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SUMMARY

The primary purpose of this study is the development of a method
to solve the general linearly constrained nonlinear program using
conjugate directions. The theoretical results show that the proposed
algorithm converges globally and at the same time exhibits a superlinear
rate of convergence.

A general outline of the algorithm is as follows. At each
iteration a projection problem, which is a strictly convex quadratic
program, 1is solved. This problem is designed to project an
unconstrained descent step onto the feasible region in such a way as to
produce a feasible direction of descent which is conjugate to previously
constructed conjugate directions. This conjugacy property is aimed at
producing a fast local rate of convergence of the algorithm. An inexact
line search based on the properties of the projection problem is
undertaken. This line search produces a step—size with a finite number
of functional evaluations automatically. 1In addition, an initial
approximation of the step-size is used close to a solution peint. This
initial step-size is based on the local quadratic approximation of the
objective function. It also has the property of c¢losely approximating
the exact step-size along the conjugate directions. This results in the
initial approximation being used without further trials. The method
will either produce a Kuhn-Tucker point of the original preoblem or
reinitializes a projection operator containing conjugate directional
information.

The theoretical research involves the study of global and local



viii

convergence properties of the algorithm. Global convergence 1s
established through the use of the inexact line search. Both the
subsequence of restarting points and the sequence of all points
generated by the algorithm are studied. The local counverges analysis
establishes a superlinear rate of convergence of the algorithm by
showing that eventually the set of binding constraints will not change,
the initial step-size approximates the exact one, and the directions of
move constructed satisfy the approximate conjugacy property.

Furthermore, a comprehensive discussion of the literature is
provided,

Finally, a set of 30 problems was used to test an implementation
of the algorithm on a CDC Cyber 70 Model 74-28 CDC 6400 machine in time-—

sharing mode.



CHAPTER I

INTRODUCTION

1. Introduction

Mathematical programming in general, and nonlinear programming in
particular, have attracted the attention of scientists from a variety of
fields for many yvears. The advances in computing capabilities has made
it increasingly possible to solve larger and more complex problems.
This, in turn, stimulated a lot more research, not only in developing
new and more sophisticated methods, but also in enlarging the scope of
applications to such areas as, optimal control, nonlinear networks,
economic planning, water resources, and chemical processing, to mention
only a few.

A linearly constrailned nonlinear program is a mathematical model
for optimizing an objective functlon in the presence of inequality
and/or equality constraints. Since the constraints are linear, the only
nonlinearities arise in the objective function. This makes this class
of problems a subset of the general nonlinear programs where
nonlinearities may be present in the objective function and the

constraints.

2. Problem Statement

A general linearly constained nonlinear program is of the form:

Minimize f(x)

Subject to x € §



where f: E" » E1 is a continuously differentiable function, x € " is a

decision vector, and S c En is a set of linear restrictions comprising
equalities and/or inequalities and possibly bound restrictions. This

leads to the most general form:

Minimize f(x)

Subject to Bx < b

{==>x € 8§

m
where B is an (m1 x n) dimensional array, b € E 1, D is an (m2 X n)

m
dimensional array, d ¢ E 2, % ¢ E®, and u & E".

In this study we will work with the general inequality

constrained problem of the form:

P: Minimize f(x)

Subject to Ax £ b

where A is an {m x n) dimensional array, b € E® and x € E7. Bounds will
be considered as regular constraints, and equality constraints will he
handled though some minor changes in implementation. The feasible

region is represented by the set:

S = {x]Ax < b}



5 is essentially defined by the intersection of m half-spaces defined by

the m hyperplanes: aix = bi; i=1,...,m. A vector x € E' is called a

feasible point if x £ S. That 1s, 1f x satisfies all the restrictions

defined by the feasible region. Otherwise, if x # S it is an

infeasible point.

A feasible point is called a global solution if the objective

function value at that point is lowest among the set of all feasible

points. In other words, x is a global solution 1f:

f(x) € f(x), ¥x € §

On the other hand, a feasible point is called a local solution if its

objective function value 1s lowest in a neighborhood around it, that is

x is a local solution if:

f(x) € f(x), ¥x eSS niy | ty=xt <e, € >0}

We note that a global solution is a local one. Under certain
assumptions, a solution to problem (P) satisfies some optimality
conditions such as discussed by Gill and Murray (1974a) and McCormick
(1970b).

We say that % 1s a Kuhn-Tucker Point (KTP) if x satisfies the

well-~known Kuhn-Tucker (1951) conditions which are necessary for x to be
a local minimum to problem (P). These conditions, also known as the

First Order Necessary Conditions are as follows: There exists a vector

u € Em, known as the vector of Kuhn-Tucker Multipliers such that:




ug ? 05 i=1,...,m.
A point X satisfying these conditions will be called a First Order Kuhn-
Tucker point.

The above conditions Involve only first derivatives of the
objective function Vf(x). Additional information is obtained when
second derivative information is used. Details of such conditions for
general problems can be found in Fiacco and McCormick {1968). These

conditions are summarized here for problem (P):

1) Second Order Necessary Conditions

If f(x) 1s twice continuously differentiable, x 1s a local
minimum and, the linear independence of the gradients of the binding
constraints at x 1s satisfied then:

a) (;,G) satisfies the first order Kuhn-Tucker conditions

b) th(Q) y » 0, for all y € ok satisfying:

t

ay=0;1ic¢ I(x) = {iIa; X = b,}

i

where G(E) is the matrix of second derivatives of f{x) evaluated at



ii} Second-Order Sufficiency Conditions

If f(x) 1s twice continuously differentiable and, associated with
a point x is a vector u such that:
a) (;,G) is a Kuhn—Tucker pair

b) For that u, y G(x)y > 0

t

=0, 1€I()n I(uv)

For all vy # 0 such that a
where I{u) = {1 | Gi > 0}

Then x is an isolated local minimum for problem (P).
A& linearly constralned algorithm aims at iteratively finding a

local or global solution to problem (P). This research is concerned

with developing such an algorithm.

3. TImportance of the Problem

In this section we will highlight the main reasons for which the
linearly constrained nonlinear program has received considerable
attention over the past decade.

In recent vears several methods have been proposed in which a
general nonlinear programming problem is solved as a sequence of
linearly constrained problems. This will be the subject of the first
part of this section. Perhaps also as significant is the fact that
linearly constrained problems form a class of their own in that many
real world problems are formulated as such; we will discuss this
application aspect in the second part of the section.

3.1 The Linearly Constrained Problem as a Subproblem to a More General
Procedure

For the general nonlinear programming problem:



(NLP): Minimize f(x)
Subject to gi(x) € 0; i=1l,...,m

hy(x) = 05 i=1,...,2

Several methods of solution have been proposed which are bhased on the
linearization of the constraint set. A representative selection of the
important work in this area is: Robinson (1972), Rosen and Kreuser
(1972}, Gruver and Engersback (1976), Rosen (1977}, and Van Der Hoek
(1980).

The linearized problem is defined in general form as:

(LNLP): Minimize £f(x) + ¢(xk,x)
Subject to g (x) + Vgi(xk)t(x - %) € 03 1=1,...,m

h () + Th () (x = x) = 05 1=1,...,8

where, following Van Der Hoek (1980), ¢(xk,x) is a correction term
designed to offset, by means of a corrected objective function, any
possible poor behavior of the algorithm caused by the local
linearization. ¢(xk,x) will generally depend on gi(x) and hi(x) and/or
their linearized forms. Different versions of linearly constrained
programs arise from different choices of ¢(xk,x). For instance, Rosen
and Kreuser (1972) propose a choice leading to the following linearly

constrained problem at xk:



m 2
Minimize f(x) + * ui(xk) gi(x) + 7 vi(xk) hi(x)
i=1 i=1

Subject to gi(xk) + Vgi(xk)t(x - xk) < 0; i=l,...,m

1=1, 04,8

t
hi(xk) + Vhi(xk) (x - xk) =0

where ui(xk) and vi(xk) are the current Lagrange Multiplier estimates
for 1i=1,...,m. Clearly, the objective function Is the Lagrangian

function with fixed multipliers.
Robinson (1972) uses another form of ¢(xk,x), leading to the

linearly constrained problem:

m
Minimize f(x) + 111 ui(xk)[gi(x) - gi(xk) - r"2!1L()tk)t(1< - xk)]

+

| g

vi(xk)[hi(x) - hi(xk) - vhi(xk)t(x _ xk)]

i=1

Subject to gi(xk) + Vgi(xk)t(x - xk) £ 0; i=1,...,m

hi(xk) + vhi(xk)t(x - xk) =0; 1=1,...,%

Tt is seen here that the linear approximations to the original
contraints are subtracted from the Lagrangian function, as compared to
the previous approach.

If the original problem (NLP) includes both linear and nonlinear
constraints, Van DerHoek (1980), uses yet another form for ¢(xk,x) where

only the currently active constraints are linearized, which leads to the



following linearly constrained problem:

Minimize  £(x) + % u, ()8, (1) = g, (x) = Mg, (x) (x = x)]
iEI(xk)
2 t
+ 1:1 vi(x)[h(x) = h (%) - Vh (%) (x - x)]

Subfect to: g (x ) + Vgi(xk)t(x - %) € 05 i=1,.0.,m

t
h (k) + Th (x ) (x - %) =05 1=1,...,8
t
a,x < bi; i=1l,...,p

where I(xk) is the set of currently active contraints.

A final note about ¢(xk,x) is that, by looking at the Kuhn-Tucker
Conditions for optimality of x = X for both problems (NLP) and (LNLP)
defined above, certain properties which ¢(xk,x) needs to have will

emerge. And these are essentially:
- ‘7 Lol =
P(xpsx) =0 and T b(x - x) (x) =0

Once the linearized version has been determined, a procedure for solving
the general problem will reduce to solving a sequence of linearly
constrained subproblems as follows:

Initialization: Initialize variables, let k = 0.



Main Step: Given LT find a first order Kuhn~Tucker point of the
linearly constrained problem (LNLP)

Stopping Step: If convergence tests are satisfied, Stop; Otherwise,
set k = k+1, and return to the main step.

Finally, we note that the linearly constralned program also
arises in another area of optimization: geometric programming. For
illustration purposes, we give here the formulation of both the primal
and dual “"classical geometric program” (Duffin, Peterson, and Zener
{1967)).

Primal:
Minimize go(x)
Subject to gj(x) £ 1; i=1,...,p
xj > 0; j=l,ees,m
11 %12 ®im

X ses X ;k=0,1,o--,p

where: gk(x) = T CiX, 2 n

1eJ(k) *

J(k) = {mk’mk+1""”nk}; k=0,1,2,+44,p

m, =1, My =My mp =

np_l, np = n

The expouents a are arbitrary; c, are positive. The gk(x)

13 1

functions are called posynomials.

Dual (Linearly Constrained):
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§
n ¢y i Xk(ﬁ)
Maximize m = ] k lk(ﬁ)
i=1 1 =1
Subject to I 61 =1
1eJ(0)
n
T oa,,8, =0; j=1,2,...,m
g=1 M1
61 > 0; i=1,...,n
where Ak(ﬁ) = 7 61; k=l,...,p
1eJ(k)

and J(k), c; are as in the primal problem.

It emerges from the above considerations that each of the
subproblems should be solved as efficiently as possible. In addition,
the method should be guaranteed to converge, to insure that the outer
iterations of the general procedure will converge. The method we
propose In this study to solve the linearly constrained problem will

have these properties.

3.2 Applications

Nonlinearities 1in modeling real world situations arise in many
contexts as illustrated by the wide scope of applications In a recent
publication edited by Geoffin and Rousseau (1982). 1In engineering,
nonlinearities arise in a matural way as systems configurations and cost
functions depend nomnlinearly on design variables. See for example
Avriel and Dembo (1979). But in this section we will limit ourselwves to
a brilef description of the types of applications that give rise to
linearly constrained nonlinear programming problems, grouping them In

different categories like: nonlinear networks, production and
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distribution, economic planning, and o0il and chemical industry.

Our aim is not to be exhaustive, but rather to illustrate the
kinds of applications relating to this research. A more comprehensive
survey of application in the general area of nonlinear programming can
be found Iin Lasdon and Warren (1980), in addition to the previously

cited studies.

Nonlinear Networks: TIn this area a vast amount of work has been

done for a variety of specific problems. We choose to discuss four
important classes of applications: water distribution systems,
electrical networks, long term power generation and expansion, and
nulticommodity network flow problems.

Water distribution systems are designed to deliver water from
sources to consumers through pipeline networks equipped with valves,
pumps, reservoirs and other components. The underlying mathematical
structure is represented by a network. Construction of optimization
nodels can be quite complex 1f the major aspects of planning, design and
operation of the system are considered together. Then, decisions have
to be made ahbout such things as, pipe layout and diameter, pump
locations and characteristics, valve locations, reservoir locations and
sizes, pumps and valves to be operated under different loading
conditions; for operations over time: times at which the controlled
components are switched on and off, control of reservoir levels, etc.
The system's constraints include such aspects as, satisfaction of
physical laws of flow in the network, satisfaction of demand from
different types of consumers (domestic, irrigation, industry), bounds on

pressure in the pipes.
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A subclass of these problems, reducing the decision variables to
optimal pipe diameters only, have bheen formulated as linearly
constrained problems where the objective function is separable. They
have been applied to real world systems, such as New York's primary
distribution system (De Weufville (1971)). The reader can find more
details about this class of problems in Avriel and Dembo (1979).

Another subclass, called "pipe network” problems, is concerned
with finding a set of flows and pressures in a water distribution
network when supply and demand in the system are known. The
nonlinearities arise from a set of stationary point conditions governing
the flows and pressures in the network. That is, the pressure decrease
from one end of the pipe to the other is a nonlinear function of the
flow per unit time. Until recently, this problem was solved mainly by
special techniques for solving systems of equations representing the
stationary point conditions. The Newton—-Raphson method of Donachie
{1973) 1s one such approach. For the interested readers, a
comprehensive study of these methods is the one by Jeppson {(1975). But
mathematical programmers have started to address this problem and other
related ones. An important study in this regard was done by Collins,
Helgason, Kennington and Leblanc (1978), who formulated the pipe network
problem as a general convex linearly constrained problem. We give here
a summarized version of this model. The distribution problem is
formulated over a directed network (N,E) where N is the set of nodes and

E the set of arcs. Letting x denote the flow from node 1 to node j

1]

for all (i,3j) € E, for each n € N, Yo denotes the pressure as measured

by "hydraulic head” at node n. If the node is a reservoir, the head at
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the node is fixed (see figure below). For all n € N, a denotes the
flow requirements at node n: a > 0 for a supply node and a, < 0 for a

demand node. A typical such network ig illustrated in Figure 1-1.

: Regular Node

Q
(] :
. :

Reservoir
Pump
Check Valve With Flow in Flag Direction

Figure 1-1. Example of a Water Distribution Network

S 1s a ground node connected in both directions to each reservoir to
account for flow in and out of the system.
Let: R c N={n: node n is a reservoir}

E1 c E

f(n,s), (s,n): n € R}
The stationary point conditions to be satisfied are as follows:

(i) Flow Conservation:

b xnj— z X =an,n€NU{S.}
(n,j)eE LUEL (i,n)eF UE1
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(ii) Head Discharge Behavior:
i " Y; = f(xij), for all (i,j) e E

These conditions are actually a representation of the following
physical fact: the pressure at the end of the pipe (i,j) is equal to
the pressure at the entrance of the pipe minus an amount of energy loss
due to friction, and which depends nonlinearly on the flow X5 in the
pipe.

In this model, f(xij) is a continuous and monotone increasing
function over every pipe, so that it is differentiable and convex.

{(iii) Reservoir Head Conditions:

Yo = y:, for all n ¢ R,
The following nonlinear network is formualted to minimize what
the authors call "system content" and which is in fact the total loss of

"head" due to friction in the system, while satisfying flow conservation

constraints:
X, . X o
Minimize oo £ ) () ae) - I ([ yx dt}
(i,j)E 0 J (s,n)EE1 0
*n,s
* L i y* dt}
(n,s)cE 0

1

Subject to  Flow Conservation Equations

and x.. 20, (i,j) e E U E,

ij | *
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This model has reportedly been applied to a trimmed version of Dallas,
Texas network system with 452 nodes, 21 of which are reservoir, and 530
elements, 14 of which are pumps.

Finally, we note that this pipe network problem has applications
in many other areas such as finding steady state currents and voltages
in a wonlinear resistive electrical network, transportation problem with
random demand traffic assignment, and dynamic production scheduling with
nonlinear costs. The interested reader is referred to Lasdon and Warren
(1980) for more references.

In the area of electrical networks, most models generally involve
nonlinear constraints. A few specific models, however, turn out to be
linearly contrainted. The optimal dispatch problem in which the total
cost of allocation of power demand between the generating units in use
is minimized under various restrictions (Happ (1977)). The medium-range
planning in hydroelectric power systems where hydraulically and
electrically interconnected reservoirs and generating plants are
operated. TFor the operation planning overtime of the system, model have
been formulated as minimization of nonlinear cost functions of meeting
weekly loads (Hanscom (1976)), or as maximization of the total energy
remaining in the system at the end of the planning horizon (Baxter
(1975)). In the latter case, nonlinearities arise from relations
desceribing power generation as a function of various water levels and
flows. The linear constraints in all these models represent
restrictions on flow conservation, and bounds on reservoir levels and
outflows, as well as irrigation, navigatfon and conservation

requirements.
In the area of power expansion, planning to meet long term
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forecasted demands has received considerable attention from operation
researchers Iin the last few years. The requirements are that the total
costs of investment and operation must he kept as low as possible while
the risk, as measured by an average number of hours of failure during a
vear, must not exceed a given level.

The main features of the system units are their capital and
operation costs and thelr "inertia”: delays of several years hetween
ordering and commissioning (2-8 years); and long life span (25-50
vears). Long term planning allows the ordering of a new unit to be made
in time, so that this unit is operational when required by the load
growth. Clearly, late or early commissioning can cost a lot of money.

Juseret (1978) formulated the problem as a linearly constrained

convex problem:

T N t
Minimize Ty I, x, +6G (% x..)]
T L L R I &
min max
; < <
Subject to  x,, T T 1=1,...,N
min t max
< ¥ ox ., v t=1,...,T
S S
N —
T p ¥ >p t=1,...,T
1=1 it " it t

Where:

- xit are continuous varlables representing the capacity in units

of type 1 commissioned at year t.
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- Iit is the present value of the Investment costs per MW of type

1 commissioned at year t.

t
- Gt( ¥ xi,) is the present value of the operation costs for the
=1
whole system at year t.
t
-y = ¥ x is the total capacity in units of type 1 on line
it =1 1]

at year t.
- Py is the guaranteed capacity of unit 1 at time t.
The functions Gt are shown to be convex and are derived from the "load
function” which is essentially a relationship between demand and time.
The system clearly Involves T time perlods and N different types of
electrical generating units. Et denotes the sum of the guaranteed
capacities required in order that the risk, as measured by the
probability that the system is unable to meet the load, 1s equal to an
acceptable level. It is seen that the objective is to minimlize an index
of total discounted investments and operating costs under capacity
constralnts on both the whole system and each unit separately, and
security constraints for each time period.

Finally, multicommodity network flow problems arise In a variety
of contexts, most prominently in delay optimization in data
communication networks, and equilibrium studies of transportation
networks {see Gallager (1974)). We discuss briefly a single commodity
version of this type of problems as formulated by Bertsekas (1978).

If we consider a network (N,E) which 1s directed and connected,
and let x,, he the flow in arc {(i,i) £ E, El(i) = {node ¢: (i,2) € E},

13
E,(1) = fnode 2: (2,1) © E}, we have the following formulations:
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Minimize b} fil (xil)
(i,%)cE

Subject to b X., = I Xx . =a., 1=1,...,n-1
peE (i) me (i) ™ 1
1 2
=0, (i,2) ¢ E, i=1,...,n-1

iz

a; is a known "traffic input" at node i; all flow is assumed to
have as destination the single node n &€ N. The functions fil(xiz) are
defined on (0, Cil) and are convex functions; cy refers to the capacity
of the link (i,2) ¢ E.

We also note that multicommodity network formulations have
recently been applied to the assignment of circuits in case of failure
in a communication network (Ishiyama (1978)). 1In this case, the
important issues are the most economical arrangement of stand by
facilities and the most effective use of these stand by facilities when
they are limited,

0il, Natural Gas, and Chemical Producticon: In this area, mostly

linear and separable programming models have an established record of
successful use for many years., Applications range from product blending
and distribution, to minimum cost development of ¢il and gas fields.
Here again we shall only give an overview of two major areas of
applications: reservoir modeling, and production planning and
operations. Mathematically, an oil and gas reservoir is described by a
set of partial differential equations governing flow through porous
media. In simulating different field operating modes, the reservoir

characteristics need to be known; they can be determined by comparing
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actually observed reservoir bhehavior with the computed one. This
operation is called "matching” or “parameter identification.” A good
survey of optimization techniques in this area 1s given by Durren and
Slater (1977). But most recently, models involving linearly constrained
programs for solving this problem have been used, such as, quadratic
programming models by Yeh (1974) and least-squares models by Boberg et
al (1974). 1In the area of oil and gas production planning and
operations, the problems formulated are mostly nonlinear problems with a
mix of linear and nonlinear constraints. The nonlinearities arise from
modeling the relationship between reservoilr productivity in a time
period and the total production up to that perioed, as well as the total
water and gas Iinjection In the reservoir. The linear constraints, in
each perlod, restrict the production from all reservoirs, its quality,
and different capacity limitations. Cheifetz (1974) reports about such
real world applications at Gulf 0il.

In the chemical Industry, nonlinearities arise from product
blending, as the various outputs from the chemical process are highly
nonlinear functions of the process variables. Here also linear
restrictions are imposed on material halance, equipment capacity bounds,
external demands, and distribution of products. Another problem in the
chemical and oil industries is called “pooling”. It arises from the
mixing of more intermediate products before they are hlended. This
usually happens because of such reasons as storage, transportation and
pipeline availability.

Economic Production and Planning Models: 1In this area, models

have heen built both at the unit of production level and at the national



20

level for economic policy decisions.

At the unilt of production level, dynamie production scheduling
models are most popular. A typical such model is the one developed by
Ratliff (1978). It 1s restricted to convex costs and batch processing.
It considers the production of n products on m identical facilities
where each product i is produced in batches of size bi over a horizon of
T equal time perilods. Facilities can produce only one batch of any
product during a time period. The objective function represents total

cost to be minimized:

s] T I T t-1

¥ I a {(x, Y+ T T q (7 x..)

1=1 t=1 8 I gy e By
where ait(xit) is a convex function of xit’ the number of batches of
product i produced in period t, and qit(tf1 Xii) is a convex function of

=1

t-1
¥ xjt’ the total number of batches produced before period t. Ratliff
i=1

{1978) shows that thils problem can be modeled as a minimum cost network
flow problem with convex arc costs and integer capacities.

For national economic planning, at lot of models have been
formulated as general nonlinear programming problems. Some of them have
been used in practice with some success; see for example PROLOG, YULGOK
and CHENERY models discussed by Lasdon and Warren (1980). An important
class of planning models, however, have been formulated as quadratic
programs. The quadratic objective functions arise from the following

considerations:
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As demand and supply vary according to prices, in some economic
models some measure of income is maximized which is a function of the
supply and demand functions. Normally, these functions are assumed to
be linear and integrable. This makes the objective function a quadratic
maximization of the sum of the producers' and consumers' surpluses. If
p is a vector of prices, d and s vectors of demand and supply, then

since p = f(d) and p = g(s), the return function is given by:

19wy dv - | ® gee) at
0 0

F(d) - G(s)

r{d,s)

it

it

The quadratic problem resulting is then:

Maximize F(d) - G(s) - c{(d,s)
Subject to Demand and supply restrictions, and hounds of

various types.

where c¢(d,s) 1is a cost function of the quantities produced which depends
on d and s.

The introduction of risk considerations in these models also
gives rise to quadratic objectives. Applications of this type of
linearly constrained model include: c¢oal production and distribution
(Dux (1977)), more general energy models (Glassey (1978), Manme (1979),
and agricultural planning (Heady 1975), Bouzaher (1978)).

Finally, we note that nonlinearities in economic production

models arise in a natural way when the production functions involved are
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nonlinear in the inputs used, such as labor £, and capital k, giving:
Production = f£(f,k). This 1s 1in contrast with the extensively used
linear programming models which assume constant return to scales,

To close this applications section, we briefly discuss input-
output models which are used at the national level for economic policy
making. A typical model was studied by Glassey (1978): The problem is
to maximize an index called the Net Social Payoff, a welfare index,
subject to equilibrium conditions between production, consumption,

imports, and exports. Mathematically, we have:

Maximize

N Y=
n
R
|
»n
"
+
[a]
o]
=]

Subject to (I - A+ (I -Bm-2z-c¢c=g

<
X X.O

x,m,z, ¢ * 0.

There are n sectors in the economy, x, is the output of sector i,

i

™ is the amount of product i imported, zi is the amount of product 1

exported, c, is the personal consumption of product i, A and B are

i
matrices of technological coefficients for production and imports, and
X is a vector of production capacities. vy represents the value added
from sector i which includes wages, salaries and other {tems. The

quadratic terms in the objective function represent prices times

quantities, since prices are assumed to be linear of the form:
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A

Py = %g T P Yy

with the scalar a, and B 2=1,2,3, i=1,...,n being computed from

i 21

estimates of quantities known as prices elasticities.

4. Scope of Research

This research has as an objective the development of a general
purpose algorithm for the linearly comstrained nonlinear programming
problem. This algorithm is based on an extension of the class of
algorithms known as “projected gradient™ algorithms. This extension is
in two main areas. First, direction finding. In this case linearized
conjugacy constraints are added recursively to the direction finding
subproblem to accelerate the known linear rate of convergence of the
projected gradient methods. Second, line search procedure. 1In this
case an inexact rule is used which is based on the properties of the
projection problem and which insures a monotone decrease of the
objective function. The theoretical core of this research will be the
formulation of the direction finding problem and the study of the global
and local convergence properties of the algorithms. The performance of
the algorithms will be illustrated by the numerical solution of problems

from the nonlinear programming literature.
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CHAPTER TI

LITERATURE REVIEW

1. Introduction

All the existing methods to he reviewed in this chapter are
descent methods. That is, they generate a sequence of points {xk} such

that:

Xpgg = X% F A 4 and f(x ) < f(x)

where dk is the direction of search and lk is the steplength.
Throughout this chapter we will work with the linearly

constrained problem defined in Chapter I, referring to it as problem

(P):

P: Minimize f(x)

Subject to x £ 8 = {x ¢ E'JAx < b}

We have classified the existing methods to solve problem (P) inte three
main categories based on the general approach used. Also, in each
category any method could be interpreted as a specilal case. However,

the different categories are not mutually exclusive.

2. Projection Methods

In this section we discuss all the methods which solve problem

(P) by projecting an unconstrained direction of search onto the feasihle
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region. This will include all Newton~type methods as special projection
procedures. In all these methods the inequality constrained problem (P)
is solved as a sequence of equality constrained subproblems. ¥or this
reason, we will first consider the equality problem and its properties.

We will then discuss the extension to the general inequality

problem.

2.1 Definitions

Consider the following problem (P):

Minimize f(x)

Subject to x € S = {x € E"|Ax ¢ b}

where A Is {(mxn) and b € E". If at a polnt %, a number of contraints
are satisfied as equalities, we write Ax = E, where A is (rxn), b € Er,
and T € m. We will assume the rank of A to be r and A will be referred

to as the matrix of active constraints.

2.1.1 At any point x, the objective function f(x) may be approximated

by a quadratic function as follows:

£(x) = q(d) + o(1d1?), where (2.1)
o(1d12)/1dn2 > 0 as Ndnls o,

x = x. +d, and (2.2)

9(d) = £(x,) + £(x )% + 1/2d%6.4 (2.3)
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The (n-r) dimensional subspace Mb e E" is defined as:
M, = {d; ¢ E"|Ad = 0} (2.4)

The linear manifold associated with MO is denoted as:

M= {x ¢ E"|Ax = b} (2.5)

- n
The r—-dimensional subspace M € E is defined by:

For all d, € M, d, = HkAtk (2.6)
where X € ET and H_ = Gl
From this definition, we see that:

- t
¥d; € M, and d, € M, d; G d, =0 (2.7)
and if G_ = I, then did, = 0, that is d; and d, are orthogonal.

Also, for d = E", there exists a representation:

since Em = M, © M (Luenberger (1973), Rustem (1981)).

Newton method for problem (P) is based on the generation of
descent directions which are the solution of the following

problem:
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Minimize a(d)
Subfect to 4 € MO (2.9)
which leads to a solution x of the linear equality constrained

problem:

Minimize f(x)

Subject to x e M (2.10)

Associated with (2.10) are the Kuhn-Tucker necessary conditions

for X to be a solution:

.|
=
~
L
~—r
1
=
-
]
=

{(2.11)

AX - b =0 (2.12)

Equation (2.11) form a system of n equations in r unknowns which

have the unique solution (Powell, 1974~b, theorem 1.5):

%= (A5 A vER) (2.13)

At points other then E, there is no vector A which satisfies
(2-11). 1In this case estimates of X may be obtained from the solution

of problem (2-9).

2.2 The Projection Problem

The following result is 1mportant in that it shows that the
solution to problem (2-9) ahove is merely the projection of the

unconstrained minimum of q(d) (given by (2-3)) onto the subspace M:
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Theorem 1. (Rustem, (1981)) If x is a solution of the minimum

norm prohlem:
2
Minimize {Mx ~ x N, Ix & 8} (2.14)

2 t
where Ix ~ xuﬂG = (x - xu) G(x - xu),

then it is also a solution of the quadratic optimization ptroblem:

Minimize {q(x)|x e 8} {2.15)

where q{x) = atx + 1/2xt Gx

and x, = -G-la = —Ha (H=G—1)

Based on this result, we see that the projection of the vector

d. € E" onto Mo, call it d

1 is given by the solution of the following

1’
problem:
2
n—- v - .
Minimize {f-H_ £(x,) dlquld e M} (2.16)
which 1s also a solution to problem (2-9).
Now we turn to the different ways of solving problem (2-9). Ome

of the followiug two approaches can be taken:

2.2.1 Solving a Reduced Problem

In this method any vector d1 > Mo may be expressed as a linear

combination of the {n-r) basis vectors zj (i=1,2,...,n-r) of the



29

subspace Mo. Therefore, letting the nx(n-r) matrix Z be defined by:

any d1 € Mo may he expressed as:
d, = Zv (2.17)

where v is an (n-r) vector.

This will lead to expressing problem (2.16) above as an (n-r)

dimensional unconstrained minimization problem:

2
i - \7 4 - - - n
Minimize {1 Hk fgxk) Zyl o} (2.18)

v %

whose solution is obtained from:

t

22" [-7£(x,) = G, Zv] = O

"
that 1is:

t t
(2°6,2) v = -2 Vi(x)

which in conjunction with (2.17) gives:
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d, = -z(zte )7 zb ve(x (2.19)

»

We note that in this method (ZtGkZ) and not G, is required to he

k
positive defluite to insure a directlon of descent. We will see later
the importance of this fact for certain methods. Also (ZtGkZ) is of
dimension {n-r) which makes it computationally more attractive (Gill and

Murray, 1974-a).

2.2.2 Solving from the Optimality Conditions

From (2-8) d ¢ En, d = &1 + Ez, El € MO, d? £ M and hence:

d, =d -4 (2.20)

Here, 52 is first explicitly found. From (2.20) above, 52 is the
projection of d onto the subhspace M, with d2 = HkAtl, e Er; thus 32 is
given by the solution of:
2 —
Minimize {I1d - a1 |d € M} (2.21)
2 G
k
or, equivalently, in terms of X which solves:
-t,, 2
Minimize {fd - H A"AY" } (2.22)
3 k G
k
—.t—
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If d 18 given by: d = —Hk Vf(xk), then the unconstralned minimum

of (2.22) with respect to A yields:

o
Il

—(KHth)_l AW 75 (x,) (2.23)

which in turn from (2.20) glves:

I

~H VE(x ) + Hkﬁt (KHth)'1 R 5 (x,)

0

-1 - B A (Kakit)‘l A] B VE(x) (2.24)

Note that if (Kﬂkﬂt) and (ZtGkZ) are positive definlte, the

vectors d1 computed from (2.19) and (2.24) are {identical.
A condition for x to be a solution of the minimization problem

with linear equality constraints 1s that 31 in (2.24) be zero at x.

