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Summary 

SIMD parallelism offers a high performance and efficient execution approach for today’s 

broad range of portable multimedia consumer products. However, new methods are needed to 

meet the complex demands of high performance, embedded systems. This research explores new 

storage management techniques for this focused but critical application. These techniques include 

memory design exploration based on the application retargeting technique, storage-based systolic 

instruction broadcast, and systolic virtual memory to improve both the performance and 

efficiency of embedded SIMD systems. A selection of image processing applications serves as 

the workload for the study. Code retargeting software, architectural simulation, and technology 

models are used to evaluate these methods. 
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CHAPTER 1 
 

Introduction 

1.1.   Introduction 

 

Growing consumer demand for portable multimedia products is focusing architectural 

research on high efficiency, high performance computing architectures. These computing 

applications exhibit significant data parallelism that can be effectively exploited using well-

studied execution models, such as Single Instruction Multiple Data (SIMD) architectures. Limited 

attempts to harness data parallelism through subword parallelism have already been incorporated 

in multimedia instruction extensions on general-purpose microprocessors and more recently in 

DSP processors. Much greater parallelism is available in applications; but SIMD architectures 

techniques developed in the 1970’s and 1980’s do not fully address issues that arise in 

implementing a monolithic SIMD array in an embedded system. One critical area is the handling 

of storage (registers, local processing element (PE) memory, and off-chip memory). Technology 

advances in transistors, on-chip interconnects, and packaging have dramatically altered the 

relative performance, implementation cost, and level of integration of storage. 

This thesis presents research on techniques to efficiently handle the storage hierarchy in 

embedded SIMD processors for multimedia applications. It includes distribution of register and 

local memory storage, as well as a systolic approach to support off-chip dense memory arrays 

with minimum latency. 

The basic research problems being addressed are defined in the next section. 

1.2.   Problem Statement and Contributions 

 

There are many research issues to be addressed in the development of an embedded SIMD 

system. This thesis addresses three basic research problems. 
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First, in a replicated cell (a SIMD processing element), efficient silicon area usage is critical. 

Data storage (registers and local memory) is the single largest allocation of silicon area in a PE 

design. Registers have multiple access ports and the fastest access time whereas local memory 

can store more bits in a given area. An optimal allocation between registers and local memory 

requires a methodology for evaluating performance and cost across a set of target applications. 

Second, SIMD execution is defined as simultaneous execution of broadcast instructions at 

every PE. As VLSI technology advances, PEs get smaller and SIMD arrays get larger. To avoid 

inevitable clock frequency limitations, a segmented, temporally and/or spatially shifted broadcast 

technique must be employed. This scheme must employ a combination of software reordering and 

hardware mechanisms to avoid the resulting data hazards. 

Third, while local PE memory provides the fastest and most accessible (greatest access 

bandwidth) operand storage, off-chip dense memories can provide significantly greater density 

due to their specialized fabrication process and amortized interface circuitry. But accessing off-

chip memory is complicated by limited per PE memory bandwidth, especially for large PE arrays. 

The situation is further exacerbated by SIMD’s synchronous instruction execution that creates 

magnified peak off-chip bandwidth demands. 

This thesis research attacks these problems with three related architectural approaches:  

 

Approach 1: Improve methods to evaluate storage usage within a PE  

Develop automatic techniques to examine application characteristics and explore the space 

of feasible register and local memory configurations. This includes automatic application 

retargeting and compilation techniques and technology modeling so cost and efficiency can be 

accessed. 

 

Approach 2: Explore systolic instruction broadcast and resulting data hazard avoidance 

Systolic instruction broadcast [1] eliminates long broadcast wires at the expense of 

execution simplicity. Develop and evaluate techniques for eliminating data hazards with this 

staggered execution of instructions with minimal performance penalty. Use implementation 

strategies and technology models to area costs and overall area efficiency.  

 

Approach 3: Define and evaluate a systolic virtual memory system for off-chip storage 

When local PE memory is insufficient or inefficient to meet application needs, develop an 

off-chip memory access technique utilizing the staggered instruction execution that results from 

systolic instruction broadcast. Employ data prefetching and scheduling techniques to minimize 
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penalties resulting from increased access latency and limited access bandwidth. Technology 

models are again developed to evaluate cost and efficiency as well as performance. 

The following section summarizes related research on which this thesis builds. 

1.3.   Related Research 

1.3.1. SIMD Instruction Broadcast 

As mentioned earlier, long wires for global instruction broadcast in SIMD directly limit 

clock rates [1,2,4]. Recent designs attempt to address this problem with limited success; a board 

level instruction issue rate of 100MHz was achieved in 1995 by Bolotski’s Abacus [5] and a chip 

level issue rate of 200MHz is achieved in products from PixelFusion which are currently 

developed with the clock rate of 400MHz for 256 PEs [6]. This instruction bottleneck limits the 

scalability of SIMD architectures [1,4,7]. 

Two alternatives to overcome instruction bottlenecks are pipelined instruction broadcast and 

the use of instruction caches [4]. The first approach hides the average broadcast latency by 

pipelined instruction broadcast. The Blitzen project [8] and MasPar’s MP-2 [9] employed this 

method. The disadvantage of pipelined instruction broadcast is the required additional instruction 

latches. The second approach is proposed by Rockoff which uses a SIMD instruction cache [10]. 

However, this method consumes significant chip area and depends on temporal instruction 

locality for its effectiveness. 

1.3.2. Systolic Arrays 

H. T. Kung and C. E. Leiserson introduced systolic arrays in 1978 [11]. Figure 1 shows the 

conventional processor with one PE and systolic array with an array of PEs named cells due to 

their regularities [12,13,14].  

 
 
 
 
 
 

 

 

(a) Conventional processor with one PE (b) Systolic array with an array of PEs 

Figure 1: The principles of memory interfaces for (a) conventional processor and (b) systolic 
array [12]. 

MEMORY 

PE 

MEMORY 

PE PE PE PEPE PE 
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As shown in Figure 1-(b), systolic array can achieve high throughput with the same I/O 

bandwidth by having array of many PEs. In a systolic system, data is pumped from the memory 

module rhythmically, passing through the array of PEs until it returns to the memory module. 

Though, the systolic array shown in Figure 1 is a linear array, it can be multi-dimensional to 

achieve a high degree of parallelism.  

Systolic architectures have been proposed to design special-purpose systems whose 

efficiency derives from modular expansibility, simple and regular data and control flows, use of 

simple and uniform cells, elimination of global broadcasting, fan-in, fast response and balancing 

computation with I/O [2,12,15]. However, since the I/O problem is also related to the available 

internal memory, an appropriate memory structure should be designed to achieve a balance 

between computation time and I/O time [2,12,15].  Later surveys in [2,15] categorize systolic 

system into specific-purpose systolic system and general-purpose systolic system. Early design 

efforts in systolic systems were mainly related to solving a specific problem, e.g., matrix 

multiplication or convolution. These systems can achieve high performance due to application 

specific hardware. However, application specific architectures are expensive since their cost 

cannot be amortized across multiple applications. Thus many research efforts on general-purpose 

systolic architectures are gaining importance. General-purpose architectures can be divided into 

two categories – programmable models and reconfigurable models. The former can be 

implemented in SIMD or Multiple Instruction Streams and Multiple Data Streams (MIMD) 

architectures and the latter can be implemented by Field Programmable Gate Arrays (FPGAs). 

FPGAs have great advantage in flexibility by allowing system to be reconfigured. However, 

FPGAs are still more expensive, lower performance, and consume more power than those of 

Application Specific Integrated Circuits (ASICs). Thus programmable model is more appropriate 

for the current embedded systems running some set of applications while having some degree of 

flexibility thanks to the programmability.  

Very Large-Scale Integration (VLSI) has revived systolic systems from the early eighties 

because systolic architectures can be easily implemented with the growing levels of integration. 

However, systolic architectures remain difficult to design and implement due to the requirements 

of detailed information such as data and control flows, computation sequences, and spatial and 

temporal information of all data used by applications [16,17,18]. In addition, formal design 

methods involving correctness-preserving transformations are required as the complexity of VLSI 

system design increases [19].  There are several systematic design approaches to design specified 

systolic arrays algorithmically [14,16,17,18,19,20]. Such techniques, transformation methods 

based on data flow [21], mathematical transformations based on data dependencies [22], and 
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mappings for multistage algorithms [23], are well observed for several algorithms in 

[14,17,18,19]. These design methods start with the representation of systolic algorithms in several 

formats such as data-flow graphs [19], signal-flow graphs [19], or Regular Iterative Algorithms 

(RIAs) [24]. These representations basically capture information about data dependencies and 

functional requirements. A popular graph representation is the Reduced Dependence Graph 

(RDG) which can be used to determine processor mappings for each task and scheduling of an 

algorithm based on the computed delays from data dependencies. Resulting processor maps and 

schedules correspond to the representation of the given algorithm. Usually, space representations 

depend only on algorithms not on architectures. Thus processor mappings and scheduling 

methods should be reconsidered to design SIMD-systolic architectures with fixed architecture 

features to obtain proper mapping of processors while satisfying time-constraints corresponding 

to systolic instruction broadcast.   

This research extends the SIMD architecture by employing systolic instruction broadcast and 

systolic data movement methodologies to overcome the bottleneck of the memory bandwidth in 

SIMD architectures and to eliminate long wires which may cause low clock frequency, increased 

interconnection area and high power consumption. Concerns of efficient sequencing of 

instructions and scheduling of data movement are addressed for a correctness-preserving system 

design. A SIMD-systolic architecture simulator is built to run a set of workloads and the current 

technologies are plugged in the simulator to study the implementation limits.  

1.3.3. Instruction Systolic Architecture (ISA) 

In this section, the comparisons between SIMD-systolic system and Systola 1024 (ISATEC 

Co.) [25,26,27,28,29,30] are presented. In Section 3.3.2, more details of Systola architecture will 

be explained. The main difference between these two systems lies in the existence of instruction 

scheduler and data prefetching logic. The differences in high-level design issues between Systola 

1024 and SIMD-systolic system are categorized in Table 1. 

Table 2 shows several details in comparisons of Systola 1024 with SIMD-systolic system 

which is defined as target architecture of our research. 

 

 

 

 

 



 6

Table 1: High-level comparisons between Systola and SIMD-systolic system 

 Systola 1024 SIMD-systolic  
Wires Short Short 
Instruction Distribution Systolic way Systolic way 

Systematic design method N/A Yes (Extended mapping techniques 
for the data dependency graph) 

Scheduling Responsibility Programmer Scheduler 
Methodology to control the data 
movement based on the 
corresponding instruction 

N/A Instruction scheduling and data 
sequencing 

Bandwidth from one memory 
module Serial bit-wise Word wide (16bits/word) 

 

 

Table 2: Low-level comparisons between Systola and SIMD-systolic system 

 Systola 1024 SIMD-systolic  
Flexibility Yes (Programmability + Selectors) Yes (Programmability + more general 

instruction sets) 
Simplicity & 
Scalability Yes (Simple regular processor array) Yes (Simple regular processor array) 

Generality 

Medium (Use of selectors makes 
possible to run the different set of 
instructions on different PE. + Small 
set of instructions restrict the 
functionality of processors) 

Medium-High (Instruction sets are more 
general to cover a large set of 
applications) 

Suitability for 
VLSI Yes Yes 

Aggregate 
Function Easy and Fast Easy and Fast 

Diameter High (2N – 2 for NxN processor array) High (2N – 2 for NxN processor array) 
Conditional jumps N/A Sleep, Jump, Branch instructions 
Global operation N/A s_vectorize, s_raisehand 

Value Broadcasting Row-wise or Column-wise 
Immediate value can be broadcasted 
from controller using s_vectorize 
instruction 

Data Word Length 8 bits 16 bits 

On-chip Memory 32 registers + 2 communication 
registers (C-registers) 16 registers + 256 memory words 

Special constant Registers 0, -1 N/A 
State flags zero flag, negative flag  
Number of 

instructions 
24 instructions 

70 instructions (38 PE instructions + 32 

controller instructions) 
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1.3.4. Compilation Techniques for Storage Optimization 

Compilation techniques have been heavily developed to improve performance. In this sense, 

memory optimization techniques are developed to minimize memory bottlenecks due to the gap 

between processor and memory performance. One of them is the design of storage hierarchy 

which tries to reduce the memory access time by maximizing data locality. 

However, storage (data and program) reduction techniques must be considered for resource-

constraint systems, such as embedded systems [31,32,33]. This class of architectures is often used 

as portable devices in which power consumption and area cost are very important factors to 

achieve the long battery life and small size, in addition to high performance. 

Until the early nineties, memory optimization techniques for embedded systems have been 

mainly developed to decrease code size, such as addressing optimization [34,35,36,37], mode 

optimization [38,39,40] and code compression [40]. These techniques utilize special architectural 

features such as addressing modes for a particular embedded system to minimize the code size. 

Program memory optimization is not the main concern in this proposed research since PEs will 

receive an instruction from a central controller without storing it.  

Recently, many data memory optimization techniques are being developed as embedded 

systems flourish. The main effort is to reduce an allocated memory size especially for array data 

which usually takes a large fraction of data [41,42]. Data memory optimization techniques can be 

categorized into two approaches – architecture dependent optimizations and architecture 

independent optimizations [32]. A recent survey on data memory optimizations is available in 

[32].  

Architecture independent optimization techniques are based on source-level transformations 

such as loop transformation and code rewriting to increase the data reusability. Loop 

transformation techniques are developed for long periods to increase the performance of the 

program [43]. However, these techniques also can be used to decrease the number of data 

accessed by merging two loops which access the same data [32]. 

Architecture dependent optimization techniques are designed for particular memory 

architectures. One of effective ways of reducing memory requirements is through better 

utilization of given registers. This is not only for maximizing memory utilization, and also for 

reducing power consumption and maximizing performance. The most frequently used variable 

should get the highest priority to be assigned a register since access to a register is less power 

consumed, and results in shorter access time. Register allocation is a standard part of the 

compilation process [44], usually using a common graph-coloring algorithm [45,46,47]. 
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Typically, register allocation is performed on an internal representation (IR) right before code 

generation.  

However, in this research, a cost-based register allocation is performed on assembly code. 

The result of our technique is assembly code that is retargeted to a given number of registers. If 

an input assembly code can run with a given number of registers, the input application is 

rewritten automatically to minimize the number of registers used in the application. Otherwise, 

the data in registers will be spilled into the data memory [45]. The register allocation and memory 

spilling are based on a cost model which is used to select the spilling-candidate registers.  

Application retargeting is often performed by retargetable compilers [48]. A significant 

amount of research in this area has been conducted for embedded processors including CHESS 

[38], SPAM [34], AVIV [49], RECORD [50], and CodeSyn [48]. Since a single retargetable 

compiler is sufficient for different configurations of architecture, retargetable compilers are 

gaining popularity as reconfigurable architectures are emerging that can be tailored to a given 

workload. However, these techniques take high-level programs or some descriptions as an input. 

Thus hand-coded assembly code cannot be retargeted with these techniques directly. We develop 

retargeting techniques which can be used for general patterns of assembly applications – hand-

written codes and compiler generated codes. Consequently retargeting techniques can play a great 

role in developing register size dependent embedded applications which still are written in 

assembly languages to achieve real-time performance requirements.  

In this research, memory optimization is performed based on variable lifetimes under the 

assumption that effective addresses can be determined in compile time. The lifetime based 

optimizations [52,53] are reassigning the same memory location for different data items of which 

lifetimes are not overlapped. The resulting memory optimized code is also written in assembly 

code running on the same architecture as an input platform. Our retargeting techniques for 

different register sizes may increase memory uses due to the spilling. Thus memory optimization 

technique, called memory retargeting, is placed after register retargeting to increase data 

reusability by variable lifetime analysis. In addition, lifetime analysis techniques to place the 

frequently used data in higher level of memory in a memory hierarchy are useful when off-chip 

memory is used, to deal with its long access time. 

Our retargeting techniques – register retargeting and memory retargeting – can be used to 

decide the optimal storage configurations for a selected set of workloads by analyzing the 

resulting retargeted applications in terms of the area efficiency and energy efficiency. This 

technique is applicable to either SIMD architectures or general architectures.  
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1.3.5. Summary of Related Research 

Related research is described based on categories of techniques from Section 1.3.1 through 

Section 0. The proposed research is built on this related research. The summary of related 

research is depicted in Figure 2. In addition, Figure 2 shows the relations among these research 

efforts to express how this research is built on the previous research works. 

 

 

 

Figure 2: Relations among related research and our approaches in three contributions. 

Products 
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Related Research 
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- Retargetable 
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Area Estimation 
[55,56] 
Power Estimation 
[57,58,59,60,61,62]

Abacus 
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Blitzen Project 
MP-2 
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Storage-Based Systolic Instruction 
Broadcast 

Register Allocations: 
[44,46,47]  
Memory Spilling: [45] 

Reducing 
Instruction 

Bottleneck in 
SIMD 

[4,8,9,10] 

Memory Optimizations 
- Program memory optimizations [34,35,37,38,39] 
- Data memory optimizations [32,41,42] 

Systolic System 
- Concept of systolic systems [2,11,12,15,54] 
- Systematic transformation techniques 

[14,16,17,18,20] 

Data Prefetching [72,73,74,75,77] 
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1.4.   Thesis Contribution Summary 

This outline summarizes the contributions presented in this thesis. 

