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SUMMARY 

Three microstructural evolution models are developed and presented which utilize 

different processing techniques, microstructural features, and modeling technique for 

forward or inverse modeling.  The first model is an inverse model capable of predicting the 

initial microstructure required to obtain a desired final microstructure for use in nuclear 

forensics applications.  This inverse model describes the microstructure evolution of a 

monotectoid Zr-18wt.%Nb alloy by specifying the crystallographic orientation of the bcc 

𝛽-phase ZrNb.  By modeling the evolution of the crystallographic orientation the model 

attempts to provide information on how the material was processed and a framework which 

allows for the optimization of the mechanical material properties.  The second model is a 

forward model which utilizes two-point correlation functions to describe the phase 

distribution of the dual phase Ti-6Al-4V alloy in order to predict the final microstructure 

obtained after a known initial microstructure undergoes a specified processing procedure.  

This model uses statistical continuum theory to describe the deformation of the two-point 

correlation functions and reconstructs the deformed statistics by systematic deformation of 

the initial two-point correlation function.  The last model is an inverse model which 

predicts the initial microstructure required to obtain a desired final microstructure using 

the two-point correlation functions described in the second model.  This model attempts to 

provide a computational model capable of providing optimization of material 

microstructure and thus mechanical properties for industrial applications.  Ultimately, the 

goal of these models is to reduce the industrial requirement of trial-and-error experiments 



 xiii 

for the development of new processing procedures and provide an avenue for the 

development of these new procedures through computational simulations. 
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CHAPTER 1. INTRODUCTION 

Modeling efforts cover all realms of research and length scales from the atomic to 

the galactic.  As computational resources have become cheaper and more powerful, so too 

have modeling efforts become more detailed in an attempt to get as close to reality as 

possible.  It is often seen that as models become more and more detailed the time required 

to run such models also increases, at best linearly and at worst exponentially.  However, 

applications for in-line operations (i.e. optimization of additive manufacturing processes) 

which require fast responses cannot wait for these long simulation times.  For material 

science modeling, the amount of microstructural information modeled through the 

simulations tends to have a direct impact on the computational time required.  The 

exception to this rule comes in the form of statistical functions; these allow for the 

microstructure to be defined in a mathematical framework which can greatly reduce the 

computational time.  

The first chapter of this work will provide important information for the 

understanding of the methodologies and ideas presented here.  This chapter will expand 

upon microstructure evolution modeling as well as provide introductory information into 

crystallographic orientation and two-point correlation functions.   

In chapter two an inverse model for the prediction of crystallographic orientation will 

be presented for a nuclear forensics application.  The model will be applied to a hot-rolled 

and intermittently annealed Zr-Nb alloy at the monotectoid composition.  Due to the 

annealing stage of the processing procedure a novel recrystallization subtraction 

methodology is utilized in conjuncture with Fourier transformations to predict the 
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orientation evolution. Qualitative and quantitative error analyses are performed to illustrate 

the accuracy of the model and to provide validation of the methodologies utilized. 

In chapter three, the phase distribution of a dual-phase Ti-6Al-4V alloy will be 

described using two-point correlation functions and a model is developed to describe the 

evolution of the correlation functions.  The model developed here expands on a previous 

statistical continuum model to describe the evolution of the full two-point statistics map as 

a function of strain.  The model is then applied to isothermal compression in a dual-phase 

Ti-6Al-4V alloy which have been deformed at various strain rates.  An error analysis is 

performed to describe the accuracy of the model and illustrate the effect of representative 

statistics on modeling efforts.   

In chapter 4, an inverse model is developed for the prediction of the initial two-point 

statistics required to obtain a desired final set of statistics.  The model is developed 

following the ideas of the existence of a microstructural hull for two-point statistics.  This 

inverse model is applied to a dual-phase Ti-6Al-4V alloy deformed using the model 

presented in chapter three.  An error analysis is performed to describe the accuracy of the 

inverse model and specify the avenues available for future work in this area. 

Lastly, chapter five provides a summarization of the conclusions obtained for each 

of the models presented in this work.  A summarization of the future work for each chapter 

is also provided in chapter five.  It is the goal of this work to produce models which 

simulate the evolution of microstructural statistics, to provide accurate reporting of the 

deformation microstructure with faster computational times, and to reduce the dependence 

on finite element models for microstructure evolution.   
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1.1 Microstructure Modeling 

Microstructure evolution modeling is an umbrella term which encompasses both 

forward and inverse models.  Forward models are models which deform a known initial 

microstructure using a specific set of processing conditions to predict the final 

microstructure after processing.  Figure 1 illustrates a schematic which describes the 

forward model methodology. 

 

Figure 1: Schematic of the forward model methodology for microstructure evolution 
models. 

Forward models encompass most of the past research conducted into microstructure 

evolution modeling.  The Potts model, the JMAK equation, the viscoplastic self-consistent 

(VPSC) model, and finite element models are all examples of forward models which are 

capable of predicting the evolution of different microstructural features[1-4].  Forward 

models are defined as one-to-one models. This means that a single unique solution is 

obtained for every set of initial microstructure and processing conditions.  This is not the 

case for inverse models. 
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Inverse models follow the opposite methodology of the forward models.  An 

inverse model is defined as a model which predicts the initial microstructure and processing 

conditions that are required to obtain a desired final microstructure.  Figure 2 shows a 

schematic of the inverse model methodology. 

 

Figure 2: Schematic of the inverse model methodology for microstructure evolution 
models. 

Research into inverse models for microstructure prediction has increased in the past 

twenty years.  This increase in research interest is partially due to the large impact that such 

inverse models have for both industrial and forensics applications.  Currently, in industrial 

settings, new processing procedures are developed using either trial-and-error based 

experiments or forward model techniques.  However, these techniques do not allow for the 

optimization of material microstructure or properties.  Inverse models can be utilized to 

predict the initial microstructure and processing conditions needed to obtain a desired final 

microstructure.  This definition allows for the optimization of both material microstructure 

and properties in a way that forward models are unable to do.  It is important to note that 

while forward models exhibit a one-to-one relationship between initial and final 

microstructures, inverse models do not exhibit this relationship.  This is to be expected as 
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multiple different initial microstructures can reach the same final state given different 

processing conditions.  This means that the results of an inverse model will be viable 

solutions but will not be unique. 

1.2 Crystallographic Orientation: A Microstructural Feature 

A material’s microstructure is described based on the feature of interest.  These 

microstructural features range from grain size distributions, to volume fraction of phases 

and grain morphology[5-7].  One such microstructural feature is the orientation of each 

crystal in a material called the crystallographic orientation.  Crystalline materials, like Ti-

6Al-4V or  AA7075, are made up of regions of constant lattice orientation called grains.  

Crystallographic orientation is the grain’s orientation when compared to a reference frame 

and is described using three angles.  In 1776, Leonhard Euler introduced the idea that the 

orientation of a rigid body, with respect to a reference frame, can be described as a set of 

three angles which were later termed Euler angles.  H.J. Bunge applied these Euler angles 

to describe the orientation of each grain in a crystalline microstructure.  Figure 3 describes 

the process of transforming a reference frame into the grain frame using Bunge’s 

description of Euler angles (𝜑/,𝜙,𝜑2) [8].   
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Figure 3: Graphical representation of the Bunge description of Euler angles. 

There are four different Euler angle conventions used by the crystallographic 

orientation community which are attributed to Bunge, Roe, Canova and Kocks.  The 

Canova representation is a direct inverse of the Bunge description.  Figure 4 describes the 

Kocks and Roe descriptions of the Euler angles[9,10].   

 

Figure 4: Graphical representation of the Kocks (top) and Roe (bottom) 
descriptions of Euler angles. 
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In the crystallographic orientation community, the Bunge description is most 

commonly used and will therefore be used in this work.  Crystallographic orientation can 

be used to describe microstructural information (preferred vs random orientation) and has 

been shown to have a large impact on the mechanical properties of polycrystalline 

materials.  Therefore, crystallographic orientation is a microstructural feature of interest 

for modeling microstructure evolution due to processing. 

 Crystallographic orientation can be mathematically described using a probability 

distribution function called the orientation distribution function (ODF).  The ODF is a 

probability distribution function across Euler space (the 3D space described by 𝜙/, 𝜙,	and 

𝜑2) which specifies the probability of a grain having an orientation, 𝑔, where 𝑔 =

(𝜑/, 𝜙,𝜑2).  Equation 1 describes the calculation of the ODF mathematically using a 

counting method which counts how many randomly chosen points have the chosen 

orientation vs the total number of chosen points. 

 𝑑𝑉
𝑉 = 𝑓(𝑔)𝑑𝑔 (1) 

The intensity of the ODF is in terms of ‘times random’ because the ODF is normalized 

with respect to a random microstructure.  This means that when the intensity of the ODF 

is greater than 1 the material is said to be textured and when the intensity is 1 the material 

is said to have a random texture. 
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1.3 Two-Point Correlation Functions 

Two-point correlation functions are a subset of N-point correlation functions which 

use vectors to describe the distance between microstructural features of interest.  Two-point 

correlation functions therefore describe the probability of finding a vector, 𝒓;⃗ , for which the 

head of the vector lies in feature 𝑖 and the tail lies in feature 𝑗, where 𝑖, 𝑗 = 1, 2,… , 𝑛 and 

𝑛 is the total number of distinct features[11].  There are two forms that the two-point 

correlation function can take, these are the autocorrelation (when 𝑖 = 𝑗) and the cross-

correlation (when 𝑖 ≠ 𝑗).  A key characteristic for two-point correlation functions is that 

when |𝒓;⃗ | = 0 the two-point correlation function collapses to the one-point correlation 

function.  One-point correlation functions are similar to two-point correlation functions, 

but instead of throwing vectors the one-point correlation function counts singular points.  

This means that the ODF is a one-point correlation function for crystallographic 

orientation, while volume fraction of phases is the one-point correlation function for multi-

phase materials.  The simplest form of the two-point correlation function is used to describe 

a two-phase isotropic material.  For isotropic cases, the two-point correlation function is 

considered to be constant for all 𝜃 values, and as such the correlation functions are a 

function only of the magnitude of 𝒓;⃗ .  In 1974, P. Corson developed an empirical equation 

for calculating the two-point correlation function for isotropic two-phase materials[12,13].  

This equation became known as Corson’s equation and is mathematically defined by 

equation 2. 

 𝑃HI(𝑟) = 𝛼HI + 𝛽HI𝑒MNOPQ
ROP  (2) 
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In equation 2, 𝛼HI and 𝛽HI are constants which are calculated from the volume fraction of 

each phase, 𝑐HI and 𝑛HI are empirically calculated from experimental images, and 𝑟 is the 

distance between the two points.  Furthermore, the limiting conditions (when 𝑟 = 0 and 

𝑟 → 	∞) are defined for each of the four correlation functions in Table 1[13].  When 

successfully calibrated following the limiting conditions in Table 1, Corson’s equation 

provides a methodology for describing the two-point statistics of an isotropic 

microstructure mathematically.  Thus, by evolving the Corson’s equation description, the 

two-point statistics are evolved as well. 

Table 1: Limiting conditions and resultant coefficients for Corson's equation. 

