

Storage Management for
Embedded SIMD Processors

A Dissertation
Presented to

The Academic Faculty

by
Soojung Ryu

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in
Electrical and Computer Engineering

School of Electrical and Computer Engineering
Georgia Institute of Technology

December 2003

Copyright © 2003 by Soojung Ryu

 ii

Storage Management for
Embedded SIMD Processors

Approved:

Dr. D. Scott Wills, Chair

Dr. Linda M. Wills, Chair

Dr. Douglas M. Blough

Dr. Sudhakar Yalamanchili

Date Approved December 15, 2003

 iii

Dedication

This work is dedicated to

my husband, Ji-Weon Jeong for his love and patience

my son, Daniel for his future

my parents, Keun-Jang Ryu and Sun-Sook Park for their love

my father-in-law, Han-Young Jeong for his love

my sister and brother, Hye-Jung and Jae-woan for their love

and my friends for their love

 iv

Acknowledgments

I would like to express my deepest appreciation to my thesis advisor, Dr. Scott Wills and my

co-advisor, Dr. Linda Wills. They have contributed the most to my research. During my Ph.D.

program at Georgia Institute of Technology, they provided me advice on everything – research,

family, and life. Their encouragement made me continue to pursue my Ph. D. I really appreciate

their love and also I would like to express my sincere love for them and their lovely children,

Rosemary and Frank.

I am also grateful to Dr. Sudhakar Yalamanchili for serving as a thesis reading committee

member. I would like to thank Dr. Douglas Blough for his encouragement for my research as well

as careful reading of this dissertation. I would like to thank Dr. Bonnie Heck and Dr. Ellen

Zegura for serving as committee of my dissertation defense.

I would like to acknowledge all of the members of the PICA group and EASL group at

Georgia Institute of Technology for their friendship and useful comments – Mark, Keh, Jong-

Myun, Lewis, Hong-Kyu, Jin-Sung, Cameron, Chris, Brett, Cory, Krit, Murat, Roy, Nidhi and

Peter. Many thanks are given to Dr. Mondira Deb Pant for her support and friendship. I also

would like to thank Dr. Kee-Shik Chung for his valuable advice on my Ph.D. research.

I’d like to also thank to my friends, Chung-Seok Seo, Jiwon Park, Joanne Kim, Seungmin

Lee, Hyun-Ah Kim, Hasup Lee, So-Young You, Hyung-Su Lee, Jeongseok Ha, Jungwon Kang,

and Jaehong Kim. I would like to give my special appreciation to Ji-Eun Park’s family for their

love and friendship.

Last, I’d like to express my deepest appreciation to my parents, family, husband, and my son

who have continued to support me with love to finish this thesis.

 v

Table of Contents

Dedication.. iii

Acknowledgments ... iv

Table of Contents.. v

List of Tables ... viii

List of Figures .. ix

Summary.. xiii

CHAPTER 1 Introduction... 1
1.1. Introduction .. 1
1.2. Problem Statement and Contributions .. 1
1.3. Related Research .. 3

1.3.1. SIMD Instruction Broadcast... 3
1.3.2. Systolic Arrays ... 3
1.3.3. Instruction Systolic Architecture (ISA).. 5
1.3.4. Compilation Techniques for Storage Optimization.. 7
1.3.5. Summary of Related Research ... 9

1.4. Thesis Contribution Summary.. 10
1.5. Thesis Outline... 12

CHAPTER 2 Efficient Storage Usage in Embedded SIMD Systems... 13
2.1. Summary... 13
2.2. Introduction .. 13
2.3. Related Work.. 14

2.3.1. Application Retargeting.. 14
2.3.2. Register Allocation... 14
2.3.3. Memory Optimization .. 16

2.4. Approach: Application Retargeting for Different Memory Configurations 17
2.4.1. Register Allocation... 18
2.4.2. Memory Optimization .. 21

2.5. Energy and Area Estimation for Storage .. 24
2.6. Validation and Evaluation .. 25
2.7. Metrics and Analysis .. 26
2.8. Results and Analyses .. 28

2.8.1. Example Application: Vector Quantization (VQ) Encoding.................................. 28
2.8.2. Experimental Results.. 30

2.9. Chapter Conclusion .. 36

CHAPTER 3 Systolic Instruction Broadcast for Embedded SIMD Architectures 37

 vi

3.1. Summary... 37
3.2. Introduction .. 37
3.3. Related Work.. 39

3.3.1. Pipelined Instruction Broadcast.. 39
3.3.2. Instruction Systolic Architecture (ISA).. 40
3.3.3. Systolic Instruction Broadcast .. 41

3.4. Approach: Systolic Instruction Broadcast Architecture ... 43
3.4.1. Data and Structural Hazards ... 44
3.4.1.1. Nearest Neighbor Communication .. 44
3.4.1.2. Data and Structural Hazard Analyses .. 45
3.4.2. Implementation of Systolic Instruction Broadcast ... 47
3.4.2.1. Software Approach .. 47
3.4.2.2. Two Write-port Register File Method ... 48
3.4.2.3. Instruction Scheduling Techniques for Systolic Instruction Broadcast 49
3.4.2.4. Hardware Approach ... 56

3.5. Results and Analysis... 57
3.5.1. Metrics.. 57
3.5.2. SIMPil Applications ... 58
3.5.3. Clock Count Penalty... 58
3.5.4. System Performance... 60
3.5.5. Hardware Overhead.. 63
3.5.6. Area Efficiency... 64

3.6. Chapter Conclusion .. 66

CHAPTER 4 Systolic Virtual Memory .. 67
4.1. Summary... 67
4.2. Introduction .. 68
4.3. Related Work.. 69

4.3.1. Linear Mapping Technique .. 69
4.3.2. Data Prefetching Technique ... 72

4.4. Approach: SIMD-systolic System with Systolic Virtual Memory 74
4.4.1. Systematic Design Approach.. 74
4.4.2. Case Study of Extended Mapping Techniques: Vector Quantization 76
4.4.3. Memory Operations in SIMPil Architecture .. 79
4.4.4. Systolic Virtual Memory (SVM): SIMD-systolic System with Off-Chip Memory
Accesses ... 80
4.4.4.1. Systolic Load ... 80
4.4.4.2. Systolic Store ... 80
4.4.5. Data Prefetch .. 83
4.4.5.1. Prefetch Instruction.. 83
4.4.5.2. Address Table .. 85
4.4.6. Instruction Scheduling.. 87

4.5. Results and Analysis... 92
4.5.1. Channel Utilization... 93
4.5.2. System Performance... 94
4.5.3. Clock Count Penalty... 95
4.5.4. Application: Matrix Multiplication .. 96
4.5.4.1. Matrix Multiplication: Execution Time ... 98
4.5.4.2. Memory Requirement .. 98
4.5.4.3. Memory Area Efficiency ... 102

4.6. Chapter Conclusion .. 103

 vii

CHAPTER 5 Concluding Remarks .. 104
5.1. Conclusions .. 104
5.2. Future Work.. 105

APPENDIX A SIMPil Architecture ... 106

References... 107

Vita.. 113

 viii

List of Tables

Table 1: High-level comparisons between Systola and SIMD-systolic system............................... 6

Table 2: Low-level comparisons between Systola and SIMD-systolic system 6

Table 3: Metrics for experiments. .. 26

Table 4: Description of selected workloads. .. 30

Table 5: Explored storage configurations.* ... 30

Table 6: Storage area efficiency (x 10-6).. 31

Table 7: Area efficiency (x 10-6).. 31

Table 8: Energy efficiency (x 10-6). ... 31

Table 9: Metrics for experiments. .. 57

Table 10: Number of instructions issued by controller. ... 59

Table 11: Clock count penalties (delay cycles) of SIMD-systolic systems in three approaches. .. 59

Table 12: Definitions for linear mapping method.. 69

Table 13: Transformation table for each edge. .. 77

Table 14: Memory addressing modes for each type of memory operation.................................... 79

Table 15: Distances between consecutive off-chip memory operations. 92

Table 16: Metrics for experiments. .. 92

 ix

List of Figures

Figure 1: The principles of memory interfaces for (a) conventional processor and (b) systolic
array [12].. 3

Figure 2: Relations among related research and our approaches in three contributions.................. 9

Figure 3: Chatin’s register allocator [45]... 15

Figure 4: Brigg’s register allocator [46,47] ... 15

Figure 5: Overall framework for finding optimal storage configurations by application
retargeting. ... 17

Figure 6: Application retargeting module with register reassignment... 18

Figure 7: Example of register reassignment. ... 20

Figure 8: Application retargeting module with memory optimization. ... 21

Figure 9: Example of memory optimization based on the lifetimes. ... 22

Figure 10: Results of memory optimization: memory words in byte used in the original program
and in the optimized program for median filtering, TAK, complement, and brightness slicing
image processing applications. .. 23

Figure 11: GENESYS structure [63]. .. 25

Figure 12: Verification steps.. 26

Figure 13: Overall VQ processes. .. 29

Figure 14: Results of code sizes and execution time in clock cycles for retargeting VQ application
to different storage configurations. .. 29

Figure 15: Code size increase. ... 32

Figure 16: Execution time increase.. 33

Figure 17: Normalized storage area efficiency for selected workloads. .. 33

Figure 18: Normalized energy efficiency. ... 34

Figure 19: Average of normalized storage area efficiency. ... 35

Figure 20: Average of normalized energy efficiency. ... 35

 x

Figure 21: Reachable fraction of a chip for future VLSI technology (from ITRS). 38

Figure 22: Two methods for delivering instructions to PEs [4]... 39

Figure 23: The architecture of Systola 1024 [30]. ... 40

Figure 24: Control flow in an instruction systolic array [30]... 41

Figure 25: The structure of the dedicated communication register in Systola 1024 [30]. 41

Figure 26: A 4x4 mesh of PEs showing how instructions are pumped from an ACU to PEs [1].. 42

Figure 27: The overall framework of the SIMD-systolic architecture... 43

Figure 28: Neighboring PEs showing how data is transferred... 44

Figure 29: Conditions causing delays in systolic instruction broadcast. 45

Figure 30: Hazard detection logic.. 46

Figure 31: Sample code that introduces a delay due to a write following a communication
instruction. ... 47

Figure 32: Clock cycle splitting – RD for a data read from register file and WR for a data write to
register file. .. 48

Figure 33: An example of an execution of a communication instruction with split clock cycle .. 48

Figure 34: Sample codes that eliminate a delay due to a following write after communication
instruction by having two write register ports. .. 48

Figure 35: Framework of an instruction scheduler for systolic instruction broadcast. 50

Figure 36: An example of instruction scheduling technique for software approach. 53

Figure 37: An example of instruction scheduling technique for two write-port register file
approach... 55

Figure 38: Bypass logic. .. 56

Figure 39: Projected system performance in sustained system throughput. 62

Figure 40: Normalized sustained throughput... 62

Figure 41: Register file size increase for an additional write port: R(2R,1W) – 2 read-port, 1
write-port register file; R(2R,2W) – 2 read-port, 2 write-port register file.................................... 63

Figure 42: Area efficiencies in (GOP/mm2). ... 65

Figure 43: Normalized area efficiency projected in year 2010.. 66

Figure 44: Mechanism of systolic instruction broadcast and systolic data movement. 69

 xi

Figure 45: An example of data movement with systolic load instruction...................................... 70

Figure 46: Performance gap between processor and DRAM (from ITRS).................................... 72

Figure 47: Performance increase rates for processor and DRAM (from ITRS). 73

Figure 48: The overall framework of the systematic design method for a SIMD-systolic system.75

Figure 49: DG for VQ application. .. 76

Figure 50: One-Column system designed for VQ based on transformations in Table 13. 77

Figure 51: Space-time representation. ... 78

Figure 52: Segment-level system designed for VQ. .. 78

Figure 53: High level view of space-time diagram assuming 4 x 4 processor array. 79

Figure 54: Systolic virtual memory: systolic load mechanism. ... 81

Figure 55: Systolic virtual memory: systolic store mechanism. .. 81

Figure 56: An Example of Systolic Store. ... 82

Figure 57: An example of software data prefetching using the ‘prefetch’ instruction. 83

Figure 58: Extended instruction format for data prefetching... 84

Figure 59: An example of an extended instruction format: ‘sys_load R1, SR0.’ 84

Figure 60: An example of data movement in one column of an 8 x 8 processor array for a
‘sys_load.’.. 85

Figure 61: Address table. ... 85

Figure 62: An example of data prefetching using the address table given in Figure 61. 86

Figure 63: An example of data prefetching. .. 87

Figure 64: An example of consecutive systolic load instructions.. 88

Figure 65: An example of consecutive systolic store instructions. .. 89

Figure 66: An example of three consecutive systolic load instructions... 90

Figure 67: Framework of an instruction scheduler for systolic virtual memory............................ 91

Figure 68: Channel utilization for a given number of consecutive memory operations. 93

Figure 69: Channel utilization for a given combination of memory operations. (L:sys_load, S:
sys_store) ... 94

 xii

Figure 70: Normalized execution time of off-chip memory operation relative to the on-chip
memory operation. ... 95

Figure 71: Clock count penalty for systolic virtual memory. .. 96

Figure 72: Matrix multiplication application with shared memory address space. 97

Figure 73: Matrix multiplication application with private memory address space........................ 97

Figure 74: Matrix multiplication: normalized execution time. .. 98

Figure 75: Estimation of the number of transistors and area for each type of memories: DRAM,
SRAM, and register file. .. 99

Figure 76: Estimation of the number of transistors and area for each type of memories: DRAM,
SRAM, and register file (log scale). .. 99

Figure 77: Memory requirements for each implementation in the number of memory words. ... 100

Figure 78: Memory requirements in area where both memories (on-chip & off-chip) are
implemented by SRAM. .. 101

Figure 79: Memory requirements in area where off-chip memory is implemented by DRAM and
on-chip memory is implemented by SRAM. ... 101

Figure 80: Normalized area efficiency... 102

Figure 81: SIMPil microarchitecture. .. 106

 xiii

Summary

SIMD parallelism offers a high performance and efficient execution approach for today’s

broad range of portable multimedia consumer products. However, new methods are needed to

meet the complex demands of high performance, embedded systems. This research explores new

storage management techniques for this focused but critical application. These techniques include

memory design exploration based on the application retargeting technique, storage-based systolic

instruction broadcast, and systolic virtual memory to improve both the performance and

efficiency of embedded SIMD systems. A selection of image processing applications serves as

the workload for the study. Code retargeting software, architectural simulation, and technology

models are used to evaluate these methods.

 1

CHAPTER 1

Introduction

1.1. Introduction

Growing consumer demand for portable multimedia products is focusing architectural

research on high efficiency, high performance computing architectures. These computing

applications exhibit significant data parallelism that can be effectively exploited using well-

studied execution models, such as Single Instruction Multiple Data (SIMD) architectures. Limited

attempts to harness data parallelism through subword parallelism have already been incorporated

in multimedia instruction extensions on general-purpose microprocessors and more recently in

DSP processors. Much greater parallelism is available in applications; but SIMD architectures

techniques developed in the 1970’s and 1980’s do not fully address issues that arise in

implementing a monolithic SIMD array in an embedded system. One critical area is the handling

of storage (registers, local processing element (PE) memory, and off-chip memory). Technology

advances in transistors, on-chip interconnects, and packaging have dramatically altered the

relative performance, implementation cost, and level of integration of storage.

This thesis presents research on techniques to efficiently handle the storage hierarchy in

embedded SIMD processors for multimedia applications. It includes distribution of register and

local memory storage, as well as a systolic approach to support off-chip dense memory arrays

with minimum latency.

The basic research problems being addressed are defined in the next section.

1.2. Problem Statement and Contributions

There are many research issues to be addressed in the development of an embedded SIMD

system. This thesis addresses three basic research problems.

 2

First, in a replicated cell (a SIMD processing element), efficient silicon area usage is critical.

Data storage (registers and local memory) is the single largest allocation of silicon area in a PE

design. Registers have multiple access ports and the fastest access time whereas local memory

can store more bits in a given area. An optimal allocation between registers and local memory

requires a methodology for evaluating performance and cost across a set of target applications.

Second, SIMD execution is defined as simultaneous execution of broadcast instructions at

every PE. As VLSI technology advances, PEs get smaller and SIMD arrays get larger. To avoid

inevitable clock frequency limitations, a segmented, temporally and/or spatially shifted broadcast

technique must be employed. This scheme must employ a combination of software reordering and

hardware mechanisms to avoid the resulting data hazards.

Third, while local PE memory provides the fastest and most accessible (greatest access

bandwidth) operand storage, off-chip dense memories can provide significantly greater density

due to their specialized fabrication process and amortized interface circuitry. But accessing off-

chip memory is complicated by limited per PE memory bandwidth, especially for large PE arrays.

The situation is further exacerbated by SIMD’s synchronous instruction execution that creates

magnified peak off-chip bandwidth demands.

This thesis research attacks these problems with three related architectural approaches:

Approach 1: Improve methods to evaluate storage usage within a PE

Develop automatic techniques to examine application characteristics and explore the space

of feasible register and local memory configurations. This includes automatic application

retargeting and compilation techniques and technology modeling so cost and efficiency can be

accessed.

Approach 2: Explore systolic instruction broadcast and resulting data hazard avoidance

Systolic instruction broadcast [1] eliminates long broadcast wires at the expense of

execution simplicity. Develop and evaluate techniques for eliminating data hazards with this

staggered execution of instructions with minimal performance penalty. Use implementation

strategies and technology models to area costs and overall area efficiency.

Approach 3: Define and evaluate a systolic virtual memory system for off-chip storage

When local PE memory is insufficient or inefficient to meet application needs, develop an

off-chip memory access technique utilizing the staggered instruction execution that results from

systolic instruction broadcast. Employ data prefetching and scheduling techniques to minimize

 3

penalties resulting from increased access latency and limited access bandwidth. Technology

models are again developed to evaluate cost and efficiency as well as performance.

The following section summarizes related research on which this thesis builds.

1.3. Related Research

1.3.1. SIMD Instruction Broadcast

As mentioned earlier, long wires for global instruction broadcast in SIMD directly limit

clock rates [1,2,4]. Recent designs attempt to address this problem with limited success; a board

level instruction issue rate of 100MHz was achieved in 1995 by Bolotski’s Abacus [5] and a chip

level issue rate of 200MHz is achieved in products from PixelFusion which are currently

developed with the clock rate of 400MHz for 256 PEs [6]. This instruction bottleneck limits the

scalability of SIMD architectures [1,4,7].

Two alternatives to overcome instruction bottlenecks are pipelined instruction broadcast and

the use of instruction caches [4]. The first approach hides the average broadcast latency by

pipelined instruction broadcast. The Blitzen project [8] and MasPar’s MP-2 [9] employed this

method. The disadvantage of pipelined instruction broadcast is the required additional instruction

latches. The second approach is proposed by Rockoff which uses a SIMD instruction cache [10].

However, this method consumes significant chip area and depends on temporal instruction

locality for its effectiveness.

1.3.2. Systolic Arrays

H. T. Kung and C. E. Leiserson introduced systolic arrays in 1978 [11]. Figure 1 shows the

conventional processor with one PE and systolic array with an array of PEs named cells due to

their regularities [12,13,14].

(a) Conventional processor with one PE (b) Systolic array with an array of PEs

Figure 1: The principles of memory interfaces for (a) conventional processor and (b) systolic
array [12].

MEMORY

PE

MEMORY

PE PE PE PEPE PE

 4

As shown in Figure 1-(b), systolic array can achieve high throughput with the same I/O

bandwidth by having array of many PEs. In a systolic system, data is pumped from the memory

module rhythmically, passing through the array of PEs until it returns to the memory module.

Though, the systolic array shown in Figure 1 is a linear array, it can be multi-dimensional to

achieve a high degree of parallelism.

Systolic architectures have been proposed to design special-purpose systems whose

efficiency derives from modular expansibility, simple and regular data and control flows, use of

simple and uniform cells, elimination of global broadcasting, fan-in, fast response and balancing

computation with I/O [2,12,15]. However, since the I/O problem is also related to the available

internal memory, an appropriate memory structure should be designed to achieve a balance

between computation time and I/O time [2,12,15]. Later surveys in [2,15] categorize systolic

system into specific-purpose systolic system and general-purpose systolic system. Early design

efforts in systolic systems were mainly related to solving a specific problem, e.g., matrix

multiplication or convolution. These systems can achieve high performance due to application

specific hardware. However, application specific architectures are expensive since their cost

cannot be amortized across multiple applications. Thus many research efforts on general-purpose

systolic architectures are gaining importance. General-purpose architectures can be divided into

two categories – programmable models and reconfigurable models. The former can be

implemented in SIMD or Multiple Instruction Streams and Multiple Data Streams (MIMD)

architectures and the latter can be implemented by Field Programmable Gate Arrays (FPGAs).

FPGAs have great advantage in flexibility by allowing system to be reconfigured. However,

FPGAs are still more expensive, lower performance, and consume more power than those of

Application Specific Integrated Circuits (ASICs). Thus programmable model is more appropriate

for the current embedded systems running some set of applications while having some degree of

flexibility thanks to the programmability.

Very Large-Scale Integration (VLSI) has revived systolic systems from the early eighties

because systolic architectures can be easily implemented with the growing levels of integration.

However, systolic architectures remain difficult to design and implement due to the requirements

of detailed information such as data and control flows, computation sequences, and spatial and

temporal information of all data used by applications [16,17,18]. In addition, formal design

methods involving correctness-preserving transformations are required as the complexity of VLSI

system design increases [19]. There are several systematic design approaches to design specified

systolic arrays algorithmically [14,16,17,18,19,20]. Such techniques, transformation methods

based on data flow [21], mathematical transformations based on data dependencies [22], and

 5

mappings for multistage algorithms [23], are well observed for several algorithms in

[14,17,18,19]. These design methods start with the representation of systolic algorithms in several

formats such as data-flow graphs [19], signal-flow graphs [19], or Regular Iterative Algorithms

(RIAs) [24]. These representations basically capture information about data dependencies and

functional requirements. A popular graph representation is the Reduced Dependence Graph

(RDG) which can be used to determine processor mappings for each task and scheduling of an

algorithm based on the computed delays from data dependencies. Resulting processor maps and

schedules correspond to the representation of the given algorithm. Usually, space representations

depend only on algorithms not on architectures. Thus processor mappings and scheduling

methods should be reconsidered to design SIMD-systolic architectures with fixed architecture

features to obtain proper mapping of processors while satisfying time-constraints corresponding

to systolic instruction broadcast.

This research extends the SIMD architecture by employing systolic instruction broadcast and

systolic data movement methodologies to overcome the bottleneck of the memory bandwidth in

SIMD architectures and to eliminate long wires which may cause low clock frequency, increased

interconnection area and high power consumption. Concerns of efficient sequencing of

instructions and scheduling of data movement are addressed for a correctness-preserving system

design. A SIMD-systolic architecture simulator is built to run a set of workloads and the current

technologies are plugged in the simulator to study the implementation limits.