Alternatively, siace

TE(x) = ATA
Ax =t ==> z've(x) = 0 (2.25)
z' 2t -0

(2.25) means that the projected gradient i{s zero {(Gill and Murray,

1974-3a).
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2.2.3 Lagrangian Multipliers Estimates

Since at x, # x, there 1s no A, such that: Ktkk = Vf(xk), a

k

simple estimate of the Lagranglan multipliers at X, is given hy the

k

vector Ak which solves:
~t. .2
Minimize {ﬂVf(xk) - A M%)

that 1is:

A = (a5 i TE(x,) (2.26)

Also, an estimate of the Lagranglan multipliers at (xk + 51) can
be obtained from the solution of problem {2.9). That is, at the

solution of (2.9), there exists Aq such that:
AL = Yg(d
q g(d)

from which we have:

Yy = (Kit)—l

q A [Gd; + TE(x)] (2.27)

Xk given by (2.26) is a "first order approximation” since 1t can be

shown that:

" - A= o(ndn) (2.28)



and Xk given by (2.27) 1s a "second order approximation” since 1t can

also be shown that:

SRR o(r1dn?) (2.29)

where A is the vector of Lagranglan multipliers at the optimal solutilon

X

2.3 Projection Methods for Problem (P)

Projection algorithms for problem (P) generate their descent

directions either by solving a variant of the problem (2.22),

2

Minimize {14 - H A" A1Z } (2.30)
k G
A k
or a variant of the problem (2.1R),
2
7 v - .
Minimize {10 Hk f(xk) Zvl s} (2.31)

v G

However, most of them do not use the actual current Hesslan matrix Gk’
but a positive definite approximation to it. This makes them belong to
the class of Quasi-Newton methods.

2.3.1 Methods Based on Problem (2.30)

Most methods here, as we will see, use approximations to Gk’ or
-1

, where H = G, .

t i 1 H
operators 1involving " "

k

33
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2.3.1.1. The first algorithm that applied proijections to
linearly constrained optimization was Rosen's gradient projection
{Rosen, 1960). The descent directions and the Lagrangian multipliers
generated by Rosen's algorithm may be obtained by setting Gk =1 1in

(2.30), thus yielding:

>|
I

=~ & 75(x,)
(2.32)

i, = ~[1 - A° (57T A £0x,)

The directions generated by Rosen's algorithm are basically the
steepest descent directions projected into the intersection of the
currently active constraints.

2.3.1.2. A method which updates Hk is due to Murtagh and Sargent

(1969). 1In this method A and &1 are given by (2.23) and (2.24)

respectively, where a rank—one updating formula is used to update an
approximation to Hk’ and then X and 31 are formed.
2.3.1.3. Another method uses the Davidon-Fletcher-Powell Quasi-

Newton formula to update an approximation to the operator:
P[H, ] = {[T - & ACCAR A%) TA7H. ) 2.33
(H, [ H H H, (2.33)
directly. This is the well known Goldfarb's (1969) method.

The above three methods all use some sort of active set strategy

to solve the linear Inequality problems as a sequence of linear equality



35

subproblems. A detailed discussion of most used active set strategies
i3 left to a subsequent section. But we will brilefly mention here that
the basic strategy Is to minimize the objective function over the face
of the constralnt polytype formed by the currently active constraints.
This face 1s changed only when the search for a minimum along the
projected search direction (2.24) encounters another contraint or when
the minimum value of the objective function may be decreased further
only by moving off this face.

We now discuss in more detail some Important aspects of the above
methods and their relationships.

Davidon (1959) extended his alporithm for unconstrained
minimization to solve the linear equality problem by pointing out that
the initial approximation of the inverse hessian should be chosen to he
in the null space of the matrix A. One such matrix Is the orthogonal

projection operator:

which projects all vectors in " onto the subspace MO with respect to

the euclidean norm (i.e., with Gk = I), Thus clearly:

which ensures that the direction of search computed using the

approximation PO:
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s b o
d) = -P_ VE(x )

Batisfies Eal = (). Hence 31 is feasible (&1 £ Mb)' The inverse Hesslan
approximation is updated with incoming curvature information obtained

along d As above, feasihility of subsequent search directions is

1°
maintained because the approximations always remaln in the null space of
the matrix A. The updating is done using the Davidon-Fletcher-Powell
(DFP) formula. However the rank-one or the BFGS may also be used as was
shown by Powell (1974-a) and Fischer (1981).

Goldfarb (1969) extended Davidon's method to inequality
constraints using the techniques developed by Rosen (1960). For the
equality constraints case with a quadratic objective function, Goldfarb

proved convergence in (n-r) iterations and the approximation to Pk

updated by the algorithm becomes:

P__=P[H] ={H- HAS(AHAS) ' Am
where H is the true inverse Hesslian of the quadratic objective function.
Only the first order estimates of the Lagrangian multipliers are
computed in Goldfarb's method since the approximation to Pk always
remains in the null space of A.
A disadvantage of Goldfarb's method, however, 1s that 1f a
constraint is dropped from the active set such that the rank of the

approximation to Pk is 1ncreased by one, no information about the
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curvature of the objective function is available in the direction of the
normal of this constraint. Murtagh and Sargent (1969) have attempted to
overcome this by updating directly the approximation to the inverse
Hessian rather than (2.33). The projection operator P[ﬁk] is8 then
constructed given ﬁk’ the approximation to H. They use the rank-one
formula for updating ﬁk' An Iimportant feature of this formula is that
it does not require exact Ilne searches, which makes 1t attractive
compared to others. However, when a constraint becomes active and 1s
added to the active set, ﬁk is updated by the rank-one formula Gill and
Murray (1974-b, pp. 72-74) argue that updating ék in E" does not provide
curvature information in the directlion of the normals of the active
constraints. Since the descent directilons, 51, have to be orthogonal to
these normals to be feasible, the updates ﬁk contain curvature
information In these directions only. They point out that, only in the
case where movement off a constralnt occurs near the point of its
addition to the active set, that such curvature information becomes
significant. On the other hand, if a constraint is dropped long after
it has become active, the curvature information 1in the direction of its
normal, obtained prior to its becoming active, has no longer any
gignificance. Also, since 351 = 0, 1f the BFGS formula is used to
update ﬁk’ for descent steps taken In the intersection of the same

constraints, then, by Inspection of the BFGS formula, it follows that:

By 1 = @

thus, the Lagrange multipliers computed according to:
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=t =1 o
A = (RRADT AR VE(x,)

may no longer be regarded as second order estimates since if we start

with the approximation ﬁo = I, then:
T4 7t o=t -7t
(AHkA )y = (AHOA ) = (AA7).
Similarly, the descent direction:

El = -P[H, ]9£(x )

is no longer equivalent to (2.24).
Powell (1974-a) established the equivalence, under certain

assumptions, of updating approximations to P, and updating ﬁk then

k
computing P[ﬁk]. Powell also proved the convergence of Goldfarbh's
method for a wider class of quasi—Wewton updates and for inequality
constraints. The rate of convergence for quadratic functions and using
exact line searches is established to be {(n+f) where £ is the numher of
faces of the constraint polytope over which the search for results to
inexact line searches and showed superlinear convergence of a
modification of Goldfarh's method for general objective functions.

3.1.4. Other methods that could be seen as extensions of problem
(2.30) are methods that solve efficiently a series of linear or

quadratic programming problems where the restriction d, ¢ Mo is relaxed

1

to d1 € S. The method of hypercubes due to Fletcher (1972a) generates
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quadratic approximations to the objective function f at the point X4l

as:

Aig) = FRD + 72000 Oy = %)
1200~ 5" Gl ~ %) (2.34)

To make the approximation as close as possible, the stepsize is

restricted. Thus the method involves successive solutions to the

problem:

Minimize q(x)

Subject to Ax € b

hx - xkﬂm < Gw (2.35)
Assuming (2.34) 1s a positive definite approximation, its
unconstrained optimum is given by:
Va =V C - xX) =
q(xk) f(xk) + Gk(xk x) 0
fvi x=x -0t vE(x) 2.36
giving X = X K X (2.36)

By theorem 1 we can see that the solution of (2.35) may he

expressed as the projection problem:
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Minimize {1/21x - ;“2 }

G

Subject to Ax < b
And lx -~ x - Hk Vf(xk)ﬂm <8

o

The matrix &k 1s updated using a rank 2 formula.

An earlier variant of problem (2.35), without the constraint on
the step size, was developed by Wilson (1963) and described in Beale
(1967). 1In this approach Gk 1s evaluated at every iteration.

2.3.2 Methods Based on Problem (2.31)

This section deals with descent methods based on the solution of
the unconstrained optimization problem defined by (2.31). Algorithms in
this class perform an unconstrained minimization of the function
projected onto the {n-r) dimensional subspace defined by the active
constraints. Because of that the determination of a basis of the
subspace Mo becomes Iimportant.

Given the matrix A of active constraints assumed to have rank T,

the following (nxn) matrix T is defined as:

T = ,}] . & (rxn) (2.37)

V 1s an {(n-r)xn matrix such that T is

nonsingular.

The following result is very useful in determining a basis for Mo
(Gill and Murray, 1974-a, theorem 2.5):
Theorem 2. The last (n-r) columns of the matrix T--1 span the

subspace Mo.
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Based on this result, the matrix Z in the definition of d1 (1.e.,
d1 = Zv) may be set equal to the vectors t j=r+l, r+2,...,n, where t
is the jth column of T_l.

i i

Also, using T and Z, Lagrangian multiplier estimates can be

obtained using the relationm:

el

T
-
]

7q(d

that 1s:

A2 = [afvt Y . Tt "q
o -V g 0

q(d)) = 6, d; + V£(x,)

which implies that:

) ot -1r
[-“6] - [-(iA—%——f‘-] (6,4, + 7£(x)] (2.38)

(2.38) gives second order Lagrange multipliers estimates. We note that
first order estimates could be obtained from the same expression simply
by ignoring the second order term in (2.38).

We recall here that the expression for 51 is:

i = —Z(ztGkZ)"l 2" VE(x,) (2.39)
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It is clear at this polint that different choices of the nmatrix V
in the formation of T will lead to different algorithms.

2.3.2.1 The Reduced Gradient Method of Wolfe (1967)

-1
This method generates Z using T = by selecting the columns of V
from the normals of inactive constraints. This approach gives the

descent direction:

- t
dl = ~ZZ Vf(xk)
G111l and Murray (1974-a) show that effectively this descent direction is
not the same as the direction (2.39) above, even when Gk = T,

2.3.2.2. The Variable Reduction Method of McCormick (1970-a)

This method chooses the columns of V from the columns of the

identity matrix I, which gives T as:

-1 _2 s1,-1:2
T = (%_2_ __g%_z 7 = _Séil__é_ (2.40)
rxr

L]
'
1T

1 =2 -
where A = and A are respectively (rxr) and (n-r)xr submatrices of A

such that:
A= [KIIKZ] (2.41)

The matrix Ahlcorresponds to the first r elements of the vector x € E°

and Kz to the remaining (n-r) elements.
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The DFP updating formula with resetting is used for approximating
Hk in Mo. A further extension of this algorithm has been made by

McCormick (1970-b) by allowing the computation of G, 1n E" and then

k
computing (ZtGkZ) used in {2.39) above.

In the variable reduction method the linear equality constrained
problem (2.10) may be reduced to an unconstrained optimlization problem

as follows: The constraints Ax = b may be written using (2.41):

=> x, = ~[(A) " 18x, + (A)7'B
with

X, £ Er, the vector of dependent variables,

Xy € En—r, the vector of independent variables, and

£(x) = £(x),%,) = f[(Kl)'lizxz,xzj - £(2x,).

Another method which minimizes f(xz) is due to Ganzhella (1970)
who uses a varlable metric method to minimize the objective function in
the linear manifold M.

2.3.2.3. Factorization Methods

Gill and Murray (1974-a) pointed out that a poor cholce of V in
(2.37) may lead to an 1l1l-conditioned matrix T and thus to an 111-

conditioned matrix Z affecting the expressions:

[ZtVf(xk)] and [(ztck2)1
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This, in turn, could result in poor estimates of the Lagrange
multipliers in (2.38) and the computation of the direction &1 in

(2.39).
The condition of any matrix A can be measured by the magnitude

k(A), the condition number of A, which is defined as
X(A) = TAF 1A'T

-+
where A 1s the pseudo-inverse of A.

Gill and Murray (1974-a) recommend a choice of Z which makes the
condition number of (ZtGkZ), K(ZtGkZ), depeandent only on the

conditioning of Gk’ since
K(Z5G6, 7) < K(G, )[K(Z)12
k )'k -

They propose to that effect an LG factorization of A such that L is an

{rxr) lower triangular matrix and Q ig an orthogonal matrix, that is

QtQ = QtQ = I, giving:
K = [L]0]Q

Furthermore, Q is partitioned as follows:

Q, [ (rxn) o
Q= 3, | (n-ryxn = [L|0] T, = LQ,

|
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Now, since:

_Ta
A[51]= LiojqQt = Loy,
2

then clearly, KQ; = 0.

Therefore, 1if Q2 is used as the required matrix V, we will have:

that is 7 1s chosen to he the matrix Q;, and such a choice results in a

minimom condition number. Also, for a positive definite Gk’

K(ZtGkZ) < R(G))
which means that the conditioning of the algorithm now depends on that
of the problem only.

This choice of Z i3 used by Gill and Murray to compute 51 as in
(2.39) both in a Newton and a Quasi-Newton setting. It is widely
acknowledged in the literature that this is one of the most numerically
stable procedure 1in this class of methods.

A variant of Goldfarb's algorithm that uses the transformation T
with the columns of V chosen from the normals of the inactive
constraints has been suggested by Buckley (1975). Finally, the
efficient implementation of the above algorithm using the Cholesky

factors of Gk’ (ZtGkZ) or Hk’ the orthogonal factorizations of A and the
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modification of these factorizations at each iteration, have been
extensively discussed hy: Bartels, Golub and Saunders (1973); Gil1,
Golub, Murray and Saunders (1974); Goldfarb (1976).

A combination of some of the bhest features of the above methods
is found in the work of Murtagh and Saunders (1978), who combine stable
Quasi-Newton methods with the generalized reduced gradient where the
variables are decomposed Iinto nonbasic varlables, which are fixed at
thelr bounds, basic variables which are used to maintain feasibility,
and superbasic varilables which are allowed to vary. We note, however,
that Murtagh and Saunders' algorithm is mostly suited for large scale
problems with few nonlinearities, therefore allowing extensive use of
the revised simplex and sparce matrix techniques.

2.3.3 Generalization of the Godstein-Levitin-Polvak (GLP) Projection
Algorithm

The (GLP) algorithm, contrary to other feasible direction
algorithms, proceeds along arcs on the constraint surface using the
steepest descent direction [Goldstein (1964), Levitin and Polyak

(1966)]. A typical iteration is of the form:

X4l = Ps[xk - Aka(xk)1; k=20,1,..., (2.42)

where Ps(y) denotes the unique projection of a vector y on the feasible
reglon S; Ak > 0, denotes the step size.
iIf s =1{x ¢ Enle < b}, the following quadratic program is

solved:
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Minimize {1/2n[xk - Aka(xk)] - xﬂg} (2.43)

Subject to Ax € b

We note that this procedure differs from Rosen's gradient
projection method in that the points LR and Xl need not lie on one
face of the constraint pelyhedron.

If 5§ = {x € E"]Ax = b}, then (2.43) is written in explicit form

as follows:

Minimize  {1/28[x, - A, VE(x )] - xng}

Subject to Ax = b
whose Kuhn-Tucker conditions are:
X - [x,_ - A Vf(x )] = Atu
Kk~ e TR

Ax = b

from which:

b
1]

op = T = ASAAHTIAY (x - A TE(x))

It

P5 [~ ATE05)]

while in Rosen's method:
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X+l = %~ NP5 VE(x)

An implementable version of (2.43) was developed by Bazaraa and
Goode (198l1) for problem (P) where the projection of the negative
gradient is into the set of equality and the binding and near binding
constraints.

A generaglization of the GLP algorithm as briefly described by
Bertsekas (1976) was developed by Rustem (1981) who uses more general
projections and Newton or Quasi-Newton descent directions. This
algorithm uses approximate line searches and 1s shown to be globally
convergent with a superlinear or quadratic speed. The iterations of the
algorithm are determined by solution of the positive definite quadratic

programming problem:

-1 2
Minimize 1/20x ~ X, + 6, Vf(xk)ﬂck

Subject to x € §

Where Gk is either the Hessian of the objective function or
denotes a symetric positive definite approximation to 1it.
We note that the generalization here comes from the fact that the

protection of the unconstralned Newton or Quasi-Newton step 1s sought,

and a metric, rather than a Fuclidean norm is used.

2.4 Active Set Strategies

We have mentioned at the outset that most methods we have
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discussed solve the inequality constrained problem by solving a sequence
of equality constralned subproblems. So in this sectlon we briefly
discuss methods designed to perform the extension from the equality
problem to the Inequality constrained one. There are basically two
approaches to handling the inequality constraints at each iteration.

2.4.1. Adding Slack Variables

This strategy 1s a simple extension of the idea of slack
variables used in standard linear programming. This is discussed by
Sargent and Murtagh (1973) in relation to nonlinear comnstraints.

We note that, to our knowledge, this strategy is not used to
solve problem (P) except by those methods based on the simplex
procedure. Clearly, the adding of slack variables 1ncreases the
dimension of the problem, an unattractive feature.

2.4.2. Using the Binding Constraints at Each Iteration

This second type of strategy aims at including only a subset of
the 1inequality constraints in the active set during each iteratiom. But
there are variations in including and dropping constraints from the
active set. Such strategies are mostly suited for problem (P).

At a current point x, the constraints satisfi{ed as equalities
(together with any equality constraints in the problem) are included in
the active set. A constralnt is added to the set when the search
direction from x hits one which 1s not already in the active set; this
is usually accomplished through a minimum ratio test to determine the
nearest inactive constraint. Dropping a constraint from the active set
is accomplished in one of two ways:

1) Retain all the currently active constraints until a minimum
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is found in their intersection. Inspection of the Lagrange multipliers
at that minimum point should indicate if we might obtain a lower point
by deleting the constraint with the most negative Lagrange multiplier
from the current active set. Under the assumption that the number of
stationary points 1Is flnite, and the constraints actlve are linearly
independent, it is shown that this scheme will terminate at a strong
local minimum after only a finite number of changes in the active set
(Gill and Murray, 1974-a). An obvious disadvantage of this scheme is
that we may be using a lot of computational effort Iin order to find the
minimum on a subspace which 1s far from the solution.

11) Compute estimates of the Lagrange multipliers at each
iteration and move off the constraints for which the value of the
multipliers is negative. Since the Lagrange multiplier of a constraint
gives the rate of change of the objectlve function in relation to this
congtraint (see for example Sargent (1974)), a negative multiplier
implies that 1f the corresponding constraint is dropped then a reduction
may he obtained in the objective function value. Thus if a single
constraint is to be dropped, the one with the most negative multiplier
is chosen. However, given that the relation:

Ktu = g(E) = Vf(E)

is not satisfied exactly because we are not at the solution to (P) yet,
in general, the estimates of the multipliers u tend to be very
inaccurate. This may lead to a constraint belng repeatedly droped and

thenr included again in the active set and therefore progress to the
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gsolution can be very slow. So, in general, it is not possible that this
strategy will terminate after a finite number of changes in the active
set. This pheonomeon i3 called "zigzagging” as 1llustrated by the
example of Wolfe (1972) which will be found in section three to follow
this one.

In practice, most people use a combination of i) and 1i), such as
illustrated in the computational study of Lenard (1979). Zoutendi jk
{1960) proposed the following strategy: a constraint that has
previously been dropped and returned to is kept in the active set until
a minimum solution is obtained on a subspace. This will ensure finite
termination.

McCormick {1969) aveoids zigzagging by projecting the directioun of
search onto successive active sets formed by incorporating each new
constraint as 1t 1s encountered. This is called "bending” of the
current direction of search, which will continue until either an
unconstrained minimum is found with respect to the step size, or the
matrix of constraints defines a subspace containing a local minimum.
Only at this point is the gradient information recomputed and a new
direction of search defined. McCormick (1970) provides a proof that
zigzagging cannot occur in this way.

Finally, we note that criteria based on the value of the Lagrange
multipliers and the amount of reduction in the objective function have
been formulated in terms of the solutiom to a complementary pilvoting

algorithm (Lemke, 1968).
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2.5 Quasi-Newton Updates

There are major difficulties associated with using the exact
Hessian of the objective function in any optimization procedure.

First, the computation of second derivatives is generally very
expensive. Second, when the starting point, X 1s far from the
solution, Newton methods, which use exact Hesslan information, may fail
to converge even in the unconstrained case. Second order trate of
convergence of Newton methods has been proven for functions with
positive definite Hessians which are Lipschitz continuous at the
optimum, provided xois sufficiently close to the solution. Such results
are found in Orega and Rheinboldt (1970), and Dennis and More (1977).
Third, when X, is far from the solution, restrictions on the step size,
such as the following by Wolfe (1969), have been supgested to help

convergence:
9f(x, + o d )d. > ¢ VE(x Y
kT %% Y S H R N

t
f(xk + akdk) - f(xk) < czaka(xk) dk

where ¢y and c, are scalars such that: 0 < ¢y < ¢y < 1, and

0< % < “nax”

But even with such precautions, a well defined direction may
be computed which is orthogonal to Vf(xk). This results in a zero
steplength, stopping further progress toward the solution. This point

is 1l1lustrated by the following example due to Powell (1966).
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2

Minimize €£{(x) = xi + x. X 2)

1%2 + (1 +x

If x, = (0,0)t is chosen as the starting point, then

0 N1 -1 -2
go N [2] * Go B [1 2] ’ do - _Go go a [ O]

Since a line search along % do changes only the Xy component of the
vector x, it 1s clear that X, = 0 will minimize f(x) and we fail to make
any progress. The problem is due to the fact that ggdo = 0, and the
directiouns * do are not descent directions.

These difficulties may be overcome by restricting the steplength
to the region in which the quadratic approximation of the objective
function 1is valid (see for example Fletcher (1972)) or by forcing the
Hessian matrix to be positive definite when 1t is not. In this case,
unless Vf(xk) = 0, dk = —Hka(xk) is a descent direction.

In coustralned optimization, forcing the approximation é , to the

hegsian matrix G to be positive definite may be a serious problem. An

K’
objective function with a singular Hesslan matrix need not have an
unconstrained minimum. Its minimum may, however, exist on some
constraints if the Hessian of the Lagrangian has a positive definite

projection on the intersection of these constraints. We note that for

problem (P} the Lagrangian is defined as:

t
L(x,u) = £(x) — u (Ax - b) with VLXX = vxxf
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In the unconstralned case, the Hesslan matrix 1s positive definite in
the neighborhood of a strong local minimum. The same need not be true
at the constralned minimum and the convergence rate may be affected by

forcing G, to be positive definite when it is not.

k
For the linearly constrained case, G111 and Murray (1974-b)
suggest a method restricting only the projection of the Hessian matrix
onto the set of active constraints, (ZtGkZ), to be positive definite
[see (2.38)]. Consequently, in the linear equality constrained
subproblem (2.16), when (ZtGkZ) is positive definite and ZtVf(xk) =0,

X, 1s a strong leoal minimum.

k
The algorithms described in Section 3.3 that project the

unconstrained step onto the inequality constraints, rather than taking
steps along a descent direction projected onto the active constraints,
may generate successive points on different faces of the constraint
polyhedron. This may imply different active sets for successive points.
When Gk is updated at these polants 1t collects curvature information in
all directions. BSo it seems that these methods should provide more
curvature information than active set strategy methods.

We now brilefly discuss, after a motivation of the need for Quasi-
Newton approximations, the Important Quasi-Newton updates for the
inverse Hessian approximation ﬁk' These updates are based on the

general formula introduced by Broyden {1967) of which one representation

is:
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_n Y st t (244

where:

Y = VE(x ) - TE(x)

§ = xk+1 - xk

3
H]

- .—_5_ t-
HkY Ytg Y HkY

and the scalar Bk 1s a free parameter whose values define different

updating procedures:

1) The Rank-One formula (Broyden, 1967) is obtalned for:

B. = YtY
oetnoetrn - o’

1i) The Davidon-Fletcher-Powell (DFP) due to Davidom (1959),

Fletcher and Powell (1963) is obtalned for:

11i) The Broyvden-Fletcher-Goldfarb-5Shanno (BFGS) due to Brovden
(1970), Fletcher (1970), Goldfarb (1970), and Shanno (1970)

is obtained for:
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1

B =
Y HkY

k

The (BFGS) 1s generally acknowledged to he the begst cholce among
the members of the family (2.44). A desirable property of the members
of this family is that they satisfy the, so—called, Quasi-Newton

equation:

o

k+1

which is an attractive feature hecause if f{x) were quadratic with the
inverse of its Hessian given by H, then H§ = &. VFor the quadratic case,
Huang (1970) showed that for an unconstrained optimization procedure

= -V
taking steps along dk Hk f(xk), gtarting with X, and choosing ® to

minimize:

£1x, - o TECR)]

the sequence of points generated, X (k = 0,1,...,) is independent of
the scalar Bk. An even more important result due to Dixon (1972) is

that Huang's conclusion holds when f(x) is a general function.

3. Methods of Feasible Directions

Methods of feasible directions, called MFD's in the sequel, are
credited to Zoutendijk {1960, 1970, 1974, and 1976) who developed much

of their early theory.
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3.1 Definitions

3.1.1. For problem (P):

3.1.2.

3.1.3.

Minimize f(x)

Subject to x € S = {x € E" [ Ax < b}

for all x € S, a cone of feasible directions, D(x), 1s defined

by:
d eD{x) <= A >0, p: 0< <A, (x+ud) e 8

A direction d € D(x) will be usabhle i1f a X exists such that, for
all u with 0 < w < X, f(x + ud) < f(x) will hold. As f is
assumed differentiable, this 1s satisfied 1if Vf(x)td < 0.

The general approach to solve (P) using MFD's is as follows:
Given X € S which 1s a feasible starting point, a sequence of

points x, ¢ S (k = 0,1,2,...,) will be determined by:

k
First, finding a suitable feasible direction:

t
d & {D(x) and [4 | VE(x, ) @ < 0]}
Next, the steplength lk will be determined in such a way that:

(xk + lkdk) £ 8 and f(xk + lkdk) < f(xk)

Finally, setting: Xrl = % + lkdk
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If x is an accumulation point of the sequence {xk} 8o that:

lim f(x,) = £(x),

koo

then, under certain conditions, x is a local stationary point,

that 1s a polnt satisfylg the Kahn-Tucker first order necessary

conditions for optimality.

Methods of feasible directions differ largely in the way the
directions are chosen. In all methods, a direction finding problem is
explicitly or implicitly solved in which a direction vector is found
such that:

i) dk € D(xk)
1) V(x ) d < 0

1ii) And some additional requirements to guarantee and/or speed-

up convergence.

For S=1xeE | Ax < B}
t
Letting I(x,) = 1| ax, = bi}
t X
Then D(x,) = {d l ad €0, 1 e I(x)} (3.1)

So that the requirement that d € D(xk) results in a set of homogeneous

linear relations.

The steplength is formulated as a one dimensional minimization

problem:
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Minimize {f(xk + Ad, ) [ x = x, + A e s}

which can be solved either exactly or approximated.

3.2 Direction Finding Subproblem

There are three classes of direction-finding problems:

3.2.1. Direct Methods

Here a direction is implicitly determined through the original
varlables L This is accomplished through a linear approximation of
the objective function such as suggested by Frank and Wolfe (1956). At

each step a linear subproblem is solved of the form:
Minimize {Vf(xk)tx | ax < b} (3.2)
Given that x is the solution to (3.2), 1f:

ve(x)E (k - x,) =0

O
the minimum for (P) has been achieved. If Vf(xk)t (x ~ xk) < N, then dk
= (x - xk) will be usable feasible direction. A steplength 1is
determined and a new point is defined.

A variant of this method In which, instead of solving (3.2), the
simplex method is used to deterumine a vertex % such that
Vf(xk)t (; - xk) < 0, is the convex simplex method of Zangwill (1969).

3.2.2., Optimization Methods

Here the direction finding problem is of the form:
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Minimize {VE(x)'d | d e D(x), deT, decN (3.3)

where D(xk) is defined by (3.1) above, T is a set of linear relations to
speed-up or guarantee convergence, and N 1s a set of relations to
prevent infinite solutions.

N is usually taken to be the set: {d | "td" < 1}, giving the

problem in the form:
Minimize {Vf(xk)td [ Ad < 0, Yd = 0, 1d? < 1}

with:

n
i) The L1 norm giving: ¥ [d1| <1
i=1

11) The L2 norm giving: dtd < 1
iii) The L_ norm giving: -1 < dj < 1; =1,cu4,n
iv) The metric norm with P a symetric positive definite matrix
giving: dth < 1.
Clearly, thls leaves the choice for a variety of different
methods. 1) and i11i) will result in linear programs; ii) and iv) will

result in quadratic programs.

3.2.3. Feaslibllity Methods

Contrary to the methods in Sections 3.2.1. and 3.2.2. where the
directions found had to be the locally best ones, there a direction is
found which only has to satisfy the necessary requirements. That is 4
is such that:

iy 4 ¢ D(xk), deT
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1) VE(x)'d < 0 [for example: Vf(xk)td = 1]
So the different methods in this class reduce to ways of solving systems
of linear inequalities. The major methods suggested for that are:
i) TUsing the simplex method to determine the extreme directions
leading to unboundedness and defining dk appropriately.

ii) Using successive projecticns. That is, letting:
= v
dk PA f(xk)

with P, = [T - ataatylag

This is done recursively as follows:

t
Qe %1

t
A Be-12x

s k= 1,.00,m

L
P
i

= Qo

Py = Qp (assuming A has m rows).

3.3 Discussion of Convergence of MFD's

Global convergeunce of methods of feasible directions has been
studied extensively [see for example Zoutendijk (1960), Topkls and
Velnott (1967), Polak (1971), Klessig (1974)]. It is shown that MFD's
converge provided some antizigzagging provision is used to avoid jamming
{nonfinite convergence or convergence to a non—-stationary point) as

illustrated by the now famous example of Wolfe (1972):
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}

Maximize {-4/3 (xi - x,x, + xg) - x

*1% 3

» 0, x,»0

Subject to x 3

>0, x

1 2

The maximum clearly occurs at x = (0, O, O)t.

By choosing Eo = (a, 0, c)t with

a < V2/4 and ¢ > (1 +¥V2/2) Ya

Wolfe shows that even with the projected gradient as direction, the

sequence of points generated 1s of the form:

0 0 0
0 10
c - Ya(1+/2/2) 0

1im xk = 0
k+w c - Ya/2( 41/ ¥1/242/ 272+, ))

Hence, due to zigzagging between the constraints x, » 0 and x, >

1 0,

we could not reach the maximum but stopped at a non—stationary point.

Global convergence 1s guaranteed by allowing consideration of
constraints that are almost-binding (also called e€-active constraints)
in the computation of the search direction dk'

Because MFD's degenerate to first-order gradient methods when the
number of contraints is zero, these algorithms cannot converge hetter
than linearly in the general case. However, linear convergence 1s not
ensured by the behavior of a constrained optimization algorithm on
unconstrained problems as was shown by Pironneau and Polak (1973). They

showed that MFD's in general converge sublinearly. However, forcing the
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directions to the conjugate in a method of feasible directions can
result In accelerating thelr convergence. This was suggested by
Zoutendiik (1960, 1974) and was successfully applied to some special
direction generators by Ritter (1975) and Best (1975) to obhtain
superlinearly convergent procedures. These methods will be discussed in
more details In Sectilon 4.

Flnally, we note that a lot of other methods use feasible
direction strategies but were not included 1In this class, such as
projection methods (gradient projection and reduced—gradient metheods).
We included in this class only those methods of the Zoutendijk type or
inspiration.