 Boundary Conditions Resultant Coefficients 

𝑃HI	 𝑟 = 0 𝑟 → 	∞ 𝛼HI 𝛽HI 

𝑃// 𝑉/ 𝑉/2 𝑉/2 𝑉/𝑉2 

𝑃/2  0 𝑉/𝑉2 𝑉/𝑉2 −𝑉/𝑉2 

𝑃2/  0 𝑉/𝑉2 𝑉/𝑉2 −𝑉/𝑉2 

𝑃22 𝑉2 𝑉22 𝑉22 𝑉/𝑉2 
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CHAPTER 2. TEXTURE MODELING FOR NUCLEAR 

FORENSICS APPLICATIONS 

2.1 Introduction to Nuclear Forensics 

The field of nuclear forensics focuses on the investigation of interdicted nuclear 

material for the goal of identifying the originating region, facility or nation.  These 

investigations often revolve around the identification of isotope balances, radio-

chronometric age, and physical macroscopic structural features[14].  While each individual 

characteristic has a role to play in the identification of the location of origin, it is normally 

only investigations which obtain results from multiple characteristics that are able to 

provide a strong declaration of the origin location.  However, obtaining multiple 

characteristics and the corresponding analysis of each type of characteristic are time 

consuming approaches which could be detrimental to an investigation in which time is of 

the essence.  For this reason, the identification of a singular characteristic which can 

provide a quick and accurate identification of the origin of interdicted material is of great 

interest to the nuclear forensics community.  Crystallographic orientation can provide this, 

as texture is highly dependent on the processing procedure employed.  Therefore, through 

the modeling of the evolution of texture it is possible to identify the processing procedure 

used for the creation of the interdicted material and thus the location of origin. 

2.2 Hot Rolling and Monotectoid BCC Zr-Nb 

 Zr-rich Zr-Nb alloys have multiple uses in the biomedical industry for prosthetic 

implants[15-17], and in the nuclear energy industry as cladding material[18-20].  Zr-Nb alloys 
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consist of two main equilibrium crystallographic phases, a high temperature 𝛽-phase and 

a room temperature 𝛼-phase.  The high temperature 𝛽-phase exhibits a body-centered cubic 

(bcc) lattice structure that has a random solid solution mixing of Zr and Nb atoms[21].  The 

room temperature 𝛼-phase exhibits a Zr-rich hexagonally close-packed (hcp) structure.  

The monotectoid composition of 18.8w% Nb was chosen as a surrogate for the 

monotectoid U-Nb alloy commonly used in nuclear applications[21,22].  At this monotectoid 

composition, a phase transformation occurs at 620	± 10°C where the bcc 𝛽-ZrNb phase 

transforms into the hcp 𝛼-ZrNb phase and a bcc 𝛽-Nb phase, which resembles a Zr depleted 

𝛽-ZrNb structure[23].  The 𝛽-phase has also been observed to transform into the non-

equilibrium trigonal 𝜔-phase, common to Zr and Ti systems, at Nb compositions below 

the monotectoid composition[24-26]. For the nuclear forensics application studied here, the 

monotectoid Zr-Nb material was processed using a hot rolling technique at a temperature 

of 1000°C.  The processing temperature used is well above the monotectoid transition 

temperature; as such most deformation will be evident in the 𝛽-ZrNb.  Therefore, the 

microstructure analysis presented here is focused on the texture evolution of the 𝛽-ZrNb 

phase only, as the low-temperature phases will not form in large enough quantities to 

accurately analyze. 

 The thermo-mechanical processing procedure employed involved successively 

annealing and hot rolling the ZrNb samples to increasing levels of height reduction.  The 

evolution of crystallographic texture was captured through intermittent X-Ray diffraction 

(XRD) based texture measurements.  The ZrNb sample pucks, with an approximate height 

of 5mm and diameter of 18mm at the start, were sectioned from a rod obtained from AMES 

Laboratory.  The ZrNb rod was fabricated from pure Zr and Nb chunk material which had 
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been triple-arc melted into small pieces and then drop-cast into a single rod using a water-

cooled copper hearth.  The exact composition of the rod, as reported by AMES, was 

18.271w% Nb corresponding to the monotectoid composition of the ZrNb system[27].  Five 

pucks were sectioned from the rod, and were lightly polished to remove deformation 

caused by the sectioning process. 

 One puck was set aside to be the reference “as-cast” sample representing the initial 

microstructural state of the system.  The remaining four pucks were subjected to the hot 

rolling procedure.  This procedure involved first heating the sample at 1000°C for five 

minutes, then quickly moving the sample from the furnace to the roller where an 

approximate 2% height reduction was performed.  After the 2% rolling pass was 

completed, height measurements were taken and the sample was returned to the furnace to 

begin the next rolling step.  This process was repeated several times for each of the four 

pucks until the total height reduction designated for each puck was reached.  These 

designated height reductions were 10%, 20%, 30% and 40% total reduction.  As each 

sample reached its designated reduction in height, the sample then underwent a final five 

minute anneal at 1000°C and room temperature water quenching.  The furnace used to heat 

the samples was an MTI Corp GSL-1700s60 high temperature vacuum/gas tube furnace 

fitted with an alumina tube.  A large General Electric Motors 1960s rolling mill was used 

to perform each of the rolling steps. 

 Each sample, including the as-cast sample that was set aside, was polished using an 

Allied High Tech MetPrep 4TM auto-polisher to a 1200 grit (P-4000) final polish for XRD 

characterization.  This was done to remove any oxides that may have formed on the surface 

of the samples during annealing.  Absolute X-Ray scans were first performed using a 
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PANalytical Empyrean diffractometer equipped with Cu K𝛼 X-Rays, over a 20-120° 2𝜃 

range to analyze and verify that the annealing stages were hindering the formation of 𝛼-

phase ZrNb grains.  Once the phases and bcc peaks were identified, the samples were 

moved to a PANalytical X’Pert3 MRD diffractometer equipped with a Chi-Phi-Z stage and 

Cu K𝛼 X-Rays to perform texture measurements on the bcc 𝛽-phase.  Of the several 𝛽-

phase peaks identified, accurate raw pole figures were measured for the {002}, {112}, 

{222} and {123} reflections.  These peaks were selected based on a criteria of strong peak 

intensity, minimal overlap with secondary 𝛼-phase peaks, and with spectral peaks 

produced by unfiltered source X-rays.  Texture analysis and figure creation was performed 

using the MTEX software package for MATLAB[28]. 

2.3 Mathematical Theory 

The purpose of the inverse model is to create a relationship between the orientation 

distribution functions at two different stages of a processing procedure.  To do this, the 

ODF is mathematically described as a transformation of a set of orthogonal basis functions 

using a set of coefficients called the texture coefficients.  Traditionally, the ODF has been 

defined using the generalized spherical harmonic functions as shown by Bunge[8] in 

equation 3. 

 
𝑓(𝑔, 𝜂) = 	ZZ Z𝐹\]^

_(\)

^&`

(𝜂)�̇̈�\]^(𝑔)
d(\)

]&`

e

\&`

 (3) 

Here, �̇̈�\]^(𝑔) describes the symmetric generalized spherical harmonics while 𝐹\]^(𝜂) are 

the texture coefficients and 𝑔 = (𝜑/, 𝜙,𝜑2) is the Bunge convention for describing Euler 
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angles.  To describe the evolution of Euler space due to an imposed strain-rate, Clement 

and Coulomb[29] developed a conservation equation described by equation 4. 

 𝜕𝑓(𝑔, 𝜂)
𝜕𝜂 +	

1
𝑠𝑖𝑛𝜙 𝑑𝑖𝑣

[𝑓(𝑔, 𝜂)𝑠𝑖𝑛𝜙𝑅(𝑔)] = 0 (4) 

Using the generalized spherical harmonics description for the ODF Bunge et al.[30] 

expanded equation 4 to obtain a general linear relationship between the texture coefficients 

of two ODFs specified by equation 5. 

 𝜕𝐹\]^(𝜂)
𝜕𝜂 = 	 Z 𝐴\m

]^no

m,n,o

𝐹m
no(𝜂) (5) 

Li et al.[31] then performed an integration on this linear relationship to obtain an equation 

which describes the texture coefficient evolution as a function of strain and processing 

conditions. 

 𝐹(𝜂) = 𝑒p(qMqr)𝐹(𝜂`) (6) 

In equation 6, A is the process path function which describes the material response to the 

imposed processing procedure.  Meanwhile, 𝜂 and 𝜂` correspond to the strain associated 

with the final microstructure and initial microstructure respectively.  Fundamentally, 

equation 6 is a relationship that directly connects the texture components of microstructures 

with different strains to each other using the process path function.  The process path model 

has been utilized for different material systems and processing conditions to predict the 

texture coefficients for path optimization[32-36].  However, algorithms and models 
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employing the use of generalized spherical harmonics tend to be computationally 

inefficient.  In order to combat this issue, a new definition for the ODF is created using a 

Fourier transformation method as shown by equation 7. 

 𝑓(𝑔, 𝜂) = 	Z𝜒^𝑒
2tHu^vwx

^

= 	Z𝜒^ ∗ 𝐸
^

 (7) 

Here, 𝜒^ are the texture coefficients associated with the Fourier transformation and are 

similar to the texture coefficients in equation 3.  Furthermore, 𝐸 is a replacement for the 

Fourier basis functions similar to �̇̈�\]^ for the generalized spherical harmonics.  By 

following the work done by Bunge et al.[30], a new form of equation 6 can be identified 

using Fourier transformation.  To do this, equation 4 is simplified for the conservation of 

matter in a volume element of Euler space to obtain equation 8. 

 𝜕𝑓(𝑔, 𝜂)
𝜕𝑡 + 𝑑𝑖𝑣[𝑓(𝑔, 𝜂)𝑅(𝑔)] + 𝑐𝑡𝑔𝜙𝑓(𝑔, 𝑛)𝑅(𝑔) = 0 (8) 

Equation 7 is then substituted into equation 8 to obtain: 

 
Z

𝑑𝜒^(𝜂)
𝑑𝜂 𝐸(𝑔) +	Z𝜒^(𝜂)[𝑑𝑖𝑣|𝐸(𝑔)𝑅(𝑔)} + 𝑐𝑡𝑔𝜙𝐸(𝑔)𝑅(𝑔)] = 0 (9) 

Continuing to follow the work by Bunge et al.,[30] the second summation in equation 9 can 

be defined as a Fourier transformation as shown by equation 10. 

 Z𝜒^(𝜂)[𝑑𝑖𝑣|𝐸(𝑔)𝑅(𝑔)} + 𝑐𝑡𝑔𝜙𝐸(𝑔)𝑅(𝑔)] = 	Z𝐴𝜒]	 (10) 
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Thus, a new general linear relationship is obtained between the Fourier texture coefficients 

as described by equation 11. 

 𝑑𝜒^(𝜂)
𝑑𝜂 = 	Z𝐴𝜒q (11) 

Lastly, equation 11 is integrated following the work of Li et al.[31] to obtain equation 12 

which is called the conservation of crystallites. 

 𝜒^(𝜂) = 𝑒p(qMqr)𝜒^(𝜂`) (12) 

Equation 12 is of the same form as equation 6, where A is the process path function 

associated with the material response to the imposed processing procedure.  However, the 

process path function in equation 12 is associated with a Fourier definition for the ODF.  

Therefore, equation 12 is an invertible model which has the capability to predict the 

evolution of the texture coefficients due to a known processing.  The key to using equation 

12 for an inverse model is to first identify the process path function using known 

experimental data.  To do this, equation 12 is rewritten to obtain equation 13. 

 
𝐴 =

ln[𝜒(𝜂) ∗ 𝜒`M/(𝜂)]
𝜂 − 𝜂`

 (13) 

Equation 13 defines the process path function as a function of the texture coefficients and 

the associated strain values.  To calculate the process path function, two ODFs are 

experimentally obtained from two samples with known strain values.  The ODF 

corresponding to the lower strain value is considered to be the “initial” ODF, while the 
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larger strain value corresponds to the “final” microstructure.  Once two experimentally 

measured ODFs with known strain values are obtained, all the information is known to 

allow the calculation of the process path function between the two strains.  However, as 

with all experimentally driven models, the more data points that are used to calculate the 

process path function, the greater the accuracy of the model. 