 

 Contribution 1: Efficient Storage Usage in Embedded SIMD Systems  

An analysis method for assessing storage needs and costs of a given application 

automatically retargeted across a spectrum of storage configuration designs was developed. Using 

this technique, a SIMD processing element achieves optimal area and energy efficiency with a 

register file containing between 8 and 12 words for given workload. This configuration is 

between 15% and 25% more area and energy efficient than other memory configurations being 

considered. 

 

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures 

Systolic instruction broadcast is a high performance and area efficient instruction 

broadcasting scheme with short-wire interconnects by eliminating of wire latency bottleneck 

found in global instruction broadcast. In this contribution, we simulated systolic instruction 

broadcast in three approaches – software method, 2-write port register file method, and bypass 

method. Each method can result different area efficiencies based on the fraction of 

communications over a given set of instructions. In our evaluations, due to the system’s short 

clock cycle time and scheduler, a speedup in system performance of up to 7.5 can be achieved by 

the year 2010. In addition, speedup of area efficiency also can be achieved up to 7.2 for a given 

workload. 

 

Contribution 3: Systolic Virtual Memory 

The ability of minimizing off-chip memory access latency while maximizing access 

frequency by scheduling techniques along with data prefetch techniques in systolic virtual 

memory mechanism was evaluated using our SIMD-systolic architecture simulator. Results show 

that, systolic virtual off-chip memory with shared address space can achieve over 50% higher 

area efficiency than that of an on-chip only system for a matrix multiplication application. 
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Contribution 1: Efficient Storage Usage in Embedded SIMD Systems 

• Created methods and tools that retarget assembly language applications to 

different on-chip memory configurations. 

• Developed a memory configuration evaluation framework for performance, 

technology-model-based costs (area and energy), and area and energy 

efficiency. 

• Exercised and evaluated techniques for a selected application set. 

 

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures 

• Evaluated three approaches (software-only, 2-write port registers and hardware 

bypass) for systolic instruction broadcasts to support instruction execution at 

local interconnect clock frequency projections. 

• Developed instruction reordering scheduler that minimizes execution time 

penalties for software hazard avoidance methods. 

• Incorporated implementation and technology models for hazard avoidance 

methods to evaluate area cost for different technology generations. 

• Evaluated system performance and area efficiency for hazard avoidance 

methods for a high-communication application workload. 

 

Contribution 3: Systolic Virtual Memory 

• Developed a scheme for utilizing a combination of local PE and off-chip 

memory in an embedded SIMD system. 

• Adapted a linear mapping algorithm for systolic off-chip memory prefetch 

scheduling. 

• Defined a VLIW-style SIMD instruction format and controller modification to 

support systolic virtual memory. 

• Evaluated technique using both high memory synthetic and kernel 

applications. 

• Incorporated technology and memory cell implementation models for memory 

size, area, and area efficiency evaluation. 
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1.5.   Thesis Outline 

 

The next three chapters of this dissertation discuss the methodology and results of the 

primary contributions.  Chapter 2 presents an analysis method for assessing storage needs and 

costs of a given application automatically retargeted across a spectrum of storage configuration 

designs. Chapter 3 presents techniques for short-wire instruction broadcast to eliminate the wire 

latency bottleneck found in global instruction broadcast. Chapter 4 presents support for off-chip 

dense memory, called systolic virtual memory.  The final chapter, Chapter 5, summarizes the 

results of this work and discusses future work. The appendix provides brief details about our 

baseline architecture, the SIMPil system.  
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CHAPTER 2 
 

Efficient Storage Usage in Embedded SIMD 
Systems 

2.1.   Summary 

Operand storage consumes a significant fraction of silicon area in today’s processors. For 

embedded systems, resources are often limited and cost is critical. In an effort to introduce large-

scale parallelism into embedded systems, new techniques are required to evaluate the 

effectiveness of each level of the storage hierarchy in order to achieve optimal efficiency in a 

highly replicated processing node design. This chapter presents a technique for analyzing storage 

performance and efficiency for a given application workload. It takes a two-prong approach: a) an 

automated retargeting technique is used in analyzing the storage requirements of a program over a 

range of storage configurations, and b) cost is estimated in terms of energy, and area efficiency 

for a given workload and storage configuration. Together these are used to explore storage 

configurations by analyzing a given workload under a range of different storage configurations 

with respect to performance, energy consumption, and chip area costs. Using this technique, a 

SIMD processing element achieves optimal area and energy efficiency with a register file 

containing between 8 and 12 words. This configuration is between 15% and 25% more area and 

energy efficient than other memory configurations being considered. 

2.2.   Introduction 

Energy and area efficiency are critical metrics for embedded systems where battery life and 

cost are the central product parameters. Because storage (on-chip memory, caches, and register 

files) typically occupies half the chip area [3] and consumes a significant fraction of chip energy, 

exploring designs for effective storage utilization is vital. 

This chapter presents a two-prong approach to support this design exploration. One, an 

automated retargeting technique is used in analyzing storage requirements of programs over a 
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range of storage configurations. This type of retargeting is too expensive and labor-intensive to 

perform manually during design exploration, particularly for hand-coded assembly programs that 

are optimized for specific embedded processor memory designs.  Second, cost estimation is 

performed to assess the energy and area efficiency based on a given workload and storage 

configuration. This is used to extract a characterization of storage costs for a given program. 

Three factors, performance, energy, and area are used to decide an optimal storage configuration 

for a given workload.  

In this chapter related research is presented first, followed by a description of our approach 

to explore the memory design space.  Finally, results are given along with conclusions. 

2.3.   Related Work 

2.3.1. Application Retargeting  

Application retargeting is often done by retargetable compilers [33,34,35,38,48,49,50]. A 

significant amount of research in this area has been performed for embedded processors, 

including CHESS [35], SPAM [34], AVIV [49], RECORD [50], and CodeSyn [48]. Since a 

single retargetable compiler is sufficient for different configurations, retargetable compilers are 

gaining popularity as reconfigurable architectures are emerging that can be tailored to a given 

workload. These compilers take high-level programs and a target processor model description as 

input to generate assembly programs for the target processor. However, real-time embedded 

systems often run hand-coded assembly programs for efficiency. As a result, retargetable 

compilers cannot be utilized in the design phase.  

Rewriting assembly programs by hand for new target architectures requires a massive 

modification effort, particularly since they are notoriously less portable and maintainable [51]. 

Thus, manually rewriting assembly programs during design exploration is not feasible. For these 

reasons, the presented technique applies automated application retargeting techniques to assembly 

programs to adapt them for different storage configurations.  

These retargeting techniques extend traditional register allocation and memory optimization 

techniques described in the next two sections.  

2.3.2. Register Allocation 

One of the back-end compilation processes is register allocation [44], usually using a 

common graph-coloring algorithm [45,46,47]. As a standard part of compilation processes, 
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register allocation takes an internal representation (IR) as input to allocate a given set of registers 

to variables. Processes in register allocations proposed in [45,46] are depicted in Figure 3 

(Chatin’s register allocator) and Figure 4 (Brigg’s register allocator), respectively, and each step 

in the process is described as follows. 

 

 Renumber: Assign a unique name to each symbolic register during its live ranges. 

 Build: Build the interference graph for the renamed registers based on the live ranges.  

 Coalesce: Delete “copy” instructions if the destination and source live ranges do not 

interfere.  

 Spill Costs: Compute the spill cost for each live range by estimating the weighted 

number of loads, stores and other instructions needed to spill them. 

 Simplify: Recursively remove unconstrained nodes from the graph and push them onto a 

coloring stack. If there are only constrained nodes in the graph, remove the nodes, mark them 

for spilling, and continue. 

 Spill Code: Insert spill code for marked nodes. 

 Color: Pop all the nodes off the coloring stack and give each node a color different from 

its neighbors. 

 

Figure 3: Chatin’s register allocator [45] 

 

 

Figure 4: Brigg’s register allocator [46,47] 

 

Brigg’s allocator modifies Chatin’s allocator such that registers are allocated for variables 

more optimistically by deferring a decision of node colorability until the last stage, ‘Color’. 

Renumber Build Coalesce Spill Costs Simplify 

Spill Code 

Color 

Renumber Build Coalesce Spill Costs Simplify 

Spill Code 

Color 
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Our technique extends Chatin’s allocator to support register allocation technique across a 

range of file and memory sizes. Typically, register allocation is performed on an internal 

representation (IR) just before code generation. However, in our research, a register reassigning 

process takes an assembly program as input and retargets it to operate within a given register file 

limit. If an assembly program can run with a given number of registers, it is rewritten 

automatically to minimize the number of registers used in an application. Otherwise, register 

values will be spilled into memory based on a cost model [47].  

2.3.3. Memory Optimization 

Memory optimization techniques for embedded systems have been mainly developed to 

decrease code size, such as addressing optimization [34,48], mode optimization [40], and code 

compaction [37]. These techniques utilize special architectural features for particular embedded 

systems to minimize code size. Program memory optimization tends to be simpler than data 

memory optimization since data memory optimization must compute an effective address of data 

which is sometimes difficult or impossible to do unambiguously at compile time. Data memory 

optimization techniques that reduce the size of data memory are considered by placement and 

indexing of an array, which usually takes a large fraction of data in multimedia applications 

[41,42]. There are two main allocation strategies for array data – static and dynamic strategies 

[42]. In this chapter, we take a dynamic memory allocation strategy based on live ranges of 

memory words, with the assumption that the effective address can be determined at compilation 

time. Since compilation time in embedded systems is less critical than that in general systems, we 

compute all effective addresses at compile time. In addition, since our approach is applied to 

assembly programs, there is no difference between array data and non-array data. 
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2.4.   Approach: Application Retargeting for Different Memory Configurations 

The overall retargeting procedure, depicted in Figure 5, is discussed in this section. A 

significant number of applications for embedded processors are still hand-coded to meet real-time 

constraints. Since rewriting assembly code for several different configurations is error-prone and 

laborious, the development of automatic retargeting techniques for assembly programs is 

necessary for efficient design exploration. These assembly programs can be either hand-coded or 

generated by compilers. Once applications are retargeted, a simulator is used to run them to 

estimate their performances in executed clock cycles under the assumption that each instruction 

takes one clock cycle to execute. Since we are assuming that both on-chip memory and registers 

can be accessed in one clock cycle, differences in execution clock cycles are from the overhead of 

register spilling. 

 

 
Figure 5: Overall framework for finding optimal storage configurations by application 

retargeting.  
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There are two main steps to retarget applications for given storage requirements. The first 

step is register reassignment, followed by memory optimization. 

2.4.1. Register Allocation 

Register allocation techniques are used to generate register-optimized applications with a 

limited number of registers by analyzing variable lifetimes. If there is a lack of registers, register 

spilling techniques [47] are applied to use memory instead of registers until a resulting 

application can run on the given number of registers. Figure 6 shows the register allocation 

module used in our approach. This register allocation technique is composed of processes in 

Chaitin’s register allocator [45]. However, a typical register allocator usually takes the 

intermediate representation (IR) as an input of the back-end compilation process, while our 

approach takes either hand-written or compiler-generated assembly programs.  In addition, our 

output programs can be run on target architectures directly. This can maximize code reusability.  

 
 
 

 

 
 
 
 
 

 

Figure 6: Application retargeting module with register reassignment 

 
 
Since spilling costs are computed based on register usage, less frequently used register 

values are spilled. An example of register reassignment based on lifetimes is depicted in Figure 7. 

Assembly programs are written in the SIMPil assembly language and the description of each 

instruction is explained in the ‘Comment’ column in Figure 7. As in Chatin’s allocator, an 

interference graph is built such that each register is represented by a node in the graph, and edges 

are drawn between nodes when there is an overlap in the registers’ lifetimes. The resulting graph 

is shown in Figure 7 (b) and the colored graph is shown in Figure 7 (c). Finally, register 

reassigned assembly code is shown in Figure 7 (d). 
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Source Code Live Ranges of Registers 
Code Comment R0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Loadi 10   R0  10   
Addi R4, R0, 0 R4  R0 + 0   
Addi R5, R0, 1 R5  R0 + 1   
Addi R6, R0, 2 R6  R0 + 2   
Addi R10, R0, 3 R10  R0 + 3   
Load R1, R4 R1  MEM[R4]   
Load R2, R5 R2  MEM[R5]   
Load R3, R6 R3  MEM[R6]   
Sub R7, R1, R2 R7  R1 – R2   
Addi R8, R2, 0 R8  R2 + 0   
Slti R7, 0x01 If (R7 < 0) then sleep   
Addi R8, R1, 0 Else R8  R1 + 0   
Wakeupi 0x01 Wakeup   
Sub R9, R3, R8 R9  R3 – R8   
Slti R9, 0x02 If (R9 < 0) then sleep   
Addi R8, R3, 0 Else R8  R3 + 0   
Wakeupi 0x02 Wakeup   
Store R10, R8 MEM[R10]  R8   

 

(a) Source code and live ranges of registers.  

 

 

 

(b) Interference graph.  

R0 R1 R2

R6 R5 R4 R3

R7 R8
R9

R10 
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(c) Graph coloring with colors = {R, G, B, Y, V}. 
 

Source Code 

Register in Original 
Source Code Reassigned Register 
R0 R0 
R1 R0 
R2 R3 
R3 R4 
R4 R4 
R5 R3 
R6 R1 
R7 R1 
R8 R3 
R9 R0 
R10 R2 
  
  
  
  
  
  

Source Code 

Original Code Reassigned Code 
Loadi 10   Loadi 10   
Addi R4, R0, 0 Addi R4, R0, 0 
Addi R5, R0, 1 Addi R3, R0, 1 
Addi R6, R0, 2 Addi R1, R0, 2 
Addi R10, R0, 3 Addi R2, R0, 3 
Load R1, R4 Load R0, R4 
Load R2, R5 Load R3, R3 
Load R3, R6 Load R4, R1 
Sub R7, R1, R2 Sub R1, R0, R3 
Addi R8, R2, 0 Addi R3, R3, 0 
Slti R7, 0x01 Slti R1, 0x01 
Addi R8, R1, 0 Addi R3, R0, 0 
Wakeupi 0x01 Wakeupi 0x01 
Sub R9, R3, R8 Sub R0, R4, R3 
Slti R9, 0x02 Slti R0, 0x02 
Addi R8, R3, 0 Addi R3, R4, 0 
Wakeupi 0x02 Wakeupi 0x02 
Store R10, R8 Store R2, R3 

 

(d) Register reassigning for each color:  R  R0, G R1, B R2, Y R3, V R4.  

Figure 7: Example of register reassignment. 

 

The source operand and destination operand can use the same register in this example. Thus 

if two lifetimes are overlapped only in one instruction, that is a defined instruction of one register 

value is also  the last-use instruction of another register value, the same register can be allocated 

for these two registers. For example, R1 and R4 in Figure 7 (a) can be assigned to one register. As 

a result, there is no edge between these two registers in an interference graph that represents the 

interference between variables (registers in our case). This example shows an instruction level 

R0 R1 R2
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R7 R8
R9

R10 



 21

register allocation not a basic block level. Since our approach is applied to basic blocks based on 

the control flow of applications, there are possible false overlaps of lifetimes of registers when 

two registers are used in the same basic block. However, control flow analysis line by line 

requires too much memory space to keep that information throughout the compilation phases or 

retargeting processes. 

2.4.2. Memory Optimization 

After register reassignment, memory accesses in applications are optimized to reduce 

memory requirements. By computing memory variable lifetimes, the same memory location can 

be reused for different memory data. The processes in this technique are depicted in Figure 8.  

The memory reassigning phase also utilizes variable lifetime. For a given assembly program, 

lifetimes for each memory variable are computed for each basic block. After that, memory words 

are identified that can share the same memory location with other memory words, where the 

lifetimes of these memory words do not interfere. Then, memory addresses for selected data 

words are reassigned in a given application to share the memory location as much as possible. 

Finally, the retargeting module rewrites the application with reassigned memory addresses for 

memory data to achieve maximum reusability of memory locations, resulting in lower (or at least 

same, in the worst case) memory requirements. 

 

Figure 8: Application retargeting module with memory optimization. 
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An example of memory optimization is depicted in Figure 9. Based on lifetimes of each 

memory word, memory locations can be reused to reduce the memory requirement for a given 

application. In this example, the number of memory words used in the original program is 11 and 

memory requirement for a retargeted code is 5 words. 

 

Live Ranges of Memory Words 

MEM  time 

0                           
1                           
2                           
3                           
4                           
5                           
6                           
7                           
8                           
9                           
10                           
…                           

(a) Original memory uses and lifetimes. 

 

Live Ranges of Memory Words 

MEM  time 

0  0,2,3,4                           
1  1,5,10                           

2  6,7                           
3  8                           
4  9                           

5                           
6                           
7                           
8                           
9                           
10                           
…                           

 

(b) Reassigned memory words. 

Figure 9: Example of memory optimization based on the lifetimes. 