1.3.3. Instruction Systolic Architecture (ISA)

In this section, the comparisons between SIMD-systolic system and Systola 1024 (ISATEC

Co.) [25,26,27,28,29,30] are presented. In Section 3.3.2, more details of Systola architecture will

be explained. The main difference between these two systems lies in the existence of instruction

scheduler and data prefetching logic. The differences in high-level design issues between Systola

1024 and SIMD-systolic system are categorized in Table 1.

Table 2 shows several details in comparisons of Systola 1024 with SIMD-systolic system

which is defined as target architecture of our research.

 6

Table 1: High-level comparisons between Systola and SIMD-systolic system

 Systola 1024 SIMD-systolic
Wires Short Short
Instruction Distribution Systolic way Systolic way

Systematic design method N/A Yes (Extended mapping techniques
for the data dependency graph)

Scheduling Responsibility Programmer Scheduler
Methodology to control the data
movement based on the
corresponding instruction

N/A Instruction scheduling and data
sequencing

Bandwidth from one memory
module Serial bit-wise Word wide (16bits/word)

Table 2: Low-level comparisons between Systola and SIMD-systolic system

 Systola 1024 SIMD-systolic
Flexibility Yes (Programmability + Selectors) Yes (Programmability + more general

instruction sets)
Simplicity &
Scalability Yes (Simple regular processor array) Yes (Simple regular processor array)

Generality

Medium (Use of selectors makes
possible to run the different set of
instructions on different PE. + Small
set of instructions restrict the
functionality of processors)

Medium-High (Instruction sets are more
general to cover a large set of
applications)

Suitability for
VLSI Yes Yes

Aggregate
Function Easy and Fast Easy and Fast

Diameter High (2N – 2 for NxN processor array) High (2N – 2 for NxN processor array)
Conditional jumps N/A Sleep, Jump, Branch instructions
Global operation N/A s_vectorize, s_raisehand

Value Broadcasting Row-wise or Column-wise
Immediate value can be broadcasted
from controller using s_vectorize
instruction

Data Word Length 8 bits 16 bits

On-chip Memory 32 registers + 2 communication
registers (C-registers) 16 registers + 256 memory words

Special constant Registers 0, -1 N/A
State flags zero flag, negative flag
Number of

instructions
24 instructions

70 instructions (38 PE instructions + 32

controller instructions)

 7

1.3.4. Compilation Techniques for Storage Optimization

Compilation techniques have been heavily developed to improve performance. In this sense,

memory optimization techniques are developed to minimize memory bottlenecks due to the gap

between processor and memory performance. One of them is the design of storage hierarchy

which tries to reduce the memory access time by maximizing data locality.

However, storage (data and program) reduction techniques must be considered for resource-

constraint systems, such as embedded systems [31,32,33]. This class of architectures is often used

as portable devices in which power consumption and area cost are very important factors to

achieve the long battery life and small size, in addition to high performance.

Until the early nineties, memory optimization techniques for embedded systems have been

mainly developed to decrease code size, such as addressing optimization [34,35,36,37], mode

optimization [38,39,40] and code compression [40]. These techniques utilize special architectural

features such as addressing modes for a particular embedded system to minimize the code size.

Program memory optimization is not the main concern in this proposed research since PEs will

receive an instruction from a central controller without storing it.

Recently, many data memory optimization techniques are being developed as embedded

systems flourish. The main effort is to reduce an allocated memory size especially for array data

which usually takes a large fraction of data [41,42]. Data memory optimization techniques can be

categorized into two approaches – architecture dependent optimizations and architecture

independent optimizations [32]. A recent survey on data memory optimizations is available in

[32].

Architecture independent optimization techniques are based on source-level transformations

such as loop transformation and code rewriting to increase the data reusability. Loop

transformation techniques are developed for long periods to increase the performance of the

program [43]. However, these techniques also can be used to decrease the number of data

accessed by merging two loops which access the same data [32].

Architecture dependent optimization techniques are designed for particular memory

architectures. One of effective ways of reducing memory requirements is through better

utilization of given registers. This is not only for maximizing memory utilization, and also for

reducing power consumption and maximizing performance. The most frequently used variable

should get the highest priority to be assigned a register since access to a register is less power

consumed, and results in shorter access time. Register allocation is a standard part of the

compilation process [44], usually using a common graph-coloring algorithm [45,46,47].

 8

Typically, register allocation is performed on an internal representation (IR) right before code

generation.

However, in this research, a cost-based register allocation is performed on assembly code.

The result of our technique is assembly code that is retargeted to a given number of registers. If

an input assembly code can run with a given number of registers, the input application is

rewritten automatically to minimize the number of registers used in the application. Otherwise,

the data in registers will be spilled into the data memory [45]. The register allocation and memory

spilling are based on a cost model which is used to select the spilling-candidate registers.

Application retargeting is often performed by retargetable compilers [48]. A significant

amount of research in this area has been conducted for embedded processors including CHESS

[38], SPAM [34], AVIV [49], RECORD [50], and CodeSyn [48]. Since a single retargetable

compiler is sufficient for different configurations of architecture, retargetable compilers are

gaining popularity as reconfigurable architectures are emerging that can be tailored to a given

workload. However, these techniques take high-level programs or some descriptions as an input.

Thus hand-coded assembly code cannot be retargeted with these techniques directly. We develop

retargeting techniques which can be used for general patterns of assembly applications – hand-

written codes and compiler generated codes. Consequently retargeting techniques can play a great

role in developing register size dependent embedded applications which still are written in

assembly languages to achieve real-time performance requirements.

In this research, memory optimization is performed based on variable lifetimes under the

assumption that effective addresses can be determined in compile time. The lifetime based

optimizations [52,53] are reassigning the same memory location for different data items of which

lifetimes are not overlapped. The resulting memory optimized code is also written in assembly

code running on the same architecture as an input platform. Our retargeting techniques for

different register sizes may increase memory uses due to the spilling. Thus memory optimization

technique, called memory retargeting, is placed after register retargeting to increase data

reusability by variable lifetime analysis. In addition, lifetime analysis techniques to place the

frequently used data in higher level of memory in a memory hierarchy are useful when off-chip

memory is used, to deal with its long access time.

Our retargeting techniques – register retargeting and memory retargeting – can be used to

decide the optimal storage configurations for a selected set of workloads by analyzing the

resulting retargeted applications in terms of the area efficiency and energy efficiency. This

technique is applicable to either SIMD architectures or general architectures.

 9

1.3.5. Summary of Related Research

Related research is described based on categories of techniques from Section 1.3.1 through

Section 0. The proposed research is built on this related research. The summary of related

research is depicted in Figure 2. In addition, Figure 2 shows the relations among these research

efforts to express how this research is built on the previous research works.

Figure 2: Relations among related research and our approaches in three contributions.

Products
 or Tools

Our Approaches

Related Research

Application Retargeting
- Retargetable

Compilation
Techniques
[34,38,48,49,50]

GENESYS CHESS
SPAM
AVIV
RECORD
CodeSyn

Systola 1024

Contribution 1:
Memory Design Exploration

Contribution 3:
Systolic Virtual Memory

Area Estimation
[55,56]
Power Estimation
[57,58,59,60,61,62]

Abacus
PixelFusion

Blitzen Project
MP-2

Contribution 2:
Storage-Based Systolic Instruction
Broadcast

Register Allocations:
[44,46,47]
Memory Spilling: [45]

Reducing
Instruction

Bottleneck in
SIMD

[4,8,9,10]

Memory Optimizations
- Program memory optimizations [34,35,37,38,39]
- Data memory optimizations [32,41,42]

Systolic System
- Concept of systolic systems [2,11,12,15,54]
- Systematic transformation techniques

[14,16,17,18,20]

Data Prefetching [72,73,74,75,77]

 10

1.4. Thesis Contribution Summary

This outline summarizes the contributions presented in this thesis.

 Contribution 1: Efficient Storage Usage in Embedded SIMD Systems

An analysis method for assessing storage needs and costs of a given application

automatically retargeted across a spectrum of storage configuration designs was developed. Using

this technique, a SIMD processing element achieves optimal area and energy efficiency with a

register file containing between 8 and 12 words for given workload. This configuration is

between 15% and 25% more area and energy efficient than other memory configurations being

considered.

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures

Systolic instruction broadcast is a high performance and area efficient instruction

broadcasting scheme with short-wire interconnects by eliminating of wire latency bottleneck

found in global instruction broadcast. In this contribution, we simulated systolic instruction

broadcast in three approaches – software method, 2-write port register file method, and bypass

method. Each method can result different area efficiencies based on the fraction of

communications over a given set of instructions. In our evaluations, due to the system’s short

clock cycle time and scheduler, a speedup in system performance of up to 7.5 can be achieved by

the year 2010. In addition, speedup of area efficiency also can be achieved up to 7.2 for a given

workload.

Contribution 3: Systolic Virtual Memory

The ability of minimizing off-chip memory access latency while maximizing access

frequency by scheduling techniques along with data prefetch techniques in systolic virtual

memory mechanism was evaluated using our SIMD-systolic architecture simulator. Results show

that, systolic virtual off-chip memory with shared address space can achieve over 50% higher

area efficiency than that of an on-chip only system for a matrix multiplication application.

 11

Contribution 1: Efficient Storage Usage in Embedded SIMD Systems

• Created methods and tools that retarget assembly language applications to

different on-chip memory configurations.

• Developed a memory configuration evaluation framework for performance,

technology-model-based costs (area and energy), and area and energy

efficiency.

• Exercised and evaluated techniques for a selected application set.

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures

• Evaluated three approaches (software-only, 2-write port registers and hardware

bypass) for systolic instruction broadcasts to support instruction execution at

local interconnect clock frequency projections.

• Developed instruction reordering scheduler that minimizes execution time

penalties for software hazard avoidance methods.

• Incorporated implementation and technology models for hazard avoidance

methods to evaluate area cost for different technology generations.

• Evaluated system performance and area efficiency for hazard avoidance

methods for a high-communication application workload.

Contribution 3: Systolic Virtual Memory

• Developed a scheme for utilizing a combination of local PE and off-chip

memory in an embedded SIMD system.

• Adapted a linear mapping algorithm for systolic off-chip memory prefetch

scheduling.

• Defined a VLIW-style SIMD instruction format and controller modification to

support systolic virtual memory.

• Evaluated technique using both high memory synthetic and kernel

applications.

• Incorporated technology and memory cell implementation models for memory

size, area, and area efficiency evaluation.

 12

1.5. Thesis Outline

The next three chapters of this dissertation discuss the methodology and results of the

primary contributions. Chapter 2 presents an analysis method for assessing storage needs and

costs of a given application automatically retargeted across a spectrum of storage configuration

designs. Chapter 3 presents techniques for short-wire instruction broadcast to eliminate the wire

latency bottleneck found in global instruction broadcast. Chapter 4 presents support for off-chip

dense memory, called systolic virtual memory. The final chapter, Chapter 5, summarizes the

results of this work and discusses future work. The appendix provides brief details about our

baseline architecture, the SIMPil system.

 13

CHAPTER 2

Efficient Storage Usage in Embedded SIMD
Systems

2.1. Summary

Operand storage consumes a significant fraction of silicon area in today’s processors. For

embedded systems, resources are often limited and cost is critical. In an effort to introduce large-

scale parallelism into embedded systems, new techniques are required to evaluate the

effectiveness of each level of the storage hierarchy in order to achieve optimal efficiency in a

highly replicated processing node design. This chapter presents a technique for analyzing storage

performance and efficiency for a given application workload. It takes a two-prong approach: a) an

automated retargeting technique is used in analyzing the storage requirements of a program over a

range of storage configurations, and b) cost is estimated in terms of energy, and area efficiency

for a given workload and storage configuration. Together these are used to explore storage

configurations by analyzing a given workload under a range of different storage configurations

with respect to performance, energy consumption, and chip area costs. Using this technique, a

SIMD processing element achieves optimal area and energy efficiency with a register file

containing between 8 and 12 words. This configuration is between 15% and 25% more area and

energy efficient than other memory configurations being considered.

2.2. Introduction

Energy and area efficiency are critical metrics for embedded systems where battery life and

cost are the central product parameters. Because storage (on-chip memory, caches, and register

files) typically occupies half the chip area [3] and consumes a significant fraction of chip energy,

exploring designs for effective storage utilization is vital.

This chapter presents a two-prong approach to support this design exploration. One, an

automated retargeting technique is used in analyzing storage requirements of programs over a

 14

range of storage configurations. This type of retargeting is too expensive and labor-intensive to

perform manually during design exploration, particularly for hand-coded assembly programs that

are optimized for specific embedded processor memory designs. Second, cost estimation is

performed to assess the energy and area efficiency based on a given workload and storage

configuration. This is used to extract a characterization of storage costs for a given program.

Three factors, performance, energy, and area are used to decide an optimal storage configuration

for a given workload.

In this chapter related research is presented first, followed by a description of our approach

to explore the memory design space. Finally, results are given along with conclusions.

2.3. Related Work

2.3.1. Application Retargeting

Application retargeting is often done by retargetable compilers [33,34,35,38,48,49,50]. A

significant amount of research in this area has been performed for embedded processors,

including CHESS [35], SPAM [34], AVIV [49], RECORD [50], and CodeSyn [48]. Since a

single retargetable compiler is sufficient for different configurations, retargetable compilers are

gaining popularity as reconfigurable architectures are emerging that can be tailored to a given

workload. These compilers take high-level programs and a target processor model description as

input to generate assembly programs for the target processor. However, real-time embedded

systems often run hand-coded assembly programs for efficiency. As a result, retargetable

compilers cannot be utilized in the design phase.

Rewriting assembly programs by hand for new target architectures requires a massive

modification effort, particularly since they are notoriously less portable and maintainable [51].

Thus, manually rewriting assembly programs during design exploration is not feasible. For these

reasons, the presented technique applies automated application retargeting techniques to assembly

programs to adapt them for different storage configurations.

These retargeting techniques extend traditional register allocation and memory optimization

techniques described in the next two sections.

2.3.2. Register Allocation

One of the back-end compilation processes is register allocation [44], usually using a

common graph-coloring algorithm [45,46,47]. As a standard part of compilation processes,

 15

register allocation takes an internal representation (IR) as input to allocate a given set of registers

to variables. Processes in register allocations proposed in [45,46] are depicted in Figure 3

(Chatin’s register allocator) and Figure 4 (Brigg’s register allocator), respectively, and each step

in the process is described as follows.

 Renumber: Assign a unique name to each symbolic register during its live ranges.

 Build: Build the interference graph for the renamed registers based on the live ranges.

 Coalesce: Delete “copy” instructions if the destination and source live ranges do not

interfere.

 Spill Costs: Compute the spill cost for each live range by estimating the weighted

number of loads, stores and other instructions needed to spill them.

 Simplify: Recursively remove unconstrained nodes from the graph and push them onto a

coloring stack. If there are only constrained nodes in the graph, remove the nodes, mark them

for spilling, and continue.

 Spill Code: Insert spill code for marked nodes.

 Color: Pop all the nodes off the coloring stack and give each node a color different from

its neighbors.

Figure 3: Chatin’s register allocator [45]

Figure 4: Brigg’s register allocator [46,47]

Brigg’s allocator modifies Chatin’s allocator such that registers are allocated for variables

more optimistically by deferring a decision of node colorability until the last stage, ‘Color’.

Renumber Build Coalesce Spill Costs Simplify

Spill Code

Color

Renumber Build Coalesce Spill Costs Simplify

Spill Code

Color

 16

Our technique extends Chatin’s allocator to support register allocation technique across a

range of file and memory sizes. Typically, register allocation is performed on an internal

representation (IR) just before code generation. However, in our research, a register reassigning

process takes an assembly program as input and retargets it to operate within a given register file

limit. If an assembly program can run with a given number of registers, it is rewritten

automatically to minimize the number of registers used in an application. Otherwise, register

values will be spilled into memory based on a cost model [47].

2.3.3. Memory Optimization

Memory optimization techniques for embedded systems have been mainly developed to

decrease code size, such as addressing optimization [34,48], mode optimization [40], and code

compaction [37]. These techniques utilize special architectural features for particular embedded

systems to minimize code size. Program memory optimization tends to be simpler than data

memory optimization since data memory optimization must compute an effective address of data

which is sometimes difficult or impossible to do unambiguously at compile time. Data memory

optimization techniques that reduce the size of data memory are considered by placement and

indexing of an array, which usually takes a large fraction of data in multimedia applications

[41,42]. There are two main allocation strategies for array data – static and dynamic strategies

[42]. In this chapter, we take a dynamic memory allocation strategy based on live ranges of

memory words, with the assumption that the effective address can be determined at compilation

time. Since compilation time in embedded systems is less critical than that in general systems, we

compute all effective addresses at compile time. In addition, since our approach is applied to

assembly programs, there is no difference between array data and non-array data.

 17

2.4. Approach: Application Retargeting for Different Memory Configurations

The overall retargeting procedure, depicted in Figure 5, is discussed in this section. A

significant number of applications for embedded processors are still hand-coded to meet real-time

constraints. Since rewriting assembly code for several different configurations is error-prone and

laborious, the development of automatic retargeting techniques for assembly programs is

necessary for efficient design exploration. These assembly programs can be either hand-coded or

generated by compilers. Once applications are retargeted, a simulator is used to run them to

estimate their performances in executed clock cycles under the assumption that each instruction

takes one clock cycle to execute. Since we are assuming that both on-chip memory and registers

can be accessed in one clock cycle, differences in execution clock cycles are from the overhead of

register spilling.

Figure 5: Overall framework for finding optimal storage configurations by application

retargeting.

Retargeted
Programs

Cost Models for
Power and Area

Application Retargeting Technique:

Cost-based Register
Reassignment

Memory
Optimization

Assembly
Programs

Evaluation of Energy and Area Efficiency

Optimal Storage Configuration for Given Workloads

 Simulator

Execution

Compiler

High-level Language Programs

Optional

Number of Registers

Application Rewriting

 18

There are two main steps to retarget applications for given storage requirements. The first

step is register reassignment, followed by memory optimization.

2.4.1. Register Allocation

Register allocation techniques are used to generate register-optimized applications with a

limited number of registers by analyzing variable lifetimes. If there is a lack of registers, register

spilling techniques [47] are applied to use memory instead of registers until a resulting

application can run on the given number of registers. Figure 6 shows the register allocation

module used in our approach. This register allocation technique is composed of processes in

Chaitin’s register allocator [45]. However, a typical register allocator usually takes the

intermediate representation (IR) as an input of the back-end compilation process, while our

approach takes either hand-written or compiler-generated assembly programs. In addition, our

output programs can be run on target architectures directly. This can maximize code reusability.

Figure 6: Application retargeting module with register reassignment

Since spilling costs are computed based on register usage, less frequently used register

values are spilled. An example of register reassignment based on lifetimes is depicted in Figure 7.

Assembly programs are written in the SIMPil assembly language and the description of each

instruction is explained in the ‘Comment’ column in Figure 7. As in Chatin’s allocator, an

interference graph is built such that each register is represented by a node in the graph, and edges

are drawn between nodes when there is an overlap in the registers’ lifetimes. The resulting graph

is shown in Figure 7 (b) and the colored graph is shown in Figure 7 (c). Finally, register

reassigned assembly code is shown in Figure 7 (d).

Spill code

Color Simplify Spill Costs Build Renumber

 Assembly Code Number of Registers

Retargeted Assembly Code

 19

Source Code Live Ranges of Registers
Code Comment R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10

Loadi 10 R0 10
Addi R4, R0, 0 R4 R0 + 0
Addi R5, R0, 1 R5 R0 + 1
Addi R6, R0, 2 R6 R0 + 2
Addi R10, R0, 3 R10 R0 + 3
Load R1, R4 R1 MEM[R4]
Load R2, R5 R2 MEM[R5]
Load R3, R6 R3 MEM[R6]
Sub R7, R1, R2 R7 R1 – R2
Addi R8, R2, 0 R8 R2 + 0
Slti R7, 0x01 If (R7 < 0) then sleep
Addi R8, R1, 0 Else R8 R1 + 0
Wakeupi 0x01 Wakeup
Sub R9, R3, R8 R9 R3 – R8
Slti R9, 0x02 If (R9 < 0) then sleep
Addi R8, R3, 0 Else R8 R3 + 0
Wakeupi 0x02 Wakeup
Store R10, R8 MEM[R10] R8

(a) Source code and live ranges of registers.

(b) Interference graph.

R0 R1 R2

R6 R5 R4 R3

R7 R8
R9

R10

 20

(c) Graph coloring with colors = {R, G, B, Y, V}.

Source Code

Register in Original
Source Code Reassigned Register
R0 R0
R1 R0
R2 R3
R3 R4
R4 R4
R5 R3
R6 R1
R7 R1
R8 R3
R9 R0
R10 R2

Source Code

Original Code Reassigned Code
Loadi 10 Loadi 10
Addi R4, R0, 0 Addi R4, R0, 0
Addi R5, R0, 1 Addi R3, R0, 1
Addi R6, R0, 2 Addi R1, R0, 2
Addi R10, R0, 3 Addi R2, R0, 3
Load R1, R4 Load R0, R4
Load R2, R5 Load R3, R3
Load R3, R6 Load R4, R1
Sub R7, R1, R2 Sub R1, R0, R3
Addi R8, R2, 0 Addi R3, R3, 0
Slti R7, 0x01 Slti R1, 0x01
Addi R8, R1, 0 Addi R3, R0, 0
Wakeupi 0x01 Wakeupi 0x01
Sub R9, R3, R8 Sub R0, R4, R3
Slti R9, 0x02 Slti R0, 0x02
Addi R8, R3, 0 Addi R3, R4, 0
Wakeupi 0x02 Wakeupi 0x02
Store R10, R8 Store R2, R3

(d) Register reassigning for each color: R R0, G R1, B R2, Y R3, V R4.

Figure 7: Example of register reassignment.

The source operand and destination operand can use the same register in this example. Thus

if two lifetimes are overlapped only in one instruction, that is a defined instruction of one register

value is also the last-use instruction of another register value, the same register can be allocated

for these two registers. For example, R1 and R4 in Figure 7 (a) can be assigned to one register. As

a result, there is no edge between these two registers in an interference graph that represents the

interference between variables (registers in our case). This example shows an instruction level

R0 R1 R2

R6 R5 R4 R3

R7 R8
R9

R10

 21

register allocation not a basic block level. Since our approach is applied to basic blocks based on

the control flow of applications, there are possible false overlaps of lifetimes of registers when

two registers are used in the same basic block. However, control flow analysis line by line

requires too much memory space to keep that information throughout the compilation phases or

retargeting processes.

2.4.2. Memory Optimization

After register reassignment, memory accesses in applications are optimized to reduce

memory requirements. By computing memory variable lifetimes, the same memory location can

be reused for different memory data. The processes in this technique are depicted in Figure 8.