 For this application, the process path function was calculated using the texture 

coefficients of the 0%, 20%, 30% and 40% reduced samples.  A more in-depth look at the 

method for calculating the process path function using four data points will be presented 

in section 2.4.  The calculated process path function was then saved to be used as an input 

in future inverse simulations.  Once the process path function is known, equation 12 can 

be rewritten again to describe the initial texture coefficients as a function of the process 

path function and the final texture coefficients as described by equation 14. 

 𝜒`(𝜂) = 𝜒(𝜂)�𝑒p(qMqr)�
M/

 (14) 

It is important to note that this model is used for processing conditions that do not include 

recrystallization or phase transformations.  This is due to the fact that this model assumes 

that there is a continuous path which can be followed from the initial microstructure to the 

final microstructure as a function of strain.  However, recrystallization and phase 

transformations are discontinuous processes and, as such, break this assumption.  In this 

application, any phase transformations are hindered by water quenching after the final 

annealing stage.  However, the thermo-mechanical nature of the processing procedure 

means that recrystallization occurs throughout processing.  In order to limit the effect of 

recrystallization, the experimentally measured ODFs were considered to be a combination 
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of a deformation ODF, 𝑓���(𝑔, 𝜂), and a recrystallization ODF,  𝑓�(𝑔), as described by 

equation 15.  

 𝑓�x�(𝑔, 𝜂) = 𝑓���(𝑔, 𝜂) + 𝜈�(𝜂)𝑓Q�NQ�(𝑔) (15) 

The recrystallization ODF was calculated by measuring the difference in the ODF 

of the 10% reduced sample and a separate sample which was rolled to 10% reduction and 

immediately quenched without a final annealing step.  The experimentally measured ODF 

of the non-annealed sample was then subtracted from the ODF of the sample that 

underwent the final annealing stage using the MTEX package for MATLAB.  Figure 5 

shows the 𝜑2 = 0° and 𝜑2 = 45° sections of the recrystallization ODF that was calculated 

in this way. 

 

Figure 5: 𝝋𝟐=0° (top) and 𝝋𝟐=45° (bottom) sections of the calculated 
recrystallization ODF caused by the annealing process after 10% deformation. 
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Figure 5 identifies that there is a strong texture at 𝑔 = (90°, 15°, 45°) as well as two 

texture fibers in the 𝜑2 = 0° section at 𝜙 = 25°	and 65°.  The 𝑣�(𝜂) term in equation 15 

is a weighting term used to represent the effect of more annealing steps on the strength of 

the recrystallization ODF.  The 𝑣�(𝜂) term was calculated by dividing the number of 

annealing steps that occurred by the number of annealing steps that occurred for the 10% 

reduced sample.  Table 2 shows the value of 𝑣�(𝜂) for each of the samples. 

Table 2: Recrystallization weights for each of the rolled samples. 

Height Reduction 𝜈�(𝜂) value 

10% 1 

20% 2.2 

30% 3.2 

40% 4.2 

Furthermore, since the pucks are heated to 1000°𝐶 for five minutes prior to any 

deformation, the 0% reduced ODF was obtained by heating the as-received ZrNb puck to 

1000°𝐶 for five minutes followed by water quenching.  This was done in order to more 

accurately define the initial microstructure since the recrystallization will affect the 

resulting deformation evolution.  Figure 6 shows the 𝜑2 = 0° and 𝜑2 = 45° ODF sections 

for the annealed 0% reduced sample. 
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Figure 6: 𝝋𝟐=0° (top) and 𝝋𝟐=45° (bottom) sections of the experimentally measured 
ODF for the annealed 0% reduced sample. 

2.4 Texture Prediction Results 

 The texture analysis presented in this work is focused on identifying the texture 

evolution of the bcc 𝛽-ZrNb phase.  Therefore, it was necessary to design an experimental 

processing procedure which preserved the dominance of the 𝛽-phase and suppressed the 

formation of other secondary phases, which could alter the texture evolution behavior.  The 

hot rolling and annealing temperature of 1000°𝐶 was chosen for this purpose as it is well 

above the monotectoid transformation temperature. The final five minute annealing and 

quenching step at the end of each rolling cycle also helped to increase the formation of the 

𝛽-phase and subdue any 𝛼 precipitation.  To verify the hindrance of the 𝛼-phase 

precipitation, an X-ray diffraction phase analysis was performed. 
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 Figure 7 shows the XRD profile of the 0% reduced sample alongside the XRD 

profile of the 40% reduced sample.  The strongest peaks visible in each plot correspond to 

the 𝛽-phase suggesting that throughout the processing procedure the 𝛽-phase successfully 

dominated all other phases.  The formation of 𝛼-phase grains was not suppressed 

completely as the spectra of the 40% reduced sample shows evidence of very small peaks 

that correspond to the existence of 𝛼-phase grains.  This small fraction of 𝛼-phase was 

found to have precipitated in sparse quantities along some grain boundaries[37]. 

 

Figure 7: XRD profiles of the initial as-cast sample puck and the 40% reduced puck. 
Both profiles show that the samples were almost totally dominated by β-Zr-Nb 
phase (peaks denoted by blue lines). The 40% Hot Rolled profile does, however, 
show the formation of very small amount of α-Zr-Nb precipitates (peaks denoted by 
red lines). The Y-range (intensity) of these plots has been truncated so that the α-
phase peaks would be visible.  Only the large β-(011) peak at 36° 2θ was cut off, at 
approximately 35% of its total height in each profile. 

 In order to maintain the focus and discussion on the development and analysis of 

the inverse model for texture prediction, a full analysis of the 𝛽-phase texture evolution is 

not given here, but is provided by Startt et al.[37]  in which the texture of a single ZrNb 
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sample puck, subjected to the same thermo-mechanical processing, was measured both 

locally at the surface using electron backscatter diffraction (EBSD) and globally using 

XRD.  From this analysis, the most dominant and important texture components were 

determined and analyzed.  These are summarized in Figure 8 which depicts schematics of 

the 𝜑2 = 0° and 𝜑2 = 45° ODF sections.  The most dominant texture components in this 

system are the 𝛾-fiber, marked by the green line in the 𝜑2 = 45° section, and the 

{001}<100> (cube) and {001}<110> (rotated cube) components, denoted by the blue and 

red dots in the 𝜑2 = 0° section respectively. 

 

Figure 8: Schematic of the texture components commonly found in the 𝝋𝟐=0° (left) 
and 𝝋𝟐=45° (right) sections of a hot rolled bcc crystal[37]. 

 As specified previously, the calculation of the process path function was performed 

using the ODFs of the 0%, 20%, 30% and 40% reduced samples.  This was done by 

calculating three separate path functions, A0->20, A20->30, and A30->40.  Since the path 

function is calculated here using an experimentally driven method, these path functions are 

most accurate between the two samples specified.  For example, the A0->20 path function is 

most accurate when calculating for reductions between 0% and 20%.  In order to obtain a 
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more generic path function which would be accurate for all reductions from 0% to 40%, a 

multi-step calculation using equation 12 was performed and is described by equation 16. 

 𝐹�(𝜂�`) = 𝑒p(q�rMq�r)�𝑒p(q�rMq�r)|𝑒p(q�rMqr)}�𝐹(𝜂`) = 𝑒p(q�rMqr)𝐹(𝜂`) (16) 

Simplifying equation 16 and rewriting allows for the description of the general process 

path function, A, as a function of the specific path functions calculated using the 

experimentally measured ODFs described by equation 17. 

 
𝐴 =

[𝐴�`→�`(𝜂�` − 𝜂�`) + 𝐴2`→�`(𝜂�` − 𝜂2`) + 𝐴`→2`(𝜂2` − 𝜂`]
𝜂�` − 𝜂`

 (17) 

In equation 17, A is now a generic path function which is expected to be accurate for all 

height reductions between 0% and 40%.  The multi-step process used to obtain equation 

17 does not limit itself to three steps, and as such can be easily expanded to include as 

many steps as necessary as long as the data is available.  Since this is an experimentally 

driven model, as the number of data points used to calculate the generic path function 

increases then the accuracy of the model is expected to increase as well. 

 Once the general process path function was calculated, it was saved as an input to 

be loaded into the inverse model for future simulations.  This was done to show that the 

processing path function does not have to be recalculated for every inverse simulation.  

Table 3 specifies the variables involved in each simulation that was performed using the 

inverse model that has been described. 
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Table 3: Specification of simulation variables for each inverse model simulation 
performed. 

Simulation Number Final Texture 

Coefficients 

𝜂� − 𝜂` Simulated Initial 

Texture Coefficients 

1 40% reduced 40 – 10 = 30 10% reduced 

2 40% reduced 40 – 20 = 20 20% reduced 

3 40% reduced 40 – 30 = 10 30% reduced 

4 30% reduced 30 – 10 = 20 10% reduced 

5 30% reduced 30 – 20 = 10 20% reduced 

6 20% reduced 20 – 10 = 10 10% reduced 

Figures 9 through 11 use the texture coefficients of the 40% reduced sample (Figure 9), 

30% reduced sample (Figure 10) and 20% reduced sample (Figure 11) as the final texture 

coefficients in equation 12 to predict the 10% reduced ODF.  For each of these figures the 

simulated 10% reduced ODF is compared to the experimentally measured ODF of the 10% 

reduced sample to provide insight into the accuracy of the inverse model. 
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Figure 9: 𝝋𝟐 = 𝟎° (top) and 45° (bottom) sections of the experimentally measured 
ODF for the sample rolled to 10% reduction (left) and the simulated ODF (right) 
following the parameters for simulation 1 in Table 3. 

 

Figure 10: 𝝋𝟐 = 0° (top) 45° (bottom) sections of the experimentally measured ODF 
for the sample rolled to 10% reduction (left) and the simulated ODF (right) 
following the parameters for simulation 4 in Table 3. 
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Figure 11: j2 = 0° (top) and j2 = 45° (bottom) sections of the experimentally 
measured ODF for the sample rolled to 10% reduction (left) and the simulated ODF 
(right) following the parameters for simulation 6 in Table 3. 

 Figures 9 through 11 illustrate three simulations which all attempt to predict the 

same initial microstructure using different final microstructures.  These figures show that 

inverse model is capable of accurately predicting the texture of the initial microstructure.  

In each figure, the dual fibers identified in the 𝜑2 = 0° section of the experimental ODF 

are evident in the 𝜑2 = 0° section of the simulated ODF.  Furthermore, the strongest 

intensity fiber in the 𝜑2 = 45° section of each simulated ODF corresponds very well to the 

𝜙	 = ~30° fiber in the 𝜑2 = 45° section of the experimental ODF.  The largest errors 

evident in the simulations shown by Figures 9 through 11 can be seen when looking at the 

location of the highest intensity peaks.  For example, in Figure 9 the location of the highest 

intensity peak in the simulated ODF is at 𝑔 = (0°, 30°, 45°) while in the experimental ODF 

it is at 𝑔 = (40°, 30°, 45°), roughly.  The 𝑔 = (0°, 30°, 45°) peak can also be found as a 

peak of high intensity in the recrystallization ODF illustrated by Figure 5.  It is expected 
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that the cause for the shift in the highest intensity peak is due to an inaccurate calculation 

for the intensity of the recrystallization ODF for the 40% reduced sample.  However, the 

location of the fibers associated with the experimental ODF can be easily seen in the 

simulated ODFs, and therefore it is expected that the errors will decrease with more 

experimental data points and a better prediction for the recrystallization ODF at different 

strain values. 