3.4. Relatlonship Between Projection Methods and Feasible Direction
Methods

3.4.1. Firgt-Order Methods

Methods of feasible directions Involve the solution of a sequence

of problems of the type:

t
v -

Minimize f(xk) (x xk)

Subject to A(x - x) < 0 (3.4)

And hx - xkﬁ <1
where X, if a feasible point.

The relationship of this problem to projection methods as

described in Section one 1s stated in the following result to be found

in Zoutendijk (1960) and Lemke (1961):
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Theorem 3. 1If (; - xk) golves the minimum problem (3.4) and

Vf(xk)t (x - xk) < 0 then for u > 0, uix - xk) also solves the problem:

Minimize ix - xkﬂz

Subject to A(x - x) <0 (3.5)
t

And —Vf(xk) {(x - xk) > 1

The relationshlp can be made even more explicit by observing the

following:
Nex — x. ) + TECx )2 = Ix — x 12 + 0962 W2 + 296(x )% (x - x)
k k K *x *x *k
from which, and uvsing:
-Vf(xk)t(x - xk) > 1
we have:
2 2
fx - x, /" = N[x - X, + Vf(xk)]ﬂ - HVf(xk)H + 2
2
= Ix - [xk - Vf(xk)]ﬂ + constant term.

And therefore, the quadratic problem (3.5) in the theorem finds

the projection of the unconstrained step [xk - Vf(xk)] onto the set:
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{x e E" | Ax < b, —Vf(xk)t(x - %) > 1}

where Xy is such that ka < b.

3.4.2. Second-Order Methods

The second order feasible direction methods described by Polak
{1971) can also be interpreted as projection methods since they solve

quadratic subproblems.

4. Methods of Conjugate Directions

4.1. Definitions

4.1.1. Conjugate Directions

The concept of conjugate directions has played a key role 1in the
development of unconstrained optimization techniques as pointed out by
Fletcher (1972-b).

A set of n nonzero direction vectors (dl,...,dn), di £ En, are
sald to be mutually conjugate with respect to the nzxn symetric matrix G

if they are linearly independent and 1f:

t
4,6dy =0 1% 4, 1, J=1,...,n (4.1)

If we consider the problem of minimizing the quadratic function

of n variables:

q{x) = a + btx + 1/2 x "o
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Then, given a set of n directions conjugate with respect to G and a
starting point X the location of the minimum of q(x), say ;, may be
found in one of two ways:
i) By searching for the one-dimensional minimum of q{x) along
each of the n directions in turn.

1i) By taking one Newton step using the fact that:

="
e

ja M
[

(4.2)

[}
|
[ eI~

[y
="

e
&
[

where G 18 assumed to be positive definite.

Clearly, conjugate directions are really only well defined in the
case of quadratic functions. The application of conjugate direction
methods to the optimization of more genmeral functions is hased on the
assumption that near the solution the function to be minimized will be
nearly quadfatic. As the algorithm proceeds, generating a sequence of
points {xk} which coaverge to ;, the set of directions i3 constantly
modified, producing a corresponding sequence of directions

(k) (k)
CHGPNEN

).

McCormick and Ritter (1972-a) were the first to formally extend
the definition of conjugate directions to the case of general functions
f(x), as having the following properties:

1) At each 1teration k, the new point X4l 18 obtained as:
Xiel = + kkdk where lk is the smallest local minimizer to
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the one-dimensional step size problem:

Minimize f(xk + ldk)

Subject to X > 0

1i) 1If the sequence {xk} generated converges to a point x such
that Vf(;) = 0, f(x) 1s twice continuously differentiable in
a neighborhood of x and G(x) 1s positive definite, then for

all k:

1 = . = .
dkﬁ O(Hgkﬂ), Hgkﬂ O(Hdkﬂ) (4.3)

and fOl' k=1,¢-o,n-1; i=0’.l.’k-1

ldk+j Gy, 4l = RSP PLELL LD (4.4)

where 8§ = 00 or 1.

For methods defined as ahove, McCormick and Ritter (1972-a) prove

the following general result, which establishes an n or (n-1) step

superlinear rate of convergence to an isolated local minimizer:

Theorem 4. Suppose the sequence ka} is generated according to

properties 1) and 11i) above. Suppose also that G(;) is positive

definite. Then, as k¥=
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"g ] i - x!
i—EiET-* 0 and “xk+n 7 * 0
Bt s X

where § = 0 or 1
We note that the relationship (4.4) 1s the most important
defining relation hecause it ensures that an almost conjugate property

holds in the sense that:

(k)

Given the sequence of directious (d1

,...,dik)) produced by the

algorithm, then:

dik)G(E)dgk)
+ 0 for 1#j; i, j=1,...,n
Hdgk)n Hdgk)n

Also we note that the above theorem remains valid 1if inexact line

searches are used, as long as the following holds:

t
8141 4!

——e—— 3+ ) as k +»
Hgk+1ﬂ ﬂdkﬂ

4.,1.2. Conjugate Gradients

In practice the objective function is not normally quadratic and
the searach directions d1 are not known in advance. However, conjugate
gradient algorithms are constructed so that if the function were
quadratic then a subset of search directions would be conjugate.

In the early conjugate gradient algorithms by Hestenes (1952) and
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Fletcher and Reeves tIQGA) it was assumed that the Initial directlon of

gearch in each subset was along the direction of steepest descent:

d, = -VE(x ) = -g,

Consecutive directions were built up iteratively by letting:

k

dk+1 =g + 121 Bidi (4.5)

and solving the conjugacy conditions (4.1):

to determine Bi.
If the line searches are exact and the function is quadratic,

then this implies that:

By=05 3 <k (4.6)
desr = "B T Bdy (4.7)
with
B8 = oy
8, = (4.8)

k(gk 81
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The method is efficient mainly due to (4.6) - (4.8) which is a
great simplification over the more general formula (4.5). This makes
the conjugate gradient method very attractive for large problems
compared to Quasi-Newton methods because of its very low storage
requirements.

Numerous ways of simplifying formula (4.8) have been proposed
which are 1identical for quadratic functions and perfect line searches.
Of these, the most well knowm are:

1) The Fletcher—and-Reeves (1964) formula:

B = (2.8, )/18 18 1] (4.9

i11) The Polak-Ribiere (1969) form:
B = [e(g, - g, .)1/(8 18, 1] (4.10)
k k~k k-1 k-1"k-1 '

We note that for general functions there seems to be some
numerical evidence, as polnted ocut by Powell (1977), in favor of the
Polak-Ribiere form.

But in general, the most effective way to use conjugate
gradients 1s with restarts along the steepest descent direction every n
iterations. This makes the method effectively convergent. Also, the
method 1s showm to be superlinearly conmvergent [see for example Cohen
(1972), Dixon (1975-a)].

Most recent research in conjugate gradient algorithms has been in
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three main areas:
1) The relaxation of exact line searches as suggested by
different authors: FKawamura and Volz (1973), Dixon
(1975b), Nazareth (1977), and Mukai (1979).
i1) The improvement of restarting procedures. That is, instead

of restarting automatically every n iterations, other

t

kgk, might be

possibilities such as checking the size of ld
more approprlate. This is a question studied by Powell
(1977).

111) The possibility of starting each cycle along directions
other than the steepest descent one. Beale (1972) derived
a simple conjugate gradient formula given any general

starting direction. The corresponding results to (4.6) and

(4.7) are:

Bj =0; 2< i<k (4.11)
dk+1 = =g + Bldl + Bkdk {(4.12)
where
t
g, (g, - 8))
Bl =< and Bk is as in (4.8) (4.13)
d,(g; - 8)

The use of (4.12) allows the last directfon of one conjugate

subset to be used as the first direction of the next one.



An alternative way of zllowing an arbitrary starting direction
was Introduced by Allwright (1972) and called "the preconditioned
conjugate gradient” approach:

Supposing:

f(x) = 1/2xth
If the metric (not necessarily equal to the Hessian G)

A=t
is introduced, a new set of wvarlables is defined as:

x = Lz
The problem could then be posed as:

Minimize £(z) = 1/22tLGLz
for which the steepest descent at a point is:

v £(x) = LteLz = -1

which when transformed back into x-space becomes the direction:

d = -Hg

72
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The equivalent of (4.6) and (4.7) for this method are given by:

dy g = “Hey + 84 (4.14)

where Bk corresponding to the Fletcher-Reeves formula (4.9) 1s given

by:

(4.15)

Because of the success and the popularity of conjugate directions
in solving unconstrained problems, some methods modifying them to solve

linearly constralned problems have been developed.

4.2 Conjugate Direction Methods for LCP's

Three methods could be distinguished:

4.2.1. A Projection Method

Zoutendi jk (1960) made the suggestion that his methods of
feasible directions, which were discussed in section three, could be
made to converge faster 1f one requires each newly constructed direction
of search to be conjugate to an unspecified number of previocus

directione. This suggestion is based on the following observation:

For f(x) = a + b'x + 1/2x cx (4.16)

If xk+1 = xk + Akdk
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Then 841 " B T kkGdk (4.17)

Hence, a new direction, d , would be required to be conjugate

k+1

to dk simply by imposing the following linear restriction:

=0 =xat

t
(841 ~ &) ey = 115 (4.18)

This approach was used by Ritter (1971), and McCormick and Ritter
{1972-b) to develop a superlinearly convergent method for unconstrained
minimization called the "projection method." Later this method was
extended to handle linear constraints by Ritter (1975) and by Best and
Ritter (1976). For the unconstrained method, a get of n search

directions:
(dl,-o-,dn) =D

1s mailntained such that:

where Y is a matrix composed of the differences in the gradient of the
objective function corresponding to steps taken along the directions in

D. ¥For the quadratic function (4.16):

Y = GD
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so the requirement:

DY = I(nxu)
is equivalent to:
t
DGDh = I(nxn)
Initially, D =Y = I(nxn)' A typlcal iteration consists of

choosing one direciton dj; 1 < 4§ < n, from the columns of D and taking a
step along that direction from the current point X to a point X4l - %

+ A . d, having a lower objective function value.

k' J
The difference in the gradient vector 1is computed:

¥, VE(x, ;) - VE(x)

and Y, replaces Y the jth column of the matrix Y. The corresponding

3
update of D is:

jl

i t - -t -1 - t . - .
R H c PN CH R IS FE S PP X
dy = dy/dyv,

After n such steps, or more frequently if possible, an

accelerating step is taken in the direction:
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n
] t
& = jilgdjdjiw(xk) (4.19)
t -1 t
As observed earlier, if D GD =1 then G ~ = DD, so the

(nxn)’

direction t 18 an approximation to a Newton step.

In the modification of this method for linear constraints, A
whose columns are the normals to the active constraints, replaces some
of the columns of Y. Thus, when applied to linearly constrained
problems, Y is initialized to any nonsingular matrix whose first r
columns are the columns of A. Also, the accelerating step 1s taken
after every (n-r) conjugate direction steps.

This method i3 egsentially an active set strategy. When a new
constraint is added to K, one of the search directions, say d2 is

dropped and the other rows of D are updated as follows:

t

t
2]

- t t ~1
d, = d I -(ad ad
Theoretically then, the 2th column of Y, YL’ is replaced by a.

Essentially, this 1is a projection of the search direction dj’ and it is

still true that:

t =t
DY = I(rxr) so that D GD = I(rxr)

We also note that an anti-zigzagping provision is used to drop

constraints from the active set. The method is shown to enjoy the
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following properties under appropriate assumptions:
i) {xk} converges to x, where x is the unique minimize of f(x)
over F = {x ¢ E® | Ax < b}.

ii) 1f:

agi < bi; i=r+l,...,m, and

VE(x) +

u.a, = 0 with u, > 0; i=1l,...,r
i i1 i

[y |

that is, if the strict complementary slackness condition is

satisfied, then there exists a ko such that for k = ko.

— + 0 as kow
lx - x|

4.2,2. A Feasible Direction Method

Best (1975) and Best and Ritter (1975) combined the conjugacy
requirements defined by (4.18) with a particular feasible direction
method of Zoutendijk to develop a superlinearly convergent procedure for

problems with linear constraints.
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Given a point x generated by the algorithm, a direction is found
by solving the dual of the following linmear program for xk+1:
t
7 -
Minimize f(xk) (x xk)
Subject to Ax < b
Yk(x - xk) = 0 (4.20)

giving d - X

kT Tk+1 k

The matrix Yk is formed by columns made up of differences of

gradients of the ohjective function to ensure that the direction dk is
conjugate to (k-1) previously defined directions.

This method, combined with an inexact line search procedure and
acceleration steps of the form (4.19) seems to be very attractive
because of its linear direction finding subproblem. An extension of it
could be sought where only near—binding constraints would be included in

problem (4.20).

4.2.3. A Reduced Gradient Approach

This method 1s due to Shanno and Marsten (1979). It is designed

to solve the problem:

Minimize f(x)

Subject to Ax = Db

1 <x<u

by combining the generalized reduced—gradient approach of Murtagh and
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Saunders (1978) and a new conjugate gradient algorithm.

By partitioning the matrix A as:

Ax = [B[S|N]{x,
x =b (4.21)

where the basic varilables X, are used to satisfy the constraint set, the

superbasic variables xS are allowed to vary to minimize f{x), and the

non—~basic variables X, are fixed at their bounds, the problem reduces to

a sequence of unconstrained subproblems in terms of the superbasic

variables xs.

The new conjugate gradient method used to solve the unconstrained
subproblems is modified to preserve information about good search
directions when superbasic variables are dropped and when basis changes
occur on manifolds. This method 1s called the "memoryless variable

metric” method because it uses the following directions:

e = UNer1Ben (4.22)
where Qk+1 is the positive definite nmatrix defined by:
P Yt +y Pt YtY p Pt
_ k'k k'k k'k k'k
Q=T + 1+ = = (4.23)
Pk PV J PRk

with p = Mds x g =X +Nd, 9 =8y &
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The method is a conjugate gradient method because it 1is shown

that 1f the line searches are exact, then (4.22) 1is equivalent to:

g d (4.24)

det1 = Berr T Pk

where:

gt (g -8)
o k4l k4l k

t
e (Breay = 8

Also, 1Inspecting (4.23) one notices that if I is replaced by Qk’
the BFGS Quasi-Newton updating formula is obtained.

The actual version used by Shanno and Marsten (1979) for the
linearly constrained problem is refined so that It could be used without
exact line searches and can bhe restarted along arbltrary search
directiéns as in Beale's (1972) method. Howeve, a convergence analysis

is not provided.

5. Curvilinear Methods

In this area work has heen very limited except for the important
study of Botsaris (1976, 1978, 1979). The essential idea in the method
developed by Botsaris (1979) is to generate an arc along which movement
is performed to decrease the ohjective function. The curvilinear search
paths are obtalned by solving a linear approximation of the differential
equations of the continuous steepest descent curve for the objective
function on the equality constrained region defined by the active

constraints.
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The idea of continuous steepest descent is based on the following

consideration:
the change of £(x) at x = X, along a space curve x(t), x(0) = X, is

given by:

df(x(t))de| o

where t 18 a real parameter defined as the distance moved along x(t).

If a maximal decrease in f(x) at X is sought, then observing that:

df(x(t) _ df(x) dx

t [
3t Tx rr 7 Ef(x) x(t)

one will choose i(t) = -Vf(x), giving:

df (x(t))

2
dt e=0 = TTVEGH!

In the general case this gives rise to a nonlinear system of
differential equaticns, the solution of which is the continuous steepest

descent curve:
x(t) = —VE(x)

Using this basic result, together with a reduced gradient approach and

the linear approximation of Vf(x) at X ;

VE(x) = Vf(xk) + Gk(x - xk),
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Botsaris (1979) determines a direction of move in the space of the

nonbasic variables x given by:

N!

= 1) - 11 0 Hx T8 (x)

where, assuming that r variables are basic at iteration k, #(-), ¢-1(°)

and Vé(+) are the restricted (or projected) Hessian, Hesslian inverse,
and gradient to the space of the (n-r) independent variables.
The computational form of d: require the solution of an

elgensystem problem giving:

n-r e—tli -1
N k i, 1.t

d =[ T vi(v. )} ] Vé(x, ) {(5.1)

k i k' 'k k
i=1 A

k
i i
where Xk and Vi i=1,...,n-r, are respectively the eigenvalue and

elgenvectors of the restricted Hessian.

Clearly, this method has the major drawback of requiring the
solution of an eigensystem problem at each iteration. However, from a
theoretical point of view it has some very attractive properties:

i) Por any kind of objective function, it is shown that:

l1im =x(t) = x (KTP of the original problem)
(2

That 1s, starting from a feasible point and moving on the
continuons steepest descent curve, the solution to the

original problem is obtained asymptotically, hemce global
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convergence.
11) In the expression (5.1) for dE, it 1s shown that the

dominant term corresponds to the smallest eigenvalue of
$(+), which will cause a fast decrease in the objective
function, clearly a desirable feature especially for
nonconvex problems.

1i11) The method provides a bullt-in switching between the
steepest descent and Newton type directions as the
algorithm proceeds. This is seen from the following

ohservations:
—t - -
as t>0, e @(xk) = In-—r t<b(xk)

N
and dk = —tV¢(xk)

ag t+», and provided that @(xk) is positive definite,

4y = 07" (2 )8(x, )

iv) Finally, the convergence rate of this method is shown to be
quadratic under the assumption that the set of binding
congtraints remain unchanged after a certain number of

iterations.
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6. State of the Existing Software

The existing software for linearly constrained nonlinear programs
is not really well documented except for two important studies by Lasdon
and Warren {1978) and Murtagh and Saunders (1979), which are
implementations of different versions of the Generalized Reduced
Gradient (GRG).

Lagsdon's version was developed initially for general nonlinear
programs (GRG2) and Murtagh and Saunder's version was developed for
large scale problems which are mostly linear (MINOS). A brief overview
of these two softwares will be given here and further detaills can be
found in the studies cited above plus Lasdon and Warren (1979). We note
that a lot of general purpose codes also solve the linearly constrained
problem as a special case, but our focus will be on codes that are
designed specifically for that problem.

MINOS {Modular In Core Nonlinear Optimization System): This code

is designed for large sparce systems. It uses a sparce LU factorization
of the basis and a stable updating procedure for these factors. Either
the BFGS variable metric method in factored form, or a conjugate
gradient method is used to vary the superbasic varlahles. The system 1s
designed to perform revised simplex iterations in case the initial
solution 1s basic. Murtagh and Saunders (1979) report that problems
with 700 variables, 49 belng nonlinear, and 300 constraints were solved
efficiently. The code also has many desirable input/output features
that exist in commercial codes.

GRG2 (Generalized Reduced Gradient): As in MINOS, this code also

uses a division of variables into bhasic, superbasic, and nonbasic. The
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superbasics are changed to decrease the objective functlon using either
the BFGS variable metric method, in factored form, or the conjugate
gradient mehtod modified to deal with bounds on the variables. The code
is desaigned to switch from one method to the other if storage
requirements warrant it. Lasdon and Warren (1979) report that a version
of this code degsigned to exploit sparsity was under development.

Different versions of the GRG exist commercially which use the
same approach but with different implementations of the reduced
gradient; for example: GRGA by Abadie (1978), GRG73 by Heltue and
Littschwager (1975}, and Hamilton and Ragsdell (1982).

Other codes less publicized also solve linearly constrained
problems. We now briefly review the most important of them. Table 2-1
below summarizes relevant Information ahbout these codes.

GPM (Gradient Projection Method): Rosen and Rreuser (1972) and

Rosen and Wagner (1975) report about this code which solves problems of
no more than 40 variables and R0 constraints. It uses Goldfarb's (1969)
variable metric method to compute the search direction.

QRMNEW: May (1976, 1979). This code 1s based on an extenslon of
Mifflin's (1975) local variations approximate Newton nonderivative
method for unconstralned minimization. The direction vectors are
generated from a QR factorlzation of the currently active constraint
matrix In a similar way done by Gill and Murray (1974). The method is
essentially a finite difference approximation method. The current
version handles up to 45 variables and 80 constraints.

CGMAP ( Conjugate Gradient Method of Approximation Programming):

Beale (1969, 1974). This code is designed to solve large sparse
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problems which are mostly linear. It uses the SLP (successive linear
programming) approach. It also useg an approach similar to MINOS and
GRG2 to vary nonlinear variables acting as superbasics in a reduced
gradient or a conjugate gradient direction. This code 1s reported to
have golved less than 1% dense problems with more than 2000 constraints,
about 4,000 linear varilables and 400 nonlinear variables.

Finally, we note that the most extensive and highly integrated
software library for linearly constrained problems to date was developed
by the optimization group of the National Physical Laboratory in England
and includes 12 different codes for solving the linearly constrained
nonlinear problem. The relative performance of different codes has been
studied by many authors, but unfortunately, there does not exist, to our
knowledge, a unified study of linearly constrained codes. 1In the now
classical study of Collevile (1970), 30 codes were tested on 8 problems,
a subset of which were linearly constrained. This study found that
reduced gradient and gradient projection-based codes performed hetter 1in
terms of a standardized time: tS = tr/tt where tr is the execution time
of a code on a given computer, and tt 1s the executicon time of a run of
a timing program. Two studies by Himmeblau (1972) and Newell and
Himmehlau (1975) found that GRG and GPMNLC (a gradient projection method
which includes any nonlinear constraints in a penalty function and
solves the resulting linearly constrained problem) were superior to othe
methods.

A more recent study by Saudgren and Ragsdell (1982) considered 17
codes and 30 test problems some of which were linearly constrained, and

basically confirmed the overall superiority of the GRG based codes. The



87

problems solved in this study, however were all small with less than 20
varialbes. An important study of software was made recently by
Schittkowski (1980) but it mainly Investigated general purpose nonlinear
programming codes.

Lasdon and Warren (1979) report about three software systems for
general NLP problems based on algorithms which solve recursively
linearly constrained subproblems, as discussed in Section 3.1. These
codes are OPRQP by Biggs (1976), GMP/NLC by Rosen (1977) and FCDPAK and

ACDPAK by Best (1975) and Best and Ritter (1976).
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Table 2-1. Summary of Existing Software (¥*)
Code Name Author Year Method Used Problem Size
MINOS Murtagh 1979 Generalized Not Fixed
Saunders Reduced
Gradient
GRG2 Lasdon 1978 Generalized Not Fixed
Warren Reduced
Gradient
GPM Rosen 1972 Gradient 40 Variables
Krenser Projection 80 Constraints
QRMNEW May 1979 Nonderivative 45 Variables
Projected 80 Constraints
Newton
CGMAP Beale 1974 Successive Not Given
Linear
Approximation
OPRQP Biggs 1976 Successive Not Fixed
Quadratic
Programming
GMP/ NLP Rosen 1977 Successive Not Given
Linearly
Constrained
Problems
FCDPAK Best 1975, Successive Not Fixed
ACDPAK Ritter 1976 Linearly
Constrained
Problems
_

(*) This table was extracted from the study on nonlinear programming
software made by Lasdon and Warren (1979).
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CHAPTER III

A CONJUGATE DIRECTIONS ALGORITHM FOR THE LINEARLY
CONSTRAINED NONLINEAR PROGRAM

1. Introduction

In this chapter we present an algorithm for solving the linearly

constralined problem:

{P): Minimize f(x)
Subject to a;x - b1 € 0; 1=1,.04,m

where f: E° + E1 i1s a continuously differentiable function, x € En, and

ay € En, i=},...,m, and b € Em.

The chapter will be organized as follows: In Section 2 the
algorithm will be presented. This will include a motivation and an
outline of its different steps followed by the details of the algorithm
and its flowchart. Some relevant properties will also be presented. In
Section 3 we discuss the line search scheme and in Section 4 the
direction finding subproblem. The details of the procedure to solve the
direction problem will then be presented. The convergence analysis of
the algorithm will be the subject of Chapter 1V.

For reasons of clarity, we elect to present at this point a
summary of the notation which will be used extensively throughout this
study.

k
X € En: is the kth approximation to the solution vector
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xi € E': 1s the kth projection of an unconstrained point.

XE € E': 1is the kth approximation to the solution vector along
an unconstrained direction vector.

x* € E': 1s a solution vector to the prohlem.

dk € E': 1s the kth constrained direction vector.

k
d € E': 1s the kth unconstrained direction used to compute X,
Vf(xk), g(xk), g, € E': 1s the gradient vector of the objective

k
function computed at x .

Lk: is the line segment joining xk and xk+1.

Ck e E': 1is a vector on the line segment Lk'

A: is the (m x n) dimensional array of constraint coefficients.
b: 1s the m-dimensional RHS vector of the constraints.

Yk: isg an (£ x n) dimensional array of coefficlents of the
conjugacy constraints: 2=1,..., k-1l.

e € Ezz is the right hand side of the conjugacy constraints;

(ek)i represents the ith component of the vector &
J : 1s a counter set keeping track of the number of consecutive

conjugate directions constructed.

e E: is a vector representing the difference between the

gradients of £({x) evaluated at xk and xk-l. This difference

is normalized.
u, € E': 1is the kth approximation of the vector of Lagrange
multipliers associated with the constraints of the problem,

computed from the direction problem. represents the

fu 1y

ith component of the dual vector u, -
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v, € Ez: is the vector of Lagrange multipliers associlated with

k
the conjugacy constraints of the kth direction-finding
subproblem. [vk]i represents the ith component of the
dual vector V"

G(xk), Gk: is an (n x n) matrix representing the approximation
of the Hessian of the objective function at iteration k.

E : 1is an (n x n) matrix representing the error in approximation

between G(xk) and G(x*).

is an (n x n) projection operator at iteration k.

o)
~

O s Bk’ vk, Wi O 8 and Ak: are scalars used in the line
search procedure.

Nel: represents the Euclidean norm, unless otherwise specified.
n

z € E': will denote a column vetor and zt its transpose.

C, C(€): represent global and local Lipschitz constants.

2. The Proposed Conjugate Directions Algorithm

In this section we present the conjugate directions algorithm we
propose in this study. A detaliled description of the method will be

given before the algorithm itself is presented.

2.1 Description of the Method

Before proceeding with the description, we need to define the

concept of conjugacy.

Definition 1. A set of directions di, i=1,...,k<n is said to be

conjugate with respect to a matrix G and the associated quadratic

function:
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f(x) = a + btx + %-xth

if they are linearly independent and possess the property:
atc ad =05 1%

It is clear from this definition that the concept of conjugacy is only
defined with respect to a quadratic objective function. TIts usefulness
for optimization comes from the following property:

Property 1. Quadratic Termination (see for example Dixon
(1980)). Given a strictly convex quadratic function and a set of
directions di conjugate with respect to it, then starting at any point

X

0 and undertaking perfect line searches along each direction d1 in

turn, the ninimum of the quadratic function will be achieved.

We note that in general the objective function 1s not quadratic
and the search directions di, i=1,...,k¢n, are not known in advance.
But we can define conjugacy in an "approximate” way; the approximation
coming from the fact that we use the local quadratic approximation of
the objective function.

To our knowledge, the only formal definition of this concept was
given by McCormick and Ritter (1972a).

Definition 2. An algorithm to minimize a continuously

differentiable f(x) 1Is called a method of conjugate directions if the

following properties hold:
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k+1
i) At each iteration k, the new point x is ohtained as:

xk+1 _ xk + dk

where lk is the smallest local minimizer to the one-dimensional "step-—

size"” problem:

Minimize f(xk + Adk)

A>» 0

ii) 1If the sequence {xk} converges to a point x* such that
VE(x*) = 0, f(x) is twice continuously differentiable in a neighborhood
of x* and G(x*) = G 1s positive definite then, for all k,

1251 = O(RTE(IY, 1TEGEY = o¢ra®ny (2.1)

And fOr £=1,-.-,H—1; i=0,---’2—1

k+ .t k+i' k+ul

()t ¢ a kti,

= o(ld Toud )] (2.2)
where 1 = 0 or 1.
111} If in addition to the above assumptions, G(x) satisfies a

Lipschitz condition in a neighborhood of x*, for all k and 2=1,...,n-1,

130,-o-’£_1



94

k+2 .t k+i

1yt < ora®™* 1 1d¥ 1dhy

I nd”r 1d ) (2.3)
where 1 = 0 or 1.

Notes: The requirements given by {2.1) can he shown to be true
for most methods where the direction vectors are computed using gradient
information. Some examples are: steepest descent, conjugate gradient,
and deflected gradient. Equations (2.2) and (2.3) will insure that for

k large enough, for £=1,...,n-1; i=0,...,2-1.

(dk+£)tcdk+i

ﬂdk'”'n H‘:Ik+i"

+ 0

With these definitions, we now give a general description of the
algorithm.

The algorithm presented in this study is a conjugate directions
method which uses a projection approach to determine the direction of
movement. An Initial step—size is used which is then adjusted by an
Armi jo-like scheme to insure enough decrease in the oblective function.
The algorithm perform two types of iterations.

i) A conjugate directions iteration during which an
unconstrained step is projected onto the feasible region with the
requirements of satisfying some approxlimate conjugacy restrictions.
This will result in a feasible direction of descent. An inexact line~
search 1s then performed along this direction to determine the next
approximating point.

i1) A restarting iteration in which all the previous conjugate
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directions constructed are discarded and a new set is started.

The underlying iterative procedure can be summarized as follows:

k+1 k k k k
X = x +J\k|P[R] (x +Gk du)_x’[
k k k k k
= X +lk(xp—x)-x +J\kd
where
xk =P (xk + o dk) is the projection of the unconstralned step:
P [R] k “u ‘
k k

k
= = r — =
xu x + ak du on the set Rk x Ax b < 0 and ka ek}

o = is the step size used along the unconstrained direction dﬁ.
k

At this point, it is enough to say that the only requirement on du is

that 1t 1s a descent direction, (for example, dz = -Vf(xk)).

Rk: is the adjusted step silze; lk e (0,1]

ka = ek: is a set of linear restriction enforcing the conjugacy
requirements between the new direction and a finite number of previously

constructed ones. This set is written In the form:
t
Y, X = (ek)z; £=1,...,k

To see that these constraints satisfy the approximate conjugacy property

i1) of definition 2, we observe that:
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Using the facts:

where ;2—1 £ L(xg, xn_l), we have:

L= 2-
e - _ (@ e’ ™Ha
Vg 4= -1
ha oran

which will tend to zero as Cz + x*,

This Is seen by observing the following: Since we impose y: d =0 as an

1

additional constraint, then for £ large enough, Czﬂ + x* and:

1lim y: d = 1lim
Ly Lro0 Td T ndan

@ e
= 1im =] =

f+e0 N4 nndan

0
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so that d will be conjugate to dzﬂl with respect to the hessian of the

objective function at x*.

2.2 The Proposed Algorithm

For solving the previously defined problem:

Minimize f(x)

Subject to Ax < b
the following algorithm, we call the "hasic algorithm™ for future
reference, is proposed. But for the sake of clarity, we will first
present an outline of the method, explaining what each step performs and
the different parameters involved. We will then illustrate the workings
of the procedure with a graphical example, and give the steps of the

algorithm in compact form, followed by its flowchart (Figure 3.2).

Outline of the Method

At the start of the algorithm, an Initial feasihle point xo is
given. If one is not available, a procedure like Phase T of the simplex
method for linear programming, or linear complementary pivoting is used
to obtain a point xo such that Axo < b.

Also, to start the procedure, bounds on the step-size parameters
need to be specified to insure global convergence as will be shown later
on. These bounds are the following:

~ For the unconstrained step that the algorithm takes at every

iteration, the step size parameter ak (k referring to the kth iteration)
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need only be bounded away from zero and finite, so that Uy 0y 3 0< % <
@, are chosen initially and ak € [ao,al] for all k.

The unconstrained step is then projected onto the set {Ax < b,
ka = ek} made up of the feasible region and the conjugacy requirements.
The result of this projection is z feasible conjugate direction of

descent along which a step size is computed. This step-size has the

form:

v
k
Ak = (Bk) W, with w, = min {a ,1}

k k’
where a is the initial approximation to the kth step-size. This
initial approximation can he supplied by the user or taken to be equal
to one. However, as k gets sufficiently large, ay has to be an
approximation to the exact step-slize. So, In general, if a > 0 is
chosen, then 2 » a Is all that is required. Also, from the definition

of w,, it is seen that the step-size will remain feasible.

k)

To insure enough decrease in f, the scalar oy is required to be

bounded away from zero and strictly less than one-half. For this, o

0
and cl with 0 < 00 < 01 < 1/2 are initially specified and at each
iteration dk need only be in the set [00,01}. For example 1if 5o = 01 =
1/3, then g, = 1/3 for all k will insure the feasibility of the line

k
search.

v
Finally, (Bk) k represents a sequence of reduction factors

applied to the initial feasible approximation w, at each iteration.

