
EXPLORATION OF LIQUID CRYSTAL POLYMER PACKAGING 

TECHNIQUES FOR RF WIRELESS SYSTEMS 

 

 

 

 

 

 

 

 

 

A Dissertation 

Presented to 

The Academic Faculty 

 

 

 

by 

 

 

Chad E. Patterson 

 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy in the 

School of Electrical and Computer Engineering 

 

 

 
 

 

Georgia Institute of Technology 

August 2012 



EXPLORATION OF LIQUID CRYSTAL POLYMER PACKAGING 

TECHNIQUES FOR RF WIRELESS SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approved by:   

   

Dr. Gary S. May, Advisor 

School of ECE 

Georgia Institute of Technology 

 Dr. Andrew F. Peterson 

School of ECE 

Georgia Institute of Technology 

   

Dr. John Papapolymerou, Co-Advisor 

School of ECE 

Georgia Institute of Technology 

 Dr. Hua Wang 

School of ECE 

Georgia Institute of Technology 

   

Dr. John D. Cressler 

School of ECE 

Georgia Institute of Technology 

 Dr. Christos Alexopoulos 

School of ISyE 

Georgia Institute of Technology 

   

  Date Approved:  August 26, 2012 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I find that the harder I work, 

 

the more luck I seem to have.” 

 

-Thomas Jefferson 

 

  

 

 

“Insanity: doing the same thing over and over again 

 

and expecting different results.” 

 

-Albert Einstein 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my family and friends for their unwavering faith and support. 

 

 

  

 

 

 

 

 



 

v 

ACKNOWLEDGEMENTS 

 

 I would first like to thank Dr. John Papapolymerou and Dr. Gary May for their 

guidance and exemplary role as my Ph.D. advisors. John has taught me not only what it 

takes to become a research engineer but also the drive necessary to become successful in 

whatever endeavors I may encounter. Gary selflessly took me under his advisement so 

that I could pursue additional opportunities that invaluably expanded my breadth of 

research and business knowledge. I would like to thank them both for their faith and trust, 

which gave me freedom to pursue ideas in a creative manner. 

 I would also like to thank the additional members of my Ph.D. advisory 

committee, Dr. John Cressler, Dr. Andrew Peterson, Dr. Hua Wang and Dr. Christos 

Alexopoulos, who provided significant support and advisement during my graduate 

studies. 

 It has been a great honor and experience working with the entire MIRCTech team. 

I owe a debt of gratitude to the graduated members, Dr. Yuan Li, Dr. David Chung, Dr. 

Negar Tavassolian, Dr. Arnaud Amadjikpè, Dr. John Poh, and Dr. Eric Juntunen, for 

taking time to train me on cleanroom and laboratory equipment, and providing an 

invaluable depth of knowledge accessible in a moment’s notice. I would also like to 

acknowledge the current team members, Dr. Benjamin Lacroix, Carlos Donado, Aida 

Vera, Wasif Khan, Spyridon Pavlidis, Fan Cai and Outmane Lemtiri, whose new ideas 

and problems have helped reinforce my current knowledge as well as inspired me to 

further explore innovative and interesting topics. Lastly of the MIRCTech team, I would 



 vi 

like to thank Dr. Swapan Bhattacharya for taking me under his wing at an early stage and 

instilling the hands-on fabrication knowledge required to propel my research activities. 

 I am also thankful to the members of Dr. Cressler’s SiGe research group, with 

extra thanks to Dr. Tushar Thrivikraman. It was a wonderful experience working together 

and jointly developing projects into great successes. I must also add that the overly-

generous access to their laboratory equipment was immensely helpful in expediting my 

work for a timely graduation. 

 I wish to acknowledge those individuals whom I closely collaborated with 

throughout the many projects I have been involved. I would like to especially thank Jack 

Ajoian from Lockheed Martin and Bill Wilson, Ted Heath, Sean Begley and Greg 

Hampton from the Georgia Tech Research Institute. I believe the milestones we achieved 

were a direct result of these highly talented individuals and an excellent synergy of 

technical backgrounds. 

 I want to recognize Lisa Gardner and Craig Cotton for finding time to assist me 

despite their busy schedules. I also wish to thank the cleanroom staff at Georgia Tech for 

fighting a never-ending battle to keep equipment functional and maintaining a pleasant 

work environment amid seeming chaos. 

I would like to extend my most sincere thanks to the Beta Pi chapter of Tau 

Kappa Epsilon Fraternity at Georgia Tech for providing a positive personal and academic 

influence on my life. I would not be in the position I am today without the resources 

provided by my fraternity brothers and Board of Trustees. 

 I am grateful to my friends in Georgia and Maryland for providing a social outlet 

that seems all too vacant in the life of a graduate student. I would like to give a special 



 vii 

shout out to the born ballas and steak night’ers for their relentless complaints when I was 

too busy to hang out and for their ‘positive’ encouragement to shed my Peter Pan 

complex. I hope this dissertation serves as evidence to my excuse for sporadic absences 

and confirmation of my newly developed maturity. 

 Finally and most importantly, I would like to thank my family for believing in my 

determination to complete this seemingly endless feat. They have supported me 

emotionally and financially throughout my entire academic career. I am forever indebted 

to my mother, Gail Patterson, for literally giving me the clothes on my back. She has 

been an unwavering fan and personal confidante. I also owe my siblings, Sarah Patterson, 

Shannon Palik and Brian Patterson, a great deal for always taking an interest in my 

endeavors and offering their encouragement throughout the years. I would like to 

especially thank my father, Michael Patterson, and uncle, Col. Jerry Patterson, for 

inspiring me to excel in academia and encouraging me to follow it through to completion. 

I am also grateful to my beautiful girlfriend, Robyn, for her patience and support. Like a 

true chip off the old block, I needed someone to push me out of my comfort zone and to 

compel me into bringing my graduate studies to a conclusion, which she seemingly did 

all too easily. 



 viii 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS ........................................................................................... v 

LIST OF TABLES ........................................................................................................ x 

LIST OF FIGURES ...................................................................................................... xi 

NOMENCLATURE ................................................................................................. xviii 

List of Symbols ................................................................................................... xviii 

List of Abbreviations ............................................................................................ xix 

SUMMARY ............................................................................................................. xxiii 

CHAPTER 

1 INTRODUCTION ............................................................................................. 1 

1.1 Background on Advanced Package Technologies ................................ 2 

1.2 Radio-Frequency Substrates for System-on-Package Technology ........ 5 

1.3 Background on LCP Fabrication .......................................................... 8 

2 SYSTEM-ON-PACKAGE MODULES ON LCP ............................................. 13 

2.1 Embedded Wire Bond Package at Ka Band ........................................ 13 

2.2 Embedded Via Interconnect Package at X Band ................................ 20 

2.3 Encapsulated Flip-Chip Package at X Band ....................................... 26 

2.4 Encapsulated Flip-Chip Package at W Band ...................................... 33 

2.5 Summary ........................................................................................... 41 

3 INTEGRATION OF BAW FILTERS ON LCP ................................................ 42 

3.1 Background on BAW Filter Devices .................................................. 42 

3.2 C-Band Filter Package ....................................................................... 44 

3.3 Ku-Band Filter Package ..................................................................... 52 

3.4 Summary ........................................................................................... 58 



 ix 

4 X-BAND ACTIVE RECEIVING PHASED-ANTENNA ARRAY................... 59 

4.1 Antenna Array Overview ................................................................... 59 

4.2 4 x 1 Antenna Array ........................................................................... 63 

4.3 8 x 1 Antenna Array ........................................................................... 71 

4.4 8 x 2 Antenna Array ........................................................................... 80 

4.5 Summary ........................................................................................... 90 

5 60 GHZ SWITCHED-BEAM RECEIVER FRONT END ................................ 92 

5.1 System Layout ................................................................................... 94 

5.2 Integrated Components Design .......................................................... 96 

5.3 System Results ................................................................................ 110 

5.4 Summary ......................................................................................... 114 

6 CONCLUSION .............................................................................................. 115 

6.1 Contributions ................................................................................... 115 

6.2 Future Work .................................................................................... 117 

7 PUBLICATIONS TO DATE ......................................................................... 119 

7.1 Journal Publications ......................................................................... 119 

7.2 Conference Publications .................................................................. 120 

APPENDIX A: CONSIDERATION OF FABRICATION TOLERANCES FOR 

LCP PLATFORMS ......................................................................... 122 

A.1 Transmission Line Structures ........................................................... 123 

A.2 Via Interconnect Structures .............................................................. 126 

APPENDIX B: ITERATIVE N-PORT MATCHING NETWORK DESIGN ............ 128 

B.1 Development of Preliminary Designs............................................... 128 

B.2 Design Verification & Feedback ...................................................... 133 

REFERENCES .......................................................................................................... 135 

VITA ......................................................................................................................... 146 



 x 

LIST OF TABLES 

Page 

Table 1.1: Comparison of material properties for RF substrates ..................................... 7 

Table 1.2: Design rules for commercial multilayer fabrication ..................................... 10 

Table 2.1: Performance summary of the packaged and unpackaged VCO .................... 19 

Table 4.1: 4x1 antenna array comparison of half-power beamwidths @ 9.5 GHz ......... 70 

Table 4.2: 8x1 antenna array comparison of half-power beamwidths @ 9.5 GHz ......... 79 

Table 4.3: Comparison of pattern beam steering @ 9.5 GHz ........................................ 88 

Table 4.4: 8x2 antenna array comparison of half-power beamwidths @ 9.5 GHz ......... 89 

 

 



 xi 

LIST OF FIGURES 

Page 

Figure 1.1: Advanced packaging techniques: a.) system-on-chip [9], b.) stacked 

ICs and packages [10], c.) system-on-package [11]. ....................................... 3 

Figure 1.2: Package interconnects utilized in IC integration: a.) wire bonds, b.) flip 

chip with HDIs [22]. ...................................................................................... 5 

Figure 2.1: Schematic of the negative resistance oscillator. .......................................... 14 

Figure 2.2: Simulation of the LCP package. ................................................................. 16 

Figure 2.3: a.) Cross-section and b.) Overhead view of the wire bond VCO 

package........................................................................................................ 17 

Figure 2.4: Die photograph of the packaged oscillator.................................................. 17 

Figure 2.5: a.) Output spectrum and b.) Phase noise of the packaged and 

unpackaged VCO. ........................................................................................ 18 

Figure 2.6: Photo of the X-band SiGe LNA. ................................................................ 21 

Figure 2.7: Simulation of the CPW transition lines with via interconnects. .................. 22 

Figure 2.8: S-parameters of simulated CPW transition lines with via interconnects. ..... 22 

Figure 2.9: a.) Over-head and b.) cross-section view of the package design with via 

interconnects and patterned CPW lines. ....................................................... 22 

Figure 2.10: Photograph of the packaged LNA. ........................................................... 23 

Figure 2.11: Comparison of S-parameters before and after packaging. ......................... 24 

Figure 2.12: Smith chart showing noise circles of the unpackaged and packaged 

LNA. ........................................................................................................... 25 

Figure 2.13: Photo of SiGe TRM. ................................................................................ 27 

Figure 2.14: Picture of Au bumps bonded on SiGe die. ................................................ 28 

Figure 2.15: LCP package stackup for T/R module using the a.) conventional 

exposed flip-chip and b.) fully embedded flip-chip approaches. ................... 28 

Figure 2.16: HFSS model of the standard flip-chip transition. ...................................... 29 

Figure 2.17: HFSS model of embedded flip-chip transition. ......................................... 30 



 xii 

Figure 2.18: Simulated S-parameters of the standard flip-chip package (solid) and 

fully embedded flip-chip package (dashed). ................................................. 30 

Figure 2.19: Fabricated and assembled a.) standard flip-chip package and b.) 

embedded flip-chip package......................................................................... 31 

Figure 2.20: Comparison of S-parameters before and after a.) standard flip-chip 

packaging, and b.) fully embedded flip-chip packaging. ............................... 32 

Figure 2.21: Noise figure measurement of fully embedded flip-chip package. .............. 32 

Figure 2.22: Die photo of the W-band 45 nm SOI CMOS 3-stage power amplifier. ..... 34 

Figure 2.23: Picture of a gold stub bump with height of 40μm. .................................... 35 

Figure 2.24: a) LCP package stack-up for PA using a fully encapsulated flip-chip 

approach, b) Model of the via interconnect transition. .................................. 36 

Figure 2.25: Plot of the S11 & S22 (solid) and S21 (dashed) for the encapsulated 

flip-chip transition. ...................................................................................... 36 

Figure 2.26: Model of the encapsulated flip-chip transition with a single open 

radial butterfly stub. ..................................................................................... 37 

Figure 2.27: Photos of a) the flip-chipped die on package b) the encapsulated flip-

chipped die in LCP with input and output matching networks. ..................... 38 

Figure 2.28: Comparison of measured S-parameters before and after encapsulated 

flip-chip package without matching networks. ............................................. 39 

Figure 2.29: Comparison of S-parameters before and after encapsulated flip-chip 

package with matching network. .................................................................. 39 

Figure 2.30: Comparison of PA output power before and after fully encapsulated 

flip-chip package with matching network. .................................................... 40 

Figure 3.1: Conventional package configurations for BAW filters using a.) ceramic 

packaging [66] and b.) wafer-level packaging [67]. ...................................... 43 

Figure 3.2: Picture of the C-band BAW die.................................................................. 44 

Figure 3.3: Schematic of single channel filter showing necessary matching for each 

SMR. ........................................................................................................... 44 

Figure 3.4: Layout of via interconnects for dual-channel filter package. ....................... 46 

Figure 3.5: Measured and simulated results for microstrip thru fabricated on the 

BAW substrate and packaged on LCP with the 3-D transition. ..................... 47 



 xiii 

Figure 3.6: Model and photo of the C-band BAW filter with interstage matching 

but without input/output matching networks. ............................................... 48 

Figure 3.7: Simulated and measured results (on-chip and on-package) for the C-

band BAW filter without input/output matching networks. .......................... 48 

Figure 3.8: Smith chart illustrating the progression of the unmatched impedance on 

die to the matched filter response on package. .............................................. 49 

Figure 3.9: Model of the C-band filter package with integrated matching networks...... 49 

Figure 3.10: Photo of the C-band BAW filter packaged on the multilayer LCP 

substrate. ..................................................................................................... 50 

Figure 3.11: Simulated and measured on-package a.) return loss and b.) insertion 

loss of the matched filter; c.) Isolation measurement between channels of 

the packaged filter........................................................................................ 51 

Figure 3.12: Picture of the dual-channel Ku-band BAW die. ........................................ 52 

Figure 3.13: Material stack-up of the packaged and mounted BAW filter interposer 

on motherboard. ........................................................................................... 53 

Figure 3.14: Top view showing the embedded matching networks on layer M2 of 

the interposer, and the I/O CPW lines on the motherboard. .......................... 54 

Figure 3.15: Smith chart illustrating the progression of the unmatched impedance 

on die to the matched filter response on package. ......................................... 56 

Figure 3.16: a) Full simulated package with matching networks, b) Picture of the 

packaged BAW filter interposer mounted on motherboard. .......................... 56 

Figure 3.17: Comparison of the simulated and measured on-package performance 

of the Ku-band BAW filter. ......................................................................... 57 

Figure 4.1: Stack up of multilayer antenna array showing only one column with 

four elements. .............................................................................................. 62 

Figure 4.2: Dimensions of each aperture coupled patch for the a.) 4x1 and 8x1 

antenna array using an LCP antenna layer and b.) 8x2 antenna array 

using a Duroid antenna layer. ....................................................................... 62 

Figure 4.3: HFSS model of passive 4x1 antenna array. ................................................. 64 

Figure 4.4: Simulated S11 plot of passive 4x1 antenna array. ....................................... 65 

Figure 4.5: Layout for the packaged LNA. ................................................................... 66 

Figure 4.6: Comparison plot of the unpackaged and packaged LNA. ........................... 67 



 xiv 

Figure 4.7: Picture of the packaged LNA on antenna array. ......................................... 67 

Figure 4.8: Picture of the antenna array with integrated LNA. ...................................... 68 

Figure 4.9: S11 plot for the baseline and packaged LNA 4x1 antenna array. ................ 68 

Figure 4.10: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the baseline 4x1 

array. ........................................................................................................... 69 

Figure 4.11: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 4x1 array 

with integrated LNA. ................................................................................... 70 

Figure 4.12: Normalized gain plot comparison. ............................................................ 70 

Figure 4.13: Model of the 8x1 antenna array. ............................................................... 71 

Figure 4.14: Picture and schematic of the SiGe phase shifter........................................ 72 

Figure 4.15: Layout for the packaged phase shifter. ..................................................... 73 

Figure 4.16: Comparison of S-parameters for the unpackaged and packaged phase 

shifter. ......................................................................................................... 74 

Figure 4.17: Comparison of unpackaged and packaged phase shifter for each phase 

state. ............................................................................................................ 74 

Figure 4.18: Picture of the packaged SiGe LNA and PS. .............................................. 75 

Figure 4.19: Comparison of measured and simulated S-parameters for LNA and 

phase shifter packaged in series on LCP. ...................................................... 76 

Figure 4.20: Front and back picture of the assembled 8x1 antenna array with 

integrated LNA and PS. ............................................................................... 76 

Figure 4.21: Return loss of the simulated baseline array and measured active 

arrays. .......................................................................................................... 77 

Figure 4.22: Antenna chamber setup of 8x1 array with SiGe LNA and PS. .................. 78 

Figure 4.23: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x1 array 

with integrated LNA only. ........................................................................... 78 

Figure 4.24: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x1 array 

with integrated LNA and PS. ....................................................................... 79 

Figure 4.25: Gain versus frequency for each phase state of the 8x1 array with 

integrated LNA and PS. ............................................................................... 80 

Figure 4.26: HFSS model of the 8x2 antenna array. ..................................................... 81 



 xv 

Figure 4.27: Picture of the packaged LNA and phase shifter on the 8x2 antenna 

array. ........................................................................................................... 82 

Figure 4.28: Picture of the assembled antenna array with low power supply board 

and phase shifter bit controller. .................................................................... 83 

Figure 4.29: S11 plot of the simulated and measured 8x2 antenna arrays. .................... 83 

Figure 4.30: Picture of the 8x2 antenna array being measured in the anechoic 

chamber. ...................................................................................................... 84 

Figure 4.31: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x2 baseline 

antenna array. .............................................................................................. 85 

Figure 4.32: Gain versus frequency of the 8x2 baseline antenna array. ......................... 85 

Figure 4.33: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz for the 8x2 antenna 

array with packaged SiGe LNA and phase shifter. ....................................... 86 

Figure 4.34: Normalized E-plane at 9.5 GHz of the 8x2 antenna array with a.) 44 

degrees, b.) 87 degrees, c.) 129 degrees, d.) 170 degrees, e.) 257 degrees, 

and f.) 299 degrees phase change. ................................................................ 87 

Figure 4.35: Gain versus frequency of the 8x2 antenna array for all phase changes. ..... 88 

Figure 5.1: Schematic layout of the switched-beam array. ............................................ 95 

Figure 5.2: Model of the 4x4 Butler matrix. ................................................................. 97 

Figure 5.3: Simulated reflection coefficient for each port of the Butler matrix. ............ 98 

Figure 5.4: Simulated transmission coefficients of the Butler matrix for a.) P1& P4 

and b.) P2 & P3. .......................................................................................... 98 

Figure 5.5: Simulated phase shift between adjacent antenna elements for a.) P1 and 

b.) P2. .......................................................................................................... 99 

Figure 5.6: Model of the single antenna element illustrating feature dimensions. ....... 100 

Figure 5.7: Fabricated a.) single Yagi element and b.) 4x1 array with Butler matrix. .. 101 

Figure 5.8: Simulated and measured S11 of the single dipole antenna and the 4x1 

phased array with incorporated Butler matrix. ............................................ 101 

Figure 5.9: Simulated package of the LNA and SPDT switch assuming 50 Ω on-

die matching. ............................................................................................. 103 

Figure 5.10: Picture of the packaged LNA integrated on the antenna. ........................ 105 



 xvi 

Figure 5.11: Comparison plot of the measured and simulated LNA package. ............. 105 

Figure 5.12: Picture of the packaged switch network integrated on the antenna. ......... 106 

Figure 5.13: Comparison plot of the measured and simulated switch package. ........... 107 

Figure 5.14: Simulated G3PO connector modeled with impedance tuning stub. ......... 108 

Figure 5.15: Fabricated and assembled 4x1 active receiving switched-beam array. .... 109 

Figure 5.16: Measured S11 for each beam state of the 4x1 active switched-beam 

array. ......................................................................................................... 111 

Figure 5.17: Normalized E-Plane of co-polarization and cross-polarization at 60 

GHz for each beam scan in dB. .................................................................. 112 

Figure 5.18: Normalized H-Plane at 60 GHz for each beam scan in dB. ..................... 112 

Figure 5.19: E-plane beam steering versus frequency of the 4x1 active 

switched-beam array. ................................................................................. 113 

Figure 5.20: Gain versus frequency of the 4x1 active switched-beam array. ............... 113 

Figure A.1: Cross-section of transmission line structures on CSLP stack-up using 

LCP. .......................................................................................................... 123 

Figure A.2: Calculated 50 Ω line width for each transmission line structure. .............. 124 

Figure A.3: Microstrip transmission line characteristic impedance for a) substrate 

thickness variations, b) and worst-case etch tolerance variations. ............... 125 

Figure A.4: CPW-G transmission line characteristic impedance with fixed line gap, 

s = 50 µm, for a) substrate thickness variations, b) and worst-case etch 

tolerance variations. ................................................................................... 125 

Figure A.5: Stripline characteristic impedance for a) substrate thickness variations, 

b) and worst-case etch tolerance variations. ............................................... 126 

Figure A.6: Cross-section of M1-M3 via transition and model parasitics.................... 127 

Figure B.1: ADS schematic of ideal MN components with device S-parameter 

block.......................................................................................................... 129 

Figure B.2: ADS schematic of lossy package with butterfly stub MN components. .... 130 

Figure B.3: HFSS model of the packaged device without MN components. ............... 130 

Figure B.4: ADS schematic of lossy package with HFSS extracted S-parameters 

for package interconnects. .......................................................................... 131 



 xvii 

Figure B.5: HFSS model of the packaged device with MN components. .................... 132 

Figure B.6: ADS Schematic block simulation of extracted S-parameters from 

HFSS modeled MNs. ................................................................................. 133 



 xviii 

NOMENCLATURE 

 