Figures 12 and 13 compare the experimentally measured ODF of the 20% reduced 

sample to the predicted 20% reduced ODF using the texture coefficients of the 40% and 

30% reduced ODFs respectively (simulations 2 and 5). 

 

Figure 12: j2 = 0° (top) and j2 = 45° (bottom) sections of the experimentally 
measured ODF for the sample rolled to 20% reduction (left) and the simulated ODF 
(right) following the parameters for simulation 2 in Table 3. 
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Figure 13: j2 = 0° (top) and j2 = 45° (bottom) sections of the experimentally 
measured ODF for the sample rolled to 20% reduction (left) and the simulated ODF 
(right) following the parameters for simulation 5 in Table 3. 

Figures 12 and 13 provide similar insight into the accuracy of the inverse model as 

Figures 9 through 11.  From Figures 12 and 13 it is evident that the location of the 𝛾-fiber, 

as well as the cube and rotated-cube components (identified in Figure 8) are predicted 

accurately using the inverse model.  However, for these simulations, the cube and rotated-

cube components are simulated as decomposed when compared to the experimental results 

and in Figure 12 the intensity of the 𝛾-fiber is lower than in the experimental ODF.  For 

both of these locations of error it is expected that the error will increase with better 

prediction of the recrystallization ODFs and with more experimental data points available 

for calibrating the process path function. 

Lastly, Figure 14 compares the experimentally measured and simulated ODFs 

associated with simulation 5 in Table 3. 
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Figure 14: j2 = 0° (top) and j2 = 45° (bottom) sections of the experimentally 
measured ODF for the sample rolled to 30% reduction (left) and the simulated ODF 
(right) following the simulation parameters for simulation 3 in Table 3. 

In Figure 14, both the location and intensity of the 𝛾-fiber, as well as the location of 

the cube and rotated-cube components are accurately simulated when compared to the 

same features in the experimental ODF.  While the intensity of the cube and rotated-cube 

components are overestimated, this simulation results in a strong representation of the 

accuracy of the inverse model. 

It is important to note that Figures 13 and 14 describe simulations in which both the 

final texture components and the simulated initial texture components were used in the 

calculation of the process path function.  Therefore, these simulations specifically are 

capable of identifying the errors associated with the methods inherent in the simulation.  

Historically, the comparison of two ODFs has been performed qualitatively rather than 

quantitatively.  A qualitative analysis was presented in this section and shows that the 
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inverse model is capable of accurately predicting the texture of the initial microstructure.  

In the next chapter, an avenue for a quantitative analysis for texture will be explored using 

the MTEX software package. 

2.5 Discussion of Inverse Model Results 

The results presented in section 2.4 are meant to illustrate the capabilities of the 

inverse model for texture prediction.  These figures are used to describe the accuracy of 

the model and provide validation when compared to the experimentally measured ODFs.  

Analyses for identifying the differences between two ODFs are not a straightforward 

process and historically have been performed using qualitative rather than quantitative 

methods.   

Matthies et al.[38] discussed the issue of quantitatively describing the difference 

between two ODFs and attempted to resolve it by defining an RP error which describes the 

accuracy of recalculated pole figures when compared to the original ODF.  In this same 

vein, the MTEX package for MATLAB has developed functions which can help provide a 

more quantitative analysis for different ODFs.  Figures 15 and 16 illustrate the difference 

plots between the simulated and experimental ODFs for the simulations with the lowest 

error (Figure 15) and with the highest error (Figure 16).  It is important to note that the 

difference plots were calculated by subtracting the experimentally measured ODF from the 

simulated ODF.  Therefore the positive intensities in the difference plots are associated 

with overestimations while the negative intensities are associated with underestimations. 
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Figure 15: j2 = 0° (top) and j2 = 45° (bottom) sections of the ODF difference plot 
between the experimentally measured and simulated ODFs following the 
parameters associated with simulation 1. 

 

Figure 16: j2 = 0° (top) and j2 = 45° (bottom) sections of the ODF difference plot 
between the experimentally measured and simulated ODFs following the 
parameters for simulation 2. 
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To better understand the error associated between the simulated and experimental ODFs it 

may be beneficial to have a singular percentage value which can be linked to the accuracy 

of the model.  This percentage was obtained by calculating the integrated error between the 

two ODFs and was calculated using the MTEX calcError function defined by equation 18. 

 𝑒𝑟𝑟𝑜𝑟 = 0.5 ∗ �𝑎𝑏𝑠(𝑜𝑑𝑓1 − 𝑜𝑑𝑓2)𝑑𝑔 (18) 

Table 4 shows the integrated error values calculated using calcError for each of the 

different simulations specified in Table 3. 

Table 4: Integrated error values associated with each inverse model simulation. 

Simulation Integrated Error 

Simulated 10% ODF from 40% reduced sample 4.26% 

Simulated 10% ODF from 30% reduced sample 5.95% 

Simulated 10% ODF from 20% reduced sample 5.34% 

Simulated 20% ODF from 40% reduced sample 21.56% 

Simulated 20% ODF from 30% reduced sample 7.71% 

Simulated 30% ODF from 40% reduced sample 5.16% 
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The error analysis described in this section shows that the inverse model is capable of 

accurately predicting the initial ODF required to obtain a desired, final ODF when 

undergoing a specified deformation process. 

2.6 Conclusion 

 An inverse model was developed and proposed which is capable of predicting the 

initial texture required to obtain a desired texture through processing.  The model proposed 

is independent of material system and processing procedure and as such can be used for 

any polycrystalline system.  This model differs slightly from the conservation of crystallites 

equation developed by Li et al.[31] due to its use of fast Fourier transformations, instead of 

generalized spherical harmonics, to describe the orientation distribution functions which 

results in a more efficient use of computational resources.  The proposed process path 

function was calculated using experimental data and the simulation results for the inverse 

model were presented.  The comparisons between the simulated and experimental ODFs 

show that the inverse model is capable of accurately calculating the texture of the initial 

microstructure.  Functions developed as part of the MTEX software package were used to 

create difference plots and calculate the integrated error for each simulation to further 

illustrate this accuracy.  The qualitative and quantitative error analyses show that the 

inverse model is accurately able to predict the initial microstructure required to obtain a 

known final microstructure through the hot rolling process. 

 The development of this model allows for the simulation of the orientation 

distribution function, a one-point correlation function.  However, as more microstructural 

features become of interest, the ODF alone will be unable to contain all of the 
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microstructural statistics.  To this end, both forward and inverse models will be presented 

here which utilize two-point correlation functions which allow for a much greater amount 

of microstructural data to be retained. 
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CHAPTER 3. DEFORMATION PREDICTION MODELING FOR 

TWO-PHASE MATERIALS: A FORWARD MODEL 

3.1 Isothermal Compression and Ti-6Al-4V 

 Titanium and its alloys like Ti-6Al-4V are an attractive material choice in 

aerospace, chemical and biomedical industries due to such desirable properties like high 

specific strength, high corrosion resistance, biocompatibility, and ability to be used in high 

temperature applications[39-41]. Ti-6Al-4V is a two-phase alloy that contains a hexagonal 

close-packed (hcp) 𝛼-phase and a body-centered cubic (bcc) 𝛽-phase (~6 vol%) at room 

temperature.  A coarse lamellar (𝛼 + 𝛽)-colony microstructure usually prevails in castings 

which transforms to either fine lamellar or basket-weave (acicular 𝛼/𝛽 phases) 

microstructure after thermo-mechanical processing in the 𝛽-phase field, depending on the 

cooling rate[42,43]. Similarly, thermo-mechanical processing in the (𝛼 + 𝛽)-phase field 

results in either completely equiaxed or bimodal (lamellar plus equiaxed 𝛼-grains) 

microstructures depending upon the processing conditions[44,45].  A Ti-6Al-4V alloy with 

nominal composition by wt% was induction skull melted in a graphite crucible at 

Flowserve Corporation in Dayton, Ohio.  A detailed report of the composition of the as-

cast material as measured using an inductively coupled plasma spectroscope can be 

obtained in the previous work of Roy et al[45,46].   

The as-cast Ti-6Al-4V alloy was subjected to isothermal compression at a constant 

temperature of T = 750°C at strain rates of  10M�	𝑠M/, 10M2	𝑠M/, 10M/	𝑠M/, 1	𝑠M/,	and 

10	𝑠M/ up to a 50% height reduction (equivalent to a true strain of ~0.7).  The compression 
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specimens were prepared from the as-cast ingot using electro discharge machining (EDM) 

in such a way that the compression axis remained parallel to the original ingot axis.  The 

compression specimens were 9 mm in height and 6 mm in diameter prior to undergoing 

compression.  Isothermal compression tests were carried out by Shibayan Roy and Souvik 

Sahoo (IIT Kharagpur) using a servo-hydraulic testing machine (DARTEC, Zwick/Roell 

GmbH, Germany) between two Ni-based super-alloy platens.  A resistance heating split 

furnace with SiC heating elements was used for heating the platens and the specimens to 

the desired temperature (750°C). Before starting the tests, the specimens and platen were 

soaked for five minutes at the test temperature to ensure temperature uniformity.  To 

confirm the temperature of the specimens, a chromel-alumel thermocouple was attached 

onto the specimen surface.  The specimens were coated with borosilicate glass paste for 

lubrication against friction from the platen as well as for environmental protection (mainly 

for reducing Oxygen penetration and 𝛼-casing formation). Following the isothermal 

condition, the specimens were air-cooled to room temperature to ensure there was no 

significant change in the deformed microstructure (e.g. recrystallization) during cooling.  

Further details regarding the isothermal compression testing of Ti-6Al-4V can be obtained 

elsewhere[47-51]. 

Compression testing of any specimen generates different types of stresses (radial 

compressive, hoop tensile, and frictional shear) at different locations of the material[47]. As 

a result, the type and amount of deformation varies over the entire compression specimen, 

which in turn causes microstructural variation in different locations.  Pure radial 

compressive stresses only prevail at the mid-thickness region of the compression specimen 

as shown in Figure 17.  Therefore, to characterize the deformation microstructure formed 
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from pure compressive stresses the specimen was sectioned by IIT Kharagpur along the 

diameter in the z-direction (parallel to the compression direction).  SEM observations were 

then made from the regions along the equatorial plane as shown in Figure 17.  For this, the 

observation surface was polished by a standard metallographic technique using SiC emery 

papers up to 2000 grit, followed by polishing with diamond suspensions of 1𝜇m and 

0.25𝜇m particle sizes.  The polished surfaces were etched for 10 seconds using Kroll’s 

reagent (2% HF + 6%HNO3 + 92% distilled water).  Microstructural observations from the 

various compressed specimens deformed at different strain rates were made by scanning 

electron microscope (Zeiss, Germany) in back scattered mode.  More details regarding the 

sectioning of the compression specimens for microstructural characterization can be 

obtained elsewhere[47,50]. 

In an effort to cover a larger microstructure area, thereby increasing the statistical 

significance of the two-point statistics measured from the microstructural dataset, macro-

montages were also created by stitching several SEM images captured via sequential, 

regulated, and controlled movement of the SEM stage in horizontal and vertical 

directions[45].  For each of the deformation conditions, two SEM macro-montages were 

made by stitching four SEM images taken in a 2x2 matrix.  For the as-cast alloy, the SEM 

montage was the same as the montage shown by Roy et al[45]. 