The memory reassigning phase also utilizes variable lifetime. For a given assembly program,

lifetimes for each memory variable are computed for each basic block. After that, memory words

are identified that can share the same memory location with other memory words, where the

lifetimes of these memory words do not interfere. Then, memory addresses for selected data

words are reassigned in a given application to share the memory location as much as possible.

Finally, the retargeting module rewrites the application with reassigned memory addresses for

memory data to achieve maximum reusability of memory locations, resulting in lower (or at least

same, in the worst case) memory requirements.

Figure 8: Application retargeting module with memory optimization.

Register Reassigned
Assembly Code

Compute Lifetimes for Each Memory Word

Build an Interference Graph for Each Basic Block

Find No Interfering Memory Locations

Memory Reassigning

Register/Memory Reassigned
Assembly Code

 22

An example of memory optimization is depicted in Figure 9. Based on lifetimes of each

memory word, memory locations can be reused to reduce the memory requirement for a given

application. In this example, the number of memory words used in the original program is 11 and

memory requirement for a retargeted code is 5 words.

Live Ranges of Memory Words

MEM time

0
1
2
3
4
5
6
7
8
9
10
…

(a) Original memory uses and lifetimes.

Live Ranges of Memory Words

MEM time

0 0,2,3,4
1 1,5,10

2 6,7
3 8
4 9

5
6
7
8
9
10
…

(b) Reassigned memory words.

Figure 9: Example of memory optimization based on the lifetimes.

Figure 10 shows the results of the memory optimization phase for four different

applications. A brief description of each application is given in Table 4.

 23

Memory Optimization

460

480

500

520

540

560

580

600

620

Median TAK Complement Brightness

Applications

By
te

s

Original Memory Used Optimized Memory Used

Figure 10: Results of memory optimization: memory
words in byte used in the original program and in the
optimized program for median filtering, TAK, complement,
and brightness slicing image processing applications.

 Results show that 2% of memory requirements can be reduced by the memory

optimization phase. Since our approach is performed in compilation time based on application

retargeting, results from our approach are not good enough as a run-time memory optimization. In

addition, patterns of memory accesses in a set of workloads make it hard to share the memory

locations based on lifetimes. The following description is a typical algorithm pattern of

multimedia applications that also shows typical memory access patterns.

Algorithm:

A. Get an image data from I/O.

B. Store an input image (IMGIN) in a memory (array).

C. Do some operations.

D. Load image data into registers from memory.

E. Process some operations on image data in registers

F. Store register values back to memory as a result (IMGOUT).

Since step B, D and F are usually repeated for video processing applications, nested loops

are commonly used for these steps (often D and E are in the same loop). Based on this algorithm,

image array data, IMGIN is defined in step B and is used at step D. If IMGIN is no longer used in

 24

an application, IMGIN is dead in step D. Thus all elements in IMGIN tend to overlap their

lifetimes, which prevents sharing the same memory locations among memory data. In addition,

resulting image data, IMGOUT, tends to be stored in the same location as IMGIN. As a result, only

intermediate data uses, that are a small portion of memory used in a given application, have a

chance to be optimized, resulting in only a 2% decrease in memory requirements.

2.5. Energy and Area Estimation for Storage

In VLSI systems, since increased of chip area may result in higher chip cost, area is a critical

design parameter in embedded systems. However, tradeoffs between chip area and system

performance should be considered. Thus area efficiency is modeled to consider chip area and

performance together. In addition, energy consumption is also an important issue in embedded

systems design, due to limited battery life. Thus area efficiency and energy efficiency should be

considered during system design exploration.

There is on-going research to estimate energy consumption and chip area, reported in [63].

This is based on a generic system simulator referred to a GENESYS [63] whose structure is

shown in Figure 11. The cost model used in this system is an empirical model to estimate energy

consumption and die size considering interconnections and technology factors. GENESYS has

seven different levels of inputs to generate a variety of chip features as outputs that are shown in

Figure 11. GENESYS also provides a library of input files for commercial general-purpose

architectures, such as the Pentium processor and a set of values derived from the International

Technology Roadmap for Semiconductors (ITRS). The cost model used in this research involves

primarily the system architecture inputs which are divided into three parts – architecture

parameters, CPI parameters and gate parameters. Over these parameters, the Rent’s parameters

(constant, internal exponent, and external exponent), number of logic transistors, activity factor,

word and bus size, address space, gate fan-in and –out, and gate utilization, etc are set. All these

values will directly feed into GENESYS to estimate energy consumption and die size. Energy

consumption, die size, and performance are used to compute the area efficiency and energy

efficiency for each given input parameters depending on storage configurations.

Energy and area estimations are used in early stage decisions for architecture designs. In our

research, after a storage-oriented application retargeting phase, we examine the cost of storage

configurations for each workload. By doing this, we can decide the optimal on-chip memory

configuration in terms of energy and area efficiencies during design explorations.

 25

Figure 11: GENESYS structure [63].

2.6. Validation and Evaluation

An application retargeting technique has been developed to target different memory

configurations in memory design exploration. Architecture simulators are used to assess

performance and memory usage, and analysis tools are chosen to evaluate the efficiency of target

systems in terms of energy and area efficiencies. These simulators provide validation of our

approach and also show the impact of architectural changes in terms of memory size.

The evaluation focuses on changes in memory size (register file size and corresponding

required memory words) for a given workload in the DSP area. Retargeted applications based on

changes in register file size are evaluated by measuring execution time, code size, energy

consumption, and chip area. Memory optimization techniques are used in our research to

minimize memory requirements. Results from memory optimizations are evaluated by comparing

memory requirements of retargeted applications and original input applications.

Results are verified by comparing the results of retargeted applications with varying register

file sizes with that of the original input application. In addition, memory contents are also

System Architecture

GENESYS Output

Number of Registers,

Number of Memory Words

Packaging Technology

Multilevel Interconnects

Circuit Configurations

Device Structures

Material Properties

Fundamental Constants

GENESYS model

Power, Size, Energy, Frequency,
Interconnect Architecture, Throughput

 26

checked for the correctness of the retargeted applications by dumping memory words. The

verification steps are depicted in Figure 12.

Figure 12: Verification steps.

2.7. Metrics and Analysis

Estimated energy and area must be considered along with performance. Due to tradeoffs

between area, energy consumption, and performance, it is necessary to explore many design

configurations to decide an optimal storage configuration. Table 3 shows evaluation metrics used

in our approach to analyze efficiencies of given storage configurations for a set of workloads.

Table 3: Metrics for experiments.

Analysis Metrics
Code Size Increase in code size for application retargeting (in instructions)

Execution Time Clock Cycle Time (in seconds)
Energy Efficiency Performance divided by Power Dissipation (in J/sec)
Area Efficiency Performance divided by Die Size (in instructions/sec/cm2)

Our metrics for analyses are listed in Table 3 and the following formulas are given to

compute efficiency factors considered in the analyses.

Original
Program

Simulator

Input data

Memory
Dump

Retargeting
 (Register Size)

Retargeted
Program

Input data

Simulator

Performance VERIFICATION

Matching the
memory contents

and outputs

Performance

output output

Memory
Dump

 27

Storage Area Efficiency =
_

Performance
Storage Area

 where performance is measured per clock cycle

and storage area is the sum of the area for spilling memory (code and data memory) and the area

for the register file in mm2.

Overall Area Efficiency =
Performance

DieSize
 where performance is measured per clock cycle

and die size is chip area in mm2.

Energy Efficiency =
_

Performance
Power Dissipation

 where performance is measured per clock cycle

and power dissipation is measured for an overall chip in Watt.

Normalized area and energy efficiency is compared for each workload. Normalized storage

area efficiency is computed for the total storage area, which is the sum of register area and

memory area. Based on this, normalized storage area efficiency is computed as follows:

Normalized Storage Area Efficiency =
(/ (_))

(/ (_))
Performance StorageArea new application

Performance StorageArea original application

where storage area is the sum of register area and memory area.

Similarly, normalized energy efficiency is computed as follows:

Normalized Energy Efficiency = (/ (_))
(/ (_))

Performance PowerDissipation new application
Performance PowerDissipation original application

To determine the best configuration of storage, all efficiency factors for energy efficiency

and area efficiency will be averaged with an assumption that all applications have an equal

importance in a given system.

 28

2.8. Results and Analyses

In this section, our experimental results are presented and discussed. In Section 2.8.1, an

example Vector Quantization (VQ) application written in the SIMPil assembly language is

described to show the effect on code size and execution time in clock cycles for different memory

configurations. The following section shows the results and analyses from several assembly

applications generated by gcc compiler.

2.8.1. Example Application: Vector Quantization (VQ) Encoding

Vector Quantization (VQ) is commonly used for data compression in speech, image and

video coding, and speech recognition [64]. VQ exploits a spatial correlation existing between

neighboring signals. It quantizes a group of signals together and operates directly on image

blocks to compare an image block and codeword vector in a given codebook. The index of the

codeword vector having minimum distortion is transmitted instead of a full image block. One of

popular distortion measurements is the Euclidean distance (d) between two vectors.

d (input, codeword) = || input – codevector ||2 =
2

0
()

N

i
Ci input

=

−∑ where Ci is the ith code

vector and codebook size is N.

Since each input image block is replaced with the index of a codeword in a codebook,

encoding (or compression) in VQ can achieve a compression factor of index in bits / image

blocks in bits. The decoding (decompression) step is a reverse of an encoding step. It takes a

transmitted index and replaces it with the corresponding codeword, using the same codebook

used in the encoding step. Figure 13 depicts the overall VQ process.

 29

Figure 13: Overall VQ processes.

We consider the VQ encoding process due to its high computing-demand characteristics as

well as high memory requirements. The code sizes and performance for each on-chip memory

configuration are depicted in Figure 14.

200

400

600

800

1000

1200

1400

1600

1800

2

3

4

5

6
7

8

85
90

95
100

105

co
de

 s
iz

e
(li

ne
s)

nu
m

be
r o

f r
eg

ist
er

s

used memory locations

Code Size (REG:M EM)

Code size (Reg:M em)

85

90

95

100

105

110

2

3

4

5

6
7

8

85
90

95
100

105

C
lo

ck
 C

yc
le

s

nu
m

be
r o

f r
eg

ist
er

s

Used Memory

Performance (Reg:Mem)

Col 1 vs Col 2 vs Col 2

(a) Code size. (b) Clock cycles.

Figure 14: Results of code sizes and execution time in clock cycles for retargeting VQ
application to different storage configurations.

Input Vector

Codebook
0
1
2
3
4
5
6

…

i
i+1
…
N

Computing of distortions
(dist0 to distN) where
codebook size is N

Find code vector with
minimum distortion.
Return the index i
(between 0 and N)

Code vector index, i

Codebook
0
1
2
3
4
5
6

…

i
i+1
…
N

Output Vector

Encoding

Decoding

16 16

…

…

 30

2.8.2. Experimental Results

Table 3 shows evaluation metrics applied over a given set of storage configurations. In our

experiments, clock frequency is assumed to be 500MHz and word size is 32 bits. Both instruction

width and register width are one word. Graphs in this section represent specific storage

configurations on a horizontal axis. These correspond to a number of registers and a number of

memory words as shown in Table 5 for each application in Table 4.

Table 4: Description of selected workloads.

Application Description

Median Filtering
Each pixel in an image is examined to find the median-ranked
brightness value of the pixels in a certain-sized window
surrounding the pixel.

TAK

A popular benchmark for recursive function calling, this
function is defined as:
tak(x y z) = z, if y >= x;
tak(x,y,z) = tak (tak (x-1) y z) (tak (y - 1) z x) (tak (z - 1) x y),
otherwise.

Complement Image Each image pixel is logically complemented.

Brightness Slicing
If input pixel value is between two given threshold values, the
output pixel value is set as 255. Otherwise, the value is set to
0.

Table 5: Explored storage configurations.*

 Median
Filtering TAK Complement Brightness

7 (r7, m162) (r7, m141) (r7, m149) (r7, m148)
8 (r8, m153) (r8, m135) (r8, m141) (r8, m141)
9 (r9,m152) (r9,m131) (r9,m141) (r9,m141)
10 (r10,m148) (r10,m130) (r10,m141) (r10,m141)
11 (r11,m147) (r11,m129) (r11,m141) (r11,m141)
12 (r12,m147) (r12,m128) (r12,m141) (r12,m141)
13 (r13,m147) (r13,m128) (r13,m141) (r13,m141)
14 (r14,m147) (r14,m128) (r14,m141) (r14,m141)
15 (r15,m147) (r15,m128) (r15,m141) (r15,m141)

*r# means number of registers and m### is the number of memory words required by

applications (including register spilling overhead, both instructions and data if any).

The following three tables show experimental results for each configuration depicted in

Table 5. Table 6 shows area efficiencies for storage (registers, and memory including an extra

memory for register spilling) that is a function of execution time and storage area.

Table 7 depicts overall area efficiencies and Table 7 shows energy efficiencies for each

workload.

 31

Table 6: Storage area efficiency (x 10-6).

Number of
Registers

Median
Filtering TAK Complement Brightness

7 3.049 0.555 67.581 58.746
8 2.123 0.246 55.198 53.595
9 2.857 0.349 80.519 69.993

10 2.842 0.458 73.509 63.899
11 3.166 0.466 67.581 58.746
12 3.049 0.507 62.498 54.328
13 2.834 0.555 58.089 50.495
14 2.646 0.518 54.226 47.137
15 2.479 0.486 50.813 44.170

Table 7: Area efficiency (x 10-6).

Number of
Registers

Median
Filtering TAK Complement Brightne

ss
7 0.155 0.030 3.212 2.792
8 0.143 0.020 3.013 2.723
9 0.153 0.023 3.289 2.859

10 0.154 0.025 3.250 2.825
11 0.156 0.027 3.212 2.792
12 0.155 0.028 3.175 2.760
13 0.153 0.030 3.139 2.728
14 0.151 0.030 3.103 2.697
15 0.150 0.029 3.068 2.666

Table 8: Energy efficiency (x 10-6).

Number of
Registers

Median
Filtering TAK Complement Bright

ness
7 0.112 0.022 2.313 2.011
8 0.103 0.015 2.181 1.986
9 0.109 0.017 2.361 2.052

10 0.111 0.018 2.337 2.031
11 0.112 0.019 2.313 2.011
12 0.112 0.020 2.291 1.992
13 0.111 0.022 2.269 1.972
14 0.110 0.021 2.247 1.953
15 0.109 0.021 2.225 1.934

Figure 15 shows code size increases relative to that of the original application. The increase

in code size is due to memory instructions added for register spilling. The amount of code size

increase tells how many spilling instructions are inserted for register spilling, while execution

times indicates how often these spilling codes are executed at run time. Thus, if spilling

instructions are added inside a loop, the ratio of execution time increase will be larger than that of

 32

code size increase. Based on experimental results shown in Figure 16, additional instructions for

spilling tend not to be used repeatedly since the ratios of increased code size and execution times

are similar. Particularly, TAK application has a greater increase in execution times when there are

spilling codes, which means either TAK has more reusable code or more spilling instructions are

placed inside loops relative to the other applications.

Code Size Increase (%)

90%

100%

110%

120%

130%

140%

150%

7 8 9 10 11 12 13 14 15

Number of Registers

C
od

e
Si

ze
 In

cr
ea

se
 (%

)

median filtering TAK Complement Brightness

Figure 15: Code size increase.

To compare efficiencies for each workload, normalized efficiencies for area and energy

consumption are computed. Normalized storage area efficiency is shown in Figure 17 which is

computed as follows:

Normalized Storage Area Efficiency = (/ (_))
(/ (_))

Performance StorageArea new application
Performance StorageArea original application

where storage area is the sum of register area and memory area.

 33

Execution Time Increase (%)

90%

100%

110%

120%

130%

140%

150%

160%

7 8 9 10 11 12 13 14 15

Number of Registers

Ex
ec

ut
io

n
Ti

m
e

In
cr

ea
se

 (%
)

median filtering TAK Complement Brightness

Figure 16: Execution time increase.

Normalized storage area efficiency shows the relative storage area efficiency for each

storage configuration normalized to the original configuration of given workloads.

Normalized Storage Area Efficiency

0.4

0.6

0.8

1.0

1.2

1.4

7 8 9 10 11 12 13 14 15

Number of Registers

N
or

m
al

iz
ed

 S
to

ra
ge

 A
re

a
E

ffi
ci

en
cy

Median Filtering TAK Complement Brightness

Figure 17: Normalized storage area efficiency for selected workloads.

 34

As shown in Figure 17, storage configurations having best storage area efficiencies are

different for each workload. Experimental results show that storage configurations, (r10, m148)

for median filtering, (r9, m131), (r12, m128) for TAK, and (r8, m141) for complement and

brightness slicing applications are the best configurations in terms of storage area efficiency.

Similarly, normalized energy efficiency is computed as follows:

Normalized Energy Efficiency =
(/ (_))

(/ (_))
Performance PowerDissipation new application

Performance PowerDissipation original application

For energy efficiency, an overall chip power dissipation is computed. Figure 18 shows

computed normalized energy efficiencies.

Figure 18: Normalized energy efficiency.

As shown in Figure 18, the best configurations for each workload in terms of energy

efficiency are (r10, m148) for median filtering, (r7, m149) for complement, (r7, m148) for

brightness slicing application, and (r12, m128) for TAK application.

To determine the best configuration of storage, we average all efficiency factors for energy

efficiency and area efficiency with an assumption that all applications are equally important in a

given system. Figure 19 shows the average of normalized storage area efficiencies and Figure 20

shows the average of normalized energy efficiencies for a set of applications. The figures indicate

Normalized Energy Efficiency

0.6

0.7

0.8

0.9

1.0

1.1

7 8 9 10 11 12 13 14 15
Number of Registers

Median filtering TAK Complement Brightness

N
or

m
al

iz
ed

 E
ne

rg
y

Ef
fic

ie
nc

y

 35

that (r8, m153) is the optimal configuration for given workloads in terms of area efficiency and

(r12, m147) is the optimal configuration in terms of the energy efficiency.

Average of Normalized Area Efficiency

0.6

0.7

0.8

0.9

1.0

1.1

7 8 9 10 11 12 13 14 15

Number of Registers

No
rm

al
iz

ed
 A

re
a

Ef
fic

ie
nc

y

Figure 19: Average of normalized storage area efficiency.

Figure 20: Average of normalized energy efficiency.

Average of Normalized Energy Efficiency

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

7 8 9 10 11 12 13 14 15
Number of Registers

N
or

m
al

iz
ed

 E
ne

rg
y

Ef
fic

ie
nc

y

 36

2.9. Chapter Conclusion

This chapter presented an analysis method for assessing storage needs and costs of a given

application automatically retargeted across a spectrum of storage configuration designs. It

demonstrates how an optimal configuration for a given workload can be chosen early in the

design phase based on estimates of energy and area efficiency as well as performance. Using this

technique with a simple processing element showed variations of area and energy efficiency of

15% to 25%.

This technique is part of an overall strategy to increase the effectiveness of storage in

embedded SIMD architectures. Additional techniques in Chapter 4 allow memory to be divided

between on-chip local memory and off-chip dense memory arrays. The next chapter introduces a

systolic instruction broadcast scheme that helps enable this memory structuring technique.

 37

CHAPTER 3

 Systolic Instruction Broadcast for Embedded
SIMD Architectures

3.1. Summary

Traditional SIMD execution employs simultaneous global broadcast and execution of

instructions. Direct implementation of this definition leads to performance degradation as

broadcast wire delay becomes increasing significant in clock cycle time. In this chapter, previous

techniques for eliminating long broadcast wires are extended and evaluated to achieve greater

performance as SIMD array sizes increase and technology feature sizes shrinks. A systolic

instruction broadcast technique is defined. Three methods to resolve inherent data dependency

conflicts are defined and evaluated including a scheduling algorithm that attempts to reorder

intra-block instructions to eliminate delays. An architectural simulator, implementation area

estimates, and a technology modeling tool incorporating ITRS projections are used to evaluate the

effectiveness of each method in terms of performance and area efficiency. Using these

techniques, a 2010 technology SIMD area is projected to benefit from a 6x increase in

performance and a 7x increase in area efficiency compared to a traditionally implemented system.

3.2. Introduction

Interconnection is a critical bottleneck to increasing performance of high-speed integrated

circuits [66]. For embedded SIMD architectures, the greatest impact of interconnect is in

instruction broadcast where each processing element (PE) simultaneously receives globally

broadcast instructions from a central array controller. The delay associated with this chip-crossing

broadcast will directly impact clock cycle times as technology advances. The causes of this

degradation are found in the underlying technology.

 38

Chip Reachable Fraction

0

10

20

30

40

50

60

70

80

90

100

150 (2001) 90 (2004) 65 (2007) 45 (2010) 32 (2013) 22 (2016)

M inimum Feature Size (nm)

C
hi

p
R

ea
ch

ab
le

 F
ra

ct
io

n
(%

)

Reachable f raction in 1 clock cycle (%)
Reachable f raction in 2 clock cycle (%)
Reachable f raction in 4 clock cycle (%)
Reachable f raction in 8 clock cycle (%)
Reachable f raction in 16 clock cycle (%)

Figure 21: Reachable fraction of a chip for future VLSI technology (from ITRS).

Global wiring has been shown to cause poor scalability and long propagation delays [66,

67]. Figure 21 is from the 2001 International Technology Roadmap for Semiconductors (ITRS)

[68]. This plot gives projections of the reachable fraction of a chip in a given number of clock

cycles, showing that more clock cycles are needed as VLSI technology advances. In addition,

continual scaling of global interconnect with increasing die size may limit the attainable clock

frequencies in microprocessors [67]. Thus, it is necessary to design an alternative scheme to the

global instruction broadcast in SIMD architectures. Eliminating simultaneous instruction

broadcast can increase system throughput by allowing increased clock frequencies as technology

advances.

This chapter develops and evaluates a systolic instruction broadcast technique that

eliminates long interconnect associated with simultaneous instruction broadcast. Systolic

instruction broadcast creates the potential for data hazards during inter-PE communications.

Three methods to resolve these hazards are introduced and evaluated. First, a software-only

approach is presented where instructions are reordered to fill delay slots necessary to avoid the

hazard. An intra-block instruction reorder scheduler is defined and implemented for the existing

 39

register file design. A second method to resolve hazards includes the same scheduler, but now

assuming an enhanced 2-read, 2-write port register file. The third method presented incorporates

full hardware bypass techniques to eliminate hazards with no instruction reordering. These

methods are compared using several high communication convolution kernels executing on a low

pixel per processor ratio. A more complex application, median filtering with PPE = 16, is also

added for comparison. These programs are simulated for each of the three methods of hazard

elimination and projected performance is compared for different technology generations. A model

of implementation cost (area) is then presented for each method. Using this and performance data,

the area efficiency of each method is considered for future VLSI technologies using ITRS

projections.

