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SUMMARY 

 

The main contributions of this thesis to the field of ultrashort pulse measurement 

are a new set of experimental tools to measure the spatio-temporal fields of femtosecond 

pulses, and a new simplified formalism to describe such fields in the presence of 

distortions. 

More specifically, we developed an experimental technique based on scanning-

wavelength digital holography and frequency-resolved optical gating that allows the 

complete measurement of the electric field E(x,y,t) of trains of identical femtosecond 

pulses. A related method, wavelength-multiplexed digital holography, is also introduced. 

It achieves a single-shot measurement of the three-dimensional field E(x,y,t) – but at a 

reduced resolution – using a simple experimental apparatus. Both methods can be used to 

measure various spatio-temporal distortions that often plague femtosecond laser systems, 

in particular amplified ones. 

Finally, to unambiguously and intuitively quantify such distortions, we introduce 

normalized correlation coefficients so that a common language can be used to describe 

the severity of these effects. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Femtosecond laser pulses and their measurement 

Laser pulses with durations in the femtosecond regime (1 fs = 10-15 s) are now 

routinely generated by extremely stable research and commercial systems in laboratories 

around the world. To date the most widespread femtosecond lasers are based on a 

titanium-doped sapphire (Ti:Al2O3) gain medium [1] and readily generate pulse energies 

of a few nanojoules with durations of a few tens of femtoseconds. Lasers with pulse 

durations that rival with one optical cycle (2.7 fs at 800 nm) are even commercially 

available [2]. Although their average power is usually moderate, these lasers – often 

called Ti:sapphire “oscillators” – readily reach peak powers of hundreds of kilowatts and 

intensities on the order of 1013 W/cm2 when they are focused, resulting in many materials 

in a nonlinear response to the incident optical field. Such nonlinear optical effects result 

in a wide range of easily observed phenomena, from harmonics generation [3] to optical 

mixing [4] to multi-photon fluorescence [5]. An even wider range of nonlinear optical 

processes can be observed if an amplified laser chain follows a Ti:sapphire oscillator to 

yield energies of a few millijoules and above, and intensities in excess of 1021 W/cm2 [6]. 

The development of such lasers with ever shorter pulse durations, higher pulse 

energy, and improved beam quality has naturally sustained the need for improved pulse 

measurement techniques over the last few decades. Of all these measurement, the 
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characterization of the pulse temporal shape is certainly the most delicate, because of the 

time scales involved, which are several orders of magnitude below the response time of 

optoelectronic components such as photo-diodes. Consequently, most techniques rely on 

the fast nonlinear optical response of specific materials, in particular optical crystals, to 

achieve the required femtosecond time resolution. For instance, a common way to 

estimate the pulse duration of femtosecond pulses is to record the intensity auto-

correlation at the second harmonic in a doubling crystal, using a delay line to scan (in 

space) the relative delay between a pulse and its replica, while an slow detector records 

the time-integrated second-harmonic signal [7]. Unfortunately, such an approach only 

yields partial information about the pulse under test, but more elaborate techniques are 

available to fully characterize (i.e., in intensity and phase) the temporal electric field, 

E(t). 

These techniques, in particular frequency-resolved optical gating (FROG) [8], can 

additionally provide some spatial information about the electric field [9]. However, they 

fall short of providing a complete characterization of the electric field representing an 

ultrashort laser pulse, E(x,y,t). 

In this study, we present experimental and mathematical techniques that enable 

the complete characterization of the electric field, E(x,y,t), and its departures from an 

ideal profile. This information proves to be invaluable to optimize the performance of 

amplified systems, often plagued by spatio-temporal distortions of the field, and could 

also open the way to the development of new diagnostic tools providing time-resolved 

information of samples with a complex spatial structure. 
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1.1.1 Femtosecond pulse generation 

Modern femtosecond lasers often generate trains of femtosecond pulses by 

passive “mode-locking”: a passive element is introduced in the laser cavity to favor the 

operation of the laser in a pulsed mode rather than in a continuous-wave (c.w.) operation. 

Common elements include a saturable absorber (usually a dye [10] or a semi-conductor 

[11]) or an aperture used in conjunction with the optical Kerr effect [12, 13]. Such 

elements are placed within a dispersion-compensated laser cavity that can support a large 

lasing bandwidth. 