The as-cast alloy was heat treated in a muffle furnace for five minutes at 750°C at 

a heating rate (5°C/min) identical to the split furnace (used in the compression tests) in an 

effort to produce the as-heated microstructure immediately before the tests were conducted.  

The heat treated specimen was then water quenched to preserve the high temperature 

microstructure with the exact 𝛼- and 𝛽-phase fraction before the compression tests.  The 
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observation surface for SEM characterization was prepared following the standard 

metallographic preparation and etching as detailed above.  The observation surface was 

chosen with the ingot axis (and in turn the compression axis) being parallel to it.  This 

further ensures that the observation surfaces for the as-heated specimen and compression 

tested specimens are selected from identical locations in the original ingot. 

 

Figure 17: Schematic of (a) un-deformed compression specimens, and (b) sectioning 
scheme for microstructural characterization of compression tested specimen 
showing regions of different stresses.  The hatched region at the mid-thickness, 
equatorial region represents the location for pure compressive stress (provided by 
Dr. Shibayan Roy, IITK). 

 A heat treated and water quenched Ti-6Al-4V alloy (Figure 18) shows a continuous 

grain boundary (GB) 𝛼-phase along prior 𝛽 GB in the microstructure.  In addition, lamellar 

𝛼-phase nucleates beside the GB 𝛼-phase and grows inside the prior 𝛽 grain.  The remnant 

𝛽-phase remains as thin lamellae between adjacent 𝛼 lamella and forms an (𝛼 + 𝛽)-colony 

microstructure[45]. After isothermal compression, most of these lamellar (𝛼 + 𝛽) colonies 



 39 

straighten along the direction of hoop tensile stresses (perpendicular to the compression 

axis).  Some of the (𝛼 + 𝛽) colonies, plus the corresponding GB 𝛼-phase, which seem to 

be originally parallel to the compression axis show a kinked or bent morphology.   

 

Figure 18: SEM images showing the microstructure of Ti-6Al-4V alloy in (a) heat 
treated and water quenched and (b) deformed (true strain rate 1 s-1) conditions.  
Compression direction is vertical and shown by the red arrow in (b).  Important 
microstructural features are indicated in the respective micrographs.  In (b), black 
and white arrows indicate kinked and straight lamellar (𝜶+ 𝜷) colonies, 
respectively (provided by Dr. Shibayan Roy, IITK). 

3.2 Statistical Continuum Theory 

The model pursued here utilizes statistical continuum theory practices proposed by 

Garmestani et al.[52] to predict the microstructural evolution during deformation through 

the evolution of two-point statistics.  In their work, Garmestani et al.[52] began with a power 

law steady-state creep equation for each phase that was first introduced by Hutchinson[53].  

From this power law equation the Cauchy stress tensor was defined by equation 19. 

 𝑇HI = 	𝑁HI�\𝐷�\ − 𝑝𝛿HI (19) 
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In equation 19, 𝑁HI�\  is the fourth rank symmetric inelastic modulus tensor, 𝐷�\ is the strain 

rate tensor, and 𝑝 is the hydrostatic pressure.  Garmestani et al.[52] then introduced the 

velocity gradient, 𝐿�\, which can be decomposed into the strain rate tensor and the rotation 

rate tensor, 𝑊�\ , as shown by equation 20. 

 𝐿�\ = 𝐷�\ + 𝑊�\ (20) 

In this model, the rotation rate tensor is zero since the crystallographic orientation is not 

considered.  Thus, equations for the calculation of the local velocity gradient of each phase 

are identified as equation 21 and equation 22. 

 〈𝐿`(𝑟)〉¤¥ = 	 𝐿¦ + 𝐺(𝑟 − 𝑟
¨) ∗ 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤¥𝐿¦ (21) 

 〈𝐿`(𝑟)〉¤� = 	 𝐿¦ + 𝐺(𝑟 − 𝑟
¨) ∗ 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤�𝐿¦ (22) 

In equations 21 and 22, 〈𝐿`(𝑟)〉¤¥ and 〈𝐿`(𝑟)〉¤� are the local velocity gradients for phase 

ℎ/ and phase ℎ2 respectively, 𝐺(𝑟 − 𝑟¨) is the Green’s function solution, 𝐿¦ is the 

macroscopic homogeneous velocity gradient, and 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤¥and 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤� are 

the ensemble average of the polarized modulus for the velocity gradient, 𝐿, according to 

phase ℎ for phases ℎ/ and ℎ2 respectively.  The terms 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤¥and 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤� 

are calculated using equation 23 and equation 24. 

 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤¥ = 𝑓(𝑟¨	𝜖	ℎ/	|𝑟	𝜖	ℎ/)𝑁©/(𝐿¦) + 	𝑓(𝑟¨	𝜖	ℎ2	|𝑟	𝜖	ℎ/)𝑁©2(𝐿¦) (23) 

 〈𝑁©|𝐿, ℎ(𝑟¨)}〉¤� = 𝑓(𝑟¨	𝜖	ℎ/	|𝑟	𝜖	ℎ2)𝑁©/(𝐿¦) + 	𝑓(𝑟¨	𝜖	ℎ2	|𝑟	𝜖	ℎ2)𝑁©2(𝐿¦) (24) 
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In equations 23 and 24, 𝑁©/(𝐿¦) and 𝑁©2(𝐿¦) are the spatially dependent inelastic modulus for 

phase 1 and phase 2 respectively, and the terms of the form 𝑓(𝑟¨𝜖	ℎH	|	𝑟	𝜖	ℎI) are the two-

point statistics for the two phase material.  In this work, phase 1 corresponds to the Ti-6Al-

4V 𝛼-phase and phase 2 corresponds to the 𝛽-phase.  Figure 19 shows a microstructural 

image obtained using a scanning electron microscope (SEM) and the corresponding two-

point statistics.  Such SEM images are used to obtain the two-point statistics of the 

compression samples for comparison to the two-point statistics simulated using the pursued 

evolution model. 

 

Figure 19: SEM image and corresponding two-point statistics of specimen deformed 
at strain rate of 10-3 s-1. 

 Six SEM images were obtained for each of the isothermal compression conditions 

representing the deformation microstructures while ten SEM images were obtained from 

the undeformed as-heated specimen.  The two-point statistics were calculated from each of 

these SEM images and averaged over the six SEM images for any given deformation 

condition or the ten SEM images for the as-heated material.  This was performed using the 

open source pyMKS package developed by Kalidindi et al[54]. The averaged two-point 
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statistics were then used to calculate the local velocity gradients of each phase as described 

in equations 21-24.  From the local velocity gradients, Lin et al.[55] show that the two-point 

statistics can be evolved using the parameters described in Figure 20. 

 

Figure 20: Definition of the evolution equation parameters from Lin et al. [55] 

In Figure 20, 𝑟, 𝑟′, and 𝑟" are vectors associated with the two-point statistics and 𝑒 is a 

vector that originates from state ℎ and terminates at state ℎ′.  The magnitudes of 𝑟, 𝑟′, and 

𝑟" each ranged from 0 (a single point) to 100 pixels. From this, Lin et al.[55] describe the 

rate of change of the deformation vector, 𝑒, using the equation 25. 

 〈�̇�〉¤,¤® = 	�〈𝐿(𝑟")〉¤,¤®	𝑑𝑒 (25) 

In equation 25, 〈�̇�〉¤,¤¨ is the rate of change of 𝑒 and 〈𝐿(𝑟")〉¤,¤¨ is the local strain rate tensor 

for the vector 𝑟".  The term 〈𝐿(𝑟")〉¤,¤¨ is calculated using equation 26. 

 〈𝐿(𝑟")〉¤,¤® = 	�𝑓�(ℎ", 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟) 〈𝐿(𝑟")〉¤"	𝑑ℎ" (26) 
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In equation 26, 〈𝐿(𝑟")〉¤" is the local strain rate for the vector 𝑟" and phase ℎ" and 𝑓�(ℎ",	r"	

|	ℎ′, 𝑟′, ℎ, 𝑟) is the three-point probability function where 𝑟" belongs to the state ℎ", r’ 

belongs to state ℎ′, and 𝑟 belongs to state ℎ.  Equation 26 is then integrated to obtain 

equation 27. 

 〈𝐿(𝑟")〉¤,¤® = 	 𝑓�(ℎ/, 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟)〈𝐿(𝑟")〉¤¥ +	𝑓�(ℎ2, 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟)〈𝐿(𝑟")〉¤� (27) 

In equation 27, 𝑓�(ℎ/, 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟) and 𝑓�(ℎ2, 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟) are the three-point statistics 

where 𝑟" is associated with phase ℎ/ (𝛼-phase) and ℎ2 (𝛽-phase) respectively.  The three-

point probability function was approximated using the two-point probability function with 

equation 28. 

 𝑓�(ℎ", 𝑟"	|	ℎ′, 𝑟′, ℎ, 𝑟) 	≅ 	
𝑥/

𝑥/ + 𝑥2
𝑓2(ℎ", 𝑟"	|	ℎ′, 𝑟′) +	

𝑥2
𝑥/ + 𝑥2

𝑓2(ℎ", 𝑟"	|	ℎ, 𝑟) (28) 

Here, 𝑥/ and 𝑥2 are equal to |𝑟" − 𝑟| and |𝑟"	 − 	𝑟′| respectively. Furthermore, 〈�̇�〉¤,¤¨ can 

be integrated with respect to time as shown in equation 29 to identify the deformation, 

〈∆𝑒〉¤,¤¨. 

 
〈∆𝑒〉¤,¤¨ = 	� 〈�̇�〉¤,¤¨𝑑𝑡

³

`
 (29) 

Lin et al.[55] showed that using this formulation allowed for the prediction of the evolution 

of two-point statistics in a single direction (e.g. a singular value of theta).  To do this, Lin 

et al.[55] used this formulation to calculate the deformation using equation 29 and then 

added the deformation to the original vector lengths.  In addition, Lin et al.[55] employed 
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the use of Corson’s equation and calculated new values for the parameters 𝑐HI and 𝑛HI while 

assuming that the probabilities remain constant but their associated 𝑟 value changes 

according to the deformation described by equation 2.  From here, the model is expanded 

to describe the full map of the two-point statistics (i.e. all values of theta).  The results 

shown here will model the deformation of all theta angles of two-point statistics for 

isothermal compression of a Ti-6Al-4V alloy at T = 750°C and strain rate 𝜀̇ = 10-3 s-1, 10-2 

s-1, 10-1 s-1, 1 s, 10 s-1. 

3.3 Two-Phase Two-Point Statistics Simulation Results 

The results presented here encompass two different simulation types which are utilized 

to validate the proposed statistical model.  Each simulation type utilizes the same deformed 

specimens. However, the method for obtaining the SEM images changes between the two 

types.  The first method of validation uses six individual images for each sample, for which 

the two-point statistics were calculated for each image and then averaged over all images.  

Figure 22 illustrates the two-point statistics calculated from the SEM images representing 

the microstructure of the as-heated specimen.  Also shown is the representative SEM image 

for this deformation condition which was used to calculate the two-point statistics. 
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Figure 21: Two-point statistic plots for P11, P12, P21 and P22 matrix component 
and the corresponding SEM image obtained from the as-heated specimen. 