List of Symbols 

Å  Angstrom (1 x 10
-10

 m) 

°C  Degree Celsius 

εr  Relative Permittivity 

µm  Micrometer 

µF  Microfarad 

Ω  Ohm 

σc  Conductivity 

A  Amp 

cm  Centimeter 

dB  Decibel 

dBm  Decibel referenced to 1 milliwatt 

GHz  Gigahertz 

Hz  Hertz 

kHz  Kilohertz 

K  Kelvin 

m  Meter 

mm  Millimeter 

mW  Milliwatt 

MHz  Megahertz 

oz  Ounce 

PSI  Pounds Per Inch
2
 



 xix 

S  Siemens 

tanδ  Loss tangent 

V Volt 

W  Watt 

Z0  Characteristic Impedance 

List of Abbreviations 

2-D Two Dimensional 

3-D Three Dimensional 

3G Third Generation 

Ag Silver 

ADS Advanced Design System 

AoC Antenna on Chip 

Au Gold 

AUT Antenna Under Test 

AWG American Wire Gauge 

BAW Bulk Acoustic Waveguide 

BCB Benzocyclobutene 

BFN Beam Forming Network 

BiCMOS Bipolar Complementary Metal Oxide Semiconductor 

BP Bondply 

BT Bismaleimide-Triazine 

BW Bandwidth 

C4 Controlled Collapse Chip Connection 

C band 4 GHz to 8 GHz 

CMM Coordinate Measuring Machine 



 xx 

CMOS Complementary Metal Oxide Semiconductor 

CPS Coplanar Strip 

CPW Coplanar Waveguide 

CPW-G Grounded Coplanar Waveguide 

CSLP Chip Scale Level Package 

CTE Coefficient of Thermal Expansion 

Cu Copper 

DC Direct Current 

DUT Device Under Test 

ESD Electrostatic Discharge 

FOM Figure of Merit 

FR-4 Flame Retardant 4 

GaAs Gallium Arsenide 

GPS Global Position System 

GSG Ground-Signal-Ground 

GSGSG Ground-Signal-Ground-Signal-Ground 

HBT Heterojunction Bipolar Transistor 

HDI High Density Interconnect 

HFSS High Frequency Structure Simulator 

HTCC High Temperature Co-Fired Ceramic 

IC Integrated Circuit 

IEEE Institute of Electrical and Electronics Engineers 

I/O Input/Output 

IPA Isopropyl Alcohol 

K band 18 GHz to 26.5 GHz 



 xxi 

Ka band 26.5 GHz to 40 GHz 

Ku band 12 GHz to 18 GHz 

KrF Krypton Fluoride 

LCP Liquid Crystal Polymer 

LNA Low-Noise Amplifier 

LTCC Low Temperature Co-Fired Ceramic 

MCM Multi-Chip Module 

Mo Molybdenum 

NF Noise Figure 

NHA Next Higher Assembly 

Ni Nickel 

P1dB 1 dB Power Compression Point 

PA Power Amplifier 

PAE Power-Added Efficiency 

PCB Printed Circuit Board 

Pout Output Power 

PS Phase Shifter 

Psat Saturated Output Power 

PTFE Polytetrafluoroethylene 

Q Quality 

RIE Reactive Ion Etching 

RF Radio Frequency 

RMS Root Mean Square 

RRP Risk-Reduction Panel 

SiC Silicon Carbide 



 xxii 

SiGe Silicon Germanium 

SIP Stacked Integrated Circuit and Package 

SIW Substrate Integrated Waveguide 

SMR Surface Mounted Resonator 

Sn Tin 

SoC System on Chip 

SoP System on Package 

S-Parameters Scattering Parameters 

SPDT Single Pole Double Throw 

T/R Transmit/Receive 

Ti Titanium 

TRM Transmit/Receive Module 

TSV Through-Silicon Via 

UV Ultra Violet 

VCO Voltage-Controlled Oscillator 

V band 55 GHz to 75 GHz 

VSWR Voltage Standing Wave Ratio 

W Tungsten 

W band 75 GHz to 110 GHz 

X band 8 GHz to 12 GHz 

 



 xxiii 

SUMMARY 

 

In the past decade, there has been an increased interest in low-cost, low-power, 

high data rate wireless systems for both commercial and defense applications. Some of 

these include air defense systems, remote sensing radars, and communication systems 

that are used for unmanned aerial vehicles, ground vehicles, and even the individual 

consumer. All of these applications require state-of-the-art technologies to push the limits 

on several design factors such as functionality, weight, size, conformity, and performance 

while remaining cost effective. There are several potential solutions to accomplish these 

objectives and a highly pursued path is through the utilization of advanced integrated 

system platforms with high frequency, versatile, multilayered materials. 

Many new materials are being explored for advanced package design that are 

thinner, lighter, and have better high frequency characteristics that make a wider range of 

applications possible. Liquid Crystal Polymer (LCP) has been established as an excellent 

microwave organic dielectric due to its key performance and packaging advantages. It 

has been shown that LCP is a prime candidate for integration of active circuits in 2-D and 

3-D packaging configurations. Additionally, its large processing format and compatibility 

with the build-up process in a printed circuit board foundry allows for a smooth transition 

to commercialization of products. 

This work intends to explore advanced 3-D integration for state-of-the-art 

components in wireless systems using LCP multilayer organic platforms. Several 

packaging techniques are discussed that utilize the inherent benefits of this material. Wire 

bond, via interconnect, and flip-chip packages are implemented at RF and millimeter-

wave (mm-wave) frequencies to explore the benefits of each in terms of convenience, 

reliability, cost, and performance. These techniques are then utilized for the 
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demonstration of bulk acoustic waveguide (BAW) filter applications and for the 

realization of highly integrated phased-array antenna systems. 

A combination of flip-chip and via interconnects are applied to the integration of 

state-of-the-art BAW filter technology with LCP packaging. The hermetic nature of LCP 

is utilized to prevent moisture absorption from degrading RF performance by use of a 

solder ring die attachment. Additionally, via interconnects route the signal directly from 

the chip interface to matching networks implemented on package for a 50 Ω impedance 

matching. For the first time ever, this packaging approach is demonstrated at C-band and 

Ku-band frequencies. 

This work also investigates the possible applications for LCP platforms where the 

benefits of this material can be exploited for highly integrated wireless antenna systems. 

Active and passive components are incorporated on LCP using a system-on-package 

approach to improve performance and enhance capability of the antenna. Wire bond 

interconnects are utilized as a convenient, low-cost packaging solution, ideal for 

prototype development. The demonstration of several prototype antennas at X-band and 

V-band frequencies provide substantial evidence as to the broad range of potential 

applications for LCP. 
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CHAPTER 1 

INTRODUCTION 

 

The current pace of RF technology development and innovation is in response to 

market pressures for miniaturization, with increased functionality at lower costs. This 

rapidly growing facet of the electronics industry is especially apparent in wireless 

systems. In the last decade, there has been substantial growth in communication devices, 

anti-collision radars, remote sensing, and satellite communication and navigation 

systems. Many of these technology advancements have now become fundamental 

components of day-to-day operation for the average consumer. These include global 

positioning system (GPS) devices (1 GHz to 2 GHz), smart phones (0.6 GHz to 2.7 

GHz), automobile collision avoidance radars (24 GHz and 77 GHz), and satellite 

television (10 GHz to 13 GHz). 

Portable wireless devices have experienced a boom in consumer popularity with 

an overwhelming necessity for instant data, voice, and video access. This spark in 

demand has been met by the electronics industry with new and innovative technologies 

that push the current state-of-the-art performance and functionality in a cost-effective 

manner. For example, in 2001, third-generation (3G) mobile telecommunication networks 

gave birth to wireless internet access, video calling and media streaming to cell phones, 

personal digital assistants, and laptop computers. Since then, smart phones, iPads, and 

tablet personal computers have been developed that are not only smaller than their 

predecessors in size and profile, but also packed with additional functionality, such as 

multitask software applications, GPS, high-definition photo/video cameras, and data 

storage. With the growth in smart phone sales up to over 303 million units in 2010 and a 

forecasted 49 % growth in sales for 2011, there is a clear financial interest driving the RF 

component in this market [1]. 
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In addition to packed functionality, the electronics industry is coming up with 

innovative ways to replace current radar and communication systems with ones that are 

lighter, lower power, and more adaptable [2]. In the past, these have consisted of heavy, 

bulky, and expensive waveguide feed networks and antenna arrays [3]-[5]. This type of 

system is costly and impractical for applications where mobility is required. Added 

weight and bulk to airborne and ground vehicles reduces maneuverability, increases air 

drag, and raises gas consumption. An innovative way to eliminate a large portion of the 

weight, size, and cost is by utilizing microstrip technology on lightweight, flexible, high 

frequency substrates. 

Products of this complexity require advanced RF designs and highly integrated 

system platforms that can be manufactured at low costs. Hundreds of electronic 

components must be seamlessly interconnected into a low form factor device, which 

presents an enormous challenge from an electrical and mechanical standpoint. In addition 

to dense complex interconnections, concerns of weight, reliability, and RF performance 

must be addressed. Response to these hurdles has fostered advanced packaging 

techniques utilizing low-cost, high frequency, versatile materials [6]-[8].  

1.1 Background on Advanced Package Technologies 

The primary focus of today’s wireless systems are component integration, size 

miniaturization, cost reduction, reliability increase, and performance enhancement; all of 

which are largely handled in part by the system package design. In order to achieve these 

objectives, advanced packaging techniques have been developed that replace traditional 

bulky package configurations. These concepts include system-on-chip (SoC), stacked 

integrated circuits (ICs) and packages (SIP), and system-on-package (SoP) technologies, 

illustrated in Figure 1.1. The term “system” refers to everything required for device 

operation, including the digital and analog circuitry, embedded software, thermal 

coupling structures, and power sources. 
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 (a) (b) (c) 

Figure 1.1: Advanced packaging techniques: a.) system-on-chip [9], b.) stacked ICs and 

packages [10], c.) system-on-package [11]. 

The simplest packaging approach is the integration of the system onto a single 

chip (SoC). This offers compact size and high performance functionality capable of mass 

production. However, this technology limits the system to a single substrate platform, 

which causes long design times due to complex function integration, noise coupling 

issues, and mixed-signal processing complexities [12]. Additionally, the inclusion of 

passive circuitry on chip significantly increases the die footprint; inflating fabrication 

costs. 

SIP and SoP technologies address many of these disadvantages through multi-

functional integration at the package level, rather than at the chip level. The degree of 

freedom realized at the package level allows for multi-chip integration at a higher 

performance/cost index than SoC technologies [13]. With SIP technology, multiple ICs 

or chip packages are integrated into a single package through chip stacking and are 

interconnected using wire bonds, flip-chip bonding, or through-silicon vias (TSV). This 

approach enables differing semiconductor platforms to be exploited in the system, greatly 

simplifying design complexity [14]. SIP uses the package solely for inter-chip 

connection; however, SoP technology takes system integration even further by 

incorporating functionality into the package itself. In this manner, the system platform is 

utilized as the IC packaging substrate. Many system components, traditionally integrated 

on chip, are embedded into the package, taking advantage of the substrate high frequency 
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electrical properties [15]. By utilizing low-loss packaging substrates, high quality-factor 

(Q-factor) passive components can be achieved, which is not easily realized on lossy chip 

substrates. The relocation of system components off chip greatly reduces the chip size, 

saving fabrication costs significantly. Furthermore, this packaging technology enables the 

inherent benefit of chip and package substrates to be better utilized and co-designed for 

their respective strengths. Traditionally, the advantages of IC design reside within 

transistor integration, while the advantages of package design are in analog and digital 

component integration [16], [17]. 

There are several technologies available for integration of passive and active ICs 

into the system platform. Conventional methods make use of wire bonds and flip chip, 

which are proven to be easy and effective, with relatively low loss [18]-[20]. Wire 

bonding remains the most commonly used and flexible type of interconnecting 

technology, shown in Figure 1.2(a). It is low cost and very easily re-worked; however, it 

incurs high parasitic losses due to large loop inductances caused by long wire lengths. It 

is also limited to a 2-D package topology, which restricts input/output (I/O) interconnect 

density, taking up valuable real estate. These limitations can be overcome through the use 

of flip-chip technology, shown in Figure 1.2(b). Parasitic losses and package footprint 

sizes are reduced by replacing long wire lengths with solder bumps. Additionally, high 

density interconnects (HDIs) are used on package to achieve very fine pitched traces and 

micro-vias down to 30 µm [21], [22]. This increase in number of chip interconnects has 

become critical in supporting higher power requirements, bandwidths, and data rates. 

However, the disadvantages of this technology are higher costs, limited re-workability, 

and its susceptibility to interconnect failure from thermal and mechanical stresses [23], 

[24]. 
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 (a) (b) 

Figure 1.2: Package interconnects utilized in IC integration: a.) wire bonds, b.) flip chip 

with HDIs [22]. 

One possible option for further improvement in parasitic losses and 

miniaturization for these package technologies is embedding chips within the core of the 

package. Conceptually, embedding active components can be encompassed by three 

major categories: (i) cavity formation to the dimension of the chip, (ii) lamination of 

chips within multilayer laminated sheets, and (iii) over-molding upon placement of the 

chips on the surface of the package. Significant research has been published in the past 5 

years toward embedding chips using ceramic substrates and other platforms [25]. Aside 

from the improvement in parasitic losses, a clear advantage in embedding actives is the 

reduced thickness of the package and slim form factor. 

1.2 Radio-Frequency Substrates for System-on-Package Technology 

For SoP design, the platform substrate must not only maintain excellent high 

frequency electrical properties, but also be suitable for versatile package integration and 

remain cost effective. There are two categories of materials fitting this profile that have 

become leaders in the packaging industry: ceramic substrates and organic substrates. 

Until recently, ceramic substrates have been widely established as the leading material in 

microelectronic packages, sensors, and passive components. Ceramic materials have long 

been favored because of their high reliability, multilayer thin-film processing (>50 
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layers), endurance to harsh environments, and low fabrication costs [26]-[28]. These 

substrates are typically comprised of multilayered aluminum oxide material, engineered 

to co-fire at temperatures around 1500 °C. Lamination occurs in one fluent step, which 

hardens and bonds the substrate and metal layers together into a planar rigid platform. 

Ceramics of this composition are known as high temperature co-fired ceramics (HTCC). 

Due to the high firing temperatures of HTCC, high temperature metals such as tungsten 

(W) and molybdenum (Mo) are used, which limits this material to low RF applications 

because of their low conductivity [27]. As the electronics market pushed for high 

frequency applications, low temperature co-fired ceramics (LTCC) were developed from 

a hybrid ceramic-organic composition, which lowered the firing temperature to 850 °C 

[29]-[30]. This allowed highly conductive metals like silver (Ag) and gold (Au) to be 

used, which in conjunction with low-loss LTCC, enabled high RF performance up to 

millimeter-wave (mm-wave) applications. LTCC has since become the favored ceramic 

substrate; however, this material is twice the cost of HTCC and has additional 

complexities of design and fabrication due to a 10 % to 20 % size shrinkage that occurs 

after firing [31]. 

In the last decade, organics have become a primary candidate, as they are a low-

cost replacement of the standard high performance ceramic materials, exhibiting potential 

as the next generation technology for SoP wireless systems. Several disadvantages 

inherent in LTCC technology are resolved by the use of organic substrates. These include 

the high material costs, material shrinkage after lamination, and high processing 

temperatures that are incompatible with active chip embedding. For this reason, there 

have been studies on embedding active circuits with low-cost organic materials that have 

excellent performance up to mm-wave frequencies and do not have the manufacturing 

and cost limitations of ceramic substrates. Table 1.1 shows a comparison of material 

properties for LTCC with several alternative organic materials: Flame Resistant 4 (FR-4), 

Polytetrafluoroethylene (PTFE or Teflon), and Liquid Crystal Polymer (LCP). 
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Table 1.1 

Comparison of material properties for RF substrates 

Material Characteristics LTCC FR-4 PTFE LCP 

εr @ 10 GHz 4.3 to 9.1 3.8 to 4.5 2.08 to 2.3 2.9 

tanδ (1x10
-3

) @ 10 GHz  1 to 4.5 16 0.6 to 1.1 2.5 

Min Layer Thickness (µm) 12.5 60 125 25 

CTE (ppm/°C), [x,y,z] 3 to 7 14, 13, 175 25, 35, 260 17, 17, 150 

Conductor Material 

Internal Ag Ag, Au, Cu Ag, Au, Cu Ag, Au, Cu 

External Ag, Au Ag, Au, Cu Ag, Au, Cu Ag, Au, Cu 

Processing Temperature (°C) 850 185 <285 <300 

Thermal Conductivity (W/m·K) 2 to 4 0.27 0.62 0.5 

Moisture Absorption (%) <0.1 <0.25 0.02 0.04 

Density (g/cm
3
) 3.1 1.85 1.9 1.4 

Sources: [29]-[32], [34], [36] 

FR-4 is a commonly used printed circuit board (PCB) material. It is very low cost 

with high mechanical strength and good electrical insulation suitable for applications up 

to 10 GHz [32]-[33]. However, for applications above 10 GHz, this material exhibits very 

high losses, which can quickly outweigh its low-cost advantages. PTFE is a low-loss 

material also used in PCB manufacturing [34]. While this material has excellent RF 

performance, it is more expensive than the other organic materials and has difficulties in 

multilayer processing. Additionally, there are issues with circuit failure due to the high 

coefficient of thermal expansion (CTE) for this material, which causes de-lamination of 

metal layers during thermal cycling. 

In recent years, LCP has been established as an exceptional microwave organic 

dielectric due to its key performance and packaging advantages [35]-[36]. It has many 
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favorable characteristics that make it easy to employ while maintaining excellent 

performance. There is an abundance of literature investigating the benefits of LCP 

including [37]-[44]; some key advantages are listed below: 

 Superior cost/performance index 

 Flexibility for application in conformal flex circuits 

 Low permittivity and dielectric loss with minimum dispersion up to 110 GHz 

 Low CTE compatible with Ag, Cu, and Au 

 Near-hermetic 

 Naturally flame retardant 

 3-D multilayer integration 

 Compatible with sequential build up process in a PCB Foundry 

LCP is now established as a low-cost material with excellent high frequency 

electrical properties extending well into the mm-wave band. Its low dielectric constant (εr 

= 2.9 @ 10 GHz), low loss tangent (tanδ = 0.0025), and near-hermetic nature make it an 

outstanding material for high frequency applications. Its strong packaging properties also 

give it an edge over competing materials. It is a lightweight, conformal composition with 

density of 1.4 g/cm
3
, which is less than half that of ceramics. It is also naturally flame 

retardant, which allows for convenient laser patterning of vias and cavities, and requires 

low temperature (less than 300 °C) processing for multilayer lamination, making IC 

embedding possible. The combination of these inherent properties allows a 3-D 

packaging capability on a conformal platform capable of being mounted to almost any 

surface (aircraft wing, boat hull, car roof, etc.). 

1.3 Background on LCP Fabrication 

In addition to evaluating the substrate electrical and mechanical properties 

optimal for a given application, fabrication limitations must also be considered. The 

product size, reliability, performance, and cost will all be greatly affected by the 
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capability of the fabrication vendor. This becomes especially apparent at mm-wave 

frequencies where the physical dimensions of the module tend to shrink in size to 

maintain acceptable performance. Optimally, very thin substrates with a low permittivity 

are desired to provide small feature sizes for reduced module size and, ultimately, 

reduced cost, while also providing the highest performance. Additionally, for high-

quantity productions, fabrication can quickly become a dominant cost contributor, which 

makes the number of units produced per fabrication run a very important issue. Large-

panel processing compatible with a PCB infrastructure enables a low cost solution with 

inexpensive fabrication and fewer production runs. 

Table 1.2 shows state-of-the-art commercial fabrication capabilities for multilayer 

ceramic and organic stackups. LTCC and FR-4 materials have been developed over the 

last two decades into very mature technologies, while LCP is a relatively newer 

technology that has entered into commercial fabrication only in the last decade. LCP has 

a limited number of layers compared to other materials because it is an unfilled material 

with no reinforcement (fiberglass weave or ceramic particles); however, this also allows 

the creation of high-aspect ratio vias. The fabrication design rules for this material 

maintain very small line widths/spaces and via diameter/pitch, which allows highly 

condensed line routing and via interconnects. Additionally, LCP is processed in large-

panels comparable to FR-4. This not only allows batch production of devices, but also the 

realization of large area, multi-element antenna arrays not feasibly fabricated on the 

limited panel size of LTCC. 
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Table 1.2 

Design rules for commercial multilayer fabrication 

Guidelines LTCC FR-4 LCP 

Minimum Layer Thickness (µm) 12.5 60 25 

Minimum 

Line Widths / Spaces (µm) 

External 75 / 75 75 / 75 50 / 50 

Internal 75 / 75 50 / 75 40 / 50 

Minimum Via Diameter / Pitch (µm) 100 / 300 150 / 250 25 / 200 

Panel Size (mm
2
) 200 x 200 570 x 570 450 x 600 

Maximum Layer Count 25 70+ 7 

Technology Maturity High High Medium 

Sources: [36], [45], [46] 

LCP has been proven as a viable substitute for competing substrates; however, 

fabrication limitations have not yet been fully analyzed with regard to RF performance 

yield. There is currently very little published on large-scale LCP manufacturability. The 

following sections outline the fundamental considerations of substrate fabrication and 

describe the added complexities when implementing LCP. 

1.3.1 Material Thickness 

LCP core material (ULTRALAM® 3850), double clad, is available in 25 µm, 50 

µm, and 100 µm thicknesses with copper foil available down to 9 µm thick. LCP 

Bondply (ULTRALAM® 3908) is available in 25 µm and 50 µm thicknesses and is used 

to bond core layers together. The material manufacturer of LCP used in this thesis, 

Rogers Corporation, guarantees the product to be within ±12.5 % of the specified 

thickness. During the lamination process, the material stack-up is brought to a 

temperature of 285 °C under a pressure of 300 pounds per inch
2
 (PSI), allowing the 

Bondply layers to flow and adhere to the adjacent core layers. Consequently, during this 
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process it has been observed that the LCP core layers will slightly compress, yielding a 

thickness less than what is expected. In addition, as the material stack-up increases in 

thickness, a larger temperature gradient across the layers will occur, causing the external 

layers to be exposed to higher temperatures than the internal layers. This temperature 

gradient can ultimately cause varying compression in the z-axis between layers. 

