compression of triangle mesh
connectivity. In Proceedings ACM SIGGRAPH 98), pages 133–140, July 1998.

[18] I. Guskov and Z. Wood. Topological noise removal. In B. Watson and J. W.
Buchanan, editors, Proceedings of Graphics Interface 2001, pages 19–26, 2001.

[19] Igor Guskov, K. Vidimce, Wim Sweldens, and Peter Schröder. Normal meshes.
In Proceedings of ACM SIGGRAPH 2000, pages 95–102, 2000.

[20] X. Han, C. Xu, and J. L. Prince. A topology preserving deformable model using
level sets. In Proceedings IEEE Computer Society Conference on Computer
Vision and Pattern Recognition (CVPR2001), pages 765–770, December 2001.

[21] X. Han, C. Xu, and J. L. Prince. A topology preserving geometric deformable
model and its application in brain cortical surface reconstruction. In S. Osher
and N. Paragios, editors, Geometric Level Set Methods in Imaging, Vision and
Graphics. Springer Verlag, August 2002.

[22] J. C. Hart. Morse theory for implicit surface modeling. In H-C. Hege
and K. Polthier, editors, Mathematical Visualization, pages 257–268. Springer-
Verlag, October 1998.

[23] John G. Hocking and Gail S. Young. Topology. Addison-Wesley Publishing
Company, Reading, Mass., 1961.

[24] Daniel J Jobson, Zia-ur Rahman, and Glenn A Woodell. Retinex image process-
ing: Improved fidelity to direct visual observation. In Proceedings of the IS&T
Fourth Color Imaging Conference: Color Science, Systems, and Applications,
volume 4, pages 124–125, 1995.

[25] Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar, and David
Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In Pro-
ceedings of ACM SIGGRAPH 98, pages 95–104, 1998.

[26] Marc Levoy, Kari Pulli, Brian Curless, Szymon Rusinkiewicz, David Koller,
Lucas Pereira, Matt Ginzton, Sean Anderson, James Davis, Jeremy Ginsberg,
Jonathan Shade, and Duane Fulk. The digital michelangelo project. In Kurt
Akeley, editor, Proceedings of ACM SIGGRAPH 2000, Computer Graphics Pro-
ceedings, Annual Conference Series, pages 131–144, New York, 2000. ACM,
ACM Press / ACM SIGGRAPH.



[27] Hlio Lopes, Jarek Rossignac, Andrzej Szymczak, Alla Safanova, and Geovan
Tavares. Edgebreaker: A simple algorithm for surfaces with handles. In 7th
ACM SIGGRAPH Symposium on Solid Modeling and Its Applications, 2002.

[28] W. E. Lorensen and H. E. Cline. Marching cubes: A high-resolution 3d surface
reconstruction algorithm. ACM Computer Graphics, 21(3):163–169, 1987.

[29] J. W. Milnor. Morse Theory. Princeton University Press, Princeton, NJ, 1963.

[30] F.S. Norruddin and G. Turk. Simplification and repair of polygonal models using
volumetric techniques. Technical Report GIT-GVU-99-37, GVU Center, Geor-
gia Institute of Technology, 1999.

[31] V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topology of
level sets. In Proceedings Visualisation 2002, 2002.

[32] Pedro V. Sander, John Snyder, Steven J. Gortler, and Hugues Hoppe. Texture
mapping progressive meshes. In Proceedings ACM SIGGRAPH 2001, pages
409–416, 2001.

[33] J. A. Sethian. Fast marching methods. SIAM Review, 2(41):199–235, 1999.

[34] S. P. Tarasov and M. N. Vyalyi. Construction of contour trees in 3d in O(n logn)

steps. In Proceedings of the Fourteenth Annual Symposium on Computational
Geometry, pages 68–75, June 1998.

[35] C. Touma and Craig Gotsman. Triangle mesh compression. In Proceedings
Graphics Interface 1998, pages 26–34, 1998.

[36] M. vanKreveld, R. vanOostrum, C. L. Bajaj, and D. L. Schikore. Contour trees
and small seed sets for isosurface traversal. In Proceedings of the 13th Annual
Symposium on Computational Geometry, pages 212–220, June 1997.

[37] Z. Wood, H. Hoppe, M. Desbrun, and P. Schröder. Isosurface topology simplifi-
cation. Technical Report MSR-TR-2002-28, Microsoft Research, 2002.

[38] E. C. Zeeman. On the dunce hat. Topology, 2:341–352, 1964.

[39] H. K. Zhao, S. Osher, and R. Fedkiw. Fast surface reconstruction using the level
set method. In 1st IEEE Workshop on Variational and Level Set Methods, in
conjunction with the 8th International Conference on Computer Vision (ICCV),
Vancouver, Canada, pages 194–202, 2001.