Meanwhile, Figures 22 and 23 compare the experimentally calculated P11 and P22 

statistics from the deformed microstructure of the specimens compressed at different strain 

rates to the simulated two-point statistics.  Each simulation was performed over a range of 

magnitudes for 𝑟 from 0 to 100 pixels.  However, for ease of viewing the plots of the two-

point statistics results are focused on the central peak.  
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Figure 22: Comparison of the simulated (left) and experimental (right) P11 statistics 
from the deformed microstructures for each of the specimens compressed at 
different strain rates of (a) 10-3 s-1 (b) 10-2 s-1 (c) 10-1 s-1 (d) 1 s-1 (e) 10 s-1. 
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Figure 23: Comparison of the simulated (left) and experimental (right) P22 statistics 
from the deformed microstructures for each of the specimens compressed at 
different strain rates of (a) 10-3 s-1 (b) 10-2 s-1 (c) 10-1 s-1 (d) 1 s-1 (e) 10 s-1. 
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In Figure 22, the simulated P11 statistics seem to underestimate the deformation that 

corresponds to the tendril-like arms of the central peak.  These arms correspond to the 

average orientation of the 𝛼-phase grains in the SEM images.  The visual difference 

between the simulated central peak and the experimental peaks could be due to the initial 

statistics.  This is due to the fact that the initial statistics define the starting condition for 

the deformation microstructure. Therefore if the initial statistics are not representative of 

the entire microstructure, the simulated two-point statistics will be inaccurate.  Meanwhile, 

Figure 23 shows that for the P22 statistics, the statistical model is able to accurately predict 

the deformation microstructure.  Interestingly, the largest difference between the 

experimental and simulated two-point statistics for both P11 and P22 is found on the north 

side of the central peak where the y values are positive.  The deformation associated with 

this area of the central peak is associated with the compression of the z-axis of the sample.  

Therefore, this error leads to the expectation that compression, which results in a negative 

value for deformation, is harder to predict than tensile deformation.  However, this error is 

not seen in the south side of the central peak (where y values are negative) which is also 

associated with the compression of the z-axis.  Thus, it is expected that the compression 

error is associated with difficulties in the algorithm which recalculates the deformed two-

point statistics rather than the methodology for the prediction of deformation.  Furthermore, 

it is important to note that the model is heavily dependent on the statistics obtained for the 

initial microstructure.  This is to say that if the initial statistics do not accurately represent 

the microstructure of the undeformed material then the model results will not be accurate.   

To quantify the importance of the initial statistics the same simulations were performed 

using the SEM montage images. 
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3.3.1 The Effect of Microstructural Statistics 

The second form of validation for the proposed model focuses on recognizing that 

the statistics obtained are representative of the entire microstructure.  This was done by 

calculating the two-point statistics using the large area montage of SEM images for each 

of the compression conditions.  Confirming that the two-point statistics are representative 

of the entire microstructure in the compression specimens is important because it validates 

that the model is capable of predicting microscale evolutions, and that the previous 

increases in error were most likely due to non-representative statistics.  To this end, SEM 

montages similar to the one shown in Figure 21 were created for each of the specimens 

compressed at different strain rates (𝜀̇ = 10-3 s-1, 10-2 s-1, 10-1 s-1, 1 s-1 and 10 s-1) and used 

to calculate the two-point statistics.  One such SEM montage is shown in Figure 24 for the 

specimen compressed at 1 s-1 strain rate.  It is important to note that the individual images 

comprising the montages were obtained at the same magnification and resolution as the 

single SEM images (shown in Figure 21).  This procedure simultaneously maintains high 

resolution for grain identification and covers a large microstructural area to facilitate the 

calculation of the two-point statistics with adequate statistical reliability.  Keeping the 

magnification and resolution constant between the montages and the single SEM images 

allows for the comparison of the two-point statistics obtained from these two different 

approaches. 



 50 

 

Figure 24: Stitched scanning electron micrograph for the specimen deformed at 
strain rate of 1s-1. 

 Similar to the previous approach of calculating the two-point statistics from the 

single SEM images, the two-point statistics for each of the SEM montages were averaged 

between the two such montages for each of the deformed specimens.  In Figures 25 and 

26, the experimentally calculated (from SEM montages) and simulated two-point statistics 

are compared for each of the deformed specimens. 
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Figure 25: Comparison of the simulated (left) and experimental (right) P11 statistics 
for the deformed microstructures for each of the specimens compressed at different 
strain rates of (a) 10-3 s-1 (b) 10-2 s-1 (c) 10-1 s-1 (d) 1 s-1 (e) 10 s-1 
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Figure 26: Comparison of the simulated (left) and experimental (right) P22 statistics 
for the deformed microstructures for each of the specimens compressed at different 
strain rates of (a) 10-3 s-1 (b) 10-2 s-1 (c) 10-1 s-1 (d) 1 s-1 (e) 10 s-1. 
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As with Figures 22 and 23, Figures 25 and 26 also illustrate the suitability of the proposed 

model to accurately predict the two-point statistics of the deformed microstructure.  

However, unlike the simulations in Figures 22 and 23 any errors associated with the 

volume fraction calculation are no longer present.  This illustrates the importance of 

obtaining statistics that are representative of the entire microstructure of the compression 

tested specimens.  In the next section a quantitative error analysis will be performed to 

highlight the capabilities of the model. 

3.4 Discussion 

In section 3, Figures 22 and 23 as well as Figures 25 and 26 illustrate the ability of 

the proposed statistical model to predict the deformation microstructure caused by the 

isothermal compression process.  The error between the simulated and experimental 

statistics are plotted in Figures 27 and 28 illustrating the errors associated with the 

individual SEM images as well as the SEM montages, respectively, for the specimen 

compression tested at a strain rate of 10-2 s-1 simulations. 
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Figure 27: P11 (left) and P22 (right) error plots for the simulation of the 
deformation microstructure for the specimen compression tested at a strain rate of 
10-2 s-1 based on the two-point statistics obtained from the single SEM images. 

 

Figure 28: P11 (left) and P22 (right) error plots for the simulation of the 
deformation microstructure for the specimen compression tested at a strain rate of 
10-2 s-1 based on the two-point statistics obtained from the SEM montage images. 

From Figures 27 and 28, it can be seen that the maximum error is consistently associated 

with the centralized peak.  It is expected that this error can be attributed to the difficulty of 

the model in the calculation of deformation caused by compression.  Furthermore, as the 

points get farther away from the centralized peak in Figures 27 and 28 the error decreases.  

It is important to note that the error associated with these points for Figure 27 are larger 
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than those of Figure 28 and are closely linked to the volume fraction difference between 

the experimental and simulated statistics.  Therefore, since the SEM montage images were 

more accurate in the calculation of volume fraction the error associated with these points 

is lower than for the individual SEM images.  Also, in both Figure 27 and Figure 28 the 

largest maximum error (as well as largest average error) is associated with the P22 

statistics.  This is expected to be due to the relatively lower volume fraction of the 𝛽 phase 

which could lead to greater difficulty in obtaining representative statistics for this phase. 

 Tables 5 and 6 identify the average error across all values for P11 and P22 for both 

the single SEM images and SEM montages, respectively.  These average errors provide a 

more concrete description of the errors associated with each imaging technique.  As such 

they are able to illustrate the importance of representative statistics while also describing 

the accuracy of the statistical deformation model. 

Table 5: Calculated errors associated with the two-point statistics simulations using 
single SEM images. 

Strain Rate Average P11 

Error (%) 

Average P12 

Error (%) 

Average P21 

Error (%) 

Average P22 

Error (%) 

10-3 s-1 12.22 9.35 9.35 21.74 

10-2 s-1 12.37 8.36 8.37 23.98 

10-1 s-1 20.51 12.46 12.45 33.95 

1 s-1 12.21 8.69 8.67 23.77 

10 s-1 15.35 10.17 10.18 26.93 
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Table 6: Calculated errors associated with the two-point statistics simulations using 
SEM montages. 

Strain Rate Average P11 

Error (%) 

Average P12 

Error (%) 

Average P21 

Error (%) 

Average P22 

Error (%) 

10-3 s-1 9.58 4.67 4.66 17.46 

10-2 s-1 3.90 2.78 2.78 12.16 

10-1 s-1 3.45 3.01 2.97 5.31 

1 s-1 2.26 2.49 2.45 2.97 

10 s-1 17.27 8.36 9.37 23.84 

Tables 5 and 6 show that the average simulation error ranges from 7.41% to 33.71% for 

the single SEM images and 1.72% to 22.89% for the SEM montages.  What is interesting 

is that even for the individual SEM images the average error is low.  This is interesting 

because it means that while the volume fraction is different, the shape of the two-point 

statistics is similar.  Furthermore, the large discrepancy between the average errors of the 

individual images and the montage images shows the importance of obtaining enough 

statistics to be representative of the entire microstructure.  Tables 5 and 6 also show that 

there is a decrease in error with an increase in strain rate.  This trend is seen up to the 1 s-1 

strain rate condition.  The high error associated with the simulation of the 10-3 s-1 strain 

rate when compared to the 10-1 s-1 or 1 s-1 strain rates can be attributed to the high 

temperature associated with the isothermal compression tests.  This can be attributed to the 
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high temperature associated with the isothermal compression tests.  The low strain rate of 

10-3 s-1 means that the total test time was ten times higher than when the test was performed 

at a strain rate of 10-2 s-1.  This longer test duration at lower strain rate could result in some 

recovery processes (cross slip or climb) to occur in the deformation microstructure.  This 

is also evident in Roy et al.[47,48] from the true stress – true strain curves presented for these 

conditions (T = 750°C, 𝜀̇ = 10-3 s-1 and 10-2 s-1).  This recovery process cannot be accounted 

for in the model.  Therefore, the error associated with simulations of the deformation 

microstructure with this recovery process (lower strain rates) would undoubtedly be higher 

than for simulations considering deformation microstructures without recovery (higher 

strain rates). 

3.5 Conclusions 

In chapter 2 an inverse model for the prediction of crystallographic orientation was 

proposed and its results presented.  This inverse model utilized the one-point correlation 

function called the ODF to define the microstructure features of interest.  To provide more 

microstructural feature information, two-point statistics were used which allow for the 

description of such features as average grain morphology, average grain size, and phase 

distribution.  These two-point statistics were applied to a Ti-6Al-4V alloy undergoing 

isothermal compression, and a statistical model was developed and proposed which allows 

for the evolution of the two-point statistics to predict the microstructure evolution of the 

Ti-6Al-4V alloy.  The simulation results were presented and an error analysis was 

performed which suggests that the statistical model proposed here is capable of accurately 

predicting the evolution of the two-point statistics.  With the development of a forward 

model for the prediction of the evolution of two-point statistics, an inverse model, similar 
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to the one developed in chapter 2, will be presented for the optimization of two-point 

statistics during processing.  
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CHAPTER 4. DEFORMATION PREDICTION MODELING FOR 

TWO-PHASE MATERIALS: AN INVERSE MODEL 

4.1 Introduction 

In chapter 3, a model was proposed which models the evolution of a two-phase 

material through the use of two-point statistics.  This model was validated for multiple 

strain rates for the application of isothermal compression in the dual phase Ti-6Al-4V 

alloy.  In this chapter, an inverse model will be presented which is capable of predicting 

the initial microstructure required to obtain a desired final microstructure using the two-

point statistics simulated by the forward model. 