Considering all variations, it is expected that increasing the number of LCP layers during 

lamination will make the total thickness tolerance greater and more difficult to predict. 

1.3.2 Registration Error 

Layer-to-layer registration is a challenge using any substrate technology process 

and/or material. This obstacle is exacerbated when using LCP because of its inherent un-

filled, un-reinforced state, which enables its excellent electrical properties (low loss, low 

dielectric constant, and high moisture resistance) but consequently allows the material to 

‘swim’ during the lamination cycle. This results in a steep learning curve for process 

development; the amount of controllable registration error between layers directly 

impacts the sizing of via catch pads, which can have degrading effects on RF 

performance in layer-to-layer transitions. Catch pad sizing, and even more so, RF via 

transition designs can ultimately be the limiting factors in routing density; isolation also 

being of primary concern. 

1.3.3 Minimum Feature Size 

Utilizing thin LCP laminates of 25 µm, 50 µm, or 100 µm thicknesses for 

package substrates requires maintaining a 50 Ω system impedance. It has been shown in 

Table 1.2 that commercial fabrication is limited to lines and spaces down to 50 µm. 

These capabilities are heavily dependent on copper thickness and typically presume ¼ or 

½ oz copper. For optimized performance and producibility, it is essential to design all 

transmission lines to be as wide as possible while maintaining 50 Ω system impedance. 
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Furthermore, as 50 µm or smaller lines and spaces are approached, the fixed etch 

tolerance becomes a significant percentage of the feature size and the RF performance 

must sustain fabrication tolerances. As the minimum feature size is pushed to its limit, the 

accuracy of line widths and gaps becomes harder to control. Small variations can have a 

large effect on line impedances and overall matching in the design. Finish plating will 

also play an important role in feature resolution and assembly compatibility at the 

package level and should be considered early in the design phase. 

Another important feature for wide-band RF transitions and increased routing 

density is the use of micro-vias. Aspect ratio, the measure of via diameter with respect to 

drill depth, for micro-vias is 2:1 across the industry for laminate PCB substrates. Micro-

vias are drilled using either a UV or CO2 laser, or often combinations of both, yielding 

precision depth-controlled interconnect vias and cavities. Decreasing the aspect ratio 

enables two key parameters: 1) reduced via diameter, which favorably increases 

inductance and concurrently reduces via catch-pad diameters that are the dominant 

capacitive features allowing for a better RF match, and 2) ground stitching (fence of 

ground vias) between adjacent RF transmission lines for isolation, thus smaller via sizes 

can accommodate finer RF IC interconnect pitch.  



 13 

CHAPTER 2 

SYSTEM-ON-PACKAGE MODULES ON LCP 

 

Comprehensive research and prototypes have been published leading to the 

realization of embedded RF components and devices in LCP packages [43], [47]-[49]. In 

an effort to better understand the extent of LCP packaging capabilities at microwave and 

mm-wave frequencies, several packaging methods have been explored. Special 

techniques are utilized to minimize RF parasitics incurred through the package 

interconnects. The aim is to offer high performance integration for low-cost and 

lightweight applications. The advantages of silicon-based chips, combined with the 

packaging versatility of LCP, provide a unique opportunity for organic based RF SoP 

solutions. These investigations are discussed in this chapter. 

2.1 Embedded Wire Bond Package at Ka Band 

For state-of-the-art proof-of-concept applications, the flexibility for last-second 

modifications to the circuit module can be crucial for success. Often, it is necessary to 

incorporate wire bond packaging to enable this flexibility even at mm-wave frequencies 

where RF parasitics run the potential of degrading performance. Such occurrences require 

die-embedding techniques to minimize packaging parasitics. LCP has many favorable 

characteristics that make it easy to utilize while maintaining excellent performance, 

which makes it a strong candidate as a wire bond packaging material for mm-wave 

applications. In this section, a silicon-germanium (SiGe) voltage-controlled oscillator 

(VCO) that has been embedded into an LCP organic material that acts both as substrate 

and package is described [50]. 
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2.1.1 Circuit Description 

The packaged circuit demonstrated is a voltage controlled oscillator operating at 

the upper end of Ka band. Shown in Figure 2.1, the oscillator uses a cross-coupled 

negative resistance topology implemented in IBM's third generation SiGe technology 

node. The differentially configured common emitter stage creates a negative resistance 

across the collectors of the two HBT's by steering current back and forth between them. 

The circuit is made unstable by cross-coupling the base contacts to the opposing 

collector, ensuring that as random noise steers the current toward one transistor, the bias 

point of the opposite transistor increases steering the current back in the other direction. 

This oscillation will increase until the non-linearities of the transistor decrease the current 

gain to an equilibrium condition with the resonator. 

 

Figure 2.1: Schematic of the negative resistance oscillator. 

The negative resistance generated by the transistor pair is used to offset the loss of 

the resonator tank. The resonator sets the oscillation frequency of the VCO. In this 

circuit, the resonator is formed monolithically using a combination of varactors and metal 

lines. Adjusting the control voltage varies the effective capacitance of the varactor and 

adjusts the resonant frequency of the tank. The high impedance lines on the thick analog 

metal layer act as inductors with a much higher self resonant frequency than traditional 

spiral inductors. These state-of-the-art passive elements allow the circuit to push the 
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frequency limits of this design topology. Emitter-follower buffers are used to extract the 

signal with minimal loading of the resonant tank. Since these buffers need to drive an 

inductive load in the form of package bond wires, care must be taken in the design to 

ensure that the amplifier is stable by adjusting the bias current and emitter scaling. 

The VCO circuit was diced from its original wafer using a soft cutting blade with 

a 50 µm width. It was necessary to dice the chip as small as possible without damaging it 

in order to reduce wire bond lengths. After dicing, the chip dimensions measured 550 µm 

x 850 µm x 525 µm. For best packaging results, the dimensions of the cavity produced 

for mounting this chip will be approximately the same, but slightly larger, to allow for 

any errors. Before packaging, the VCO was measured on chip to ensure its integrity. 

When measured at the wafer level without the package, the circuit achieves an 

output power of -13.6 dBm, with a phase noise of -94 dBc/Hz at a 1 MHz offset from the 

carrier frequency. The VCO has a tuning range of over 1 GHz, from 36.5 GHz to 37.8 

GHz. The measured oscillation frequency represents a 5 % downward shift despite 

complete parasitic extraction during design. The VCO and buffer combined draw 13 mA 

on a 1.2 V supply. It is often convenient to combine several of these metrics into a 

common figure of merit that can be used to compare performance on an equal footing. A 

commonly used figure of merit to normalize phase noise is defined as 

                   
  

  
        

     

   
   (2.1) 

where Φn(fm) is the measured phase noise at a given offset frequency, fm [51]. The 

oscillation frequency and DC power dissipation are represented by f0 and Pdiss 

respectively. Using this standard, the design shown here has a -173.7 dBc/Hz figure of 

merit. 

2.1.2 LCP Package Development 

A 200 µm thick sheet of LCP with double copper laminated (metal thickness of 

18 µm) is used for the package substrate. This is the thickest form of LCP commercially 
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supplied. In order to minimize wire bond lengths of the package, the chip is embedded 

into a cavity drilled in the LCP. The effect of the bond wires were simulated in a full 3-D 

EM model using Ansoft High Frequency Structure Simulator (HFSS), as shown in Figure 

2.2. This model uses an on-chip reference with wire bonds connecting from chip pads to 

50 Ω coplanar waveguide (CPW) lines on LCP.  The CPW line has 90 µm line widths 

and spaces. The resulting simulation data was then imported into the Cadence design 

environment for integration with the nonlinear active models provided by the foundry. 

 

Figure 2.2: Simulation of the LCP package. 

The final package design is shown in Figure 2.3. This uses a laser ablated cavity 

with dimensions of 600 µm x 880 µm. There were two possible ways to wire bond the 

VCO to the packaging: ball bonding and wedge bonding. Both types of bonding use a 

combination of pressure, heat and ultrasonic energy to make a weld. However, wedge 

bonding is capable of creating a nearly flat wire from bond to bond. This becomes very 

important when minimizing the length of bond wire. 

The wire bonds were done using a wedge wire bonder utilizing a 38 µm diameter 

gold bond wire. By using the wedge wire bonder, lengths of the wire bonds are minimal. 

The longest bond wire length was about 700 µm and the average length was about 550 

µm. This helped to reduce the parasitic effects that are produced by this type of 

packaging. An image of the packaged circuit can be seen in Figure 2.4. 
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 (a) (b) 

Figure 2.3: a.) Cross-section and b.) Overhead view of the wire bond VCO package. 

 

Figure 2.4: Die photograph of the packaged oscillator. 

 

2.1.3 Measured Performance 

Measurements of both the wafer level and package level oscillators were done on 

an Agilent E4446A spectrum analyzer. A Ka-band rat race coupler and phase tuners were 

used to combine the differential signal into single ended for measurement. A plot of the 

output spectrum of the packaged oscillator with respect to the unpackaged performance 

can be seen in Figure 2.5(a). Note that the x axis has been normalized to the oscillation 

frequency. The increased parasitics of the packaged part causes an additional 1.9 % shift 

in oscillation frequency. The output spectrums are overlaid to give a sense of the package 
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loss and increased noise. The results show that the output power of the packaged part is 3 

dB down from that of the unpackaged part, while the sidebands of the signal are 

noticeably higher in the packaged part. The tuning range of the VCO also suffers when 

packaged, decreasing by an order of magnitude from over 1 GHz to around 100 MHz. 

This also is caused by the increased parasitics that are largely inductive because of the 

bond wires. The increased inductance adds with the existing inductance and decreases the 

influence of the varactors on the tank circuit. The effect is large because the element 

values are small at Ka band. 

 

 (a) (b) 

Figure 2.5: a.) Output spectrum and b.) Phase noise of the packaged and unpackaged 

VCO. 

Phase noise of the VCO was estimated from the spectrum. Without the proper 

equipment to lock the signal, attempts at using the built-in phase noise personality of the 

spectrum analyzer would be invalid. The phase noise was conducted under battery power 

rather than a wall powered DC source to eliminate as much low frequency noise as 

possible. Measurements were conducted in a shielded room with large decoupling 

capacitors on all of the supply lines. The signal was measured at a resolution bandwidth 

of 300 kHz and a video bandwidth of 3 kHz to average out the free running oscillator 

bounce as best as possible. The measured value of the packaged VCO came to -83.5 
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dBc/Hz at 1 MHz offset, which matches very closely with simulation, but is almost a 10 

dB degradation from the unpackaged circuit. The measurement was targeted to give an 

accurate estimate of phase noise at a 1 MHz offset. Figure 2.5(b) shows the measured 

packaged and unpackaged VCOs compared to their simulation counterparts. The 

measured phase noise of the unpackaged VCO actually outperforms the simulated values 

at 1 MHz offset, which may be an anomaly. 

The figure of merit for the packaged oscillator is calculated to be -160.16 dBc/Hz. 

This degradation from the unpackaged circuit is almost entirely caused by the change in 

phase noise measurement. Table 2.1 summarizes the difference between the packaged 

and unpackaged circuit. 

Table 2.1 

Performance summary of the packaged and unpackaged VCO 

Performance Packaged VCO Unpackaged VCO 

Output Power -16.87 dBm -13.64 dBm 

Tuning Range 36.25 GHz to 36.55 GHz 36.5 GHz to 37.8 GHz 

Phase Noise @ 1 MHz Offset -83.5 dBc/Hz -94.2 dBc/Hz 

Current Draw on a 1.2 V supply 23 mA 13 mA 

Figure of Merit -173.7 dBc/Hz -160.3 dBc/Hz 

 

2.1.4 Discussion 

A mm-wave SiGe oscillator was successfully packaged using an LCP organic 

material for the first time while maintaining a high performance profile. In order to 

reduce the parasitic effects introduced by the package, an embedding technique is utilized 

to minimize the wire bond interconnect length. Measurements after packaging showed a 

figure of merit 13 dB down from the on-chip measurements. Much of this degradation in 
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oscillator performance was expected due to the wire bond connections. However, this can 

be improved by using a thicker LCP laminated substrate, comparable to the chip height 

(525 µm), to further minimize wire bond length or by implementing an impedance 

matching network to compensate for the added parasitics.  

It is apparent that the decision to use wire bond packaging at mm-wave 

frequencies must be weighed with the convenience and re-workability versus its inherent 

more lossy performance compared with other packaging processes. For applications 

requiring lower loss and condensed package interconnects, the inherent packaging 

characteristics of LCP can offer additional solutions. 

2.2 Embedded Via Interconnect Package at X Band 

A novel technique to minimize package parasitics is utilizing via technology for 

direct interconnect between the package and chip. Interconnect structures are fabricated 

by placing a dielectric layer directly over the chip and opening vias down to the 

necessary chip pads. This technique has been successfully demonstrated with various 

dielectric materials [47], [52]. LCP would be an excellent candidate for this type of SoP 

technology considering its distinctive 3-D packaging capabilities. In this section, an X-

band SiGe low-noise amplifier (LNA) has been embedded in LCP with interconnecting 

vias for the first time [53]. This integration technique is a hybrid wafer-level packaging 

scheme that can lead to low-cost 3-D SoP RF front ends with excellent performance at 

microwave and, eventually, mm-wave bands. 

2.2.1 Circuit Description 

The packaged LNA die was fabricated in a 0.13 µm BiCMOS SiGe technology 

and designed using the inductively degenerated cascode architecture. The circuit was 

designed for ultra-low power operation, consuming less than 2 mW of DC power from a 

1.5 V supply. The LNA has 10 dB of gain and 2 dB noise figure (NF) across X-band (9.5 

GHz to 10.5 GHz). The circuit is matched to 50 Ω at the input/output and the die comes 
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with standard 95 µm x 95 µm chip pads. A picture of the die is depicted in Figure 2.6 and 

further details are discussed in further detail in [54]. 

 

Figure 2.6: Photo of the X-band SiGe LNA. 

2.2.2 LCP Package Development 

For lamination of the LCP onto the LNA die, a core material and bond ply would 

be necessary. In order to maintain a small via diameter compatible with the chip pad size 

and pitch, the LCP total thickness was minimized to 50 µm. This uses a 25 µm layer for 

the core and bond ply layers. The design of the RF input/output transitions were 

simulated in Advanced Design System (ADS) using Momentum. For compatibility with 

the CPW input and output of the die, 50 Ω CPW lines were incorporated on package. The 

dimensions of this structure were calculated using ADS Linecalc and have a 433 µm line 

width and 20 µm gap. These dimensions do not match up well with the 150 µm pitch size 

of the chip pads. In order to maintain a 50 Ω CPW line at input/output, a transition was 

designed to accommodate for the large disparity. The resulting simulation took into 

account the input/output CPW lines, via interconnects and input/output lines of the LNA. 

This model is illustrated in Figure 2.7. The optimized design was simulated over the 

frequency range 8 GHz to 20 GHz and predicted reflections of less than -25 dB and 

insertion loss of less than 0.1 dB, as seen in Figure 2.8. The final topology of the 

packaged amplifier is shown in Figure 2.9. This illustrates the RF input/output CPW 

transitions along with the necessary DC bias lines. 
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Figure 2.7: Simulation of the CPW transition lines with via interconnects. 

 

Figure 2.8: S-parameters of simulated CPW transition lines with via interconnects. 

      

 (a) (b) 

Figure 2.9: a.) Over-head and b.) cross-section view of the package design with via 

interconnects and patterned CPW lines. 
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The fabrication of the optimized package design laminates a layer of 50 µm LCP 

onto the LNA, then exposes the chip pads by drilling 50 µm diameter via-holes through 

the LCP with an excimer laser. The sample is metalized and patterned accordingly. A 

picture of the finished package is depicted in Figure 2.10. 

       

Figure 2.10: Photograph of the packaged LNA. 

2.2.3 Measured Performance 

The amplifier characterization was performed in a custom-built integrated S-

parameter, noise figure, and load-pull on-wafer probing station. This station allows for 

single probing of the circuit with RF switching between the network analyzer, signal 

sources, and spectrum analyzer to conduct all RF and DC characterization without 

modifying the measurement setup. The tuners, switches, and RF components are mounted 

on a Suss Microtech PM-8 probe station with probe shield technology providing RF 

shielding to the device under test (DUT). 

The S-parameters are measured with both tuners initialized and the input and 

output switches are configured to the ''VNA'' setting, connecting the DUT to the Agilent 

E8363B PNA. NF is measured with the switches configured for the noise receiver and is 

computed using the ''cold-out'' method (as discussed in [55]). The noise power is 

measured using the noise figure option of the Agilent E4446A spectrum analyzer. 

Measurements were made using 250 µm ground-signal-ground (GSG) probes and 

a TRL calibration was performed prior ensuring the acquired measured data was 

referenced up to the probe tips. S-parameter and NF measurements were made with an 
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unpackaged and packaged LNA for comparison of performance. The S-parameters were 

measured over a frequency band of 8 GHz -20 GHz.  A plot of the input and output return 

loss of the unpackaged amplifier with respect to the packaged amplifier is shown in 

Figure 2.11(a). A comparison of the output gains are shown in Figure 2.11(b). In both 

figures, there is an evident shift in frequency between the unpackaged and packaged LNA 

performance. Despite this shift, both LNAs retained a return loss greater than 10 dB.  The 

S11 and S22 of the packaged amplifier showed only a slight degradation compared to the 

unpackaged LNA. At X-band, the unpackaged die produced a peak gain of 10.3 dB while 

the packaged die produced 10.2 dB. This 0.1 dB difference in gain output is accounted 

for by the simulated 0.1 dB insertion loss from the CPW transition lines. 

 

Figure 2.11: Comparison of S-parameters before and after packaging. 

   

The NF of the unpackaged and packaged amplifier was measured at 9.5 GHz. The 

minimum NF for the unpackaged LNA was 1.8 dB while the packaged LNA was 1.9 dB, 

which is a negligible change.  However, the 50 Ω NF increased from 1.9 dB to 2.5 dB.  

This 0.6 dB increase in NF of the packaged LNA is attributed to the impedance mismatch 

from the CPW transitions. This mismatch can be readily seen by observing the noise 

circles of the unpackaged and packaged LNA, displayed on a smith chart in Figure 2.12.  

It is seen that the middle noise circle of the packaged LNA is shifted away from the 
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center of the smith chart and has become inductive.  Since the minimum noise figure 

showed only a small change, the CPW transition can be optimized to preserve noise 

matching indicating only a minor effect due to the LCP packaging. 

 

Figure 2.12: Smith chart showing noise circles of the unpackaged and packaged LNA. 

2.2.4 Discussion 

An X-band SiGe LNA was packaged for the first time into an embedded SOP 

module using a via interconnect packaging technique. Measurements after packaging 

showed only a 0.1 dB of loss in the peak output gain and a 0.1 dB increase in noise 

figure. However, there is an evident shift in frequency for the return loss and a 

degradation of 0.6 dB in 50 Ω NF.  Further investigation is required to optimize this 

packaging technique and improve the performance. 

In theory, this method of wafer-scale packaging provides seamless chip 

integration with minimized interconnect length and package size. The realization of this 

technique with LCP in a large-panel fabrication process is a different story. There are 

several pending issues that need to be addressed before implementation. These matters 

include: die cracking during LCP lamination, LCP de-lamination from the die during 
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thermal cycling, and misalignment when packaging multiple die together. At present, a 

packaging method with increased reliability, yet still excellent performance, would be 

preferable to this technique. 

2.3 Encapsulated Flip-Chip Package at X Band 

An encapsulated die concept is implemented to achieve a reduced form factor, 

planar profile, and near-hermetic packaging. The benefits of flip-chip technology enables 

minimized interconnect lengths, comparable to those achieved with via technology, along 

with high alignment accuracy for multiple chips in a large-panel processing environment. 

The low temperature processing of LCP allows a fully encapsulated die package that 

would otherwise not be possible with ceramic substrates. This section discusses a 

transmit/receive module flip-chipped and encapsulated into an all LCP package [56]. 

2.3.1 Circuit Description 

The transmit/receive module (TRM) was fabricated in a 0.13 µm SiGe BiCMOS 

technology and designed to be used in conjunction with an external PA chip for phased 

array antenna systems. The topology and photo of the die is shown in Figure 2.13. The 

module contains an LNA, bi-directional phase-shifter, and SPDT duplexer switch. In 

addition, a digital interface using 2.5 V logic levels allows control of the phase-shifter as 

well as the on/off states of the receive amplifier. The receive side was designed for ultra-

low noise performance while simultaneously achieving a power match. It consumes only 

35 mW of DC power and has a reported 7 dB of gain and 2.5 dB noise figure across the 

X band (9.5 GHz to 10.5 GHz). The LNA has a self-bias circuitry to simplify total design 

and requires only a 3.5 V DC supply. The module is matched to 50 Ω at all RF ports on 

chip, thus no matching network is necessary on package. The total area of the TR chip is 

1.4 mm x 2.8 mm. Further details of the LNA and PS design are discussed in [54] and 

[58], respectively. Since only the receive component of this module is active, the results 

presented are focused chiefly on this RF path. 
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Figure 2.13: Photo of SiGe TRM. 

2.3.2 LCP Package Development 

The package development was completed in two steps to verify performance of 

first the standard flip-chip bonding process and second the fully embedded die. The 

package designs were simulated and optimized using HFSS to maintain performance 

while accommodating the flip-chip assembly process. 

The TRMs to be flip-chipped came standard with wire bondable 95 µm x 95 µm 

aluminum pads that had to be bumped before further processing was possible. Gold stud 

bumps were formed on each I/O pad using a 25 µm Au wire ball bonder by thermo-sonic 

compression. The bumped chips were then flipped onto a heated flat surface where 

pressure was applied to compress the bumps into a uniform height of approximately 75 

µm. Figure 2.14 shows the stud bumps formed on die. A silver epoxy (σc = 2.5 x 10
6
 

Siemens/m) was used to adhere the Au bumps to the pads on package. 
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Figure 2.14: Picture of Au bumps bonded on SiGe die. 

The design of the flip-chip LCP package was determined based on the 250 µm 

GSG RF pad pitch of the TRM. In order to maintain 50 Ω CPW input/output lines on 

package, an LCP thickness of 100 µm was chosen. This gave a CPW line width and gap 

of 210 µm and 80 µm, respectively, which matched the pitch of the chip pads as well as 

allowed room for potential misalignment of the bonding. An illustration of the stackup 

for both packages is shown in Figure 2.15. 