3.3. Related Work

3.3.1. Pipelined Instruction Broadcast

Pipeline instruction broadcast was first introduced in 1996 [4]. This technique uses a k-ary

tree, where inside nodes are instruction latches (ILs) and leaves are PEs. This main concept is

depicted in Figure 3. Pipelined instruction broadcast can reduce the instruction propagation delay

by shortening the effective bus length. By setting cycle time equal to the time required to drive

the load, we can determine the fanout of each node in the tree. Once fanout is determined, the

depth of the tree is determined for the number of PEs.

ACU

PE PE

ACU

PE PE PE PE

IL IL

IL IL

(a) Global broadcast (b) Pipelined broadcast

Figure 22: Two methods for delivering instructions to PEs [4].

The pipeline instruction broadcast mechanism implemented is based on performance

requirements, the number of PEs, and the target technology. As technology or system

 40

configuration changes, the tree structure must be revised in terms of fanout and pipelining depth.

The required number of latches in a tree becomes significant for large processor arrays. Thus, a

more scalable technique is required for future systems.

3.3.2. Instruction Systolic Architecture (ISA)

This section discusses instruction systolic architecture (ISA), Systola 1024 (ISATEC Co.),

which incorporates systolic instruction distribution [27,28,29,30]. The overall architecture is

depicted in Figure 23. This architecture is based on a SIMD architecture that applies a single

operation over different data in many PEs. Thus control flow in an instruction systolic

architecture is defined by the instruction moving through the entire processor array as in Figure

24.

For flexibility, Systola 1024 uses a row and a column selector to execute the instruction on

each PE, based on the values in these selectors. A moving instruction is executed on a PE when

both values from selectors are 1. Thus by considering different selections of these values, each PE

can execute a different set of instructions. Unfortunately, Systola 1024 does not support the

conditional jump instruction, which is necessary to program a greater variety of algorithms.

Systola 1024 has two dedicate communication registers in each PE which are shared by the

neighboring PEs. The value in this register can be seen by its four neighbors – North, South, East

and West. The structure of the communication register is shown in Figure 25.

Figure 23: The architecture of Systola 1024 [30].

RAM NORTH

RAM WEST

Program
Memory

Controller

ISA
Interface Processors

Interface
Processors

Host Computer Bus

 41

Figure 24: Control flow in an instruction systolic array [30].

PE

Communication
Register

Figure 25: The structure of the dedicated communication register in Systola 1024 [30].

As shown above, the Systola system is controlled by moving instructions from the central

controller through entire processor array. Thus the careful writing of applications is critical for

correct functionality. However, this is not trivial since many PEs can perform different jobs at

any time. In the Systola system, the existence of two selectors – column and row – simplifies the

control by sacrificing the overall performance. Since performance degradation can be reduced by

proper scheduling of instructions, scheduling efficiency becomes important. The complexity of

this job resides in timing constraints in terms of instruction arrival time and data available time.

Thus an automatic scheduler, incorporating data sequencing is necessary to increase the

programmability of applications on this kind of architecture while ensuring the correctness of the

applications. However, the Systola system is not supported by an automatic scheduler or data

sequencer during application developments.

3.3.3. Systolic Instruction Broadcast

In this section, a nontraditional architectural approach, introduced in [1], is presented that

can minimize wire delay produced by long broadcasting buses. It can reduce instruction cycle

 42

time and improve the overall performance significantly. Short-wire instruction broadcast uses an

approach similar to ISA [30]. Instructions are propagated to neighboring PEs systolically in each

clock cycle [1]. The longest distance traversed by any instruction in a single clock cycle is limited

to the maximum distance between any two PEs. This approach exploits locality and delivers

instructions efficiently. Hence, a nontraditional instruction broadcasting mechanism reduces

instruction cycle time. Instruction cycle time is no longer determined by long instruction

broadcasting wire delays, but instead by the critical path among PEs.

ACU

4

3

2

1 2 3 4

3 4 5

4 5 6

5 6 7

Figure 26: A 4x4 mesh of PEs showing how instructions are pumped from an ACU to PEs [1].

An array control unit (ACU) fetches instructions from instruction memory and decodes

them, broadcasting instructions initially to a node located in one of four corners of the mesh array

(the upper-left corner in this case). Then, each PE pumps these instructions to its neighboring PE

through instruction channels, as illustrated in Figure 26. The numbers in each PE indicates the

clock cycle at which a node gets a particular instruction. As shown in the figure, the number

increases from left to right and from top to bottom. It takes (2N-1) clock cycles to reach a node

located in the lower right corner of mesh, where N2 is the number of nodes in the mesh network.

This approach is more scalable than pipelined instruction broadcast [1,4]. Since pipelined

instruction broadcast is a tree based instruction broadcast mechanism, the tree structure has to be

changed as the number of PEs is changed. However, because short-wire broadcast uses a 2D

approach, it is possible to add more PEs without modifying the existing instruction broadcasting

network by facilitating network expansion.

Despite the overhead to implement this method, the short clock cycle time may compensate

for the increased clock counts. To maximize the efficiency of systolic instruction broadcast SIMD

architectures, effort should be placed on scheduling to minimize the delays due to the

 43

synchronization of the PEs. However, there has been no research until now on compilation-based

scheduling. Thus we develop compile-time scheduling algorithms, which can maximize the

efficiency of our architecture. In addition, we present a data forwarding hardware method to

eliminate delays due to communication between neighboring PEs and data dependencies.

3.4. Approach: Systolic Instruction Broadcast Architecture

An overall target architecture of the SIMD-systolic system is depicted in Figure 27, for a 4 x

4 processor array.

Figure 27: The overall framework of the SIMD-systolic architecture.

In this system, distributed instructions arrive at each node in a staggered pattern as in Figure

26. The SIMD-systolic system simplifies instruction distribution, shortens total wire demand, and

smoothes node bandwidth demands while increasing instruction latency time. It takes (2N-1)

Processor Array

Instruction
Memory

Instruction

Hazards Detection

Instruction Scheduler
Data

Memory

PC

Register
File

 Execution
Unit

PE

Register File

On_Chip
Memory

Execution
Unit

Instruction

Optional

 44

clock cycles to reach a node located in the lower right corner of the mesh, where N2 is the number

of nodes in the mesh network. However, the SIMD-systolic system can improve instruction

throughput. A similar technique is used in the Systola 1024 system [30] discussed in Section

3.3.2. The differences between Systola and our approach lie in instruction scheduler and data

sequencer. The next two sections will describe how to extend SIMD architectures to support

systolic instruction broadcast efficiently.

3.4.1. Data and Structural Hazards

Under the systolic instruction broadcasting mechanism, no changes are necessary for

instructions that process local data. However, instructions that communicate with the neighboring

PEs need to check data dependencies and resource conflicts to ensure the correctness of program

results. In this section, we describe how these problems are handled in our approach.

3.4.1.1. Nearest Neighbor Communication

First, we explain how PEs communicate with each other to pass the data to their neighbors.

In our system, a North-East-West-South (NEWS) network is used for communication. Figure 28

shows how the PEs communicate each other using a NEWS network.

Figure 28: Neighboring PEs showing how data is transferred.

The communication instruction (‘XFER’ in SIMPil) uses four directions – north, east, west,

and south - to pass/get the data from neighbors. This instruction can be executed in one clock

PE 1 PE 2 PE 3

PE 4 PE 5 PE 6

PE 7 PE 8 PE 9

N

W

S

E

 45

cycle and the transferred data can be copied from/to the register file of neighboring PEs directly

without buffering. The directions of communication are given explicitly in each XFER

instruction.

3.4.1.2. Data and Structural Hazard Analyses

For the given systolic instruction broadcast (Figure 26) and communication mechanisms

(Figure 28), SIMD-systolic system should be stalled 1) when communication instructions are

executed in an opposite direction to that of systolic instruction broadcast or 2) when neighboring

PEs attempt to use the same data channel. The former case is referred as a data hazard and the

latter is called a structural hazard. The conditions of these hazards are shown in Figure 29 with

the given pattern of systolic instruction broadcast depicted in Figure 26. The solution to these

problems is reordering of instructions so that conflicted instructions are not scheduled

consecutively. If instruction reordering cannot eliminate conflicts, no-op delays are inserted to

resolve the hazards.

(a) Data hazard.

(b) Structural hazard.

Figure 29: Conditions causing delays in systolic instruction broadcast.

Data and structural hazards also can be detected in hardware logic as depicted in Figure 30.

Direction (SOUTH or EAST)

Operand (Register or Immediate) Xfer

Any Instruction

DIRECTION (NORTH or WEST) REG-i

REG-j

REG-k

Xfer

Xfer

DIRECTION (NORTH or WEST)

REG-k

 46

a) Data hazard detection logic.

b) Structural hazard detection logic.

Figure 30: Hazard detection logic.

Xfer Rd Rs Imm/DIRECTION I-th instruction

(I+1)th instruction Xfer Rd Rs Imm/DIRECTION

= = North West

= = South East

AND

AND

OR

I-th instruction

(I+1)th instruction

Xfer Rd Rs Imm/DIRECTION

OPCODE Rd Rs Rt Imm

=

=

OR

= = North West

OR

AND

 47

3.4.2. Implementation of Systolic Instruction Broadcast

In this section, we show three approaches to implementing systolic instruction broadcast – a

basic software approach, a two write-port register file approach, and a bypass hardware

implementation. Software approaches (the first two approaches in the following sections) should

employ instruction scheduling techniques to eliminate as many delays as possible that result from

the systolic instruction broadcast. Instruction scheduling techniques will be described separately

in Section 3.4.2.3 after explaining the basic mechanisms of the two software methods.

3.4.2.1. Software Approach

Our first approach is a software method to implement the systolic instruction broadcast by

utilizing an instruction scheduler. As shown in Section 0, systolic instruction broadcast can cause

some nop-delays due to data dependencies and resource conflicts resulting from communication

instructions. In addition, a communication instruction with opposite direction to the instruction

broadcast will write the transmitted value to the register file at cycle time, t+1 where t is the

instruction arrival time on that node. Thus the consecutive instruction which attempts to write the

data to the register file cannot proceed if there is one write port in the register file. The code in

Figure 31 shows an example of this case.

Figure 31: Sample code that introduces a delay due to a write following a communication

instruction.

In addition, the clock cycle time has been split into a RD cycle for a register read and a WR

cycle for a register write as in Figure 11. By splitting the clock cycle, transferred data can be

written after the transmitted data has been read. Thus, it is possible to transfer the data to

neighboring PEs using the NEWS network in one clock cycle without buffering. Figure 33 shows

the timing of data and instruction arrivals as an example.

XOR R3, R3, R3

XFER R1, R2, WEST

ADDI R3, R3, 1

XOR R3, R3, R3

XFER R1, R2, WEST

NOP

ADDI R3, R3, 1

 48

Figure 32: Clock cycle splitting – RD for a data read from register file and WR for a data write to

register file.

Figure 33: An example of an execution of a communication instruction with split clock cycle

3.4.2.2. Two Write-port Register File Method

Our second approach has the same basic concept as the first approach except multiple write

ports (i.e., two in this case) exist in a register file. By having two register write ports, two

simultaneous writes to register file – one for transferred data from neighboring PE and the other

for the execution result from a current instruction – can be achieved without any stall as depicted

in Figure 34.

Figure 34: Sample codes that eliminate a delay due to a following write after communication

instruction by having two write register ports.

WRRD

One Clock Cycle

Φ1

Φ2

WRRD

One Clock Cycle

Φ1

Φ2

XOR R3, R3, R3

XFER R1, R2, WEST

ADDI R3, R3, 1

XOR R3, R3, R3

XFER R1, R2, WEST

ADDI R3, R3, 1

PE
Instruction

XFER R1, R2, EAST

Data-i

R2

R1

Instruction

Data-j

Φ1 (RD)

Φ2 (WR)

EAST.R2 R2

 49

The software method is supported by an instruction scheduler to reduce instruction stalls by

replacing nop-delays with meaningful instructions without affecting application results.

Instruction scheduling techniques implemented for a SIMD-systolic system are described in

following section, Section 3.4.2.3.

3.4.2.3. Instruction Scheduling Techniques for Systolic Instruction Broadcast

The overall framework of our instruction scheduler is shown in Figure 35. It consists of four

main tasks – hazard detection and resolution, simultaneous writes check, data flow analysis, and

delay reductions, which are described as follows.

• Hazard Detection and Resolution:

First, the instruction scheduler checks hazards (data hazards and structural hazards)

based on the instruction patterns shown in Figure 29. If hazards are detected, delays are

added to prevent them in this step.

• Simultaneous Register Writes Check (Software Approach Only):

This step is necessary only for a software approach. Since, there is one write port in a

register file, simultaneous writes must be avoided. Thus only instructions that do not

attempt writing results to a register file can proceed consecutively to the communication

instruction. Otherwise, delays are added to prevent simultaneous register writes.

• Data Flow Analysis:

The first two steps may produce some amount of delays to ensure the correctness of

application results. However, delays should be minimized while preserving application

correctness. In our instruction scheduler, data dependencies are analyzed to select a

candidate instruction that does not have any dependency with other instructions between

‘NOP’ and the candidate instruction.

• Delay Reduction:

Based on data flow analysis, delays are minimized by replacing ‘NOP’ instructions with

other meaningful instructions. Since candidate instructions are chosen based on

dependency information, replacing delays with such instructions does not affect

application results while achieving performance improvement.

 50

Figure 35: Framework of an instruction scheduler for systolic instruction broadcast.

Examples of instruction scheduling techniques for the software approach and the two write-

port register file method are illustrated in Figure 36 and Figure 37, respectively.

Rescheduled
Programs

Instruction Scheduling Technique:

Data Flow Analysis:

• Build a Data Dependency Graph.
o Data Dependency Check

SIMD Assembly
Programs

Hazards:
• Detect Hazards.

o Data Hazards
o Structural Hazards

• Insert Delays for Hazards.

Delay Reduction:

• Find Independent Instructions
o Dependency Check for All Instructions

Between ‘NOP’ Instruction and that instruction

Simultaneous Writes (Only For a Software Approach)

• Check Simultaneous Writes to a Register File
• Insert Delays for Simultaneous Writes

 51

Source Code
Code Comment ETC.

Xfer R2, R1 , NORTH R2 R1@SOUTH

Addi R3, R2, 2 R3 R2 + 2
Data Hazard

Xfer R4, R2, WEST R4 R2@EAST

Addi R6, R5, 2 R6 R5 + 2

Simultaneous Writes

to a Register File

Xfer R7, R6, WEST R7 R6@EAST

Xfer R9, R8, EAST R9 R8@WEST
Structural Hazard

Store R9, R7 MEM[R9] R7

Addi R11, R10, 1 R11 R10 + 1

Subi R12, R6, 2 R12 R6 – 2

Add R13, R11, R12 R13 R11 + R12

Add R14, R6, R8 R14 R6 + R8

(a) Original example source code.

Source Code
No. Code Comment ETC.
I-1 Xfer R2, R1 , NORTH R2 R1@SOUTH

I-2 NOP Delay

I-3 Addi R3, R2, 2 R3 R2 + 2

Delay Insertion for Data Hazard

I-4 Xfer R4, R2, WEST R4 R2@EAST

I-5 NOP Delay

I-6 Addi R6, R5, 2 R6 R5 + 2

Delay Insertion for Simultaneous

Writes to a Register File

I-7 Xfer R7, R6, WEST R7 R6@EAST

I-8 NOP Delay

I-9 Xfer R9, R8, EAST R9 R8@WEST

Delay Insertion for Structural

Hazard

I-10 Store R9, R7 MEM[R9] R7

I-11 Addi R11, R10, 1 R11 R10 + 1

I-12 Subi R12, R6, 2 R12 R6 – 2

I-13 Add R13, R11, R12 R13 R11 + R12

I-14 Add R14, R6, R8 R14 R6 + R8

(b) Example code after delay insertion to prevent hazards and simultaneous register writes.

 52

(c) Data dependency graph of a given program.

No. Code
I-1 Xfer R2, R1 , NORTH

I-2 NOP

I-3 Addi R3, R2, 2

I-4 Xfer R4, R2, WEST

I-5 NOP

I-6 Addi R6, R5, 2

I-7 Xfer R7, R6, WEST

I-8 NOP

I-9 Xfer R9, R8, EAST

I-10 Store R9, R7

I-11 Addi R11, R10, 1

I-12 Subi R12, R6, 2

I-13 Add R13, R11, R12

I-14 Add R14, R6, R8

(I-2) (I-4)

No. Code
I-1 Xfer R2, R1 , NORTH

I-4 Xfer R4, R2, WEST

I-3 Addi R3, R2, 2

I-6 Addi R6, R5, 2

I-7 Xfer R7, R6, WEST

I-8 NOP

I-9 Xfer R9, R8, EAST

I-10 Store R9, R7

I-11 Addi R11, R10, 1

I-12 Subi R12, R6, 2

I-13 Add R13, R11, R12

I-14 Add R14, R6, R8

(I-5) is automatically eliminated; (I-8) (I-11).

(d) Candidate selections based on data dependencies.

I-1

I-3 I-4

I-6

I-7 I-12 I-14

I-10

I-9

I-11

I-13

 53

No. Code
I-1 Xfer R2, R1 , NORTH
I-4 Xfer R4, R2, WEST
I-3 Addi R3, R2, 2
I-6 Addi R6, R5, 2
I-7 Xfer R7, R6, WEST

I-11 Addi R11, R10, 1
I-9 Xfer R9, R8, EAST

I-10 Store R9, R7
I-12 Subi R12, R6, 2
I-13 Add R13, R11, R12
I-14 Add R14, R6, R8

(e) Rescheduled program after instruction scheduling to minimize delays. (In this case, all

delays are removed.)

Figure 36: An example of instruction scheduling technique for software approach.

In Figure 37, the example program is the same as in Figure 36, except there is no delay

between two instructions that produce simultaneous writes since the register file has two write

ports.

Source Code
Code Comment ETC.

Xfer R2, R1 , NORTH R2 R1@SOUTH

Addi R3, R2, 2 R3 R2 + 2
Data Hazard

Xfer R4, R2, WEST R4 R2@EAST

Addi R6, R5, 2 R6 R5 + 2

Xfer R7, R6, WEST R7 R6@EAST

Xfer R9, R8, EAST R9 R8@WEST
Structural Hazard

Store R9, R7 MEM[R9] R7

Addi R11, R10, 1 R11 R10 + 1

Subi R12, R6, 2 R12 R6 – 2

Add R13, R11, R12 R13 R11 + R12

Add R14, R6, R8 R14 R6 + R8

(a) Original example source code.

 54

Source Code
No. Code Comment ETC.
I-1 Xfer R2, R1 , NORTH R2 R1@SOUTH

I-2 NOP Delay

I-3 Addi R3, R2, 2 R3 R2 + 2

Delay Insertion for Data Hazard

I-4 Xfer R4, R2, WEST R4 R2@EAST

I-5 Addi R6, R5, 2 R6 R5 + 2

I-6 Xfer R7, R6, WEST R7 R6@EAST

I-7 NOP Delay

I-8 Xfer R9, R8, EAST R9 R8@WEST

Delay Insertion for Structural

Hazard

I-9 Store R9, R7 MEM[R9] R7

I-10 Addi R11, R10, 1 R11 R10 + 1

I-11 Subi R12, R6, 2 R12 R6 – 2

I-12 Add R13, R11, R12 R13 R11 + R12

I-13 Add R14, R6, R8 R14 R6 + R8

(b) Example code after delay insertion to prevent hazards.

(c) Data dependency graph of a given program.

I-1

I-3 I-4

I-5

I-6 I-11 I-13

I-9

I-8

I-10

I-12

 55

No. Code
I-1 Xfer R2, R1 , NORTH

I-2 NOP

I-3 Addi R3, R2, 2

I-4 Xfer R4, R2, WEST

I-5 Addi R6, R5, 2

I-6 Xfer R7, R6, WEST

I-7 NOP

I-8 Xfer R9, R8, EAST

I-9 Store R9, R7

I-10 Addi R11, R10, 1

I-11 Subi R12, R6, 2

I-12 Add R13, R11, R12

I-13 Add R14, R6, R8

(I-2) (I-4)

No. Code
I-1 Xfer R2, R1 , NORTH

I-4 Xfer R4, R2, WEST

I-3 Addi R3, R2, 2

I-5 Addi R6, R5, 2

I-6 Xfer R7, R6, WEST

I-7 NOP

I-8 Xfer R9, R8, EAST

I-9 Store R9, R7

I-10 Addi R11, R10, 1

I-11 Subi R12, R6, 2

I-12 Add R13, R11, R12

I-13 Add R14, R6, R8

 (I-7) (I-10)

(d) Candidate selections based on data dependencies.

No. Code
I-1 Xfer R2, R1 , NORTH

I-4 Xfer R4, R2, WEST

I-3 Addi R3, R2, 2

I-5 Addi R6, R5, 2

I-6 Xfer R7, R6, WEST

I-10 Addi R11, R10, 1

I-8 Xfer R9, R8, EAST

I-9 Store R9, R7

I-11 Subi R12, R6, 2

I-12 Add R13, R11, R12

I-13 Add R14, R6, R8

(e) Rescheduled program after instruction scheduling to minimize delays. (In this case, all

delays are removed.)

Figure 37: An example of instruction scheduling technique for two write-port register file

approach.

56

3.4.2.4. Hardware Approach

Our third approach is a hardware solution. This approach utilizes the bypass (or forwarding)

logic to pass the results to the dependent instruction which is executed in a neighboring PE.

Figure 38 shows how the bypass logic is implemented for two, neighboring PEs.

Figure 38: Bypass logic.

For one PE, results should be forwarded from two neighboring PEs (SOUTH PE and EAST

PE). Thus additional hardware requirements to implement this bypass logic should be double

resulting in four 32x16 MUXES, and four 5bit comparators. In addition, the register file has two

write ports. As a result, the hardware solution can eliminate delays resulting from a systolic

instruction broadcast mechanism with a reasonably small amount of hardware.

Instruction

Register
File

(WEST
or

NORTH)

Rs2 Rd

MUX MUX

Register
File

(EAST or
SOUTH)

=

Instruction
Rs1 Rs2 Rd

MUX MUX

PE (W or N) PE (E or S)

ALU ALU

5
5 5 5

1616 16 16 16 16 16 16

16 16

16

16 16

16

== =

Rs1

57

3.5. Results and Analysis

3.5.1. Metrics

Systolic instruction broadcast mechanism is evaluated through behavioral simulation and

technology analysis. The metrics for the analysis are shown in Table 9.

Table 9: Metrics for experiments.

Analysis Metrics

Clock Count Penalty The number of delays due to systolic instruction
broadcast in clock cycles

System Performance in
Sustained Throughput

(The number of dynamic instructions + Delays) x Clock
Cycle Time (= 1/ Clock Frequency) in giga-operations
per second (GOPs)

Hardware Overhead in
Number of Transistors

Additional Number of Transistors to support a given
approach

Hardware Overhead for
Register File

Additional Area for Two Write Ports in Register File in
mm2

Area Efficiency Performance Over Die Size in GOPs/cm2

The following describes how these metrics are measured in our approach.