In this study we have mostly used femtosecond oscillators (KMLabs Inc.) based 

on Ti:sapphire (Ti:Al2O3) as the gain medium. Ti:sapphire benefits from a very good 

thermal conductivity, a large emission bandwidth covering 650 to 1100 nm [1], and an 

absorption spectral region that conveniently contains 532 nm, a wavelength easily and 

efficiently accessed by optical pumping with a frequency-doubled neodymium vanadate 

(Nd:YVO4) solid-state laser (Coherent Verdi). Passive mode-locking is achieved by Kerr 

lensing with a “soft” aperture. In the mode-locked operation, pulses self-focus in the 

Ti:sapphire crystal and their mode is matched to the pump laser mode, while in the c.w. 

operation the laser beam does not self-focus, resulting in a mode mismatch with the pump 

beam (and therefore in a reduced gain). Mode-locking is not self starting but is obtained 

by a mechanical perturbation of the cavity. Intra-cavity dispersion compensation is 

achieved by a pair of prisms arranged to form a Treacy pulse compressor [14], although 

more recently dielectric mirrors featuring negative dispersion have gained in popularity 

[15]. The linear cavity is folded to compensate for astigmatism [16]. With an optical 
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pump power of 5 W, we routinely obtain pulses at the nJ level with ~35 nm of bandwidth 

(FWHM) and a repetition rate set by the cavity length at 89 MHz. 

Experiments requiring higher pulse energies were performed using a chirped-

pulse amplification (CPA) [17] system (Quantronix RGA 4800). The peak power of the 

pulses from the Ti:sapphire oscillator is first decreased by a grating stretcher before these 

seed pulses are injected at 1 kHz and safely amplified to ~300 µJ in a regenerative 

Ti:sapphire laser. The amplified pulses are finally recompressed to ~150 fs by a grating 

compressor. 

1.1.2 Applications of femtosecond laser pulses 

Femtosecond laser pulses have a wide range of applications because they easily 

allow access to very high intensities, and therefore to nonlinear light–matter interactions. 

Uses of these lasers abound, ranging from micro-machining [18] to bio-medical imaging 

[5] to spectroscopy [19] and coherent control [20]. In many of these applications, the 

shortest possible pulse must be delivered to the smallest possible area, in order to deliver 

the highest intensity onto a sample. In other words, the focused pulse should ideally reach 

both its transform limit and its diffraction limit on the focal plane. This requires an 

optimal spatio-temporal profile free of spatio-temporal distortions. It is only by 

experimentally measuring the complete spatio-temporal profile of pulses that their spatio-

temporal quality can be quantified and monitored as adjustments are made to the laser 

system. 
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1.1.3 Standard measurement techniques and their limits 

To achieve temporal resolution on the femtosecond regime, most measurement 

techniques rely on fast nonlinearities to generate optical signals that are then measured by 

slow (time-averaging) detectors such as photo-diodes or digital sensors (e.g., charge-

coupled devices or complementary metal–oxide–semiconductor imagers). A simple but 

commonly used technique is the intensity autocorrelation [21]. A pulse with amplitude 

E(t) and intensity I(t) and a replica delayed by a time τ are mixed in a doubling crystal to 

produce an optical field that is proportional to E(t)E(t − τ). This field has a frequency that 

corresponds to the second harmonic of the pulse under test, and an intensity that is 

proportional to I(t)I(t − τ). The signal recorded by a slow detector such as a photo-diode 

is then 

 ( ) ( ) ( )A I t I t dtτ τ
+∞

−∞

= −∫  (1.1) 

and corresponds to the intensity autocorrelation of the pulse under test as a function of 

delay τ. By varying τ using a delay line, one can record the function A(τ) whose width can 

be related to the width of the intensity I(t), assuming that the shape (Gaussian, sech2, 

etc…) of I(t) is known (see Appendix A for more details). 

Most of the time, however, the temporal shape of the pulse is precisely the 

information that is sought. In that case, one can measure the spectrum of the second 

harmonic generated at each delay τ to reconstruct a two-dimensional signature (in the 

time-frequency domain) of the pulse under test. This “signature” of the pulse in the time-

frequency domain contains enough information to essentially retrieve the electric field of 
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the pulse under test. This technique is called second-harmonic frequency-resolved optical 

gating (FROG) and can be adapted to various pulse measurement situations by choosing 

a suitable beam geometry and nonlinear medium [22]. It is presented in more details in 

Appendix A. 