 

 (a) (b) 

Figure 2.15: LCP package stackup for T/R module using the a.) conventional exposed 

flip-chip and b.) fully embedded flip-chip approaches. 

The flip-chip transition, including the Au bumps and silver epoxy, was modeled 

in HFSS from a microstrip line reference on chip to the 50 Ω line on package. The results 

were de-embedded from the chip transmission line to the chip pads to focus on the effect 

of the flip-chip bond. These models are shown in Figure 2.16. The simulation showed a 

return loss greater than 25 dB and an insertion loss less than 0.15 dB at X band. From 
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this, it is predicted that the flip-chip bonding will account for 0.3 dB of insertion loss 

through the package. 

 

Figure 2.16: HFSS model of the standard flip-chip transition. 

An extension of the standard flip-chip package is to fully embed the die in LCP. 

Via interconnects are utilized to transition through the 100 µm LCP so the package can 

be DC biased and probed for measurement. Additionally, the exposed chip is embedded 

in an air cavity in 500 µm thick LCP. This package was simulated in HFSS; modeling the 

transition from the CPW line on package, through the via and flip-chip interconnects, and 

on to the chip. This final package model is illustrated in Figure 2.17. The optimized 

design has simulated reflections of less than -27 dB and insertion loss of less than 0.2 dB 

over X-band. The simulations predict that the total loss of the embedded chip package 

through the input and output will be 0.4 dB. The performance for the two packaging 

approaches is compared in Figure 2.18. 



 30 

 

Figure 2.17: HFSS model of embedded flip-chip transition. 

  

Figure 2.18: Simulated S-parameters of the standard flip-chip package (solid) and fully 

embedded flip-chip package (dashed). 

Both the flip-chip and embedded test packages were fabricated and assembled in 

the same manner. Holes were drilled for signal and ground via interconnects using an 

excimer laser. The samples were then metalized and patterned accordingly. The TRMs 

were flip-chip bonded onto each package. Additionally, the 500 µm LCP layer was 

drilled with a CO2 laser to create a cavity of dimensions 1.7 mm x 3.1 mm.  The 100 µm 

LCP with flip-chip bonded TRM was then bonded to this layer completely embedding the 

die. The standard flip-chip package and embedded flip-chip package are shown in Figure 

2.19. 
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 (a) (b) 

Figure 2.19: Fabricated and assembled a.) standard flip-chip package and b.) embedded 

flip-chip package. 

2.3.3 Measured Performance 

S-parameter and NF measurements were made with unpackaged and packaged 

TRMs for comparison of performance. The S-parameters were measured over a 

frequency band of 8 GHz to 20 GHz. A plot of the S-parameters for the unpackaged 

TRM with respect to the standard flip-chip packaged TRM is shown in Figure 2.20(a). 

The measurements show no degradation in return loss and there is 0.4 dB of added loss 

from the flip-chip interconnects. This is only 0.1 dB more loss than simulated. Figure 

2.20(b), shows the S-parameters for an unpackaged TRM versus the embedded flip-chip 

package. This package also shows no sign of mismatch in the return loss and there is 0.6 

dB of added loss through the flip-chip and via interconnects. The phase shift for each 

state of the module was also analyzed over X band, and the largest disparity between the 

unpackaged and packaged die was measured to be less than 1 degree. 
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 (a) (b) 

Figure 2.20: Comparison of S-parameters before and after a.) standard flip-chip 

packaging, and b.) fully embedded flip-chip packaging. 

  The noise figure measurement of the fully embedded flip-chip TRM is shown in 

Figure 2.21. The minimum and 50 Ω NF are very close, meaning the package is well 

matched. There is a 0.3 dB increase in 50 Ω NF, which correlates directly to the added 

loss from the flip-chip package at the input of the die. 

 

Figure 2.21: Noise figure measurement of fully embedded flip-chip package. 
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2.3.4 Discussion 

An X-band SiGe TRM was packaged into an SoP module using a combination of 

flip-chip technology and LCP embedding techniques. Measurements of the package 

showed a 0.6 dB decrease in output gain and a 0.3 dB increase in noise figure. While the 

flip-chip interconnect was shown to have 0.4 dB of loss, the embedding of the die added 

only 0.2 dB of loss.  

This technique exploits the benefits of flip-chip technology for embedding active 

and passive IC devices into an all-LCP platform. In this approach, the embedded chip 

package utilizes gold bumps for better chip placement and flip-chip bonding for minimal 

stress to the chip. This eliminates die cracking and provides significantly higher process 

yield compared to the technique in Section 2.2. Additionally, this process allows pre-

fabrication of two multilayer laminates with higher interconnect densities that are then 

fused together by a single lamination step. Fewer lamination steps, combined with 

minimal stress on the chips, allows commercial viability of the embedded chip package 

with literally hundreds of embedded chips within a large area multilayer package that has 

not been achieved as of today. This technique can be adopted for embedding various 

active and passive components, such as filters, VCOs, power amplifiers (PAs), etc. While 

an embedded flip-chip concept has been proven, the next step for improvement is to 

utilize commercially available controlled collapse chip connection (C4) bumps and add 

an epoxy underfill. This will create a stronger, more reliable bond to the package and 

enhance the technique to further accommodate industry standards. 

2.4 Encapsulated Flip-Chip Package at W Band 

The packaging technique outlined in Section 2.3 has been extended to mm-wave 

frequencies to demonstrate the applicable broad frequency range for LCP embedded flip-

chip modules. Comprehensive research and prototypes have been published, leading to 

the realization of mm-wave standard flip-chip packaging on ceramic and lossy-silicon 
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substrates [59]-[60]. A 90 nm CMOS PA flip-chipped on a ceramic substrate with 

compensation networks has been reported for W-band applications [60]. However, never 

before has the die been fully embedded into the substrate at these frequencies. This 

section discusses the integration of mm-wave CMOS amplifiers with flip-chip packaging 

fully encapsulated into an all-LCP platform at W band [61]. 

2.4.1 Circuit Description 

The three-stage PA was designed in 45 nm SOI CMOS technology using a 

common-source transistor architecture. The first two stages, with inter-stage matching 

circuitry, are designed to work as a driving gain-stage while the final power-stage output 

loading is designed as a class-E switching amplifier. The combination of these stages 

maintains overall good power added efficiency (PAE) and low required supply voltage. 

The die photo of this 3-stage PA is shown in Figure 2.23(a) with dimensions of 886 µm x 

540 µm, including bond pads. 

  

Figure 2.22: Die photo of the W-band 45 nm SOI CMOS 3-stage power amplifier. 

2.4.2 LCP Package Development 

The LCP package was developed in a two step process. The encapsulated flip-

chip package was first designed for a broadband transition from chip to substrate utilizing 

gold stud bumps on chip and via interconnects on package. Then utilizing the measured 

S-parameters of the die, a matching network was also designed at the input and output of 

the package to improve the broadband performance. 
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The CMOS die came standard with wire bondable 95 µm x 95 µm aluminum pads 

and were stud bumped using the technique outlined in Section 2.3. During the coining 

process, the gold bumps were compressed to a uniform height of approximately 40 µm. 

This reduced height would help to minimize the interconnect parasitics. Figure 2.23(b) 

shows the stud bumps formed on die. 

                

Figure 2.23: Picture of a gold stub bump with height of 40μm. 

The design of the encapsulated flip-chip LCP package was determined based on 

the 150 µm ground-signal-ground RF pad pitch of the PA die. In order to maintain 50 Ω 

CPW input/output lines on package, an LCP thickness of 50 µm was chosen. This gave a 

CPW line width and gap of 95 µm and 55 µm, respectively, which matched the pitch of 

the chip pads as well as allowed room for potential misalignment of the bonding. The 

stack up of this design is shown in Figure 2.24(a). It is seen that via interconnects are 

utilized to transition through the 50 µm LCP so the package can be DC biased and probed 

for measurement. A via diameter of 50 µm was used to accommodate a 1:1 aspect ratio 

for laser drilling and metallization. Additionally, the exposed chip is embedded in an air 

cavity in 500 µm thick LCP. 
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 (a) (b) 

Figure 2.24: a) LCP package stack-up for PA using a fully encapsulated flip-chip 

approach, b) Model of the via interconnect transition. 

The package transition, including the Au bumps, silver epoxy and via 

interconnect, was modeled in HFSS from a microstrip line reference on chip to the 50 Ω 

line on package. Simulation results were de-embedded from the chip transmission line to 

the chip pads to focus on the effect of the flip-chip bond. While using a via catch pad 

diameter of 150 µm, the anti-pad was tuned to a diameter of 205 µm for the best 

performance, shown in Figure 2.24(b). The optimized transition S-parameters are shown 

in Figure 2.25. It has simulated reflections less than -13 dB and insertion loss less than 

0.7 dB across W band. It is predicted that the total loss of the embedded chip package 

through the input and output will be 1.4 dB. 

 

Figure 2.25: Plot of the S11 & S22 (solid) and S21 (dashed) for the encapsulated flip-chip 

transition. 
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Utilizing the measured die S-parameters, single stub input/output matching 

networks were designed and optimized for broadband performance centered at 90 GHz. 

For this PA, the on-die input and output impedances were measured to be 22-j22 Ω and 

30-j9 Ω, respectively. For both the package input and output, a single open radial 

butterfly stub was used to achieve the desired 50 Ω impedance match. Using the 

reference plane of the measured die, the encapsulated flip-chip package with matching 

stub was modeled in HFSS, shown in Figure 2.26. By extracting the S-parameters of this 

model, a block simulation was performed in ADS to predict the matched package 

performance of the die. The respective input and output matching stub parameters were 

optimized to: din = 150 µm, lin = 485 µm, dout =180 µm, lout = 365 µm, θL,in = θL,out = 60°, 

where din,out is the distance from via interconnect to stub, lin,out is the stub length, and 

θl,in/out is the subtended angle of the stub.. 

 

Figure 2.26: Model of the encapsulated flip-chip transition with a single open radial 

butterfly stub. 

Both embedded packages with and without matching networks were fabricated 

and assembled in the same manner. Fabrication of the 50 µm thick LCP layer was 

performed in a cleanroom environment. The chips were bonded to this layer using a 
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silver epoxy to adhere the Au stud bumps to the pads on package. The 500 µm thick LCP 

layer was drilled using a CO2 laser to create a cavity of dimensions 1.2 mm x 0.85 mm 

that hosted the chip. The 50 µm LCP layer with flip-chip bonded PA, seen in Figure 

2.27(a), was then bonded to this layer completely encapsulating the die. The embedded 

flip-chip package with matching networks is shown in Figure 2.27(b). The overall 

package size is 1.8 mm x 0.9 mm. 

              

 (a) (b) 

Figure 2.27: Photos of a) the flip-chipped die on package b) the encapsulated flip-chipped 

die in LCP with input and output matching networks. 

2.4.3 Measured Performance 

S-parameter and large signal measurements were made with the unpackaged and 

packaged PAs for comparison of performances. A plot of the S-parameters for the 

unpackaged PA and the encapsulated flip-chip packaged PA is shown in Figure 2.28. The 

results show the package yields only a slight degradation in return loss and a 1.5 dB 

decrease in peak gain. Figure 2.29 shows the S-parameters for an unpackaged PA versus 

the simulated and measured performance of the matched package. There is a significant 

improvement in return loss and a 1.1 dB increase in peak gain from an unmatched 

package. 
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Figure 2.28: Comparison of measured S-parameters before and after encapsulated flip-

chip package without matching networks. 

 

Figure 2.29: Comparison of S-parameters before and after encapsulated flip-chip package 

with matching network. 

The large signal performances of the bare die and the encapsulated flip-chip 

packaged die with matching circuitry are shown in Figure 2.30. The results show this PA 

bare die achieves 10.0 dB small-signal gain, 6.0 dBm output power at 7.0 dB of power 

gain and 6.6 % PAE at 90 GHz with a single 1.0 V DC supply. This low PAE is due to the 

two linear driving stages. The packaged die achieves 5.0 dBm of output power (Pout) at 6.0 

dB power gain and 5.2 % PAE at 90 GHz. Unfortunately, the proper equipment to drive 
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this device into saturation was not available. However, by following the data trend in this 

figure, it is expected that this packaged PA could achieve a saturated output power (Psat) 

of over 6.0 dBm with PAE of 5.8 %. 

 

Figure 2.30: Comparison of PA output power before and after fully encapsulated flip-

chip package with matching network. 

2.4.4 Discussion 

A W-band PA has been successfully packaged using a fully embedded flip-chip 

technique, completely encapsulating the die in LCP. Measurement shows only 0.75 dB of 

loss per flip-chip interconnect, which directly correlates to the degradation of power at 

the output. Additionally, a matching network was successfully implemented on-package 

to improve broadband performance and increase the gain by 1.1 dB. This fully 

encapsulated packaged W-band CMOS PA achieves 5.0 dBm output power at 6.0 dB 

power gain and 5.2 % PAE at 90 GHz with a 1.0 V DC supply. At present, this is the 

highest performance demonstrated for a fully encapsulated flip-chip W-band CMOS PA.  

This work verifies that the encapsulated flip-chip packaging technique 

demonstrated at X band can also be applied at mm-wave frequencies with excellent 

performance. The inclusion of on-package matching networks to improve package 



 41 

performance provides even further evidence as to the wide capability of SoP modules 

utilizing LCP. 

2.5 Summary 

This chapter has discussed several packaging techniques using LCP substrates for 

microwave and mm-wave applications. The benefits of LCP as a high frequency 

packaging platform has been demonstrated by exploiting its inherent characteristics for 

wire bond, via, and flip-chip interconnect technologies. The advantages for each of these 

packaging techniques have been discussed, along with possible improvements for 

reliability and performance in a large-panel processing environment. 
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CHAPTER 3 

INTEGRATION OF BAW FILTERS ON LCP 

 

3.1 Background on BAW Filter Devices 

Bulk acoustic wave (BAW) devices are a maturing technology that has emerged 

primarily from the ever increasing demands of the mobile communications industry. For 

years, the market has driven the technology to lower costs, smaller sizes, and higher 

performance, but largely in the 2 GHz to 5 GHz range [62]-[64]. Recently there has been 

an increased interest at higher frequencies for other applications such as RF 

instrumentation, sensors, and radar systems. 

The work published on BAW devices shows promising performance reaching up 

to K-band; however, these measurements are performed at the wafer level and not on 

package [65]. As this technology extends to higher frequencies, the packaging component 

of these devices will play a key role in maintaining cost and performance. Conventional 

package configurations are illustrated in Figure 3.1. Most commonly, BAW devices are 

sensitive to moisture, which requires hermetic packaging. Also, in order to maintain 

small die size and high performance, impedance matching networks are excluded and 

must be integrated on the package. While ceramic packaging incorporates on-package 

matching, it also adds cost, weight, and size [66]. A wafer-level package would maintain 

lower costs, but it does not incorporate necessary impedance matching and requires wire 

bond interconnects to the on-package matching networks. These packaging schemes are 

counter intuitive when striving for low cost, small sized components for highly integrated 

systems. With the cost benefits and near-hermetic nature of LCP, it is an attractive 

candidate for the moisture-sensitive nature of these filters. This work utilizes state-of-the-
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art BAW technologies and LCP packaging techniques, and shows great potential for 

extension up to mm-wave applications. 

  

 (a) (b) 

Figure 3.1: Conventional package configurations for BAW filters using a.) ceramic 

packaging [66] and b.) wafer-level packaging [67]. 

The BAW filters used in this chapter utilizes a solidly mounted resonator (SMR) 

with a Bragg reflector stack built on a silicon carrier substrate. The Bragg reflector 

consists of stacked high and low impedance, quarter wavelength films which act as an 

acoustic reflector to generate the desired resonance. The sensitive nature of these filters 

requires a hermetic seal around the die to prevent moisture from condensing on the 

resonator surfaces. Any residual moisture will drastically shift the resonant frequency and 

severely degrade performance. Consequently, these filters have been fabricated 

specifically for flip-chip packaging with a seal ring encapsulating the circuitry. They 

have been outfitted with a Sn solder finish on the bond pads and seal ring which provides 

a strong bond and hermetic seal for the die attachment. Due to the high operating 

frequency of these resonators, on package impedance matching at the input and output is 

required to reach the desired performance while minimizing the chip dimensions. 

Additionally, these die have been fabricated in a two-channel configuration with each 

filter independently operated and having separated RF I/O. This chapter discusses the 

steps for integration of BAW filters on LCP at C band and Ku band frequencies [68]-[70]. 
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At present, these are the highest reported operating frequencies for packaged BAW filters 

on a 3-D multilayer organic platform. 

 

3.2 C-Band Filter Package 

The C-band circuit is a 4-pole resonator with two SMR sections to be connected 

electrically in series on package. The layout of the entire 1.3 mm x 1.77 mm x 0.51 mm 

die with two-channel filter is shown in Figure 3.2. The device requires an on-package 

impedance matching network at the input and output, as well as at the interstage between 

SMR sections. Each SMR section of the die was measured on a network analyzer to be 

used in conjunction with the design of the matching networks. 

 

Figure 3.2: Picture of the C-band BAW die. 

 

Figure 3.3: Schematic of single channel filter showing necessary matching for each SMR. 
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A block level simulation of the measured on-die S-parameters in the ideal case of 

lossless impedance matching shows operation at a center frequency of 7.45 GHz with a 3 

dB bandwidth of 525 MHz (7 % BW). It has an ideal insertion loss of 4.5 dB and a shape 

factor of 2.1:1 at 30/3 dB. The die is expected to maintain at least 40 dB of isolation 

between channels. 

3.2.1 LCP Package Design 

A wide-band transition was designed to accommodate the flip-chip BAW filter 

bonded onto LCP. Because this device requires a hermetic seal, the RF inputs and outputs 

are accessible only through via interconnects. These transitions are simulated from a 

reference plane on chip to ensure accurate modeling of the chip transmission lines down 

to via interconnects and out to 50 Ω lines on LCP. Additionally, the small size of the chip 

does not allow for impedance matching to take place within the solder ring. Therefore, 

once the RF signal is transitioned out onto LCP, a matching circuitry is required to attain 

50 Ω impedances. This work utilizes single stub tuning to minimize the package size 

while achieving an accurate match. 

Design of 3-D Transitions 

The package for the filter uses the same design scheme, seen in Figure 3.4, with 

modifications made to the matching networks necessary to tune to the specific filter 

impedances. This design utilizes two laminated LCP layers consisting of 25 µm and 50 

µm (25 µm core plus 25 µm bond-ply) thicknesses. One bond ply layer (25 µm thick) 

was needed for the multi-layer lamination, leading to a total thickness of 76 µm. A thin 

LCP layer was used for the via transitions to minimize via diameters and the necessary 

catch pad dimensions. On top of the stack are CPW lines for input and output of the 

package as well as bond pads for the attachment of the BAW die. These CPW lines 

consist of a 50 µm wide signal line and 75 µm gap to ground. The top and bottom ground 

layers have connecting vias to prevent unwanted propagating modes and to maintain high 

isolation between channels. The embedded RF layer has striplines that are 45 µm wide 
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and minimized in length to conserve space. There are two via transitions on each input 

and output of the package. The CPW-to-stripline via transition uses 75 µm diameter vias 

and 150 µm diameter catch pads. The stripline-to-bond pad via transitions were limited 

by space constraints inside the solder ring cavity and thus use 50 µm diameter vias and 

125 µm / 100 µm diameter catch pads. 

 

Figure 3.4: Layout of via interconnects for dual-channel filter package. 

This package design was optimized using HFSS and showed a return loss better 

than 22 dB at all ports, and an isolation better than 45 dB at frequencies up to 30 GHz. 

This was verified by packaging a die with thru microstrip lines fabricated in place of the 

SMR sections. On-chip measurements showed a maximum insertion loss of 1.05 dB per 

section. The die was attached onto the package for measurement and compared to 

simulation results in Figure 3.5. The measured return loss was better than 10 dB with an 
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insertion loss less than 2.25 dB up to 30 GHz. Less than 0.2 dB of the overall loss is 

attributed to the package. The length of the package is 3.14 mm, yielding an insertion loss 

less than 0.7 dB/mm up to 30 GHz. The return loss was slightly worse than expected but 

this is likely due to the misalignment of the stripline layer within the package. 

 

Figure 3.5: Measured and simulated results for microstrip thru fabricated on the BAW 

substrate and packaged on LCP with the 3-D transition. 

Matching Network Design 

A two step process was used to design the matching networks on package. First 

the interstage matching between SMR sections was designed and simulated in HFSS, 

shown in Figure 3.4, using ideal input/output matching. A single shorted, stripline stub of 

0.65 mm was used to achieve the desired impedance match. The BAW die was then 

packaged with only the designed via interconnects and interstage matching, seen in 

Figure 3.6. This allowed measured data to be used in conjunction with the simulated 

model to develop the input and output matching networks accordingly and achieve 50 Ω 

impedances. This method guaranteed the best performance out of the filter. Measured on-

chip and on-package results are compared to simulation without input/output matching in 

Figure 3.7. 
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Figure 3.6: Model and photo of the C-band BAW filter with interstage matching but 

without input/output matching networks. 

 

Figure 3.7: Simulated and measured results (on-chip and on-package) for the C-band 

BAW filter without input/output matching networks. 

Utilizing this data, single stub input/output matching networks were designed and 

optimized. For this filter, the on-die input and output impedances were designed to be the 

same. Therefore, the same matching network was used for both the input and output of 

the package. Figure 3.8 illustrates the initial capacitive input impedance on-die and its 

progression through the designed matching network on-package. A single open radial 
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stub was used to achieve the desired impedance match. Using the reference plane of the 

measured die packaged without I/O matching networks, the open stub was adjusted to a 

distance of 2.56 mm with an angle of 70° and a length of 1.17 mm. It is expected that the 

filter will show 5.6 dB of insertion loss with minimal change in bandwidth and shape 

factor. 

 

Figure 3.8: Smith chart illustrating the progression of the unmatched impedance on die to 

the matched filter response on package. 

 

Figure 3.9: Model of the C-band filter package with integrated matching networks. 
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3.2.2 Measured Performance 

The LCP package was fabricated with electrolytic nickel gold finish for 

compatibility with the filter attach process. The die was bonded using a Finetech Sub-

micron Flip-chip Bonder. This machine comes equipped with dual temperature control of 

the die and substrate. While in contact, the die temperature was raised to 360ºC and the 

substrate temperature was brought up to 260ºC for 45 seconds. The final packaged filter 

with matching networks is shown in Figure 3.10. 