Here, vk, the “Armijo Number” is in the set [0,1,2,....] so that the
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requirement on Bk is that it is non-zero and strictly less than one. To
achieve that, we specify initially B > 0 and Bk e [R,1) for all
iterations. Clearly, if Bk = 1/2 for all k, the reduction sequence will
be of the form: {1, (1/2), (1/2)2, (1/2)3,...}.

Furthermore, at the start of the algorithm, for the conjugacy
requirements the matrices Yﬂ and P0 are Initialized to zero and the
identity matrix, respectively. In subsequent iterations, Yk will
contaln as its rows the coefficients of the conjugacy constraints, and
Pk wlll be the operator which projects any vector in EY onto the set
which satisfies conjugacy requirements. A counter JO is Initialized to
zero and is used to keep track of the number of conjugate directions
constructed between restarts.

Now, at the start of a general iteration k, a feasible point xk
is given together with the matrices Y , Pk and the counter Jk' The step
slze parameters are then chosen within their required bounds: ak € [ao,
alj for the unconstrained step, and Bk £ [80,1), %, € [00,01], and & €
[a,*) for the constrained step. To determine the kth direction vector,

k

d ', the unconstrained point xi = xk - ak Vf(xk) is projected into the

k
constrained point xp such that:

Arg Min {1/2 Ix - x:ﬂzl Ax < b, Y
X

X = ek}

"
il

k

resulting in dk xk - xk, and it is seen that when dk is not zero,

in which case xﬁ # xk, we have:
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k
kap =e = ka
or, equivalently:
k k, _ k _
Yk(x -x )= ka 0
thus ensuring the conjugacy of dk and dk—l, dk-z, etc...

Clearly, the above projection problem may not have a solution.
This can happen for two reasons: the first reason is that no more
conjugate directions can be constructed, thus resulting in the restart
of the procedure and the construction of a new set of conjugate
directions. This case is identified by checking if ¥

empty when xs = xk (i.e., dk = (). The second reason is that a solution

Kk and Jk are not
has been achieved and the procedure terminates with a Kuhn-Tucker point.
This case ig identified by checking if Yo is empty and Ty is equal to

k k
zero when xp =X .

. k . . .
To summarize, we observe that xp, the solution to the projection

problem satisfies the Kuhn-Tucker equation of the projection problem:

t
Y

u
NI K [7E(xS) + At —E] + Y

P Kk

. k k . . s
from which we see that when xp = x , a solution to the original problem
is achieved only when Yk = 0, otherwise, a restart is necessary. If on

k |4 . . .
the other hand, xp # x , then a conjugate direction has been constructed
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and the procedure continues.

When dk is at hand, the inexact line search 1s used to compute a

step size kk and the next approximation to the sclution:

From xk+1, to obtain the next conjugate direction vector dk+1, we

observe the following: For a direction vector d to be conjugate to dk,

it is necessary that the approximate conjugacy requirement:

k.t k
k +1
)& )kG“ M _o; e ue, 5

ka8 #ar

holds. But since:

t
(@ ec®a _ Ber ~ &) ¢

k k
g Ak na

the above requirement is satisfied by imposing the condition:

t
(Brqy ~ B 4
k

AoKden
Kk d

=0

or, equivalently, by letting Vidl = (gk+1 - gk)/kk Hdkﬂ and noting that

k+1
d = x - x , we must have:
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t t ktl, _
Vend = Ve x - =0
That 1is:
t _ .t _k+l
Tt T Ven® & (O
k+1 k
Therefore, to compute d so that it is conjugate to 4, the following

Jinear restriction:

Fox = (e)
Yk+1® T B

is added before the (k+l)th projection problem is solved. The updating

step of the algorithm adds y£+1 as a row vector to the matrix of

conjugacy requirements Yk to obtain Yk+1, and Jk 1s updated to Jk+1 =

1 will be conjugate not only to dk, as

explained above, but also to dk_l, dkﬂz, etC..., since we are also

(Jk) + 1. We note here that dk+
improving the restrictions:

x-_- _1, etc...

S ] €k
whose coeffilcients are contained in Yk.

The following numerical example is solved graphically illus~-

trating the different steps of the proposed algorithm (see Figure 3.1).
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o
; u ’(
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1 /] v 1
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by 71 /1
) /
! /¢ // !
Conjugacy

Constraint

Graphical Illustration of the Proposed Method

Figure 3-1:
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Minimize f(x) = 2xf + ng - 2x1x2 - 4x1 - 6x2
Subject to L3 + %, < 2

3] + 5x2 <5

X, Xo ? 0

The Algorithm

Step 0t: Initialization

0
Given x5 @4, @3 0 < ay< a0, 0,3 0<0,<0 < 1/2;
B>0, ad0;

let JO = 0 be a counter for the conjugacy constraints

Let Y. = ¢ be the initial matrix of conjugacy contraints

0
Let P0 = I be an Initial projection matrix.
If xo ig such that: Axo < b, let k = 1, go to step 1.

Otherwise, replace xo by:

1

xO = Arg {Min: E-Hx - xoﬂ

2 jax < b

Let k = 1, go to step 1.

Step 1: Direction Finding

Given xk: Axk < b, a € [ao,al], Bk e [R,1), o € [00,011, a €

K’ Pk’ Jk and xz = xk - Vf(xk):

Let xt be the solution to the following projection problem:

[a,=), ¥
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PP: Minimize l-Hx - xkﬂz
2 u
Subject to Ax < b
ka = ek

where €, = Yy x.. Go to step 2.

Step 2: Restarting Step

Given XE’ set dk = (xE - xk)

Three possible cases may occur:

1) TIf xi # xk, go to step 3

i1y 1If XE = xk and Yk = ¢, stop with the a stationary point.

k k
iil) TIf xp = x and Yk # 0, restart: set Yk = {0, Jk = 0, go to

step 1.

Step 3: Approximate Line Search

Let Wk = Min {ak, 1}, Uk £ [00! 01]
Yk
set Ak = (Bk) W where:
v>0 k v k| k v lﬂili
v, = Min {integer £flx" + (B w d [ - £(x) < —a (B ) w %4, }
k+1 k k k k k
set x = X +lk(xp-X)-x +X d

Go to step 4.
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Step 4: Updating Step

Kk
= - - 1
Let Vy4y = (Bpyy — /A Tx) - x

t

= Y with row J replaced by the vector (yk+1) .

Set Yy = % k41

Set Jyyy = Jp +1; k+ k¥l; go to step 1.

Note 1: This algorithm, even though designed for constrained
problems, can accomodate uncoustrained problems as follows:
If A= ¢, in step 1, the solution to the projection problem is

glven in closed-form by:

k k k
xp = x = ukPk VE(x )

where:

t t,~1
Poo= 1T =% (4,907 Y 1.

Figure 3.2 gives a flowchart for the "hasic algorithm.”

2.3 Properties of the Algorithm

We briefly present here some properties of the algorithm which
are relevant for further analysis.

i) If xE is the solution to the kth projection problem, then

x§ is unique because the projection problem is strictly convex. Also,

if xt * xk, then dk = (xg - xk) is a descent direction, as will be shown

in lemma 2 (see global convergence analysis section in Chapter 1IV).
k
k) Vi is well defined as will be

shown in lemmas 3 and 4 (Chapter IV)

ii) The step size Ak = (B



107

G

k=1

A 4

COMPUTE THE SEARCH

DIRECTION dk

COMPUTE THE
STEP-SIZE Ak
AND SET:
xk+1 _ xk + ) dk
k
NO
y
+ =
k<k+1 Jk 0
Y

Figure 3-2: A Flowchart of the Proposed Method
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ii1) Let M = {k | Y, =94, J = 0}
The set M 18 defined to be the set of restarting iterations.

Suppose k € M and k+l, k+2,..., kg £ M, that is, the algorithm
constructed q successive conjugate directions. Then from the optimality

conditions of the projection problem, we have:

For the kth projection problem:

m
T Ju
i=1

k k
(xp - xu) + k]iai =0

atxs- b, < O 1=1,...,m

» 03 i=l,...,m

For the (k+q)th projection problem:

m
(xk+q - % k+q) + I

p u o Yiigli 3
q (8101 = Brag-1]
L Ao Y -1 -0
i=1 A f{x - X b1
k-1 Ky Kti- 1

atxpk+q - b < 0; i=l,coo,m
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t kt+q
(81 ™ Brys1’) %p

i

(ek)i; i=1,2,...,q

t k+gq

[uk+1]i(aixp - bi) = i=1,...,m
[uk+q]i » 03 i=l,...,m
[vk+q]i: Unrestricted; 1=1,...,q

iv) The iterates: xk+1 = xk + lk(x§ - xk) constructed by the

algorithm will always be feasible to the constraints of the original

problem. To see that we consider two cases that may occur:

Case 1: lk =1 => xk+1 = xi , therefore:
Axk+1 _ Axﬁ < b

k+1 k k k k k
=x + lkxp - Akx = (1 - lk)x + Akxp
and
k+1 k k
Ax = (1 - lk) Ax + lk Axp

<l -M)b*A b=h

3. The Line Search Scheme

In this section we explain how the line search procedure used in

the algorithm works. It will be shown in Chapter IV that this procedure
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is well defined in the sense that it produces a step size in a finite
number of iterations and a monotonic decrease in the objective function
value. The procedure is based on the approximate search method of
Armifo (1966) for unconstrained optimization. Since the solution of the
projection problem will produce a descent direction satisfying:

k,2

k hd™"

ve(x)t d* < - oy k

<0, ford #* 0, (3.1)

then the step size is computed based on the linear prediction of the

k
function around x :

£(xS + Ad) < £(x) + e B (3.2)

This prediction will be used to insure enough decrease in f(x) for
overall convergence.
The right hand side of inequality (3.2) above represents the

tangent line to the curve f(xk + kdk) at A = 0, as shown in Figure 3.3.

k 2

Thus, for an arbitrary o, £ (0,1), the line f(xk) - o, AfdT /2ak will

k k

lie above the tangent line since:

K, 2
£ex%) + A7E(x) T d¥ ¢ £y - o a M
k 2ak

, for A > 0

and we have:
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k, 2
nan
f(xk + ldk) - f(xk) < g lVf(xk)tdk < ~-g, ) Ta t <0
k k Zak

Thus the first A, to satisfy the inequality will produce enough decrease

k
in £f(x).

Figure 3.3 illustrates how successive trials are computed: Xi =
(Bow ) lz = (Blw ) 13 = (Bzw ) giving a successful trizl with v, = 2

Kk’ "k Bk’ Tk kk ' k
2

and Ak = (Bkwk)°

Finally, we note that bold-faced sets represent regions of
acceptable step size. 1In addition, the choice of the line-search
parameters will insure that a step-size bounded away from zero will be

computed so that enough decrease in the objective function will be

achieved away from a stationary point.

4., The Direction Finding Problem

In this section we discuss the properties of the direction problem
and present a procedure for its solution based on Lemke's (1968)

procedure for linear complementarity problems.

4.1 Properties of the Divection Finding Problem

Here we show that the direction vector can be obtained by solving
a dual problem associated with the projection problem (PP).

Lemma 1. At every iteration, if the constraint set of the
projection problem is consistent, the direction vector will be given

by:

k k k k t
= - = - v -
d xp x % Pk f(x) PkA u,
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f(xk+ldk)

A

AT .A 1 unsuccessful trials

2
£(x ) - Alla,[[7/2a,

A7: successful trial

\

Figure 3-3:

f(x t
( T AvE(x ),

Step-S5ize Determination
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where: P = [T -y (YY) ¥Y]1
and u, is the vector of Kuhn-Tucker multipliers associated with the

inequality constraints of the kth projection problem.

Proof., The projection problem (PP) is rewritten in the form:

113

(pp)': Minimize (—xﬁ)tx + % xtx
Subject to Ax = b
ka = e
The dual associated with (PP)' is given by:
Maximize - % xtx - btu + ei v (4.1)
Subject to x - xs + afu 4 Y; v =20 (4.2)
u > 0, v: unrestricted. 4.3)
From (4.2) we derive
- _ ty-1 t
v = (Yk Yk) Y [o, VE + A'u]

using



Upon substituting back

k

X=X =

for v in (4.2) we get:

[T - Y; (Yqu)_l Yk] [ak Vf(xk) + Aﬁ]
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(4.4)

Also, substituting expression (4.4) for x in the dual problem we get the

problem:
Maximize - % [xk
—btu+

Subject to u =0

Which 1s also equivale

1 ytap.p Aty +

k t,t k
- akPka(x ) - PkAu] [x

(YkY:i)'_1 Yk[akvf(xk) + Atu]

k' k

t

€k

nt to the problem:

Vf(xk)thAtu + bty

Minimize 3 ©F i K
t 1 t t k.t
akA u + 37U APkPkA u*a, VE(x") PkAu
+ ut[b - Axk]t

Subject to uz= 0

After rearranging, we

Minimize

Subject to

obtain the following dual problem:

- o, P Vf(xk) - P

t
kA u]

(4.5)
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where S = (b - Axk) is the slack vector associated with the constraints
of the original problem at xk.

The solution of (4.5) will be uy which when used in expression
(4.4) gives:
k_ .k ky _ _ k t
d" = ("p X ) a P VE(x") - P AT,
which completes the proof.
Lemma 2. Assuming that the projection problem (PP) is consistent,
then it can be solved as a linear complementary problem.

Proof. Consider the projection problem (PP) at iteration k:

o e 1 k 2
Minimize E|{x - qu
Subject to Ax < b

¥.x = e

k k

.. k .
The Kuhn-Tucker conditions for xp to be a solution to (PP) are:

k k t t
-x, * xp + Au + ka =0 (4.6)
k
Ax" +y = b (4.7)
p
Yz = e (4.8)



u» 0, v>0

Multiplying (4.6) by ¥, and using (4.8) we get:

ke

+ v, A

t.~1 k
v = —(Yk Yk) [—kau + ek X

Now, multiplying (4.6) by A and using (4.7) and (4.10) we get:

t k
-AP. A"u + v = —AP X + b + A(Pk -1 X

k k

t t. -1
where: Pk = [I - Yk (YkYk) Yk]

Using the fact that Pk is a projection operator such that: Pk

PkPk = Pk’ {(4.11) is written as:

t k
-APkPkA u+y= -APk(xu - xk) + Sk

Finally, by letting xﬁ = xk - ak Vf(xk), the Kuhn-Tucker

optimality conditions of the projection problem are equivalent

folliowing linear complementarity problem (LCP):
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(4.9

(4.10)

(4.11)

t
= P~ and

k

to the
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t k
LCP: *APkA u+y-= @, AFk Vi(x ) + 8y
uty =0 (4.12)

u»0, y20

From Lemma 1, it is seen that the Ruhn-Tucker conditions of the dual

problem (4.5) are:

t k
APkA u + (sk + akAPk VE(x ) 8 0
ut& =0

u?» 0, §3>0

with § = y, the above system is exactly equal to (LCP).

Clearly, the solution (u ) to (LCP) will produce the optimal

K Tk
gsolution to the projection problem:
k

k k t
xp =x = akPk VE(x") - PkA uy (4.13)

from which dk = x§ - xk is at hand.

Lemma 3. 1If the constraints to the projection problem are
cousistent, then a linear complementary pivoting algorithm will produce
a complementary baslc feasible solutfon in a finite number of steps.

Proof. Since APkAt is positive semi~definite, it 1s copositive

plus, and the result follows from known theory.



Notes:

1) If (4.13) above
k
x E-
P

where G%

Now, for

only the

= uk/Ok. Then:

k+1
X

is written as:

X - ukPk[Vf(xk) + AT ]

k k k
X +Rk(xp—x)

P

k k t
x - lkakPk[Vf(x Y + A uk]
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(4.14)

comparison purposes with other projection methods, suppose that

binding constraints are considered in our projection problem.

Denoting by Zk the matrix of binding constraints at xk, this problem

becomes :

Minimize l—ﬂx - xkﬂz
2 u

Subject to Ekx = b (4.15)
ka = ek

Its Kuhn-Tucker conditions are:



k k k <t t
- v =
xP x + ak f{x) + Ak v + Vi Yk 0

]
o
o
|
=

<

b
I

1

From (4.16) we obtaln after substituting for vk:

k k k -t ~
xp =x - Pk [VE(x ) + Ak wk]

where = wk/ak
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(4.16)

(4.17)

Now, at nonoptimal points of problem (4.15), the vector of Kuhn-Tucker

multipliers o , assocliated with ka = E, is the least-squares solution

k
to the Xuhn-Tucker system (4.16). That is:

2

+

w) 1%

;k = Arg {Min %-npk (VE(S) + A

= _(EkPkK;)-l Kkkaf(xk)

Upon substituting in (4.17), we get:

"
|

= X - o [T - PkK; (ZkPkK;)'l Kk] Pka(xk)

= % - akPk[Vf(xk) - KE (KkPkK;)_l ZkPka(xk)]
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And since:

k+1 ke k k
X = x + kk(xp -x )

we get:

L a A T[T - PkZ£(KkPkK£)'1 i e} vE(xS)
From this last expression we observe two things:

1) ak, the unconstrained step-size parameter can be interpreted
as an approximation to the constrained step-size lk. Clearly, if o is
chosen small enough, lk would be equal to one and the Armijo number vk
would be equal to zero, thus requiring only one trial.

1) The operator {I - PkK;(KkPkKE)-l Rk} is seen to be a non-
orthogonal projection operator weighted by Pk’ which projects any
direction vector in £ onto the subspace defined by the approximate
conjugacy requirements. In fact, this operator fills the gap between

the Newton-type operator:

1-t

~i-t = -1 -t -1
- G RG o ROTR

where Gk is either the Hessian matrix of the ohjective function at xk or

an approximation to it (Quasi-Newton type), and the orthogonal

projection operator:
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as in Rosen's (1966) method.
It is that weighting matrix Pk which will eventually insure the
desired fast convergence beyond steepest descent type methods.
2) From the Kuhn-Tucker conditions of the projection problem:
k, 2

Minimize l—Hx - x I
2 u

Subject to Ax < b

Yex =2

k
and assuming that X is a general unconstrained point in a descent
k k k
direction, that 1is, x = x + ak d~ we have:
u u

k k k t~ t
R T o (-4, + Al + v =0

k
Axp <b
~t k _ -
uk(Axp b) 0

ka = ep

uk >0

Now, from step 2 of the algorithm, if x; = xk and Yk = 0, it is not
directly clear that the Kuhn-Tucker conditions of the original problem

will be satisfied, since we will have:
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k
Axk > b
(A = B) = 0
?jk>0

If ds = —Vf(xk), that is, the unconstrained step 1s taken along the

steepest descent, the result is obvious.

1
, that is the unconstrained

If for example, di = —Vf(xk) + Bkdt-
conjugate gradient direction 1s used, the Kuhn~-Tucker conditions of the
original problem will be satisfied only if Bk = 0, which corresponds to
a restart point for the conjugate gradient iterations. This means that
each time the matrix Yk is reinitialized, corresponding to a restarting
point of the constrained algorithm, the unconstrained step has to be

taken along the negative gradient to insure convergence of the sequence

of restarting points to a Kuhn-Tucker point of the original problem.

4.2 Solution of the Projection Problem

4,2.1 Forumulation as a Complementary Problem

The complementary pivoting method of Lemke (1968) for solving the

system of dimension m:
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will be used in this study. We give here a brief description of this
method. If q » 0, a solution is readily available. If q # 0, by

introducing an artificial variable =z the above system reduces to the

O’
following:

-Mu +y -1 zZy =4

ytu =0

u, vy, z2>0

with 1 denoting an m-dimensional wvector whose elements are equal to one.

A solution to the above system is now avalilable by letting z0 =

+ 1, for j=l,¢..,m, J #

i 3T 97 B

r; and only one variable from each complementary pair (u

Max{-qi: 1=1,...,m} = q., U = 0 and y

i’yi) is basic.

Lemke's algorithm attempts to drive Zq out of the basis while

maintaining the property that exactly Yq or u, is basic for (m-1)

i

components. When Z, leaves the basis, a solutlon to the complementary
problem is at hand.

With M copositive plus, lemke's procedure 1s finite assuming that
degeneracy is not present or, if it is, it can be removed by a
lexicographical method as in the studies by Eaves (1971) and Pann
(1974).

For the projection problem in this study the following 1is a

summary of the steps taken to set up the complementary problem:

0. Given xk, Vf(xk), Pk’ and o
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1. Solve the problem for ZE

k
Minimize =~ Mz - xuﬂz !

k k k
= zp =x - akPk Vf(x )

Subject to Y,z = ek

2. Tet M = AP A

il
o
|
e
N
x

And q

3. Given (uk,yk) a basic feasible complementary sclution obtained

by solving (LCP), then:

To see why dk is given by this last expression, we note the

following:

Given zt = xk - akPk Vf(xk) from Step 1 above, then

q =b—A21;=b—A[xk-d Vf(xk)]

KTk

b - Axk + a, AP Vf(xk)

k" k

k
sk + o APk JE(x )
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From (4.13) in proposition 2 and the above, we have:

ad = -— = - a P, Yf{x - P A u - x
x X X T ( ) 1 1

_ k k t
= zp x PkA u -

The above forms of q, zt and dk will be used for computational purposes

as they are clearly more efficient forms.

4.2.2 Consideration of Bounds and Equality Constraints

When the original problem includes equality constraints, the

natural way to handle them 1s to initialize the projection matrix P to:

Py = [T - Dt(DDt)_l D] (4.18)
where D is the coefficient matrix of the equality constraints. During
subsequent iterations, P, is updated by the following formula:

k

t
P P
Py = B - e
PV

k-1
= - ([ |
where Yie (gk gk_l)/ k-1 d represents the vector associated with
a new conjugacy constraint. On restart PO’ given by (4.18), is used.
When explicit lower and upper bounds are present, the projection

problem will have the form:
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Minimize l-ﬂx - xkﬂz
2 u

Subject to Ax < b
Ix € u
-Ix < -4
ka = ek

In this case, the linear complementary problem will have the form:

A t _ A k
z: [Pk] [A"T -TIlu+y-= Sy + ak E: [Pk] VEf(x )
-T -

uy=0;u>»0,y2>0

In Table 3-1 we summarize the computational forms that M and q can
take depending on the particular problem under consideration, and the

associated direction vector.
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Table 3-1: Lemke's Arrays and Corresponding Direction Vectors
PROBLEM LEMKE'S ARRAY LEMKE'S RHS ASSOCIATED DIRECTION
TYPE -M q ak
t k k _ _k _ t _
A AP A | APkIAPk b A;;p > X [PkA lpkl Pk]uk
i
u#d P A | -Pk] P uk- %
t
5 PA | P I—Pk X - ]
t k k k t
At AP A I—APk b Axp , X [P A lPk]uk
—_——
u#d -P,A | -P u - xk
k k p
L=¢
t k k k t
At AP A ! AP, b Axp p ¥ [PkA I—Pk]uk
—
urd PA| -P x5 - £
k k p
249
t k k k t
A¥d [ AP, A 1 (b - AxP] p ¥ T [PkA ]uk
u=ﬂ=¢
_ _ _ .k kK k _
=0 PklPk u Xy p T X [Pkl Pk]uk
u#td PkI-Pk xp - g
244
k k k
=9 [-P. ] [u - =] z - x ~Pu
k k'k
u#P P P
=4
_ _ k _ k _ k
) { Pk] [xp 2] > x  + Pkuk
u=g¢

¢
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CHAPTER IV

GLOBAL CONVERGENCE ANALYSIS

1. Introduction

In this chapter and the next one the convergence properties of the
conjugate directions algorithm presented in Chapter III will be studied.
We recall that the algorithm in question performs two major steps. The
first is a conjugate direction step which is accomplished by solving a
projection problem followed by an Iinexact line search. The second is a
restarting step which initiates the construction of a fresh set of
conjugate directions. It will be ghown subsequently that these two
steps are at the heart of the convergence behavior of the algorithm.
Starting from any feasible point, a sequence of approximation is
generated which convergences to a Kuhn-Tucker Point. When a solution
point 1s approached, this sequence exhlbits a second order rate of
convergence.

The main section of this chapter will be devoted to the global
converge analysis of the algorithm. Before we start the analysis we
need the following definitions which will be used extensively throughout

the chapter.
Let R ={x ] Ax<b, ,x =¢}, s=1{x] ax < b}.

Let xk £ S and xi € Rk the projection of the unconstrained point
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xk = xk— Gka(xk) onto Rk' Let x* be a stationary point and u* the
|44

vector of Kuhn~Tucker multipliers associated with the Inequality

constraints at x*. 1In addition, let r bhe the number of binding
constraints at x*, and correspondingly Ax* = b. Finally, we let
M= {k | Y, =0, J = 0} be the set of restarting iterations. The

gradient of the objective function at xk will be denoted equivalently by

7£(x"), g(x), and g -

2. Global Convergence Analysis

The main result of this section will be to show that each
accumulation point of the sequence generated by the algorithm is a
stationary point. In addition, under appropriate assumptions, it will
be shown that the whole sequence will converge.

To accomplish this, some intermediate results will bhe needed which
we organize in four parts. The first part will be concerned with
properties of the direction vector. More specifically, it will be showm
that:

i) The direction vector 1s the unique optimal solution of the
projection problem (lemma 1).
i1) The direction vector is a feasible direction of descent
{lemma 2).
111) Near a point which is not a stationary point, the direction
vector 1s bounded above and below away from zero (lemma 3}.
The second part will be concerned with the step—size properties. Here
it will be shown that:
i) Under the assumption of twice continuous differentiability

of f, the step-size 13 uniformly bounded (lemma 4).
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11) Near a point which 1is not a stationary point the result 1n
1) will be sharpened by doing away with the twice continuous
differentlability assumption (lemma 5).
The third part will be concerned with the convergence properties of the
subsequence of restarting points, {xk, k € M}. In particular, it will
be shown that:
1) Each accumulation point of this subsequence 1is a stationary
polnt and that the differences in the tail of the
subsequence will converge to zero (theorem 1).
i1i) The entire subsequence will converge to a single stationary
point based on the results of i) above and the assumption
that the subsequence has a finite number of accumulation
points (theorem 2}.
1i1i) Under the stronger assumption of convexity of £, the
subsequence will converge to the unique solution of the
problem (theorem 3}.
Finally, the last part will be concerned with showing that the sequence
of all points (restarting and conjugate steps) is a convergent sequence

( theorem 4).

2.1 Properties of the Direction Vector

We start by showling that xE is the unlque optimal solution to the
kth projection problem, thus establishing uniqueness of the direction
vector. We note that this turns out to be a variation of a standard
result characterizing the minimum distance between a closed convex set

and a point not in the set (see for example Bazaraa and Shetty (1979)).
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k 1 k,2
x, = Arg {Min & Mx ~x 1° | x € R}

2 u

Then the relationship:
k t, k k
x_ - X —-x ) K
(x; = 9 (=) = x)

holds for any vector y € Rk.

Proof. Let hi(x) = 1/2"x ~ xﬁlz. Then

Since h(x) 1s strictly convex, the necessary
for a minimum of h over Rk are:

Vh(xk)t(y - xk) > 0, for

P P
This 1s equivalent to:
k k.t k

(xp ~- xu) (y - xp) » 0, for

Thus, the desired result:

k t k k
(Kp - ¥) (Xp - xu) < 0, for

Now, we show uniqueness of xz. Using (2.1),

0 (2.1)

xg = Arg{Min h(x) | x ¢ Rk}.

and sufficient conditions

all y ¢ Rk

all v € Rk

all y € Rk

we have:
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=

2 k k 2 k 2 k t k k
Ix -yl " =g =-x 0" +1x =91~ + 2(x - X -
y a " %p p =7 (=, =¥ (x, = %)

which implies that:

k 2 k k,2
n -y~ > 1 - |
x "7 X, xp for all y ¢ Rk

1 L
In particular let y = xs where xg is such that:

Then, using (2.1) we have:

1]
ka - xk ﬂz
P

kK _ k'.t,k _ _k
+ 2(x. - - =0
p Cp = %p 2 (g = %p)

or, equivalently:
k k', .t k k' k k
- - + 2 - = 0
(x5 = x5 )" [(xg = %) + 20xg = %))
then, either:
k
x. - x. =0 => x 1s unique, or:
p P

k k!t k k
(xp - xp ) + 2(xu - xp) =0

which implies that:
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2(xk - xk) = 0 and hence xk =X -x
u p u p
and again KE 18 unique. This completes the proof.

We note that since dk = (XE - xk), it {s the unique optimal
solution. The next result shows that the direction vector produced by

solving the projectlon problem is a direction of descent.

Lemma 2. Given xk € 8, KE e E' and x§ as in lemma 1 the following

properties hold:

1) o vex ey - x:) > (x]; - xk)t(xi; - y), for all y € R

11) The direction vector (x§ - xk) produced by the algorithm 1s a

direction of descent.

Proof. i) From lemma 1 we have:
k k.t k
(xu - xp) (y - xp) < 0, for all y ¢ Rk
k
Substituting for X, we have:
k k k.t k
- 7 - -
(x o, f(xk) x) < aka(x ) (y xp), for all y € Rk
from which:
k k.t k k.t k
{(x - xp) {(y - xp) < aka(x ) (y - xp), for all y ¢ Rk (2.2)

1i) The direction vector is produced by solving the following

problem for xs:



Minimize %—Hx - XENZ = h(x)

Subjfect to Ax < b
ka = ek

If x = xk, the constraints are satisfied and

h(xk) ='% ix " - x 1" = %—ka - xk + aka(xk)Hz - L2 HVf(xk)ﬂz

Therefore, we must have:

k k,2 2 k., 2
"o - v
% x 15 < a 17E(x)!

Expanding the left hand side, we get:
k k k. .t, k k k k k.t, k k
- g - = - -
(xp x + o f(x ) (xp x + aka(x ) (xp X)) (xp x )

+ Zaka(xk)t(x; - Xy + ai 192 < o NTE(xIN 2

k

from which:

k k, 2 k.t, k k
pr -x 17 + ZGka(x ) (xp -x )< 0

lxk -x I
Vf(xk)t(x; - x5y ¢ - P

134

(2.3)
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Hdkﬂz

Zak

<0

Hence, ve(x) Tk < -

which implies that dk = (x§ - xk) 1s a descent direction at nonoptimal
points since ak > 0 for all k.

The next lemma shows that near a point x which is not a stationary
point, the direction vector is bounded above and below away from zero.

Lemma 3. Let f be continuously differentiable. In addition, let
S be bounded and suppose that x €5 1s not a stationary point. Then
there is a neighborhood N of x and positive numbers 1 and ¢, 8o that
for xk € Nn3, the direction dk produced by the algorithm satisfies
€1 < Hdkﬂ < Cye

Proof. By definition ﬂdkﬂ = Nx; - xkﬂ. Since xi, xk € S and S 18
hounded, then ﬂdkl is bounded above. Noﬁ, to show that Hdkﬂ 1s hounded
below away from zero, we first consider the case of k € M.

1 xk 2

Let h(x*) = {Min F'x - x 17| ax < b}

Since x = xk is feasible, then h(xk) < %—aﬁ lVf(xk)nz. By

contradiction, suppose that Hdk" is not bounded away from zeo in a
neighborhood of x. Then there is a sequence {xk} € S converging to x

and a sequence {ak} converging to & such that:

2

h(x%) » -12-5 NTECRIN 2 (2.4)
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since h(xk) = %-ﬂ(xpk- xk) + aka(xk)l and the gradient is continuous.
By continuity of optimal solutions of positive definite quadratic

programs (Daniel (1973)) it follows that:

(=) > h(x) < 5 &> ATEGR D (2.5)
From (2.4) and (2.5) we have:
h(x) = %62 NTE(RIN 2

which 1mplies that ;p = x and hence d = 0, therefore x is a statlonary
point contradicting the assumption that 1t 1s not. This shows that for
each 8 > 0 there are numbers Cyr €y with 0 < ¢y < Cy such that

ka— x" ¢ 8 and cq < Hdkﬂ < Coo

2.2 Uniform Boundedness of the Step—Size

In this part it will be shown that the step-size computed by the
algorithm 1is hounded above and helow away from zero. This is wvery
important for the finiteness of the procedure. Close to a point x which
is not a stationary point only a weaker assumption will be necessary.