 

Figure 10 shows the results of the memory optimization phase for four different 

applications. A brief description of each application is given in Table 4. 
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Figure 10: Results of memory optimization: memory 
words in byte used in the original program and in the 
optimized program for median filtering, TAK, complement, 
and brightness slicing image processing applications.  

 

 Results show that 2% of memory requirements can be reduced by the memory 

optimization phase. Since our approach is performed in compilation time based on application 

retargeting, results from our approach are not good enough as a run-time memory optimization. In 

addition, patterns of memory accesses in a set of workloads make it hard to share the memory 

locations based on lifetimes. The following description is a typical algorithm pattern of 

multimedia applications that also shows typical memory access patterns.  

Algorithm: 

A. Get an image data from I/O. 

B. Store an input image (IMGIN) in a memory (array). 

C. Do some operations. 

D. Load image data into registers from memory. 

E. Process some operations on image data in registers 

F. Store register values back to memory as a result (IMGOUT). 

 

Since step B, D and F are usually repeated for video processing applications, nested loops 

are commonly used for these steps (often D and E are in the same loop). Based on this algorithm, 

image array data, IMGIN is defined in step B and is used at step D. If IMGIN is no longer used in 
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an application, IMGIN is dead in step D. Thus all elements in IMGIN tend to overlap their 

lifetimes, which prevents sharing the same memory locations among memory data. In addition, 

resulting image data, IMGOUT, tends to be stored in the same location as IMGIN. As a result, only 

intermediate data uses, that are a small portion of memory used in a given application, have a 

chance to be optimized, resulting in only a 2% decrease in memory requirements.  

2.5.   Energy and Area Estimation for Storage 

In VLSI systems, since increased of chip area may result in higher chip cost, area is a critical 

design parameter in embedded systems. However, tradeoffs between chip area and system 

performance should be considered. Thus area efficiency is modeled to consider chip area and 

performance together. In addition, energy consumption is also an important issue in embedded 

systems design, due to limited battery life. Thus area efficiency and energy efficiency should be 

considered during system design exploration.  

There is on-going research to estimate energy consumption and chip area, reported in [63]. 

This is based on a generic system simulator referred to a GENESYS [63] whose structure is 

shown in Figure 11. The cost model used in this system is an empirical model to estimate energy 

consumption and die size considering interconnections and technology factors. GENESYS has 

seven different levels of inputs to generate a variety of chip features as outputs that are shown in 

Figure 11.  GENESYS also provides a library of input files for commercial general-purpose 

architectures, such as the Pentium processor and a set of values derived from the International 

Technology Roadmap for Semiconductors (ITRS). The cost model used in this research involves 

primarily the system architecture inputs which are divided into three parts – architecture 

parameters, CPI parameters and gate parameters. Over these parameters, the Rent’s parameters 

(constant, internal exponent, and external exponent), number of logic transistors, activity factor, 

word and bus size, address space, gate fan-in and –out, and gate utilization, etc are set. All these 

values will directly feed into GENESYS to estimate energy consumption and die size. Energy 

consumption, die size, and performance are used to compute the area efficiency and energy 

efficiency for each given input parameters depending on storage configurations.  

Energy and area estimations are used in early stage decisions for architecture designs. In our 

research, after a storage-oriented application retargeting phase, we examine the cost of storage 

configurations for each workload. By doing this, we can decide the optimal on-chip memory 

configuration in terms of energy and area efficiencies during design explorations.  

 



 25

 
 

Figure 11: GENESYS structure [63]. 

2.6.   Validation and Evaluation 

An application retargeting technique has been developed to target different memory 

configurations in memory design exploration. Architecture simulators are used to assess 

performance and memory usage, and analysis tools are chosen to evaluate the efficiency of target 

systems in terms of energy and area efficiencies. These simulators provide validation of our 

approach and also show the impact of architectural changes in terms of memory size.  

The evaluation focuses on changes in memory size (register file size and corresponding 

required memory words) for a given workload in the DSP area. Retargeted applications based on 

changes in register file size are evaluated by measuring execution time, code size, energy 

consumption, and chip area. Memory optimization techniques are used in our research to 

minimize memory requirements. Results from memory optimizations are evaluated by comparing 

memory requirements of retargeted applications and original input applications.  

Results are verified by comparing the results of retargeted applications with varying register 

file sizes with that of the original input application. In addition, memory contents are also 
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checked for the correctness of the retargeted applications by dumping memory words. The 

verification steps are depicted in Figure 12.  
 

 

Figure 12: Verification steps. 

2.7.   Metrics and Analysis 

Estimated energy and area must be considered along with performance. Due to tradeoffs 

between area, energy consumption, and performance, it is necessary to explore many design 

configurations to decide an optimal storage configuration. Table 3 shows evaluation metrics used 

in our approach to analyze efficiencies of given storage configurations for a set of workloads. 

 

Table 3: Metrics for experiments. 
 

Analysis Metrics 
Code Size Increase in code size for application retargeting (in instructions) 

Execution Time Clock Cycle Time (in seconds) 
Energy Efficiency Performance divided by Power Dissipation (in J/sec) 
Area Efficiency Performance divided by Die Size (in instructions/sec/cm2) 

 
 
Our metrics for analyses are listed in Table 3 and the following formulas are given to 

compute efficiency factors considered in the analyses. 
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Storage Area Efficiency = 
_

Performance
Storage Area

 where performance is measured per clock cycle 

and storage area is the sum of the area for spilling memory (code and data memory) and the area 

for the register file in mm2.  

 

Overall Area Efficiency = 
Performance

DieSize
 where performance is measured per clock cycle 

and die size is chip area in mm2.  

 

Energy Efficiency = 
_

Performance
Power Dissipation

 where performance is measured per clock cycle 

and power dissipation is measured for an overall chip in Watt.  
 

Normalized area and energy efficiency is compared for each workload. Normalized storage 

area efficiency is computed for the total storage area, which is the sum of register area and 

memory area. Based on this, normalized storage area efficiency is computed as follows: 

 

Normalized Storage Area Efficiency =  
( / ( _ ))

( / ( _ ))
Performance StorageArea new application

Performance StorageArea original application
  

where storage area is the sum of register area and memory area. 

 

Similarly, normalized energy efficiency is computed as follows: 

 

Normalized Energy Efficiency = ( / ( _ ))
( / ( _ ))

Performance PowerDissipation new application
Performance PowerDissipation original application

 

To determine the best configuration of storage, all efficiency factors for energy efficiency 

and area efficiency will be averaged with an assumption that all applications have an equal 

importance in a given system. 
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2.8.   Results and Analyses 

In this section, our experimental results are presented and discussed. In Section 2.8.1, an 

example Vector Quantization (VQ) application written in the SIMPil assembly language is 

described to show the effect on code size and execution time in clock cycles for different memory 

configurations. The following section shows the results and analyses from several assembly 

applications generated by gcc compiler. 

2.8.1. Example Application: Vector Quantization (VQ) Encoding 

Vector Quantization (VQ) is commonly used for data compression in speech, image and 

video coding, and speech recognition [64]. VQ exploits a spatial correlation existing between 

neighboring signals. It quantizes a group of signals together and operates directly on image 

blocks to compare an image block and codeword vector in a given codebook. The index of the 

codeword vector having minimum distortion is transmitted instead of a full image block. One of 

popular distortion measurements is the Euclidean distance (d) between two vectors.  

d (input, codeword) = || input – codevector ||2   = 
2

0
( )

N

i
Ci input

=

−∑ where Ci is the ith code 

vector and codebook size is N. 

Since each input image block is replaced with the index of a codeword in a codebook, 

encoding (or compression) in VQ can achieve a compression factor of index in bits / image 

blocks in bits. The decoding (decompression) step is a reverse of an encoding step. It takes a 

transmitted index and replaces it with the corresponding codeword, using the same codebook 

used in the encoding step. Figure 13 depicts the overall VQ process. 
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Figure 13: Overall VQ processes. 

 

We consider the VQ encoding process due to its high computing-demand characteristics as 

well as high memory requirements. The code sizes and performance for each on-chip memory 

configuration are depicted in Figure 14. 
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Figure 14: Results of code sizes and execution time in clock cycles for retargeting VQ 
application to different storage configurations. 
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2.8.2. Experimental Results 

Table 3 shows evaluation metrics applied over a given set of storage configurations. In our 

experiments, clock frequency is assumed to be 500MHz and word size is 32 bits. Both instruction 

width and register width are one word. Graphs in this section represent specific storage 

configurations on a horizontal axis. These correspond to a number of registers and a number of 

memory words as shown in Table 5 for each application in Table 4. 

 

Table 4: Description of selected workloads. 

Application Description 

Median Filtering 
Each pixel in an image is examined to find the median-ranked 
brightness value of the pixels in a certain-sized window 
surrounding the pixel. 

TAK 

A popular benchmark for recursive function calling, this 
function is defined as: 
tak(x y z) = z, if y >= x; 
tak(x,y,z) = tak (tak (x-1) y z) (tak (y - 1) z x) (tak (z - 1) x y), 
otherwise. 

Complement Image Each image pixel is logically complemented. 

Brightness Slicing 
If input pixel value is between two given threshold values, the 
output pixel value is set as 255. Otherwise, the value is set to 
0. 

 

Table 5: Explored storage configurations.* 

 Median 
Filtering TAK Complement Brightness 

7 (r7, m162) (r7, m141) (r7, m149) (r7, m148) 
8 (r8, m153) (r8, m135) (r8, m141) (r8, m141) 
9 (r9,m152) (r9,m131) (r9,m141) (r9,m141) 
10 (r10,m148) (r10,m130) (r10,m141) (r10,m141) 
11 (r11,m147) (r11,m129) (r11,m141) (r11,m141) 
12 (r12,m147) (r12,m128) (r12,m141) (r12,m141) 
13 (r13,m147) (r13,m128) (r13,m141) (r13,m141) 
14 (r14,m147) (r14,m128) (r14,m141) (r14,m141) 
15 (r15,m147) (r15,m128) (r15,m141) (r15,m141) 

 
*r# means number of registers and m### is the number of memory words required by 

applications (including register spilling overhead, both instructions and data if any). 
 

The following three tables show experimental results for each configuration depicted in 

Table 5. Table 6 shows area efficiencies for storage (registers, and memory including an extra 

memory for register spilling) that is a function of execution time and storage area. 

Table 7 depicts overall area efficiencies and Table 7 shows energy efficiencies for each 

workload.  
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Table 6: Storage area efficiency (x 10-6). 

Number of 
Registers 

Median 
Filtering TAK Complement Brightness 

7 3.049 0.555 67.581 58.746 
8 2.123 0.246 55.198 53.595 
9 2.857 0.349 80.519 69.993 

10 2.842 0.458 73.509 63.899 
11 3.166 0.466 67.581 58.746 
12 3.049 0.507 62.498 54.328 
13 2.834 0.555 58.089 50.495 
14 2.646 0.518 54.226 47.137 
15 2.479 0.486 50.813 44.170 

 

Table 7: Area efficiency (x 10-6). 

Number of 
Registers 

Median 
Filtering TAK Complement Brightne

ss 
7 0.155 0.030 3.212 2.792 
8 0.143 0.020 3.013 2.723 
9 0.153 0.023 3.289 2.859 

10 0.154 0.025 3.250 2.825 
11 0.156 0.027 3.212 2.792 
12 0.155 0.028 3.175 2.760 
13 0.153 0.030 3.139 2.728 
14 0.151 0.030 3.103 2.697 
15 0.150 0.029 3.068 2.666 

 

Table 8: Energy efficiency (x 10-6). 

Number of 
Registers 

Median 
Filtering TAK Complement Bright

ness 
7 0.112 0.022 2.313 2.011 
8 0.103 0.015 2.181 1.986 
9 0.109 0.017 2.361 2.052 

10 0.111 0.018 2.337 2.031 
11 0.112 0.019 2.313 2.011 
12 0.112 0.020 2.291 1.992 
13 0.111 0.022 2.269 1.972 
14 0.110 0.021 2.247 1.953 
15 0.109 0.021 2.225 1.934 

 

Figure 15 shows code size increases relative to that of the original application. The increase 

in code size is due to memory instructions added for register spilling.  The amount of code size 

increase tells how many spilling instructions are inserted for register spilling, while execution 

times indicates how often these spilling codes are executed at run time. Thus, if spilling 

instructions are added inside a loop, the ratio of execution time increase will be larger than that of 
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code size increase. Based on experimental results shown in Figure 16, additional instructions for 

spilling tend not to be used repeatedly since the ratios of increased code size and execution times 

are similar. Particularly, TAK application has a greater increase in execution times when there are 

spilling codes, which means either TAK has more reusable code or more spilling instructions are 

placed inside loops relative to the other applications. 
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Figure 15: Code size increase. 

 

To compare efficiencies for each workload, normalized efficiencies for area and energy 

consumption are computed. Normalized storage area efficiency is shown in Figure 17 which is 

computed as follows: 

Normalized Storage Area Efficiency = ( / ( _ ))
( / ( _ ))

Performance StorageArea new application
Performance StorageArea original application

 

where storage area is the sum of register area and memory area. 
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Figure 16: Execution time increase. 
 

Normalized storage area efficiency shows the relative storage area efficiency for each 

storage configuration normalized to the original configuration of given workloads. 
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Figure 17: Normalized storage area efficiency for selected workloads. 
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As shown in Figure 17, storage configurations having best storage area efficiencies are 

different for each workload. Experimental results show that storage configurations, (r10, m148) 

for median filtering, (r9, m131), (r12, m128) for TAK, and (r8, m141) for complement and 

brightness slicing applications are the best configurations in terms of storage area efficiency. 

 

Similarly, normalized energy efficiency is computed as follows: 

Normalized Energy Efficiency =
( / ( _ ))

( / ( _ ))
Performance PowerDissipation new application

Performance PowerDissipation original application
 

 

For energy efficiency, an overall chip power dissipation is computed. Figure 18 shows 

computed normalized energy efficiencies.  
 

 

Figure 18: Normalized energy efficiency. 

 

As shown in Figure 18, the best configurations for each workload in terms of energy 

efficiency are (r10, m148) for median filtering, (r7, m149) for complement, (r7, m148) for 

brightness slicing application, and (r12, m128) for TAK application. 

To determine the best configuration of storage, we average all efficiency factors for energy 

efficiency and area efficiency with an assumption that all applications are equally important in a 

given system. Figure 19 shows the average of normalized storage area efficiencies and Figure 20 

shows the average of normalized energy efficiencies for a set of applications. The figures indicate 
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that (r8, m153) is the optimal configuration for given workloads in terms of area efficiency and 

(r12, m147) is the optimal configuration in terms of the energy efficiency.  
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Figure 19: Average of normalized storage area efficiency. 

 

 

Figure 20: Average of normalized energy efficiency. 
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2.9.   Chapter Conclusion 

 

This chapter presented an analysis method for assessing storage needs and costs of a given 

application automatically retargeted across a spectrum of storage configuration designs. It 

demonstrates how an optimal configuration for a given workload can be chosen early in the 

design phase based on estimates of energy and area efficiency as well as performance. Using this 

technique with a simple processing element showed variations of area and energy efficiency of 

15% to 25%.  

This technique is part of an overall strategy to increase the effectiveness of storage in 

embedded SIMD architectures. Additional techniques in Chapter 4 allow memory to be divided 

between on-chip local memory and off-chip dense memory arrays. The next chapter introduces a 

systolic instruction broadcast scheme that helps enable this memory structuring technique. 
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CHAPTER 3 
 

 Systolic Instruction Broadcast for Embedded 
SIMD Architectures 

3.1.   Summary 

Traditional SIMD execution employs simultaneous global broadcast and execution of 

instructions. Direct implementation of this definition leads to performance degradation as 

broadcast wire delay becomes increasing significant in clock cycle time. In this chapter, previous 

techniques for eliminating long broadcast wires are extended and evaluated to achieve greater 

performance as SIMD array sizes increase and technology feature sizes shrinks. A systolic 

instruction broadcast technique is defined. Three methods to resolve inherent data dependency 

conflicts are defined and evaluated including a scheduling algorithm that attempts to reorder 

intra-block instructions to eliminate delays. An architectural simulator, implementation area 

estimates, and a technology modeling tool incorporating ITRS projections are used to evaluate the 

effectiveness of each method in terms of performance and area efficiency. Using these 

techniques, a 2010 technology SIMD area is projected to benefit from a 6x increase in 

performance and a 7x increase in area efficiency compared to a traditionally implemented system. 

 

 

3.2.   Introduction 

Interconnection is a critical bottleneck to increasing performance of high-speed integrated 

circuits [66]. For embedded SIMD architectures, the greatest impact of interconnect is in 

instruction broadcast where each processing element (PE) simultaneously receives globally 

broadcast instructions from a central array controller. The delay associated with this chip-crossing 

broadcast will directly impact clock cycle times as technology advances. The causes of this 

degradation are found in the underlying technology. 
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Figure 21: Reachable fraction of a chip for future VLSI technology (from ITRS). 