  

Figure 3.10: Photo of the C-band BAW filter packaged on the multilayer LCP substrate. 

The assembled package was measured with an Agilent E8361C PNA. The 

measured and simulated S-parameters are shown in Figure 3.11. It is seen that the 

packaged filter matches very closely with the modeled results. The C-band filter shows 

operation at a center frequency of 7.45 GHz with a 3 dB bandwidth of 495 MHz (6.65 % 

BW). It has a measured insertion loss of 6 dB and a shape factor of 2.3:1 at 30/3 dB. The 

isolation between channels was measured to be better than 40.5 dB, the worst case being 

at adjacent ports. 
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 (a) (b) 

 

(c) 

Figure 3.11: Simulated and measured on-package a.) return loss and b.) insertion loss of 

the matched filter; c.) Isolation measurement between channels of the packaged filter. 

A notch can be seen in the pass band of the filter however this is not due to the 

package but rather a perturbation in the on-die response. The reason for this perturbation 

is an over sized top electrode on the resonator stack causing a second or third order 

acoustic effect. The manufacturer of the BAW device is currently working on notch 

mitigation techniques. 

3.2.3 Discussion 

This work has demonstrated for the first time a BAW filter operating at 7.45 GHz 

packaged in a three-dimensional multilayer organic platform. The packaging effects on 
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the die performance for this concept show minimal degradation. The packaged BAW 

filter has an insertion loss of 6 dB and a channel-to-channel isolation better than 40 dB.  

3.3 Ku-Band Filter Package 

The Ku-band circuit, shown in Figure 3.12, is a 2-pole resonator with a die size of 

1.03 mm x 1.53 mm x 0.51 mm. The device requires an on-package impedance matching 

network at the input and output of each channel. Each SMR was measured on a network 

analyzer to be used in conjunction with the design of the on-package matching networks. 

A block level simulation of the measured on-die S-parameters, in the ideal case of 

lossless impedance matching, shows operation at a center frequency of 12 GHz with a 3 

dB bandwidth of 2.15 GHz (17.9 % BW). It has an ideal insertion loss of 3.3 dB and a 

shape factor of 1.8:1 at 15/3 dB. 

 

Figure 3.12: Picture of the dual-channel Ku-band BAW die. 

3.3.1 LCP Package Development 

The requirements driving this work specified that an LCP interposer be used to 

house the packaged BAW filter which would then be mounted on a motherboard of the 

exact same material stack-up. The BAW die would be mounted on top of the interposer 

and the RF in/out would be accessed from the bottom metal layer. For mechanical 

stability, an overmold (G770) with a height of 700 µm was used on top of the interposer 

to encapsulate the die. The interposer was equipped with a GGSGSGG pad layout at the 
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input/output to interface with a CPW fed motherboard. The full package stack-up is 

illustrated in Figure 3.13. Thin LCP layers were used to minimize via diameters and catch 

pad dimensions for the layer-to-layer transitions. Both the motherboard and interposer 

stack-ups utilize three laminated LCP layers consisting of 50 µm thick core and bond ply 

materials. One bond ply layer (50 µm thick) was needed for the multilayer lamination, 

leading to a nominal thickness of 150 µm. The filter package uses the design scheme seen 

in Figure 3.14. This comprises of direct via transitions from the BAW die to M2Int, and 

from M2Int to M1MB. Additionally on M2Int, is a shorted stub used for impedance 

matching on port 1 and a shorted stub in series with an open stub for impedance matching 

on port 2. For this work, only M1MB is utilized on the motherboard for RF signal routing. 

This layer contains four 50 Ω CPW lines with a 75 µm wide signal line and 60 µm wide 

gap to ground. The ground layers for both boards have connecting vias to prevent 

unwanted propagating modes and to maintain high isolation between channels. 

 

Figure 3.13: Material stack-up of the packaged and mounted BAW filter interposer on 

motherboard. 
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Figure 3.14: Top view showing the embedded matching networks on layer M2 of the 

interposer, and the I/O CPW lines on the motherboard. 

Design of 3-D Transitions on Interposer 

On top of the interposer stack (M1Int) are bond pads for the attachment of the 

BAW die. These are 100 µm in diameter and also act as a catch pad for 50 µm vias that 

transition down to 125 µm catch pads on M2Int. The dimensions of these features were 

determined by a compromise between restricted space within the die solder ring cavity 

and limitations of the fabrication process. Because the impedances of the die are not yet 

matched to 50 Ω, the effects of these transitions are accounted for in the matching 

networks. 

The M2Int layer contains 50 Ω quasi-CPW (GSG 120 µm / 65 µm / 120 µm) 

striplines for the on-package matching networks that feed the input and output of each 

channel into vias that transition down to the motherboard. A 75µm via connects through 

the interposer from 200 µm catch pads on M2Int down to M4Int, where a solder paste 

(SAC305) is later used to attach on M1MB. This transition also uses 356 µm anti-pads 

located in the grounds of M1Int, M2Int, M1MB and M2MB. These anti-pads are used to tune 

the transition and maintain a 50 Ω structure. This via transition was optimized using 

HFSS and showed a return loss better than 30 dB at all ports and an insertion loss less 

than 0.1 dB. 
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Matching Network Design 

Although the BAW die is bi-directional, the on-die measurements show different 

input impedances for port 1 and 2. As such, each port required a custom matching 

network. Figure 3.15 illustrates the initial capacitive input impedance on-die and its 

progression through the designed matching network on package. For Port 1, a single 

shorted stub of length LP1 = 975 µm was spaced a distance DP1 = 320 µm from the BAW 

die pad. Port 2 was designed with a shorted stub of length L1P2 = 625 µm placed 

immediately at the via transition on M2Int and another open stub of length L2P2 = 990 µm 

spaced a distance DP2 = 1.4 mm further. Additionally, the open stub on Port 2 has a wider 

line width of 190 µm in order to achieve a shorter stub length with the same impedance 

effect. 

A 3-D model, shown in Figure 3.16(a), was designed and simulated in HFSS 

which included all the via transitions and matching networks. These S-parameters were 

then extracted and imported into a block simulation with the measured on-die S-

parameters. By coherently modifying both port matching networks, the design was 

optimized for the outlined die specifications. It is expected that the filter will show 3.9 dB 

of insertion loss with minimal change in bandwidth and shape factor. The package 

module size is 4.20 mm x 3.55 mm. 
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Figure 3.15: Smith chart illustrating the progression of the unmatched impedance on die 

to the matched filter response on package. 

 

        

 (a) (b)  

Figure 3.16: a) Full simulated package with matching networks, b) Picture of the 

packaged BAW filter interposer mounted on motherboard. 

3.3.3 Measured Performance 

The LCP package was fabricated with electrolytic nickel gold finish for 

compatibility with the die attach process. The die was bonded using the technique 

outlined in Section 3.2.2. A picture of the final packaged filter is shown in Figure 3.16(b). 
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The assembled package was measured with an Agilent E8361C PNA. Figure 3.17 

shows a comparison of the measured and simulated S-parameters. The packaged filter 

matches very closely with the modeled results. The measured Ku-band filter shows 

operation at a center frequency of 12 GHz with a 3 dB bandwidth of 2.1 GHz (17.5 % 

BW). It has a measured insertion loss of 2.8 dB and a shape factor of 1.7:1 at 15/3 dB. 

 

Figure 3.17: Comparison of the simulated and measured on-package performance of the 

Ku-band BAW filter. 

A notch is present in the pass band of the filter, however this is not due to the 

LCP package or matching networks but rather a perturbation in the on-die response. This 

effect is from an over sized top electrode on the resonator stack causing a second or third 

order acoustic effect. Techniques for mitigating this notch are being investigated by the 

BAW die manufacturer. 

3.3.3 Discussion 

This work has demonstrated for the first time a BAW filter operating at 12 GHz 

packaged on a highly integrated multilayer LCP interposer board. The packaged BAW 

filter has an insertion loss of 2.8 dB and a half-power bandwidth of 17.5 %. The 

embedded matching networks were designed in a manner to condense the package size 

while achieving an accurate 50 Ω impedance match. Additionally, a protective 



 58 

overmolding was applied to the packaged die for mechanical strength of the hermetic 

attachment. 

3.4 Summary 

 BAW devices have been packaged on multilayer LCP using a hermetic die 

attachment and incorporated matching networks. Several via interconnects were required 

for a direct transition from the chip interface to an embedded stripline layer. The package 

was first demonstrated with a flip-chip attached die with microstrip thru-lines fabricated 

in place of the BAW resonators. This confirmed a reliable package process with low 

insertion loss. A C-band BAW filter was then packaged using this process with the 

addition of incorporated matching networks for a 50 Ω impedance match. Using an 

incremental design method, the interstage and I/O matching networks were tuned for 

optimized performance. A comparison of the simulated and measured performance for 

the final packaged 7.45 GHz filter verified excellent results. The concept of this 

packaging technique was also implemented in the Ku band for a 12 GHz BAW filter. A 

package module for this filter was intended for integration with a system motherboard. 

The package was designed with embedded matching networks for condensed size and 

precise impedance matching. The overall size of this module was 4.20 mm x 3.55 mm. 

The resulting performance of the packaged 12 GHz BAW filter showed excellent 

correlation with the simulation data. The inherent performance and packaging benefits of 

LCP creates a compelling advantage over other competing solutions. As BAW devices 

extend to mm-wave frequencies, this packaging approach exhibits potential for a viable 

low cost solution. 

 

  



 59 

CHAPTER 4 

X-BAND ACTIVE RECEIVING PHASED-ANTENNA ARRAY 

 

The packaging techniques discussed in Chapter 2 shows the integration of active 

devices onto LCP for a variety of low-cost, high performance applications. A struggle to 

lower costs and reduce weight while maintaining high performance is a primary 

motivation for this work. The multilayered LCP integration scheme discussed in this 

chapter takes the next step in which the opportunity for low-cost, lightweight compact 

radars becomes achievable. 

The incorporation of highly functional, low-power 0.13 µm BiCMOS SiGe 

circuits on LCP makes this technology [71] niche uniquely positioned compared to other 

technologies available in the literature [72], [73]. It has been successfully shown that the 

integration of SiGe with radar systems is a viable low-cost solution [73]. The potential 

for several integrated functions, on a single chip that offers high performance at lower 

costs, keeps this technology in high demand [74], [75]. In [76] and [77], this technology 

is applied to a SoC approach where the active antenna is fully integrated onto silicon. 

However, this limits antenna performance due to the restriction of real estate, as well as 

added losses from the substrate. The work discussed in this chapter utilizes an SoP 

concept by integrating SiGe technology for the first time with the benefits of high gain 

microstrip antennas on low-loss organic substrates. A progressive approach is taken in 

the demonstration of several prototype antennas for the development of an 8x2 active 

receiving phased-antenna array in the X band. 

4.1 Antenna Array Overview 

A series of microstrip antennas have been sequentially designed with increasing 

array elements and component integration. Small array sizes of 4x1 and 8x1 antennas 
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were utilized for preliminary testing of the antenna design and incorporated ICs. A 

controlled comparison of passive and active antennas is used for verification of 

performance development for the final 8x2 phased-array antenna. 

Each antenna array was designed for operation at 9.5 GHz with a bandwidth of 

500 MHz. The array element spacing was optimized for beam scanning of ±20° in the x-

dimension. The expression for the required x and y element spacing of the array is given 

as 

    
 

               
 (4.1) 

and was determined using the scan angle (θS = 20° for x and θS = 0° for y) and maximum 

frequency (9.75 GHz). The spacing for the x (beam scan direction) and y dimension were 

calculated to be a maximum of 22.9 mm and 30.7 mm, respectively. These numbers 

reflect only the maximum spacing required to meet the necessary scan angle. The actual 

element spacing chosen is less than the calculated in order to increase the maximum scan 

angle and thus effectively reduce the appearance of grating lobes at the optimized scan 

angle of 20°. 

The selected organic substrate in this study is a combination of low-loss LCP and 

low-loss RT/duroid 5880LZ. A lightweight composition is an essential attribute for all 

applications where portability is of importance, including both airborne and ground 

devices. For the initial array designs (4x1 and 8x1 arrays), an all LCP platform was 

implemented. However, with the discontinuation of thicker LCP substrates during the 

development of this study, RT/duroid 5880LZ was selected as a replacement substrate for 

the radiating antenna elements. This material is a PTFE composite with a low dielectric 

constant (εr = 1.96) and low loss tangent (tanδ = 0.002). It was chosen primarily for its 

lower density and process compatibility with LCP (8x2 array). Additionally, it is 

accessible in thicker form (>1 mm in substrate thickness), no longer commercially 

available for LCP, which allows higher achievable bandwidths. 



 61 

The final 8x2 antenna design utilizes two columns, spaced 0.644λo apart, that are 

uniformly fed in parallel and are comprised of several aperture coupled microstrip 

patches spaced 0.855λo apart. The stack up of the antenna is shown in Figure 4.1. This 

design utilizes two LCP layers consisting of 75 µm (50 µm core plus 25 µm bond ply) 

and 100 µm thicknesses laminated to a 1.27 mm thick antenna core layer using a 25 µm 

LCP bond ply. Two bond ply layers (25 µm each) are needed for the multi-layer 

lamination, leading to a total thickness of 1.47 mm. Thin LCP layers are used to limit 

radiation losses through the large feed network and a thicker antenna core layer is used to 

achieve the necessary bandwidth. On top of the stack, there is an array of microstrip 

antenna elements where each element in a column is spaced 27 mm apart (y-dimension) 

and the columns are spaced 20 mm apart (x-dimension). The aperture layer contains 

sixteen slots centered directly below each patch element. The dimensions of a single 

aperture coupled patch for each prototype antenna are illustrated in Figure 4.2. The 

embedded feed layer uses 50 Ω line stubs to excite the aperture coupled patches. Part of 

the antenna feed network is embedded in the LCP and fed through a signal via from the 

bottom layer. This is to allow additional room for packaging components on the bottom 

metallization feed layer. For both the embedded and bottom feed layers, reactive 3 dB 

power dividers are used to parallel feed the antenna array. There are several 50 Ω 

microstrip-to- CPW transitions on the bottom layer to accommodate the integrated circuit 

packaging. These CPW lines consist of a 375 µm wide signal line, 100 µm gap and 2680 

µm wide ground lines. The ground lines have vias connecting to the embedded ground 

layer to prevent unwanted propagating modes. The microstrip lines on this layer are 446 

µm wide. 
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Figure 4.1: Stack up of multilayer antenna array showing only one column with four 

elements. 

    

 (a) (b) 

Figure 4.2: Dimensions of each aperture coupled patch for the a.) 4x1 and 8x1 antenna 

array using an LCP antenna layer and b.) 8x2 antenna array using a Duroid antenna layer. 

Each antenna is designed and modeled using HFSS simulation software. The 

return loss and far-field patterns are simulated and optimized for the design frequency 

and required bandwidth. The designs aim to make a return loss better than 10 dB across 

the 500 MHz bandwidth. 

An anechoic chamber is used to measure the radiation patterns from 8.5 GHz to 

10.5 GHz. Each antenna is mounted vertically on a stand and placed in the near-field of 

an X-band rectangular waveguide antenna. A cylindrical scan is necessary to 
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accommodate the broad beamwidth in the azimuth direction. After completion of the 

radiation patterns, the broadside gain of the antennas are measured over the frequency 

band. This data is then compiled with the near-field data and transformed to the far-field. 

Plots of the measured Electric (E) and Magnetic (H) planes taken at 9.5 GHz are 

compared with results simulated in HFSS. These are discussed further in the following 

sections. 

The measured gain for passive and active antenna arrays is presented with a 

distinction between the associated units. Traditionally, the unit dBi is used to indicate a 

measure of gain for an antenna. However, this infers that the gain is referenced to an 

isotropic radiator with 100 % efficiency. Theoretically, the highest achievable antenna 

gain is equal to its directivity. It would not be appropriate to use dBi for active antennas 

because the measured gain is a product of an IC plus the antenna gain, which often leads 

to a value higher than the directivity. Doing so would infer that the antenna has efficiency 

greater than 100 %, which is theoretically impossible. In this chapter, the terms ‘system 

gain’ or ‘active gain’ are used to imply that the measurement incorporates gain from 

additional components integrated on the antenna. These values are associated with the 

unit dB. Additionally, the directivity will be presented to offer the reader insight to the 

radiation pattern beamwidths. For a passive antenna, the gain can sometimes provide 

insight as to the maximum theoretical beamwidth. This correlation is lost in providing 

only the measured gain of an active antenna since the beamwidth is often much wider 

than the theory would dictate. 

4.2 4 x 1 Antenna Array 

The first building block of this work integrates an X-band SiGe LNA onto a 

functioning 4x1 array [78]. A single column of four microstrip patch antenna elements are 

spaced 27 mm apart, consistent with the design requirements set for the final 8x2 phased 

array. This is excited by a BFN and CPW line structure that were designed and routed 
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within the LCP feed layers. The CPW feed line was designed intentionally for 

compatibility with the LNA packaging. 

The antenna array was initially designed and optimized without the inclusion of 

the LNA. By designing and measuring a passive (also referred to as baseline) version of 

the antenna, a direct correlation could be attained for the added performance of the 

incorporated IC. The passive antenna design was modeled in HFSS using a thru-line in 

place of the LNA, shown in Figure 4.3. The return loss and far-field patterns were 

simulated and optimized for the design frequency and required bandwidth. The return 

loss is shown in Figure 4.4. The design clearly makes a return loss better than 10 dB 

across the 500 MHz bandwidth. The directivity and gain were both simulated at 9.5 GHz 

and determined to be 13 dBi and 9.2 dBi, respectively. The low efficiency of this antenna 

is due to the large corporate feed network necessary to uniformly excite the patch 

antennas and to package the active component. 

 

Figure 4.3: HFSS model of passive 4x1 antenna array. 
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Figure 4.4: Simulated S11 plot of passive 4x1 antenna array. 

The LNA packaged on this array was fabricated in a 0.13 µm BiCMOS SiGe 

technology and designed using the inductively degenerated cascode architecture. The 

circuit was designed for ultra-low noise performance while simultaneously achieving a 

power match. It has a self-bias circuitry to simplify total design and requires only a 2.5 V 

DC supply. The amplifier consumes only 22 mW of DC power and has a reported 17 dB 

of gain (GLNA) and 1.37 dB noise figure (NFLNA) across X-band (9.5 GHz to 10.5 GHz). 

The die is matched to 50 Ω at all RF ports on chip, thus no matching network was needed 

on package. It comes with standard 150 µm pitch aluminum pads for wire bond 

packaging. Further details of the LNA design are discussed in [79]. 

The LNA chip was diced from its original wafer using a soft 50 µm wide cutting 

blade. The die size was kept to a minimum to reduce wire bond length. After dicing, the 

chip dimensions were measured to be 820 µm x 940 µm. Prior to packaging, the LNA 

was measured on chip to ensure performance integrity. 

To ensure the LNA performed properly on the array, it was first packaged 

separately on LCP using the same CPW feed line structure for the antenna design. The 

packaging layout is shown in Figure 4.5. The LNA was mounted using silver epoxy and 

allowed to cure for 20 minutes at 120 °C. The chip pads were then wire bonded onto the 
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copper traces on LCP. The wire bonds were done using a ball-wedge wire bonder 

utilizing a 38 µm diameter gold bond wire. This type of wire bonder uses heat applied to 

the sample and ultra-sonic energy to make a weld between contact points. 

 

Figure 4.5: Layout for the packaged LNA. 

Measurements of both the wafer level and package level LNA were done using 

GSG CPW probes. The LNA was biased at a Vcc = 2.5 V drawing a current of 6 mA. 

The S-parameters were recorded using an Agilent E8361C PNA. Measurement 

comparisons of the bare LNA versus the packaged LNA are seen in Figure 4.6. This plot 

shows a slight degradation of performance in the packaged LNA which is expected due to 

added parisitics from the wire bonds. Over the frequency of interest, there is a 0.5 dB of 

loss in output gain for the packaged LNA. This implies there will be about 16.2 dB of 

added gain to the antenna. This number was expected to vary slightly for each LNA. 
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Figure 4.6: Comparison plot of the unpackaged and packaged LNA. 

The baseline 4x1 antenna array was modified to integrate the LNA using the same 

packaging layout seen in Figure 4.5. This layout was integrated into the already existing 

CPW feed line and the bias lines were extended out to 2 mm x 2 mm pads where a wire 

could be attached for easier operation. Figure 4.7 shows a photograph of the packaged 

LNA. The assembled antenna with integrated LNA is shown in Figure 4.8. 

 

Figure 4.7: Picture of the packaged LNA on antenna array. 
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Figure 4.8: Picture of the antenna array with integrated LNA. 

After fabrication of both the baseline antenna and the LNA integrated antenna, 

SMA connectors were soldered to the inputs. The return loss was measured on the 

network analyzer and an anechoic chamber was used to obtain the radiation patterns. As 

shown in Figure 4.9, the baseline antenna has a return loss greater than 8 dB over the 

design bandwidth and the LNA integrated antenna is greater than 10 dB. This deviation 

from simulated results is attributed to misalignment during fabrication and the large 

corporate feeding network. 

 

Figure 4.9: S11 plot for the baseline and packaged LNA 4x1 antenna array. 

Plots of the measured E & H planes taken at 9.5 GHz are compared with results 

simulated in HFSS. As shown in Figure 4.10, the 4x1 baseline antenna results are very 

closely matched to those in simulation. The broadside gain of this antenna was measured 

at 9 dBi. Likewise, Figure 4.11 shows the 4x1 antenna with packaged LNA having 
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similarly good correlation with the expected results. The broadside system gain of this 

antenna was measured at 25 dB. The estimated radiation patterns for the antenna with 

packaged LNA uses the simulated results for the baseline antenna adjusted by the 

predicted additional gain (16.2 dB) for the packaged LNA. For both antennas, the 

location of peaks and nulls correspond very well and the maximum gain is within 1.0 dB 

of the simulated results. The 3 dB beamwidths at 9.5 GHz are seen in Table 4.1. There 

appears to be only a slight difference between both antennas and that in simulation. A 

comparison of gain over the frequency band is plotted in Figure 4.12. The 3 dB 

bandwidth for the gain is well beyond the 500 MHz design requirement for both 

antennas. 

 

 (a) (b) 

Figure 4.10: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the baseline 4x1 array. 
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 (a) (b) 

Figure 4.11: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 4x1 array with 

integrated LNA. 