Lemma 4. Let f be twice continuously differentiable and assume
that S is bhounded. Let Ak be the step—size generated by the algorithm.

Then there exist scalars é_and X such that:

>\

0 <A< <

A Kk R for all k » O
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Proof. By twice continuous differentiability of f and the
boundedness of S, for each x € S there exists a real number € > 0 such

that:

WE(x) - Vf(y)1 S Clx -y, for all y e 8 (2.6)

Now, let xk £ S, xk € En, and xk € Rk' In addition, let
u |4
z = xk + A(xz - xk), z € 8§, A > 0. Then, using a Taylor Series

Expangion formula from Polak (1971, p. 293), we have:

£(z) - £(x5) = TE(xOE(z - x5 + [HVEGS + t(z - ) - PE(x) (2 - xN)de
(o]

Using (2.6) and the expression for z, we have:

£(z) - £(x5) < e[ + l(xt -7+ ¢ [rerz - X%
o
Using (2.3) from lemma 2, we obtain:
£F(z) - £(x5) € e 155 - 292 4 cr? xS~ %12
X Zuk P 2 p
Aol ko2
ﬁ—-'- —2— "Xp -x (2.7)
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Now, from step 3 of the algorithms we can have one of the following

cases:

[

St
<
1]

0 which implies that lk = = Minf{1, ak}. Since

Y

a » 0 we have:

I
v

=A< A <K =1.
0< a A " A 1

11 v. > 0 and the followling holds:

v v k 2
k k-1 k k k-1 ndmn
fix + (Bk) Wkd ] - £(x) > —Uk(Bk) Wk -El-c—— (2.8)
Uging (2.7) and (2.8) we have:
v k,2 Y
k-1 idn k k-1 k k
—ck(Bk) W _EE;_ < fIx + (Bk) Wkd 1 - £(x)
vV
k-1
(8,) 2(v, _4)
k c k-1 k. 2
v v
_ k-1 1 C k-1 k,2
R RS U A
From which we get:
o \
k 1 C k-1
" Ttz R0 %
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Multiplying hoth sides by (Bk)’ we get:

B o B ¢ v

Kk
Y > 29 -7 (B W
And finally:
(Bk)vk > Bkél % > Bilchaol) > 25a >0
¥ b | 1

since 0 < ao < Gk < al' a < Wy <1, and 0 < Uk < 01 < 1/2. Therefore,

we have:

-

A=1»2Xx » Min{wk,

28(1 - 0,)
N ———1}=2>0

Cal -

and the proof is complete.

Note. From (2.7) and lemma 2 we have for

z=xk+l(x;—xk),l>0

f{z) - f(xk) £ (A - Cak}z) Vf(xk)t(x; - xk)

Since (KE - xk) is a descent direction, to insure that f{z) < f(xk), A

must satisfy:
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A(Lor qk<.];

Cak c
Because 0 { C { «, an appropriate choice of @ will produce a step-size
A = 1 thus requiring only one trial step-size evaluation. This shows
that the values for ak used in the algorithm will effect the
computational effort required for kk'

The next lemma will only use continuous differentiability to show
that near a point x which is not a stationary point, the Armijo integer
computed by the algorithm is bounded above and therefore the step-size
is uniformly bounded.

Lemma 5. Let f be continuously differentiable. Let x £ S and
suppose that x is not a gtationary polnt. Then there is a mneighborhood
N of x and a number V so that for xk £ SnN, the Armijo Integer vk in
step 3 of the algorithm satisfies 0 < vk< v.

Proof. Let xk £ S, then from lemma 2 we have:

k, 2
ko Md

Zuk

ve(x)ta

By lemma 3 ﬂdkﬂ is bounded away from zero and ¢, is uniformly bounded,

k

hence, there exists a positive number § such that:

k, 2
k o _rdd

20k

Ve ta

< =8 (2.9

for xk sufficiently close to Xe
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Since Vf is continuous, there exist Y and s > 0 such that:
76¢x" + £d)"d" - 9| < 35, for £ e [0, Y] (2.10)

for all xk £ S such that ka -x1 < s
Now, glven 0 < R < Bk <1, let v be the smallest nonnegative Integer
such that (Bk)v < Y. Let xk € § N, then there exists 6 € [0,1] such
that:

k, 2

k v k k v rane
flx + (Bk) Wkd 1] - £(x) + O'k(Bk) Wk —E'

k, 2
v k v k.t k v nat
= (Bk) kaf[x + S(Bk) wkd 1°d + Uk(Bk) W, _EE;_

v k v .k tk v k, .,k
< (Bk) kaf[x + B(Bk) wkd 1747 - Uk(ﬂk) kaf(x )d

- (ak)“wk[Vf(xk + e(sk)“wkdk)tdk - v + (1 - ck)(sk)"kaf(xk)tdk

Using (2.9} and (2.10) we have:

Hdkﬂz

k vk k \

8
B )W ) = (L= 0, (B ) w (5)

N

v 1 1
(Bk) v 6(0k - 59 < 8(o - 59 <0
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v
Since (Bk) Wi >0, 8§>0and 0 ¢ a < O £ o, ¢ 1/2. This shows that 2

< V and the proof 1is complete.
i
Note. It follows from the above lemma that since Ak = (Bk) w, we

have:

vk =0 => Xk =W <1 => A=1

v
k v v
Ve >0 = (B Tw > (B W > (B) Min{1l,a} =% > 0

k
and hence 0 < A < lk <X =1.
Finally, from lemmas 4 and 5 we can see that kk is obtained by a finite
number of function evaluations, which demonstrates the feasibility of
the step—-size procedure. Now that we have established the properties of
uniqueness, descent and boundedness of the direction vector, and the
finiteness of the step—size procedure, we are ready to consider
accumulation points of the sequence of iterates generated by the
algorithm. The subsequence of restarting points, {xk, k € M}, will he

congidered first.

2.3 Convergence of the Subsequence of Restarting Points

We recall that the restarting subsequence is made uvp of points xk,
k £ M. It is generated along projected gradient directions and its
behavior determines the global convergence properties of the algorithm.
We will first establish that this subsequence is well-defined in the
sense that if the algorithm generates an infinite sequence, then it also

generates infinitely many restarting points.
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Lemma b. Let M be the set of restarting lterations. If M is

infinite then for any given 1 € M there exists an Integer & such that

1<2<n and 1 +2 ¢ M

Proof. Let 1 € M, and 1+1,...,1+q1 £ M. Then by step 4 of the

algorithm J1 =4,

algorithm cannot occur. Hence step 2-1) will be performed at most n

and 9 £ n. Since M is infinite step 2-11) of the

times leading to step 2-iii). That is, for some ay < n and i+q1 £ M
we must have i+qi + 1 =14+ € M, which completes the proof.

Note that this lemma also shows that from any point generated by
the algoirthm, a restarting point 1s reached in a finite number of
steps.

We now show that when the algorithm produces an infinite
subsequence of restarting points, then its accumulation points are
stationary points. For this we will use the properties of the direction
vector and the step-size previously established.

Theorem L. Let f be twice continuously differentiable and bounded

below on the bounded set S. Let xk €S, xi € B and xi E Rk. In

+
addition, let xk - xk + Xk(xs - xk) with Ak € (0,1] be the sequence of

points generated by the algorithm. Denote {xk: k € M} by kal,xkz,xk3,

vee, xkn...}, and define z'= xkn. Then the following statements will

hold.

i) The sequence {f(xk)} converges to some limit f*.

11) 1im ﬂxlg - x50 =0 (2.11)

keboo
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111) 1im ()T (xS - x°) = 0 (2.12)
k>o P

tv) 1im 12" - 2™ =0 (2.13)
n-yon

v) The limit of any convergent subsequence of 2™ 1s a

stationary point of the problem:
{Min f(x) | Ax < b}

Proof. 1) By construction, and moving lemma 4, the algorithm is
well defined in that Ak is obtained by a finite number of function
evaluations (vk is bounded above). Hence f(xk) is monotonically

decreasing and since 1t 1s bounded below, it must converge. This

implies that:

e (£(x°TY) - £(x5)] = 0

k>

1i) From step 3 of the algorithm, we have:

ka - xkﬂz
k, _ k+1 p
£(x) - £(x°) > g A L >0
2o k K+l kK k2
[f(x) - f(x Y12k -x1" 50
Nt P

By construction I > Go > 0 and % < al(O < a, { »), and from lemma 4
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l > l > 0. Therefore 6 = 2ak/6 A £ 2a /0 A for all k. Therefore, we

have:
2¢
1im E—% [E(xS) - £(xTYy) > Tim 155 = ¥12 > 0
ke k'k kreo P
k k, 2
And using part i) above: lim ﬂxp -x V" =10,

ke

i11) To show this part, we uge the following from lemma 4:

f(z) - f(xk) £ XVf(xk)t(xg - ) + El— th - xklz

where z = xk + l(xz - xk), cC>0

k+1

In particular, given Xk, x = xk + kk(x: - xk), and :

2
CX
f(xk+1) _ f(xk) <) vf(xk)t (xk _ xk) bk kK2
k P 2 P
Now, using part 11) above:
+
0 = tm [£xTN) - £(x9)] < um A IEEHTEE - £
koo = P
2
CA
+ 1im ~§E nxk - xkﬂz
koo P

Since Ak £ (0,11 and 0 < C < », we have:
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0 < 1im ATE(x xS - %) < 1im TEG) TS - 1) (2.14)
1+ P P ey P
Since Vf(xk)t (x; - xk) < 0 for all k, we have:
0 < Tim Ve (xS - ¥ < 0 (2.15)

k+eo P

which implies that:

1m Ve E (xS - x%) = 0
k+e P

Before we show the next part, we note that since {f(xk)} + f* and

R

+

{f(z )} is a subsequence of {f(xk)}, we have [£(z™)} » f*.

]

1 i

iv) Part 1i) above showed that 1lim uxi - x, ! lim #4 " = O,
{+m P fye0

Using this fact with the definition of {zn}, we have:

n+1l n kh+1 kn k(n+1)—l kn+n
tz -z I = Ix -x 1"'=17 Aid:[“‘ ¥ Ndiﬂ

i=k i=k

n n

gince ki <1 for all i from lemma 4.
Now, taking limits we have:
k -1
n+l n (n+1)
0 < 1im fz -z 1 < 1im T Ndiﬂ =0

¥ k +w  {=k
n It



and it follows that: 1lim Hzn+1 - znﬁ = (.
trhw

v) To prove this part we assume that the suhsequence [zn}

converges to z* in the set {x | Ax < b}. We now show that z* is a

stationary point of the problem {Min f(x) | Ax < b}.

Let y be any point in {x | Ax < b}. Then:
n,t n n,t n n n
VE(z' ) (y =z ) = VE(z ) (v - Z, + Z, T F )
where z: is the projection of ZE onto {x ] Ax < b},

vezM Ny - 2% = vee™y - ) + w(z“)"(zg - 2"

n nt, n n.t, n
» — (z -z z - + Vf(z z -
( o ) ( P y) (z)( o

(from lemma 2-1)

Using the Schwartz inequality and lemma 2, we have:

1
n n,.t, n n.t, n 11 n -i.
(z zp) (zp y) » [Zaan(z ) (z zp)ﬂzp - y]

from which we get:

N =

Vf(zn)t(y - zn) >-%— —[ZGn‘?f(zn)t(zn - zg)] Hz; -yt
n

+ Vf(zn)t(zg - zn)

n
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)

(2.16)
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Now, since the set {x | Ax €< b} is assumed to be bounded, and zg,
. e, . n
ye {x | Ax < b}, there exists a positive number B such that,llzP -y =

B for all n and for all ye {x | Ax £ bl. In addition, using the fact

that 0 < a, <a, o, (2.16) can be written as:

1
TEGDE(y = 2P 2 B2 (g - )2
Vo P

0

+ Vf(zn)t(z; _—

Now, as n> = and by continuity of vVf(x), we have:

1
-BY2 5
lim 7625y - 2N 2 22 [1in [V £z 5" - 22

n

+ lim Vf(zn)t(z; - zM

n-~<=

Finally, from part iii) of this theorem, the right hand side of the last

expression goes to zero and we get:
vE(z*)(y - z%) =2 0 (2.17)

Since y is any point in {x | Ax < b}, and since {x | Ax < b} is closed
and convex, expression (2.17) shows that z* is a stationary point of £
in {x | &x < b}

Remark. If the twice continuous differentiability assumption is
dispensed with, then under the weaker conditions of lemmas 3 and 5 we

can show the following: Any accumulation point of the subsequence {z"}
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18 a stationary point.
Clearly, if we assume {z™ K+ z*, K < {0,1,2...} and by
contradiction we suppose that z* is not a stationary point, then we

have:

1 Kty ™! TRE
£z") - 6z ) > 3 fo )y —o— ]

1=k %
n

k(n+1)--1

> F o X > 008 >0

1=k o=

n
Since for k large emough o, > ¢ , A, » A, Id 52/2a > & and (kn+1 -k )
i o' "1 =* i i n

is finite.
Now, since f decreases at each Iteration if follows that f(zn) + —o,

This is impossible since f(zn) is bounded below and hence converges to f*.

As a result of the last theorem, it was shown that the differences
in the tall of the subsequence of restarting points converge to zero.
This property together with the assumption that the subsequence has a
finite number of accumulation points will enabhle us to show that it
converges to a single stationary point. This 1Is the object of the next
theorem.

Theorem 2. Let f be continuously differentiable and hounded below
on the hounded set S. In addition, assume that the subsequence {zn}
defined in theorem 1 has a finite number of accumulation points. Then

{zn} converges to a single stationary point.
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Proof. First, we note that z" is feasible for all n > 0, and that

f(zn) < f(xo), for all n > 0. Therefore {z"} ¢ S. Also, since

-+
1im 12" 1 z'h = 0, this sequence is "strongly downward” as defined by
mﬂ-‘l

Orteg and Rheinboldt (1970, theorem 14.1.5).

Now, let the set of accumulation points of {z™} be

-1 =2
X

» = {x, x°, ..., Eﬁ}, 2 >0

then:
_i ._j
§ = Minftx™ - x°0 | 1#4; 1,1 = 1,...,2} > 0

Note that since & is finite 8 is well defined. We can choose n >0
guch that z" is within 8/4 of ome of the £ accumulation points and at

+
the same time Hz" 1. z0 < §/4, for all n » n . To see that this

i

choice is possible suppose that rz” - X0 < 8/4 for a given 1 and that

Hzn+1 -z > §/4 for all n » . This implies that Hzn+1 -z ¥ 0,

a contradiction.

Now, consider z, where { * n . Then there exists an 1 € 1 < % so

h|
that llz1 -« 8/4. Without loss of generality suppose 1 = 1. Then

we have:

1, < n;i' -z R4+ 1z - x
141 H1

o -1
<1 - P+ - 4 - '
x zj+1 + 1Ix zj + ﬂz:l zj+1l, i' > 2
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which implies that:

-1 i’ 1 1

" - P lxs - x Mt - (Ix -z, +0z, - "
x zj+1 X X {(Nx zj zj zj+1 )
> 8 -2 84 =46/2, 1t > 2
In other words, zj+l is not within 8/4 of the accumulation points EZ,EB,

...,il. Therefore it must be within 8/4 of x- for all n > j. This
means that Ez,...,§£ cannot be l1imit points of {zn} which implies that
£=1 and that {z"} converges to a single point in 8. Since all points in
® are stationary points, the proof is complete.

Finally, to complete the study of the subsequence of restarting
points we show that global converges will take place under convexity of
the objective function. This is the object of the next theorem.

Theorem 3. Let f be continously differentiable and bounded below
on the bounded set 5. 1In addition, assume that there exist scalars @,
and m, with 0 < m, < m, such that:

2 1 2

my nynz < th(x)y < m, Hylz, x £ Sand v € B,

Let {z")} be the sequence defined in theorem 1. Then:

1y 1im £(2") = £* = Min{f(x) | x ¢ 8}
n+cn

11) {z™ + =x*, the unique minimizer of f over S.
Proof. 1) By assumption, f{x) 1s convex which implies that it

has a unique minimizer x* on the set 8. Hence:
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0 < £(z") - £(x*) (2.18)
Also, from the Taylor Series Expansion:
Ext) = £(2") + TESEM)er - 2" + 3 (xx - 2D FeEm) (xr - 27

where C* € L{x*, zn), we have:

£(x*) ~ £027) » ~Te(zM) T2 - x*) + %—m nx* — 22
n.t n
> VE(z ) (z - x*)
=> £(z") - £(x*) < VE(2M) (2" - x#) (2.19)
Now, using lemma 2, part i), we have:
ve(z™ T2 - x*) < 7E(2N) (" - 27) - = (2" - 2P 52D - x%)
p ZGn p P

n,t, n n 1 n n.t, n
= Vf(z z -z +— (2 -z z - x*
(z)( p) ( p) ( P )
< TE(ZM T - 2% 4 o 12— 2™ ng" -
P P P

Also, using the fact that:

n n,2 n.t, n n
lz -zt € 2a 9f(z zZ -z
o - TE(z) o)
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we get:

ve(zM) (2" - x%) < TE(2M) (" - z;)

1
1 n.t, n nq2 ,.n
+ Eon [2a ve¢z") (2" - zp)] Pz] - x* (2.20)

Now, since z', x* are in the set {x | Ax < b} and this set is assumed to

be bounded, there exist a positive number D such that:

sz - x*?' < D for alln » O

In addition, since 0 < a < @ for all n » 0, we obtain from (2.18),

(2.19) and (2.20) the followlng expression:

0 < £(27) ~ f(x*) < VE(z2D) (2" - x*)

1
< Vf(zn)t(zn _ zn) + D [vf(zn)t(zn _ zn)]2
p 70 P
o
Now, as n goes to infinity, we have:
0 < 1im {£(z") - £(x*)} < Um (96(zH) (2" ~ 2™)
n+e o>
+ 1m 2 ve(z™ (" - 2N (2.21)
n+eo 2a P

[+]
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The right hand side of (2.21) goes to zero from part 1iii) of theorem 1

and we finally get:

0 < lim {f(2") - £f(x*)} < O
n«)(ﬂ

= 1im {£f(z™)} = £(x*) = Min{f(x) | Ax < b}

which comples the proof of part 1)
i1y To prove this part we note that the set & defined in theorem 2
contains a single point. That is, & = {x*} since f(x) is convex.
Therefore, the entire sequence {z"} converges to x* since S is bounded.
This now completes the convergence study of the subsequence of
restarting points. In the next part we will consider the sequence of
all points (both restarting and conjugate) and show that it essentially

has the same convergence properties.

2.4 Convergence of the Sequence Generated by the Algorithm

This part Is a direct consequence of the convergence results
estahlished so far. We first show that cluster points of the sequence
are stationary points and that the sequence 1s "strongly downward.”
Under additional assumptions the whole sequence will converge.

Theorem 4. Let f be continuously differentiable and bounded below
on the bounded set S. The algorithm will produce a sequence {xk} with
the following properties:

1) s and {f(xk)} is strictly decreasing
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1) 1tm x5 - X0 = 0

k=

111) Every accumulation point of {xk} is a stationary point.
Proof. i) This part holds by definition.
ii) From the expression:

k+1 k k
x =x + Ak(xp -x )

we have:

0 < 1=t - Ky A!xt -

By lemma 5, A < 1,¥ k, which implies that:

k

0 < 1im 1x<TY = 2K < 1im lxi - x5

kro k+o
And by part ii) of theorem 1, it follows that:

1im 105 M =0 (2.22)

k>

1i1) To show this part we let X be an accumulation point of {xk}.
That 1is {xk}x + ;, k c {0,1,2,...}. The three following cases may
arise:

Case 1: The elements of k correspond to restarting iterations.

That is k M. By part 2.3 above x is a stétionary point.
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Case 2: Some elements of k are in M and some others are not in M
{that is ¥ 1g a set of mixed iterations). Then we can extract a further
subsequence {xk}x'c: K with elements all in M, and {xk}m' > x. Since
k' « M 1if follows again that x 13 a étationary point.

Case 3: All the elements of ¥k are not in M. Here we assume by
contradiction that x is not a stationary point. Then by lemma 3 there
15 a member 8§ > 0 so that "dkHZ/ZGk » 6§ for k € ¢k large enough. Also,

by lemma 5 there exist a member A > 0 so that kk > A for k € k large

enough. Then, by step 3 of the algorithm we have:

Kk e+l "dk“2 T

gince 0 0 <€ g, and 0 < a < ak € a, for all k > 0.
o o 1

k
By part 1) of this theorem, (2.23) implies that f(xk) + =, This
contradicts the fact the {f(xk)} converges to f* and hence x 18 a

stationary point, completing the proof of the theorem.

Corollary 4.1, Under the assumptions of theorem 4, 1if {xk} has a

finite number of accumulation points, 1t converges to a single one.

Proof. Using the facts that {f(xk)} is decreasing and that
k+1 k
lim 'x "= x " = 0, the result follows from the argument used in
ko

theorem 2.

Corollary 4.2. Under the assumptions of theorem 4 and assuming

that £ {s strictly convex, the sequence {xk} generated by the algorithm
converges to the unique minimizer of f over S.

Proof. Here also the proof follows from the same argument used in

theorem 2.
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CHAPTER V

LOCAL CONVERGENCE ANALYSIS

1. Introduction

In this chapter we show that the sequence of poilnts generated by
the algorithm proposed in Chapter TII will exhibit a superlinear rate of
convergence in the vicinity of a solution point. TFor that we will need
some stronger assumptions which we now state and will refer to whenever

required as assumption A.

Assumption A. Given the function f and the sequence {ka

generated by the algorithm, the following properties are assumed:
i) The seguence {ka generated by the algorithm converges to
x*k,
11) f is twice continuously differentiable in a neighborhood of

x*, N_ (x%), € > 0.
[s]

111) There exist members m, and m, with 0 < m < m, such that:

n, Hyﬂz < th(x*)y < m, lyﬂz
T t
for all vy e E with a;y = 0; 1=1,...,r
iv) The strict complementary slackness condition holds at x*.

That is, assuming that {al,...,ar} are linearly independent, we have:

a;x* = b3 i=l,..0,r
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atx* <b

N {3 i=r+l,...,m

u; >0 ; 1=1,...,r

In addition, three intermediate results will he need to prove the rate
of convergence. Therefore, the remainder of the chapter will be
organized as follows:

1) The first part will be concerned with showing that after a
while the set of binding constraints will not change (theorem 5). The
importance of this result is that it shows that once the algorithm gets
close enough to x*, it eventually hecomes equivalent to a conjugate
direction method on the subspace {y | a:y = Q; i=1,...,r}.

Consequently, the rate of convergence of the method is determined by the
Bessian of f restricted to the subspace {y | a:y = 0; i=1,...,r} rather
than the whole space B, That the set of binding constraints will
atabilize will result from lemmas 7, 8, and 9. These show that the
sequence of Kuhn-Tucker multipliers generated by solving the projection
problem converges to the Ruhn-Tucker multipliers u* at the solution
point x*.

1ii)} This part will show that the initial approximation to the
step-size of the Mukai-type will have the necessary properties required
by the conjugate directions algorithm. First, the step-size is
uniformly bounded {lemma 10). Second, the initial approximation will be
close enough to the exact step—size so that it will always be taken

without further trials (theorem 6).
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iii)} The third part will show that eventually the directions
constructed by the algorithm will satisfy the following conjugacy
property:

Given dk and dk+1, then:

(dk)tG(x*)dk+1
na & opdty

+ 0 as k+» o

To see how that will be achieved by the algorithm we note the

following:

Assuming that f is twice continuously differentiable, by Taylor's

Theorem we have:

1

1
v - veaT = a1 elx® ¢ e - x0T MM - xMae)
o

t k

ate(r xk+1 k k k k+l)

)24 -x ), L = Lk(x , X

xkdtc(;k)dk

It

Akdtc(x*)dk + Akdt[c(gk) - G(x*)] dk

Now if we denote the error term [G(Ck) - G(x*)] by E,s we have:

t  k+l k+1

e 5Dy - ge(®) %4 = Ak(dk)tc(x*)dk+1 + Ak(dk)tEkd
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from which:

k.t k+1 k.t k+1
*
[Vf(xk+1) _ Vf(xk)]tdk+1 ) lk(d ) G(x*)d . kk(d ) Ekd .y
k k+1ﬂ k k+1ﬂ k k+1 *

L)
kk id°F 1d lkﬂdﬂﬂd )\kﬂdlfﬂd

Now for k + =, xk + x* and E, + 0 which gives:

k

(dk)tG(x*)dk+1

Hdkﬂ de+1k

+ 0 as k+ =

gince in the algorithm the left-hand side of (1.1) is always equal to
zero. This result will be established in lemma 11.

iv) Finally, in the last part we establigsh the superlinear rate
of convergence {theorem 7). The basic idea behind the result is as
follows:

From the Kuhn-Tucker conditions of the projection problem we have:

kK ok k t Yk t
(Xp -x ) + Gk[vf(x Y+ A { 1 + kak =0
k k t %k t
or, 4 + ak[Vf(x Y + A -0;(- 1= "'kak (1.2)

K k - -
As 47 > 0, VE(x) + TE(x*) and Atuk/ak + Atu* where A is the matrix of
binding constraints, the left-hand side of (1.2) will go to zero. How

fast will that happen depends on how fast Y goes to zero. We show in

t
kK

lemma 13 that Yltcvk is governed by szecond order information. That is,
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Y;vk = O[G(xk) - G(x*)] because the approximate conjugacy property
defined above holds. Hence the second order rate of convergence will be
achieved. Lemma 12 will establish some Intermedlate results which are

needed for lemma 13 and theorem 7.

2. Stabilization of the Set of Binding Constraints

To show that the binding constraints will eventually remain the
same we will first show that u u¥*, the vector of Kuhn-Tucker
multipliers at x*. For this we first need the following intermediate
result establishing a property of multipliers associated with linear
independent vectors.

Lemma 7. Suppose that {al,-..,ar} are linearly independent. Then

r

M,a,, then

there exists Y > 0 such that if z € E® 1is given by z = i£1 134

we have:

maximum {|H1|} <y, tz
1<i<r

Proof. Let A = [al,...,ar] an (nxr) matrixz whose column are the

r

a, and letting

= e . = 7"
colunn vectors a i=1, 5T Given z 12118

i!

M= (ﬂl,...,ﬂr)t we have:

z = AT or AYz = (afayn

from which M= atay ! at,
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Clearly, M, = rcatayt "1, 2
And
t, . ~1.t t, -1t
|ni| = |[(ATA) A 1, z| € 1(AA) “A UFLEL
t, -1t
< Maximum {1(A"A) A ', Pzl} = Y, e
1<i<r
t,.-1.t
where Yl = Maximum {"(A A) "A Hi}
1<i<r

which completes the proof.

let k £ M and k+l, k+2, ..., k+qk £ M. That is 9, conjugate
directions are contructed after the kth restart. Let 0 < 2 < M and
note that f 1is dependent on k. The next result will show that for
i=r+l,...,m [uk+£]i + 0. Clearly, if £=0 it corresponds to a restarting
iteration and if %21 it corresponds to a conjugate direction iteration.

Lemma 8. Let f be continuously differentiable and bounded below
on the bounded set 8. In addition, let assumption A defined in section

one be satisfied. Let [u be the ith component of the Kuhn-Tucker

k+2]i
vector assoclated with the Inequality constraints of the (k+i)th

projection problem. Then for k large enough we have:

[upp]; * 05 1=r+l,.c.,m, 0 < £ < q

Proof. From the Kuhn-Tucker conditions of the projection problem

(PP) with 0 < £ < 9,5 Ve have:
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k+4 k+2 mofueiely .
xy T x) r ale, * 1£1 COPEE jiolvk+2]jyk+j (2.1
t k¥t N
[‘lk"'z]i (aixp - bi) = 0; i"'l,-oo,m (2.2)
£kt
yk+jxp - (e)k+j I j=0,oo-,2« (2-3)

where if =0, from the algorithm we have Ve = 0, and the above
conditions reduce to the RKuhn-Tucker conditions of the kth projection
problem, with k € M, First, we note that (2.3) i1s equivalent to:

t kM k. o
yk+j(xp - X ) = 0 1 j—o,.-.,f. (2.4)

4

Now, multiplying (2.1) through by (x§+ - xk+£) we get:

m Ju ]
+ -
N ak+£[g£+z(xk+£ BN Ol a;(xk+£ N
D P 121 Tu#t P
. t k+e k8,
+ ) [Vk+2.]jyk+j(xp - X ) =0
j=0
Using (2.4) and letting:
k+2 kL 2 t k+1 k+
8 = I - [ -
k2 - %p * * Nern Bean (% x )

we have:



m
' €, kH K
1£1 g 143G, —x7 ) + 8y, =0

Now, from (2.2) we have:

t kH
[oepg g 257, = Toegyly by

and (2.5) can be written as:

m
: t k+e t kH,
111 (Mg lyag, = Iy liax ™) + 8

v t_k+
1l1 (Toyeyg )iPy = Tiglyagx ™) + 8, =

t k42
. [eyg 1y(by ~ayx" ") + 8, =0

b ~g

i

Now, as k + =, by theorem 1 in Chapter III, 5k+£ + 0 and

k+£

m
- t
) [uk+£]i(bi -ax )+ 0

1=1

t k+L

But since b, - ai

i

is equivalent to:

t_k+
[uk+2v]i (bi - aix ) * O; isl,nno,m
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(2.5)

(2.6)

x > 0, [uk+£]1 » 0 for all kK and 0 < ¢ < Y > (2.6)
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Also, as k + =, xk+£ + x* and for i=r+1,...,m, using assumption A:

t_k+2
a,x

t
- - *
1 1 > bi ax >0

which implies that there exists a ko gsuch that for all k » kO’
t k+1
a’x

bi - a, >0 for {=r+l,...,m and therefore:

[uk+£}i + 0; i=r+l,..e,my 0O < £ < Qe *
which complete the proof of this lemma.
We next show that for k large enough the Kuhn-Tucker multipliers
associated with the binding constraints will be strictly positive.
Lemma 9. Let f be continuously differentiable and bhounded below
on the bounded set S. In addition, let assumption A defined in section
one be satisfied. Let [uk+2]i be as defined in lemma R. Then for k

large enough we have:

[uypels

o

+ Juk], ;3 1=1,...,r; N < 8 < ¢
) 1 k

Proof. Here we will use an inductlon argument. Let £=0 then from

(2.1) in lemma 8 we have:

mn [u ]
(x; - xk) + o g + i) _EE_E

a,] =0 (2.7)
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Also, at x* we have:

r
TE(x*) + ) [u*]i a, = 0 (2.8)
i=1

where [u*]i, 1=1,4++,r are unique siunce ass i=1,...,r are linearly

independent.

From (2.8) and (2.7) we have:

o [u, ] r fu, 1

Since {al,...,ar} are linearly independent, from lemma 7 there exists

Yl > 0 such that:

(up 1y 1k k
0 < maximum {|[u*], - b <y, [rg - 7f(x*) + —fx - x !
1<1<1 1 1% % P
m fu, 1
£y =t e
i=r+l %

Now, by continuity of Vf, theorem 1 in Chapter III, lemma 8, and since

is uniformly bounded, as k + «, we get:
*

fu, 1
0 < maximum {I[u*]i - k1 [+ o0

1<1<1 %



167

which proves the desired result fro 2=0.

Now assume that the result holds for 0 < £ £ 9y - That is

(el s

+ fu*],, for i=l,...,r (2.9)
k2 1

We need to establish that it also holds true for (£+1)}. From (2.1) in

lemma 8 and (2.8), after rearranging terms, we have:

)
111 (Vierg Wity = ~1a Nt (Breag ~ TECEED)
r (ol m
+ e ) ey + ) l
% L ( %y ey ilr+1 Uietg 124

Denoting the right hand side of the above expression by 5k+9 and
noting that by theorem 1 of Chapter III, lemma 8, the continulty of g,
{2.9) and the uniform boundedness of LT 6k+£ + 0 as k + =, and we

have:

Gk =

=

fv. . ,1.¥ => maximem {|v_ . |.} < v, 181 (2.10)
k! T+ o< 11 k! 2 %k

i=1

which follows from the linear independence of {yk+1"°"yk+£} and lemma 7.