 

Global wiring has been shown to cause poor scalability and long propagation delays [66, 

67]. Figure 21 is from the 2001 International Technology Roadmap for Semiconductors (ITRS) 

[68]. This plot gives projections of the reachable fraction of a chip in a given number of clock 

cycles, showing that more clock cycles are needed as VLSI technology advances. In addition, 

continual scaling of global interconnect with increasing die size may limit the attainable clock 

frequencies in microprocessors [67]. Thus, it is necessary to design an alternative scheme to the 

global instruction broadcast in SIMD architectures. Eliminating simultaneous instruction 

broadcast can increase system throughput by allowing increased clock frequencies as technology 

advances.  

This chapter develops and evaluates a systolic instruction broadcast technique that 

eliminates long interconnect associated with simultaneous instruction broadcast. Systolic 

instruction broadcast creates the potential for data hazards during inter-PE communications. 

Three methods to resolve these hazards are introduced and evaluated. First, a software-only 

approach is presented where instructions are reordered to fill delay slots necessary to avoid the 

hazard. An intra-block instruction reorder scheduler is defined and implemented for the existing 
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register file design. A second method to resolve hazards includes the same scheduler, but now 

assuming an enhanced 2-read, 2-write port register file. The third method presented incorporates 

full hardware bypass techniques to eliminate hazards with no instruction reordering. These 

methods are compared using several high communication convolution kernels executing on a low 

pixel per processor ratio. A more complex application, median filtering with PPE = 16, is also 

added for comparison. These programs are simulated for each of the three methods of hazard 

elimination and projected performance is compared for different technology generations. A model 

of implementation cost (area) is then presented for each method. Using this and performance data, 

the area efficiency of each method is considered for future VLSI technologies using ITRS 

projections. 

3.3.   Related Work 

3.3.1. Pipelined Instruction Broadcast  

Pipeline instruction broadcast was first introduced in 1996 [4]. This technique uses a k-ary 

tree, where inside nodes are instruction latches (ILs) and leaves are PEs. This main concept is 

depicted in Figure 3.  Pipelined instruction broadcast can reduce the instruction propagation delay 

by shortening the effective bus length. By setting cycle time equal to the time required to drive 

the load, we can determine the fanout of each node in the tree. Once fanout is determined, the 

depth of the tree is determined for the number of PEs. 

ACU

PE PE
 

ACU

PE PE PE PE

IL IL

IL IL

 

(a) Global broadcast (b) Pipelined broadcast 

Figure 22: Two methods for delivering instructions to PEs [4]. 

 

The pipeline instruction broadcast mechanism implemented is based on performance 

requirements, the number of PEs, and the target technology. As technology or system 
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configuration changes, the tree structure must be revised in terms of fanout and pipelining depth. 

The required number of latches in a tree becomes significant for large processor arrays. Thus, a 

more scalable technique is required for future systems.  

3.3.2. Instruction Systolic Architecture (ISA) 

This section discusses instruction systolic architecture (ISA), Systola 1024 (ISATEC Co.), 

which incorporates systolic instruction distribution [27,28,29,30]. The overall architecture is 

depicted in Figure 23. This architecture is based on a SIMD architecture that applies a single 

operation over different data in many PEs. Thus control flow in an instruction systolic 

architecture is defined by the instruction moving through the entire processor array as in Figure 

24. 

For flexibility, Systola 1024 uses a row and a column selector to execute the instruction on 

each PE, based on the values in these selectors. A moving instruction is executed on a PE when 

both values from selectors are 1. Thus by considering different selections of these values, each PE 

can execute a different set of instructions. Unfortunately, Systola 1024 does not support the 

conditional jump instruction, which is necessary to program a greater variety of algorithms. 

Systola 1024 has two dedicate communication registers in each PE which are shared by the 

neighboring PEs. The value in this register can be seen by its four neighbors – North, South, East 

and West. The structure of the communication register is shown in Figure 25. 

 

 

Figure 23: The architecture of Systola 1024 [30]. 
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Figure 24: Control flow in an instruction systolic array [30]. 
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Figure 25: The structure of the dedicated communication register in Systola 1024 [30]. 

 

As shown above, the Systola system is controlled by moving instructions from the central 

controller through entire processor array. Thus the careful writing of applications is critical for 

correct functionality.  However, this is not trivial since many PEs can perform different jobs at 

any time. In the Systola system, the existence of two selectors – column and row – simplifies the 

control by sacrificing the overall performance. Since performance degradation can be reduced by 

proper scheduling of instructions, scheduling efficiency becomes important. The complexity of 

this job resides in timing constraints in terms of instruction arrival time and data available time. 

Thus an automatic scheduler, incorporating data sequencing is necessary to increase the 

programmability of applications on this kind of architecture while ensuring the correctness of the 

applications. However, the Systola system is not supported by an automatic scheduler or data 

sequencer during application developments.  

3.3.3. Systolic Instruction Broadcast 

In this section, a nontraditional architectural approach, introduced in [1], is presented that 

can minimize wire delay produced by long broadcasting buses. It can reduce instruction cycle 
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time and improve the overall performance significantly. Short-wire instruction broadcast uses an 

approach similar to ISA [30]. Instructions are propagated to neighboring PEs systolically in each 

clock cycle [1]. The longest distance traversed by any instruction in a single clock cycle is limited 

to the maximum distance between any two PEs. This approach exploits locality and delivers 

instructions efficiently. Hence, a nontraditional instruction broadcasting mechanism reduces 

instruction cycle time. Instruction cycle time is no longer determined by long instruction 

broadcasting wire delays, but instead by the critical path among PEs.  

 

ACU
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Figure 26: A 4x4 mesh of PEs showing how instructions are pumped from an ACU to PEs [1]. 

 

An array control unit (ACU) fetches instructions from instruction memory and decodes 

them, broadcasting instructions initially to a node located in one of four corners of the mesh array 

(the upper-left corner in this case). Then, each PE pumps these instructions to its neighboring PE 

through instruction channels, as illustrated in Figure 26. The numbers in each PE indicates the 

clock cycle at which a node gets a particular instruction. As shown in the figure, the number 

increases from left to right and from top to bottom. It takes (2N-1) clock cycles to reach a node 

located in the lower right corner of mesh, where N2 is the number of nodes in the mesh network.  

This approach is more scalable than pipelined instruction broadcast [1,4]. Since pipelined 

instruction broadcast is a tree based instruction broadcast mechanism, the tree structure has to be 

changed as the number of PEs is changed. However, because short-wire broadcast uses a 2D 

approach, it is possible to add more PEs without modifying the existing instruction broadcasting 

network by facilitating network expansion.  

Despite the overhead to implement this method, the short clock cycle time may compensate 

for the increased clock counts. To maximize the efficiency of systolic instruction broadcast SIMD 

architectures, effort should be placed on scheduling to minimize the delays due to the 
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synchronization of the PEs. However, there has been no research until now on compilation-based 

scheduling. Thus we develop compile-time scheduling algorithms, which can maximize the 

efficiency of our architecture. In addition, we present a data forwarding hardware method to 

eliminate delays due to communication between neighboring PEs and data dependencies.  

3.4.   Approach: Systolic Instruction Broadcast Architecture  

An overall target architecture of the SIMD-systolic system is depicted in Figure 27, for a 4 x 

4 processor array. 

 

 

Figure 27: The overall framework of the SIMD-systolic architecture. 
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clock cycles to reach a node located in the lower right corner of the mesh, where N2 is the number 

of nodes in the mesh network. However, the SIMD-systolic system can improve instruction 

throughput. A similar technique is used in the Systola 1024 system [30] discussed in Section 

3.3.2. The differences between Systola and our approach lie in instruction scheduler and data 

sequencer. The next two sections will describe how to extend SIMD architectures to support 

systolic instruction broadcast efficiently.  

3.4.1. Data and Structural Hazards 

Under the systolic instruction broadcasting mechanism, no changes are necessary for 

instructions that process local data. However, instructions that communicate with the neighboring 

PEs need to check data dependencies and resource conflicts to ensure the correctness of program 

results. In this section, we describe how these problems are handled in our approach.  

3.4.1.1. Nearest Neighbor Communication  

First, we explain how PEs communicate with each other to pass the data to their neighbors. 

In our system, a North-East-West-South (NEWS) network is used for communication. Figure 28 

shows how the PEs communicate each other using a NEWS network. 

 

 
Figure 28: Neighboring PEs showing how data is transferred. 
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cycle and the transferred data can be copied from/to the register file of neighboring PEs directly 

without buffering. The directions of communication are given explicitly in each XFER 

instruction. 

3.4.1.2. Data and Structural Hazard Analyses   

For the given systolic instruction broadcast (Figure 26) and communication mechanisms 

(Figure 28), SIMD-systolic system should be stalled 1) when communication instructions are 

executed in an opposite direction to that of systolic instruction broadcast or 2) when neighboring 

PEs attempt to use the same data channel. The former case is referred as a data hazard and the 

latter is called a structural hazard. The conditions of these hazards are shown in Figure 29 with 

the given pattern of systolic instruction broadcast depicted in Figure 26. The solution to these 

problems is reordering of instructions so that conflicted instructions are not scheduled 

consecutively. If instruction reordering cannot eliminate conflicts, no-op delays are inserted to 

resolve the hazards.  

 

 

 

(a) Data hazard. 

 

(b) Structural hazard. 

 

Figure 29: Conditions causing delays in systolic instruction broadcast. 

 

Data and structural hazards also can be detected in hardware logic as depicted in Figure 30. 
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a) Data hazard detection logic. 

 

b) Structural hazard detection logic. 

Figure 30: Hazard detection logic. 
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3.4.2. Implementation of Systolic Instruction Broadcast 

In this section, we show three approaches to implementing systolic instruction broadcast – a 

basic software approach, a two write-port register file approach, and a bypass hardware 

implementation. Software approaches (the first two approaches in the following sections) should 

employ instruction scheduling techniques to eliminate as many delays as possible that result from 

the systolic instruction broadcast. Instruction scheduling techniques will be described separately 

in Section 3.4.2.3 after explaining the basic mechanisms of the two software methods. 

3.4.2.1. Software Approach 

Our first approach is a software method to implement the systolic instruction broadcast by 

utilizing an instruction scheduler. As shown in Section 0, systolic instruction broadcast can cause 

some nop-delays due to data dependencies and resource conflicts resulting from communication 

instructions. In addition, a communication instruction with opposite direction to the instruction 

broadcast will write the transmitted value to the register file at cycle time, t+1 where t is the 

instruction arrival time on that node. Thus the consecutive instruction which attempts to write the 

data to the register file cannot proceed if there is one write port in the register file. The code in 

Figure 31 shows an example of this case. 

 

 

Figure 31: Sample code that introduces a delay due to a write following a communication 

instruction. 

 

In addition, the clock cycle time has been split into a RD cycle for a register read and a WR 

cycle for a register write as in Figure 11. By splitting the clock cycle, transferred data can be 

written after the transmitted data has been read. Thus, it is possible to transfer the data to 

neighboring PEs using the NEWS network in one clock cycle without buffering. Figure 33 shows 

the timing of data and instruction arrivals as an example. 

 

XOR  R3, R3, R3 

XFER  R1, R2, WEST 

ADDI R3, R3, 1    

XOR  R3, R3, R3 

XFER  R1, R2, WEST 

NOP 

ADDI R3, R3, 1    
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Figure 32:  Clock cycle splitting – RD for a data read from register file and WR for a data write to 

register file. 

 

 

Figure 33:  An example of an execution of a communication instruction with split clock cycle 

3.4.2.2. Two Write-port Register File Method 

Our second approach has the same basic concept as the first approach except multiple write 

ports (i.e., two in this case) exist in a register file. By having two register write ports, two 

simultaneous writes to register file – one for transferred data from neighboring PE and the other 

for the execution result from a current instruction – can be achieved without any stall as depicted 

in Figure 34.   

 

Figure 34: Sample codes that eliminate a delay due to a following write after communication 

instruction by having two write register ports. 

WRRD

One Clock Cycle

Φ1

Φ2

WRRD

One Clock Cycle

Φ1

Φ2

XOR  R3, R3, R3 

XFER  R1, R2, WEST 

ADDI R3, R3, 1    

XOR  R3, R3, R3 

XFER  R1, R2, WEST 

ADDI R3, R3, 1    

PE 
Instruction 

XFER R1, R2, EAST 

Data-i 

R2

R1

Instruction 

Data-j 

Φ1 (RD) 

Φ2 (WR) 

EAST.R2 R2 
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The software method is supported by an instruction scheduler to reduce instruction stalls by 

replacing nop-delays with meaningful instructions without affecting application results. 

Instruction scheduling techniques implemented for a SIMD-systolic system are described in 

following section, Section 3.4.2.3. 

3.4.2.3. Instruction Scheduling Techniques for Systolic Instruction Broadcast 

The overall framework of our instruction scheduler is shown in Figure 35. It consists of four 

main tasks – hazard detection and resolution, simultaneous writes check, data flow analysis, and 

delay reductions, which are described as follows. 

• Hazard Detection and Resolution:  

First, the instruction scheduler checks hazards (data hazards and structural hazards) 

based on the instruction patterns shown in Figure 29. If hazards are detected, delays are 

added to prevent them in this step. 

• Simultaneous Register Writes Check (Software Approach Only): 

This step is necessary only for a software approach. Since, there is one write port in a 

register file, simultaneous writes must be avoided. Thus only instructions that do not 

attempt writing results to a register file can proceed consecutively to the communication 

instruction. Otherwise, delays are added to prevent simultaneous register writes. 

• Data Flow Analysis: 

The first two steps may produce some amount of delays to ensure the correctness of 

application results. However, delays should be minimized while preserving application 

correctness. In our instruction scheduler, data dependencies are analyzed to select a 

candidate instruction that does not have any dependency with other instructions between 

‘NOP’ and the candidate instruction.  

• Delay Reduction: 

Based on data flow analysis, delays are minimized by replacing ‘NOP’ instructions with 

other meaningful instructions. Since candidate instructions are chosen based on 

dependency information, replacing delays with such instructions does not affect 

application results while achieving performance improvement.  

 

 

 

 

 



 50

 

 

 
Figure 35: Framework of an instruction scheduler for systolic instruction broadcast. 

 

Examples of instruction scheduling techniques for the software approach and the two write-

port register file method are illustrated in Figure 36 and Figure 37, respectively.  

Rescheduled 
Programs 

Instruction Scheduling Technique:
 
 

Data Flow Analysis: 

• Build a Data Dependency Graph. 
o Data Dependency Check 

SIMD Assembly 
Programs 

 

Hazards: 
• Detect Hazards.  

o Data Hazards 
o Structural Hazards 

• Insert Delays for Hazards. 

Delay Reduction: 

• Find Independent Instructions 
o Dependency Check for All Instructions 

Between ‘NOP’ Instruction and that instruction 
 

Simultaneous Writes (Only For a Software Approach) 

• Check Simultaneous Writes to a Register File 
• Insert Delays for Simultaneous Writes 
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Source Code 
Code Comment ETC. 

Xfer R2, R1 , NORTH R2  R1@SOUTH 

Addi R3, R2, 2 R3  R2 + 2 
Data Hazard 

Xfer R4, R2, WEST R4  R2@EAST 

Addi R6, R5, 2 R6  R5 + 2 

Simultaneous Writes 

to a Register File 

Xfer R7, R6, WEST R7  R6@EAST 

Xfer R9, R8, EAST R9  R8@WEST 
Structural Hazard 

Store  R9, R7 MEM[R9]  R7  

Addi R11, R10, 1 R11  R10 + 1  

Subi R12, R6, 2 R12  R6 – 2  

Add R13, R11, R12 R13  R11 + R12  

Add R14, R6, R8 R14  R6 + R8  

 

(a) Original example source code. 

 

 

Source Code 
No. Code Comment ETC. 
I-1 Xfer R2, R1 , NORTH  R2  R1@SOUTH 

I-2 NOP Delay 

I-3 Addi R3, R2, 2 R3  R2 + 2 

Delay Insertion for Data Hazard 

I-4 Xfer R4, R2, WEST R4  R2@EAST 

I-5 NOP Delay 

I-6 Addi R6, R5, 2 R6  R5 + 2 

Delay Insertion for Simultaneous 

Writes to a Register File 

I-7 Xfer R7, R6, WEST R7  R6@EAST 

I-8 NOP Delay 

I-9 Xfer R9, R8, EAST R9  R8@WEST 

Delay Insertion for Structural 

Hazard 

I-10 Store  R9, R7 MEM[R9]  R7  

I-11 Addi R11, R10, 1 R11  R10 + 1  

I-12 Subi R12, R6, 2 R12  R6 – 2  

I-13 Add R13, R11, R12 R13  R11 + R12  

I-14 Add R14, R6, R8 R14  R6 + R8  

 

(b) Example code after delay insertion to prevent hazards and simultaneous register writes.  
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(c) Data dependency graph of a given program. 