Table 4.1 

4x1 antenna array comparison of half-power beamwidths @ 9.5 GHz 

Antenna Elevation Azimuth 

Simulated 4x1 baseline 16° 129° 

Measured 4x1 baseline 17.5° 130° 

Measured 4x1 with integrated LNA 15.5° 123° 

 

 

Figure 4.12: Normalized gain plot comparison. 
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4.3 8 x 1 Antenna Array 

The next step for developing the 8x2 phased array is incorporating a phase 

shifting capability. This section demonstrates a SiGe 3-bit PS, in addition to the LNA, 

packaged onto an 8x1 array [80].  The previously discussed passive 4x1 array design has 

been expanded into an 8x1 antenna array using the same element spacing with a modified 

BFN. This was modeled using HFSS, shown in Figure 4.13. The return loss and far-field 

patterns were simulated and optimized for the design frequency and required bandwidth. 

The design clearly makes a return loss better than 10 dB across the 500 MHz bandwidth. 

The directivity and gain were simulated at 9.5 GHz and found to be 16 dBi and 9 dBi, 

respectively. 

 

Figure 4.13: Model of the 8x1 antenna array. 

The phase shifter incorporated into this antenna is a dual channel device with each 

channel consisting of two LNAs and a 3-bit CMOS phase shifter, illustrated in Figure 

4.14. Each channel consumes only 4 mW of DC power while achieving a gain (GPS) of 

over 10 dB, a noise figure (NFPS) less than 5 dB, and an OTOI of over 10 dBm. In 

addition, the RMS gain and phase errors were reported less than 0.5 dB and 2º, 

respectively. The internal LNAs were designed using the power-constrained inductive 

degeneration design technique outlined in [54]. The Hi/Lo pass phase shifter was 
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designed using CMOS single-pole-double-throw (SPDT) switches to toggle between hi- 

and low-pass filter sections. In this work, only one channel will be used from each die. 

 

Figure 4.14: Picture and schematic of the SiGe phase shifter. 

This device requires several DC supplies. This includes a 0.85 V and 1.5 V bias 

for each LNA and a 1.2 V and 2.4 V bias for each bit on the phase shifter. It is matched to 

50 Ω at all RF ports on chip, thus no matching network is needed on package. It comes 

with standard 250 µm pitch aluminum pads for wire bond packaging. A more 

comprehensive description of the full phase shifter can be found in [58]. 

The SiGe PS was first packaged individually on LCP and characterized. The final 

package layout for this device is shown in Figure 4.18. The 4.7 kΩ resistor is used as an 

RF block for a wire bond that will connect the RF input of the PS to a DC bias line. 
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Figure 4.15: Layout for the packaged phase shifter. 

S-parameters of the packaged PS were taken using the same measurement setup 

as the LNA and biased according to the specifications in [58]. Measurement comparisons 

of the bare PS versus the packaged PS are shown in Figure 4.16. This plot shows only 

slight degradation of performance for the packaged PS. At 9.5 GHz, the plot shows about 

11 dB of added gain to the antenna from this packaged component. Obviously, this 

number will vary slightly for each PS and for each phase state. Also, as shown in Figure 

4.17, there is a slight error in phase shift for each state. This will be accounted for in 

Section 4.4 when predicting the steering angle of radiation patterns. The largest disparity 

in phase shift between 9.25 GHz and 9.75 GHz for the unpackaged and packaged die was 

measured to be 5.8º. 
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Figure 4.16: Comparison of S-parameters for the unpackaged and packaged phase shifter. 

 

Figure 4.17: Comparison of unpackaged and packaged phase shifter for each phase state. 
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After verifying the LNA and PS could be successfully packaged on LCP, the next 

step was to package both in series on LCP. The packaged LNA and PS are shown in 

Figure 4.18. The effective S-parameters were estimated by using those acquired from the 

individually packaged LNA and PS and using ADS to simulate them in series. The 

measured and simulated S-parameters are shown in Figure 4.19. The measurements 

match very closely with the simulations. From these results, it is shown that the packaged 

LNA and PS will add about 26.6 dB of gain to the antenna array. Since the simulated 

gain of the 8x1 baseline antenna is 9 dBi, it was predicted that the 8x1 with packaged 

LNA and PS would have a front-end system gain of around 35.6 dB. This gain could be 

improved by increasing the bias voltage to compensate for the added loss from 

packaging; however, this is not recommended as it would stress the bias circuitry and 

potentially damage the chips. 

 

Figure 4.18: Picture of the packaged SiGe LNA and PS. 
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Figure 4.19: Comparison of measured and simulated S-parameters for LNA and phase 

shifter packaged in series on LCP. 

Two antenna boards were fabricated to verify the added performance of the 

integrated PS. An 8x1 array with packaged LNA was assembled and tested to provide a 

baseline for the 8x1 array with packaged LNA and PS. A picture of the assembled 

LNA/PS integrated antenna is shown in Figure 4.20. The S-parameters of both antennas 

were measured on a network analyzer and showed a return loss around 10 dB across the 

desired frequency band (Figure 4.21). 

 

Figure 4.20: Front and back picture of the assembled 8x1 antenna array with integrated 

LNA and PS. 
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Figure 4.21: Return loss of the simulated baseline array and measured active arrays. 

The assembled array being measured in the anechoic chamber is depicted in 

Figure 4.22. Plots of the measured E and H planes taken at 9.5 GHz are compared with 

results simulated in HFSS. The data from the pattern measurements are plotted in Figure 

4.23 and Figure 4.24. The estimated radiation patterns for the antennas use the results for 

the simulated baseline antenna adjusted by the predicted additional gain (16 dB and 26 

dB) for the packaged LNA and packaged LNA and PS. The measured active gain of the 

8x1 with LNA and the 8x1 with LNA and PS was approximately 25 dB and 34 dB, 

respectively. In addition, the side lobes were within -10 dB to -13 dB with respect to the 

peaks. For both antennas, the location of peaks and nulls correspond very well and the 

maximum gain is within 1.0 dB of the estimated results. Surface roughness of LCP, 

misalignment tolerance during fabrication, and loss contributed by the vias and 

connectors are attributed to any deviation from simulation. 
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Figure 4.22: Antenna chamber setup of 8x1 array with SiGe LNA and PS. 

 

 (a) (b) 

Figure 4.23: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x1 array with 

integrated LNA only. 
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 (a) (b) 

Figure 4.24: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x1 array with 

integrated LNA and PS. 

Measured and simulated beamwidths at the central 9.5 GHz are shown in Table 

4.2. Simulated results of the passive antenna are, as expected, very similar to the results 

of the measured active antennas. 

Table 4.2 

8x1 antenna array comparison of half-power beamwidths @ 9.5 GHz 

Antenna Elevation Azimuth 

Simulated 8x1 baseline 7° 114° 

Measured 8x1 with integrated LNA 8° 121° 

Measured 8x1 with integrated LNA & PS 7.5° 128° 

 

The gain of the 8x1 with LNA and PS plotted over frequency is shown in Figure 

4.25. The gain did not deviate more than 1 dB within the 500 MHz bandwidth of the 

center frequency (9.5 GHz). Only the first seven states of the phase shifter were measured 

due to the eventual failure of the on-chip digital control of the phase shifter caused by 

ESD. Future designs include ESD protection on the I/O pins, and should not affect 

performance, allowing robust operation of these antennas. The gain of the 270 degree 
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phase state is several dB down from the rest which is attributed to partial failure of the 

circuit and the last state (315 degree phase shift) was unable to be measured due to 

complete failure. 

 

Figure 4.25: Gain versus frequency for each phase state of the 8x1 array with integrated 

LNA and PS. 

4.4 8 x 2 Antenna Array 

Thus far, substrate level integration of a SiGe LNA and PS has been demonstrated 

with good correlation of simulated and measured radiation patterns; however, no beam 

steering could be achieved. This section makes further progress by expanding the antenna 

to an 8x2 array design and incorporating an LNA and PS into each column of elements 

for beam steering capability [81]. The previously designed 8x1 array has been tiled with a 

spacing of 20 mm to include a second column of microstrip elements. Additionally, a 3 

dB reactive power divider has been implemented on the bottom LCP layer to feed the 

embedded BFN for each column of elements. The passive array design was modeled in 

HFSS, shown in Figure 4.26. The return loss and far-field patterns were simulated and 

optimized for the design frequency and required bandwidth. The design clearly makes a 



 81 

return loss better than 10 dB across the 500 MHz bandwidth. The directivity and gain was 

also simulated at 9.5 GHz and predicted to be 19.7 dBi and 15.2 dBi, respectively. 

 

Figure 4.26: HFSS model of the 8x2 antenna array. 

In order to steer the beam of the 8x2 array and maintain a large antenna gain, the 

SiGe LNA and PS used previously were incorporated into each column of the design. 

The baseline 8x2 antenna array was modified to integrate the LNA and PS using the same 

package scheme used for the 8x1 antenna. This layout was integrated into the already 

existing CPW feed lines. Also, the DC bias lines were extended out to 2 mm x 2 mm pads 

where a wire could be attached for easier control. A picture of the antenna with the 

integrated LNA and PS is shown in Figure 4.27. As shown in Figure 4.17, there is a slight 

error in phase shift for each state of the device. This will be accounted for while 

predicting the steering angle of the radiation patterns. 
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Figure 4.27: Picture of the packaged LNA and phase shifter on the 8x2 antenna array. 

After fabrication of both the baseline antenna and the LNA/PS integrated antenna, 

SMA connectors were attached to the outputs. Because the active antenna required 

several DC supplies to power it, a low power supply board was built to accommodate all 

the necessary voltages. This board requires only a 5 V DC supply drawing 0.455 A and is 

capable of providing all the necessary DC biases for the LNA and PS. Also, since the 

phase shifter bits are controlled by a supply of 1.2 V or 2.4 V, a switch board was 

assembled for toggling through all the phase states. The entire setup is seen in Figure 

4.28 and weighs only 12.6 ounces. The antenna array alone, with only a short wiring 

harness, weighs 3.5 ounces and consumes a total of 53 mW of DC power. 
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Figure 4.28: Picture of the assembled antenna array with low power supply board and 

phase shifter bit controller. 

Both antennas were measured on a network analyzer and maintained a return loss 

better than 10 dB across the desired frequency band, shown in Figure 4.29. The 

simulation results compared to the measured baseline antenna are very close and show 

only a 100 MHz shift in frequency. 

 

Figure 4.29: S11 plot of the simulated and measured 8x2 antenna arrays. 
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A picture of the antenna under test (AUT) in the anechoic chamber is shown in 

Figure 4.30. Plots of the measured E & H planes taken at 9.5 GHz are compared with 

results simulated in HFSS. As shown in Figure 4.31, the 8x2 baseline antenna results are 

very closely matched to those in simulation. The broadside gain of the baseline antenna 

was measured to be 15.1 dBi. The location of peaks and nulls correspond very well and 

the max gain is within 0.1 dB of the simulated results. A plot of the measured gain over 

frequency compared with simulations is shown in Figure 4.32. Over the frequency band 

of interest (9.25 GHz to 9.75 GHz), there is a 1.2 dB variation in gain. 

 

Figure 4.30: Picture of the 8x2 antenna array being measured in the anechoic chamber. 
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 (a) (b) 

Figure 4.31: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz of the 8x2 baseline 

antenna array. 

 

Figure 4.32: Gain versus frequency of the 8x2 baseline antenna array. 

Measurements for the 8x2 antenna with packaged LNA and PS are shown in 

Figure 4.33 and Figure 4.34. It is seen that these measurements are very close to the 

predicted radiation patterns. The estimated radiation patterns in Figure 4.33 use the 

simulated results for the baseline antenna adjusted by the predicted additional gain of 

26.6 dB provided by the packaged LNA and PS. The measured front-end system gain at 

broadside seen in these figures is 40.1 dB. Using the gain of the baseline antenna as a 

control, the additional gain supplied from the LNA and PS is calculated to be 25 dB.  The 
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low cross-polarization gain shown in these figures confirm the linear polarization of the 

antenna. The beam steering capability is shown in Figure 4.34. The radiation patterns are 

normalized to compare the measured beam steering with the simulated beam steering 

predicted in HFSS. The beam steering angles are more clearly seen in Table 4.3. The 

measured beam steering angle compared to simulation has a maximum error of 5.5° and 

an RMS error of 3.2°. 

 

 (a) (b) 

Figure 4.33: Measured a.) E-Plane and b.) H-Plane at 9.5 GHz for the 8x2 antenna array 

with packaged SiGe LNA and phase shifter. 
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 (a) (b) 

  
 (c) (d) 

  
 (e) (f) 

Figure 4.34: Normalized E-plane at 9.5 GHz of the 8x2 antenna array with a.) 44 degrees, 

b.) 87 degrees, c.) 129 degrees, d.) 170 degrees, e.) 257 degrees, and f.) 299 degrees 

phase change. 
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Table 4.3 

Comparison of pattern beam steering @ 9.5 GHz 

Phase Shift Simulated Measured 

0 deg 0º 0º 

44 deg 12º 16º 

87 deg 20.5º 22º 

129 deg 30º 27º 

170 deg 36.5º 41º 

215 deg -31.5º -31º 

257 deg -22.5º -17º 

299 deg -13º -11º 

 

A comparison of antenna gain over the frequency band is plotted in Figure 4.35. 

The 3 dB bandwidth for the gain is over 10 % for all beam steering states, which is well 

beyond the 500 MHz design requirement. 

 

Figure 4.35: Gain versus frequency of the 8x2 antenna array for all phase changes. 
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The 3 dB beamwidths at 9.5 GHz are seen in Table 4.4. The simulated results of 

the passive antenna match very closely with the measured results of the baseline antenna 

and, as expected, are very similar to the results of the active antenna. 

Table 4.4 

8x2 antenna array comparison of half-power beamwidths @ 9.5 GHz 

Antenna Elevation Azimuth 

Simulated 8x2 baseline 7.5º 47º 

8x2 baseline 8º 50º 

8x2 with LNA & PS 0 deg 8.5º 50º 

8x2 with LNA & PS 44 deg 8.5º 46º 

8x2 with LNA & PS 87 deg 8º 41º 

8x2 with LNA & PS 129 deg 7.5º 43º 

8x2 with LNA & PS 170 deg 8º 45º 

8x2 with LNA & PS 215 deg 7.5º 49º 

8x2 with LNA & PS 257 deg 7.5º 44º 

8x2 with LNA & PS 299 deg 7.5º 44º 

 

Using the measured and simulated data of the antenna and active components, the 

resulting added noise performance of the system was determined. As discussed in [82] 

and [83], this is conventionally done by calculating the noise figure, NFT, and FOM ratio, 

G/T, referenced at the output of the antenna. In this work, these parameters were 

calculated using 

                        
              

    
 (4.2) 

and 
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 (4.3) 

where T0 is the standard reference temperature 290 K, D is the directivity of the antenna, 

and LA1 and LR1 are the Ohmic loss and mismatch loss, respectively, in the feed line 

between the antenna element and LNA. From these equations, it is clear that when the 

LNA gain, GLNA, is sufficiently large, the feed line loss and LNA noise figure will have 

the most effect on performance, and the components following it will have a negligible 

effect. Since this is true of this case, only the PS term is included in this calculation and 

the loss of the antenna feed line after the PS is ignored. 

The measured and simulated results for this antenna were used to calculate the 

system noise performance. The directivity of the antenna was calculated to be 19.7 dBi 

using the measured radiation patterns at 9.5 GHz. The loss in the feed line, and the noise 

figure of the packaged LNA and PS were simulated in HFSS and ADS, respectively. 

These simulations showed a LA1 of 3.9 dB, a LR1 of 0.1 dB, a NFLNA of 1.4 dB, and a NFPS 

of 5.7 dB. The already measured gain of the packaged LNA at 9.5 GHz is 16.2 dB. Using 

these results, the NF of the system is 5.6 dB and the G/T is -9.4 dB/K. For this antenna, 

the ohmic feed line loss, LA1, has the largest impact on these parameters and can be 

directly improved by moving the LNA and PS closer to the antenna elements. This would 

significantly lower the noise figure, thus increasing the G/T ratio. 

4.5 Summary 

This chapter has discussed the design of several passive and active antennas for 

the development of a lightweight, organic active receiving phased-array antenna. SiGe 

LNAs and PSs were successfully integrated onto an 8x2 antenna array fabricated using 

LCP and Duroid material. The measured return loss and radiation patterns were very 

comparable to those simulated. Using a passive version of the active array, a comparison 

showed excellent results from the packaged LNA and PS. The packaged components 
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supplied an additional 25 dB of increased gain to the antenna for a total of 40.1 dB in 

front-end system gain. The combined antenna and receiver performance yielded a G/T of 

-9.4 dB/K and a NF of 5.6 dB. Additionally, the antenna exhibited ±41° of beam steering 

capability. This is the first demonstration of such a lightweight, active receive antenna 

array in X-band built with low cost PCB fabrication technologies and Si-based RF 

electronics. 
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CHAPTER 5 

60 GHZ SWITCHED-BEAM RECEIVER FRONT END 

 

The demand for high-speed, high-capacity wireless communications has driven 

Gigabit-per-second (Gbps) applications into mm-wave frequencies where higher 

bandwidths can be achieved. In this regime, 60 GHz communications have received 

much attention because of the availability of unlicensed ISM bands and inherent 

propagation path loss in this spectrum [84]. These unique properties have spawned a path 

forward for short-range secure data transfer at ultra-high speeds, which requires a new 

generation of low-cost, compact, high-performance adaptive antennas [85]. 

The problems associated with this task reside not only in the system architecture 

but also in the selected platform material for system integration. LCP is an established 

low-cost alternative to ceramic technology for antenna applications due to its large panel 

processing. The low dielectric constant and loss tangent (εr = 3.16, tanδ = 0.004 @ 60 

GHz) exhibited up to 110 GHz makes it a leader among competing materials [86]-[87]. 

Additionally, the thin-form availability of this material makes it a primary candidate for 

mm-wave applications where reduced feature sizes become critical for radio-frequency 

(RF) performance; conversely, LCP multilayer lamination capability also allows thicker 

layers for high antenna radiation efficiencies. 

There are several techniques being investigated to improve antenna adaptability at 

V band. Phased array antennas utilize phase shifters integrated on substrate for controlled 

beam steering. In [88], a CMOS Hi-Lo pass switching phase shifter is used to control a 

2x2 phased array on ceramic substrate. This device was integrated with several amplifiers 

to offset the high losses incurred. At mm-wave frequencies, there are limited types of 

low-loss phase shifters available for small size antenna applications. Switched line phase 

shifters have been used in conjunction with low-loss GaAs and MEMs switches [89]. 
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This approach enables highly-directional arrays to scan a wide field-of-view with 

broadband performance. However, the inclusion of several integrated circuits (ICs) or 

multilayered structures necessary to achieve a wide beam scan drives up cost and 

consumes real estate. A low-cost solution is the use of switched-beam elements. By using 

a configuration of broad-side and end-fire antennas integrated together on a substrate, it is 

possible to achieve multiple beams controlled through a switch network. With this 

technique, antenna elements are oriented to radiate in various directions for multiple 

field-of-views that would otherwise be difficult to accomplish through phased-array beam 

steering [90]-[91]. While this technique avoids some inherent problems with phased 

arrays, it introduces blind spots between field-of-views that phased arrays can inherently 

solve. 

A combined solution to these techniques is the integration of a switched 

beamforming network (BFN) that implements a phased array scanning capability [92]. 

One such structure is the Butler matrix, which consists of N number of RF inputs that 

independently feed N number of RF outputs with varying phase delays. This creates N 

number of fixed radiating beams accessed by the separate inputs. Utilizing this type of 

BFN reduces the number of ICs needed for conventional phase shifting techniques while 

retaining beam scanning capability. The structure is implemented in a variety of forms 

including substrate-integrated-waveguide (SIW) or microstrip lines. It has been 

successfully investigated as a viable solution for antenna beam switching capability at 

mm-wave frequencies where the size of the structure becomes inherently reduced [93]-

[94]. In [95], a 4x4 Butler matrix was integrated with a 4x1 patch antenna array on 

Duroid substrate. This passive antenna structure demonstrated proof-of-concept beam 

steering capability but does not implement a switch network or integrate amplifiers for 

improved system performance. 

Previously, a 4x1 quasi-Yagi array was developed on LCP for mobile platform 

integration at 60 GHz [96]. Using this design, a GaAs low-noise amplifier (LNA), power 
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amplifier (PA), and single-pole-double-throw (SPDT) switch were integrated for transmit 

and receive functionality [97]. Although substrate level integration was demonstrated, no 

beam steering could be achieved. The work discussed in this chapter makes further 

progress by redesigning the quasi-Yagi array to incorporate a Butler matrix for switched-

beam functionality. Additionally, a switch network of GaAs SPDT switches are 

integrated to toggle between the beam states, and GaAs LNAs are integrated per antenna 

element to minimize the receive noise figure. These die are packaged and biased with a 

substrate level distribution network. This is the first fully integrated, lightweight V-band 

receive switched-beam antenna with GaAs LNAs and SPDT switches [98]. This work 

aims to serve as a building block for future low-cost Gbps antenna solutions. 

 

5.1 System Layout 

The 4x1 receive switched-beam array was designed for operation at 60 GHz and 

consists of several components, illustrated in Figure 5.1, that were co-designed and 

optimized for seamless integration. The antenna array was designed for maximum gain 

over a wide frequency band while maintaining 4 dB overlap points of the beams. The 

antenna element is a quasi-Yagi dipole array chosen due to its inherent small size and 

highly directional radiation patterns. A GaAs LNA was integrated onto each antenna 

element to both increase gain performance and minimize antenna noise figure (NF). The 

BFN utilizes a 4x4 Butler matrix to phase the antenna elements for beam steering 

capability. A switch network was implemented using three SPDT switches configured to 

feed from the four outputs of the Butler matrix to a single G3PO RF connector. 
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Figure 5.1: Schematic layout of the switched-beam array. 

In designing each system component, trade-offs were assessed for deciding the 

LCP material and metal thicknesses. The thicknesses commercially available for LCP are 

25 µm, 50 µm and 100 µm with 9 µm, 18 µm, or 35 µm copper metal cladding. For 

simplicity and cost-efficiency, a two metal stackup was chosen. The driving factors for 

choosing the material thickness were the Butler matrix performance, chip-to-package 

wire bond length, and minimum allowable feature size of the microstrip balun used for 

the dipole antenna element. Through several iterations of simulating each structure, it was 

found that a 50 µm thickness provided the best RF performance for the Butler matrix and 

chip packages while also maintaining feasibly achieved feature sizes for fabricating the 

microstrip balun. The chosen metal thickness was determined based on requirements for 

the bottom (ground) layer. This should be thick enough to withstand via and cavity 

lasering, and provide adequate thermal dissipation for the integrated amplifier. It was 

determined that at least 18 µm thick copper would be necessary for the lasering to avoid 

puncturing this layer and would also be adequate for thermal dissipation since the LNA is 

relatively low power. 