Finally, from (2.10), as k + =, we get:

0 < maximum {]v > 0 and hence v, 1 + 0 (2.11)

|,
1<4<8 k03
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Using (2.11), the (k+R+1)th projection problem and lemma 7 one

more time, the same argument implies that:

foresr 1y

> '[u*] > 0; 1=1,...,r.
e+l 1

and the proof is complete.
We note that as a consequence of this lemma, there exists a ko

such that for all k > k we have:

Ol

[uk+£]1 >0; i=l,...,r; 0 < L < 9

Using lemmas 8 and 9 we next show that eventually the set of
binding constraints will stablize.

Theorem 5. Let f be continuously differentliable and hounded below
on the bounded set 5. In addition, let assumption A defined in section
one be satisfied. Let [uk+£]1 be as defined in lemma 8. Then there

exlists an Integer kO such that for k > kO:

atxk = b,

i i, i=1,---,1‘.‘

;Exk <bys dertl,...,m

Proof. By lemma 9, there exists an integer ko such that for

k> k. :
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[ ]
—;Et£—1 >0, for 0 < 2 < q and i=1,...,r.
+2
Also, from:
t_kH
[ g1y (ap%, —by) =05 0<2<qy 1sl,...r

we have that for k » kO:

0< g« G 5 i=1,...,r

From the iterates generated by the algorithm:

k+2+1 k+£ k+2 k+L
X = x + Ak+£ (xp -x ); N< < 9
Two cases c¢an cccur:
k+2+1 k4L
1) Ak+£ = 1. This implies that x = xp and

€ ktedl _
ux I

i1) A < 1. 1In this case we note that by construction, xs = X

i=1,...,r and the result follows.

k+L

for restarting iterations, and we have:
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tk al k b
X TR Py
i=1,...,r (2.12)
atxk+qk+1 .. xk+qk+1 )
i 1"p
Now, by definition:
+1
khq, +1 e _
R N N
J=1
Using (2.12), we have:
q, +1
k+q, +1 k _
0=afx © -x9= ) Ao e ay
i=1
In addition, we observe that:
t, ki _ _k+i-l, _ t, k+i-1 _ k+i-1,
ai(x x )y = xk+j-1 ai(x X ) =
i=1’--o’r
Merg-1 (b - ajx 7y 5 o, (2.14)
i j=1,-o-,qk+1
(2.13) and (2.14) 1imply that:
£, k+j k-l I=l,eeepr
ai(x - x )y =9, (2.15)

jsl 1] LA ,qk+1
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And finally, (2.15) {8 written as:

t, kHi=l | kei-l 1=hyeeenr

Merg-1 205,

) =20,
j=1,...,qk+1

Since Ak+j—1 is bounded away from zera for all k, it follows that:

(Ee kIl _ k#3-l

15 ) =0

_ - i"_‘].,ooo,r
R I S B

= e, 1 1°

j=1, -aaw ’qk+1

k
And hence, there is a ko gsuch that for all k 3 kO: aix = bi’
i=1,++..,r+ Finally we note that for i=r+l,...,m for k large encugh,

azxk - by a;x* = by < 0 which completes the proof.

3. Properties of the Initial Step~Size Approximation

As we have mentioned previously, when k gets large enough the
conjugate directions algorithm requires that the step—sizes taken be
close to the exact ones. This requirement will be used in lemma 13. 1In
this part we describe an extension of Mukai's (1978) approximation to
the Intitial step-size for unconstrained problems. The idea is to use
as an Initial trial step-size an estimate based on the local quadratic
approximation. We first explain its derivatiom.

Given xk and dk, then a good estimate of the step-size along dk



can be obtained by minimizing the quadratic approximation of f at

xk along dk:
F(xS + ad®) = £(x) + aTf(xN)dE + é-az(dk)tG(xk)dk
whenever the Heggian matrix G(xk) is positive definite. That is,
Minimize {f(xk + adk) | a € [0,2)}

yields the unique solution:

—Vf(xk)tdk
(dk)tG(xk)dk
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The above formula will only be valid if the denominator 1is positive, and

since (dk)tG(xk)dk is not readily available, it can be approximated as

follows:

Given xk, dk, for a small € > 0 we have:

T = £ + 2ed%) - 26¢x5 + €d) + £(x5) = e2(d)a(xya®
or, equivalently:

T = 20E(x" + ed) - £(x) - eTE(xD T = 2 oxa"

Now, given & > 0, an approximate way to check for positive curvature is

to test 1if:
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(%) a5k » 81812 > o

or, since (dk)tG(xk)dk = Tk/ez, then {f Ty > 326 Hdkﬂz, the

approximation a, of the step-size will be acceptable. Otherwise, if Tk

k
< 525deﬂz, then either {Tklez) < 0 or § is not small enough. 1In this
case § 18 reduced by half for the purpose of the next iteration, and the
step—-size will be taken equal to one.

We note that even though a glves an estimate of the step-size
when the local quadratic approximation 1s valid, there is no guarantee
that in general f(xk + akdk) < f(xk) is achieved. The use of the Armijo
scheme, however, will Insure that it will happen as demonstrated by
lemma 5 in Chapter IIT. As k gets sufficiently large, it will be seen
that conjugate directions require a step-size that closely approximates
the exact one In the sense that:

g;ﬂ as 0
The above Mukal-type approximation will insure that the estimated step-~
slze has thils property, and in addition, as xk + x*, the Armijo number
will be equal to zero, so that the initial trial will be the only trial
needed.

We modify step 3 of the algorithm in the following way:

- Given 5- and £ positive numbers

0

—~ Compute T = f(xk + Zedk) - 2f(xk + edk) + f(xk)
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k.t.k

 ter G/ JC0 I MV NN 3
T k k
k

ak=
1 , otherwise (3.2)
Yk
- Let w, = minimize {ak,l} and set Ak = (8,) W, where

v, = minfmum { v > O f(xk + (B Yw dk] - f(xk)
k k’ "k
integer

v 1akr? ‘

£ —Gk(Bk) W _EE;_

- 841 = 8 1f a 1is given by (3.1) end § = 8,/2 1s a_ 1s given

by (3.2) above.
We next show that if the Mukai-type approximation 1s used to compute the

initial step-size aps then the step-size lk will remain bounded away

from zero.
Lemma 10. Let x € S and suppose that x 1s not a stationary point.
If ay is defined as in (3.1) and {(3.2) then the step-size Ak will remain

bounded above and below away from zero for xk € S5 in a neighborhood of

X

Proof. From lemma 5 in Chapter III there exists A > 0 and A such

that_i < A, < X if it 1s shown here that w, is hounded above and below

k k

away from zero for xk £ S close to X. By definition w = minimize{l,ak}

so that wk < 1. Now we need to show that a, is bounded. By definirion

a < 1. Also, two possible cases may arise:
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2 k 2
- If T < € Gk id " fF~, then a = 1>0

- If 1, » eé Hdkﬂz, then for xk close ;, by lemma 3 in Chapter

k k
k,2 5

IIT there exists a positive number s such that fd g. In addition

g8ince the test passes we have Ty > 0 and by continuity of £, as xk is

close to ;, Tk is bounded above. So that we have:

_ —elredy e X 21 402 X o2,

>0
Tk 2uk1k 2a1Tk

This shows that for xk £ 8 sufficiently close to E, the scalars l_and Y
exist such that: 0 <A< Xk < X,

In the next result we show that for k large enough, under
appropriate assumptions, the Mukai-Type initial approximation will
result in a good estimate of the step-size Iin a single trial. That

means that the Armijo member v, will ba equal to zero.

k
Theorem 6. Let f be continuously differentiable and bounded below

on the hounded set 5. In addition, let assumption A defined in section

one be satisfied. Let A be the step-size determined by the algorithm

k

with a determined by the Mukai-Type approximation. Then there exists
an integer ko such that for all k > kO’ v, = 0.

Proof. We first need to show that the test for positive curvature
willl eventually always be satisfied and that Ak =W .

a) For k large encugh, we show that Ty > ezak ndknz.

We use the following Hessian approximations defined by Mukal

(1978, p. 993):
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1
G =2 (-6 6"+ tedar
0
2¢ 1 k k k
G =2 [ (1 -t) 6(x + ed + ted )dt, t ¢ [0,1)
0
e % k k
G, = [ 6(x + ted)dt
0

And from Mukai (1978, eq. A23) we have:

T = F(x + 2ed5) - 26(x° + edS) + £(x5)

= 2@yt G P —-ez(dk)t[ GE]dk

For k large enough, and since f i1s assumed to be twice

L]
continvousgly differnentiable and xk + x*, we have st, GZ, GE + G(x*).

In addition from theorem 5, there is a ko such that for all k > ko,

ok = oKy o atgk

(xp -x ) = a, = 0 for i=1,...,r+ Thus, there exists oy > 0 such

that:

m
T > ¢ El-ﬂdkﬂz L edt [G - Gi]dk

N

Now, for any k » 0 1f the positive curvature test fails we have:

2 k.t 2¢

m
k, 2 2 K, 2 2"yt 1e2® - Gildk

2 1
Gknd s> Tk € E_'"d e+

R =
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from which it follows that:

m k
1 .1 skt 2¢ £, sk <k d
51( > 5 + 3 47 [Gk - Gk]d , Where d~ = m"

As k gets large enough, we get:
Gk > m, >0 (3.3)

Now, suppose that the test for positive curvature falls infinitely

often, then 6 will be halved infinitely often, that is, & =+ O,

k k

contradicting (3.3) above. Therefore, there 1s a kO such that for all k

> kO’ we will have:

b) For k large enough, we show that:

k 2
k+1 k nd ™
f(x Y - £f(x ) < —O'k Wk -—za——
k
By definition, we have:
_ —elveytd< i) ek (3.5)
T k.t e' k , 1 , k.t,6 2¢ £, .k )
k (4" Gk d + i'(d ) (Gk - Gk)d



Two possible cases may arise:

1y a, £ 1, then w, = minimum{l,ak} = a..

k k
Using the definition:

1

F(x° + ad®) = £(x5) = a¥E(x) 5S4+ &

2

We have:

k 2
k k k L k.t.k
f(x + Wkd Y - £f(x) + O'kwk —-27‘7(— = Wka(X )¢

1 2, k.t "k.k ras

+ E—wk(d ) Gk da + kah.-iﬁr__

W
kaf(xk)tdk + %.wi(dk)tckkdk ve(x<yta®

F o)

= %%k

ktk 1 2 k.t k.k
(1 - 0) wVE(x ) d + 5w (d) G d

= -1 - o) w (9% d° + 3 (@952 - )

1 k.t €'k 1

2 1 k.t ' k 1 k.t et k
Wk["‘z‘(d)de -(-Z-—GR)(d)de

HZ

k
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az(dk)tcidk

(Ry lemma 2, Chapter IV)

1

I+35

W,
2, k.t kk
Wk(d ) Gk d

k.t wk k

2 1
we [-(3 + 3 = 90 [@9% d° + 2 (@562 - ¢Ha*1 + L (@)% Ka



k.t k. k
-—(1'0')(d)(Gk-'G)d +—(d)G d ]
2
kte'k 1 k.t, 26 ek
2 -G - @) - L - @HEEE - )
2 2
w 1
+ 2@ - o Ha
2
2 . k.2 "1 1, .1 2¢ e, .1, " e
< 1S [= (0 = 3) +5 (L= 0) 16 -GN +316" =G ¥]
< wz Hdkﬂ2 Tl-(o - lﬂ £ 0, since o, < l-for all k » 0
k zZ k2 ’ k2 :

Thus, we showed that, In this case:

<0

k k k ra
f(x + wkd ) f(x) + okwk ZGk

ii} Suppose a, > 1, then W, = 1. And from (3.4) we have:

78¢5y ta* ¢ - [(dk)tGE a4 : (dk)tccze - Gi)dk]

Using the exact same derivation as in part 1) ahove we get:

1d<n M 1. . k.2

f(x + W d y - f(x ) + % e 2 -i--—-(ok - EJ 1A1° <0

179
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Therefore, it follows that there 1s a ko such that for k > kO’

v

= (B w, , which implies that v, = 0.

W T Ve k

Finally, we note that for k large enough, since the positive

A
k
curvature test was shown to always be satisfled, we have:

£(x° + akd )y - £(x5) = a.ka(x )k + lalf(dk)tc( yak

k.t k 1 k.t k 1 k.t k
= - = aV = =
akvf(x Yy d 5 A f(x ) d 5 aka(x Yd < 0
This, together with theorem 6 shows that for k large enough Ak = A
which means that the step-size estimate based on the local quadratic
approximation will be used as the actual step~size in the line search.
As xk + x* this step-size closely approximates the exact one.
Note. If Tk = Z[f(xk + adk) - f(xk) - EVf(xk)tdk] is used to
compute s then:
¢ N A T IO N

Tk (dk)tGE dk

and the same results shown by thecrem 6 will hold. That is Vi = 0 and
kk= a, for k » ko. The above form for Tkhas some computational
advantages when Vf(xk) is readily available and thus only f(xk + Edk)

need to be computed, resulting in only one additional function

evaluation.
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4, Verification of the Approximate Conjugacy of Directions

This part will have a single result. BRased on theorem 5, which
established that the set of binding constraints will not change for k
large enough, and the second order assumptions around x*, it will be
gshown that indeed the algorithm constructs conjugate directions. As
xk + x* the conjugacy property will hold with respect to the Hessian
G{x*). Assuming that k¥ € M and k+qk £ M we have the following lemma.

Lemma 11. Let {xk} be the sequence genera;ed by the algorithm and
.let assumption A defined in section one be satisfied. Then, for k

sufficiently large, and 1 € £ ¢ Q0 the following will hold:

k4L .t =k+1
(d ) (Ek‘l-!: - Ek+1) d ; 1’0,1,---,2"1

t K
D Yy &~
*>»n> 0 HES £

t(E - E gkﬂ ; 1‘-"2-"'2 gr e ,qk_‘l

£ <kt <k+i-1
d ) g1~ Bew?

1) vy d = (

where Ej = dj/ﬂdjn

Proof. 1) Let us first consider the case where i=R.

( _ )t ak+£
t gert | B T B
e+ +1 o
k4L
By Taylor's theorem, we have for ck+£ £ L(xk+£+1, xk+£)
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t=k+5
(Breg+r ~ Bupn) @ _
) )

iy &7 gy, 1

ke b, ki ak+£

(d 7)Y G )
k+2 - k+£)tG(Ck+£) k+2

Now, for k large enough, Ck+2 £ Ne(x*) and A 5k+£ = 0 by theorem 5, so

we obtain:

m
£ gk gletel kHckit T2 kw2 ™2
Yend T (@ )G > 5= R =

n0>0.

We now consider the case where 1=0,1,...,2-1, 0 < £ < 9y

ekt Kt kH, <kl
e et _ Bepn T gk+z) A4 G

Yete+19

"t ol )

(a k+2)tG(ck+£ ~k+1 (Ek+2)t [Ek+1 + G(x*)] Ek+i (4.1)

where: T, - ety - Gty and £ e L K

Now, using the fact that by construction, for i=0,...,2-1:

¢ - )t ak+£
t FeH Biti+l ~ Bt
Yk+1+1 = &+,

"Ak+i

we have:
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k+£ t

d ) (g ~ 8 4q)
Lt FeHt K+ k+i+1 K+
(d 7)Y 6(x *)d = (d ) 6(x*)d ey
LB d
K+
Or, equivalently:
K+, k+i
[A Gz ) d
FEHt + oAt k2.t ki
(@ e - (@ sndaH - (@ o
L
FeHt FH e okt Skt
= (3 ") G(x *)d - )6z )
where L e L(xk+i+1, £y
Therefore:
+2 FeHt —k+1
@ ten @t - - @) 6™ - een))d
k42t
= =(d" ) [E ] F i (4.2)
Now, using (4.2) in (4.1) above, we get:
t “k+i rlar N kH -+ t —k+i
Vewgr & 7 @ TR, ) & - @ B 1
~k+2 yt FeH

=« [Bypg = Braql d
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which holds for i=0,1,..., -1, and completes the proof of part i).

ii) Let i=8+2, 4+ ,..., qk-l.

=k+2 k+i-1. .t k+i-1, <k+i
yt ak+£ - (gk+i gk+i-1) d - Ak+i—l(d )6l ) d
k+i Il k+i"1” k+i-1
Meejop O Aeei-g 119 I
= (@ hteekihgt o @ Thteen) v £, 18
+i-1
= @ hend L (@D, )T (5.3)
k+1-1
Now, using the fact that by construction, for i=2+2,..,,qk—l:
t =k+i-1
t ghri=1 _ (8441 ~ Bpag) 4 -0
Yee+1 I a5 "
k+
by a similar argument used to derive (4.2), we can write:
=k+i-1.t
il _ . (d ) (g -
(dk+1 l)tG(x*)dk+2 - (dk+1 l)tG(x*)dk+£ - :+£+1 k+1
A, 4<%y
k+
~k+2.t ) i~ ~k+8 —k+i-
= @ ey - e®hH1 M 2 @Y e, ) 3T Gl

Using (4.4) in conjunction with (4.3), we get:
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t k4l kLt k-1 kLt k11
Veetd = a0 ) (B4 () (B 1

ki -
dk i-1.t

= @Oy Byl @ (4:5)

which holds for i=£+2,...,qk and completes the proof of part fi1) and the

lemma.

5. Superlinear Convergence

The rate of convergence of the algorithm will depend crucially on
the rate at which ﬂvkﬂ converges to zero. It will be seen that the
followlng elements are important in that regard:

i) The set of binding constraints will not change. This means

that terms of the form [u i=r+l,...,m will not be included in any

k't 2
bound on Hvk".

11) The step~sizes along the conjugate directions are close
approximations to the exact ones. This means that giﬂ_dk should go to
ZETO.

11i1i) If the directions are conjugate then a bound on vaﬂ could
be derived only in terms of gi dk_l, gi dk-z,..., these quantities
tending to zero as fast as the error in the Hessian approximation, that
is very rapidly. In lemma 13 we will derive such a bound and use it in
theorem 7 to establish superlinear convergence. The next lemma,
however, establishes some intermediate result which will be needed to
obtain the desired bound.

Lemma 12. Let {xk} be the seguence generated by the algorithm and

let assumption A defined in section one be satisfied. Then for k large



enough the following expressions will hold:

k+q
i) 'x k_ x*! = O(ka - x*N)

k+qy kt+q,
1) fx - x*f = O(WVEf(x ) + rk+q )
k
where r edr | r=_% t,al
kebq 1=1 1%
k+q k+q

111) 19E(x ) - VE(x*)N = O(fx  © - x*1)

Proof. 1) By theorem 5, there exists kO that for k » kO’
k k

Ad = A(xp - xk) = 0. Also, since x* is a stationary point, we have:
vE(xt) T (% - x*) » 0, for all x* € §
-t
VE(x*) + A ux =0

From which we get:

— *
0 ¢ TE(x*) S - x*) = A (K - x7) < O

=
Y
D

since K(xk - x*) < b-b

]
=]

Therefore Vf(x*)t(xk - x%)

In addition, for CO € Lk(xk, x*)

186

(5.1)
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£x®) - £ = TEER T - w0 + 5 (= - x0T - w0 (5.2)

Since for k large eunough, CO £ NE {x*}, there exist numbers My, MW, with
0

< :
0 < m1 m2 such that

m
El-ﬂxk - x*ﬁz < (xk - x*)tG(co)(xk - x*) < ;E-ka - x*Hz

This, together with (5.1) and (5.2) gives:

ok 2 2

5 Py ~ x*l™ < f(xk) - f{x*) < ;2 ka - x*I (5.3)

k+q
From theorem 1 in Chapter III, f(x k) < f(xk) for all T » 0, so that

for k¥ large enough, we have:

k+q
f(x 5y - fexd) < £(x5) - £(xb)

and it follows that:
m kN k+q o x 2

5 = k_ x*ﬂz < f(x k) - B(x*) < f(xk) - f(x*}) < 5 fx = x*1

which gives the desired result:

k+q m k+q
rx k_ x*l < [Egil lxk - x*! or I'x k. x*l = O(ka - x*1)
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r

ii) To show this part we let Titq © e =3 t,a;} where
k i=1
the ti's are multipliers. Then from theorem 5 for k large enough
ai dk =0, i=l,...,r and hence r£+q dk+q = 0. Also from theorem 5 and
k

r

the relation Vf(x*) + T wu* a, = 0 we have:
=1 i1
r ¢ gy ¢ Kt
[VE(=x*) + T ui aij (x - x*)y =0 => Vf(x*) (x - x*) =0
i=1
Now,
(ka + rk )t(xk+q - x*y = Vf; (xk+qk - x*) + ri (xk+qk - x*)
e K +ay +ay
k+q

= ka+qk(x x*) (5.4)

and by Taylor's theorem:
k+q k+q k+q k+q.
[((Tf,. - 78] S S -xh =(x “-xnf@ x - x%)
+ye
k4+q
t k
= ka+q (x - x*) (5.5)
k
k+q k+q k+q k+q

where 4 k € Lfx k, x k + t{x k. x*)]
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From (5.4) and (5.5) we have:

k+q k4q k+q k+q
t k k t r k
v - x%Y) = - xk - gk
( fk+q + T g ) (x x*) = (x x*) G(x x x*)
k k
k+qk
For k large eunough R NE {x*) and we get:
0
k+q m k+q

(ka_'_qk + rk-l-qk)t(x k _ x*) > 2_1 A
from which:

m k+q k+q

1 k 2 t k
— " v - xk
5 Tx x*1 <(fk+qk+rk+qk) (x x*)
< 1 N e SR ik gy
k+q
k
Hence:
k+qk 2
"x ~ x*1 < (=) nrerqk + rkﬂkn (5.6)

which completes the proof of this part.

i11) Here we use Taylor's theorem to get:
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ktq kg k+q k+q
WE(x ) - VEGeE = (x F - xmfer )TE(x ) - TE(xA)]

k+g k+q k+q
<ix Eooxaorcr Fyvoave(x %) - VE(RR!

k+q
As k get large enough, £ NE (x*} and hence there exists A > 0 such
0

k+qk
that: MG(Z 30 € A, Therefore we ohtain:

1o k+qk k+qk
(x Y - VE(x*)M € A fIx - x*| (5.7)

and the proof of the lemmas is complete.

The next lemma is the one in which we show that the bound on ﬂvkﬂ
goes to zero rapidly. The detalls of the proof of this lemma are rather
lengthy but the substance of it is based on two key points which were
previously discussed:

- The step-size approximates the exact one near x*%,

- The sgtabilization of the binding constraints and the conjugacy
of the direction insure that the quantities g; dk-z, gi dk_z,..., go to

rapidly, These quantities will make up the bound on v 1.

k
Lemma 13. Let {x*} be the sequence generated by the algorithm and
let assumption A defined in section one be satisfied. Then as k gets

sufficiently large, the following bounds will hold:

B =

t —k+L My k e
< £ Tg® — x*0 1 - "
1) lgpgqd <2 [m ] x -x* IR T B
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m .
) |g£+qk§k+ﬂ| “ [E%] e [ O - By

"Ere T EE+£"]

q
k
k - £
111) "Vk+qk“ = oftx - x*I [i££+2(nzk+i_1- Eeen) * "B, ~ B t])
T
1) V) [V Ty = 00V ™)
oy kg 17k kg,

Proof. 1i) From theorem & for k large enough,

L .
k+4. € k+2
Mt T TR e waE ° Where G = [ 6™ + ted

(d°7) G ,d 0

k+£)dt

t  k+L k+8.t.e  kH
= F Bt T e ) Gy d (5.8)

Also, from Taylor's theorem:

t <k+2 t kte k+4 .t k+2., k+£
Beagt1S T B d T A (@ )G T

Using (5.8) we have:



t -k+£ ~k+2 .t _E k+!. -k+8 .t k+2 . k+t
Brrpi1? T (@) Gpggd T R A (4 )G
k+2 .t £ ~k+L
= N (4 ¥ recet = Gy M

lk+z(dk+£)t[c(x*) + By " 6(x%) - EE+2]HH£

k+2+1 k+4 .t —k+£
= (= X ) By T k+z]
In addition,
-] + -]
l t dk+2| < ka L+l Kk+!l’.‘1 HEk+1 _ EE+£" Hdk+£ﬂ

B+ 41
Using the fact that:

“xk+£+1 _ xk+£“ < “xk+£+l - x*l + ka+£ —

and from lemma 12-i1 we have:

1

)

3
£ gt K
lgpgnd | <2 [E’I] AR LA

which completes the proof of part 1i).

i1) To show this part we write gk+q as:
k

192
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= (g -8 1) + (g o - ) F e
gk+qk kb, Blerg -1 ehq -1 gk+qk 2

(84042 = Brag+1’ T Bl

Multiplying through by Ek+£, we get:

t e+, t kL t -k
d = (g -8 ) d + (g PR - ) d +
gk+-qk kg, Skq, -1 A
t —k+2L
s ¥ g 4
9y,
' K+, t kL
= ) (s -2 )t d +g d
(hgys et k+1-1 K+ +1
q k+1-1
Y - Jt FeH 2 0 A SR )
: By+i” Bi+i-1 i1 Br+a+1
i=p+2 A pgaq "
Ay
- ) "xk'!'i _ xk+i"'1n yt a’k‘l‘f. + gt ak‘!‘l
iig4n K+ k+2+1
since,
By ™ Brag—1) P O T 5 I 8
" LOHT, Y+ k+i-1 x X

k+i-1
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Now, we note that:

k41 k+i-1 kA1 k+i~-1
-x ] —x*ﬂ

"x < Ix - x*1 + 'x

and using lemma 12-1, we get:

q
k
F+q et ¢ y (lxk+1 - xR gL x*N) YE+1dk+a + g12+-z+1dkﬂ
Kk 1=0+2
1
;{k 12 t skt ot zkH
< ) (2 |—]| M ~-x*) y 4 " +y d
Cars [ml] k+i k+L+1

Finally, using lemma 11-1i) and part 1) of this lemma, we have:

1
lg;”k Ek”l < 2 [;i-] 2 IS - xl 12;2 n(d‘kJ'i‘l)t(EkH_l - EkH)Ek”‘n
1
i [%] 2 - e "Ere ~ EE+1"
m %- qk
< 2 [E%] L [1Z£+2(nEk+i_1— By M)+ 1E - B 1]

which completes the proof of part 11i).
iii) To show this part consider the Kuhn-Tucker conditions of the

(k+qk)th projection problem. This problem is the last one solved before



restarting:

k+qk r ?
d + a E + ) [u l.a, + ) [u l. 2
kg o kbq g0y kR L oy KR

U
+ )

v 0
1=1 oy

1Yee1 =

k+qk k+qk

Then a necessary condition for restarting is that xp = X

k+qk
Yk+q # &, hence d = 0, Also, using lemma 8 we get:
k

r qk

Q. b4 :
ktq, Tktq + ) | lpa, + ) v, 1.7¥
k k7o uk+qk £ %7 L Mg 1 Tk

=0
i

=k+1,
Multiplying through by dk » we have:

q
k
t-k+2 . t =k+t
fu J,ad + ) v, 1,y .d
k+q, 174 1oy - kg 17k

t  =k+2
ak+quk+qd +

| o~y

i=1

Since by theorem 5 the second term is equal to zero, we have:

Qe
y t =kHL t -k

I 19y . d = - £ d
oy Dletgy 'k ak+qk’k+qk

Or, equivalently:

195

and

=0

(5.9)
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2
- —k+L t <k+
NN C A TS A DA A PO d
1=1 k+qk 1 "kl k+qk £4+1 "k+24+1
qk 5
: t ks t kM
+ ) [v. 1. ¥ d = - d
gap ety 1 Tk “k+qk gk+qk
t -k+
Since, by construction, yk+id =0 for i=1,...,%, we obtain:
N
t —k+2 - t =k+2 ~k+2
{v, | IR, d =-) [v. | PR - d
kg, 441 i+ arn et 17k °'k+quk+qk
t —k+£
Now, from lemma 11-1), Yk+£+1d n
And thus:
qk -f
t =k+£ . t =k
nve, Jpor € IV, 1,7 & ==Y v, 1,v...d
khq 241 kebq, 2+ It fogey et 1Tk
_ Qk gE Ek‘l'f,
+q,  “ktqy
Consequently,
qk
1 t ~k+q : t <kH
(v, Tp.q| < (2) |} g 4 1+ ) v Ly d ]
ktq, 241 A "‘1<+qk kg, Lovg et 17k

Using the expression for y£+i Ek+£ from lemma 11-11) and noting that

ak+qk < al, we have:



197

1 t <k+2
k k
;k
+ ) vy, 1, 1CVE . o —E 1)) (5.10)
ot kg, 1 k+i-1 k+2
Now, we observe the following:
?k
o Mve L) (B . o~ B 8) =
o942 kt+q, *4 k+i-1 k+2
v, bseensto Lorslvis boweemslv, 11 T 0 )
kg, '1 kg 4417 kbqy 242 kq, .
Erttl ~ B
Btz ~ Brag
"Ek+qk—1' Bt

)

< "vk+qﬂ . 6k+qk, where 8k+qk is the vector with components
(5.11)

Eri-1” B

Using (5.11) in (5.10) we have:

ns I (5.12)

1 t +2
v, . Tyl € (D e | g |+ v
ktq, " 0+1 n 1 k+q, k+q, kg

Finally, using part i1i) of this lemma, and ohserving that (5.12) holds

for all 0 € 2 < q, ve have:
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o
tv 1< —l-| gt Ek+£ | + [%J v ns

k+qk n k+qk k+qk k-l-qk
or, equivalently:
o
1 ~k+2
Ty f < k
e -, |
N’ Tktq
By definition 5k+q + 0 as k + «® and therefore the denominator goes to
k
1. Tt follows that:
=k+2
a )

t
r " =0
vk+q (ng+qk

and the desired result follows from part ii) of the lemma.
iv) The proof of this part follows directly from part 1ii)

above, since:

e e
DN AU RS A0N B A A U O B LA (5.13)
oy | kta 'L Tk o kg "1 K+l
and observing that:
t k+i-1.t , k+i-1
g a2 BT o) Ve | e @ O 0C T Ony
k+i k+i-1 k+1~1
f f
Mers-19 "erp-14 '
~k+i-1 .t , k+i-1 —k+1~1 k+i=1 k+i-1
= (4 < 10 L
( ) G(x Wiy €M 1G(Z Wy 4q" € GCZ "oty Lt
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which gives:

k+i-1 .
1 .
Py ! € 16(2 < A (5.14)

where A is a bound on the norm of G(Ck+i"1) and ck+i“1 £ Ne (x*).

Using (5.14) in (5.13) we finally get:

e
Py (v 1., .." € ANy "
1.1 k+qk 17 k+1 k+qk
and Eherefore:
e
D 1.Vl = 0(ly 1)
{=1 k+qk 17k+1 k+qk

which completes the proof of this lemma.

We now have all the ingredients for superlinear convergence. It
will be seen that the reduction in the error from the point x* is of the
order of the length of the dual vector assoclated with the conjugacy
contraints. This vector is based on second order information and will
go to zerc as fast as E(*), the error in the approximation of the
Hessian matrix at x*,

Theorem 7. Let f be continuously differentiable and bounded below
on the bounded set §S. 1In addition, let assumption A be satisfied. Then
we have:

1) 1< 4y € n-r, for k large enough



200

- *
NS %~ %),

ii) lim =0

ko Ika - x* ||
ProcfE. 1) From theorem 5, there is k0 such that for k = ko, the

set of binding constraints will not change and we have:

Since {al,...,ar} are linearly independent, the rank of A is equal to r.
This implies that at most (n-r) conjugate direction steps will be

performed before the system

is inconsistent. 1In addition, since {al,...,ar} are othogonal to di’

k+q
s dk+1,...,d k} form a set of linearly

i=k+1,...,k+qk, {al,...,ar

independent vectors in E® and thus: r+q < o => q < n-r. Also, if
q = 0 conjugate directions are constructed, so q = 1. It follows then

that:

ii) To prove this part we need to establish several intermediate

results. First, we show that for k large enough we have
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k+qk

NVE(x ) = VE(x*)! = O(lv )

L}
k+qk
From (5.6) and (5.7) in lemma 12 we have:

k+q k+q
"VE(x Ky - vE(x)N < [gﬁj "TE(x k) +r ' (5.15)

r

ef{r | r= ) t,a}
kb, =1 11

where r

Then, to get the desired result we observe the following from the Kuhn-

Tucker conditions of the (k+qk)th prcjection problem:

U

k+g T
k g .
VE(x Y+ ) u l.a, + )} [v 1.y =0y =0
c‘1<+qk B S e O T 4 25 et
or,
q
Vf(xk"-qk) +r - - )k _[_vl‘*ili
k+qk =1 ak+q Yierd
k
ke, U [vk+q1]ci
M7f(x Y+ r =) v
kg, 1ol % ki
= +q
k

Now, using (5.15) we have:
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q
k+q k+q k
k 2A k 2A
NUE(x ) = TE(xFIN < (Eq4qu(x ) + rk+qk" < (mlaol "1£1 {vk+qk]i View"
and using part 1v) of lemma 13 we have:
k+qk
N7f(x ) - VE(x®)I = O(HVk LIy (5.16)
+qk

Next we show that:

k+qk

TE(xT) ~ VE(a*)

+ 0 for k large encugh.