 

 

No. Code 
I-1 Xfer R2, R1 , NORTH  

I-2 NOP 

I-3 Addi R3, R2, 2 

I-4 Xfer R4, R2, WEST 

I-5 NOP 

I-6 Addi R6, R5, 2 

I-7 Xfer R7, R6, WEST 

I-8 NOP 

I-9 Xfer R9, R8, EAST 

I-10 Store  R9, R7 

I-11 Addi R11, R10, 1 

I-12 Subi R12, R6, 2 

I-13 Add R13, R11, R12 

I-14 Add R14, R6, R8 

(I-2)  (I-4) 

 

No. Code 
I-1 Xfer R2, R1 , NORTH  

I-4 Xfer R4, R2, WEST 

I-3 Addi R3, R2, 2 

I-6 Addi R6, R5, 2 

I-7 Xfer R7, R6, WEST 

I-8 NOP 

I-9 Xfer R9, R8, EAST 

I-10 Store  R9, R7 

I-11 Addi R11, R10, 1 

I-12 Subi R12, R6, 2 

I-13 Add R13, R11, R12 

I-14 Add R14, R6, R8 

  

  

(I-5) is automatically eliminated; (I-8)  (I-11). 

 
(d) Candidate selections based on data dependencies. 

 

 
 
 

 

I-1 

I-3 I-4 

I-6

I-7 I-12 I-14 

I-10

I-9

I-11 

I-13 



 53

 
No. Code 
I-1 Xfer R2, R1 , NORTH  
I-4 Xfer R4, R2, WEST 
I-3 Addi R3, R2, 2 
I-6 Addi R6, R5, 2 
I-7 Xfer R7, R6, WEST 

I-11 Addi R11, R10, 1 
I-9 Xfer R9, R8, EAST 

I-10 Store  R9, R7 
I-12 Subi R12, R6, 2 
I-13 Add R13, R11, R12 
I-14 Add R14, R6, R8 

 
(e) Rescheduled program after instruction scheduling to minimize delays. (In this case, all 

delays are removed.) 
 

Figure 36: An example of instruction scheduling technique for software approach. 

 

In Figure 37, the example program is the same as in Figure 36, except there is no delay 

between two instructions that produce simultaneous writes since the register file has two write 

ports. 

 

Source Code 
Code Comment ETC. 

Xfer R2, R1 , NORTH R2  R1@SOUTH 

Addi R3, R2, 2 R3  R2 + 2 
Data Hazard 

Xfer R4, R2, WEST R4  R2@EAST  

Addi R6, R5, 2 R6  R5 + 2  

Xfer R7, R6, WEST R7  R6@EAST 

Xfer R9, R8, EAST R9  R8@WEST 
Structural Hazard 

Store  R9, R7 MEM[R9]  R7  

Addi R11, R10, 1 R11  R10 + 1  

Subi R12, R6, 2 R12  R6 – 2  

Add R13, R11, R12 R13  R11 + R12  

Add R14, R6, R8 R14  R6 + R8  

 

(a) Original example source code. 
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Source Code 
No. Code Comment ETC. 
I-1 Xfer R2, R1 , NORTH  R2  R1@SOUTH 

I-2 NOP Delay 

I-3 Addi R3, R2, 2 R3  R2 + 2 

Delay Insertion for Data Hazard 

I-4 Xfer R4, R2, WEST R4  R2@EAST  

I-5 Addi R6, R5, 2 R6  R5 + 2  

I-6 Xfer R7, R6, WEST R7  R6@EAST 

I-7 NOP Delay 

I-8 Xfer R9, R8, EAST R9  R8@WEST 

Delay Insertion for Structural 

Hazard 

I-9 Store  R9, R7 MEM[R9]  R7  

I-10 Addi R11, R10, 1 R11  R10 + 1  

I-11 Subi R12, R6, 2 R12  R6 – 2  

I-12 Add R13, R11, R12 R13  R11 + R12  

I-13 Add R14, R6, R8 R14  R6 + R8  

 

(b) Example code after delay insertion to prevent hazards.  

 

 

 

 
 

(c) Data dependency graph of a given program. 

 

 

 

I-1 

I-3 I-4 

I-5

I-6 I-11 I-13

I-9

I-8

I-10

I-12 
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No. Code 
I-1 Xfer R2, R1 , NORTH  

I-2 NOP 

I-3 Addi R3, R2, 2 

I-4 Xfer R4, R2, WEST 

I-5 Addi R6, R5, 2 

I-6 Xfer R7, R6, WEST 

I-7 NOP 

I-8 Xfer R9, R8, EAST 

I-9 Store  R9, R7 

I-10 Addi R11, R10, 1 

I-11 Subi R12, R6, 2 

I-12 Add R13, R11, R12 

I-13 Add R14, R6, R8 

(I-2)  (I-4) 

No. Code 
I-1 Xfer R2, R1 , NORTH  

I-4 Xfer R4, R2, WEST 

I-3 Addi R3, R2, 2 

I-5 Addi R6, R5, 2 

I-6 Xfer R7, R6, WEST 

I-7 NOP 

I-8 Xfer R9, R8, EAST 

I-9 Store  R9, R7 

I-10 Addi R11, R10, 1 

I-11 Subi R12, R6, 2 

I-12 Add R13, R11, R12 

I-13 Add R14, R6, R8 

  

 (I-7)  (I-10) 

 

(d) Candidate selections based on data dependencies. 

 

  

No. Code 
I-1 Xfer R2, R1 , NORTH  

I-4 Xfer R4, R2, WEST 

I-3 Addi R3, R2, 2 

I-5 Addi R6, R5, 2 

I-6 Xfer R7, R6, WEST 

I-10 Addi R11, R10, 1 

I-8 Xfer R9, R8, EAST 

I-9 Store  R9, R7 

I-11 Subi R12, R6, 2 

I-12 Add R13, R11, R12 

I-13 Add R14, R6, R8 

 

(e) Rescheduled program after instruction scheduling to minimize delays. (In this case, all 

delays are removed.) 

 

Figure 37: An example of instruction scheduling technique for two write-port register file 

approach. 
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3.4.2.4. Hardware Approach 

Our third approach is a hardware solution. This approach utilizes the bypass (or forwarding) 

logic to pass the results to the dependent instruction which is executed in a neighboring PE. 

Figure 38 shows how the bypass logic is implemented for two, neighboring PEs. 

 

Figure 38: Bypass logic. 

 

For one PE, results should be forwarded from two neighboring PEs (SOUTH PE and EAST 

PE). Thus additional hardware requirements to implement this bypass logic should be double 

resulting in four 32x16 MUXES, and four 5bit comparators. In addition, the register file has two 

write ports. As a result, the hardware solution can eliminate delays resulting from a systolic 

instruction broadcast mechanism with a reasonably small amount of hardware. 
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3.5.   Results and Analysis 

3.5.1. Metrics 

Systolic instruction broadcast mechanism is evaluated through behavioral simulation and 

technology analysis. The metrics for the analysis are shown in Table 9.  

 

Table 9: Metrics for experiments. 

Analysis Metrics 

Clock Count Penalty The number of delays due to systolic instruction 
broadcast in clock cycles 

System Performance in 
Sustained Throughput 

(The number of dynamic instructions + Delays) x Clock 
Cycle Time (= 1/ Clock Frequency) in giga-operations 
per second (GOPs) 

Hardware Overhead in 
Number of Transistors 

Additional Number of Transistors to support a given 
approach 

Hardware Overhead for 
Register File 

Additional Area for Two Write Ports in Register File in 
mm2 

Area Efficiency Performance Over Die Size in GOPs/cm2 
 

 

The following describes how these metrics are measured in our approach. 

• Clock Count Penalty (Systolic Instruction Broadcast) = Delays (Data Hazard) + 

Delays (Structural Hazard) [+ Delays (Simultaneous Register Writes)] where 

‘Delays (Data Hazard)’ is the number of delays due to data hazards, ‘Delays 

(Structural Hazard)’ is the number of delays due to structural hazard, and ‘Delays 

(Simultaneous Register Writes)’ is the number of delays due to simultaneous writes 

to the register file. 

• System Performance (Sustained Throughput) = PEIPC U f N⋅ ⋅ ⋅ where IPC is 

number of executed instructions per cycle, U is system utilization factor, f is a 

system clock frequency, and NPE is the number of PEs in a given system. 

• Hardware Overhead in Number of Transistors = Additional Number of 

Transistors to support a given approach. 

• Hardware Overhead for Register File = Additional Chip Area to support a two 

write-port register file. 
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• Area Efficiency = 
Performance

DieSize
 where performance is sustained throughput and 

die size is chip area in cm2. 

 

Systolic instruction broadcast can increase clock frequencies by reducing worst-case wire 

length. However, it may result in increased no-op delays and increased execution clock cycles. 

Thus to evaluate systolic instruction broadcast mechanism, the number of executed clock cycles 

should be considered along with clock frequencies.  

3.5.2. SIMPil Applications 

To evaluate the set of architectural design choices implemented in the SIMD-systolic 

systems, an application test suite has been simulated using a SIMD-systolic simulator that we 

built. The applications are selected to evaluate the impact of systolic instruction broadcast 

method. These well-known applications, median filtering and convolution in image processing 

area, are described briefly as follows. 

• Median Filtering. Median filtering (MF) is used to remove binary noise from an 

image while preserving spatial resolution. A 3x3 window is used for this 

implementation. The algorithm works by replacing each pixel in the image with the 

median value in the window. 

• Convolution [71]. Spatial convolution is used to implement spatial filters. Spatial 

convolution is the method used to calculate what is going on with the pixel 

brightness around the pixel being processed. The equation for the spatial 

convolution process is as follows. 

O(x, y) = aI(x–1, y–1) + bI(x, y–1) + cI(x+1, y–1) + dI(x–1, y) + eI(x, y) + fI(x+1, 

y) + gI(x-1, y+1) + hI(x, y+1) + iI(x+1, y+1) where nine convolution coefficients 

are defined and labeled, as below:   

             a   b   c 
             d   e   f 
             g   h   i 

The equation is applied for each pixel in an input image, creating corresponding 

output pixels. 

3.5.3. Clock Count Penalty 

Short-wire instruction broadcast may improve system performance because attainable clock 

frequency to technologies can be raised. As mentioned earlier, there can be some penalty 
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associated with each approach. However, the instruction scheduler can reduce penalty clock 

cycles by replacing them with meaningful work. Table 10 shows the number of executed clock 

cycles of the given applications for a typical SIMD system (described as ‘Original’ for tables and 

graphs from now on), and for SIMD-systolic systems using the three different approaches. In this 

table, Method-1 is a software approach with one write-port register file, Method-2 is a two write-

port register file method, and Method-3 is a hardware solution with bypass logic. Numbers of 

instructions issued by the controller (including ‘nop’ instructions) are given in Table 10 for each 

method. The software methods (Method-1 & 2) are each depicted in two columns with the 

instruction scheduling technique and without it. Clock count penalty resulting from hazards for 

both methods and simultaneous register writes for the first method is shown in Table 11. The 

baseline system uses global instruction broadcast, which assumes all neighboring communication 

instructions complete in a single clock cycle. 

 

Table 10: Number of instructions issued by controller. 

Method-1 Method-2  

Application 

 

Original W/O 

Scheduling 

W/ 

Scheduling 

W/O 

Scheduling 

W/ 

Scheduling 

 

Method-3 

Median Filtering 
(PPE16) 

13,509 13,534 13,510 13,521 13,509 13,509 

Convolution (3x3) 
(PPE1) 

39 50 41 45 41 39 

Convolution (5x5) 
(PPE1) 

119 162 135 151 121 119 

Convolution (7x7) 
(PPE1) 

275 384 305 360 287 275 

 

 Table 11: Clock count penalties (delay cycles) of SIMD-systolic systems in three approaches. 

Method-1 Method-2  

Application W/O 

Scheduling

W/ 

Scheduling 

W/O 

Scheduling 

W/ 

Scheduling 

 

Method-3 

Median Filtering 
(PPE16) 

25 1 12 0 0 

Convolution (3x3) 
(PPE1) 

11 2 6 2 0 

Convolution (5x5) 
(PPE1) 

43 16 32 2 0 

Convolution (7x7) 
(PPE1) 

109 30 85 12 0 
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3.5.4. System Performance 

Since short-wire instruction broadcast can operate at a higher clock frequency than global 

instruction broadcast, clock count penalty can be compensated for or even outperformed. In this 

section, the impact of the systolic instruction broadcast method on system performance is 

described in terms of sustained instruction throughput projected to technology changes. The 

performance of SIMD-systolic systems is computed based on a lower bound of a local PE 

operational clock for the future technologies, and that of typical SIMD systems is based on 

across-chip clock frequencies projected by ITRS [68]. Figure 39 shows the sustained instruction 

throughput for each application where the utilization factor is assumed to be 90%.  

In this section, to show the impact of percentage of communication instructions for a 

program, we evaluate the convolution applications with three different mask sizes, which are 3 x 

3, 5 x 5, and 7 x 7. As mask size increases, the number of neighboring pixels, that is required to 

compute the output pixel, increases. In our applications, 31%, 50%, and 61% of overall issued 

instructions are communication instructions and half the communications involve NORTH and 

WEST communications for each implementation (3 x 3 convolution, 5 x 5 convolution, and 7 x 7 

convolution). As a result, as mask size increases, the number of communication instructions 

increases. This is shown in Table 10 and Table 11, the delay ratio, (clock count penalty / number 

of overall issued instructions), is increased as mask size is increased. Figure 39 shows projected 

sustained throughput of convolution applications with three different mask sizes for on-chip clock 

frequencies and off-chip clock frequencies where projected clock frequencies for low-cost 

systems are used in the experiments [68]. Lower bounds of on-chip clock frequencies are used to 

plot this figure. Figure 39 shows huge differences between sustained throughput using on-chip 

clock frequencies and that under off-chip clock frequencies. Even if we use lower bounds of on-

chip clock frequencies, there are still big differences from that of off-chip. In addition, 

performance improvement can be achieved with our scheduler. Figure 40 shows the normalized 

sustained throughput relative to the typical SIMD system. This figure shows that SIMD-systolic 

system can achieve much higher (up to 7.6 times) sustained throughput for hardware method 

(without delay) due to short clock cycle time, up to 7.5 times of original throughput for two write-

port register file with scheduler (with delays), and up to 7.2 times for a software method with 

scheduler for a given workload.  
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0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10

Minimum Feature Size (nm)

G
O

Ps

Original Method_1 W/O Scheduling Method_1 W/ Scheduling
Method_2 W/O Scheduling Method_2 W/ Scheduling Method_3

 
(a) Sustained throughput of 3 x 3 convolution application for on-chip clock frequencies and 

off-chip clock frequencies. 
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(b) Sustained throughput of 5 x 5 convolution application for on-chip clock frequencies and 

off-chip clock frequencies. 
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Sustained Throughput (Convolution 7x7)
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(c) Sustained throughput of 7 x 7 convolution application for on-chip clock frequencies and 

off-chip clock frequencies. 

Figure 39: Projected system performance in sustained system throughput. 
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Figure 40: Normalized sustained throughput. 
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3.5.5. Hardware Overhead 

• Bypass Logic 

To support bypass logic for our hardware approach described in Section 3.4.2.4, four 32x16 

MUXES and four 5-bit comparators are needed. To compute an additional number of transistors 

to implement bypass logic, we assume that we use 6-transistor 2x1 MUX and 8-transistor 2-input 

XNOR gates. Since a 32x16 MUX can be implemented by sixteen 2x1 MUXes, 384 (= 4 x 16 x 

6) transistors are additionally required for the MUXes. In addition, since a 2-input 5-bit 

comparator is implemented by five 2-input XNOR gate, 160 (= 4 x 5 x 8) transistors are added for 

comparators. As a result, 544 transistors are required for one PE to support bypass logic in our 

hardware approach. Based on the datasheet of our base architecture, SIMPil16, the total number 

of transistors used in one PE is 38,590. As a result, to support bypass logic a 1.4% overhead in 

transistor count for one PE is observed. Based on average area for one transistor in SIMPil, 

especially for the logic part (other than memory and register file), the increased number of 

transistors under 0.8µm technology occupies 0.11 mm2 resulting in a 1.7% area increase. 

• Register File 

Except for the first software approach, we use two write-port register file for simultaneous 

register writes. Additional write ports in the register file results in increased of register file size. 

Base architecture uses two read ports and one write ports. This is shown in Figure 41 based on the 

register file model in [69].    
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Figure 41: Register file size increase for an additional write port: R(2R,1W) – 2 read-port, 1 

write-port register file; R(2R,2W) – 2 read-port, 2 write-port register file. 
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3.5.6. Area Efficiency 

Area efficiency considers die size and performance together. Shorter instruction broadcast 

wires allow clock frequencies to operate near ITRS projected local interconnect levels. Thus the 

area efficiency for systolic instruction broadcast systems will be significantly higher than the 

baseline architecture. Figure 42 shows area efficiencies corresponding to the sustained throughput 

in Figure 39. As shown in Figure 42-(a), for programs with low levels of inter-PE 

communication, the software method can achieve the highest area efficiency. However, as 

communications between neighboring PEs increases, higher efficiency is obtained with added 

hardware. As a result, hardware implementation (bypass logic) achieves the highest area 

efficiency in Figure 42-(c) where applications spend the most time to communicate with 

neighboring PEs. In addition, the scheduler can effectively improve the area efficiency for both 

software methods. In any case, systolic instruction broadcasted systems have much higher area 

efficiency (up to 7.2) relative to the baseline SIMD system as shown in Figure 43.  
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(a) Area efficiency of 3 x 3 convolution application for each system. 
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(b) Area efficiency of 5 x 5 convolution application for each system. 
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(c) Area efficiency of 7 x 7 convolution application for each system. 