4.1.1 Microstructure Hull and Two-Point Statistics 

In materials science there is a theory that states that all material microstructures, 

when a feature is identified, can be described in a single space.  This space is termed the 

microstructure hull, and is defined to be the space where each point corresponds to a 

different microstructure.  The microstructure hull can be either one-dimensional or multi-

dimensional and is dependent on the microstructural feature of interest.  For example, for 

a two-phase material in which the volume fraction of the phases is the only microstructure 

characteristic of interest, the microstructure hull is the number line from 0 to 1 which 

describes the volume fraction of one of the two phases.  This two-phase example is the 

simplest form of the microstructure hull as it requires only a single number to define the 

entire microstructure.  However, microstructure hulls can become multi-dimensional and 

very complex in their portrayal of the microstructural statistics. 
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The orientation distribution function for a polycrystalline material can be used to 

define a material’s microstructure, and therefore is capable of being defined using a 

microstructure hull.  This has been illustrated in previous research[56,57] and the full 

microstructure hull for polycrystalline cubic-orthorhombic materials was simulated by 

Fullwood et al.[58] in 2010.  The microstructure hulls for polycrystalline materials are 

specified using the texture coefficients defined in chapter 2.  Figure 29 illustrates the 

simulated microstructure hull for cubic-orthorhombic materials as created by Fullwood et 

al.[58] 

 

Figure 29: The simulated microstructure hull for cubic-orthorhombic materials 
created by Fullwood et al.[58] 

The microstructure hull for polycrystalline materials uses the 𝐹�//, 𝐹�/2, and 𝐹�/� texture 

coefficients to define the ODF. Since the texture coefficients vary from one ODF to 

another, each point in this microstructure hull corresponds to a different ODF and a 

different microstructure.  Since each point in a microstructure hull corresponds to a 

different microstructure, the evolution of microstructure can be seen as a “path” which can 

be followed which connects individual points on the microstructure hull.  In Figure 29, 

each parallel set of red lines is a different path which evolves the cubic-orthorhombic 
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material from one microstructure to another.  The inverse model for the evolution of two-

point statistics developed here attempts to identify the specific path in order to predict the 

initial microstructure required to obtain a desired final microstructure. 

4.2 Inverse Model Theory 

The development of the inverse model for two-point statistics follows a similar 

description as the conservation of crystallites.  The theory behind this approach follows 

that for any processing procedure which contains only strain-based deformation the 

microstructure evolution can be discretized based on strain.  Using the microstructure hull 

description in section 4.1, this would result in following a single line from point to point 

across the microstructure hull.  The conservation of crystallites equation in chapter 2 

models the line through the microstructure hull using the process path function.  Thus, by 

using the conservation of crystallites equation for the two-point statistics instead of the 

texture coefficients, the process path function calculated will correspond to the evolution 

of the two-point statistics.  Equations 30 through 33 below describe the four conservation 

of crystallites equations which, as a whole, define the inverse model for two-point statistics. 

 𝑓�(ℎ/, ℎ/, 𝑟) = 𝑒p¥¥(qMqr)𝑓 (ℎ/, ℎ/, 𝑟) (30) 

 𝑓�(ℎ/, ℎ2, 𝑟) = 𝑒p¥�(qMqr)𝑓 (ℎ/, ℎ2, 𝑟) (31) 

 𝑓�(ℎ2, ℎ/, 𝑟) = 𝑒p�¥(qMqr)𝑓 (ℎ2, ℎ/, 𝑟) (32) 

 𝑓�(ℎ2, ℎ2, 𝑟) = 𝑒p��(qMqr)𝑓 (ℎ2, ℎ2, 𝑟) (33) 
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In equations 30 through 33 the 𝑓�|ℎH, ℎI, 𝑟} terms correspond to the two-point statistics of 

the final microstructure while the 𝑓 |ℎH, ℎI, 𝑟} terms correspond to the two-point statistics 

of the initial microstructure.  The 𝐴HI terms also correspond to the process path functions 

associated with each calculation.  It is important to note that in order to retain a greater 

accuracy the process path function was defined separately for each set of two-point 

statistics.  This means that four different path functions were calculated for the P11, P12, 

P21 and P22 statistics independently of the other functions.  It is also important to note that 

this model was not mathematically derived from the creation of the microstructure hull for 

two-point statistics.  Therefore, this form may not be the form that yields the highest 

accuracy.  However, it is the goal of this model to show that it is possible to create an 

invertible experimentally driven model which is capable of predicting the two-point 

statistics of the initial microstructure required to obtain a final desired microstructure. 

4.3 Simulation Results 

4.3.1 Calibration of the Inverse Model and Ti-6Al-4V Results 

The forward model developed in chapter 3 was used to provide data which used to 

calibrate the process path function of the inverse model.  The forward model was run using 

the same SEM images of the initial Ti-6Al-4V microstructure used in chapter 3.  Figure 

30 shows a single SEM of the as-heated Ti-6Al-4V microstructure while Figure 31 

illustrates the two-point autocorrelation of the black (𝛼) phase. 
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Figure 30: Black & white large area image of the as-heated Ti-6Al-4V initial 
microstructure in chapter 3. 

 

Figure 31: Autocorrelations of the black (alpha) phase for each of the initial 
microstructures in Figure 30. 

 The two-point statistics of the initial microstructure were evolved using the forward 

model, the strain rate tensor associated with compression, and the inverse strain rate 

sensitivity parameters associated with the alpha and beta phases of Ti-6Al-4V (1.13 & 3.6 

respectively[59]).  The initial microstructure was evolved to a strain ranging from 0% to 

100% at steps of 1% using a strain rate of 10 s-1.  The two-point statistics of the Ti-6Al-4V 

microstructures at strains of 0%, 20%, 40%, 60%, 80% and 100% true strain were used to 
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calibrate the inverse model.  The calibration was performed in a multi-step process between 

each set of consecutive strains in a similar approach to the calibration performed in chapter 

2. The generalized process path function was then saved and used in the inverse 

calculations to predict the initial microstructure required to obtain a desired final 

microstructure through compression. 

 A large number of simulations were systematically performed in order to illustrate 

the capabilities of the inverse model, after being calibrated using the data obtained from 

the forward model.  Figure 32 plots the strain of the desired final microstructure versus the 

strain of the required initial microstructure.  Therefore, this figure illustrates all possible 

simulations that can be performed using this inverse model.  This plot does not take into 

account material system or processing condition and, therefore, is a generic plot for all 

materials. 

 

Figure 32: All possible permutations of the strains associated with a desired final 
microstructure and a required initial microstructure. 
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In Figure 32 the red dots correspond to simulations which were performed as part of the 

validation of the inverse model.  Furthermore, since strain cannot be reduced by actively 

deforming a specimen (i.e. a 50% height-reduced specimen cannot become a 30% height-

reduced specimen through further compression) any simulation permutation for which the 

initial strain is larger than the final strain is considered to be an impossible and unrealistic 

simulation.  Each of the simulations described by the red dots in Figure 32 can be found 

in Appendix A, including a table of the model parameters for each simulation performed 

in this study.  

 For ease of presentation not all of the simulations are shown here.  Four separate 

inverse model simulations were chosen, which are described in Table 7 below.   

Table 7: Model parameters for the inverse simulations described in Figures 33 and 
34. 

Simulation 

ID 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

1 60% (60 – 40) = 20 40% 

2 70% (70 – 20) = 50 20% 

3 90% (90 – 70) = 20 70% 

4 100% (100 – 0) = 100 0% 
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Figure 33 compares the simulated and experimental P11 statistics for the four inverse 

simulations described in Table 7.  Figure 34 compares the simulated and experimental 

P22 statistics for the same four simulations described in Table 7.   

 

Figure 33: Comparison of the simulated (left) and experimental (right) P11 statistics 
for the (a) simulation 1 in Table 7, (b) simulation 2 in Table 7, (c) simulation 3 in 
Table 7, (d) simulation 4 in Table 7. 
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Figure 34: Comparison of the simulated (left) and experimental (right) P22 statistics 
for the (a) simulation 1 in Table 7, (b) simulation 2 in Table 7, (c) simulation 3 in 
Table 7, (d) simulation 4 in Table 7. 

Both Figure 33 and 34 show that the inverse model proposed here is capable of accurately 

predicting the initial microstructure required to obtain a final desired microstructure 

through the compression deformation process.  Furthermore, since the process path 

function describes the material response to a specific deformation process it is independent 
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of initial microstructure, and as a result can be saved for future use after calibration.  A 

complete error analysis is provided in section 4.4 to discuss the limitations of the inverse 

model. 

4.4 Discussion 

An inverse model has been proposed which predicts the two-point statistics of the 

initial microstructure required to obtain the two-point statistics of a desired final 

microstructure.  Using this model multiple different simulations were completed and the 

results were illustrated in section 4.3.  To best illustrate the accuracy of the inverse model 

a full error analysis was performed on each of the inverse simulations performed and is 

presented here. 

4.4.1 Quantifying Inherent Error Using Ti-6Al-4V Calibration Data 

As specified in section 4.3, the process path functions were calibrated using the 0%, 

20%, 40%, 60%, 80%, and 100% strained two-point statistics.  This results in the lowest 

error being associated with simulations between consecutive strained samples.  This is 

called the inherent error and is the error that is associated with rounding/truncation or the 

modeling technique itself.  The inherent error can be obtained by calculating the error 

associated with simulations such as simulation 1 in Table 7.  Table 8 below specifies each 

of the simulations which are capable of being used to calculate the inherent error of the 

inverse model. 
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Table 8: Model parameters for each simulation used in the calculation of the 
inherent error. 

Simulation 

ID 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Inherent 1 100% (100 – 80) = 20 80% 

Inherent 2 80% (80 – 60) = 20 60% 

Inherent 3 60% (60 – 40) = 20 40% 

Inherent 4 40% (40 – 20) = 20 20% 

Inherent 5 20% (20 – 0) = 20 0% 

For each of the simulations in Table 8, the error of the simulation was calculated by 

averaging the error of each individual point.  Figures 35 and 36 illustrate the error plots 

associated for the P11 and P22 two-point statistics associated with the Inherent 1 and 

Inherent 2 simulations from Table 9.   
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Figure 35: P11 and P22 error plots comparing the simulated and experimental 
statistics for the Inherent 1 simulation in Table 8. 

 

Figure 36: P11 and P22 error plots comparing the simulated and experimental 
statistics for the Inherent 2 simulation in Table 8. 

Figures 35 and 36 show that there are points of high error associated mostly with 

the central peak of the two-point statistics.  This error could mean that the inverse model 

is unable to accurately predict large changes in the two-point statistics.  However, as the 

simulation points get farther from the central peak the simulation error quickly drops to 

zero.  This shows that while individual points may have a large error, the error associated 

with the simulation as a whole is rather small.  Table 9 below specifies average error across 



 71 

all points for each of the simulations in Table 8.  The average error across these simulations 

is what will be defined as the inherent error associated with this inverse modeling 

technique. 

Table 9: Average error across all points for the simulation of P11 and P22 
associated with Table 8. 

Simulation 

ID 

Avg. Error P11 

(%) 

Avg. Error P22 

(%) 

Inherent 1 0.19 0.18 

Inherent 2 0.15 0.19 

Inherent 3 0.12 0.23 

Inherent 4 0.15 0.30 

Inherent 5 0.13 0.26 

 Table 9 clearly shows that the inverse model is capable of accurately calculating 

the two-point statistics of the initial microstructure required to obtain a desired final 

microstructure.  The inherent error is defined using Table 9 by averaging across all 

simulations for P11 and P22.  This results in an inherent error of 0.143% for the simulation 

of the P11 statistics and 0.222% for the simulation of the P22 statistics.  These low values 

for the inherent error of the simulation give a strong validation to the predictive capabilities 

of the proposed inverse model. 
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4.4.2 Quantification of the Average Error  

In section 4.3, Figure 32 specified all of the possible permutations of the initial and 

final microstructures that were modeled for this study.  The inherent error calculations were 

obtained using only a small number of these simulations.  However, error calculations were 

performed for all of the permutations in Figure 33.  Figure 37 shows the error plots 

associated with simulations described in Table 7 in section 4.3.  These simulations 

correspond to predictions which were not used in the calibration of the process path 

functions.  Therefore, the errors associated with these simulations are expected to increase, 

and it is the amount of increase which will identify if the model is truly able to model the 

evolution of the two-point statistics. 
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Figure 37: P11 and P22 error plots comparing the simulated and experimental 
statistics for (a) simulation 1 (b) simulation 2 (c) simulation 3 (d) simulation 4 in 
Table 7. 