• Clock Count Penalty (Systolic Instruction Broadcast) = Delays (Data Hazard) +

Delays (Structural Hazard) [+ Delays (Simultaneous Register Writes)] where

‘Delays (Data Hazard)’ is the number of delays due to data hazards, ‘Delays

(Structural Hazard)’ is the number of delays due to structural hazard, and ‘Delays

(Simultaneous Register Writes)’ is the number of delays due to simultaneous writes

to the register file.

• System Performance (Sustained Throughput) = PEIPC U f N⋅ ⋅ ⋅ where IPC is

number of executed instructions per cycle, U is system utilization factor, f is a

system clock frequency, and NPE is the number of PEs in a given system.

• Hardware Overhead in Number of Transistors = Additional Number of

Transistors to support a given approach.

• Hardware Overhead for Register File = Additional Chip Area to support a two

write-port register file.

58

• Area Efficiency =
Performance

DieSize
 where performance is sustained throughput and

die size is chip area in cm2.

Systolic instruction broadcast can increase clock frequencies by reducing worst-case wire

length. However, it may result in increased no-op delays and increased execution clock cycles.

Thus to evaluate systolic instruction broadcast mechanism, the number of executed clock cycles

should be considered along with clock frequencies.

3.5.2. SIMPil Applications

To evaluate the set of architectural design choices implemented in the SIMD-systolic

systems, an application test suite has been simulated using a SIMD-systolic simulator that we

built. The applications are selected to evaluate the impact of systolic instruction broadcast

method. These well-known applications, median filtering and convolution in image processing

area, are described briefly as follows.

• Median Filtering. Median filtering (MF) is used to remove binary noise from an

image while preserving spatial resolution. A 3x3 window is used for this

implementation. The algorithm works by replacing each pixel in the image with the

median value in the window.

• Convolution [71]. Spatial convolution is used to implement spatial filters. Spatial

convolution is the method used to calculate what is going on with the pixel

brightness around the pixel being processed. The equation for the spatial

convolution process is as follows.

O(x, y) = aI(x–1, y–1) + bI(x, y–1) + cI(x+1, y–1) + dI(x–1, y) + eI(x, y) + fI(x+1,

y) + gI(x-1, y+1) + hI(x, y+1) + iI(x+1, y+1) where nine convolution coefficients

are defined and labeled, as below:

 a b c
 d e f
 g h i

The equation is applied for each pixel in an input image, creating corresponding

output pixels.

3.5.3. Clock Count Penalty

Short-wire instruction broadcast may improve system performance because attainable clock

frequency to technologies can be raised. As mentioned earlier, there can be some penalty

59

associated with each approach. However, the instruction scheduler can reduce penalty clock

cycles by replacing them with meaningful work. Table 10 shows the number of executed clock

cycles of the given applications for a typical SIMD system (described as ‘Original’ for tables and

graphs from now on), and for SIMD-systolic systems using the three different approaches. In this

table, Method-1 is a software approach with one write-port register file, Method-2 is a two write-

port register file method, and Method-3 is a hardware solution with bypass logic. Numbers of

instructions issued by the controller (including ‘nop’ instructions) are given in Table 10 for each

method. The software methods (Method-1 & 2) are each depicted in two columns with the

instruction scheduling technique and without it. Clock count penalty resulting from hazards for

both methods and simultaneous register writes for the first method is shown in Table 11. The

baseline system uses global instruction broadcast, which assumes all neighboring communication

instructions complete in a single clock cycle.

Table 10: Number of instructions issued by controller.

Method-1 Method-2

Application

Original W/O

Scheduling

W/

Scheduling

W/O

Scheduling

W/

Scheduling

Method-3

Median Filtering
(PPE16)

13,509 13,534 13,510 13,521 13,509 13,509

Convolution (3x3)
(PPE1)

39 50 41 45 41 39

Convolution (5x5)
(PPE1)

119 162 135 151 121 119

Convolution (7x7)
(PPE1)

275 384 305 360 287 275

 Table 11: Clock count penalties (delay cycles) of SIMD-systolic systems in three approaches.

Method-1 Method-2

Application W/O

Scheduling

W/

Scheduling

W/O

Scheduling

W/

Scheduling

Method-3

Median Filtering
(PPE16)

25 1 12 0 0

Convolution (3x3)
(PPE1)

11 2 6 2 0

Convolution (5x5)
(PPE1)

43 16 32 2 0

Convolution (7x7)
(PPE1)

109 30 85 12 0

60

3.5.4. System Performance

Since short-wire instruction broadcast can operate at a higher clock frequency than global

instruction broadcast, clock count penalty can be compensated for or even outperformed. In this

section, the impact of the systolic instruction broadcast method on system performance is

described in terms of sustained instruction throughput projected to technology changes. The

performance of SIMD-systolic systems is computed based on a lower bound of a local PE

operational clock for the future technologies, and that of typical SIMD systems is based on

across-chip clock frequencies projected by ITRS [68]. Figure 39 shows the sustained instruction

throughput for each application where the utilization factor is assumed to be 90%.

In this section, to show the impact of percentage of communication instructions for a

program, we evaluate the convolution applications with three different mask sizes, which are 3 x

3, 5 x 5, and 7 x 7. As mask size increases, the number of neighboring pixels, that is required to

compute the output pixel, increases. In our applications, 31%, 50%, and 61% of overall issued

instructions are communication instructions and half the communications involve NORTH and

WEST communications for each implementation (3 x 3 convolution, 5 x 5 convolution, and 7 x 7

convolution). As a result, as mask size increases, the number of communication instructions

increases. This is shown in Table 10 and Table 11, the delay ratio, (clock count penalty / number

of overall issued instructions), is increased as mask size is increased. Figure 39 shows projected

sustained throughput of convolution applications with three different mask sizes for on-chip clock

frequencies and off-chip clock frequencies where projected clock frequencies for low-cost

systems are used in the experiments [68]. Lower bounds of on-chip clock frequencies are used to

plot this figure. Figure 39 shows huge differences between sustained throughput using on-chip

clock frequencies and that under off-chip clock frequencies. Even if we use lower bounds of on-

chip clock frequencies, there are still big differences from that of off-chip. In addition,

performance improvement can be achieved with our scheduler. Figure 40 shows the normalized

sustained throughput relative to the typical SIMD system. This figure shows that SIMD-systolic

system can achieve much higher (up to 7.6 times) sustained throughput for hardware method

(without delay) due to short clock cycle time, up to 7.5 times of original throughput for two write-

port register file with scheduler (with delays), and up to 7.2 times for a software method with

scheduler for a given workload.

61

Sustained Throughput (Convolution 3x3)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

Minimum Feature Size (nm)

G
O

Ps

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(a) Sustained throughput of 3 x 3 convolution application for on-chip clock frequencies and

off-chip clock frequencies.

Sustained Throughput (Convolution 5x5)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

150
(2001)

130
(2002)

107
(2003)

90
(2004)

80
(2005)

70
(2006)

65
(2007)

45
(2010)

32
(2013)

22
(2016)

Minimum Feature Size (nm)

G
O

Ps

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(b) Sustained throughput of 5 x 5 convolution application for on-chip clock frequencies and

off-chip clock frequencies.

62

Sustained Throughput (Convolution 7x7)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

150
(2001)

130
(2002)

107
(2003)

90
(2004)

80
(2005)

70
(2006)

65
(2007)

45
(2010)

32
(2013)

22
(2016)

Minimum Feature Size (nm)

G
O

Ps

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(c) Sustained throughput of 7 x 7 convolution application for on-chip clock frequencies and

off-chip clock frequencies.

Figure 39: Projected system performance in sustained system throughput.

Normalized Throughput

0

1

2

3

4

5

6

7

8

Method_1 W/O
Scheduling

Method_1 W/
Scheduling

Method_2 W/O
Scheduling

Method_2 W/
Scheduling

Method_3

Convolution(3x3) Convolution(5x5) Convolution(7x7)

Figure 40: Normalized sustained throughput.

63

3.5.5. Hardware Overhead

• Bypass Logic

To support bypass logic for our hardware approach described in Section 3.4.2.4, four 32x16

MUXES and four 5-bit comparators are needed. To compute an additional number of transistors

to implement bypass logic, we assume that we use 6-transistor 2x1 MUX and 8-transistor 2-input

XNOR gates. Since a 32x16 MUX can be implemented by sixteen 2x1 MUXes, 384 (= 4 x 16 x

6) transistors are additionally required for the MUXes. In addition, since a 2-input 5-bit

comparator is implemented by five 2-input XNOR gate, 160 (= 4 x 5 x 8) transistors are added for

comparators. As a result, 544 transistors are required for one PE to support bypass logic in our

hardware approach. Based on the datasheet of our base architecture, SIMPil16, the total number

of transistors used in one PE is 38,590. As a result, to support bypass logic a 1.4% overhead in

transistor count for one PE is observed. Based on average area for one transistor in SIMPil,

especially for the logic part (other than memory and register file), the increased number of

transistors under 0.8µm technology occupies 0.11 mm2 resulting in a 1.7% area increase.

• Register File

Except for the first software approach, we use two write-port register file for simultaneous

register writes. Additional write ports in the register file results in increased of register file size.

Base architecture uses two read ports and one write ports. This is shown in Figure 41 based on the

register file model in [69].

Register File Area (mm2)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

1 2 4 8 16 32 64
Number of Words

A
re

a
(m

m
2)

R(2R,1W) R(2R,2W)

Figure 41: Register file size increase for an additional write port: R(2R,1W) – 2 read-port, 1

write-port register file; R(2R,2W) – 2 read-port, 2 write-port register file.

64

3.5.6. Area Efficiency

Area efficiency considers die size and performance together. Shorter instruction broadcast

wires allow clock frequencies to operate near ITRS projected local interconnect levels. Thus the

area efficiency for systolic instruction broadcast systems will be significantly higher than the

baseline architecture. Figure 42 shows area efficiencies corresponding to the sustained throughput

in Figure 39. As shown in Figure 42-(a), for programs with low levels of inter-PE

communication, the software method can achieve the highest area efficiency. However, as

communications between neighboring PEs increases, higher efficiency is obtained with added

hardware. As a result, hardware implementation (bypass logic) achieves the highest area

efficiency in Figure 42-(c) where applications spend the most time to communicate with

neighboring PEs. In addition, the scheduler can effectively improve the area efficiency for both

software methods. In any case, systolic instruction broadcasted systems have much higher area

efficiency (up to 7.2) relative to the baseline SIMD system as shown in Figure 43.

Area Efficiency (Convolution 3x3)

0

1000

2000

3000

4000

5000

150
(2001)

130
(2002)

107
(2003)

90
(2004)

80
(2005)

70
(2006)

65
(2007)

45
(2010)

32
(2013)

22
(2016)

Minimum Feature Size (nm)

G
O

Ps
/c

m
2

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(a) Area efficiency of 3 x 3 convolution application for each system.

65

Area Efficiency (Convolution 5x5)

0

1000

2000

3000

4000

5000

150
(2001)

130
(2002)

107
(2003)

90
(2004)

80
(2005)

70
(2006)

65
(2007)

45
(2010)

32
(2013)

22
(2016)

Minimum Feature Size (nm)

G
O

Ps
/c

m
2

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(b) Area efficiency of 5 x 5 convolution application for each system.

Area Efficiency (Convolution 7x7)

0

1000

2000

3000

4000

5000

150
(2001)

130
(2002)

107
(2003)

90
(2004)

80
(2005)

70
(2006)

65
(2007)

45
(2010)

32
(2013)

22
(2016)

Minimum Feature Size (nm)

G
O

Ps
/c

m
2

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

(c) Area efficiency of 7 x 7 convolution application for each system.

Figure 42: Area efficiencies in (GOP/mm2).

66

Normalized Area Efficiency

0

1

2

3

4

5

6

7

8

Method_1 W/O
Scheduling

Method_1 W/
Scheduling

Method_2 W/O
Scheduling

Method_2 W/
Scheduling

Method_3

Convolution(3x3) Convolution(5x5) Convolution(7x7)

Figure 43: Normalized area efficiency projected in year 2010.

3.6. Chapter Conclusion

A high performance and area efficient instruction broadcasting scheme with short-wire

interconnects was presented. Short-wire instruction broadcast overcomes the wire latency

bottleneck found in global instruction broadcast. Three systolic instruction broadcast methods

have been presented and evaluated. For software methods, the scheduler improves the area

efficiency for a given workload. We can choose the method for a set of particular applications by

analyzing area efficiencies. In any case, systolic instruction broadcasted systems have much

higher area efficiency (up to 7.2) relative to the typical SIMD system.

In the next chapter, the temporal and special instruction execution order resulting from

systolic instruction broadcast is used to enable a low overhead off-chip memory access scheme.

67

CHAPTER 4

Systolic Virtual Memory

4.1. Summary

While local PE memory provides the lowest access latency and highest bandwidth to the

PE’s datapath, local memory cells are far larger per bit than in dedicated dense memory array

chips that benefit from specialized processes and amortized support circuitry. A monolithically

integrated SIMD PE array would be significantly less expensive in area and cost if a portion of

local PE memory could be relegated to off-array dense memory chips. However limited memory

access bandwidth and increased access times pose obstacles to this approach. The staggered

spatial execution resulting from the systolic instruction broadcast technique presented in the last

chapter offers a new opportunity for utilizing off-array dense memory chips. This chapter

presents a systolic off-array memory access scheme called Systolic Virtual Memory (SVM)

where off-array addresses are scheduled to allow instruction and data operand rendezvous at the

PE using a separate instruction and memory delivery network. A scheduling algorithm is

presented and new controller hardware is described. Several large data memory kernels and

synthetic test programs are used to evaluate the proposed system. Area models for storage

alternatives are developed and the systolic virtual memory technique is compared to a local

memory-only system in terms of performance, area, and area efficiency. For a high memory

access kernel (matrix multiplication), this technique offers a 30% - 50% reduction in memory

area and 20% - 50% increase in area efficiency for only a 20% execution time penalty.

68

4.2. Introduction

Local PE memory arrays provide high access, low latency operand storage. They also bring

high area costs in an often expensive high-speed digital VLSI process. Dense off-array memory

chips offer large data storage arrays at very low cost. This chapter considers an approach to

combining these two storage mediums in a scheme similar to virtual memory that combines fast

semiconductor memory with dense magnetic disk storage. High reference locality in the register

file and local memory and a load/store instruction set results in a manageable number of off-array

memory accesses. However SIMD’s typical synchronous instruction execution concentrates off-

array accesses overwhelming the memory access bandwidth of commercially available dense

memory chips. Systolic instruction broadcast staggers instruction execution enabling systolic off-

array memory prefetching. When memory addresses are not data dependent, accesses can be

prefetched in advance so that requested memory access can arrive at the appropriate PE

simultaneous with the instruction. This organization is illustrated in Figure 44. In this example,

each PE in a 4 x 4 SIMD array requests a different memory location in off-array memory. Data

access begins 4 cycles before the first node executes the systolic load instruction. This allows data

to travel from the bottom edge of the array to rendezvous with the load instruction on a particular

PE. Figure 45 shows an example where instructions and corresponding data rendezvous in each

PE at a different clock cycle. The architecture is simplified in this example and it is assumed that

the first instruction is executed at the first clock cycle at the first PE.

This chapter continues with a summary of related research that serves as the foundation for

this work. Then the details of systolic virtual memory are presented including required

modification to the controller and instruction set. A VLIW style instruction is defined where an

independent PE and memory controller operation is bundled at each code location. A scheduling

algorithm using linear mapping is defined and implemented. Then several kernels that require

significant PE storage are simulated and evaluated. The evaluation metrics are execution time,

delay cycles, required memory and corresponding memory area, and area efficiency. The

presented systolic virtual memory system is compared to an all-local memory system. Although

the SVM system requires 20% longer execution time, it reduces storage area by as much as 50%,

with a similar improvement in area efficiency.

69

Off-Chip
Memory

Instruction

D1
D5
D9
D13

Controller

D2
D6
D10
D14

D3
D7
D11
D15

D4
D8
D12
D16

D1

D2

D4

D5

D6

D3

D5

D9

D2

D6

D3

D4

D7

D5

D9

D6

D3

D4

D8

D7

D10

D9

D13

D6

D7

D10

D11

D4

D8

D9 D7

D9

D10

D14

D11

D8

D12

D5

D2

D10

D7

D15

D4

D12

D6

D3

D11

D8

D16

D1

index

Addr

Memory

Controller

(Burst Mode)

Off-Chip
Memory

Instruction

D1
D5
D9
D13

Controller

D2
D6
D10
D14

D3
D7
D11
D15

D4
D8
D12
D16

D1

D2

D4

D5

D6

D3

D5

D9

D2

D6

D3

D4

D7

D5

D9

D6

D3

D4

D8

D7

D10

D9

D13

D6

D7

D10

D11

D4

D8

D9 D7

D9

D10

D14

D11

D8

D12

D5

D2

D10

D7

D15

D4

D12

D6

D3

D11

D8

D16

D1

index

Addr

Memory

Controller

(Burst Mode)

Figure 44: Mechanism of systolic instruction broadcast and systolic data movement.

4.3. Related Work

4.3.1. Linear Mapping Technique

Linear mapping techniques are widely used to design systolic systems for specific

applications [14,16,17,19]. This technique can determine how operands are distributed through a

processor array, including their speed and direction. Definitions used in the linear mapping are

shown in Table 12 followed by a description of transformation methods.

Table 12: Definitions for linear mapping method.

Term Definitions

Dependence Graph (DG)

A directed graph that shows the dependences of computations in
an algorithm where the nodes in DG represent computations and
edges represent the precedence constraints among nodes.

Regular DG DG which has the same directional edges at all nodes in the DG.

Projection vector (or iteration vector),
d T = (d1, d2)

Two nodes that are displaced by d or multiples of d are executed
by the same processor.

Processor space vector, pT = (p1, p2)

Any node with index I T = (i, j) would be executed by processor
pT I = (p1, p2)(i j)T.

Scheduling vector, s T = (s1, s2)
Any node with index I would be executed at time, sT I.

Hardware Utilization Efficiency,
HUE = 1/|sTd|

Two tasks executed by the same processor are spaced |sTd| time
units apart.

70

(i) clock cycle = -1 (ii) clock cycle = 0 (iii) clock cycle = 1

(iv) clock cycle = 2 (v) clock cycle = 3 (vi) clock cycle = 4

(vii) clock cycle = 5 (viii) clock cycle = 6

Figure 45: An example of data movement with systolic load instruction.

D12 D10
 D13 D11
 D14
 D15

Off-Chip
Memory

 D9 D7
D12 D10
 D13 D11
 D14

Off-Chip
Memory

 D15

D8 D6
 D9 D7
D12 D10
 D13 D11

Off-Chip
Memory

 D14

D15

 D5 D3
D8 D6
 D9 D7
D12 D10

Off-Chip
Memory

 D13

D14

D11

D15

D4 D2
 D5 D3
D8 D6
 D9 D7

Off-Chip
Memory

 D12
D13

D10

D14

D11

D15

 D1
D4 D2
 D5 D3
D8 D6

Off-Chip
Memory

D12

D9

D13

D10

D14

D7

D11

D15

D0
 D1
D4 D2
 D5 D3

Off-Chip
Memory

 D8

D12

D9

D13

D6

D10

D14

D7

D11

D15

D0
 D1
D4 D2

Off-Chip
Memory

 sys_load

D8

D12

D5

D9

D13

D6

D10

D14

D3

D7

D11

D15

71

Transformations based on the dependence graph (DG) are performed by the following steps.

• Step 1: Build a regular dependence graph which is a space representation.

• Step 2: Transform by mapping DG from space to space-time representation.

• Step 3: Design various systolic systems for a given problem by selecting different sets of

vectors: projection vector, processor space vector and scheduling vector.

We can choose one system based on the hardware utilization efficiency. The sets of vectors

chosen should fulfill constraints to preserve the correctness of the designed system. The following

descriptions are details of each step in the transformations.

Step 1: Build a regular Dependence Graph

The DG is built by creating a new node whenever a new computation is necessary in an

algorithm. No node is ever reused on a single computation basis. In a regular DG, the presence of

an edge in a certain direction at any node in the DG represents the presence of an edge in the

same direction at all nodes.

Step 2: Transform by Mapping DG from space to space-time representation

A regular DG is a spatial representation which typically corresponds to 0 time instance.

Thus to assign time instances to all computations, a mapping technique that transforms a space

representation to a space-time representation is necessary. In this transformation, each node is

mapped to a certain PE and also scheduled to a certain time instance. This mapping technique can

map an N-dimensional DG to a lower dimensional systolic array. The transformation is based on

several basic vectors described in Table 12 and is used to design many systolic systems for a

specific algorithm.

Step 3: Selection of Basic Vectors

The selection of basic vectors is restricted by the following constraints to preserve the

correctness of the designed system.

 Orthogonality of processor space vector and projection vector: If point A and B differ by

the projection vector, i.e., IA – IB is same as d, then they must be executed by the same

processor. In other words, pTIA = PTIB. This leads to pT (IA – IB) = 0 => pTd = 0.

 Processor mapping: If A and B are mapped to the same processor, then they cannot be

executed at the same time, i.e., sT IA ≠ sT IB, i.e., sT d ≠ 0.

 Edge mapping: If an edge e exists in the space representation or DG, then an edge pTe is

introduced in the systolic array with sTe delays.

The transformation from a space representation to a space-time representation is done by

interpreting one of the spatial dimensions as a temporal dimension. For a two-dimensional (2D)

DG, the general transformation is described by i’ = t = 0, j’ = pTI and t’ = sTI, or equivalently,

72

 = T = .

In the space-time representation, the j’ axis represents the processor axis and t’ represents

the scheduling time instance.

The linear mapping technique is for the regular DG. However, a SIMD-systolic system

cannot be represented by a regular DG since the borders of the processor array have irregularity

in the instruction broadcasting. In addition, each PE in a SIMD-systolic system can operate the

different functionalities controlled by the broadcasted instruction. Thus, instruction arrival timing

also should be considered in SIMD-systolic system design. Consequently, the basic linear

mapping method must be extended for use in a SIMD-systolic system design for a particular

application. The architectural information should be considered to verify the correctness-

preserving design for a given application. This architectural decision is based on many aspects,

including technological issues such as data bandwidth limited by the pin counts.

Following section describes related techniques to hide off-chip memory access latency by

data prefetching.

4.3.2. Data Prefetching Technique

The performance gap between CPU and memory systems is well-known. Figure 46 shows the

increasing performance gap between processor and memory extracted from ITRS 2001 [68].

Performance (Processor VS. Memory)

0

5

10

15

20

25

30

2001 2004 2007 2010 2013 2016

Year

Pe
rf

or
m

an
ce

 (G
H

z

Processor (High Performance) DRAM/SRAM

Figure 46: Performance gap between processor and DRAM (from ITRS).

 i’
 j’
 t’

 i
 j
 t

 0 0 1
 p1 p2 0
 s1 s2 0

 i
 j
 t

73

Performance Increase

1

4

7

10

13

16

19

2001 2004 2007 2010 2013 2016

Year

P
er

fo
rm

an
ce

 In
cr

ea
se

Processor (High Performance) DRAM/SRAM

Figure 47: Performance increase rates for processor and DRAM (from ITRS).