Figure 42: Area efficiencies in (GOP/mm2). 
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Figure 43: Normalized area efficiency projected in year 2010. 

 

3.6.   Chapter Conclusion 

 

A high performance and area efficient instruction broadcasting scheme with short-wire 

interconnects was presented. Short-wire instruction broadcast overcomes the wire latency 

bottleneck found in global instruction broadcast. Three systolic instruction broadcast methods 

have been presented and evaluated. For software methods, the scheduler improves the area 

efficiency for a given workload. We can choose the method for a set of particular applications by 

analyzing area efficiencies. In any case, systolic instruction broadcasted systems have much 

higher area efficiency (up to 7.2) relative to the typical SIMD system.  

In the next chapter, the temporal and special instruction execution order resulting from 

systolic instruction broadcast is used to enable a low overhead off-chip memory access scheme.   
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CHAPTER 4 
 

Systolic Virtual Memory 

4.1.   Summary 

 

While local PE memory provides the lowest access latency and highest bandwidth to the 

PE’s datapath, local memory cells are far larger per bit than in dedicated dense memory array 

chips that benefit from specialized processes and amortized support circuitry. A monolithically 

integrated SIMD PE array would be significantly less expensive in area and cost if a portion of 

local PE memory could be relegated to off-array dense memory chips. However limited memory 

access bandwidth and increased access times pose obstacles to this approach. The staggered 

spatial execution resulting from the systolic instruction broadcast technique presented in the last 

chapter offers a new opportunity for utilizing off-array dense memory chips. This chapter 

presents a systolic off-array memory access scheme called Systolic Virtual Memory (SVM) 

where off-array addresses are scheduled to allow instruction and data operand rendezvous at the 

PE using a separate instruction and memory delivery network. A scheduling algorithm is 

presented and new controller hardware is described. Several large data memory kernels and 

synthetic test programs are used to evaluate the proposed system. Area models for storage 

alternatives are developed and the systolic virtual memory technique is compared to a local 

memory-only system in terms of performance, area, and area efficiency. For a high memory 

access kernel (matrix multiplication), this technique offers a 30% - 50% reduction in memory 

area and 20% - 50% increase in area efficiency for only a 20% execution time penalty. 
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4.2.   Introduction 

 

Local PE memory arrays provide high access, low latency operand storage. They also bring 

high area costs in an often expensive high-speed digital VLSI process. Dense off-array memory 

chips offer large data storage arrays at very low cost. This chapter considers an approach to 

combining these two storage mediums in a scheme similar to virtual memory that combines fast 

semiconductor memory with dense magnetic disk storage. High reference locality in the register 

file and local memory and a load/store instruction set results in a manageable number of off-array 

memory accesses. However SIMD’s typical synchronous instruction execution concentrates off-

array accesses overwhelming the memory access bandwidth of commercially available dense 

memory chips. Systolic instruction broadcast staggers instruction execution enabling systolic off-

array memory prefetching. When memory addresses are not data dependent, accesses can be 

prefetched in advance so that requested memory access can arrive at the appropriate PE 

simultaneous with the instruction. This organization is illustrated in Figure 44. In this example, 

each PE in a 4 x 4 SIMD array requests a different memory location in off-array memory. Data 

access begins 4 cycles before the first node executes the systolic load instruction. This allows data 

to travel from the bottom edge of the array to rendezvous with the load instruction on a particular 

PE. Figure 45 shows an example where instructions and corresponding data rendezvous in each 

PE at a different clock cycle. The architecture is simplified in this example and it is assumed that 

the first instruction is executed at the first clock cycle at the first PE. 

This chapter continues with a summary of related research that serves as the foundation for 

this work. Then the details of systolic virtual memory are presented including required 

modification to the controller and instruction set. A VLIW style instruction is defined where an 

independent PE and memory controller operation is bundled at each code location. A scheduling 

algorithm using linear mapping is defined and implemented. Then several kernels that require 

significant PE storage are simulated and evaluated. The evaluation metrics are execution time, 

delay cycles, required memory and corresponding memory area, and area efficiency. The 

presented systolic virtual memory system is compared to an all-local memory system. Although 

the SVM system requires 20% longer execution time, it reduces storage area by as much as 50%, 

with a similar improvement in area efficiency.     



69 

Off-Chip 
Memory

Instruction

D1
D5
D9
D13

Controller

D2
D6
D10
D14

D3
D7
D11
D15

D4
D8
D12
D16

D1

D2

D4

D5

D6

D3

D5

D9

D2

D6

D3

D4

D7

D5

D9

D6

D3

D4

D8

D7

D10

D9

D13

D6

D7

D10

D11

D4

D8

D9 D7

D9

D10

D14

D11

D8

D12

D5

D2

D10

D7

D15

D4

D12

D6

D3

D11

D8

D16

D1

index

Addr

Memory 

Controller

(Burst Mode)

Off-Chip 
Memory

Instruction

D1
D5
D9
D13

Controller

D2
D6
D10
D14

D3
D7
D11
D15

D4
D8
D12
D16

D1

D2

D4

D5

D6

D3

D5

D9

D2

D6

D3

D4

D7

D5

D9

D6

D3

D4

D8

D7

D10

D9

D13

D6

D7

D10

D11

D4

D8

D9 D7

D9

D10

D14

D11

D8

D12

D5

D2

D10

D7

D15

D4

D12

D6

D3

D11

D8

D16

D1

index

Addr

Memory 

Controller

(Burst Mode)

 

Figure 44: Mechanism of systolic instruction broadcast and systolic data movement.  

4.3.   Related Work 

4.3.1. Linear Mapping Technique 

Linear mapping techniques are widely used to design systolic systems for specific 

applications [14,16,17,19]. This technique can determine how operands are distributed through a 

processor array, including their speed and direction. Definitions used in the linear mapping are 

shown in Table 12 followed by a description of transformation methods. 

Table 12: Definitions for linear mapping method. 

Term Definitions 

Dependence Graph (DG) 

A directed graph that shows the dependences of computations in 
an algorithm where the nodes in DG represent computations and 
edges represent the precedence constraints among nodes. 
 

Regular DG DG which has the same directional edges at all nodes in the DG. 
 

Projection vector (or iteration vector), 
d T = (d1, d2) 

Two nodes that are displaced by d or multiples of d are executed 
by the same processor. 
 

Processor space vector,  pT = (p1, p2) 
 

Any node with index I T = (i, j) would be executed by processor 
pT I = (p1, p2)(i j)T. 
 

Scheduling vector, s T = (s1, s2) 
Any node with index I would be executed at time, sT I. 
 

Hardware Utilization Efficiency, 
HUE = 1/|sTd| 

Two tasks executed by the same processor are spaced |sTd| time 
units apart. 
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(i) clock cycle = -1 (ii) clock cycle = 0 (iii) clock cycle = 1 

   
(iv) clock cycle = 2 (v) clock cycle = 3 (vi) clock cycle = 4 

  

 

(vii) clock cycle = 5 (viii) clock cycle = 6  

Figure 45: An example of data movement with systolic load instruction. 
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Transformations based on the dependence graph (DG) are performed by the following steps. 

• Step 1: Build a regular dependence graph which is a space representation. 

• Step 2: Transform by mapping DG from space to space-time representation. 

• Step 3: Design various systolic systems for a given problem by selecting different sets of 

vectors: projection vector, processor space vector and scheduling vector. 

We can choose one system based on the hardware utilization efficiency. The sets of vectors 

chosen should fulfill constraints to preserve the correctness of the designed system. The following 

descriptions are details of each step in the transformations. 

Step 1: Build a regular Dependence Graph 

The DG is built by creating a new node whenever a new computation is necessary in an 

algorithm. No node is ever reused on a single computation basis. In a regular DG, the presence of 

an edge in a certain direction at any node in the DG represents the presence of an edge in the 

same direction at all nodes. 

Step 2: Transform by Mapping DG from space to space-time representation 

A regular DG is a spatial representation which typically corresponds to 0 time instance. 

Thus to assign time instances to all computations, a mapping technique that transforms a space 

representation to a space-time representation is necessary. In this transformation, each node is 

mapped to a certain PE and also scheduled to a certain time instance. This mapping technique can 

map an N-dimensional DG to a lower dimensional systolic array. The transformation is based on 

several basic vectors described in Table 12 and is used to design many systolic systems for a 

specific algorithm.  

Step 3: Selection of Basic Vectors 

The selection of basic vectors is restricted by the following constraints to preserve the 

correctness of the designed system.  

 Orthogonality of processor space vector and projection vector: If point A and B differ by 

the projection vector, i.e., IA – IB is same as d, then they must be executed by the same 

processor. In other words, pTIA = PTIB. This leads to pT (IA – IB) = 0 => pTd = 0. 

 Processor mapping: If A and B are mapped to the same processor, then they cannot be 

executed at the same time, i.e., sT IA ≠ sT IB, i.e., sT d ≠  0. 

 Edge mapping: If an edge e exists in the space representation or DG, then an edge pTe is 

introduced in the systolic array with sTe delays. 

The transformation from a space representation to a space-time representation is done by 

interpreting one of the spatial dimensions as a temporal dimension. For a two-dimensional (2D) 

DG, the general transformation is described by i’ = t = 0, j’ = pTI and t’ = sTI, or equivalently, 
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        =  T              =                                  .  

 

In the space-time representation, the j’ axis represents the processor axis and t’ represents 

the scheduling time instance. 

The linear mapping technique is for the regular DG. However, a SIMD-systolic system 

cannot be represented by a regular DG since the borders of the processor array have irregularity 

in the instruction broadcasting. In addition, each PE in a SIMD-systolic system can operate the 

different functionalities controlled by the broadcasted instruction. Thus, instruction arrival timing 

also should be considered in SIMD-systolic system design. Consequently, the basic linear 

mapping method must be extended for use in a SIMD-systolic system design for a particular 

application. The architectural information should be considered to verify the correctness-

preserving design for a given application. This architectural decision is based on many aspects, 

including technological issues such as data bandwidth limited by the pin counts. 

Following section describes related techniques to hide off-chip memory access latency by 

data prefetching. 

4.3.2. Data Prefetching Technique 

The performance gap between CPU and memory systems is well-known. Figure 46 shows the 

increasing performance gap between processor and memory extracted from ITRS 2001 [68].  
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Figure 46: Performance gap between processor and DRAM (from ITRS). 
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Figure 47: Performance increase rates for processor and DRAM (from ITRS). 

 

By normalizing to the performance in year 2001, the performance gap is illustrated in Figure 

47. Processor performance increases significantly faster than memory, resulting in an increasing 

mismatch between these system components in the future. Thus it is evident that an efficient 

handling of memory access is necessary to avoid a memory access performance bottleneck. 

By supporting memory hierarchies, it is possible to reduce the latency of main memory 

accesses for frequently used data. However, access locality is not always present. For example, 

scientific and multimedia applications spend more than half their execution time stalled on 

memory requests [72]. In situations where cache misses occur, normally data fetch from main 

memory is initiated on demand. As a result, execution of applications having little data locality 

will be stalled frequently to wait until a requested cache block is fetched from main memory. To 

overcome this problem, data prefetch techniques have been proposed and a survey on that topic is 

found in [73]. Since data prefetching can be overlapped with processor computations by issuing a 

fetch to the memory system in advance of an actual memory reference, main memory access 

latency can be hidden. Data prefetching techniques can be implemented in software methods, 

hardware methods, or hybrid methods. Software prefetching has been widely used in many 

contemporary microprocessors such as PowerPC, HP PA-8000, and MIPS R10000. Usually 

software prefetching is supported by adding ‘fetch’ instructions in a given program. They are 

placed relative to the corresponding ‘load’ or ‘store’ instructions, a technique known as prefetch 

scheduling. Data prefetching is typically useful inside loops that perform computation on large 

arrays because this type of computations is common in scientific or multimedia applications. In 

addition, since this type of data has little data locality, cache memory cannot reduce the memory 
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latency time effectively. Thus, data prefetching can be utilized in this case with highly predictable 

patterns of data access. Software prefetching techniques introduce fetch instruction execution 

overhead.  Alternative hardware prefetching techniques do not impose this overhead, but do 

require additional hardware. There have been several approaches in hardware prefetching, such as 

sequential prefetching [74], and prefetching with arbitrary strides [75]. Sequential prefetching can 

be implemented with relatively simple hardware. However, this method results in poor 

prefetching performance where irregular or strided access patterns are observed. Thus, other 

prefetching approach to support arbitrary strides has been proposed [75]. This method utilizes a 

reference prediction table (RPT) to hold most recently used memory operations. Stride 

information is computed at run time. Once this information is recorded in the RPT, the next 

effective address of that memory instruction is simply computed as (current effective address + 

stride).  

Software data prefetching techniques perform better than hardware methods on irregular 

memory access patterns, but, unlike hardware methods, compilation effort and fetch instruction 

overhead are factors. Hybrid data prefetching, which integrates software prefetching and 

hardware prefetching techniques, has been proposed since neither of these approaches is superior 

in all cases [77].  Our approach is a hybrid data prefetching technique, as will be discussed in 

Section 4.4.5. 

4.4.   Approach: SIMD-systolic System with Systolic Virtual Memory 

4.4.1. Systematic Design Approach 

As the complexity of VLSI systems increases, formal design methods are required to 

guarantee correct behavior of systems. Our approach employs linear mapping on regular 

dependence graphs as described in Section 4.3.   This design methodology is extended to consider 

the timing between data movements and systolically broadcasted instructions in SIMD-systolic 

systems. The overall design methodology we use to verify the SIMD-systolic system for an 

application-specific way is depicted in Figure 48. 
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Figure 48: The overall framework of the systematic design method for a SIMD-systolic system. 

 

Linear mapping techniques are extended in our research. The basic method works with the 

regular dependency graph in which data moves in the same direction for all PEs. This method 

assumes a pure systolic system that does not need any control information because all PEs can 

execute the fixed functionality defined by applications at any time. However, a SIMD-systolic 

system is a programmable system, in which all PEs are controlled by systolically broadcasted 

instructions and the directions of data movement are fixed from south to north because off-chip 

memory modules are connected to the PEs in south border. This connection of memory modules 

is well-harmonized with the systolic instruction broadcast. Thus architectural information is 

considered in our design methodology, unlike the original mapping techniques which are based 

solely on the description of algorithms. In addition, instructions are also treated as a kind of data 

to harmonize scheduling of instructions and sequencing of off-chip data. An example of an 

extended method is shown in Section 4.4.2. 
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4.4.2. Case Study of Extended Mapping Techniques: Vector Quantization 

The basic description of the VQ image compression application is described in Section 

2.8.1. The formal representation of the VQ encoding process can be expressed as follows. 

Let X = [x0 x1 x2 … xk-1] be an input vector of dimension k, N be the number of code 

vectors, and Ci = [ci,0 ci,1 ci,2 … ci,k-1] be the i-th codeword of dimension k, where i = 0, 1, 2, 

…, N-1. This step involves the measuring of the N distortions, di, where i = 0, 1, 2… N-1, and 

selecting the codeword index i for which di is the minimum distortion.  

During this encoding step, exhaustive search is necessary, which is computationally 

expensive. There are two approaches to dealing with the search costs: using a sub-optimal vector 

quantizer in a heuristic way and utilizing the multiprocessors. We takes the second approach by 

developing an efficient system design technique to perform compute-intensive algorithms 

efficiently on a SIMD-systolic architecture.  

A space representation, DG for VQ encoding can be built by incorporating the set of basic 

vectors, PT, ST and d, based on the architectural information, such as the method to get the input 

data. Since our target architecture is a focal plane architecture, image data can be moved directly 

from the focal plane to each node in the processor array at once. This results in a DG with the 

input data X which stays in each node as depicted in Figure 49. 

 
Figure 49: DG for VQ application. 
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to the same PE, the schedule time of each PE should be the same as the j value, assuming the 

encoding operation can be executed for one code vector in unit time. The schedule time of each 

node is decided by STI. Based on this observation, for a code vector size of 16, the node (i, j) will 

be scheduled at (16 x i + j). As a result, the scheduling vector is ST = [16, 1]. Consequently, the 

selection of a set of basic vectors are PT = [0, 1], ST = [16, 1] and dT = [1, 0]. Transformations are 

listed for each edge in Table 13. 

Table 13: Transformation table for each edge. 

Edge e PTe STe 

CV (0, 1) 1 1 

X (0, 0) 0 0 

Index (1, 0) 0 16 

 

The space-time representation can be created by the following computation.  

  

        =  T              =                                   =                                 . 

 

 

As a result, the processor axis is j’ = j and time axis is t’ = 16i + j. The resulting systolic 

system is shown in Figure 50 and the corresponding space-time representation is depicted in 

Figure 51. 

 

 
Figure 50: One-Column system designed for VQ based on transformations in Table 13. 
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Figure 51: Space-time representation. 