However, the FROG technique and other femtosecond pulse measurement 

techniques are often restricted to a temporal measurement of the pulse, and only provide 

limited – if any – information regarding the spatial dependence of the pulse. As a result, 

researchers frequently measure the spatial profile of the laser beam independently from 

its temporal profile. The spatial intensity can be imaged onto a digital camera, while the 

spatial wave-front can be measured by a Shack-Hartmann sensor [23, 24] or by shearing 

interferometry [25, 26]. These spatial measurements, however, are usually averaged over 

the bandwidth (or, equivalently, the duration) of the pulse under test. As such, they do not 

constitute a complete measurement of the electric field of the pulse under test, in 

particular when spatio-temporal distortions are present [27]. Now that femtosecond lasers 

are reaching their fundamental limit in terms of pulse duration (one optical cycle), there 

is an increasing interest in the study of such distortions, and in their measurement. 

1.2 Thesis outline 

This thesis describes experimental techniques that have been developed to 

measure the spatio-temporal profile of femtosecond laser pulses. Two seemingly opposite 

goals are stressed: the measurement of “clean” pulses delivered by a well-aligned laser 

system and the measurement of complicated pulses resulting from a voluntary shaping of 

the pulse or from an interaction with a medium for diagnostic purposes. Both aims 

6 



require a common device, one that allows for the measurement of the spatio-temporal 

electric field of the pulses under test. 

Chapter 2 reviews methods based on spectral interferometry that allow one- and 

two-dimensional measurements of the electric field, E(t) or E(x,t). Spectral interferometry 

is well-suited to the measurement of optical distortions introduced by elements 

possessing a cylindrical symmetry, such as high-numerical-aperture microscope 

objectives, and allows the measurement of temporal pulse shapes with a high spectral 

resolution. The principles of spectral interferometry are reviewed, and its experimental 

implementation is presented in several situations. 

Chapter 3 extends the interferometric method of Chapter 2 to systems lacking 

cylindrical symmetry (such as amplified laser systems containing grating stretchers and 

compressors) and presents a new method that combines digital holography and FROG. 

Using a wavelength scan, it allows the measurement of the complete spatio-temporal 

electric field, E(x,y,t), of trains of identical pulses. 

Chapter 4 further extends this wavelength-scan method to the measurement of 

single laser shots by using a geometry containing a diffractive optical element (DOE) to 

perform a complete three-dimensional measurement of E(x,y,t) using a single two-

dimensional camera frame. 

Chapter 5 introduces a new formalism to describe spatio-temporal distortions in 

femtosecond laser pulses that is both consistent with previous approaches and emphasizes 

the severity of these distortions. This formalism is based on normalized correlation 

coefficients. Such parameters are well-suited to the study of slightly-misaligned optical 

systems, and provide an intuitive feedback to the user in the laboratory. 
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Finally, Appendix A provides a short overview of FROG, the technique that is 

used in many of the experiments presented in this study to measure the temporal profile 

of an undistorted reference pulse. 
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CHAPTER 2 

INTERFEROMETRIC MEASUREMENTS OF FEMTOSECOND 

PULSES 

Portions of the work presented in this chapter originally appeared in the 
following papers: [28] W. Amir, T.A. Planchon, C.G. Durfee, J.A. Squier, P. 
Gabolde, R. Trebino and M. Müller, Simultaneous visualization of spatial and 
chromatic aberrations by 2D Fourier Transform Spectral Interferometry, Optics 
Letters 31 (19) 2927-2929 (2006); and [29] P. Bowlan, P. Gabolde, A. Shreenath, K. 
McGresham, S. Akturk and R. Trebino, Crossed-beam spectral interferometry: a 
simple, high-spectral-resolution method for completely characterizing complex 
ultrashort pulses in real time, Optics Express 14 (24) 11892-11900 (2006). 

2.1 Intensity-and-phase interferometric measurements 

Interferometric techniques are often used in ultrafast optics because they allow the 

determination of phase quantities from an intensity measurement. These phase functions 

can depend on numerous physical variables, such as angular frequency ω, time t, position 

x and spatial frequency kx. 