 96 

5.2 Integrated Components Design 

5.2.1 Butler Matrix 

The Butler matrix consists of four RF inputs that independently feed four RF 

outputs with varying phase delays. The structure is host to a configuration of several 

microstrip quadrature hybrid couplers and phase delay lines. The purpose of this network 

is to uniformly feed the four antenna elements with progressive phase delays of -45°, 

+135°, -135°, and +45°, which is determined by the respective input port selected. The 

use of hybrid couplers provides high isolation between each input port, which allows a 

switch network to toggle between these ports without affecting the antenna performance. 

This creates four fixed radiating beams accessed by four independent inputs. Using the 

principle of reciprocity, this structure can be utilized in the same manner for transmitting 

or receiving antenna applications. 

The individual components, as well as the entire Butler matrix structure, were 

designed using HFSS. It was found that using lines with characteristic impedances less 

than 50 Ω would be too wide to effectively design the hybrid couplers. Thus, the Butler 

matrix was designed for a system impedance of Z0 = 70 Ω. The optimized hybrid coupler 

uses 70 Ω and 50 Ω lines having lengths of 930 µm and 780 µm, respectively. The 

simulated performance of this design has a return loss greater than 20 dB, an insertion 

loss less than 0.5 dB, and an isolation higher than 17 dB at 60 GHz over a bandwidth of 8 

GHz. This served as a building block for the Butler matrix. The crossover structure uses 

two quadrature hybrid couplers in series spaced 925 µm apart with 70 Ω lines. This has a 

simulated performance of a return loss greater than 14 dB, an insertion loss less than 0.7 

dB, and an isolation higher than 25 dB. The final layout of the 4x4 Butler matrix is 

shown in Figure 5.2. 
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Figure 5.2: Model of the 4x4 Butler matrix. 

For design purposes, the Butler matrix was optimized with matched ports; 

however, the implemented structure was to be incorporated with reflective switches on 

Ports 1-4. Because the Butler matrix maintains inherent isolation between these 

respective ports, the effect of reflective switches is minimal. The simulated performance 

of the Butler matrix is shown in Figure 5.3 - Figure 5.5. These results correspond to the 

assigned ports illustrated in Figure 5.2. Figure 5.3 shows the reflection coefficients when 

looking into each port. It maintains a return loss greater than 10 dB across the frequency 

band of 56 GHz to 67 GHz. Figure 5.4 shows the transmission coefficients associated 

with the toggled outputs of port 1 through 4. The variation of insertion loss for all ports is 

less than 1 dB from 56.5 GHz to 65.5 GHz. Figure 5.5 shows the simulated phase shift at 

adjacent antenna elements for excitations at P1 and P2. The design was optimized for 

minimal phase error at 60 GHz. These plots illustrate the relative variation of phase shift 

across the frequency band, which will have a direct effect on the antenna radiation 

patterns. 
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Figure 5.3: Simulated reflection coefficient for each port of the Butler matrix. 

  

 (a) (b) 

Figure 5.4: Simulated transmission coefficients of the Butler matrix for a.) P1& P4 and 

b.) P2 & P3. 
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 (a) (b) 

Figure 5.5: Simulated phase shift between adjacent antenna elements for a.) P1 and b.) 

P2. 

5.2.2 Quasi-Yagi Planar Antenna 

The quasi-Yagi dipole array was optimized in conjunction with the Butler matrix. 

A single antenna element was first designed for 60 GHz operation using the technique 

outlined in [99]. The final layout of this element is illustrated in Figure 5.6. The design 

uses a driven dipole excited by a coplanar strip (CPS) line. A balun was used to couple 

the odd mode of a microstrip feed into the CPS line. This also incorporated a quarter-

wave transformer at the unbalanced port of the balun to convert the input impedance to 

50 Ω. The truncated microstrip ground acted as a pseudo-reflector to the driven dipole, 

increasing the antenna directivity by 3 dB. This design was simulated in HFSS and 

showed a resonance at 60 GHz with a 10 dB bandwidth of 3.5 GHz (5.8 % BW) and peak 

directivity of 5.2 dBi. Directors were not used in this design in order to maintain a wide 

beamwidth. This was done to minimize the drop in gain when the array is phased for 

wide beam scans. 
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Figure 5.6: Model of the single antenna element illustrating feature dimensions. 

The 4x1 array spacing was optimized using the dipole antenna modeled with the 

Butler matrix. A quarter-wave transformer was used to match the 50 Ω impedance of the 

antenna element with the 70 Ω impedance of the Butler matrix. Although this 

configuration was not consistent with the final active array design, it was necessary to 

investigate the effects of the Butler matrix on the antenna radiation patterns. Due to the 

fixed phase shifts of the Butler matrix, array factor (AF) theory dictates a 4x1 dipole 

array, with element spacing λ/2 and uniform amplitude distribution, will have a 

maximum overlap point of -3.7 dB. Since the designed antenna element is more directive 

than a conventional dipole, it was expected that the beam overlap points would fall 

slightly below this value. It was found that an array spacing of 2.8 mm (0.56λ0) gave 

optimum gain levels for the four beam scans while also maintaining -4 dB overlap points. 

Both single antenna element and 4x1 array with Butler matrix were fabricated and 

tested for S11 measurements. A 50 Ω CPW-to-microstrip transition was incorporated on 

to these structures for GSG probing. A photo of the fabricated antennas is displayed in 

Figure 5.7. The simulated and measured S11 for both structures are plotted in Figure 5.8. 

These plots verify good correlation between the successful fabrication of these samples 

and the accuracy of the HFSS modeling. 
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Figure 5.7: Fabricated a.) single Yagi element and b.) 4x1 array with Butler matrix. 

 

Figure 5.8: Simulated and measured S11 of the single dipole antenna and the 4x1 phased 

array with incorporated Butler matrix. 
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5.2.3 GaAs Chip Package Design 

The LNA and SPDT switch were initially packaged using 50 Ω transitions to 

verify the on-die performance. Using accurate model representation of the chip-to-

package interconnect, the measured S-parameters were de-embedded to capture the on-

die performance. Using the de-embedded parameters, each die package could be more 

accurately optimized for performance over the desired frequency band. 

 Low Noise Amplifier Circuit Description 

The GaAs LNA (Hittite HMC-ALH382) operates between 57 GHz to 65 GHz 

with a reported typical gain of 24 dB, noise figure of 4.5 dB, and 1 dB power 

compression point (P1dB) of 12 dBm. The circuit requires a drain voltage of +2.5 V 

drawing 64 mA of current and is controlled by varying the gate voltage from -1 V to +0.3 

V. The biasing network requires 100pF by-pass capacitors next to the drain and gate chip 

pads as well as 0.1 µF capacitors, which are not as critically placed. A 10 Ω resistor is 

also placed in series between the by-pass capacitors on the gate DC line. The die is 

fabricated for wire bond packaging on the RF and DC pads. The LNA die size is 1.55 

mm x 0.73 mm x 0.1 mm. A more in-depth description of this device can be found in 

[100]. 

Single-Pole-Double-Throw Switch Circuit Description 

The GaAs SPDT switch (Hittite HMC-SDD112) operates between 55 GHz to 86 

GHz with a reported ON-state insertion loss of 2 dB and an OFF-state isolation of 30 dB. 

Each output of the circuit is controlled by an independent DC input line. The ON state 

requires a -5 V DC supply drawing -63 nA of current while the OFF state requires a +5 V 

DC supply drawing 22 mA of current. The biasing network requires 100 pF by-pass 

capacitors placed next to the chip to mitigate unwanted resonances. The die is fabricated 

for wire bond packaging on the RF and DC pads. The switch die size is 2.01 mm x 0.975 

mm x 0.1 mm. A more in-depth description of this device can be found in [100]. 
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De-Embedded Chip Performance 

The LNA and SPDT switch packages were initially designed and optimized 

assuming an on-die 50 Ω match. A model was built for each die simulating a 76 µm x 

12.5 µm Au ribbon wire interconnecting the on-die pads to a 50 Ω microstrip line on 

package. The width of the ribbon (76 µm) was chosen not only to minimize the wire 

inductance, but also closely mimic a 50 Ω line when bonded on top of the 100 µm thick 

GaAs chip substrates. This effectively minimized the length of the parasitic interconnect 

to the distance between chip edge and the on-package microstrip line. Both die were 

embedded into the 50 µm LCP substrate to also minimize wire bond lengths. Shunt 

capacitive stubs were incorporated on package to compensate for the wire bonds and tune 

out the parasitic inductance. Additionally, a 50 Ω CPW-to-microstrip transition was used 

to allow probe measurement. The final stub dimensions were 420 µm x 60 µm, and the 

simulated interconnect showed better than 20 dB return loss and less than 0.25 dB 

insertion loss up to 70 GHz. These simulated models are depicted in Figure 5.9. 

 

Figure 5.9: Simulated package of the LNA and SPDT switch assuming 50 Ω on-die 

matching. 
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Both chip packages were fabricated, assembled, and measured. Using Advanced 

Design System (ADS), this measured data was then used in conjunction with the 

simulated HFSS models to de-embed the S-parameters for the on-die response. The de-

embedded parameters were referenced to 50 Ω lines on die, illustrated in Figure 5.9. 

Using this reference for the package design, the modeled wire bond transition included 

not only 200 µm length ribbon but also ribbon running on top of the chip to pad. Looking 

out from the reference plane on chip, this looks like a length of transmission line, very 

close to 50 Ω, in series with a wire inductance. The effect of this wire bond transition was 

considered in the design for both chip packages. 

LNA Package Design 

Using the de-embedded LNA S-parameters, the package was optimized for 

integration into each Yagi element of the antenna array. The RF input was designed for a 

50 Ω impedance feed from the Yagi array and the RF output was designed for a 70 Ω 

impedance feed to the Butler matrix. This minimized the number of impedance 

transitions needed, reducing the incurred insertion loss and saving real estate. The final 

LNA package design is shown in Figure 5.10. At the input of the package, a 50 Ω 

microstrip line feeds into a compensation stub with dimensions 425 µm x 100 µm. The 

output of the package uses a compensation stub with dimensions 400 µm x 100 µm, 

followed by a 76 Ω quarter-wave impedance transformer feeding into a 70 Ω microstrip 

line. A comparison plot of the LNA S-parameters is shown in Figure 5.11. It is expected 

that the LNA will add 24 dB of active gain to the antenna array. 
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Figure 5.10: Picture of the packaged LNA integrated on the antenna. 

 

Figure 5.11: Comparison plot of the measured and simulated LNA package. 

 

Switch Network Package Design 

Using the de-embedded S-parameters of the SPDT switch, the switch network 

was optimized for integration with the Butler matrix and G3PO RF output. It was 

configured to selectively route four separate RF inputs to a single RF output using three 

SPDT switches. This required three different package interconnects to be optimized: 
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Butler matrix to switch, switch to switch, and switch to G3PO connector. The final SPDT 

switch network package design is shown in Figure 5.12. The common RF line for each 

switch did not require compensation stubs and was well matched when modeled in 

conjunction with the wire bond transition to a 50 Ω microstrip line. The four switched RF 

lines fed from the Butler matrix also did not require compensation stubs. These were well 

matched when wire bonded directly to a 70 Ω microstrip line. The two interconnecting 

microstrip lines from the common to split-port RF lines used a 50 Ω microstrip line 

feeding a 55 Ω quarter-wave impedance transformer. A plot of the measured and 

simulated switch package S-parameters is shown in Figure 5.13. The entire switch 

network is expected to account for less than 4 dB of insertion loss across the frequency 

band of interest. 

 

Figure 5.12: Picture of the packaged switch network integrated on the antenna. 
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Figure 5.13: Comparison plot of the measured and simulated switch package. 

5.2.4 G3PO Transition Design 

A G3PO connector was used to interconnect the 50 Ω microstrip output of the 

antenna to a 1.85 mm coaxial connector. This component is specified to maintain a 

voltage standing wave ratio (VSWR) of 1.25 up to 65 GHz with an insertion loss less 

than 1 dB. Further details of the connector can be found in [101]. 

The G3PO-to-microstrip transition was modeled in HFSS using a tuning stub to 

improve impedance matching. The final layout of this transition is shown in Figure 5.14. 

An open butterfly stub of length 420 µm was placed 1.25 mm from the edge-mount 

interface. This improved the return loss to be greater than 10 dB from 53 GHz to 73 GHz 

with an insertion loss less than 0.9 dB. 
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Figure 5.14: Simulated G3PO connector modeled with impedance tuning stub. 

5.2.5 Antenna Fabrication & Assembly 

The active array was fabricated on 50 µm LCP with 18 µm copper cladding. The 

top metal layer was first etched completely off to allow via drilling. A KrF 248 nm UV 

excimer was used to drill 100 µm diameter vias for interconnecting the top and bottom 

ground planes. The substrate was then metalized with a 200 Å Ti / 5 µm Cu layer using a 

DC sputterer. This allowed for a uniform deposition on the via walls ensuring a 

connection between top and bottom metallization layers. Both sides of the substrate were 

patterned using standard photolithography techniques. Additionally, a thin layer of gold 

was evaporated onto the top layer and selectively plated up to a 5 µm thickness. This 

layer was again patterned using photolithography. Cavities for embedding the chips were 

drilled through the LCP down to the bottom copper layer using the UV excimer. The 

LNA and SPDT cavities were made 1.65 mm x 1.65 mm and 2.1 mm x 1.5 mm, 

respectively. These were sized to accommodate the chips as well as the 100 pF by-pass 

capacitors. A hole was also laser drilled through the substrate for housing the G3PO 

connector. 

The ICs, capacitors, and resistors were mounted on the fabricated sample using 

silver epoxy and were allowed to cure for 30 minutes at 120 °C. The RF and DC chip 
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pads were then wire bonded on to the gold traces on LCP. The wire bonds were made 

using a wedge-wedge wire bonder utilizing 75 µm x 12.5 µm Au ribbon. This type of 

bonder uses ultra-sonic energy to make a weld between contact points, therefore, 

avoiding the use of excessive heat and pressure which could damage the components. 

The last step in the assembly was mounting the G3PO connector. A no-clean R276 solder 

paste was applied to the ground and signal lines, and the connector was dropped in place. 

The entire sample was placed into an oven set at 265 °C for 3 minutes until the solder 

reflowed for a secure connection. A picture of the final active array is shown in Figure 

5.15. Excluding the added DC line lengths and the G3PO connector, the entire active 

array is 1.4 cm x 1.75 cm. 

 

Figure 5.15: Fabricated and assembled 4x1 active receiving switched-beam array. 
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5.3 System Results 

The antenna was biased using 38 AWG insulated wire soldered to the DC pads, 

and in any given beam state, it consumes 1.2 W of DC power and has an estimated iP1dB 

of -17 dBm per element. A G3PO-to-1.85 mm adapter was used for S11 and radiation 

pattern measurements. Additionally, the antenna was analyzed to calculate the added 

noise performance. 

The S11 and radiation pattern measurements for each beam state were measured 

using an Agilent PNA. Figure 5.16 shows that the active array maintains a return loss 

better than 10 dB centered at 60.2 GHz with a bandwidth of 7 GHz (11.6 % BW). The 

far-field radiation patterns were measured in an anechoic chamber. The minimum 

distance required for far-field measurements was calculated using the approximated 

formula from [102], 

     
   

  
, (5.1) 

where D is the largest dimension of the AUT. Two Quinstar V-band standard gain horns 

were used to calculate the 4x1 switched-beam antenna gain using the Gain-Comparison 

method explained in [103]. While one gain horn was used as the transmitting probe 

during measurements, the other was used as a reference for gain calculation of the AUT. 

Using the largest dimension of the horn, D = 4 cm, the minimum distance for the far-field 

setup was calculated to be 64 cm. For measurement, the final setup placed the probe horn 

75 cm from the AUT. The PNA was used to measure the relative received power of the 

AUT as the probe rotated 360 degrees about the fixed radial axis. 
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Figure 5.16: Measured S11 for each beam state of the 4x1 active switched-beam array. 

Plots of the measured E and H planes were compared with results simulated in 

HFSS. Figure 5.17 - Figure 5.18 show the normalized radiation patterns at 60 GHz for 

each beam state. The locations of peaks and nulls correspond very well and the low cross-

polarization levels confirm the linear polarization of the antenna. In the E-plane, the 

scanned beams for P1 & P4 steer ±12° with a half-power beamwidth of 20°, while P2 & 

P3 steer ±40° with a half-power beamwidth of 27°. In the H-plane, P1 & P4 have a half-

power beamwidth of about 110°, and P2 & P3 have a half-power beamwidth of about 

70°. A plot of beam steering angle versus frequency is shown in Figure 5.19. Each port 

exhibits a consistent beam steering angle across the band and is supported by excellent 

correlation with simulation data. 

A plot of the measured gain versus frequency is shown in Figure 5.20. The 

estimated gain used for comparison in this plot is the simulated antenna gain for each 

beam scan adjusted by the predicted additional gain and losses of the LNA, Butler matrix, 

switch network, and G3PO connector. The antenna has a measured peak active gain of 

27.5 dB and maintains better than 20 dB from 52.5 GHz to 62 GHz. 
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 (a) (b) 

  

 (c) (d) 

Figure 5.17: Normalized E-Plane of co-polarization and cross-polarization at 60 GHz for 

each beam scan in dB. 

 

Figure 5.18: Normalized H-Plane at 60 GHz for each beam scan in dB. 
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Figure 5.19: E-plane beam steering versus frequency of the 4x1 active switched-beam 

array. 

 

Figure 5.20: Gain versus frequency of the 4x1 active switched-beam array. 

Using (4.2) and (4.3), the added noise performance for the antenna was calculated 

at the system output. Since the LNA gain is sufficiently large, the feed line loss and 

NFLNA are the dominating factors in these equations. Therefore, the components after the 

LNA are ignored in the analysis. The feed line losses and antenna directivity could not be 

directly measured so these were simulated in HFSS. This showed an estimated LA1 of 0.8 

dB, LR of 0.1 dB, and a directivity of 9.2 dBi. This analysis resulted in an estimated 

system noise figure of 5.4 dB and G/T of -18.6 dB/K at 60 GHz. While the system noise 



 114 

figure is minimized with the LNA placed directly after each antenna element, the G/T 

FOM can be improved by increasing the array size for higher directivity. However, this 

would require a more extensive Butler matrix to feed the array elements, making the 

system design more complex. 

Resulting performances of the measured phased array can be evaluated with those 

works shown in the comparison table presented in [88]. Measuring the front-end block of 

these works, our antenna exhibits the highest front-end gain for 4-element arrays due to 

the low-loss beam forming network (Butler matrix & switch network), which accounts 

for only 6.5 dB of insertion loss. In addition, the use of GaAs LNAs placed directly 

behind the antenna elements has allowed the lowest NF, compared to all works in [88], 

but at the expense of slightly higher DC power consumption. Also, use of a thin LCP 

package layer allowed reduced feature sizes and condensed signal routing to minimize 

the array dimensions. 

5.4 Summary 

A V-band active receiving switched-beam array has been presented for the first 

time on a LCP substrate. Active and passive components were co-designed for seamless 

integration and demonstrate high performance correlating to the simulated results. The 

measured far-field patterns show a peak active gain of 27.5 dB with ±40° beam steering. 

By placing LNAs next to each Yagi element, the antenna noise figure was minimized to 

5.4 dB with a G/T of -18.6 dB/K. This work could be tiled into a larger array for 

increased antenna performance or configured with additional arrays for a higher order 

switched element antenna. 
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CHAPTER 6 

CONCLUSION 

 

This thesis has explored advanced 3-D integration for state-of the art components 

in RF wireless systems using multilayer LCP platforms. In this chapter, a summary of the 

contributions presented in this dissertation are listed along with new directions for further 

research. 

6.1 Contributions 

The following technical contributions have been presented in this thesis: 

1. A Ka-band SiGe VCO was embedded into an LCP package with wire bond 

interconnects. A cavity was drilled into LCP for chip placement, which minimized the 

parasitics incurred through the wire bonds and enabled improved performance. This 

paves the way for low cost mm-wave front ends combining Si devices with low 

temperature organic substrates. 

2. For the first time, an X-band SiGe LNA was laminated with LCP for via interconnect 

packaging. It was demonstrated that LCP can be successfully utilized in a wafer-level 

packaging scheme for hybrid integration of SiGe RF electronics and organic 

packaging layers. 

3. An X-band SiGe T/R module was flip-chip packaged and fully embedded into an all-

LCP platform. An assembly process was developed for the die attachment and 

encapsulation in LCP. This provided a highly repeatable packaging scheme with 

excellent RF performance. 

4. A W-band CMOS PA was packaged onto LCP using the previously developed all-

LCP encapsulated flip-chip process. Additionally, an on-package matching network 
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was incorporated to improve the on-die performance. At present, this is the highest 

performance demonstrated for a W-band CMOS PA on SoP module. 

5. For the first time, a 7.45 GHz BAW filter was packaged on LCP. State-of-the-art 

BAW technologies and 3-D packaging techniques were utilized to create significant 

benefits in terms of cost, size and performance. As BAW devices extend to higher 

frequencies, this work serves as the foundation for a viable low-cost packaging 

solution. This is the first ever reported BAW filter package above 7 GHz. 

6. For the first time, a 12 GHz BAW filter was packaged on LCP. The previously 

developed BAW filter packaging scheme was extended to Ku-band frequencies and 

incorporated with embedded matching networks to enhance performance and size of 

the package. This is the first ever reported BAW filter package above 7.5 GHz and 

shows potential for extension up to mm-wave applications. 

7. For the first time, a fully integrated, lightweight, high gain X-band receiving phased 

array with SiGe LNAs and PSs has been achieved. Advanced MMIC technologies 

and packaging techniques were utilized to integrate LNAs and PSs onto a lightweight 

antenna array with a multilayer LCP BFN substrate. This work utilized an SoP 

concept by integrating SiGe technology for the first time with the benefits of high 

gain microstrip antennas on low-loss organic substrates. 