 

The space representation in Figure 49 corresponds to one column of PEs, also called a 

segment, of the PE array. We need to consider the column-to-column design using the same 

concept. Mappings for inter-segments need to consider only systolic instruction broadcast. Thus 

we can easily draw the system at the segment level as in Figure 52.  

 

 
Figure 52: Segment-level system designed for VQ. 
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to the set of PEs in a column. By combining Figure 50 and Figure 52, we can show the overall 

system view of a SIMD-systolic system for VQ. Since each segment node will be scheduled in 

consecutive time slots, the space-time representation can be expressed by sliding one step towards 

the time axis. The simplified representation is given in Figure 53. Each segment box is 

corresponding to the space-time representation given in Figure 51. 
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Figure 53: High level view of space-time diagram assuming 4 x 4 processor array. 

 

4.4.3. Memory Operations in SIMPil Architecture 

This section describes the kinds of memory operations that are supported in our target 

system. Our target architecture is based on SIMPil16 with an off-chip memory interface. SIMPil 

architecture can support three types of memory addressing modes: immediate addressing (direct 

addressing), controller register indirect addressing, and PE local register indirect addressing.  

 Table 14 shows the possible memory addressing modes for each type of memory operation.  

Basically, memory operations are ‘load’ and ‘store’. There are three types of memory operations 

depicted in Table 14 based on which memory words are loaded from and stored to. 

   

Table 14: Memory addressing modes for each type of memory operation. 

OFF_CHIP Memory Memory 
Operation Controller PE Local 

Shared Private 

Load Immediate 
CREG Indirect 

Immediate 
CREG Indirect 
PREG Indirect 

Immediate 
CREG Indirect 

(same for all PEs in a column) 

Immediate 
CREG Indirect 

Store Immediate 
CREG Indirect 

Immediate 
CREG Indirect 
PREG Indirect 

N/A Immediate 
CREG Indirect 
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4.4.4. Systolic Virtual Memory (SVM): SIMD-systolic System with Off-Chip Memory 
Accesses 

This section describes how the SIMD-systolic system supports off-chip memory accesses. 

The two kinds of off-chip memory operations are systolic load (‘sys_load’) and systolic store 

(‘sys_store’). Typically, off-chip memory access results in much higher latency, which becomes a 

performance bottleneck. In addition, due to the limited off-chip memory bandwidth, sufficient 

data cannot be provided for all PEs in relatively large SIMD systems. In our research, by 

leveraging from the staggered instruction execution of systolic instruction broadcast, off-chip 

memory access is efficiently handled with limited memory bandwidth. Systolically broadcasted 

‘sys_load’ instructions will rendezvous with the data in each PE, which is simultaneously being 

moved systolically from the bottom to the top in a processor array. Off-chip memory latency will 

be hidden by data prefetching techniques.  This management of off-chip memory gives the 

illusion of a large on-chip memory. Since this is conceptually similar to the virtual memory [79] 

found in most contemporary architectures [78], we refer to our mechanism as systolic virtual 

memory (SVM). 

Section 4.4.4.1 describes the mechanism to support the rendezvous of a systolic load 

instruction with off-chip memory data. Section 4.4.4.2 discusses the corresponding systolic store 

mechanism.  

4.4.4.1. Systolic Load 

 
Figure 54 shows the mechanism for a systolic load operation for one column of a 4 by 4 

processor array. The address table in this figure is used to support data prefetching, which will be 

discussed later. Based on the mechanism shown in Figure 54, off-chip memory is placed at the 

bottom of processor array and data is moved from the bottom to the top in a processor column. 

An example of systolic data load is illustrated in Figure 45. 

4.4.4.2. Systolic Store 

Figure 55 shows the mechanism for a systolic store operation for one column of a 4 by 4 

processor array. Data to be stored in off-chip memory is moved from each PE. An example is 

illustrated in Figure 56. A FIFO store buffer is used to prevent unnecessary stalls resulting from 

the simultaneous memory access. Off-chip memory load operations look in this store buffer first 

in case there is data which has not yet been written to the off-chip memory. 
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Figure 54: Systolic virtual memory: systolic load mechanism. 

 

 

Figure 55: Systolic virtual memory: systolic store mechanism. 
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(i) clock cycle = 0 (ii) clock cycle = 1 (iii) clock cycle = 2 

   
(iv) clock cycle = 3 (v) clock cycle = 4 (vi) clock cycle = 5 

   
(vii) clock cycle = 6 (viii) clock cycle = 7 (ix) clock cycle = 8 

  

 

(x) clock cycle = 9 (xi) clock cycle = 10  

Figure 56: An Example of Systolic Store. 
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Using these mechanisms for systolic load and store, the next section describes the data 

prefetch technique used to hide the off-chip memory access latency and the traverse time.  

4.4.5. Data Prefetch 

A hybrid data prefetch technique is used in our research. As in software data prefetching, 

our method inserts ‘prefetch’ instructions explicitly into the programs. In addition, a hardware-

based address table is used. This is initialized at compile time and updated at runtime using 

hardware logic. The information in the address table is used to reference the off-chip memory 

word. 

4.4.5.1. Prefetch Instruction 

Our approach to inserting and executing prefetch instructions strives to reduce overhead.  

Because one systolic load instruction is executed in all PEs, the number of prefetch instructions 

would normally equal the number of PEs in a processor array. However, the behavior of each 

column in a processor array is identical except that there is a one cycle delay between columns. 

Since PEs in a same row will occupy the same location in each memory module, the number of 

added prefetch instructions can be reduced to the number of rows in a processor array. However, 

even with this reduction in the number of prefetch instructions, a considerable amount of 

instruction overhead remains.  As shown in Figure 57, a sample program with 2 instructions is 

expanded by 15 additional instructions: 8 ‘prefetch’ instructions and 7 ‘nop’ instructions to 

control the data arrival time. We reduce this overhead by overlapping prefetches with the 

execution of other instructions using an extended long instruction format.  

 

Figure 57: An example of software data prefetching using the ‘prefetch’ instruction. 

S_LOADI 256 
SYS_LOAD R1, SR0 

S_LOADI 256 
PREFETCH IndexROW0 
NOP 
PREFETCH Index ROW1 
NOP 
PREFETCH Index ROW2 
NOP 
PREFETCH Index ROW3 
NOP 
PREFETCH Index ROW4 
SYS_LOAD R1, SR0 
PREFETCH Index ROW5 
NOP 
PREFETCH Index ROW6 
NOP 
PREFETCH Index ROW7 
NOP 
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Figure 58 shows the extended instruction format which includes a PE instruction and an off-

chip memory instruction field. At this time, this field is used only for ‘prefetch’ instruction, but 

may be used for other types of instructions in the future. The ‘prefetch’ instruction’s format is 

‘prefetch index’ where index is used to reference the address table. The extended instruction 

format makes it possible to execute the ‘prefetch’ instruction with other PE instruction at the 

same time. Figure 59 shows the instructions resulting from the ‘sys_load R1, SR0’ instruction 

executing on an 8 by 8 processor array. As depicted in this figure, the PE instruction and prefetch 

instruction run independently from each other. Thus, all slots, except the 8th PE instruction slot 

can be filled with other useful instructions (if any), independent of the existence of prefetch 

instructions in the off-chip memory instruction field. Thus the instruction overhead resulting from 

prefetch instruction insertion will be effectively reduced. 

Figure 60 illustrates how data is systolically loaded from the off-chip memory through the 

column of an 8 x 8 processor array in time. 

 

 

Figure 58: Extended instruction format for data prefetching. 

 
PE Instruction Off-Chip Memory Instruction 

1  Prefetch IndexROW0 

2   

3  Prefetch Index ROW1 
4   
5  Prefetch Index ROW2 
6   
7  Prefetch Index ROW3 
8 A: mload R1, SR0  
9  Prefetch Index ROW4 

10   
11  Prefetch Index ROW5 
12   
13  Prefetch Index ROW6 
14   
15  Prefetch Index ROW7 

Figure 59: An example of an extended instruction format: ‘sys_load R1, SR0.’   

 

PE Instruction Field Off-chip memory Instruction Field 
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TIME 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
ROW0        A1        
ROW1       A1  A2       
ROW2      A1  A2  A3      
ROW3     A1  A2  A3  A4     
ROW4    A1  A2  A3  A4  A5    
ROW5   A1  A2  A3  A4  A5  A6   
ROW6  A1  A2  A3  A4  A5  A6  A7  
ROW7 A1  A2  A3  A4  A5  A6  A7  A8 

 
 
 

Figure 60: An example of data movement in one column of an 8 x 8 processor array for a 

‘sys_load.’ 

4.4.5.2. Address Table 

The address table used in our data prefetch method is depicted in Figure 61. There are three 

columns in this table – index, base address, and stride. The index field is not an explicit column 

but it is used for referencing of items in the table. The base address field is used to compute the 

effective address of the memory operation along with a stride field. The base address is the 

address of prefetched data for the first row of a processor column. This address is set at compile 

time and incremented automatically at run time to be used for the PE in the next row. The ‘stride’ 

field is useful where the systolic load instruction is inside the loop. This value is used to update 

the base address after the last prefetch instruction corresponding to one systolic load in a loop 

(i.e., the prefetch instruction for a PE in the last row for a particular systolic load) is executed.  

 

Index Base Address Stride 
1 0 Don’t Care 
2 16 1 

Figure 61: Address table. 

Figure 62 shows an example of data prefetching using the extended instruction format for a 

prefetch instruction with the address table shown in Figure 61. Conceptually, the effective 

address for each PE is computed as (Base Address + Row Number for a Particular PE). Since the 

row number is incremented each time, the base address is automatically incremented by one in 

the implementation. In this example, all indexes for PEs are 1 which references the first row, 

which has the (base address = 0). 

MLOAD 

PREFETCH 
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PE Instruction (PE0) Off-Chip Memory 
Instruction Memory Address 

1  Prefetch 1 0  [BaseAddress(=0) + RowNumber(=0)] 
2    
3  Prefetch 1 1  [BaseAddress(=0) + RowNumber(=1)] 
4    
5  Prefetch 1 2  [BaseAddress(=0) + RowNumber(=2)] 
6    
7  Prefetch 1 3  [BaseAddress(=0) + RowNumber(=3)] 
8 A: mload R1, SR0   
9  Prefetch 1 4  [BaseAddress(=0) + RowNumber(=4)] 

10    
11  Prefetch 1 5  [BaseAddress(=0) + RowNumber(=5)] 
12    
13  Prefetch 1 6  [BaseAddress(=0) + RowNumber(=6)] 
14    
15  Prefetch 1 7  [BaseAddress(=0) + RowNumber(=7)] 

Figure 62: An example of data prefetching using the address table given in Figure 61. 
 

The data prefetching technique was devised to reduce the off-chip memory latency. 

However, so far, we have been considering how to sequence the systolically moved data from 

off-chip memory to rendezvous with a systolically distributed instruction. As a result, data 

prefetching technique is used to hide the data traverse time resulting from the systolic distribution 

of data. To hide memory access latency as well as data traverse time, the ‘prefetch’ instruction 

should be issued earlier than that shown in previous examples.  In particular, if an ‘mload’ 

instruction arrives at time TMLOAD for a particular PE , a ‘prefetch’ instruction should be issued at 

time TPREFETCH = TMLOAD – (TTRAVERSE + TMEM), where.TTRAVERSE is data traversal time from the 

bottom of the array to a particular PE, and TMEM is the off-chip memory access time in clock 

cycles.  The resulting sequence of instructions is depicted in Figure 63 for an 8 by 8 processor 

array where the first prefetch occurs at cycle time 1 and TMEM is 6 clock cycles. Based on this 

information, TMLOAD becomes 14 in this case. 
PEROW0: TPREFETCH_0 = TMLOAD_0– (TTRAVERSE_0 + TMEM) = TMLOAD - (7 + 6) = 1 

PEROW1: TPREFETCH_1 = TMLOAD_1 – (TTRAVERSE_1 + TMEM) = 15 – (6 + 6) = 3 

PEROW2: TPREFETCH_2 = TMLOAD_2 – (TTRAVERSE_2 + TMEM) = 16 – (5 + 6) = 5 

PEROW3: TPREFETCH_3 = TMLOAD_3 – (TTRAVERSE_3 + TMEM) = 17 – (4 + 6) = 7 

PEROW4: TPREFETCH_4 = TMLOAD_4 – (TTRAVERSE_4 + TMEM) = 18 – (3 + 6) = 9 

PEROW5: TPREFETCH_5 = TMLOAD_5 – (TTRAVERSE_5 + TMEM) = 19 – (2 + 6) = 11 

PEROW6: TPREFETCH_6 = TMLOAD_6 – (TTRAVERSE_6 + TMEM) = 20 – (1 + 6) = 13 

PEROW7: TPREFETCH_7 = TMLOAD_7 – (TTRAVERSE_7 + TMEM) = 21 – (0 + 6) = 15. 
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PE Instruction (PE0) Off-Chip Memory 
Instruction Memory Address 

1  Prefetch 1 0  [BaseAddress(=0) + RowNumber(=0)] 
2    
3  Prefetch 1 1  [BaseAddress(=0) + RowNumber(=1)] 
4    
5  Prefetch 1 2  [BaseAddress(=0) + RowNumber(=2)] 
6    
7  Prefetch 1 3  [BaseAddress(=0) + RowNumber(=3)] 
8    

9  Prefetch 1 4  [BaseAddress(=0) + RowNumber(=4)] 
10    
11  Prefetch 1 5  [BaseAddress(=0) + RowNumber(=5)] 
12    
13  Prefetch 1 6  [BaseAddress(=0) + RowNumber(=6)] 
14 A: mload R1, SR0   
15  Prefetch 1 7  [BaseAddress(=0) + RowNumber(=7)] 

Figure 63: An example of data prefetching. 

 

Our data prefetching techniques are used to hide both data traverse time in SVM mechanism 

and off-chip memory latency time. Also, by extending the instruction format, we can minimize 

the instruction overhead of the additional prefetch instructions. However, to match the 

systolically pumped data from off-chip memory with the systolically broadcast instructions, 

memory load instructions (‘mload’) should be delayed where there is a channel conflict. Section 

4.4.6 describes techniques for minimizing these delays, illustrating with particular examples. 

4.4.6. Instruction Scheduling 

Data prefetching technique can hide the data traverse time and memory access latency as 

described in the previous section. However, we need to consider resource constraints, such as 

limited memory bandwidth and number of channels, since they can cause delays if there is a 

conflict. With a given number of physical channels for systolic load (1 in this case), the number 

of consecutive systolic load instructions should not exceed 2 to avoid delays from the 

instructions. Thus where more than 2 consecutive systolic load instructions are broadcasted, 

delays should be inserted between the second ‘sys_load’ instruction and the third ‘sys_load’ 

instruction. The scheduler and data sequencer play important roles in minimizing the performance 

degradation as well as preserving the application correctness. Figure 64 shows an example of two 

consecutive systolic load instructions executed under the same assumption as in Figure 63. 



88 

 

 

         Sample Program: 
 
 

PE Instruction Off-Chip Memory Instruction 

1  Prefetch 1 
2  Prefetch 2 
3  Prefetch 1 
4  Prefetch 2 
5  Prefetch 1 
6  Prefetch 2 
7  Prefetch 1 
8  Prefetch 2 
9  Prefetch 1 

10  Prefetch 2 
11  Prefetch 1 
12  Prefetch 2 
13  Prefetch 1 
14 A: mload R1, SR1 Prefetch 2 
15 B: mload R2, SR2 Prefetch 1 
16  Prefetch 2 

 

 
Figure 64: An example of consecutive systolic load instructions. 

 

As shown in Figure 64, the data channel is fully occupied at some point by the systolically 

moved data for two consecutive sys_loads. This saturation also can be seen in the off-chip 

memory operation field of the sequence of instructions in Figure 64 such that all the fields are 

occupied by the prefetch instructions. For the first systolic load instruction, all odd numbered off-
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chip memory instruction fields are used by prefetch instructions, and for the second systolic load 

instruction, all even numbered off-chip memory instruction fields are occupied. Likewise, the 

case of two consecutive systolic stores is depicted in Figure 65.  

 

 

Figure 65: An example of consecutive systolic store instructions. 

 

Systolic memory operations can be executed without delays due to the limited bandwidth. 

Since one word can be loaded from the off-chip memory at once, the third systolic memory 
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operation must wait until the first two systolic memory instructions are executed through the 

processor array. This case is depicted in Figure 66.  
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Figure 66: An example of three consecutive systolic load instructions. 

 

As in Figure 66, delays are added to wait until the data channel is available for the third 

systolic load instruction. The number of nop delays is (2N – 2) for an N x N processor array. The 

delays should be minimized for the efficiency of the SIMD-systolic system. Thus an instruction 

scheduling technique based on data flow analysis is used to replace delays with useful 

instructions. The overall framework of our instruction scheduler for SVM is shown in Figure 67. 

It consists of three main tasks – channel conflict detection and resolution, data flow analysis, and 

delay reductions. 