To do that, we use Taylor's theorem to get:
[VE(x) = TE(x)] B - =) = (- o) (x" - x%)

m
> El-ﬂxk - x*"z for k large enough.

Therefore:

m
e M = A €[TR - TEG) TS - xk) < 1TE(x) - TEG) 1 1S - x

=) NVf(xk) - VE(x%)" > (;;J nxk - x*! (5.17)
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Now, using (5.17) and part iii) of lemma 13:

q
of 1x5—xxp | 7K
i=24+
m
(ilq ka - x*!

£
OBy 1B + "' )

9

. £
= 0(1i2+2 (MEri-1 ™ Bera™ * "By ~ By (5.18)

The last expression goes to zero as k goes to infinity which produces

the desired result.

Similarly to (5.17) and (5.7) we have:

ktq my k+q

1VE(x k) - VE(x*)1 > (E-J Px K= xke

“Vf(xk) - VE(x*)D < A, Tx5 = x*I

which gives:
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2
k+q k+q (=)rve Uk
Ik < = x# ¢ (2 PUEx K e (x*)y < m kb - TEGEOE
x5 ~ x*1 o 1x5 - x*1 [i—)ﬂ"ff(xk) - VE(x*)N
1
Now, using (5.16) and (5.18) we get:
k+q k+q o(lv "
I K < g ) (2’3‘1} 19E K . UE(xk) kg,
xS ~ x*l My AUE() = VE(x*) NVE(xS) - VE(xF)
i ]
= of 11,“2 (MErr-1 ™~ B + Mg~ By (3.19)

As k gets large enough Ek+i—1’ Ek+£’ EE+£ + 0 and therefore:

k+q

-
1im 2% 2 _o.

kro fBx -~ x*ki

which completes the proof of the theorem.

As a consequence of theorem 7 we can achieve a quadratic rate of
convergence under a Lipschitz conditiom on G(x*).

Corollary. Under the assumptions of theorem 7 suppose there

exlgts L > O such that for £ € N(x*) we have:

N1G(Z) = G(x*)Y < L N ~ x*i

where Ck [ L(xk, xk+1)

Then the following will hold:
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k+qk

t - x*t
1im X X 7 = constant.

koo Ix - x*i

Proof. By definition, E, = G(ck) - G(x*) and

k

'E P < lG(ck) ~- G(x*) < Lﬂck = x*0

In addition:
ch - x* = ﬂtxk + (1 -~ t)xk+1 -x*, for 0< t <1

+1

= "txk + (1 - t)xk - tx* + (1 - t)x*!

= "t(xk - x*) + (1 - t) (xk+1 - x*)

< tﬂxk - x* + (1 - t) ka+l - x*i
< ﬂxk - x*1 + ﬂxk+1 - x*i
Thus
e, < LOMES = x#1 + 1St - xxn) (5.20)

Now, from theorem 7 using (5.19) we have:
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K+, ; I
1x - x* . E
pRJSD I LRI L) L WV L)
K T S R e T Pen
( ;k ) =of ;k )
= of E, .~ E 1) =0 1E, , 1+ (o-r) 1E, 1
B B 2 Loy ekt Fery

Using (5.20), we have:

ktq q -
A S LI = £ R 2 R
3 7—=0l) L= A—"
fx™ - x*1 1=0+2 fx - xkf Tx" — x*
k+2 k+9-1
) - x*| ] - ik
+ L[ b4 - X + X . X H)]
fx - x*I x - x*I
1 1 1 1
2 2 2

SIS MR R

N

m

2] ) = constant
1

= 0 2(n-r+1) L [

Therefore:

k+qk

Mx - x*I = O(ka - x*ﬂz)

and the proof is complete.
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CHAPTER VI

COMPUTATIONAL RESULTS

1. 1Introduction

In this chapter we examine the performance of the basic algorithm
developed in chapter three on numerical test problems. The main
numerical features we will consider are rellability, efficlency and
sensitivity, Reliability is concerned with convergence to a solution
point and its accuracy. EBfficiency i3 measured in terms of total number
of iterations, function and gradient evaluations, and computing time.
Sensitivity will be evaluated by using different values for certain key
parameters for a test problem. To accomplish this task, thirty test
problems, from two to one hundred variables in size, are selected from
the literature of nonlinear programming.

The algorithm was coded in Fortran V and the computations were
performed in single~precision on a CDC Cyber 70 Model 7428/CDC 6400,

In the next sectlon we discuss relevant aspects of coding and
implementation of the algorithm. In section three we present the
numerical results and thelr comparison to other published works in the
field. In Appendix A the thirty test problems are given in detail.
However, 1n Table 6.l below we give a summary of the main

characteristics of each problem.



Table 6-1:

A Summary of Test Problems

NUMBER OF CONSTRAINTS

PROBLEM VARIABLES OBJECTIVE Equality Inequality Bounds SOURCE

1 2 Quadratic 2 2 Bazaraa & Shetty (1979)

2 2 Quartic 1 Hock (1981)

3 2 Cubic 2 Hock (1981)

4 2 Trig. 1 Hock (1981}

5 2 Quadratic 1 4 Hock (1981)

6 3 Nonlinear 6 Himmelblau (1972)

(exp-log.)

7 3 Quadratic 1 Hock (1981)

8 3 Quadratic 1 3 Hock (1981)

9 3 Nonlinear 1 6 May (1979)

10 3 Nonlinear 2 6 Hock (1981)

11 3 Nonlinear 1 6 Hoek (1981)

(log.)

12 4 Quartic 8 Himmelblau (1972)
13 4 Quadratic 6 4 Hock (1981)

14 4 Nonlinear 1 8 Hock (1981)

15 4 Quadratic 3 4 Hock (1981)

16 4 Quadratic 2 4 Luenberger (1973)
17 5 Cubic 10 5 Himmelblau (1972)
18 5 Nonlinear 10 Hock (1981)

80Z



Table 6-1: (Cont.)
NUMBER OF CONSTRAINTS
PROBLEM VARTABLES OBJECTIVE Equality Inequality Bounds SOURCE
19 5 Quadratic 2 Hock (1981)
20 5 Nonlinear 3 20 Hock (1981)
21 6 Nonlinear 6 8 Hock (1981)
(exp.}
22 8 Nonlinear 1 16 Bracken,
{exp.) McCormick (1968)
23 10 Nonlinear 20 Himmelblau (1972)
(log.)
24 10 Nonlinear 3 10 Himmelblau (1972)
(log.)
25 11 Cubic 10 22 Day (1979)
26 14 Nonlinear 4 5 28 Kezouh (1983)
(exp.)
27 15 Quadratic 29 30 Hock (1981)
28 16 Quartic 8 32 Himmelblau (1972)
29 45 Nonlinear 16 45 Himmelblau (1972)
(log.)
30 100 Nonlinear 12 100 Himmelblau (1972)

602
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2. Coding and Implementation

The proposed method was coded In Fortran V. The code consisted of
a main program and the following subroutines:
1} PFunction evaluation: Provides numerical values of
analytically specificed objective functions.
i1} Gradient evaluation: At each iteration, this finite
differencing routine provides an approximation to the
gradient vector.
ii1) Linear Complementary Pivoting: This routine provides the
dual solution of the projection problem from which the
direction vector is computed. It includes determining
variables to become basic, minimum ratio test, and
pivoting.
iv) Orthogonal Factorization: This routine computes the QR
factorization of the matrix of conjugacy constraints.
v) Projection Updating: When a new conjugacy requirement is
added to the projection problem, this routine updates the
operator:

t,, Jt.-1
Po= [T - Y (YY) " Y]

The updating is performed using the recursive formula:

t
_ PP
t
P
ek x
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vl) Approximate Line Search: This routine computes the Armijo

number vk at each iteration giving the step-size

v
e (B k W -
vii) Mukai's Approximation: This routine is used close to a
solution point to give an 1lnitial approximation a, to the
step~gize at each iteration. This approximation is hased
on the current local quadratic approximation.
vifi} Slack Variables: This rvoutine is used to evaluate the
constraints and determine the amount of slack s, =

k
b -Axk-

Parameters

For the unconstrained step:
2 = o~ oy VE(K)

a value of X needs to be specified in the range [ao, al], % > 0.
For all the problems solved, it was determined empirically that qk £

[0.1, 3.0]. The following values of o gave the best solution for each

k

problem:

&, % Problems
.25 73%
0.50 237%

1.00 3z
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Other parameters uvsed were the constrained step-size parameters:
9 = 1/3, Bk = 1/2 for all k > 0. The initial approximation a, was
always set to the value 1.0 whenever Mukal's approximation was not

used.

Restarting
A restarting iteration is initiated if ﬂdkﬂ < 10_4. The slightly
lower accuracy used here 1s due to the fact that we want to avoid

generating steps that are nearly parallel, which introduces a lot of

ill-conditioning in the matrix Y.

Termination Criteria

The problem 1s terminated if ﬂdkﬂ £ 1()_5 and Jk = 0. This result

in appriximately five significant digits of accuracy in the values of

f(xk) and xk.

Line Search Scheme

As described in section 3 of chapter 3, the line search is

performed until the first nonnegative integer vk satisfieg:

Y] \V k.2

k k. k k k1
£lx + (R) wd' 1= £(x) <o R) W

(2.1)

Zak

v
which results in a step-size Ak = (Bk) kwk. The search starts with

Ve = 0, or equivalently, lk

computed and the search is continued until the inequality (2.1) is

= 1.0. The value of f(xk + lkdk) is

gatisfied, at which time the search is terminated. Otherwise, lk is

halved and the process 1s repeated.
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The Initial Approximation

The following initial approximation, discussed in section 3.3 of

Chapter 4 18 used when X is close to a stationary point:

Compute T, = 2[f(xk + Edk) - f(xk) - EVf(Xk)tdk]

2. k.t
and let EVE(x D) d e x> 25 1de?
Ty k k

1 , otherwise

then set w, = min{ak, 1}

In case a = 1, Gk is halved for the purposes of the next iteratiom. It
was determined empirically that the values for the parameter £ and 60
were acceptable in the following ranges:

e e (07", 1073

1: 60 e [0.5, 2]

Since it was shown that this initial approximation is only necessary
when xk is close to a stationary point, it was decided not to use it in
the early iterations. However, since all the problems solved had known
optimal objective function values, some experimentation resulted in the
following rule: Initiate Mukal's approximation when f(xk) is within 107

of the optimal value f*. More specifically, when:
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. 10% £*
|£(x) — F*] < & = 0
10% |f(x) — f£*|

Gradient Approximation

To avoid the need for having to provide analytical derivatives of
f(x), the gradient vector is approximated at each iteraticn by the

forward-dif ference formula:

f(xk + h) - f(xk)
h

Vf(xk) =

where h = 0.0001.

The Projectlon Operator

Ag discussed in Chapter 3, the proposed method requires the

operator:
= ~ vt ty-1
P = [I Yk(YkYk) %l

which projects any vector in ET into the null space of Y, , the matrix
of conjugacy requirements.
For a general iteration, the updating in performed by the

formula:

[
Pvyvyv?P
P - P - kKk'kk

el Tk (2.2)

t
NPTk

When this updating fails an orthogonal factorization of Yk is

performed which is given by:
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(k)
. 1
Q,

and then Pk =

If this process fails, the procedure is restarted with Pk

(k)t (k)
Q, Q,

reinitialized to the identy matrix. In addition, when equality
constraints are present ian the original problem in the form:
Dx =4d
the initial matrix PO is initlalized to:
Py = (I - DE(DD%)"!n]

via a QR factorization. This 18 because this factorization allows

the detection of dependencies among the rows of D.

3. Numerical Results

In this section the numerical solutions for the 30 test problems
are presented with some relevant information on each problem. Thesge
results are then summarized and compared to published results from other
methods. Finally, a test problem 1s used to show the sensitivity of the

procedure to certaln key parameters.

3.1 Solutioms
The problems will be identified by theilr number given in Table
6.1. In addition, the detailed formulation of each problem 1s given in

Appendix A for reference. For ease of presentation and readabllity the
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solutions are presented in tabular form by class of problems grouped
according to the number of variahles. The following statistics are
provided for each problem:

a) The value of the objective function f(x*).

b) The solution vector x*.

c) The number of iterations required to solve the problem.

d) The total number of restarts required.

e) The total number of functional evaluations.

f) The total number of gradient evaluations.

g) The number of conjugate directions constructed. These are
broken down into:

i) The maximum number of conjugate directions constructed
between restarts.

i1) The wminimum number of conjugate directions constructed
hetween restarts.

h) Line search statistics. These include:

1)} The maximum number of trials, corresponding to the
largest value of Uk’ required per iteration.

11) The minimum number of trlals, corresponding to the
smallest value of vk’ required per iteration.

1) ¥For the computation of the direction vector, Lemke's linear
complementary pivoting routine is used. Two statistics are
given:

i) The maximum number of pivots required per iteration.
11) The minimum number of pivots required per iteration.

j) The number of binding constraints at optimality.
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1) The execution time required in CPU seconds.

m) The value of the unconstrained step-size parameter .
Tables (6~2) to (6-14) contain these statistics for each group of
ptroblems. Table (6~15) gives an average picture of the performance of
the algorithms on each class of problems. These averages are computed

hased on the number of problems solved in each class, which i1as indicated

in paratheses in column one.
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Table 6-2:

Solution Summary for 2-Variable Problems

PROBLEM #

STATISTICS 1 2 3 4 5
£ (x*) ~7.1601 0.0003 2.6666 -0.4998 -39.9590
xﬁ 1.1191 0.9998 1.0000 | -2.9998 2.0000
x; 0.7763 ¢.9999 0.0000 | ~4.0001 -0.0001
VALUE OF Ay USED .25 0.25 0.25 0.25 0.25
NUMBER OF ITERATIONS 3 10 2 4 5
NUMBER OF RESTARTS 3 5 2 4 5
FUNCTIONAL EVALUATIONS 4 25 3 6 6
GRADIENT EVALUATIONS 3 10 2 4 5
CONJUGATE MAX. # 1 2 1 1 1
DIRECTIONS MIN. # 1 2 1 1 H
LINE MAX. Uk 0 6 0 I 0
SEARCH MIN. vy 0 0 0 0 0
PIVOTS MAX. # 1 0 2 0 1
MIN. # 1 0 2 1 2
BINDING CONSTRAINTS 1 0 2 1 2
EXECUTION TIME 0.071 0.23 0.028 0.086 0.14




Table 6-3:

Solution Summary for 3~Variable Problems

PROBLEM #

STATISTICS & 7 8 9 10 11
£(x*) 0.00001 0.0002 0.1115 -3300.0000 -3455.9999% ~-26272.5143
Xy 50.0000 0.5000 1.3121 20.0000 24,0002 0.6178
x4 25.0001 ~0.4999 0.7870 11.0000 11.9999 0.3281
X% 1.4999 0.4998 0.4500 15.0000 11.9999 0.0539
VALUE OF o, USED 0.25 0.25 0.25 0.25 0.25 0.25
NUMBER OF ITERATIONS 5 5 4 2 3 8
NUMBER OF RESTARTS 4 5 3 1 2 8
FUNCTIONAL EVALUATIONS 8 6 5 3 5 34
{GRADIENT EVALUATIONS 5 5 4 2 3 8
CONJUGATE MAX. # 1 1 2 2 3 -1
DIRECTIONS MIN, # 0 1 1 0 0 1
LINE MAX. v 2 0 0 0 1 7
SEARCH MIN. v, 0 0 0 0 0 1
PIVOTS MAX. # 2 0 1 3 1 2
MIN. # 1 0 1 3 1 1
BINDING CONSTRAINTS 0 0 1 4 1 0
EXECUTION TIME 0.214 0.125 0.105 0.094 0.138 0.83

61¢
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Table 6-4: Solution Summary for 4-Variable Problems

PROBLEM #

STATISTICS 12 13 14 15 16
£(x*) 0.0001 -15.0000 1.9299 -4.,6803 1.4099
x* 0.9988 0.0000 0.6666 0.2727 1.1229
1
x¥* 0.9998 3.0000 0.3333 2.0606 0.6509
2
x* 1.0001 -0.0000 0.3333 0.0000 1.8289
3
x* 1.0002 4.,0000 2.0000 0.5454 0.5680
&4
VALUE OF ak_USED 0.25 0.25 0.25 0.25 0.50
NUMBER OF ITERATIONS 20 14 5 9 2
NUMBER OF RESTARTS 6 5 4 4 2
FUNCTIONAL EVALUATIONS 32 15 7 10 3
GRADIENT EVALUATIONS 20 14 5 9 2
CONJUGATE MAX. # 4 4 3 3 1
DIRECTIQNS MIN. # 0 0 0 1 0
LINE MAX. Vv 8 0 1 0 0
k
SEARCH MIN. v 0 0 0 0 0
k
PIVOTS MAX. # 0 1 1 4 0
MIN. # 0 0 1 0 0
BINDING CONSTRAINTS 0 4 1 2 2
EXECUTION TIME 0.995 1,165 0.173 0.956 0.06
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Table 6-5:

Solution Summary for 5-Variable Problems

PROBLEM #

STATISTICS 17 18 19 20
£(x*) -32.3486 1.0001 0.0000 4.0899
x* 0.3000 1.0000 1.0000 -0.7777
1
x* 0.3335 1.9999 0.9999 0.2599
2
x* 0.4000 2.9999 0.9999 0.6299
3
x* 0.4284 4.0000 1.0000 -0.1198
4
x¥* 0.2239 4.9000 1.0000 0.2599
5
VALUE OF o USED 0.25 0.25 0.25 0.25
k
NUMBER OF ITERATIONS 8 7 7 7
NUMBER OF RESTARTS 5 3 7 5
FUNCTIONAL EVALUATIONS 18 8 8 38
GRADIENT EVALUATIONS 8 7 7 7
CONJUGATE MAX. # 2 2 1 2
DIRECTIONS MIN. # 1 Q 0 1
LINE MAX. v 4 0 0 0
k
SEARCH MIN., v 0 0 0 0
k
PIVOTS MAX. # 9 4 0 2
MIN. # 4 1 0 0
BINDING CONSTRAINTS 4 5 2 0
EXECUTION TIME 1.78 0.62 0.063 0.081




222

Table 6-6: Solution Summary Table 6-7: Solution Summary
for Problem 21 for Problem 22
f(x*) 6.3333 f(x*) 1138.4162
xf 0.0000 xf 0.4128
x§ 1.3333 xf 0.4033
xg 1.6666 xg 131.2613
xz 1.0001 xz 164.3134
xg 0.6666 xg 217.4222
x} 0.3333 xg 12.2801
xg 15.7717
xg 20.7468
VALUE OF &, USED 0.25 0.25
NUMBER OF ITERATIONS 8 13
NUMBER OF RESTARTS 8 9
FUNCTIONAL EVALUATIONS 12 19
GRADIENT EVALUATIONS 8 13
CONJUGATE MAX, # 1 4
DIRECTIONS MIN. # 0 1
LINE MAX. Vi 2 3
SEARCH MIN. Vi 0 0
PIVOTS MAX. # 2 4
MIN. # 1 2
BINDING CONSTRAINTS 8 0
EXECUTION TIME 1.653 1.935




Table 6-8: Solution Summary for l0-Variable Problems

PROBLEM #

STATISTICS 23 24
£(x*) -45.7783 -47.7609
xf 9.3503 0.0409
xg 9.3503 0.1479
x§ 9.3502 0.7830
xz 9.3503 0.0009
xg 9.3503 0.4848
xg 9.3503 0.0009
x% 9.3502 0.0269
xg 9.3502 0.0178
xg 9.3503 0.0369
*
LS T 9.3503 0.0970
VALUE OF o USED 0.50 0.50
k
NUMBER OF ITERATIONS 14 16
NUMBER OF RESTARTS 13 16
FUNCTIONAL EVALUATIONS 21 27
GRADIENT EVALUATIONS 14 16
CONJUGATE MAX. # 2 1
DIRECTIONS MIN. # 0 0
LINE MAX. v 4 5
k
SEARCH MIN. 0 0
k
PIVOTS MAX. # 3 6
MIN. # 1 1
BINDING CONSTRAINTS 0 2
EXECUTION TIME 2.01 2.33
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Table 6-9: Solution Summary for Problem 25
f{x*) 37.6459
xic 0.0099
xg 0.0984
xg 0.0631
X 0.40054
xg 0.3881
xg 0.1810
x¥ 0.6499
xg 0.3330
xg 0.3409
xzo 0.1635
X% 0.6499
VALUE OF o USED 0.50
k
NUMBER OF ITERATIONS 15
NUMBER OF RESTARTS 7
FUNCTIONAL EVALUATIONS 37
GRADIENT EVALUATIONS 15
CONJUGATE MAX. # 3
DIRECTIONS MIN. # 2
LINE MAX. v 4
k
SEARCH MIN. v 0
k
PIVOTS MAX. # 8
MIN. # 4
BINDING CONSTRAINTS 5
EXECUTION TIME 7.79
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Table 6-10: Solution Summary for Problem 26

f(x*) ~1114.5475
xY 3.4021
xg -0.1366
xg -0.0548
xz 0.0955
xg 0.0948
xg 0.5869
x? 0.1416
xg ~0.7286
xg 0.1512
* -
¥ 0.7516
xfl -0.7338
¥
x%, 0.4864
XTB -1.5411
fo 0.5411
VALUE OF Gk USED 0.25
NUMBER OF ITERATIONS 24
NUMBER OF RESTARTS 23
FUNCTIONAL EVALUATIONS 102
GRADIENT EVALUATIONS 24
CONJUGATE MAX. # 2
DIRECTIONS MIN. # i
LINE MAX. Vk 6
SEARCH MIN. Vk 4
PIVOTS MAX. # 1
MIN, # 1
BINDING CONSTRAINTS 4
EXECUTION TIME 4.32
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Table 6~11: Solution Summary for Problem 27

£(x*) 664.8213
xf 7.9998
x; 49,0001
x’3€ 3.000
x 0.9999
xg 55.9989
x 0.0009
xb 0.9999
xg 63.0000
xg 5.9980
*
o 3.0000
le 70.0016
*
x%, 11.9973
ks 12.0000
x§4 7;.9998
XTS 18.0001
VALUE QF o USED 0.50
k
NUMBER OF ITERATIONS 17
NUMBER OF RESTARTS 9
FUNCTIONAL EVALUATIONS 23
GRADIENT EVALUATIONS 17
CONJUGATE MAX. # 5
DIRECTIONS MIN. # 1
LINE MAX. v 2
k
SEARCH MIN, v 0
k
PIVOTS MAX. # 10
MIN. # 4
BINDING CONSTRAINTS 15

EXECUTION TIME

3.47
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Table 6-12: Solution Summary for Problem 28

f(x*) -244,8997
xf 0.0389
x4 0.7919
xg 0.2028
xk 0.8443
x¥ 1.1269
xg 0.9347
x§ 1.6819
xk 0.1553
x 1.5678
&
x1o 0.0000
xfl -0.0000
* -
xiz 0.0000
x.}r3 0.6602
xih 0.0000
x¥ s 0.6742
VALUE OF o USED 0.500
k
NUMBER OF ITERATIONS 12
NUMBER OF RESTARTS 12
FUNCTIONAL EVALUATIONS 50
GRADIENT EVALUATIONS 12
CONJUGATE MAX. # 1
DIRECTIONS MIN. # 1
LINE MAX. v 4
k
SEARCH MIN. v 0
k
PIVOTS MAX. # 13
MIN. # 8
BINDING CONSTRAINTS 5
EXECUTION TIME 5.12

227
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Table 6-13: Solution Summary for Problem 29
£(x*) ~1911.40524
x, = -.3497E-13 X1 = .8710E-13 Xq) = .2300E-0Q2
x, = .2139E+00 Xy = . 1550E-01 X3y = .4730E-13
Xq = . 3595E+01 Xig = .2259E-13 Xqq = .1794E-13
X, = . 2466E+00 X9 = «3064E-13 Xq, = .3458E-13
Xs = .6330E+00 X909 = .5843E-13 X35 = .2429E-13
X, = .4572E-01 X1 = .6206E-13 X3 = -.4441E-15
x, = .3231E-13 Xpy = .4291E-13 X39 = .9781E-13
Xg = .1182E-12 Xyq = .9281E-01 X8 = +1943E-15
Xy = .2903E-13 Xp4 = .6304E-01 X39 = -.2109E-14
X0 = .7077E+00 Xys = .4830E-01 X0 = .1665E-02
X1 = +2496E-01 X6 = .2]116E+02 X1 < .7335E-02
X1, = -.3775E-13 X7 = «3575E-13 Xpp = -.3439E-13
X4 = «2559E+02 X,8 = +2912E-13 X43 .1021E-12
X4 = .2216E-01 Xpg = +2107E~-13 X4 = -2934E-01
X15 = .8266E-13 x39 = .2110E-01 X;5 = —.1474E-13
VALUE OF o, USED 0.500
NUMBER OF ITERATIONS 62
NUMBER OF RESTARTS 55
FUNCTIONAL EVALUATIONS 178
GRADIENT EVALUATIONS 62
CONJUGATE MAX. # 2
DIRECTIONS MIN. # 1
LINE MAX. vy 7
SEARCH MIN. Vi 0
PIVOTS MAX. # 28
MIN. # 14
BINDING CONSTRAINTS 41
EXECUTION TIME 265,50
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Table 6-14: Solution Summary for Problem 30
£(x*) -1732.0333
1 2 3 4 5 6 7 8 91011 12 13 14 15 16 17 18 19 20
1 X, 24 32137|28]|22 5 52 Xgg
2, 2| 8§ 2(18]11 291 9|21
3 9 29 (62 35 17|25 (62 | 60
4 9139| [58( (44
471 5 |36}12 6 50|42 51 1
3| *s5]*10 X100
VALUE OF %k USED 1.00
NUMBER OF ITERATIONS 272
NUMBER OF RESTARTS 192
FUNCTIONAL EVALUATIONS 498
GRADIENT EVALUATIONS 272
CONJUGATE MAX. # 8
DIRECTIONS MIN. # 1
LINE MAX, Vi 4
SEARCH MIN. Vi 0
PIVOTS MAX. # 52
MIN., # 4
BINDING CONSTRAINTS 70
EXECUTION TIME 912.59

(a) The values of the decision variables are rounded to the closest

integer

>

since x

+ .

1]

represents the number of weapons of type 1

assigned to target j.



Table 6-15:

Average Results per Number

of Variables

Statistics Average Maximum
Average # Average # Average
PB. Per |Average # |Average # |Conjugate {Line Pivots |Function Gradient Execution
# Var. Iterations [Restarts |Direction [Search ay Evaluations {Evaluations Time
2(5) 4.8 3.8 1.2 1.4 0.8 8.8 4.8 0.11
3(6) 4.5 3.8 1.7 1.7 1.5 10.2 4.5 0.25
4(5) 10 4.2 3.0 1.8 1.2 13.4 10 0.67
5(4) 7.3 5.0 1.8 1.0 3.0 10.5 7.3 0.64
6(1) 8.0 8.0 1.0 2.0 2.0 12.0 8.0 1.65
8(1) 13.0 9.0 4.0 3.0 4.0 19.0 13.0 1.93
10(2) 15.0 14.5 1.5 4.5 4.5 24.0 15.0 2.17
11(1) 15.0 7.0 3.0 4.0 8.0 37.0 15.0 7.79
14(1) 24.0 23.0 2.0 6.0 1.0 102.0 24.0 4,32
15(1) 17.0 9.0 5.0 2.0 10.0 23.0 17.0 3.47
16(1) 12.0 12.0 1.0 4.0 13.0 50.0 12.0 5.12
45(1) 62.0 55.0 2.0 7.0 28.0 178.0 62.0 265.50
100(1) 272.0 192.0 8.0 4.0 52.0 498.0 272.0 912.59

0€e
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3.2 Sensitivity

Some experimentation showed that the method 1s not affected by
differnet starting points In terms of achleving the same optimal
solution. This is true as long as the initial point 1is feasible.
However, the method show some sensitivity to the unconstrained step size
o and different strategies of reinitializing the projection matrix Pk'

Concerning uk, it 1s seen that from a computational point of view

this parameters acts as a sealing factor in the expresslon:

In addition, the performance of the line search is affected through the

computation of vk:

va>20 k,2
k v k k v hd H
'\)k = Min f[x + (Bk) Wkd ] - f(x ) <-Gk(8k) Wk —zjﬁ-(—-
integer

This effect of ak ig shown In Table 6-16 for the test problem 17.
Figure 6-1 gives a graphical representation of different pertinent
statistics as a function of Oy e It can be seen that for problem 17 the
value ak = 1.0 gives the best solutlon overall.

Concerning different reinitialization strategles for the matrix

P it 18 seen 1n Table 616 that the hest solution for problem 17 is

k!
achleved when Pk is reinitialized to the identity matrix. This

corregsponds to a fresh set of conjugate directions. Experimentation
with restarting the procedure without discarding previously acquired

directional information proved inferior. Table 6-~16 shows that in most



Table 6-16

Results Showing Sensitivity to ay and Type of Restarting for PB., 17

RESTART ING FRESH RESTARTING: Py .| REINITIALIZED TO I
O 0.10 0.25 0.50 0.75 1.00 1.50 2.00 2.50
f(x*) -32.3486 1-32.3486 |-32.3486(~32.3486[-32.3486)-32.3486(-32.3486(-32.34861
xT 0.3000 0.3000 0.3000} 0.3000| 0.3000] 0.3000] 0.3000| 0.3000
xg 0.3335 0.3335 0.3335] 0.3335| 0.3335] 0.3335] 0.3335] 0.3335
x§ 0.4000 0.4000 0.4000) 0.4000] 0.4000] 0.4000] 0.4000] 0.4000
xz 0.4275 0.4275 0.4275] 0,42757 0.4275] 0.4275] 0.4275] 0.4275
xg 0.2244 0.2247 0.2247] 10,2247 0.2247| 0.2247( 0.2247] 0.2247
NUMBER OF ITERATIONS 15 8 12 10 7 12 8 8
NUMBER OF RESTARTS 13 5 8 8 5 9 5 5
FUNCTIONAL EVALUATIQNS 31 18 28 29 17 38 15 19
GRADIENT EVALUATIONS 15 8 12 10 7 12 8 B
CONJUGATE MAX, # 2 2 2 2 2 2 2 2
DIRECTIONS MIN., # 1 1 1 1 1 1 1 1
LINE MAX. Vo 2 4 5 5 5 6 7 7
SEARCH MIN, v, 0 0 0 0 0 0 0 0
PIVOTS MAX. # 7 9 9 9 9 9 13 13
MIN. # 3 4 6 6 6 6 6 6
BINDING CONSTRAINTS 4 4 4 4 4 4 4 4
EXECUTION TIME 3.63 1.78 2.86 2.57 1.72 3.05 1.95 1.97

AN
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Table 6-16: Continued

RESTARTING (a) Py, =Py (b) Pyar = Py

oy 0.25 1.00 0.20 0.25 0.75 0.50

£ (x*) -37.6332 [-35.2505 |-32.3486|-32.3486|-36.6003(~32.3486

xX 0.3000 0.2250 0.3000{ 0.3000] 0.2865| 0.3000

X 0.5300 0.0590 0.3335] 0.3335| 0.5595| 0.3333

% 0.4398 0.6134 0.4000| 0.4000| 0.3985| 0.4000

X3 0.6097 0.4859 0.4291| 0.4284) 0.5040] 0.4279

xg 0.2067 0.5514 0.2240| 0.2239| 0.1866| 0.2244
LNUMBER OF ITERATIONS 21 21 15 8 21 11
'NUMBER OF RESTARTS 0 1 8 5 5 3
FUNCTIONAL EVALUATIONS 72 78 36 18 48 23
'GRADIENT EVALUATIONS 21 21 15 8 21 11
CONJUGATE MAX. # 3 3 5 2 5 5
DIRECTIONS | MIN, # 3 3 1 1 2 2
LINE MAX. Vi 6 7 5 4 6 7
SEARCH MIN. vy 0 0 0 0 0 0
PIVOTS MAX. # 14 14 9 9 11 10

MIN. # 8 8 4 4 6 5

BINDING CONSTRAINTS - - 4 4 - 4
EXECUTION TIME 3.65 4.10 2.63 1.83 3,20 2,05

{a) Reinitialization occurs whenever B

(b} Reinitialization occurs only when yﬁPkyk <

Je

1.0E-10

8 t
: 210 or y,Pyy, = 1.0E-10
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cases the method did not converge to the optimal solution. Finally, we

need to mention that the updating formula for Pk+l:
t

_ BndRe

t
VP

can cause some i1ll-conditioning when the term yEPkyk in the denominator
becomes too small. Practically, each time this happened, the QR
factorization was tried and if not successful, a restart was
initialized.