By normalizing to the performance in year 2001, the performance gap is illustrated in Figure

47. Processor performance increases significantly faster than memory, resulting in an increasing

mismatch between these system components in the future. Thus it is evident that an efficient

handling of memory access is necessary to avoid a memory access performance bottleneck.

By supporting memory hierarchies, it is possible to reduce the latency of main memory

accesses for frequently used data. However, access locality is not always present. For example,

scientific and multimedia applications spend more than half their execution time stalled on

memory requests [72]. In situations where cache misses occur, normally data fetch from main

memory is initiated on demand. As a result, execution of applications having little data locality

will be stalled frequently to wait until a requested cache block is fetched from main memory. To

overcome this problem, data prefetch techniques have been proposed and a survey on that topic is

found in [73]. Since data prefetching can be overlapped with processor computations by issuing a

fetch to the memory system in advance of an actual memory reference, main memory access

latency can be hidden. Data prefetching techniques can be implemented in software methods,

hardware methods, or hybrid methods. Software prefetching has been widely used in many

contemporary microprocessors such as PowerPC, HP PA-8000, and MIPS R10000. Usually

software prefetching is supported by adding ‘fetch’ instructions in a given program. They are

placed relative to the corresponding ‘load’ or ‘store’ instructions, a technique known as prefetch

scheduling. Data prefetching is typically useful inside loops that perform computation on large

arrays because this type of computations is common in scientific or multimedia applications. In

addition, since this type of data has little data locality, cache memory cannot reduce the memory

74

latency time effectively. Thus, data prefetching can be utilized in this case with highly predictable

patterns of data access. Software prefetching techniques introduce fetch instruction execution

overhead. Alternative hardware prefetching techniques do not impose this overhead, but do

require additional hardware. There have been several approaches in hardware prefetching, such as

sequential prefetching [74], and prefetching with arbitrary strides [75]. Sequential prefetching can

be implemented with relatively simple hardware. However, this method results in poor

prefetching performance where irregular or strided access patterns are observed. Thus, other

prefetching approach to support arbitrary strides has been proposed [75]. This method utilizes a

reference prediction table (RPT) to hold most recently used memory operations. Stride

information is computed at run time. Once this information is recorded in the RPT, the next

effective address of that memory instruction is simply computed as (current effective address +

stride).

Software data prefetching techniques perform better than hardware methods on irregular

memory access patterns, but, unlike hardware methods, compilation effort and fetch instruction

overhead are factors. Hybrid data prefetching, which integrates software prefetching and

hardware prefetching techniques, has been proposed since neither of these approaches is superior

in all cases [77]. Our approach is a hybrid data prefetching technique, as will be discussed in

Section 4.4.5.

4.4. Approach: SIMD-systolic System with Systolic Virtual Memory

4.4.1. Systematic Design Approach

As the complexity of VLSI systems increases, formal design methods are required to

guarantee correct behavior of systems. Our approach employs linear mapping on regular

dependence graphs as described in Section 4.3. This design methodology is extended to consider

the timing between data movements and systolically broadcasted instructions in SIMD-systolic

systems. The overall design methodology we use to verify the SIMD-systolic system for an

application-specific way is depicted in Figure 48.

75

Figure 48: The overall framework of the systematic design method for a SIMD-systolic system.

Linear mapping techniques are extended in our research. The basic method works with the

regular dependency graph in which data moves in the same direction for all PEs. This method

assumes a pure systolic system that does not need any control information because all PEs can

execute the fixed functionality defined by applications at any time. However, a SIMD-systolic

system is a programmable system, in which all PEs are controlled by systolically broadcasted

instructions and the directions of data movement are fixed from south to north because off-chip

memory modules are connected to the PEs in south border. This connection of memory modules

is well-harmonized with the systolic instruction broadcast. Thus architectural information is

considered in our design methodology, unlike the original mapping techniques which are based

solely on the description of algorithms. In addition, instructions are also treated as a kind of data

to harmonize scheduling of instructions and sequencing of off-chip data. An example of an

extended method is shown in Section 4.4.2.

Algorithm Definition

Transformation Architectural Information

Intra-Segment
Linear Mappings

Designed Systems for
Each Segments

Inter-Segments
Linear Mapping

Designed System for
Segments Merging

Overall Designed System

Linear Mapping

Data Dependency Graphs (Space Representation)

Column-wise
Segmentation

Space to Space-Time
Transformation

76

4.4.2. Case Study of Extended Mapping Techniques: Vector Quantization

The basic description of the VQ image compression application is described in Section

2.8.1. The formal representation of the VQ encoding process can be expressed as follows.

Let X = [x0 x1 x2 … xk-1] be an input vector of dimension k, N be the number of code

vectors, and Ci = [ci,0 ci,1 ci,2 … ci,k-1] be the i-th codeword of dimension k, where i = 0, 1, 2,

…, N-1. This step involves the measuring of the N distortions, di, where i = 0, 1, 2… N-1, and

selecting the codeword index i for which di is the minimum distortion.

During this encoding step, exhaustive search is necessary, which is computationally

expensive. There are two approaches to dealing with the search costs: using a sub-optimal vector

quantizer in a heuristic way and utilizing the multiprocessors. We takes the second approach by

developing an efficient system design technique to perform compute-intensive algorithms

efficiently on a SIMD-systolic architecture.

A space representation, DG for VQ encoding can be built by incorporating the set of basic

vectors, PT, ST and d, based on the architectural information, such as the method to get the input

data. Since our target architecture is a focal plane architecture, image data can be moved directly

from the focal plane to each node in the processor array at once. This results in a DG with the

input data X which stays in each node as depicted in Figure 49.

Figure 49: DG for VQ application.

The input data Xi is assigned to the ith processor in the target architecture. Nodes in the DG with

the same input data will be assigned to the same PE which results in PT = [0, 1]. Since PTd = 0

and STd ≠ 0, the d2 should be 0 and S1 and d1 should not be 0 where ST = [S1, S2] and dT = [d1,

d2]. Since instructions are systolically broadcast and nodes with the same j value will be assigned

X3 X3 X3 X3

X2 X2 X2 X2

X1 X1 X1 X1

X0 X0 X0 X0

X3

X2

X1

X0

i

j

CV0,0 CV1,0 CV2,0 CV3,0 CV4,0 … CVN-1,0 CVN,0

X3

X2

X1

X0

…
…
…
…

…

Index0

Index1

Index2

Index3

CV0,1 CV1,1 CV2,1 CV3,1 CV4,1 … CVN-1,1 CVN,1
…

CV0,k-1CV1,k-1CV2, k-1CV3, k-1CV4, k-1…CVN-1,k-1CVN,k-1

77

to the same PE, the schedule time of each PE should be the same as the j value, assuming the

encoding operation can be executed for one code vector in unit time. The schedule time of each

node is decided by STI. Based on this observation, for a code vector size of 16, the node (i, j) will

be scheduled at (16 x i + j). As a result, the scheduling vector is ST = [16, 1]. Consequently, the

selection of a set of basic vectors are PT = [0, 1], ST = [16, 1] and dT = [1, 0]. Transformations are

listed for each edge in Table 13.

Table 13: Transformation table for each edge.

Edge e PTe STe

CV (0, 1) 1 1

X (0, 0) 0 0

Index (1, 0) 0 16

The space-time representation can be created by the following computation.

 = T = = .

As a result, the processor axis is j’ = j and time axis is t’ = 16i + j. The resulting systolic

system is shown in Figure 50 and the corresponding space-time representation is depicted in

Figure 51.

Figure 50: One-Column system designed for VQ based on transformations in Table 13.

CVi CVi

 16D
 Index0

 16D
 Index1

 16D
 Index2

 16D
 Index3

D D D

 i’
 j’
 t’

 i
 j
 t

 0 0 1
 p1 p2 0
 s1 s2 0

 i
 j
 t

 0 0 1
 0 1 0
 16 1 0

 i
 j
 0

78

Figure 51: Space-time representation.

The space representation in Figure 49 corresponds to one column of PEs, also called a

segment, of the PE array. We need to consider the column-to-column design using the same

concept. Mappings for inter-segments need to consider only systolic instruction broadcast. Thus

we can easily draw the system at the segment level as in Figure 52.

Figure 52: Segment-level system designed for VQ.

This can be seen as a high-level view of a designed system since one node is corresponding

to the set of PEs in a column. By combining Figure 50 and Figure 52, we can show the overall

system view of a SIMD-systolic system for VQ. Since each segment node will be scheduled in

consecutive time slots, the space-time representation can be expressed by sliding one step towards

the time axis. The simplified representation is given in Figure 53. Each segment box is

corresponding to the space-time representation given in Figure 51.

Instructioni
D D D

1 2 3 4

Time Axis: t’ = 16i + j

j’ = j

…

…

…

…

Index0

Index1

Index2

Index3

X3

X2

X1
X0

Processor A
xis

 0 1 2 3 4 16 17 18

CV0

X3

X2

X1

X0

CV1

79

Figure 53: High level view of space-time diagram assuming 4 x 4 processor array.

4.4.3. Memory Operations in SIMPil Architecture

This section describes the kinds of memory operations that are supported in our target

system. Our target architecture is based on SIMPil16 with an off-chip memory interface. SIMPil

architecture can support three types of memory addressing modes: immediate addressing (direct

addressing), controller register indirect addressing, and PE local register indirect addressing.

 Table 14 shows the possible memory addressing modes for each type of memory operation.

Basically, memory operations are ‘load’ and ‘store’. There are three types of memory operations

depicted in Table 14 based on which memory words are loaded from and stored to.

Table 14: Memory addressing modes for each type of memory operation.

OFF_CHIP Memory Memory
Operation Controller PE Local

Shared Private

Load Immediate
CREG Indirect

Immediate
CREG Indirect
PREG Indirect

Immediate
CREG Indirect

(same for all PEs in a column)

Immediate
CREG Indirect

Store Immediate
CREG Indirect

Immediate
CREG Indirect
PREG Indirect

N/A Immediate
CREG Indirect

Time Axis: t’ = 16i + j

j’ = j

Processor A
xis

Segment 0

Segment 1

Segment 2

Segment 3

instruction

…

80

4.4.4. Systolic Virtual Memory (SVM): SIMD-systolic System with Off-Chip Memory
Accesses

This section describes how the SIMD-systolic system supports off-chip memory accesses.

The two kinds of off-chip memory operations are systolic load (‘sys_load’) and systolic store

(‘sys_store’). Typically, off-chip memory access results in much higher latency, which becomes a

performance bottleneck. In addition, due to the limited off-chip memory bandwidth, sufficient

data cannot be provided for all PEs in relatively large SIMD systems. In our research, by

leveraging from the staggered instruction execution of systolic instruction broadcast, off-chip

memory access is efficiently handled with limited memory bandwidth. Systolically broadcasted

‘sys_load’ instructions will rendezvous with the data in each PE, which is simultaneously being

moved systolically from the bottom to the top in a processor array. Off-chip memory latency will

be hidden by data prefetching techniques. This management of off-chip memory gives the

illusion of a large on-chip memory. Since this is conceptually similar to the virtual memory [79]

found in most contemporary architectures [78], we refer to our mechanism as systolic virtual

memory (SVM).

Section 4.4.4.1 describes the mechanism to support the rendezvous of a systolic load

instruction with off-chip memory data. Section 4.4.4.2 discusses the corresponding systolic store

mechanism.

4.4.4.1. Systolic Load

Figure 54 shows the mechanism for a systolic load operation for one column of a 4 by 4

processor array. The address table in this figure is used to support data prefetching, which will be

discussed later. Based on the mechanism shown in Figure 54, off-chip memory is placed at the

bottom of processor array and data is moved from the bottom to the top in a processor column.

An example of systolic data load is illustrated in Figure 45.

4.4.4.2. Systolic Store

Figure 55 shows the mechanism for a systolic store operation for one column of a 4 by 4

processor array. Data to be stored in off-chip memory is moved from each PE. An example is

illustrated in Figure 56. A FIFO store buffer is used to prevent unnecessary stalls resulting from

the simultaneous memory access. Off-chip memory load operations look in this store buffer first

in case there is data which has not yet been written to the off-chip memory.

81

Figure 54: Systolic virtual memory: systolic load mechanism.

Figure 55: Systolic virtual memory: systolic store mechanism.

Off-Chip
Memory M1

Controller
index

 2

 1addr1 1

StrideAddrIndex

Memory
Controller

(Burst Mode)

PE

PE

PE

PE

R

SYS_LOAD

Off-Chip
Memory M1

Controller
index

 2

 1addr1 1

StrideAddrIndex

Memory
Controller

PE

PE

PE

PE

W

SYS_STORE

STORE
BUFFER
(FIFO)

W

ADDRESS TABLE

ADDRESS TABLE

82

(i) clock cycle = 0 (ii) clock cycle = 1 (iii) clock cycle = 2

(iv) clock cycle = 3 (v) clock cycle = 4 (vi) clock cycle = 5

(vii) clock cycle = 6 (viii) clock cycle = 7 (ix) clock cycle = 8

(x) clock cycle = 9 (xi) clock cycle = 10

Figure 56: An Example of Systolic Store.

 D0

D4

D8

D12

D1

D5
D9

D13

D2

D6

D10

D14

D3

D7

D11

D15

 D0

D4

D8

D12

D1

D5
D9

D13

D2

D6

D10

D14

D3

D7

D11

 D15

 D0

D4

D8

D12

D1

D5
D9

D2

D6

D10

D3

D7

 D13 D11
 D14
 D15

 D0

D4

D8

D12

D1

D5
D9

D13

D2

D6

D10

D3

D7

D11

 D14
 D15

 D9 D7
D12 D10
 D13 D11
 D14

 D0

D4

D8

D1

D5

D2

D6

D3

D8 D6
 D9 D7
D12 D10
 D13

 D0

D4

D1

D5

D2

D3

 D5 D3
D8 D6
 D9
D12

 D0

D4

D1

D2

D4 D2
 D5
D8

Off-Chip
Memory D0

D1

 D1
D4

 D0

D0

 sys_store

Off-Chip
Memory

 D0

D4

D8

D1

D5
D9

D2

D6

D3

D7

D12 D10
 D13 D11
 D14
 D15

83

Using these mechanisms for systolic load and store, the next section describes the data

prefetch technique used to hide the off-chip memory access latency and the traverse time.

4.4.5. Data Prefetch

A hybrid data prefetch technique is used in our research. As in software data prefetching,

our method inserts ‘prefetch’ instructions explicitly into the programs. In addition, a hardware-

based address table is used. This is initialized at compile time and updated at runtime using

hardware logic. The information in the address table is used to reference the off-chip memory

word.

4.4.5.1. Prefetch Instruction

Our approach to inserting and executing prefetch instructions strives to reduce overhead.

Because one systolic load instruction is executed in all PEs, the number of prefetch instructions

would normally equal the number of PEs in a processor array. However, the behavior of each

column in a processor array is identical except that there is a one cycle delay between columns.

Since PEs in a same row will occupy the same location in each memory module, the number of

added prefetch instructions can be reduced to the number of rows in a processor array. However,

even with this reduction in the number of prefetch instructions, a considerable amount of

instruction overhead remains. As shown in Figure 57, a sample program with 2 instructions is

expanded by 15 additional instructions: 8 ‘prefetch’ instructions and 7 ‘nop’ instructions to

control the data arrival time. We reduce this overhead by overlapping prefetches with the

execution of other instructions using an extended long instruction format.

Figure 57: An example of software data prefetching using the ‘prefetch’ instruction.

S_LOADI 256
SYS_LOAD R1, SR0

S_LOADI 256
PREFETCH IndexROW0
NOP
PREFETCH Index ROW1
NOP
PREFETCH Index ROW2
NOP
PREFETCH Index ROW3
NOP
PREFETCH Index ROW4
SYS_LOAD R1, SR0
PREFETCH Index ROW5
NOP
PREFETCH Index ROW6
NOP
PREFETCH Index ROW7
NOP

84

Figure 58 shows the extended instruction format which includes a PE instruction and an off-

chip memory instruction field. At this time, this field is used only for ‘prefetch’ instruction, but

may be used for other types of instructions in the future. The ‘prefetch’ instruction’s format is

‘prefetch index’ where index is used to reference the address table. The extended instruction

format makes it possible to execute the ‘prefetch’ instruction with other PE instruction at the

same time. Figure 59 shows the instructions resulting from the ‘sys_load R1, SR0’ instruction

executing on an 8 by 8 processor array. As depicted in this figure, the PE instruction and prefetch

instruction run independently from each other. Thus, all slots, except the 8th PE instruction slot

can be filled with other useful instructions (if any), independent of the existence of prefetch

instructions in the off-chip memory instruction field. Thus the instruction overhead resulting from

prefetch instruction insertion will be effectively reduced.

Figure 60 illustrates how data is systolically loaded from the off-chip memory through the

column of an 8 x 8 processor array in time.

Figure 58: Extended instruction format for data prefetching.

PE Instruction Off-Chip Memory Instruction

1 Prefetch IndexROW0

2

3 Prefetch Index ROW1
4
5 Prefetch Index ROW2
6
7 Prefetch Index ROW3
8 A: mload R1, SR0
9 Prefetch Index ROW4

10
11 Prefetch Index ROW5
12
13 Prefetch Index ROW6
14
15 Prefetch Index ROW7

Figure 59: An example of an extended instruction format: ‘sys_load R1, SR0.’

PE Instruction Field Off-chip memory Instruction Field

85

TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
ROW0 A1
ROW1 A1 A2
ROW2 A1 A2 A3
ROW3 A1 A2 A3 A4
ROW4 A1 A2 A3 A4 A5
ROW5 A1 A2 A3 A4 A5 A6
ROW6 A1 A2 A3 A4 A5 A6 A7
ROW7 A1 A2 A3 A4 A5 A6 A7 A8

Figure 60: An example of data movement in one column of an 8 x 8 processor array for a

‘sys_load.’

4.4.5.2. Address Table

The address table used in our data prefetch method is depicted in Figure 61. There are three

columns in this table – index, base address, and stride. The index field is not an explicit column

but it is used for referencing of items in the table. The base address field is used to compute the

effective address of the memory operation along with a stride field. The base address is the

address of prefetched data for the first row of a processor column. This address is set at compile

time and incremented automatically at run time to be used for the PE in the next row. The ‘stride’

field is useful where the systolic load instruction is inside the loop. This value is used to update

the base address after the last prefetch instruction corresponding to one systolic load in a loop

(i.e., the prefetch instruction for a PE in the last row for a particular systolic load) is executed.

Index Base Address Stride
1 0 Don’t Care
2 16 1

Figure 61: Address table.

Figure 62 shows an example of data prefetching using the extended instruction format for a

prefetch instruction with the address table shown in Figure 61. Conceptually, the effective

address for each PE is computed as (Base Address + Row Number for a Particular PE). Since the

row number is incremented each time, the base address is automatically incremented by one in

the implementation. In this example, all indexes for PEs are 1 which references the first row,

which has the (base address = 0).

MLOAD

PREFETCH

86

PE Instruction (PE0) Off-Chip Memory
Instruction Memory Address

1 Prefetch 1 0 [BaseAddress(=0) + RowNumber(=0)]
2
3 Prefetch 1 1 [BaseAddress(=0) + RowNumber(=1)]
4
5 Prefetch 1 2 [BaseAddress(=0) + RowNumber(=2)]
6
7 Prefetch 1 3 [BaseAddress(=0) + RowNumber(=3)]
8 A: mload R1, SR0
9 Prefetch 1 4 [BaseAddress(=0) + RowNumber(=4)]

10
11 Prefetch 1 5 [BaseAddress(=0) + RowNumber(=5)]
12
13 Prefetch 1 6 [BaseAddress(=0) + RowNumber(=6)]
14
15 Prefetch 1 7 [BaseAddress(=0) + RowNumber(=7)]

Figure 62: An example of data prefetching using the address table given in Figure 61.

The data prefetching technique was devised to reduce the off-chip memory latency.

However, so far, we have been considering how to sequence the systolically moved data from

off-chip memory to rendezvous with a systolically distributed instruction. As a result, data

prefetching technique is used to hide the data traverse time resulting from the systolic distribution

of data. To hide memory access latency as well as data traverse time, the ‘prefetch’ instruction

should be issued earlier than that shown in previous examples. In particular, if an ‘mload’

instruction arrives at time TMLOAD for a particular PE , a ‘prefetch’ instruction should be issued at

time TPREFETCH = TMLOAD – (TTRAVERSE + TMEM), where.TTRAVERSE is data traversal time from the

bottom of the array to a particular PE, and TMEM is the off-chip memory access time in clock

cycles. The resulting sequence of instructions is depicted in Figure 63 for an 8 by 8 processor

array where the first prefetch occurs at cycle time 1 and TMEM is 6 clock cycles. Based on this

information, TMLOAD becomes 14 in this case.
PEROW0: TPREFETCH_0 = TMLOAD_0– (TTRAVERSE_0 + TMEM) = TMLOAD - (7 + 6) = 1

PEROW1: TPREFETCH_1 = TMLOAD_1 – (TTRAVERSE_1 + TMEM) = 15 – (6 + 6) = 3

PEROW2: TPREFETCH_2 = TMLOAD_2 – (TTRAVERSE_2 + TMEM) = 16 – (5 + 6) = 5

PEROW3: TPREFETCH_3 = TMLOAD_3 – (TTRAVERSE_3 + TMEM) = 17 – (4 + 6) = 7

PEROW4: TPREFETCH_4 = TMLOAD_4 – (TTRAVERSE_4 + TMEM) = 18 – (3 + 6) = 9

PEROW5: TPREFETCH_5 = TMLOAD_5 – (TTRAVERSE_5 + TMEM) = 19 – (2 + 6) = 11

PEROW6: TPREFETCH_6 = TMLOAD_6 – (TTRAVERSE_6 + TMEM) = 20 – (1 + 6) = 13

PEROW7: TPREFETCH_7 = TMLOAD_7 – (TTRAVERSE_7 + TMEM) = 21 – (0 + 6) = 15.

87

PE Instruction (PE0) Off-Chip Memory
Instruction Memory Address

1 Prefetch 1 0 [BaseAddress(=0) + RowNumber(=0)]
2
3 Prefetch 1 1 [BaseAddress(=0) + RowNumber(=1)]
4
5 Prefetch 1 2 [BaseAddress(=0) + RowNumber(=2)]
6
7 Prefetch 1 3 [BaseAddress(=0) + RowNumber(=3)]
8

9 Prefetch 1 4 [BaseAddress(=0) + RowNumber(=4)]
10
11 Prefetch 1 5 [BaseAddress(=0) + RowNumber(=5)]
12
13 Prefetch 1 6 [BaseAddress(=0) + RowNumber(=6)]
14 A: mload R1, SR0
15 Prefetch 1 7 [BaseAddress(=0) + RowNumber(=7)]

Figure 63: An example of data prefetching.