Figure 37 shows the error plots obtained after comparing the simulated statistics and 

experimental statistics for each of the chosen simulations.  The error plots for all of the 

simulations in Appendix A can be found in Appendix B.  From Figure 37 it can be seen 

that the largest simulation error is associated with the centralized peak.  While these errors 
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can reach a large maximum for individual points, the overall error is small.  Table 10 

describes the average error associated with each simulation found in Table 7 as well as the 

total average error across all of the possible permutations found in Figure 32. 

Table 10: Average error across all points for the simulation of P11 and P22 
associated with Table 7 and average error across all simulations. 

Simulation 

ID 

Avg. Error P11 

(%) 

Avg. Error P22 

(%) 

1 0.12 0.23 

2 0.17 0.31 

3 0.17 0.19 

4 6.5x10-15 5.41x10-15 

All 0.145 0.236 

From Table 10 it can be seen that each of the simulations in Table 7 result in a low error.  

Furthermore, the average error across all of the inverse simulations is also low though this 

average is larger than the inherent error obtained from the simulations in Table 8.  

Averaging the error across all simulations results in an error of 0.145% for P11and 0.236% 

for P22.  These small increases in the inherent error show that the model is able to 

accurately model the material response to the compression process and therefore does not 

need to be trained using dozens of microstructures. The error plots and table reported in 

this section, as well as the plots found in Appendix B, illustrate that the process path 
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function has been calibrated to model the material response to the deformation process.   

Furthermore, it is expected that these errors can be lowered further through continued 

calibration of the process path function. 

4.5 Conclusion 

Inverse models for the prediction of the initial microstructure required to obtain a 

desired final microstructure are of great interest to the materials science community and 

industrial partners.  These models are highly sought after due to their ability to be integrated 

into material process optimization and for their cost saving potential for industry.  A data-

driven inverse model is proposed here which utilizes two-point statistics to define the 

material microstructure and predict the material response to a given deformation process.  

This model has been shown to be capable of accurately predicting the two-point statistics 

of the initial microstructure required to obtain a desired final microstructure.  The 

application of this model to isothermal compression in a Ti-6Al-4V alloy, including 

synthetically created microstructures, has illustrated the strengths of the model.  However, 

this model is not limited to the Ti-6Al-4V material system. Validation of the inverse model 

for other systems and processing procedures is left for future research opportunities.  
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CHAPTER 5. CONCLUSIONS 

5.1 Summary of Key Conclusions 

The development of microstructure evolution models which require few 

computational resources, while maintaining model accuracy, is of great interest for 

applications which require fast response times, such as additive manufacturing and nuclear 

forensics.  Both forward and inverse models have been developed here which allow for the 

prediction of microstructure evolution. 

5.1.1 Key Conclusions in the Inverse Modeling of Texture for Nuclear Forensics 

An inverse model was developed following the work of Li et al.[31] which is capable 

of predicting the initial ODF required to obtain a desired final ODF.  The work of Li was 

expanded upon to be applied to hot rolling in a dual-phase Zr-18wt.%Nb system, which 

included an annealing stage unable to be simulated by Li’s work.  The inverse model 

simulations show that after recrystallization was considered, the model was capable of 

accurately predicting the initial microstructure required to obtain a desired final 

microstructure.  For the nuclear forensics application chosen, the ability to simulate such a 

processing procedure allows for quick and accurate identification of how interdicted 

material was processed and, therefore, the location of origin. 

5.1.2 Key Conclusions in the Forward Modeling of Deformation in Two-Phase Materials 

A forward model was created building upon the work of Garmestani et al.[51] to 

model the deformation of two-point statistics due to an imposed strain rate.  The created 
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model is capable of evolving the two-point statistics by first calculating the localized 

velocity gradients, and eventually the deformation caused by the velocity gradients.  The 

evolution results show that the model underestimates the deformation which results in the 

compression of two points (i.e. when deformation is negative) but is able to accurately 

calculate the deformation caused by the tensile velocity gradients.  Furthermore, this model 

is capable of simulating the full two-point statistics map and, as such, is able to model 

anisotropic material systems which the original model was unable to do. 

5.1.3 Key Conclusions in the Inverse Modeling of Deformation in Two-Phase Materials 

An inverse model was created following the work performed in chapter 2 which is 

capable of predicting the initial two-point statistics required to obtain a desired final set of 

statistics.  The forward model created in chapter 3 was used to provide calibration data for 

the calculation of the process path function.  The calculated process path function was then 

used in the inverse model simulations to predict the initial statistics required to obtain a 

desired final set of statistics.  The inverse model simulation results show that the 

methodology proposed is capable of providing accurate simulations, however the model 

type chosen here may be the one with the lowest error. 

5.2 Future Work 

Following the models presented here, future developments for microstructure 

evolution models include the expansion of the microstructural features of interest, as well 

as the validation of each of the current models for different material systems and processing 

conditions.  One avenue for the expansion of the microstructural features of interest is the 

development of a model capable of simulating the evolution of the two-point correlation 
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functions of the crystallographic orientation.  This is possible through the use of EBSD 

images which contain information on both location and crystallographic orientation of each 

grain in the microstructure.  Furthermore, one avenue for the validation of each model for 

different material systems is utilizing turning data in the dual-phase Ti-6Al-4V alloy.  

Turning provides a more complex strain rate tensor which varies with depth into the 

specimen surface.  This complex strain rate tensor provides an opportunity to predict the 

deformation of complex processing procedures which are very difficult to predict through 

any material modeling system. 
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APPENDIX A.  INVERSE SIMULATIONS OF TWO-PHASE TWO-

POINT STATISTICS 

The figures illustrated in this appendix compare the experimental (top) and simulated 

(bottom) two-point statistics for each inverse simulation specified in Figure 32.  Prior to 

each figure is a table which specifies the model parameters for the associated simulation. 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 90) = 10 90% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 80) = 20 80% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 70) = 30 70% 

 



 81 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 60) = 40 60% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 50) = 50 50% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 40) = 60 40% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 30) = 70 30% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 20) = 80 20% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 10) = 90 10% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

100% (100 – 0) = 100 0% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 80) = 10 80% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 70) = 20 70% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 60) = 30 60% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 50) = 40 50% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 40) = 50 40% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 30) = 60 30% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 20) = 70 20% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 10) = 80 10% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

90% (90 – 0) = 90 0% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 70) = 10 70% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 60) = 20 60% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 50) = 30 50% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 40) = 40 40% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 30) = 50 30% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 20) = 60 20% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 10) = 70 10% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

80% (80 – 0) = 80 0% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 60) = 10 60% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 50) = 20 50% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 40) = 30 40% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 30) = 40 30% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 20) = 50 20% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 10) = 60 10% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

70% (70 – 0) = 70 0% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 50) = 10 50% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 40) = 20 40% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 30) = 30 30% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 20) = 40 20% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 10) = 50 10% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

60% (60 – 0) = 60 0% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

50% (50 – 40) = 10 40% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

50% (50 – 30) = 20 30% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

50% (50 – 20) = 30 20% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

50% (50 – 10) = 40 10% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

50% (50 – 0) = 50 0% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

40% (40 – 30) = 10 30% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

40% (40 – 20) = 20 20% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

40% (40 – 10) = 30 10% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

40% (40 – 0) = 40 0% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

30% (30 – 20) = 10 20% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

30% (30 – 10) = 20 10% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

30% (30 – 0) = 30 0% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

20% (20 – 10) = 10 10% 
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Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

20% (20 – 0) = 20 0% 

 

Strain of Final Microstructure (𝜂 − 𝜂`) Strain of Initial Microstructure 

10% (10 – 0) = 10 0% 
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APPENDIX B. ERROR PLOTS OF THE INVERSE SIMULATION 

OF TWO-PHASE TWO-POINT STATISTICS 

The figures illustrated in this appendix shows the error associated with each inverse 

simulation specified in Appendix A.  Prior to each figure is a table which specifies the 

model parameters for the associated simulation as well as the average P11 and P22 error. 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 90) = 10 90% 15.6 14.2 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 80) = 20 80% 19.8 18.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 70) = 30 70% 18.5 19.9 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 60) = 40 60% 16.0 22.0 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 50) = 50 50% 14.0 23.6 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 40) = 60 40% 13.5 24.0 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 30) = 70 30% 13.6 25.0 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 20) = 80 20% 12.8 25.4 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 10) = 90 10% 10.0 24.9 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

100% (100 – 0) = 100 0% 6.5x10-15 5.41x10-15 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 80) = 10 80% 14.4 13.7 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 70) = 20 70% 16.5 18.5 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 60) = 30 60% 16.5 22.1 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 50) = 40 50% 16.4 24.8 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 40) = 50 40% 17.6 27.1 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 30) = 60 30% 19.0 29.4 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 20) = 70 20% 18.9 31.0 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 10) = 80 10% 17.7 32.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

90% (90 – 0) = 90 0% 15.5 14.1 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 70) = 10 70% 13.8 14.1 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 60) = 20 60% 15.0 18.8 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 50) = 30 50% 16.6 22.6 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 40) = 40 40% 18.0 26.4 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 30) = 50 30% 18.9 29.0 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 20) = 60 20% 19.0 31.4 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 10) = 70 10% 18.3 33.5 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

80% (80 – 0) = 80 0% 18.6 17.9 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 60) = 10 60% 11.6 14.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 50) = 20 50% 14.3 19.6 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 40) = 30 40% 15.4 24.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 30) = 40 30% 15.7 27.5 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 20) = 50 20% 16.7 30.9 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 10) = 60 10% 18.8 33.3 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

70% (70 – 0) = 70 0% 18.4 19.7 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 50) = 10 50% 9.04 16.2 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 40) = 20 40% 11.5 22.5 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 30) = 30 30% 14.5 26.3 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 20) = 40 20% 17.6 30.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 10) = 50 10% 18.0 33.4 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

60% (60 – 0) = 60 0% 16.0 22.1 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

50% (50 – 40) = 10 40% 8.89 18.5 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

50% (50 – 30) = 20 30% 12.9 23.8 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

50% (50 – 20) = 30 20% 15.7 28.5 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

50% (50 – 10) = 40 10% 16.2 32.3 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

50% (50 – 0) = 50 0% 14.0 23.9 

 

 



 130 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

40% (40 – 30) = 10 30% 9.14 18.2 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

40% (40 – 20) = 20 20% 13.4 25.0 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

40% (40 – 10) = 30 10% 15.0 30.1 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

40% (40 – 0) = 40 0% 13.5 24.5 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

30% (30 – 20) = 10 20% 10.4 21.1 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

30% (30 – 10) = 20 10% 13.9 27.9 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

30% (30 – 0) = 30 0% 13.7 25.9 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

20% (20 – 10) = 10 10% 10.4 23.2 
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Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

20% (20 – 0) = 20 0% 12.9 26.4 

 

Strain of Final 

Microstructure 

(𝜂 − 𝜂`) Strain of Initial 

Microstructure 

Average P11 Error 

(%) 

Average P22 Error 

(%) 

10% (10 – 0) = 10 0% 10.1 25.9 
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