Mathematically, an interference pattern I of two fields E1 and E2 written as a 

function of a generic variable v is of the form 

  
( )

2
1 2

2 2
1 2 1 2 1 2

( ) ( ) ( )

( ) ( ) 2 ( ) ( ) cos ( ) ( )

I v E v E v

E v E v E v E v v vϕ ϕ

= +

= + + −
 (2.1) 

The last term of Equation (2.1) depends of the phase difference of the two 

interfering fields. Various schemes, such as phase stepping [30, 31] or fringe 

demodulation [32], may be used to numerically extract that phase difference φ1(v) − φ2(v) 

from a measured interferogram I(v), allowing the determination of φ1 if φ2 is known. The 
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choice of E2 (and thereby of φ2) is therefore capital. In some cases, it must correspond to 

a pre-characterized reference pulse. In other cases, it is possible to construct E2 from E1 

to obtain a self-referenced method such as shearing interferometry [25] (see Section 3.3). 

In either case, |E1(v)|2 can also be numerically extracted from I(v) so that a complete 

intensity-and-phase characterization of E1 is possible. 

2.2 One-dimensional interferometric measurement of E(t) 

Spectral interferometry consists of recording an interferogram of two pulses in the 

spectral domain, i.e., v = ω in Equation (2.1). Typically, an unknown signal pulse, 

E1(ω) = Es(ω), interferes in a spectrometer with a reference pulse delayed by an amount τ, 

E2(ω) = Er(ω)exp(−iτω). The delay τ generates spectral fringes whose shape encodes the 

spectral phase difference of the two pulses. An algorithm based on Fourier transforms is 

then used to extract the phase of the signal pulse, φs(ω), from the spectral interferogram 

[33]. The spectral interferogram I(ω) is simply given by: 

  
( )

2

2 2

( ) ( ) ( )

( ) ( ) 2 ( ) ( ) cos ( ) ( )
s r

s r s r r s

I E E

E E E E

ω ω ω

ω ω ω ω ϕ ω ϕ ω

= +

= + + − +τω
 (2.2) 

Application of the algorithm yields the intensity, |Es(ω)|2, and phase, φs(ω), of the 

unknown signal pulse if similar quantities are known for the reference pulse. (A 
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description of the algorithm is provided in Section 3.1.3.) This permits a one-dimensional 

characterization of the field of the unknown pulse, E(ω), or of its Fourier transform, E(t).†

A modified version of spectral interferometry uses sum-frequency generation with 

a chirped pulse to produce the second field, E2(ω), from the unknown pulse 

E1(ω) = E(ω). The resulting field is a frequency-sheared time-delayed replica of E(ω): 

E2(ω) = E(ω − δω)exp(−iτω) [34]. In this case, the phase difference that is reconstructed 

by the algorithm is approximately equal to δω φ′(ω), where φ(ω) is the spectral phase of 

the unknown pulse. The spectral phase is then readily calculated by direct integration. 

The spectral intensity, |E(ω)|2, is measured separately to complete the self-referenced 

one-dimensional interferometric characterization of E(ω), and thus of E(t). 

2.3 Two-dimensional interferometric measurement of E(x,t) 

The interferogram of Equation (2.2) can additionally be spatially resolved and 

recorded using a two-dimensional digital camera to yield the interferogram I(x,ω): 

  

( )

2

2 2

( , ) ( , ) ( , )

( , ) ( , )

2 ( , ) ( , ) cos ( , ) ( , )

s r

s r

s r r s

I x E x E x

E x E x

E x E x x x

ω ω ω

ω ω

ω ω ϕ ω ϕ ω τ

= +

= +

+ − ω+

                                                

 (2.3) 

Experimentally this is achieved by imaging the x-coordinate of the laser beam 

onto the slit of an imaging spectrometer. Note that although interference fringes are 

 

 
 
† To simplify notations and avoid symbols such as etc…, functions that are Fourier transform pairs 
are simply distinguished by their argument, e.g., E(ω) and E(t); E(x) and E(k

ˆ, ,E E
x); I(x,ω) and I(x,t). 
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created along the frequency axis ω, the shape of these fringes also depends on the spatial 

dependence of the phase. Therefore, the standard Fourier transform algorithm yields not 

only the spectral dependence of the phase of the signal pulse, but also its spatial 

dependence, along with possible spatio-spectral couplings, because the phase function 

φs(x,ω) is completely characterized. This is especially useful to determine pulse 

distortions that are introduced by optical components that would be unaccounted for if 

independent spatial and spectral measurements had been performed. 