 

• Channel Conflict Detection and Resolution:  

The instruction scheduler checks if there is a channel conflict among the systolic memory 

operations. For different combinations of off-chip memory instructions, there are different 

numbers of necessary distances among the memory operations due to the limited bandwidth 

and channel availability. Thus if the instruction scheduler detects any channel conflict, nop-

delays are inserted to resolve it.  

• Data Flow Analysis: 

As in the previous chapter, to minimize the delays produced by the instruction scheduler 

and to preserve application correctness, data dependencies are analyzed to select a 

I1: SYS_LOAD R1, SR1 
I2: SYS_LOAD R2, SR2 
I3: SYS_LOAD R3, SR3 

SAMPLE PROGRAM: 

I1 I2 I3
DELAYS (14 = 2N -2) 
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candidate instruction to replace the delays. The candidate instructions should not have any 

dependency with other instructions between ‘NOP’ and the candidate instruction.  

• Delay Reduction: 

Based on data flow analysis, delays are minimized by replacing ‘NOP’ instructions with 

other meaningful instructions. Since candidate instructions are chosen based on dependency 

information, replacing delays with such instructions does not affect application results but 

does improve performance.  

This instruction scheduler can be unified with that for systolic instruction broadcast 

described in the previous chapter. Since the example of instruction scheduling based on data 

dependencies are already depicted in CHAPTER 3, the distances among consecutive off-chip 

memory operations that are used to detect the channel conflict in the instruction scheduler are 

defined instead. This information is described in Table 15. 

 

 

Figure 67: Framework of an instruction scheduler for systolic virtual memory. 

 

Rescheduled 
Programs 

Instruction Scheduling Technique:
 
 

Data Flow Analysis: 

• Build a Data Dependency Graph. 
o Data Dependency Check 

SIMD Assembly 
Programs 

 

Channel Conflict Detection & Resolution 
• Check the Distances among the Off-Chip Memory 

Operations 
• Insert Delays Where There is No Enough Distance 

Between Off-chip Memory Operations 

Delay Reduction: 

• Find Independent Instructions 
o Dependency Check for All Instructions 

Between ‘NOP’ Instruction and that instruction 
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Table 15: Distances between consecutive off-chip memory operations. 

Combinations of Off-Chip 
Memory Operations 

(L: Sys_Load, S: Sys_Store) 
Distance 

Combinations of Off-Chip 
Memory Operations 

(L: Sys_Load, S: Sys_Store) 
Distance 

L-L 1 L-L-L-L 1, 2N-1, 1 
L-S 1 L-L-L-S 1, 2N-1, 1 
S-S 1 L-L-S-L 1, 1, 2N-1 
S-L 1 L-L-S-S 1, 1, 1 

L-L-L 1, 2N-1 L-S-L-L 1, 2N-1, 1 
L-L-S 1, 1 L-S-L-S 1, 2N-1, 1 
L-S-L 1, 2N-1 L-S-S-L 1, 1, 2N-1 
L-S-S 1, 1, 1 L-S-S-S 1,1, 2N-1 
S-L-L 1, 2N-1 S-L-L-L 1, 2N-1, 1 
S-L-S 1, 2 S-L-L-S 1, 2N-1, 1 
S-S-L 1, 2N-1 S-L-S-L 1, 2, 2N-1 
S-S-S 1, 2N-1 S-L-S-S 1, 2, N 

  S-S-L-L 1, 2N-1, 1 
  S-S-L-S 1, 2N-1, 1 
  S-S-S-L 1, 2N-1, 1 
  S-S-S-S 1, 2N-1, 1 

 

Table 15 shows only distances between consecutive off-chip memory operations; the 

instruction scheduler should be able to check the channel conflicts for the general cases. For 

example, consecutive systolic loads can be executed without delay but if there is another 

instruction between two systolic loads, the instruction should be rescheduled to prevent channel 

conflict. 

4.5.   Results and Analysis 

Systolic virtual memory mechanism is evaluated through behavioral simulations and 

technology analysis for a 16 x 16 processor array. The metrics for the analysis are shown in Table 

16.  

Table 16: Metrics for experiments. 

Analysis Metrics 

Channel Utilization Percentage of used channels over overall available 
channels 

Performance Normalize execution time depending on the number 
of independent instructions 

Clock Count Penalty The number of delays due to systolic virtual 
memory 

Memory Requirement Number of memory words required by a given 
application 

Memory Area Efficiency Performance divided by required memory area  
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The following describe how these metrics are measured in our approach. 

• Channel Utilization = (Used number of channels / Total number of available channels) 

in a given time. 

• Performance = Normalized execution time relative to the execution time of application 

with only on-chip memory operations where the number of independent instructions is 

varying.  

• Memory Requirement 

o Number of words:  Required number of memory words for a given application. 

o Memory area: Required memory area when a certain type of memory is used for a 

system. 

• Memory Area Efficiency = 
Performance
MemoryArea

 where performance is IPC and memory 

size is the required memory area in mm2. 

4.5.1. Channel Utilization 

In this section, channel utilization is examined to show how on-chip systolic communication 

network is utilized for a given set of memory operations. Figure 68 shows the utilization of the 

on-chip systolic communication network for a certain number of consecutive memory operations. 

In this figure, simulated memory operations are all the same type of operations.  
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Figure 68: Channel utilization for a given number of consecutive memory operations. 



94 

Two consecutive off-chip memory operations (e.g., sys_load & sys_load or sys_store & 

sys_store) can execute without delay because there is no conflict in channel usage, for a given 

time to move the data through the network.  Because of this data channel utilization is better than 

that for an odd number of off-chip memory operations. However, as the number of memory 

operation increases, the impact of the overhead resulting from the channel conflicts will be 

decreased as is depicted in Figure 68.  
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Figure 69: Channel utilization for a given combination of memory operations. (L:sys_load, S: 

sys_store) 

 

Figure 69 shows the channel utilization of the systolic network for different combinations of 

consecutive off-chip memory operations. Channel utilization varies based on how the data moves 

through the network, for a given combination of memory operations. In this figure, the 

combinations (LLSS) and (SSLL) have the best utilizations where S is the systolic store and L is 

the systolic load instruction. 

4.5.2. System Performance 

System performance in terms of Instructions per Cycle (IPC) is shown in this section. Since 

he instruction scheduler replaces the delays resulting from the channel conflict with the useful 

instructions in a program, if there are enough instructions to be replaced, off-chip memory access 

would be free as depicted in Figure 70. In the simulations, we are using a 16 x 16 processor array 
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and delays from off-chip memory is 30 (= 2N – 2 = 2 x 16 – 2), where N is 16 in this case. Thus 

if the number of independent instructions which are candidates to be replaced with delay 

instructions by the scheduler, is same as the number of delays (30, in this case), free off-chip 

memory access is achieved. Even though there are not enough instructions to be replaced with the 

delays, massive data parallelism will still result in much better performance, relative to the non 

data parallel implementation. For example, if we have only one independent instruction which 

results in 8 times the execution time, we can still achieve a factor of 32 (= 256 / 8) performance 

gain compared to the non-data parallel systems, because of the concurrency of 16 x 16 PEs. 
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Figure 70: Normalized execution time of off-chip memory operation relative to the on-chip 

memory operation. 

4.5.3. Clock Count Penalty 

In this section, the overhead of systolic virtual memory is shown in terms of clock count 

penalty. This term describes at what cost in extra delays the systolic virtual memory can be 

utilized. As shown in Figure 71, in REGION 1 (where clock count penalty is less than 2N – 2 = 

30) the penalty decreases linearly as the number of independent instructions increases. And in 

Region 2 (where clock count penalty is greater than or equal to 30), zero-penalty off-chip 

memory access can be obtained due to instruction scheduling. 

 

 



96 

Number of Penalty Cycles

0

50

100

150

200

250

300

350

0 4 8 12 16 20 24 28 32

# of Independent Instructions

# 
of

 P
en

al
ty

 C
yc

le
s

REGION 1

REGION 2

 

Figure 71: Clock count penalty for systolic virtual memory. 

4.5.4. Application: Matrix Multiplication 

In this section, we simulate a matrix multiplication application to analyze the memory 

requirement in terms of number of words and memory area, execution time where the off-chip 

memory operations are used in an application, and area efficiency for two types of 

implementations of this application. Based on the results, we decide which implementation for a 

given application is optimal in terms of area efficiency. 

For systolic virtual memory access, we can use two types of memory space, which are 

private address space and shared memory address space. This is defined in an application to select 

the implementation method by an application programmer. Figure 72 shows how the matrices A 

and B are placed to be multiplied in the system where shared memory address space is used. For 

illustration, a 4 x 4 processor array is used. In this implementation, a column of B matrix is 

shared by the PEs in a same column. 

Figure 73 shows how the matrices A and B are placed to be multiplied in the system where 

private memory address space is used. Each column of matrix B is duplicated in all PEs in the 

same column of the processor array.  For these two implementations, execution time, memory 

requirement, and area efficiency are analyzed to decide the optimal implementation of a given 

application. 
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Figure 72: Matrix multiplication application with shared memory address space. 

 

 

 
 

Figure 73: Matrix multiplication application with private memory address space. 
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4.5.4.1. Matrix Multiplication: Execution Time 

We implemented three versions of the matrix multiplication application. The first one is 

implemented using only on-chip memory, the second one is implemented using off-chip memory 

instructions with private memory model, and the last one is implemented using off-chip memory 

with shared address space. To obtain the execution times in clock cycles, we simulate these three 

types of applications using a behavioral simulator developed for this research. Figure 74 shows 

the normalized execution time of the first application which uses only on-chip memory. As 

depicted in this figure, off-chip memory access can result in over 20% of execution time overhead 

independent of the type of address space.  

Normalized Execution Time

0%

20%

40%

60%

80%

100%

120%

140%

On-Chip Off-Chip
(Private)

Off-Chip
(Shared)

Matrix Multiplication

P
er

ce
nt

ag
e

 

Figure 74: Matrix multiplication: normalized execution time. 

4.5.4.2. Memory Requirement 

In this section, the results of memory requirements to run the given applications are 

described in terms of the number of memory words and the required memory area for certain 

types of memory. Before we show the results for the applications, it is interesting to show the 

relationship of the number of transistors and occupied area to a given number of memory words 

for different types of memories, such as DRAM, SRAM, and register file.  

Figure 75 and Figure 76 show that required memory area for a given number of memory 

words is ordered as [Area (Register File) > Area (SRAM) > Area (DRAM)]. Thus the same 

amount of memory can be implemented with different area costs by choosing different types of 

memory. To see this impact, first we show the memory requirements in memory words for each 

implementation of matrix multiplication in Figure 77.  
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Figure 75: Estimation of the number of transistors and area for each type of memories: DRAM, 

SRAM, and register file. 
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Figure 76: Estimation of the number of transistors and area for each type of memories: DRAM, 
SRAM, and register file (log scale). 
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Figure 77: Memory requirements for each implementation in the number of memory words. 

 

Since, matrix B is shared by storing it in shared off-chip memory space, the memory 

requirement for a matrix multiplication application using shared off-chip memory space is 

minimal in this simulation. For each memory requirement for each implementation as in Figure 

77, we estimate the required memory area for two cases. The first case is that DRAM is used for 

the off-chip memory, and SRAM is used for the on-chip memory. The second case is that both 

memories (on-chip and off-chip) are implemented by SRAM. The former is depicted in Figure 79 

and the latter is depicted in Figure 78. 

As shown in Figure 77, the number of required memory words is same for the first two 

implementations – on-chip and off-chip (private). However, required memory area is much less 

for the second implementation where the off-chip memory is implemented by DRAM technology 

as shown in Figure 79.  
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Figure 78: Memory requirements in area where both memories (on-chip & off-chip) are 
implemented by SRAM. 
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Figure 79: Memory requirements in area where off-chip memory is implemented by DRAM and 
on-chip memory is implemented by SRAM. 
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4.5.4.3. Memory Area Efficiency 

As mentioned earlier, memory area efficiency is computed as 
Performance
MemoryArea

where 

Performance is 1 / (Execution Time in Clock Cycles) and MemoryArea is the estimated area 

shown in Figure 79. To compute the area efficiency, DRAM dense memory is used for the off-

chip memory. 

Figure 80 shows the normalized area efficiency where this value is 1 for the implementation 

that is using only on-chip memory. This figure shows that implementations with systolic off-chip 

memory are better in terms of area efficiency compared to the application with only on-chip 

memory. In addition, between two implementations with systolic virtual memory, the third 

implementation which uses shared address memory space can achieve much better area efficiency 

for the matrix multiplication application. As a result, systolic virtual off-chip memory with shared 

address space can achieve over 50% higher area efficiency than that of an on-chip only system for 

a matrix multiplication application. 
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Figure 80: Normalized area efficiency. 
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4.6.   Chapter Conclusion 

 

An area efficient SIMD-systolic system with systolic virtual memory is presented. A data 

prefetch technique developed in our research extends the instruction format by attaching prefetch 

information to the local PE instruction. Due to the long instruction format, executions of local PE 

operation and data prefetch instruction can be overlapped. As a result, our approach to data 

prefetching with hard-wired address table can effectively hide the relatively long off-chip 

memory latency without prefetch instruction overhead unless there is a channel conflict. In 

addition, instruction scheduling also minimizes delays resulting from systolic off-chip memory 

access. To utilize the systolic virtual memory with systolic instruction broadcast, instruction and 

data should rendezvous at a certain time. The constraints are handled by the instruction scheduler 

in our approach. To analyze the effectiveness of our system, we implemented a matrix 

multiplication application in three different versions. By analyzing the area efficiency, we can 

determine that systolic virtual off-chip memory with shared address space can achieve over 50% 

higher area efficiency than that of on-chip only system for a matrix multiplication application. 
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CHAPTER 5 
 

Concluding Remarks 

5.1.   Conclusions 

Contribution 1: Efficient Storage Usage in Embedded SIMD Systems  

An analysis method for assessing storage needs and costs of a given application 

automatically retargeted across a spectrum of storage configuration designs was developed. Using 

this technique, a SIMD processing element achieves optimal area and energy efficiency with a 

register file containing between 8 and 12 words for given workload. This configuration is 

between 15% and 25% more area and energy efficient than other memory configurations being 

considered. 

 

Contribution 2: Systolic Instruction Broadcast for Embedded SIMD Architectures 

Systolic instruction broadcast is a high performance and area efficient instruction 

broadcasting scheme with short-wire interconnects by eliminating of wire latency bottleneck 

found in global instruction broadcast. In this contribution, we simulated systolic instruction 

broadcast in three approaches – software method, 2-write port register file method, and bypass 

method. Each method can result different area efficiencies based on the fraction of 

communications over a given set of instructions. In our evaluations, due to the system’s short 

clock cycle time and scheduler, a speedup in system performance of up to 7.5 can be achieved by 

the year 2010. In addition, speedup of area efficiency also can be achieved up to 7.2 for a given 

workload. 

 

Contribution 3: Systolic Virtual Memory 

The ability of minimizing off-chip memory access latency while maximizing access 

frequency by scheduling techniques along with data prefetch techniques in systolic virtual 

memory mechanism was evaluated using our SIMD-systolic architecture simulator. Results show 
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that, systolic virtual off-chip memory with shared address space can achieve over 50% higher 

area efficiency than that of an on-chip only system for a matrix multiplication application. 

  

5.2.   Future Work 

 

Memory design exploration techniques can be extended to analyze the off-chip memory 

designs as well as on-chip memories. This work requires thorough knowledge of data usage and 

efficient data placement algorithms. Since the PEs in a column of a SIMD-systolic system share 

an off-chip memory module, storing data which is shared by PEs in a same column in the off-chip 

memory will save the required memory area and also achieve high area efficiency. In this 

research, we assumed that all off-chip data reside in one burst length under burst mode. However, 

this will be extended to consider the boundary conditions of burst length and reschedule the 

instructions based on this information. To evaluate the effectiveness of systolic virtual memory, 

more design explorations are needed such as the replication factor of data stored in off-chip 

memory, the directions of data distribution from off-chip memory along with the directions of 

instruction broadcasting, and the placement and the number of off-chip memory modules.  
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APPENDIX A 
 

SIMPil Architecture 

The SIMD Pixel Processor (SIMPil) architecture is a portable, single-chip, focal-plane 

SIMD processor developed by the Portable Image Computation Architecture Group (PICA) at 

Georgia Institute of Technology [70].  Each PE has its own local memory, register file, a 4 x 4 

photo detector to sample an image, MACC (multiply accumulator), ALU, barrel shifter, sleep 

unit, decoder, bus driver, and communication unit. The PEs communicate with neighboring PEs 

using a NEWS network. Since SIMD architecture executes a single instruction over a set of data 

in each PE, high throughput can be achieved where the data parallelism presents in a given 

algorithm. Especially, image processing applications have significant amount of data parallelism 

based on the algorithm. Thus, SIMD architecture can achieve high performance in multimedia 

application area and the performance is proportional to the number of PEs in a SIMD array. For 

the evaluation of our research, we extend a behavioral SIMD simulator, which has been 

developed by the PICA group [70], to support systolic instruction broadcast and systolic memory 

operations. Figure 81 shows the overall structure of SIMPil16 architecture. 

 
Figure 81: SIMPil microarchitecture. 
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