8. For the first time, a 60 GHz active receiving switched-beam antenna array was 

demonstrated on an organic platform. A switch network of GaAs SPDT switches was 

integrated to toggle between beam states, and GaAs LNAs were integrated per 

antenna element to minimize receive noise figure. The active and passive system 

components were co-designed for seamless integration and a de-embedding technique 

was implemented to ensure accurate correlation between simulated and measured 

performance. This work serves as a building block for future low-cost Gbps antenna 

solutions.  
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6.2 Future Work 

The material discussed in this thesis has spawned an intrigue for future research, 

and the following provides insight into potential new directions on this topic: 

1. Flip-chip packaging with III-V semiconductor ICs: The flip-chip packaging 

technique outlined in this thesis relies on the CPW I/O structure inherent of Si 

devices. These ICs do not require proper grounding on the back side of the chip and 

are thus left floating in a standard flip-chip process. Additionally, these ICs are 

considered low power and do not require a thermal sinking. If the same process was 

applied to packaging III-V semiconductor ICs, the problems initially avoided by 

using Si devices would undoubtedly appear. III-V devices are inherently microstrip 

on-die and require proper grounding from the backside of the chip. These die also 

consume much more DC power than Si devices, which translates into more heat 

generated on chip that must be dissipated through the package. For these reasons, it is 

imperative that sufficient grounding be applied to the backside of III-V devices. This 

is not a straight forward problem and should be investigated thoroughly. 

2. Techniques for thermal dissipation in LCP: Thermal dissipation was not discussed 

in this thesis because the issue does not normally arise with low-power applications. 

However, when high power ICs are required in order to meet certain power 

specifications, thermal dissipation can no longer be ignored. LCP has a very low 

thermal conductivity (0.5 W/m·K), which makes it unattractive for high-power 

applications unless special dissipation techniques are utilized. There are techniques 

already published using a combination of thick copper heat spreaders, thermal vias, 

and micro-fluidic channels [49], [104]. However, these require a hybrid substrate 

stackup of LCP with Si, Silicon Carbide (SiC) or PCB, which adds complexity and 

cost to the fabrication and packaging processes. An all-LCP approach could provide a 

low-cost solution with possibly superior results. The design guidelines for LCP allow 
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higher aspect-ratio vias with a denser interconnect pitch. Using this advantage could 

yield a better effective thermal conductivity through dense thermal vias. 

3. 60 GHz Transmit/Receive phased arrays: While the work presented in this thesis 

shows beam steering, it does not incorporate a transmit functionality. A 60 GHz 

transmit/receive antenna array has been previously demonstrated but without beam 

steering capability [97]. At present, a 60 GHz T/R phased array has yet to be 

demonstrated on LCP. While it may be difficult enough to take the design presented 

in this thesis, move the LNA to the G3PO connector and incorporate an additional 

SPDT switch and PA, the antenna performance would suffer greatly. Preferably, a 60 

GHz T/R module should be integrated per antenna element to minimize the receive 

system noise and maximize effective radiated power. However, this approach 

presents numerous issues with chip integration, limited packaging real estate, 

complex DC line routing, DC power consumption, and thermal dissipation. 

4. LCP fabrication analysis: As new RF substrates are introduced into the market, 

there is an apparent lag between the development of applications and its embrace by 

industry. It often takes extensive evaluation of performance, reliability, and cost-

effectiveness before successful entry into production. There is currently very little 

published on large-scale LCP manufacturability. Evaluating the current fabrication 

limitations of this material would provide an understanding of commercially 

achievable present-day capabilities, as well as insight for future development. Several 

parameters have been identified that most affect performance outcome, including 

substrate thickness after lamination, registration error, and metal etching tolerance. 

Each of these parameters has a considerable effect on transmission line characteristic 

impedances and 3-D interconnect circuitry matching. 

 

  



 119 

CHAPTER 7 

PUBLICATIONS TO DATE 

 

The following is a chronological list of papers that have been submitted to and/or 

accepted by a peer-reviewed conference or journal for publication: 

7.1 Journal Publications 

1. C. E. Patterson, J. Ajoian, J. Papapolymerou, G. S. May, “LCP Characterization of 

broadband RF performance with consideration of fabrication tolerances for CSLP 

substrate suitability,” to be submitted to IEEE Transactions on Components, 

Packaging, and Manufacturing Technology, June 2012. 

2. C. E. Patterson, J. Ajoian, S. K. Bhattacharya, J. Zepess, S. Leiphart, W. G. 

Trueheart, Z. Coffman, J. Papapolymerou, “A 12 GHz BAW filter on a 3D organic 

package,” submitted to IEEE Microwave and Wireless Components Letters, May 

2012. 

3. E. Juntunen, C. E. Patterson, W. Khan, S. K. Bhattacharya, D. Dawn, J. Laskar, J. 

Papapolymerou, “A Q-band low-power 2-channel vector modulator in 45-nm 

CMOS for LINC transmitters,” submitted to IEEE Transactions on Microwave 

Theory and Techniques, May 2012. 

4. C. E. Patterson, W. T. Khan, G. E. Ponchak, G. S. May, J. Papapolymerou, “An 

organic, 60 GHz active receiving switched-beam antenna array with integrated 

butler matrix and GaAs amplifiers,” Accepted to IEEE Transactions on Microwave 

Theory and Techniques, May 2012.  

5. C. A. D. Morcillo, C. E. Patterson, B. Lacroix, C. Coen, J. D. Cressler, J. 

Papapolymerou, “An ultra-thin, high-power and multilayer organic antenna array 

with T/R functionality in the X band,” submitted to IEEE Transactions on 

Microwave Theory and Techniques, March 2012. 

6. C. H. J. Poh, C. E. Patterson, S. K. Bhattacharya, S. D. Philips, N. E. Lourenco, J. 

D. Cressler, J. Papapolymerou, “Packaging effects of multiple X-band SiGe LNAs 

embedded in an organic LCP substrate,” in IEEE Transactions on Components, 

Packaging and Manufacturing Technology, early access, 2012. 



 120 

7. C. E. Patterson, T. K. Thrivikraman, A. M. Yepes, S. M. Begley, S. K. 

Bhattacharya, J. D. Cressler, J. Papapolymerou, “A lightweight organic X-band 

phased array with integrated SiGe amplifiers and phase shifters,” in IEEE 

Transactions on Antennas and Propagation, vol. 59, issue 1, pp. 100-109, 2011. 

[2012 H. A. Wheeler Prize Paper Award] 

7.2 Conference Publications 

1. C. E. Patterson, D. Dawn, J. Papapolymerou, “A W-band CMOS PA encapsulated 

in an organic flip-chip package,” accepted to IEEE International Microwave 

Symposium, 2012. 

2. C. A. D. Morcillo, C. E. Patterson, J. Papapolymerou, “Design of stripline beam-

former network components for low-profile, organic phased arrays in the X band,” 

in  IEEE Radio & Wireless Symposium, pp. 179-182, 2012. [1
st
 Place Student 

Paper Competition] 

3. C. E. Patterson, T. K. Thrivikraman, S. K. Bhattacharya, C. T. Coen, J. D. 

Cressler, J. Papapolymerou, “Development of a multilayer organic packaging 

technique for a fully embedded T/R module,” in European Microwave Conference, 

pp. 261-264, 2011. [Student Paper Competition Finalist] 

4. C. E. Patterson, S. K. Bhattacharya, J. Zepess, S. Leiphart, W. G. Trueheart, J. 

Ajoian, Z. Coffman, J. Papapolymerou, “A 7.45 GHz BAW filter on a low cost 3D 

organic package,” in IEEE International Microwave Symposium, 2011. [Student 

Paper Competition Finalist] 

5. C. A. D. Morcillo, C. E. Patterson, B. Lacroix, T. Thrivikraman, C. H. Poh, C. T. 

Coen, J. D. Cressler, J. Papapolymerou, “A lightweight, 64-element, organic phased 

array with integrated transmit-receive SiGe circuitry in the X band,” in IEEE 

International Microwave Symposium, 2011. 

6. W. T. Khan, S. K. Bhattacharya, C. E. Patterson, G. E. Ponchak, J. 

Papapolymerou, “Low cost 60 GHz RF front end receiver on organic substrate,” in 

IEEE International Microwave Symposium, 2011. 

7. E. A. Juntunen, W. T. Khan, C. E. Patterson, S. K. Bhattacharya, D. Dawn, J. 

Laskar, J. Papapolymerou, “An LCP packaged high-power, high-efficiency CMOS 

millimeter-wave oscillator,” in IEEE International Microwave Symposium, 2011. 

8. C. E. Patterson, T. K. Thrivikraman, A. M. Yepes, S. K. Bhattacharya, J. D. 

Cressler, J. Papapolymerou, “Implementation of a low cost, lightweight X-band 

antenna with integrated SiGe RF electronics,” in IEEE International Geoscience 

and Remote Sensing Symposium, pp. 681-684, 2010. 



 121 

9. C. E. Patterson, A. M. Yepes, T. K. Thrivikraman, S. K. Bhattacharya, J. D. 

Cressler, J. Papapolymerou, “A lightweight X-band organic antenna array with 

integrated SiGe amplifier,” in IEEE Radio & Wireless Symposium, pp. 84-87, 2010. 

10. C. H. J. Poh, T. K. Thrivikraman, S. K. Bhattacharya, C. E. Patterson, J.D. 

Cressler, J. Papapolymerou, “An LCP package model for use in chip/package co-

design of an X-band SiGe low noise amplifier,” in IEEE EPEPS, pp. 203-206, 

2009. 

11. C. E. Patterson, T. K. Thrivikraman, S. K. Bhattacharya, C. Poh, J. D. Cressler, J. 

Papapapolymerou, “Organic wafer-scale packaging for X-band SiGe low noise 

amplifier,” in European Microwave Conference, pp. 141-144, 2009. 

12. C. Patterson, S. Horst, S. Bhattacharya, J. D. Cressler, J. Papapolymerou, “Low 

cost organic packaging for silicon based mm-wave wireless systems,” in European 

Microwave Conference, pp. 1242-1245, 2008. 

 

 

  

 

 

  



 122 

APPENDIX A 

CONSIDERATION OF FABRICATION TOLERANCES FOR LCP 

PLATFORMS 

 

There are several challenges in implementing LCP for chip scale level packaging 

(CSLP), especially when broadband RF performance is required. As RF ICs incorporate 

an increasing level of system functionality and interconnection pitch approaches 150 µm, 

a substrate technology is required to satisfy 50 Ω RF transmission lines at said pitch 

while maintaining required trace-to-trace isolation. Furthermore, layer-to-layer RF 

transitions are also an integral piece of design versatility and pose significant challenges 

when required over 3:1 broadband mm-wave performance. 

Several parameters have been identified that most affect performance outcome, 

including substrate thickness after lamination, registration error, and metal etching 

tolerance. Each of these parameters has a considerable effect on transmission line 

characteristic impedances and 3-D interconnect circuitry matching. To understand the 

producibility of LCP as a CSLP substrate, these parameters should be thoroughly 

considered in the preliminary stages of a design. 

A preliminary analysis has been performed focusing on selected transmission line 

structure performance and varying fabrication tolerances. Additionally, via transitions 

were considered. There are several parameters that should be investigated and traded to 

balance between fabrication limitations and RF performance while achieving package 

requirements. A benchmark VSWR ≤ 1.2 (Return Loss > 20 dB) was used to drive the 

fabrication tolerances for acceptable RF performance. 
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A.1. Transmission Line Structures 

To determine the optimum material thicknesses, an analysis was performed using 

theoretical calculations for characteristic impedance of different transmission lines. 

Microstrip, CPW-G and stripline structures were analyzed for varying LCP core material 

thicknesses of 25 µm, 50 µm, and 100 µm. 

 

Figure A.1: Cross-section of transmission line structures on CSLP stack-up using LCP.  

Design parameters are calculated for each transmission line structure using 

approximations from [102], [105]-[106]. Assuming a 50 Ω system impedance using LCP, 

the line widths and gaps for each transmission line structure are calculated for varying 

core material thicknesses. A comparison of the required line widths is shown in Figure 

A.2. To observe the sensitivity of the characteristic impedance for each structure, 

parameters were varied consistent with fabrication tolerances specified in Section 1.3. 

Figure A.3(a) - Figure A.5(a) illustrate the effects of the material thickness tolerances 

specified by Rogers Corporation. The characteristic impedance is calculated by varying 

the LCP core thickness ±12.5 % and maintaining nominal line widths and gaps. This 

appears to have a relatively minor effect on impedance for all transmission line 

structures. The characteristic impedance does not vary by more than ±10 %. Figure 

A.3(b) - Figure A.5(b) show the effect of metal etch tolerances, controlled by the 

fabrication process, for worst case variation of dielectric thicknesses. The characteristic 

impedance is calculated by varying the etch tolerance ±8 µm and maintaining worst-case 
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core material thicknesses. The degree of sensitivity for characteristic impedance varies 

for each type of transmission line structure. Etch tolerance has a relatively small effect on 

microstrip lines for all three core thicknesses, showing a variance in the impedance of ±5 

%. The CPW-G structure also shows low sensitivity for the thicker core material. 

However, this increases with decreasing material thickness. The stripline structure shows 

the highest sensitivity for thin core layers. However, with material of 50 µm or thicker, 

there is less than ±10 % variation in characteristic impedance. Although microstrip has 

less sensitivity to process tolerances, it does not support the isolation requirements 

necessary in this application. 

 

Figure A.2: Calculated 50 Ω line width for each transmission line structure. 
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 (a) (b) 

Figure A.3: Microstrip transmission line characteristic impedance for a) substrate 

thickness variations, b) and worst-case etch tolerance variations. 

 

 (a) (b) 

Figure A.4: CPW-G transmission line characteristic impedance with fixed line gap, s = 

50 µm, for a) substrate thickness variations, b) and worst-case etch tolerance variations. 
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 (a) (b) 

Figure A.5: Stripline characteristic impedance for a) substrate thickness variations, b) and 

worst-case etch tolerance variations. 

A.2. Via Interconnect Structures 

A via transition is comprised of a top and bottom via catch pad, one or more 

ground plane anti-pads, and the via interconnect. For fabrication purposes, the minimum 

via diameter is determined according to an aspect ratio specified to enable proper 

metallization of the via. This minimum diameter then determines the minimum catch pad 

and anti-pad dimensions allowed. By over-sizing the catch pad and anti-pad, a higher 

yield of layer-to-layer interconnect can be achieved. This, however, can cause a large 

impedance mismatch and degrade RF performance. 

Via interconnects are conventionally modeled through a distributed resistor-

inductor-capacitor (RLC) network. For multilayer stack-ups, these become complex and 

application specific. Figure A.6 illustrates the various RLC components for a M1-M3 via 

transition in a four metal layer stack-up. While via inductance, LV, and resistance, RV, 

become essentially fixed, the capacitive components can be tuned to maintain 50 Ω 

impedance matching. However, for short via interconnects used in thin laminates, the 

parasitics incurred by the via can be potentially dominated by the large capacitance, Cb, 

seen from an oversized via catch pad on M3. This effect can be mitigated by reducing the 
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catch pad diameter, thus reducing the parasitic capacitance. In doing so, the via diameter 

must also be reduced to accommodate the registration tolerance, which may not be 

possible due to the limitations in the fabrication process. Thus it becomes imperative, for 

thin laminate interconnects, that the maximum via aspect ratio be extended further to 

maintain high RF performance. Evidence of how this capacitance affects impedance 

matching and a technique to reduce it when fabrication capabilities are pushed to the 

limits is demonstrated in [107]-[108]. However, the simplest solution, in terms of RF 

design, is to push the fabrication limitations of via diameter to smaller size. 

 

Figure A.6: Cross-section of M1-M3 via transition and model parasitics. 
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APPENDIX B 

ITERATIVE N-PORT MATCHING NETWORK DESIGN 

 

 This appendix explains the steps to successfully design a matching network (MN) 

for an N-port design by using HFSS and ADS simulations tools in a coherent manner. 

HFSS is utilized for 2-D and 3-D model simulations while ADS is used for block 

simulations. The example illustrated here is a design method used for developing chip 

packages and is an extensive approach to ensure accuracy of the MNs. All or part of the 

steps outlined in this section may be applicable to a given application. Chapters 2 to 5 all 

use a customized variation of this design technique. 

Disclaimer: Throughout my experience, I have found HFSS to be the most 

accurate for RF modeling of 2-D and 3-D structures. This is only my opinion and should 

only be considered as such. I have also found ADS Momentum to be very useful for 

simulations that may be too large to model in 3-D, e.g. large antenna arrays. However, 

this is dependent upon available computer resources. 

B.1. Development of Preliminary Designs 

1. Determine the best packaging technique for the device, e.g. wire bond, flip-

chip bond, via interconnect, etc (Refer to Chapter 1). It may take several design iterations 

over the course of development to find the optimal solution. 

2. Draw a basic model of the package in ADS Schematic using ideal 

transmission lines and components. Incorporate the measured/acquired S-parameters of 

the bare device and the ideal model of the package interconnects. This is a crude way of 

getting an idea for the best-case packaged performance of the device. By looking at the 

smith chart, the type of matching network necessary for a 50 Ω match can be determined. 
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3. Incorporate ideal MN components into the ADS Schematic model (Figure 

B.1). The models of these components do not need to be very accurate. This is only a 

preliminary simulation to gauge the best configuration of the matching network. Try 

various configurations to optimize performance and real estate. Hint: The more 

condensed the matching network is, the less lossy it will be (Longer transmission lines 

correlate to more loss). 

 

Figure B.1: ADS schematic of ideal MN components with device S-parameter block. 

4. Duplicate the model to include realistic (lossy) package and MN components 

(Figure B.2). Now that the components have incorporated parasitics, the MN 

components may need to be adjusted to maintain a 50 Ω match. Comparing the 

performance of the ideal and lossy models will provide insight to how much loss is 

attributed to the package and how much loss is inherent in the device. Obviously, the 

packaged performance cannot be better than the ideal performance. 
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Figure B.2: ADS schematic of lossy package with butterfly stub MN components. 

5. Model the package interconnects in HFSS using 50 Ω references on the 

device and package (Figure B.3). This model should be drawn as accurately as possible. 

It is important to model the package substrate height with respect to the mounted chip 

height. The accuracy of this step will directly affect the accuracy of the MN. (Note: I 

have always found it necessary to simulate with metal thickness. Using 2-D traces will 

not accurately simulate transmission lines.) 

 

Figure B.3: HFSS model of the packaged device without MN components. 

6. De-embed the HFSS model to the device measurement reference plane and 

the package interconnect reference plane (Figure B.3). HFSS has a de-embed feature 

for Wave Ports that allows the simulated S-parameters to be de-embedded a specified line 
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length referenced from that port. The modeled S-parameters can be referenced along any 

unchanging transmission structure. The plotted S-parameters are now representative of 

only the package interconnect. Keep in mind that this feature will not de-embed anything 

but line length. It will not magically de-embed wire bonds, 3 dB splitters or any other 

structure! 

7. Extract the HFSS model S-parameters and replace the equivalent package 

models in the ADS schematic (Figure B.4). Re-simulate the ADS schematic model with 

the S-parameter block acquire through the HFSS model. Be sure to position the S-

parameter block so the ports correlate to the chip and package references. Re-adjust the 

MN components to maintain a 50 Ω match. At this point, it is also advisable to look over 

the MN configuration to see if it can be further optimized. 

 

Figure B.4: ADS schematic of lossy package with HFSS extracted S-parameters for 

package interconnects. 

8. Duplicate the HFSS package model to include the MN (Figure B.5). Add the 

MN components to the HFSS package model using the configuration determined from 

the ADS Schematic model. It is extremely important to incorporate variables into this 

drawing (I use variables for nearly every aspect of every component in my models to 

maintain versatility throughout the design stage.). This will allow for quick adjustments 

to line/stub lengths, widths, heights, positions, etc. The simulated S-parameters of this 
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model should also be de-embedded to the device measurement reference plane and the 

MN reference plane. 

 

Figure B.5: HFSS model of the packaged device with MN components. 

9. Perform an S-parameter block simulation in ADS schematic with the chip 

and HFSS-modeled MN (Figure B.6). Simulate the three developed ADS models (Ideal, 

Lossy, S-parameter Block models) together in one schematic window. A comparison of 

the newly developed HFSS block simulation with the already optimized performance of 

the ADS designed MNs will undoubtedly show the HFSS model needs to be adjusted. 

For simple MN structures, observing the input and output impedances on the Smith chart 

will provide direction on how to adjust the MNs in HFSS. Repeat this step for each 

adjustment of the MN until the S-parameters match closely with the ADS lossy model. 

For more complicated MN designs and further optimization of performance, it may not 

be as intuitive to look at impedances on the Smith chart for guidance. A less eloquent but 

effective method is discussed in Step 10. 
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Figure B.6: ADS Schematic block simulation of extracted S-parameters from HFSS 

modeled MNs. 

10. Perform a parametric sweep to adjust the lossy model to overlap with the S-

parameters of the block simulation. This is a quick, backtracking method of 

determining which MN component should be adjusted in the HFSS model to attain a 

better impedance match. By adjusting the ADS lossy MN components to correlate with 

the poorly matched S-parameters observed in the block simulation, it is possible to figure 

out which component line lengths should be adjusted back in the HFSS model. This step 

is then repeated until the block simulation S-parameters match closely with the expected 

performance. 

B.2. Design Verification & Feedback 

11. Fabricate, assemble and measure packaged device. The simulated performance 

of the package is only accurate if the user is accurate in the modeling. The best way to 

verify accurate modeling is through fabrication and measurement of the package. 

12. Compare simulated and measured performance. If the measured data matches 

well with the simulated response then the model can be confidently incorporated into the 

rest of the project. If this is not the case, a series of steps can be followed to deduce 

possible sources of error. The following list is a guide to help find these errors: 

− Re-calibrate the measurement setup and re-measure the packaged device. 

− Check HFSS simulations for proper setup. Ask someone to look over your 

models. 
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− Check the de-embedding performed in the HFSS models. Ensure the reference 

planes have been properly set. 

− Inspect the assembled package to ensure the HFSS model accurately represents 

all of its aspects. Check metal thickness, line widths/lengths, wire bond loop, 

flip-chip bump height, etc. 

− Verify the device S-parameters used in the simulations are valid. 

13. Update the HFSS model to match all physical aspects of the package. There 

are certain aspects of the packaged device that may not have been accounted for in the 

models. It is important to use this feedback for further development of the package and 

optimization of the MNs. 
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