2.3.1 Motivations for measuring E(x,t) 

Many applications involving femtosecond pulses, such as multi-photon 

microscopy or micro-machining, require a precise control over the electric field of the 

pulses. Improved resolution is attained when the pulses are focused to the smallest 

“volume” ~λ3, the product of a diffraction-limited area (~λ2) by the spatial extent of one 

optical cycle (~λ). Achieving this limit requires the use of multi-element focusing optics 

that unfortunately often introduce distortions. The first drawback of these optical 

elements is that they lengthen pulses due to material dispersion. When this dispersion is 

uniform across the whole beam, it can be compensated by a Treacy pulse compressor 

[35], but for imaging systems used in microscopy, dispersion effects can also introduce 

radially-dependent pulse shapes that are more difficult to compensate for. Additional 

geometrical aberrations also affect the pulse profile. Such effects are much more difficult 

to correct, or even to characterize, and in practice such optical systems are simply aligned 

for maximum efficiency of a particular signal (for example, two-photon fluorescence). 

The design of higher-performance systems, however, would greatly benefit from a more 
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thorough investigation of the distortions introduced by its optical components. Because of 

the cylindrical symmetry of these systems, only the measurement of the electric field 

E(r,t) (or E(r,ω)) is required. 

2.3.2 Geometrical and chromatic aberrations of the pulse-front 

Distortions to the pulse-front due to focusing optics can generally be traced to two 

sources: geometrical aberrations, and dispersive effects. Geometrical aberrations, such as 

defocus, astigmatism, coma, or spherical aberrations, lead primarily to distortions of the 

wave-front. Dispersive effects on the other hand usually result in a position-dependent 

delay between the wave-front and the pulse-front. Thus in general, geometrical and 

dispersive (or “chromatic”) aberrations both result in distortions to the pulse-front, albeit 

for different reasons. 

We first unambiguously define the pulse-front: it is simply the energy front of the 

pulse. Roughly speaking, it is the time of arrival of the pulse at a given position x, t0(x). 

More formally, it is the position-dependent first-order temporal moment of the pulse 

intensity, |E(x,t)|2: 

  

2

0
2

( , )
( )

( , )

t E x t dt
t x

E x t dt

+∞

−∞
+∞

−∞

=
∫

∫
  (2.4) 

Ideally, the pulse-front of a collimated beam should be constant (in space), and 

the pulse-front of a focused pulse should be spherical. More generally, the laser beam 

should have an ideal wave-front to allow for a diffraction-limited profile for a particular 
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application, and the pulse-front should match that function (up to an additive constant 

independent of x). 

A common geometrical aberration that prevents this situation is spherical 

aberration, which is present in singlet lenses whose surfaces are spherical, and to a lesser 

extend in doublets and triplets. It is calculated by expanding ray angles to the third order 

(sinθ  θ − θ3/6) [36]. Thus, it is one of the so-called third-order (or Seidel) aberrations, 

and is characterized by a fourth-order term in the pupil radius r. Seidel aberrations are 

usually calculated by ray tracing programs, but are inconvenient to use in the context of 

wave-front analysis by interferometric means because the set of Seidel aberration 

functions are not orthogonal. Instead, Zernike polynomials are preferred because of their 

orthogonality, and the fact that they clearly separate the radial and azimuthal coordinates 

r and φ [37]. Conversion from one set of parameters to the other is a linear algebra 

problem [38, 39]. It is important to note that to first order, such geometrical aberrations 

are independent of the wavelength. 

Geometrical aberrations cause distortions to the wave-front, thereby distorting the 

pulse-front as well. The spherical Seidel aberration, for example, results in a wave-front 

(and thus also in a pulse-front) containing terms in x4. It can be calculated explicitly in 

the case of plano-convex lenses by evaluating wave-front contributions beyond the 

second order [40, 41]: 

  
32 2

0 0 0
2

0 0 0 0

( 4) 2 4( , )
8 ( 1) ( 2)sph

n n n xx k x
n n n f

ϕ ω
⎛ ⎞− + +

= ⎜ ⎟− + ⎝ ⎠
  (2.5) 
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Note that spherical aberrations have the same sign as the focal length f0: a 

negative lens can partially compensate the spherical aberrations introduced by a positive 

lens. 