Finally, we note that no speclal provislons for detecting
dependencies and 1ll-conditioning were implemented. This accounts for

the high percentage of restarts on most of the problems.
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3.3 Comparison with Other Methods

In the last three tables, (6-17) - (6-19), we present a summary of
the performance of the new method compared to six other methods for
which published results exist. It is to be noted that not all problems
were solved by all methods, and some of the relevant statistics are
missing. In addition, these solutlons are obtalned on different
computer systems. Except for the second method (BG) all others are the
result of commercial codes. We also note that some of the execution
times appear to be standardize times even though they were reported to
be actual CPU seconds. PFrom these results we can draw the following
conclusions concerning the proposed method:

1) Reliability: Computational results clearly show that the
method is reliahle in the sense that all test problems were
solved to optimality.

11) Efficlency: In terms of number of iterations, function and
gradient evaluations, the method seems to compare very well
with other methods. In many cases its performance 1s
superior in this regard. However, execution times are higher
than for other methods. This seems to be an indication of
more work per iteration. This can be partially explained by
the fact that the method uses the entire constraint set at
each iteration to solve the projection problem. In addition,
special structures, such as lower and upper bounds, are not
taken advantage of. Finally, to a lesser degree, the "rough”

nature of the code may be a factor.



Table 6-17:

Comparative Results:

Function and Gradient Evaluations

Problem N, M, NEQ GRG BG BR MS MSH M New
# (c) | (a) | Method
6 3, 6, 0 6, 12 - - - - - 8, 5
10 3, 7, 0 - - - - - 48 | 5, 3
12 4, 8, 0 255, 43 - - - - | 462 | 32, 20
17 5, 15, 0 63, 9 30, 11 12, 12 9, 9 - 61 | 18, 8
23 10, 10, 3 77, 17 | 61, 17 65, 37 - - | - |27, 16
24 16, 20, O 32, 5 - - - - - 21, 14
25 11, 32, 0 - - - - - 512 37, 15
28 16, 32, 8 162, 37 24, 9 17, 15 16, 16 44 187 50, 12
29 45, 45, 16 | 229, 50 | 1105, 182 - 452, 452 | 513 | - | 178, 62
30 100, 112, 0 | 239, 41 1455, 485 208, 169 296, 296 310 - 498, 272

GRG: Generalized Reduced Gradient (IBM 370/145)
BG: Bazaraa and Goode (CDC Cyber 70 Model 74-28/CDC 6400)

BR: Best and Ritter (IBM 360-75)

MS: Murtagh and Saunders (IBM 370/168)
MSH: Marsten and Shanno (CDC Cyber 175)
M: May (DEC - 1077KI-10)

(a): May's method is a non-derivative method.

given are function evaluations only.

The numbers

9eT
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Table 6~18: Comparative Results: Number of Iterations
Problem N, M, NEQ GRG BG BR MS MSH M New
# (b) | Method
6 3, 6,0 10| - - - - - 5
10 3, 7, 10 - - - - - - 3
12 4, 8, 0 43 - - - - - 20
17 5, 15, 0 9 11 11 8 - - 8
23 i0, 10, 3 9 17 36 - - - 16
24 1o, 20, 0 16 - - - - - 14
25 11, 32, 0 5 - - - - - 15
28 le, 32, 8 36 9 14 16 26 - 12
29 45, 45, 16 49 | 182 - 103 | 274 - 62
30 100, 212, 0 | 40 | 485 | 168 | 133 | 170 | - 272

(b) Not provided in published study.
(¢) The numbers given are combined function and gradient evaluationms.



Table 6-19:

Comparative Results:

Execution Times (in CPU seconds)

Problem N, M, NEQ GRG BG BR MS MSH M New
# Method
6 3, 6, 0 1.90 - - - - - 0.214

10 3, 7, 0 - - - -~ - 0.14]| 0.138
12 4, 8, 0 1.32 - - - - 0.58| 0.995
17 5, 15, 0 1.53 0.20 0.23 0.63 - 0.43) 1.78
23 10, 10, 3 3.81 0.59 1.19 - - - 2.01
24 10, 20, 0O 1,72 - - - - - 2,33
25 11, 32, 0 - - - - - 9.18| 7.79
28 16, 32, 8 38,55 2.78 1.19 1.50 0.283| 4.48] 5.12
29 45, 45, 16 227.26 111.57 - 2.9 1.807| - 265.50
30 10¢, 112, 0 | 570.37 614.27 290.67 48.3 2.548| - 912.59

8£T
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CHAPTER VII

CONCLUSIONS AND EXTENSIONS

The primary purpose of this thesis was to develop a method to
solve the general linearly constrained nonlinear programming problem
using conjugate directions. The computational results show that the
method seems to compare well with the best existing methods 1n the
field, such as the Generalized Reduced Gradient Method.

First, a reliable procedure is developed to produce a descent
direction. The procedure 13 based on solving a projection problem which
is strictly convex and requires a finite number of steps. This
profection problem is designed to project an unconstrained descent
direction onto the feasible region in such a way as to produce a
feasible direction which 18 conjugate to previously constructed
conjugate directions. This conjugacy property 1s aimed at producing a
second order convergence of the algorithm.

Second, the line search procedure is an Armijo-type 1inexact line
search which is based on the properties of the projection problem and
produces a step-size with a finite number of function evaluations
automatically. An Initial step—-size approximation is iIntroduced close
to a solution point. This approximation has the property that the exact
step-size along the conjugate directions is closely approximated and
that the Armijo number will eventually always equal zero.

Computational results show that on the average only two to three

functional evaluations are required per iteration. In addition, other
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contributions were made in this research. Principally, we have

egtablished the global convergence of the procedure through the use of

the inexact line search scheme and the convergence of the entire

sequence under additional assumptions. We have also established the

superlinear convergence of the procedure owing to the use of conjugate

directions.

The following extensions are worthwhile investigating:

1-

Modification of the proposed method to directly handle lower
and upper bounded variables.

Further 1investigation of strategies to solve the projection
problem and updating the projection operator to avold i11-
conditioning.

Extending the computational results by solving larger problems
and duplicating the runs made so that the gensitivity of the
procedure to certaln key parameters can he better ascertained.

In particular, the effect of changes in & on a larger set of

k
problems will be a desirable study.
Computational testing of an accelerated and near-binding
extensions to the basic algorithm.

Numerically more stable implementation of the basic algorithm

50 that the local convergence behavior can be better

evaluated.



APPENDIX A

Test Problems

Problem 1
Source: Bazaraa and Shetty (1979), p. 366
Number of Variables: 2

Starting Point: x = (0,0), f(xo) = 0,00

2 2
Objective Function: £(x) = 2x1 + 2x2 - 2x1x2 - 4x1
Constraints: 3 + x, < 2
<
% + 5x2 5
X5 Xy >0
Problem 2

Source: Hock and Schittkowski (198l), p. 24
Number of Variables: 2

Starting Point: X = (-2,1), f(xo) = 909.00

Objective Function: f£f(x) = 100 (x2 ~ xf)z + (1 - xl)

Constraints: X, < 1.5
Problem 3
Source: Hock and Schittkowski (1981), p. 27
Number of Variables: 2
Starting Point: x, = (1.125,0,125), f(xo) = 3,3235

Objective Function: f(x) = 1/3(x1 + 1)3 + X,

- bX

2

2
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Constraints: 1

“X, <
Problem 4
Source:

Number of Variables:

Starting Point: x, = (0.0,0.0), f(xo) = 0.00

Objective Function:

Constraints:

Problem 5
Source:

Number of Variables:

Starting Polnt: X, = (-1.0,-1.0), f(xo) = -98,99

Objective Function:

Constralnts:

Problem 6
Source: Himmelblau

Number of Variables:

-x. € -1

0

2

fix) = sin(ﬂxIIIZ) cos(ﬂxzflﬁ)

4x1 - 3x2 = 0

2

f(x) = 0.01x2

1

+ x;

-10x. + x

X

-X

1

1

2

-x,

- 100

<

<

(1572) Problem 21, p.

3

Hock and Schittkowski (1981), p. 32

Hock and Schittkowski (1981), p. 44

10

50

50

-2

50

422
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Starting Point: X, = (100.0,12.5,3.0)

f(xo) = 32.835

X

99 (ui - x2) 3 2
Objective Fumction: f(x) = T |exp( = - 0.011)!
i=1 1
u, = 25 + (=50 &n 0.011)1/1+°
Constraints: 0.1 < Xy < 100.0
0.0 < X, < 25.6
0.0 < x3 < 5.0
Problem 7

Source: Hock and Schittkowski (1981), p. 51
Number of Varilables: 3
Starting Point: x, = (-4.0,1.0,1.0)
f(xo) = 13.00
Objective Function: f£(x) = (x1 + x2)2 + (xz + x3)2

Constraints: =x, + 2x2 +3x, -1=0

1 3

Problem 8
Source: Hock and Schittkowski (1981}, p. S8
Number of Variahles: 3
Starting Polnt: X, = {0.5,0.5,0.5)
f(xo) = 2,25
Objective Function: f(x) = 2x§ + 2x§ + xg + 2x1x2 + 2x1x3 - le

—6x2 - 4x3 + 9



Constraints: xl + X, + 2x3 < 43

X X,y ¥ >0

1’ 3
Problem 9

Source: May (1979), p. 479

Number of Variables: 3

Starting Point: x, = (10.0,10.0,10.0)
f(xo) = =1000.00

Objective Function: f(x) = -x1x2x3

Constraints: x, + 2x, + 2x, < 72

1 2 3

< <
0 xl 20

0 < xz < 11

0 < X4 < 42
Note: This problem, known as the "Post Office Problem” has the

distinctive feature that the Hessian diagonal entries are all zero.

Problem 10
Source: Hock and Schittkowski (1981), p. 60
Number of Variables: 3
Starting Point: X, = (10.0,10.0,10.0)
f(xo) = -1000.00

Objective Functlon: f(x) = “X Xo¥q

244



Constraints: x, + 2x2 + 2x3 < 72

1
Xy - 2x2 - 2x3 £ 0
0 < X < 42

0 < X, < 42

0 < x3 < 42
Problem 11
Source: Hock and Schittkowski (1981), p. 84
Number of Variables: 3
Starting Point: x, = (0.70,0.20,0.10)
f(xo) = -25698.30

Objective Function:

f(x) = =32.174(255 &n ((x1 + x, + Xy + 0.03)/(0.9x1 + x

2

+ 280 ﬁn((x2 + x, + 0.03)/(0.07x, + x

3 2 3
+ 290 zn((x3 + 0.03)/(0.13x3 + 0.03)))
Constraints: Q< xl <1

< <
0 X, 1

0 < X3 <1
Problem 12
Source: Himmelblau (1972), Problem 8, p. 403
Number of Variables: 4
Starting Point: X, = {(-3.9,-1.0,-3.0,-1.0)
= M 9
f(xo) 19.192

Objective Function:

2.2 2 2.2
£(x) = 100(x, - x)" + (1 - x )7 4+ 90(x, - x3)" 4+ (1 - x

+ 0.03))

+ x

3)

2

+10.1 [(x2 - 1)2 + (x4 - 1)2] + 19.8(x2 - 1)(x4 - 1)

245

+ 0.03))
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Constralnts: =10 < x1 < 10

-10 < xz <10

=10 £ x3 < 10

- < < 10
10 X, 1
Note: This problem was designed to have a nonoptimal stationary point

at f{x) = 8.0 that can cause premature convergence.

Problem 13
Source: Hock and Schittkowsk! (1981), p. 67
Number of Variables: &
Starting Point: X, = (0.0,0.0,0.0,0.0)
f(xo) = 0,00

Objective Function: f{x) = X} T X, T Xy T X X4 + X %, + XpXq = KX,

Constraints: Xy + 2x2 < 8
Axl + X, < 12

3x1 + 4x2 < 12

2x3 + X, < B

Xq + 2xa < 8

X, + X, <5

Problem 14
Source: Hock and Schittkowski (1981}, p. 64
Number of Variables: 4
Starting Point: X, = (2.0,2.0,2.0,2.0)

f(xo) = -6.00



Objective Function: £(x) = 2 -
Congtraints: X + sz + 2x3 + X, = 0
0 <x, <1

0 < x,<1

Problem 15
Source: Hock and Schittkowski (1981), p
Number of Varlables: 4
Starting Point: x, = {0.5,0.5,0.5,0.5)

f(xo) = -1.25

- 96

3x2 + x3 - xa

Objective Function: f£f(x) = x% + 0.5x§ + xg + 0.5x§ - XXy
+ x3x4 - x1 -
Constraints: x, + 2x2 + X4 + x, <5
3x1 + X, + 2x3 - %, < 4
~X, - 4x3 < =1.5

x& 2 0

Xs Xy X,
Problem 16
Source: Luenberger (1973), p. 264
Numher of Variables: 4
Starting Point: X, = (2.0,2.0,1.0,0.0)

£(x) = 5.00

Objective Function: f(x) = x2 + xz + x2

1 2

2
3 + X, - 2x1 - 3x4

247
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Constralnts: le + x2 + x3 + 4x4 = 7
xl + x2 + 2x3 + x4 = f
>0

X1s Xy Xgp X,

Problem 17
Source: Himmelblau (1972), Problem 10, p. 404
Number of Variables: 5
Starting Point: X, = (0.0,0.0,0.0,0.0,1.0)

f(xo) = 20.00
5 3 5 5

3
Objective Function: f£(x) = X ex, + L b x,x. + T dx
170 g T O
5
H - f £ - = as e
Constraints b2 aijxj bi’ i=1, ,10
J=1
x, ?» 0, F=l, 004,35

3

The data for e i=1,...,5; cij’ i=1,...,5, j=l,«..,5; aij’ i=1,...,10,

j=1,...,5; and bi’ i=1,...,10 is given below in Table A-1.

Note: This problem is known as the Shell Development Company Problem.

Its objective function is non-convex.

Problem 18
Source: Hock and Schittkowski (198l1), p. 68
Number of Variables: 5
Starting Point: X, = (1.0,2.0,2.0,2.0,2.0)
f(xo) = 1.87

Objective Function: f(x) =2 - 1/120 X X XX, X



Table A-1

j 1 2 3 4 5
3y ~15 -27 ~36 -18 -12
¢13 30 ~20 -10 32 ~10
cp; | -20 39 -6 -31 32
e3; | -10 -6 10 -6 -10
<45 32 ~31 -6 39 ~20
cs; | -10 32 -10 ~20 30
d; 4 8 10 6 2
a; | -16 2 0 1 0
aZj 0 -2 0 4 2
ag; | =3.5 0 2 0 0
a4; 0 -2 0 -4 -1
as; 0 -9 ~2 1 ~2.8
ag; 2 0 -4 0 0
azy -1 -1 -1 -1 -1
ag; -1 -2 -3 -2 -1
ag; 1 2 3 4 5
210 1 1 1 1 1
by by By By bs by By by by By
-40 -2 -.25 -4 -4 -1 -40 -60 5 1




Constraints: 0 < x. <1

Problem 19
Source: Hock and Schittkowski (1981), p. 71
Number of Variables: 5
Starting Point: X, = (3.0,5.0,-3.0,2.0,-2.0)

f(xo) = 84.00

Objective Function: f(x) = (x1 - 1)2 + (x2 - x3)2 + (x4 - X

Constraints: xl + x2 + x3 + x4 + x5 =5

x, + 2x, + 2x

3 4 5 = 3

Problem 20
Source: Hock and Schittkowski (1981), p. 76
Number of Variables: 5
Starting Point: X, = (2.0,2.0,2.0,2.0,2.0)
f(xo) = 6.00

Objective Function:

f(x) = (x1 - x2)2 + (xz + Xy - 2)2 + (xé - 1)2 + (x5 - 1)

2
5)

2
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Constralints: .3 + 3x2

=10 < x,

-10 < x2

-10 < x3

-10 < xa

- <
10 xs
Problem 21
Source: Hock and Schittkowski (1981},
Number of Variables: 6
Starting Point: x

0
f(x) = 6.0

Objective Function: f(x) = %, + 2x2 + 4x5 + exp(xlxa)

< 10
< 10
<10
< 10

< 10

p. 78

Constraints: X, + 2x2 + st =
xl + x2 + x3 =

x4 + x5 + x6 =

x, +x4 =

xz + KS =

X, + x, =

0 < %, <

0 < x4 <

Rgs Xgs Xgy Xg b

= (1.0,2.0,0.0,0.0,0.0,2.0)

6

3
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Problem 22
Source: Bracken and McCormick (1968), p. 90
Number of Variables: 8
Starting Polnt: Xq = (0.1,0.2,100,125,175,11.2,14.2,15.8)

f(xo) = 1,297.67

235 (ai(x) + bi(x) + ci(x)
Objective Function: f(x) =-T 2n | T
i=1 E
(2m)
where:
2
X (vy = %5)
a,(x) = — exp [- |5 i=1,...,235
i X 2
6 2x
6
2
X2 oy = %)
by (x) = — exp [ ————— |; i=1,...,235
X 2
7 2x
7
Constraints: xl + x2 <1
0.001 < X, < N.499
1-x -x) v, - x)°
¢, (x) = 2 Y oegp |- 2 37 5 g-1,...,235
i x 2
8 2x8

0.001 € x, < 0.499
100 < x, < 180
130 < x, € 210

170 < x_ < 240



5< x, € 25

5K x

< 25

<

25

The data for Yq is given in Table A-2

Table A-2
r.
| y i y

i i
1 95 168-175 175
2 105 176-181 180
3-6 110 182-187 185
7-10 115 188-194 190
11-25 120 195-198 195
26-40 125 199-201 200
41-55 130 202-204 205
56-68 135 205-212 210
69-89 140 213 215
90-101 145 214-219 220
102~-118 150 220-224 230
119-122 155 225 235
123-142 160 226-232 240
143-150 165 233 245
151-167 170 234-235 250

253
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Problem 23
Source: Himmelblau (1972), Problem 17, p. 416
Number of Variables: 10
Starting Point: Xq = (9,9,9,9,9,9,9,9,9,9)

f(xo) = ~43.134

10
Objective Function: £(x) = ¥ |(fn(x, - 2))% + (£n(10 - xi))zl
i=1

Constraints: 2.001 < X, < 9.999, 1i=1,...,10
Note: The objective function of this problem is undefined outside the

feasible region.

Problem 24
Source: Himmelblau (1972), Problem 4, p. 395
Number of Varfables: 10

Starting Poimt: x. = (0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1,0.1)

0
f(xo) = -20,961
10 Xy
Objective Punction: f£(x) = % x,  le, + tn = |
=1 i i 10
a b X
3=1

where Sy i=1,...,10 are given in Tahle A~-3

Constraints: =x., + 2x2 + 2x3 + x6 + % = 2

1 10
x4 + 2x5 + x6 + x7 =1
x3 + x7 + x8 + ng + xlO =1

X, » 0; 1=1,...,10
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Table A-3
1 -6.0R9 6 -14.986
2 -17.164 7 -24.100
3 -34.054 8 ~10.708
4 -5.914 9 ~-26.662
5 =24.721 10 022.179

Note: TFor x, = 0, the objective function is not defined. Also, both

the gradient and Hessian are unhounded in the vicinity of X, = 0.

Problem 25
Source: Day (1979), p. 480
Number of Variables: 11
Starting Point:

Xy = (0.33,0.65,0,65,0.65,0.65,0.65,0.65,0.65,0.65,N.65)

11

Objective Function: f(x) = % a x (Bi + v

2
x. + 8 %)
1=1 11 171

i1

where the data for ai, Bi’ Yi’ 8 1=1,..+,11 13 given in Table A.4:

1’

11

Constraints: b2 a, X < 1; 1=1,2,...,10
jop 1973

0.01 < X, < 0.33

0.0l < x, < D.65; 1=2,3,...,11



where the aij are given in Table A-5.

Table A-4 (Power of 10 in parentheses)
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3 oy 85 Y; F

1 6.5776(-1) -2.6408 (-2) -1.2099(-2) 8.5941(-5)
2 3.6017(0) -4.3808(-1) 6.5400(-3) -5.4872(-5)
3 1.9244(-1) -2.5327(-1) -1.3651(-2) 1.0190(-4)
4 1.5122(0) -6.3925(-1) 1.1832(-2) -9.1418(-5)
5 2.0889(0) -2,3527(-1) -1.6156(-3) 8.1508(-6)
6 1.8326(0) -1.7797(-1) 7.8416(-4) -1.3105(-5)
7 3.0427(0) -3.6994(-1) 5.2798(-3) -3.9607(-5)
8 3.9075(0) -5.1033(-1) 6.4643(-3) -4.5730(-5)
9 1.2003(0) -1.2865(-1) -1.5012(-3) 5.3325(-6)
10 8.9714(-2) -1.5468(-1) -1.9908(-1) -5.1898(-6)
11 5.3508(0) -5.9023(-1) 1.5166(-2) -1.2015(-4)

Note: This problem is known as the "Water Quality Problem." The

data come from a version of the Willamette River System in Oregon. The

variable X, is the maximum allowable ratio of BOD (biochemical oxygen

demand) of the effluent outflow to the BOD of the wastewater inflow for

treatment plant i,

cost data resulting in a nonconvex objective function.

The cost curves come from least squares fitting of

The final values

of the variables x, are equal to one minus the efficiency of each



Table A-5

1 2 3 4 5 6 7 8 9 10 11

1 1.26700

2 1 1.07600 | 7.7380 | .215800 .53600

3 [ 0.51880 § 3.9450 | .212400 .66010 «49670 | .75550

4 | 0.07548 | 0.6012 . 044760 .14750 .13590 | .21300 .13550

5 1 0.07144 | 0.5690 | .042370 .13960 .12860 | .20160 .12820 | 2.1540

6 | 0.06885 | 0.5409 .037030 .12040 .10650 | .16600 .08642 | 1.4150 .46550

7 | 0.04014 { 0.3197 | .023810 07842 .07226 .11330 .07205 | 1.2100 . 71450

8 | 0.02213 | 0.1763 .013130 .04323 .03984 | .06246 .03972 | 0.6674 .39390 .OSSOQ

9 0.01339 | 0.10867 .007943 .02617 02411 .03780 | .02404 | 0.4039 .23840 | .05144 | 1.1120
10 | 0.03061 | 0.2416 .017030 .05561 . 04992 .07799 .04389 | 0.7264 .31880 | .03890 | 0.5605

£62
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treatment plant j. The objective function reflects the total cost of

building or expanding the treatment plants to accomodate certaln

gspecified BOD loads.

Problem 26
Source: Kezouh (1983): Unpublished
Number of Variables: 14

Starting Point: x; = (5,0,0,0,0,0,0,0,5,-1,0,0,~1,0)

f(xo) = 43,074
Objective Function:

f(x) = *[417x1 + 96x2 + 104x3 + 110x4 + 107x5 + 206x6

+ 48x8 + 61x + 28x_ x + Tx.x + 68x.x

+ 129x X1 0%13 9%10%14 %10 9%11%13

7 9

+ 23x

9%11%14 11 9%12%13

+ 38x9x14] + exp(x1 + x2) [exp(x6 + x9x10x13) + exp(x7 + x9x10x14)

+ exp (x8 + qulo)] + exp(xl + x3)[exp(x6 + xgx11x13)

+ 13x9x + S58x .x%x..X + 40x9x12x14+ 12qu12 + 53x9x13

+ exp(x7+ x9x11x14) + exp(x8+ x9x11)] + exp(x1 + xa)[exp(x6 + x9x12x13)

+ exp(x7+ X Yy + exp(x8+ XXy

9%12%14
+ exp(x7 + x9x14) + exp(x8 + Xg)]

Constraints: x2 + x3 + x4 + xS =0
x6 + Xy + x8 =0
Xip F Xy F Xy =1
x3 + X4 = -1
X10 ~ *11 <0
*11 7 %12 <0
x12 <1
X £ 0

13~ *14

)] + exp(x1 + xs)[exp(x6 + x9x13)



14

Problem 27
Source:
Number of Variables:

Starting Point: Xg

<1

~20 < x1

- <
3 X,

=10 < Xq < 10

0 < X, < 20

< 1;

F(x) = 664.82

Objective Function:

Constraints: 0 < x4 -

< 20;
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1=2,3,.0.,8

1=10,11,.,13,14

Hock and Schittkowskl (1981), p. 126

= (20,55,15,20, 50, 20, 20, 60, 20, 20, 60, 20, 20, 60, 20)

4

FG) = T [2:30 gy + 0-0001 X2 * 17 xg,,

+ 00,0001 x2 ,, + 2.2 Xy + 0.00015 x5 ]
, <6
, <6
, <6
, <6
, <6
. <6
Xy < 6
Xg < 6
X9 <6
X1 0 < 6
X1 < 6
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0 < X5 =%, <6

“X; T X, < Xg < -60

X, T X5 < Xy < =50

~X, T Xg T Xq < =70

X107 X1 T ¥y ¢ 78

TEig T Xy, T Xyg < =100 0 < X4 < 60
8 < X < 21 0 < X0 < 90
43 < X, < 57 0 < xll < 120
3¢« X4 < 16 0 < X1 < 60
0 < x, < an N < X4 < 90
0 < X5 < 120 0 < Xy, < 120
0 < Xe < 60 0 < X5 < 60
0 < x5 < 90
0 < Xg < 120

Note: The objective function is a quadratic, strictly convex function.
This 1s a problem related to electric power scheduling as discussed in
Biges (1976). It 1is a representation of the problem of scheduling three
generators to meet the demand for power over a period of time. The
variables denote the output from the different generators at specific

points in time.

Problem 28
Source: Himmelblau (1972), problem 19, p.417

Number of Variables: 16



Starting Point:

261

x_ = (0,0.885,0,0.289,1.308,0.828,2.270,0,1.691,0.261,0,0,0,0,0.276,0)

16 16 9 2
Objective Function: f(x) = I Y oa, (x, +x, + 1D(x, +x_, +1)
R 1§81 1 i 3
i=1 j=1
16
Constraints: Tob,.x, =c¢.; 1=1,2,...,8
=1 1i7) i
0 < Xy < 5; i=1,...,16
The data for aij’ bij’ and ¢y iz given in Table A-6.
Problem 29

Source: Himmelblau (1972), problem 6, p. 397
Number of Variables: 45

Starting Point: L

[-6540  0.0000  3.7030 46.7500 0.0000 0.0000 0.0000 0.0000

0.0000 + 80G5 .0881 .0483 0.0000 0.0000 «2615 .0204

» 0155 0.0000 0.0000  0.0000 .0022 0.0000 0.0000  0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0211 .0023  0.0000

0.0000 0.0000Q 0.0000  0.0000 0.0000  0.0000 .0091 0. 0000

0.0000 0. 0000 0.0000  0.0000 0.0000]

n
k ?k X K
Objective Function: f£f(x) = ) l ) X (e Kk + &n J )]
k=l =1 J¢ 1 §k
- xjk
j=1
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7 ™
Constraints: f(x) = % [T E X = h,; i=1,...,16
k=1 g=1 I !
jk< 0 [(j=1:"‘:nk)s k=1,...,7]
where the data for ns cjk’ and b1 is given in Tabhle A-7, and the data
for Eijk is given in Table A-8.
Note: This problem is known as the "Chemical Equilibrium Problem”
Table A-7
1 N.6529581 1 1 0.0 6 3 0.0
2 0.281941 2 1 -7.69 7 3 2.2435
3 3.705233 3 1 -11.52 8 3 0.0
4 47.00022 4 1 -36.60 9 3 -3%.3%
5 47.02972 1 2 -10.94 10 3 -21.49
6 0. 08005 2 2 0.0 11 3 -32.84
7 0.08813 3 2 0.0 12 3 6.12
8 0.04829 4 2 0.0 13 3 0.0
9 0.0155 5 2 0.0 14 3 0.0
10 0.0211275 6 2 0.0 15 3 -1.9028
11 0.0022725 7 2 0.0 16 3 -2.8889
12 0.0 8 2 2.5966 17 3 -3.3622
13 0.0 9 2 -39.39 18 3 -7.4854
14 0.0 10 2 -21.35 1 4 -15.639
15 0.0 11 2 -32.84 2 4 0.0
16 0.0 12 2 6.26 3 4 21.81
13 2 0.0 1 5 -16.79
1 3 10. 4 2 5 0.0
2 3 0.0 3 5 18.9779
3 3 0.5 1 6 0.0
4 3 0.0 2 6 11.959
5 3 0.0 1 7 0.0
2 7 12.899
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Table A-8

4

5 6 7 8 910 11

12

13

14 15 16

X3k
*11
¥21
x31
41
X12
x22
X32
X42
Xx52
62
x72
82
Xg2
X10.2
X11.2
X12.2
X13.3
X13
X23
¥33
X43
X53
%63
X73
x83
x93
X10.3
¥11.3
X12.3
X13.3
X14.3
¥X15.3
X16.3
X17.3
X18.3
X14
X24
X34
X15
Xx25
X35
X16
X26
X17
x27

N

—t

i e N

-1
-2
-3
-4




Problem 30
Source: Himmelblau (1972), problem 23, p. 423
Number of Variables: 100
Starting Point: X is given in Table A-9

f(xo) = -181.80

Objective Function: f(x) = u. [ a.%J - 1]

Constraints:

i

( x..) c¢.; i=l,,..,5

-X. . 0; 1=1,...,100
The data for aij’ - bj’ and Cys is given in Table A-10

Note: This problem is known as the "Weapons Assignment Problem."
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Table A-9

i

1 2 3 & 5 6 7 8 9101112 13 14 15 16 17 18 19 20
i
1| x; g 35 50 70 35 xg; 10
2 95 5
3| 30 5
4
5| x5 x19 %90 *95 X100|




Table A-10

aij probability that weapon i will not damage target j
1{2|3|a|s5|67(8]9|10]|11 |12 |13 |14 |15 |16 |17 |18 [19 |20 ¢yt no of
weapons
avatlable
1 L9511 1 1 .85|.90|.85|.80]|1 1 1 1 it 1 11 1 951 1 {200
.84(.83/.85|.84).85{.81|.81].82].80|.86/{1 .98]|1 .88(.871.88(.85(.84|.851.85[|100
.96(.95|.96).96(.96{.90|.927{.91].92(.95{.99|.98(.99(.98|.97(.98|.95/.92].93(.92[300
1 1 1 1 1 1 1 11 1 .96(.911.921.911.92].98(.93(1 1 1 |1 150
.921.94).92.95].95|.98|.98|1 1 .90.951.96/.917.98{.99|.99|1 |1 1 1 |250
bj: minimum no. of weapons to be assigned to target j
30 100 40 50 (70 (35 10
ujs military value of target j
60 |50 |50 |75 |40 [60 (35 [30 [25 |150(30 |45 [125(200|200|130{100[100|100(150

S9¢
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