Our data prefetching techniques are used to hide both data traverse time in SVM mechanism

and off-chip memory latency time. Also, by extending the instruction format, we can minimize

the instruction overhead of the additional prefetch instructions. However, to match the

systolically pumped data from off-chip memory with the systolically broadcast instructions,

memory load instructions (‘mload’) should be delayed where there is a channel conflict. Section

4.4.6 describes techniques for minimizing these delays, illustrating with particular examples.

4.4.6. Instruction Scheduling

Data prefetching technique can hide the data traverse time and memory access latency as

described in the previous section. However, we need to consider resource constraints, such as

limited memory bandwidth and number of channels, since they can cause delays if there is a

conflict. With a given number of physical channels for systolic load (1 in this case), the number

of consecutive systolic load instructions should not exceed 2 to avoid delays from the

instructions. Thus where more than 2 consecutive systolic load instructions are broadcasted,

delays should be inserted between the second ‘sys_load’ instruction and the third ‘sys_load’

instruction. The scheduler and data sequencer play important roles in minimizing the performance

degradation as well as preserving the application correctness. Figure 64 shows an example of two

consecutive systolic load instructions executed under the same assumption as in Figure 63.

88

 Sample Program:

PE Instruction Off-Chip Memory Instruction

1 Prefetch 1
2 Prefetch 2
3 Prefetch 1
4 Prefetch 2
5 Prefetch 1
6 Prefetch 2
7 Prefetch 1
8 Prefetch 2
9 Prefetch 1

10 Prefetch 2
11 Prefetch 1
12 Prefetch 2
13 Prefetch 1
14 A: mload R1, SR1 Prefetch 2
15 B: mload R2, SR2 Prefetch 1
16 Prefetch 2

Figure 64: An example of consecutive systolic load instructions.

As shown in Figure 64, the data channel is fully occupied at some point by the systolically

moved data for two consecutive sys_loads. This saturation also can be seen in the off-chip

memory operation field of the sequence of instructions in Figure 64 such that all the fields are

occupied by the prefetch instructions. For the first systolic load instruction, all odd numbered off-

161514 13 12 11109876543 2 1

A1 B1

A1

A2

B1

A1

B2

A2

B1

A1

A3

B2

A2

B1

A1

B3

A3

B2

A2

B1

A1

A4

B3

A3

B2

A2

B1

A1

A8

B7

B8B7 A7 B6 A6B5A5B4

A7 B6 A6 B5A5B4A4

B6 A6 B5 A5B4A4B3

B5 A5 B4A4B3A3

B4 A4B3A3B2

B3A3B2A2

B2A2B1

B1A1

222120 19 18 17161514131211109 8 7

A1 B1

A1

A2

B1

A1

B2

A2

B1

A1

A3

B2

A2

B1

A1

B3

A3

B2

A2

B1

A1

A4

B3

A3

B2

A2

B1

A1

A8

B7

B8B7 A7 B6 A6B5A5B4

A7 B6 A6 B5A5B4A4

B6 A6 B5 A5B4A4B3

B5 A5 B4A4B3A3

B4 A4B3A3B2

B3A3B2A2

B2A2B1

B1A1

TIME

PE(ROW0)

PE(ROW1)

PE(ROW2)

PE(ROW3)

PE(ROW4)

PE(ROW5)

PE(ROW6)

PE(ROW7)

SYS_LOAD R1, SR1
SYS_LOAD R2, SR2

89

chip memory instruction fields are used by prefetch instructions, and for the second systolic load

instruction, all even numbered off-chip memory instruction fields are occupied. Likewise, the

case of two consecutive systolic stores is depicted in Figure 65.

Figure 65: An example of consecutive systolic store instructions.

Systolic memory operations can be executed without delays due to the limited bandwidth.

Since one word can be loaded from the off-chip memory at once, the third systolic memory

16

mstore SR2, R2

mstore SR1, R1

15

12

11

13

10

9

2

1

3

4

5

14

7

8

Off-Chip Memory
Instruction

PE Instruction

6

16

mstore SR2, R2

mstore SR1, R1

15

12

11

13

10

9

2

1

3

4

5

14

7

8

Off-Chip Memory
Instruction

PE Instruction

6

16151413121110987654321

B8

A8

B8

A8

B7

A8

B7

A7

B6

A6

B5

A5

B4

B8

A8

B7

A7

B6

A6

B5

A5

B8

A8

B7

A7

B6

A6

B5

B8

A8

B7

A7

B6

A6

B8

A8

B7

A7

B6

B8

A8

B7

A7

A7

B6A6

A6B5A5

B5A5B4A4

A5B4A4B3A3

B4A4B3A3B2A2

B8A4B3A3B2A2B1A1

16151413121110987654321

B8

A8

B8

A8

B7

A8

B7

A7

B6

A6

B5

A5

B4

B8

A8

B7

A7

B6

A6

B5

A5

B8

A8

B7

A7

B6

A6

B5

B8

A8

B7

A7

B6

A6

B8

A8

B7

A7

B6

B8

A8

B7

A7

A7

B6A6

A6B5A5

B5A5B4A4

A5B4A4B3A3

B4A4B3A3B2A2

B8A4B3A3B2A2B1A1

SYS_STORE SR1, R1
SYS_STORE SR2, R2

SAMPLE PROGRAM:

90

operation must wait until the first two systolic memory instructions are executed through the

processor array. This case is depicted in Figure 66.

C7

C6

C5

C4

C3

C2

C1

23

C1

17

C2

C1

18

B8

16

C3

C2

C1

19

C5

C4

C3

C2

C1

21

C6

C5

C4

C3

C2

C1

22

C4

C3

C2

C1

20 24151413121110987654321

A1 B1

A1

A2

B1

A1

B2

A2

B1

A1

A3

B2

A2

B1

A1

B3

A3

B2

A2

B1

A1

A4

B3

A3

B2

A2

B1

A1

A8

B7

C8B7A7B6A6B5A5B4

C7A7B6A6B5A5B4A4

C6B6A6B5A5B4A4B3

C5B5A5B4A4B3A3

C4B4A4B3A3B2

C3B3A3B2A2

C2B2A2B1

C1B1A1

C7

C6

C5

C4

C3

C2

C1

23

C1

17

C2

C1

18

B8

16

C3

C2

C1

19

C5

C4

C3

C2

C1

21

C6

C5

C4

C3

C2

C1

22

C4

C3

C2

C1

20 24151413121110987654321

A1 B1

A1

A2

B1

A1

B2

A2

B1

A1

A3

B2

A2

B1

A1

B3

A3

B2

A2

B1

A1

A4

B3

A3

B2

A2

B1

A1

A8

B7

C8B7A7B6A6B5A5B4

C7A7B6A6B5A5B4A4

C6B6A6B5A5B4A4B3

C5B5A5B4A4B3A3

C4B4A4B3A3B2

C3B3A3B2A2

C2B2A2B1

C1B1A1

Figure 66: An example of three consecutive systolic load instructions.

As in Figure 66, delays are added to wait until the data channel is available for the third

systolic load instruction. The number of nop delays is (2N – 2) for an N x N processor array. The

delays should be minimized for the efficiency of the SIMD-systolic system. Thus an instruction

scheduling technique based on data flow analysis is used to replace delays with useful

instructions. The overall framework of our instruction scheduler for SVM is shown in Figure 67.

It consists of three main tasks – channel conflict detection and resolution, data flow analysis, and

delay reductions.

• Channel Conflict Detection and Resolution:

The instruction scheduler checks if there is a channel conflict among the systolic memory

operations. For different combinations of off-chip memory instructions, there are different

numbers of necessary distances among the memory operations due to the limited bandwidth

and channel availability. Thus if the instruction scheduler detects any channel conflict, nop-

delays are inserted to resolve it.

• Data Flow Analysis:

As in the previous chapter, to minimize the delays produced by the instruction scheduler

and to preserve application correctness, data dependencies are analyzed to select a

I1: SYS_LOAD R1, SR1
I2: SYS_LOAD R2, SR2
I3: SYS_LOAD R3, SR3

SAMPLE PROGRAM:

I1 I2 I3
DELAYS (14 = 2N -2)

91

candidate instruction to replace the delays. The candidate instructions should not have any

dependency with other instructions between ‘NOP’ and the candidate instruction.

• Delay Reduction:

Based on data flow analysis, delays are minimized by replacing ‘NOP’ instructions with

other meaningful instructions. Since candidate instructions are chosen based on dependency

information, replacing delays with such instructions does not affect application results but

does improve performance.

This instruction scheduler can be unified with that for systolic instruction broadcast

described in the previous chapter. Since the example of instruction scheduling based on data

dependencies are already depicted in CHAPTER 3, the distances among consecutive off-chip

memory operations that are used to detect the channel conflict in the instruction scheduler are

defined instead. This information is described in Table 15.

Figure 67: Framework of an instruction scheduler for systolic virtual memory.

Rescheduled
Programs

Instruction Scheduling Technique:

Data Flow Analysis:

• Build a Data Dependency Graph.
o Data Dependency Check

SIMD Assembly
Programs

Channel Conflict Detection & Resolution
• Check the Distances among the Off-Chip Memory

Operations
• Insert Delays Where There is No Enough Distance

Between Off-chip Memory Operations

Delay Reduction:

• Find Independent Instructions
o Dependency Check for All Instructions

Between ‘NOP’ Instruction and that instruction

92

Table 15: Distances between consecutive off-chip memory operations.

Combinations of Off-Chip
Memory Operations

(L: Sys_Load, S: Sys_Store)
Distance

Combinations of Off-Chip
Memory Operations

(L: Sys_Load, S: Sys_Store)
Distance

L-L 1 L-L-L-L 1, 2N-1, 1
L-S 1 L-L-L-S 1, 2N-1, 1
S-S 1 L-L-S-L 1, 1, 2N-1
S-L 1 L-L-S-S 1, 1, 1

L-L-L 1, 2N-1 L-S-L-L 1, 2N-1, 1
L-L-S 1, 1 L-S-L-S 1, 2N-1, 1
L-S-L 1, 2N-1 L-S-S-L 1, 1, 2N-1
L-S-S 1, 1, 1 L-S-S-S 1,1, 2N-1
S-L-L 1, 2N-1 S-L-L-L 1, 2N-1, 1
S-L-S 1, 2 S-L-L-S 1, 2N-1, 1
S-S-L 1, 2N-1 S-L-S-L 1, 2, 2N-1
S-S-S 1, 2N-1 S-L-S-S 1, 2, N

 S-S-L-L 1, 2N-1, 1
 S-S-L-S 1, 2N-1, 1
 S-S-S-L 1, 2N-1, 1
 S-S-S-S 1, 2N-1, 1

Table 15 shows only distances between consecutive off-chip memory operations; the

instruction scheduler should be able to check the channel conflicts for the general cases. For

example, consecutive systolic loads can be executed without delay but if there is another

instruction between two systolic loads, the instruction should be rescheduled to prevent channel

conflict.

4.5. Results and Analysis

Systolic virtual memory mechanism is evaluated through behavioral simulations and

technology analysis for a 16 x 16 processor array. The metrics for the analysis are shown in Table

16.

Table 16: Metrics for experiments.

Analysis Metrics

Channel Utilization Percentage of used channels over overall available
channels

Performance Normalize execution time depending on the number
of independent instructions

Clock Count Penalty The number of delays due to systolic virtual
memory

Memory Requirement Number of memory words required by a given
application

Memory Area Efficiency Performance divided by required memory area

93

The following describe how these metrics are measured in our approach.

• Channel Utilization = (Used number of channels / Total number of available channels)

in a given time.

• Performance = Normalized execution time relative to the execution time of application

with only on-chip memory operations where the number of independent instructions is

varying.

• Memory Requirement

o Number of words: Required number of memory words for a given application.

o Memory area: Required memory area when a certain type of memory is used for a

system.

• Memory Area Efficiency =
Performance
MemoryArea

 where performance is IPC and memory

size is the required memory area in mm2.

4.5.1. Channel Utilization

In this section, channel utilization is examined to show how on-chip systolic communication

network is utilized for a given set of memory operations. Figure 68 shows the utilization of the

on-chip systolic communication network for a certain number of consecutive memory operations.

In this figure, simulated memory operations are all the same type of operations.

Channel Utilization (Memory Operations)

0%

10%

20%

30%

40%

50%

60%

1 2 3 4 5 6 7

Number of Memory Operation(s)

C
ha

nn
el

 U
til

iz
at

io
n

(%
)

Figure 68: Channel utilization for a given number of consecutive memory operations.

94

Two consecutive off-chip memory operations (e.g., sys_load & sys_load or sys_store &

sys_store) can execute without delay because there is no conflict in channel usage, for a given

time to move the data through the network. Because of this data channel utilization is better than

that for an odd number of off-chip memory operations. However, as the number of memory

operation increases, the impact of the overhead resulting from the channel conflicts will be

decreased as is depicted in Figure 68.

Channel Utilization

0%

10%

20%

30%

40%

50%

60%

70%

(L
L)

(S
S

)
(L

S
)

(S
L)

(L
LL

)
(L

LS
)

(L
SL

)
(L

SS
)

(S
LL

)
(S

LS
)

(S
SL

)
(S

SS
)

(L
LL

L)
(L

LL
S

)
(L

LS
L)

(L
LS

S
)

(L
SL

L)
(L

S
LS

)
(L

S
SL

)
(L

S
SS

)
(S

LL
L)

(S
LL

S
)

(S
LS

L)
(S

LS
S

)
(S

SL
L)

(S
S

LS
)

(S
S

SL
)

(S
S

SS
)

Memory Operations

C
ha

nn
el

 U
til

iz
at

io
n

(%
)

Figure 69: Channel utilization for a given combination of memory operations. (L:sys_load, S:

sys_store)

Figure 69 shows the channel utilization of the systolic network for different combinations of

consecutive off-chip memory operations. Channel utilization varies based on how the data moves

through the network, for a given combination of memory operations. In this figure, the

combinations (LLSS) and (SSLL) have the best utilizations where S is the systolic store and L is

the systolic load instruction.

4.5.2. System Performance

System performance in terms of Instructions per Cycle (IPC) is shown in this section. Since

he instruction scheduler replaces the delays resulting from the channel conflict with the useful

instructions in a program, if there are enough instructions to be replaced, off-chip memory access

would be free as depicted in Figure 70. In the simulations, we are using a 16 x 16 processor array

95

and delays from off-chip memory is 30 (= 2N – 2 = 2 x 16 – 2), where N is 16 in this case. Thus

if the number of independent instructions which are candidates to be replaced with delay

instructions by the scheduler, is same as the number of delays (30, in this case), free off-chip

memory access is achieved. Even though there are not enough instructions to be replaced with the

delays, massive data parallelism will still result in much better performance, relative to the non

data parallel implementation. For example, if we have only one independent instruction which

results in 8 times the execution time, we can still achieve a factor of 32 (= 256 / 8) performance

gain compared to the non-data parallel systems, because of the concurrency of 16 x 16 PEs.

Normalized Execution Time

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1 4 7 10 13 16 19 22 25 28 31 34 37

of Independent Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Off-Chip memory load On-Chip memory load

Off-chip
Memory
Access is
FREE!!

Normalized Execution Time

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1 4 7 10 13 16 19 22 25 28 31 34 37

of Independent Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Off-Chip memory load On-Chip memory load

Normalized Execution Time

0%
100%
200%
300%
400%
500%
600%
700%
800%
900%

1 4 7 10 13 16 19 22 25 28 31 34 37

of Independent Instructions

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

(%
)

Off-Chip memory load On-Chip memory load

Off-chip
Memory
Access is
FREE!!

Figure 70: Normalized execution time of off-chip memory operation relative to the on-chip

memory operation.

4.5.3. Clock Count Penalty

In this section, the overhead of systolic virtual memory is shown in terms of clock count

penalty. This term describes at what cost in extra delays the systolic virtual memory can be

utilized. As shown in Figure 71, in REGION 1 (where clock count penalty is less than 2N – 2 =

30) the penalty decreases linearly as the number of independent instructions increases. And in

Region 2 (where clock count penalty is greater than or equal to 30), zero-penalty off-chip

memory access can be obtained due to instruction scheduling.

96

Number of Penalty Cycles

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32

of Independent Instructions

of

 P
en

al
ty

 C
yc

le
s

REGION 1

REGION 2

Figure 71: Clock count penalty for systolic virtual memory.

4.5.4. Application: Matrix Multiplication

In this section, we simulate a matrix multiplication application to analyze the memory

requirement in terms of number of words and memory area, execution time where the off-chip

memory operations are used in an application, and area efficiency for two types of

implementations of this application. Based on the results, we decide which implementation for a

given application is optimal in terms of area efficiency.

For systolic virtual memory access, we can use two types of memory space, which are

private address space and shared memory address space. This is defined in an application to select

the implementation method by an application programmer. Figure 72 shows how the matrices A

and B are placed to be multiplied in the system where shared memory address space is used. For

illustration, a 4 x 4 processor array is used. In this implementation, a column of B matrix is

shared by the PEs in a same column.

Figure 73 shows how the matrices A and B are placed to be multiplied in the system where

private memory address space is used. Each column of matrix B is duplicated in all PEs in the

same column of the processor array. For these two implementations, execution time, memory

requirement, and area efficiency are analyzed to decide the optimal implementation of a given

application.

97

Figure 72: Matrix multiplication application with shared memory address space.

Figure 73: Matrix multiplication application with private memory address space.

B1

B1

B1

B1

A1
A2
A3
A4

B2

B2

B2

B2

B3

B3

B3

B3

B4

B4

B4

B4

A = a11, a12, a13, a14

a21, a22, a23, a24

a31, a32, a33, a34

a41, a42, a43, a44

A = a11, a12, a13, a14

a21, a22, a23, a24

a31, a32, a33, a34

a41, a42, a43, a44

B = b11, b12, b13, b14

b21, b22, b23, b24

b31, b32, b33, b34

b41, b42, b43, b44

B = b11, b12, b13, b14

b21, b22, b23, b24

b31, b32, b33, b34

b41, b42, b43, b44

A1

A2

A3

A4

B1 B2 B3 B4

A1
A2
A3
A4

A1
A2
A3
A4

A1
A2
A3
A4

A1

A2

A3

A4

B1

A1

A2

A3

A4

B2

A1

A2

A3

A4

B3

A1

A2

A3

A4

B4

A1

A2

A3

A4

B1

A1

A2

A3

A4

B2

A1

A2

A3

A4

B3

A1

A2

A3

A4

B4

A = a11, a12, a13, a14

a21, a22, a23, a24

a31, a32, a33, a34

a41, a42, a43, a44

A = a11, a12, a13, a14

a21, a22, a23, a24

a31, a32, a33, a34

a41, a42, a43, a44

B = b11, b12, b13, b14

b21, b22, b23, b24

b31, b32, b33, b34

b41, b42, b43, b44

B = b11, b12, b13, b14

b21, b22, b23, b24

b31, b32, b33, b34

b41, b42, b43, b44

A1

A2

A3

A4

B1 B2 B3 B4

98

4.5.4.1. Matrix Multiplication: Execution Time

We implemented three versions of the matrix multiplication application. The first one is

implemented using only on-chip memory, the second one is implemented using off-chip memory

instructions with private memory model, and the last one is implemented using off-chip memory

with shared address space. To obtain the execution times in clock cycles, we simulate these three

types of applications using a behavioral simulator developed for this research. Figure 74 shows

the normalized execution time of the first application which uses only on-chip memory. As

depicted in this figure, off-chip memory access can result in over 20% of execution time overhead

independent of the type of address space.

Normalized Execution Time

0%

20%

40%

60%

80%

100%

120%

140%

On-Chip Off-Chip
(Private)

Off-Chip
(Shared)

Matrix Multiplication

P
er

ce
nt

ag
e

Figure 74: Matrix multiplication: normalized execution time.

4.5.4.2. Memory Requirement

In this section, the results of memory requirements to run the given applications are

described in terms of the number of memory words and the required memory area for certain

types of memory. Before we show the results for the applications, it is interesting to show the

relationship of the number of transistors and occupied area to a given number of memory words

for different types of memories, such as DRAM, SRAM, and register file.

Figure 75 and Figure 76 show that required memory area for a given number of memory

words is ordered as [Area (Register File) > Area (SRAM) > Area (DRAM)]. Thus the same

amount of memory can be implemented with different area costs by choosing different types of

memory. To see this impact, first we show the memory requirements in memory words for each

implementation of matrix multiplication in Figure 77.

99

Estimation of Number of Transistors(T) and
Area(mm2)

0

50000

100000

150000

200000

250000

2 4 8 16 32 64 128 256

Number of Words

N
um

be
r o

f
Tr

an
si

st
or

s

0

5

10

15

20

A
re

a
(m

m
2)

Estimated Area (Register File) Estimated Area (SRAM) Estimated Area (DRAM)

Number of Transistors (Register File) Number of Transistors (SRAM) Number of Transistors (DRAM)

Figure 75: Estimation of the number of transistors and area for each type of memories: DRAM,

SRAM, and register file.

Estimation of Number of Transistors(T) and Area(mm2)

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

2 4 8 16 32 64 128 256

Number of Words

N
um

be
r o

f T
ra

ns
is

to
rs

0.00

0.01

0.10

1.00

10.00

100.00

A
re

a
(m

m
2)

Estimated Area (Register File) Estimated Area (SRAM) Estimated Area (DRAM)

Number of Transistors (Register File) Number of Transistors (SRAM) Number of Transistors (DRAM)

Figure 76: Estimation of the number of transistors and area for each type of memories: DRAM,
SRAM, and register file (log scale).

100

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

W
or

ds

On-Chip Off-Chip
(Private)

Off-Chip
(Shared)

Matrix Multiplication

Memory Requirements
Off-Chip Memory Requirement
On-Chip Memory Requirement

Figure 77: Memory requirements for each implementation in the number of memory words.

Since, matrix B is shared by storing it in shared off-chip memory space, the memory

requirement for a matrix multiplication application using shared off-chip memory space is

minimal in this simulation. For each memory requirement for each implementation as in Figure

77, we estimate the required memory area for two cases. The first case is that DRAM is used for

the off-chip memory, and SRAM is used for the on-chip memory. The second case is that both

memories (on-chip and off-chip) are implemented by SRAM. The former is depicted in Figure 79

and the latter is depicted in Figure 78.

As shown in Figure 77, the number of required memory words is same for the first two

implementations – on-chip and off-chip (private). However, required memory area is much less

for the second implementation where the off-chip memory is implemented by DRAM technology

as shown in Figure 79.

101

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
re

a
(m

m
2
)

On-Chip Off-Chip
(Private)

Off-Chip
(Shared)

Matrix Multiplication

Memory Requirements
Off-Chip Memory Requirement (SRAM)
On-Chip Memory Requirement (SRAM)

Figure 78: Memory requirements in area where both memories (on-chip & off-chip) are
implemented by SRAM.