In addition to geometrical aberrations, the pulse-front is also affected by 

chromatic (i.e., dispersive) effects. In a lens, for example, chromatic aberrations can be 

interpreted as a wavelength-dependent focal length f(λ). For instance, for a thin lens with 

radii of curvatures R1,2, the focal length is given by [36]: 

  ( )
1 2

1 1( ) 1
( )

n 1
f R R

λ
λ

⎛ ⎞
= − −⎜ ⎟

⎝ ⎠
  (2.6) 

Because of the shape of the refractive index curve of typical glasses, longer 

wavelengths tend to have longer focal lengths. This frequency-domain picture translates 

in the time domain to a delay between the pulse-front and the wave-front [42]. As in any 

dispersive material, the pulse-front lags the wave-front, but in the case of chromatic 

aberrations in a lens, this lag is position-dependent. It is given by ∆t(x) = Tchr x2 [41, 42], 

where 

 0
0 0

1
2 ( 1) ( )chr

dnT
c n f d

λ
λ λ

=
−

.  (2.7) 

This delay results in a pulse-front with a term Tchr x2 that adds to the distortions of 

the wave-front. Note that this term is of the same order as a defocus term; in some 

situations defocus and chromatic aberrations can compensate each other and result in a 

flat pulse-front in a diverging beam [42]. In general, however, the detrimental effects of 

geometrical distortions add to the ones of chromatic aberrations. This is in particular true 
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in the case of simultaneous spherical and chromatic aberrations, a common situation in 

ultrafast optics [41]. 

2.3.3 Calculation of the pulse-front distortions from the phase φ(x,ω) 

As stated by Equation (2.4), the pulse-front t0(x) is defined from the spatially-

resolved pulse intensity, |E(x,t)|2. Unfortunately, directly measuring this quantity is not a 

simple task. Techniques that are commonly used to estimate the pulse temporal intensity, 

such as two-photon absorption autocorrelation [43, 44], integrate the beam intensity over 

its spatial profile. Spatially-resolved techniques that rely on a ring-shaped obstruction of 

the beam, for example autocorrelation in a doubling crystal [40, 45] or two-photon 

absorption current generation [46, 47], only yield a rough estimate of the pulse-front. 

Fortunately, much more precise measurements of the pulse-front can be obtained 

by an interferometric measurement of the electric field in the spectral domain, because 

the spectral phase contains precious temporal information. Indeed, the spectral phase 

derivative (that may depend on position x) has units of time, and is called the group 

delay: 

  ( , ) ( , )gt x xϕω ω
ω

∂
=

∂
  (2.8) 

Note that the group delay is a function of ω. Conveniently, the average of the 

group delay, weighed by the spectrum |E(ω)|2, is the mean time of a pulse [48]. This 

result is particularly useful because it rigorously connects the pulse-front (defined in the 

time domain) to the spectral phase (measured in the frequency domain): 
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Quite often the average of the group delay can be approximated by the group 

delay at the central frequency ω0; in practice, the following calculation is used: 

  0 0( ) ( , )t x xϕ ω
ω

∂
∂

  (2.10) 

Therefore, distortions to the pulse-front can be calculated directly from the phase 

φ(x,ω). Furthermore, the contributions from geometrical aberrations and chromatic 

aberrations can be clearly isolated: 

  0 0
0

0 0

geometrical aberrations dispersive aberrations

( , ) ( , )( ) ( , )xt x x 0
xϕ ω ϕ ωϕ ω

ω ω ω
∂

= + −
∂

  (2.11) 

Such an approach is useful for instance to distinguish which terms of order x2 in 

the group delay t0(x) might come from defocus (a geometrical aberration) and from 

chromatic aberration (a dispersive effect). 