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

A
re

a
(m

m
2)

On-Chip Off-Chip
(Private)

Off-Chip
(Shared)

Matrix Multiplication

Memory Requirements
Off-Chip Mem ory Requirem ent (DRAM)
On-Chip Mem ory Requirem ent (SRAM)

Figure 79: Memory requirements in area where off-chip memory is implemented by DRAM and
on-chip memory is implemented by SRAM.

102

4.5.4.3. Memory Area Efficiency

As mentioned earlier, memory area efficiency is computed as
Performance
MemoryArea

where

Performance is 1 / (Execution Time in Clock Cycles) and MemoryArea is the estimated area

shown in Figure 79. To compute the area efficiency, DRAM dense memory is used for the off-

chip memory.

Figure 80 shows the normalized area efficiency where this value is 1 for the implementation

that is using only on-chip memory. This figure shows that implementations with systolic off-chip

memory are better in terms of area efficiency compared to the application with only on-chip

memory. In addition, between two implementations with systolic virtual memory, the third

implementation which uses shared address memory space can achieve much better area efficiency

for the matrix multiplication application. As a result, systolic virtual off-chip memory with shared

address space can achieve over 50% higher area efficiency than that of an on-chip only system for

a matrix multiplication application.

Normalized Area Efficiency

0%
20%
40%
60%
80%

100%
120%
140%
160%
180%

On-Chip Of f -Chip
(Private)

Of f -Chip
(Shared)

Matrix Multiplication

Pe
rc

en
ta

ge

Figure 80: Normalized area efficiency.

103

4.6. Chapter Conclusion

An area efficient SIMD-systolic system with systolic virtual memory is presented. A data

prefetch technique developed in our research extends the instruction format by attaching prefetch

information to the local PE instruction. Due to the long instruction format, executions of local PE

operation and data prefetch instruction can be overlapped. As a result, our approach to data

prefetching with hard-wired address table can effectively hide the relatively long off-chip

memory latency without prefetch instruction overhead unless there is a channel conflict. In

addition, instruction scheduling also minimizes delays resulting from systolic off-chip memory

access. To utilize the systolic virtual memory with systolic instruction broadcast, instruction and

data should rendezvous at a certain time. The constraints are handled by the instruction scheduler

in our approach. To analyze the effectiveness of our system, we implemented a matrix

multiplication application in three different versions. By analyzing the area efficiency, we can

determine that systolic virtual off-chip memory with shared address space can achieve over 50%

higher area efficiency than that of on-chip only system for a matrix multiplication application.

104

CHAPTER 5

Concluding Remarks

5.1. Conclusions

Contribution 1: Efficient Storage Usage in Embedded SIMD Systems

An analysis method for assessing storage needs and costs of a given application

automatically retargeted across a spectrum of storage configuration designs was developed. Using

this technique, a SIMD processing element achieves optimal area and energy efficiency with a

register file containing between 8 and 12 words for given workload. This configuration is

between 15% and 25% more area and energy efficient than other memory configurations being

considered.

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures

Systolic instruction broadcast is a high performance and area efficient instruction

broadcasting scheme with short-wire interconnects by eliminating of wire latency bottleneck

found in global instruction broadcast. In this contribution, we simulated systolic instruction

broadcast in three approaches – software method, 2-write port register file method, and bypass

method. Each method can result different area efficiencies based on the fraction of

communications over a given set of instructions. In our evaluations, due to the system’s short

clock cycle time and scheduler, a speedup in system performance of up to 7.5 can be achieved by

the year 2010. In addition, speedup of area efficiency also can be achieved up to 7.2 for a given

workload.

Contribution 3: Systolic Virtual Memory

The ability of minimizing off-chip memory access latency while maximizing access

frequency by scheduling techniques along with data prefetch techniques in systolic virtual

memory mechanism was evaluated using our SIMD-systolic architecture simulator. Results show

105

that, systolic virtual off-chip memory with shared address space can achieve over 50% higher

area efficiency than that of an on-chip only system for a matrix multiplication application.

5.2. Future Work

Memory design exploration techniques can be extended to analyze the off-chip memory

designs as well as on-chip memories. This work requires thorough knowledge of data usage and

efficient data placement algorithms. Since the PEs in a column of a SIMD-systolic system share

an off-chip memory module, storing data which is shared by PEs in a same column in the off-chip

memory will save the required memory area and also achieve high area efficiency. In this

research, we assumed that all off-chip data reside in one burst length under burst mode. However,

this will be extended to consider the boundary conditions of burst length and reschedule the

instructions based on this information. To evaluate the effectiveness of systolic virtual memory,

more design explorations are needed such as the replication factor of data stored in off-chip

memory, the directions of data distribution from off-chip memory along with the directions of

instruction broadcasting, and the placement and the number of off-chip memory modules.

106

APPENDIX A

SIMPil Architecture

The SIMD Pixel Processor (SIMPil) architecture is a portable, single-chip, focal-plane

SIMD processor developed by the Portable Image Computation Architecture Group (PICA) at

Georgia Institute of Technology [70]. Each PE has its own local memory, register file, a 4 x 4

photo detector to sample an image, MACC (multiply accumulator), ALU, barrel shifter, sleep

unit, decoder, bus driver, and communication unit. The PEs communicate with neighboring PEs

using a NEWS network. Since SIMD architecture executes a single instruction over a set of data

in each PE, high throughput can be achieved where the data parallelism presents in a given

algorithm. Especially, image processing applications have significant amount of data parallelism

based on the algorithm. Thus, SIMD architecture can achieve high performance in multimedia

application area and the performance is proportional to the number of PEs in a SIMD array. For

the evaluation of our research, we extend a behavioral SIMD simulator, which has been

developed by the PICA group [70], to support systolic instruction broadcast and systolic memory

operations. Figure 81 shows the overall structure of SIMPil16 architecture.

Figure 81: SIMPil microarchitecture.

Local
(256

Register
16 by 16
2 read, 1

Arithmetic
Logical,

Shift

Multiply
 Abs. Difference

Accumulator

Special Registers &

 S&H
 and
ADC

Communication

Decode

Neighboring

CFA

Single Processing Element

P

SIMD Array

ACU

P P P P

P P P

P P P P

P P P P

P

107

References

 [1] Kee Shik Chung, “ILP-SIMD: An Instruction Parallel SIMD Architecture With Short-Wire
Interconnects,” Ph.D. Dissertation, Georgia Institute of Technology, Atlanta, Georgia,
April 2000.

[2] Ralph Duncan, “A Survey of Parallel Computer Architectures,” IEEE Computer, vol. 23,
no. 2, pp. 5-17, 1990.

[3] Wen-Tsong Shiue, Sathish Udayanarayanan and Chaitali Chakrabarti, "Data Memory
Design and Exploration for Low Power Embedded Systems", ACM Transactions on Design
Automation of Electronic Systems, vol. 6, no. 4, pp. 553-568, 2001.

[4] James D. Allen and David E. Schimmel, “Issues in the Design of High Performance SIMD
Architectures,” IEEE Transactions on Parallel and Distributed Systems, vol. 7, no. 8, pp.
818-929, 1996.

[5] M. Bolotski, R. Amirtharajah, W. Chen, T. Kutscha, T. Simon and T. Knight Jr., "Abacus:
A High-Performance Architecture for Vision," Proceedings of International Conference on
Pattern Recognition, 1994.

[6] PixelFusion, Ltd.: http://www.pixelfusion.com

[7] Eberhard Zehendner, “Simulating Systolic Arrays on MasPar Machines,” Proceedings of
the 23rd EUROMICRO Conference (EUROMICRO’97), New Frontiers of Information
Technology, pp. 394-401, 1997.

[8] D. W. Blevins, E. W. Davis and R. A. Heaton, "Blitzen: A highly integrated massively
parallel machine," Journal of Parallel and Distributed Computing, vol. 8, pp. 150-160,
1990.

[9] MASPAR MP-2: http://csep1.phy.ornl.gov/mp2_guide/mp2_guide.html

[10] Todd E. Rockoff, “SIMD instruction cache,” Proceedings of the 6th Annual ACM
Symposium on Parallel Algorithms and Architectures, pp. 67-75, 1994.

[11] C. E. Leiserson, Area-Efficient VLSI Computation, ACM Doctoral Dissertation Award
Series, MIT Press, 1983.

[12] H. T. Kung, “Why Systolic Architectures?” IEEE Computer, vol. 15, no. 1, pp. 37-46,
1982.

[13] H. T. Kung, “Systolic Communication,” Proceedings of the International Conference on
Systolic Arrays, pp. 695 -703, 1988.

108

[14] J. A. B. Fortes, K. S. Fu and B. W. Wah, “Systematic Design Approaches for
Algorithmically Specified Systolic Arrays,” Computer Architecture: Concepts and
Systems, Chapter 11, Elsevier Science Publishing Co., pp. 454-494, 1987.

[15] Kurtis T. Johnson, A. R. Hurson and Behrooz Shirazi, “General-Purpose Systolic Arrays,”
IEEE Computer , vol. 26, no. 11, pp. 20-31, 1993.

[16] J. A. B. Fortes and B. W. Wah, “Systolic Arrays – From Concept to Implementation,”
IEEE Computer, vol. 20, no. 7, pp. 12-17, 1987.

[17] J. A. B. Fortes, K. S. Fu and B. W. Wah, “Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,” Proceedings of the International Conference
on Acoustics, Signal and Speech Processing, vol. 1, pp. 8.9.1-8.9.5, 1985.

[18] Sek. M. Chai and S. Scott Wills, “Systolic Opportunities for Multidimensional Data
Streams,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 4, pp. 388-
398, 2002.

[19] Keshab K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation,
Wiley, John & Sons Inc., 1998.

[20] D. Lavenier, P. Quinton and S. Rajopadhye, Advanced Systolic Design in Digital Signal
Processing for Multimedia Systems, Chapter 23, Parhi and Nishitani Eds, Marcel Dekker,
Inc., 1999.

[21] S. Y. Kung, VLSI array processors, Prentice-Hall, Inc., 1987.

[22] D.I. Moldovan and J.A.B. Fortes, "Partitioning and Mapping Algorithms into Fixed Size
Systolic Arrays," IEEE Transactions on Computers, vol. 35, no. 1, pp. l-12, 1986.

[23] Y. Hwang and Y. Hu, "On Systolic Mapping of Multi-Stage Algorithms," Proceedings of
IEEE Conference on Application Specific Array Processors, pp. 47-61, 1992.

[24] S.K. Rao and T. Kailath, "Regular Iterative Algorithms and Their Implementation on
Processor Arrays," IEEE Proceedings, pp. 259-269, 1988.

[25] Hans-Werner Lang, “Transitive Closure on an Instruction Systolic Array,” Proceedings of
the International Conference on Systolic Arrays, pp. 295-304, 1988.

[26] O. Y. de Vel and V. K. Murthy, “Programmable Systolic Arrays for Robotic and Computer
Vision Systems,” Proceedings of the 3rd International Conference on Image Processing
and its Applications, pp. 506-510, 1989.

[27] Bertil Schmidth, Manfred Schimmler and Heiko Schroder, “Long Operand Arithmetic on
Instruction Systolic Computer Architectures and Its Application in RSA Cryptography,”
Proceedings of Euro-Par’98, pp. 916-922, 1998.

[28] Bertil Schmidth and Manfred Schimmler, “A Parallel Accelerator Architecture for
Multimedia Video Compression,” Proceedings of Euro-Par Conference (Euro-Par ’99),
pp. 950-960, 1999.

109

[29] Bertil Schmidth, Heiko Schroder and Manfred Schimmler, “Protein Sequence Comparison
on the Instruction Systolic Array,“ Proceedings of 6th International Conference on
Parallel Computing Technologies (PaCT), pp. 498-509, 2001.

[30] Instruction Systolic Array Related Web pages:
http://www.ntu.edu.sg/home/asheiko/Research.htm.

[31] Vivek Tiwari, Sharad Malik and Andrew Wolfe, “Compilation Techniques for Low
Energy: An Overview,” Proceedings of the Symposium on Low Power Electronics, pp. 38-
39, 1994.

[32] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulkarni, A.
Vandercappelle and P. G. Kjeldsberg, “Data and Memory Optimization Techniques for
Embedded Systmes,” ACM Transactions on Design Automation of Electronic Systems, vol.
6, no. 2, pp. 149-206, 2001.

[33] N. Dutt, A.Nicolau, H. Tomiyama and A. Halambi, “New directions in compiler
technology for embedded systems,” Proceedings of Asia and South Pacific Design
Automation (ASP-DAC) Conference, pp. 409–414, 2001.

[34] G. Araujo, S. Malik and M. Lee, “Using Register Transfer Paths in Code Generation for
Heterogeneous Memory-Register Architectures,” Proceedings of the 33rd Design
Automation Conference (DAC), pp. 591-596, 1996.

[35] P. Marwedel and G. Goossens, Code Generation for Embedded Processors, Kluwer
Academic Publishers, 1995.

[36] C. Liem, P. Paulin and A. Jerraya, “Address calculation for retargetable compilation and
exploration of instruction-set architecture,” Proceedings of the 33rd Design Automation
Conference, pp. 597-600, 1996.

[37] R. Leupers, “Novel code optimization techniques for DSPs,” Proceedings of the 2nd
European DSP Education and Research Conference, 1998.

[38] R. Leupers, “Code Generation for Embedded Processors,” Proceedings of the 13th

International Symposium on System Synthesis (ISSS), pp. 173–178, 2000.

[39] Stan Liao, Srinivas Devadas, Kurt Keutzer, Steve Tjiang and Albert Wang, “Code
Optimization Techniques for Embedded DSP Microprocessors,” Proceedings of the 32nd
ACM/IEEE Conference on Design Automation Conference, pp. 599-604, 1995.

[40] S. Liao et al., Code generation and optimization techniques for embedded digital
processors, Kluwer Academic Publishers, 1995.

[41] E. D. Greef, F. Catthoor and H. D. Man, “Memory Size Reduction through Storage Order
Optimization for Embedded Parallel Multimedia Applications,” Parallel Computing, vol.
23, no. 12, pp. 1811-1837, 1997.

[42] E. D. Greef, F. Catthoor and H. D. Man, “Array placement for storage size reduction in
embedded multimedia systems,” Proceedings of the IEEE International Conference on
Application-Specific Systems, Architectures and Processors, pp. 66-75, 1997.

110

[43] D. F. Bacon, S. L. Graham and O. J. Sharp, “Compiler Transformations for High-
performance Computing,” ACM Computing Surveys, vol. 26, no. 4, pp. 345- 420, 1994.

[44] A. V. Aho, R. Sethi and J. D. Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley Publishing Company, 1988.

[45] G. J. Chaitin, “Register Allocation and Spilling via Graph Coloring,” Proceedings of the
ACM SIGPLAN '82 Symposium on Compiler Construction, vol. 17, no. 6, pp. 98-105,
1982.

[46] Preston Briggs, Keith D. Cooper, Ken Kennedy and Linda Torczon, “Coloring heuristics
for register allocation,” Proceedings of the ACM SIGPLAN '89 Conference on
Programming Language Design and Implementation, pp. 275-284, 1989.

[47] Preston Briggs, “Register Allocation via Graph Coloring,” Rice University, Center for
Research on Parallel Computation (CRPC), Houston, TX , Tech Rep. TR92-183, 1998.

[48] C. Liem, Retargetable Compilers for Embedded Core Processors, Kluwer Academic
Publishers, 1997.

[49] S. Hanono and S. Devadas, “Instruction Selection, Resource Allocation, and Scheduling in
the AVIV Retargetable Code Generator,” Proceedings of the 35th Design Automation
Conference (DAC), pp. 510-515, 1998.

[50] R. Leupers and P. Marwedel, “Retargetable Generation of Code Selectors from HDL
Processor Models,” Proceedings of European Design and Test Conference (ED&TC), pp.
140-144, 1997.

[51] R. Leupers, “Compiler Design Issues for Embedded Processors,” Design & Test of
Computers, IEEE, vol. 19, no. 4, pp. 51-58, 2002

[52] David A. Barrett and Benjamin G. Zorn, “Using Lifetime Predictors to Improve Memory
Allocation Performance,” Proceedings of SIGPLAN '93 Conference on Programming
Language Design and Implementation, vol. 28, pp. 187-196, 1993.

[53] David A. Cohn and Satinder Singh, “Predicting Lifetimes in Dynamically Allocated
Memory,” Proceedings of Advances in Neural Information Processing Systems conference,
vol. 9, pp. 939-945, 1996.

[54] Nam Ling and Magdy A. Bayoumi, “The design and implementation of multidimensional
systolic arrays for DSP applications,” Proceedings of International Conference on
Acoustics, Speech, and Signal Processing (ICASSP-89), vol. 2, pp. 1142-1145, 1989.

[55] Martin C. Herbordt, Jade Cravy and Renoy Sam, “A System for Evaluating Performance
and Cost of SIMD Array Designs,” Journal of Parallel and Distributed Computing, vol.
60, no. 2, pp. 217-246, 2000.

[56] Johannes M. Mulder, Nhon T. Quach and Michael J. Flynn, “An Area Model for On-Chip
Memories and its Application,” IEEE Journal of Solid-State Circuits, vol. 28, no. 2, pp. 98-
106, 1991.

111

[57] Massoud Pedram, “Power Minimization in IC Design: Principles and Applications,” ACM
Transactions on Design Automation of Electronic Systems, vol. 1, no. 1, pp. 3-56, 1996.

[58] N. Kavvadias, A. Zanikopoulos, Ch. Voliotidis, S. Kougia, A. Chatzigeorgiou, N. Zervas
and S. Nikolaidis, “Power Exploration of Parallel Embedded Architectures Implementing
Data-Reuse Transformations,” Proceedings of the IEEE International Conference on
Electronics, Circuits and Systems (ICECS), vol. 2, pp. 781-784, 2001.

[59] Milind B. Kamble and Kanad Ghose, “Analytical Energy Dissipation Models for Low
Power Caches,” Proceedings of the International Symposium for Low Power Electronics
and Design, pp. 143-148, 1997.

[60] M. Dasygenis, N. Kroupis, K. Tatas, A. Argyriou, D. Soudris and A. Thanailakis, “Power
and Performance Exploration of Embedded Systems Executing Multimedia Kernels,” ACM
Transactions on Design Automation of Electronic Systems, vol. 1, no. 1, pp. 3-56, 1996.

[61] Paul E. Landman and Jan M. Rabaey, “Activity-Sensitive Architectural Power Analysis,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 15,
no. 6, pp. 571-587, 1996.

[62] Enrico Macii, Massoud Pedram and Fabio Somenzi, “High-Level Power Modeling,
Estimation, and Optimization,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 17, no. 11, pp. 1061-1079, 1998.

[63] J. C. Eble, V. K. De, D. S. Wills and J. D. Meindl, “A Generic System Simulator
(GENESYS) for ASIC Technology and Architecture Beyond 2001,” Proceedings of the 9th
Annual IEEE International ASIC Conference, pp. 193-196, 1996.

[64] Nasser M. Nasrabadi and Robert A. King, “Image Coding Using Vector Quantization: A
Review,” IEEE Transactions on Communications, vol. 36, no. 8, pp. 957-971, 1988.

[65] Pamela C. Cosman, Robert M. Gray and Martin Vetterli, “Vector Quantization of Image
Subband: A Survey,” IEEE Transactions on Image Processing, vol. 5, no. 2, pp. 202-225,
1996.

[66] Dennis Sylvester, and Kurt Keutzer, “A Global Wiring Paradigm for Deep Submicron
Design,” IEEE Transactions on Computer Aided Design of Integrated Circuits and
Systems, vol. 19, no. 2, pp. 242-252, 2000.

[67] George A. Sai-Halasz, “Performance Trends in High-End Processors,” Proceeding of
IEEE, vol. 83, no. 1, pp. 20-36, 1995.

[68] International Technology Roadmap for Semiconductor (ITRS), 2001: http://public.itrs.net

[69] S. Rixner, W. Dally, B. Khailany, P. Mattson, U. Kapasi, and J. Owens, “Register
organization for media processing,” Proceedings of 6th High-Performance Computer
Architecture (HPCA-6), pp. 375--386, January 2000.

[70] H. Cat et al., "SIMPil: An OE integrated SIMD architecture for Focal Plane Processing
Applications," Proceedings of 3rd International Conference on Massively Parallel
Processing using Optical Interconnections, pp. 44-52, 1996.

112

[71] Gregory A. Baxes, Digital Image Processing – Principles and Applications, John Wiley &
Sons, Inc., 1994.

[72] T. C. Mowry, S. Lam, and A. Gupta, “Design and Evaluation of a Compiler Algorithm for
Prefetching," Proceedings of 5th International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. 62-73, 1992.

[73] S. P. VanderWiel, and D. J. Lilja, “When Caches Aren’t Enough: Data Prefetching
Techniques,” IEEE Computer, pp. 23-30, 1997.

[74] A. J. Smith, “Cache Memories,” Computing Surveys, vol. 14, no. 3, pp. 473-530, 1982.

[75] T-F Chen and J-L Baer, “Effective Hardware-Based Data Prefetching for High
Performance Processors,” IEEE Transactions on Computers, vol. 44, no. 5, pp. 609-623,
1995.

[76] T-F Chen and J-L Baer, “A Performance Study of Software and Hardware Data Prefetching
Schemes,” Proceedings of 21st Annual International Symposium on Computer
Architecture, pp. 223-232, 1994.

[77] E. H. Gornish, and A. V. Veidenbaum, “An Integrated Hardware/Software Scheme for
Shared Memory Multiprocessors,” Proceedings of International Conference on Parallel
Processing, pp. 281-284, 1994.

[78] Bruce Jacob, and Trevor Mudge, “Virtual Memory in Contemporary Microprocessors,”
IEEE Micro, pp. 60-75, 1998.

[79] David A. Patterson, and John L. Hennessy, Computer Organization & Design – The
Hardware/Software Interface, Morgan Kaufmann Publishers, Inc., 1998.

113

Vita

Soojung Ryu was born on October 6, 1971 in Seoul, Korea. She completed her Bachelor’s

degree in Computer Science at Dong-Duk Women’s University, Seoul, Korea, in 1994. She

received her Master of Science in Communication and Information Engineering from Korea

Advanced Institute of Science and Technology, Seoul, Korea, in 1996. She continued to work in

database management area at Korea Advanced Institute of Science and Technology, Seoul, Korea

as a research engineer until 1997.

She started her graduate studies in Electrical and Computer Engineering at Georgia Institute

of Technology in 1998. She joined the Portable Image Computation Architecture research group

in 1999. Under Dr. Scott Wills’ and Dr. Linda Wills’ supervision, she has been doing research on

storage management for embedded SIMD architectures. Her research interests include high

performance parallel architectures, portable multimedia embedded systems, image processing

architectures, short-wire architectures, storage management techniques. She received her Ph.D. in

Electrical Engineering in May 2004 from Georgia Institute of Technology.

She is happily married to Ji-Weon Jeong and they have a wonderful son, Daniel.