By experimentally measuring the spatio-spectral phase, φ(x,ω), we can therefore 

measure spatial distortions to the pulse-front. An approximation that is commonly 

performed is to represent the aberrated pulse-front by a polynomial of the fourth order 

that is free of off-axis aberrations such as coma and astigmatism [40, 41]: 

 ( ) 2 4
0 def sph chrt x T x T x T x= + − 2  (2.12) 
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In Equation (2.12), the first term originates from defocus, the second from 

spherical aberrations, and the third from chromatic aberrations. The parameters Tdef and 

Tchr have units of fs/mm2 and are characteristic of a lens system at a given wavelength; 

Tsph, in fs/mm4, is also an intrinsic characteristic of a lens system. For a positive lens, Tdef 

is negative before the focus, and positive after the focus, while Tsph and Tchr are positive 

and do not change sign through the focus. 

The defocus term can be eliminated by properly aligning the lens system (e.g., a 

telescopic system such that Tdef  0). However, chromatic and spherical aberrations are 

more difficult to compensate and require a particular care in designing the lenses 

(achromatic doublets and triplets, aspheric surfaces, apochromatic lenses). Based on the 

input pulse duration and lenses characteristics, it is possible to estimate which one of the 

spherical or chromatic aberrations will dominate [41]. 

2.3.4 Single-shot interferometric measurement of φ(x,ω) 

Spectral interferometry yields a single-shot measurement of E(t) by interference 

with a pre-characterized reference pulse, and may be directly extended to one spatial 

dimension by imaging the dimension x of the laser beam along the slit of an imaging 

spectrometer [46, 49]. A common experimental setup is a standard Michelson 

interferometer followed by an imaging spectrometer, where the optical element under test 

is placed in the sample arm. When both pulses interfere, a two-dimensional spectral 

interferogram is obtained and analyzed by a standard Fourier transform method [30]: the 

Fourier transform of Equation (2.3) is taken along the frequency dimension to yield 
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Equation (2.13) is a direct application of the shift theorem, and results in three 

well-separated functions in the time domain, provided that the delay τ is much larger than 

the durations of the pulses of interest. By applying a (digital) band-pass filter centered at 

t = +τ followed by an inverse Fourier transform to Equation (2.13), the complex product 

Es(x,ω)*Er(x,ω) can be recovered, or “reconstructed”. When the reference pulse Er(x,ω) 

is fully characterized, Es(x,ω) can be obtained by a simple division, and its phase φs(x,ω) 

is thus unambiguously known (i.e., modulo 2π). The complete reconstruction process is 

very fast since it is based on two fast Fourier transforms (FFT) and very robust since the 

phase information is encoded in the shape of the interference fringes. It is therefore 

largely immune to intensity distortions (noise, stray light, grating/detector spectral 

response) in the recorded image. Interferometric stability is not required since this 

method is based on a single laser-shot geometry, although an enhanced fringe visibility 

(obtained through shorter camera exposure times) results in an increased signal-to-noise 

ratio in the reconstructed phase φs(x,ω). 

Once the spatio-spectral phase is digitally reconstructed, curve fitting is used to 

extract the parameters corresponding to defocus (Tdef), spherical aberrations (Tsph), and 

chromatic aberrations (Tchr). To first order, Tdef and Tsph only depend on ω0, the central 

frequency of the spectrum, and are computed by curve fitting the phase delay 

tφ(x) = φ(x,ω0)/ω0 to Tdef x2 + Tsph x4. The chromatic aberration parameter Tchr is then 

19 



calculated by subtracting the phase delay tφ(x) from the pulse-front t0(x) = (∂φ/∂ω)(x,ω0) 

and fitting the resulting function to −Tchr x2. 

2.3.5 Experimental results 

Several focusing elements have been analyzed by using two-dimensional spectral 

interferometry. To facilitate the experiment, collimated beams are obtained by placing a 

mirror in the focal region of the optics under test to retro-reflect the light. This 

approximately doubles the amount of aberrations. Focusing elements suffering from 

aberrations do not have a clearly defined focal plane, since different wavelengths and 

radial positions focus at different axial positions. Measurements are therefore performed 

at the paraxial focal plane of the central wavelength, and at the “best focus” plane, i.e. 

where the spot size is the smallest. 

Recorded interferograms are analyzed by the Fourier transform method, and the 

spatio-spectral phase is reconstructed (Figure 2.1). The various aberration parameters are 

obtained by the curve fitting method (Figure 2.2), with an estimated accuracy of ±3%. 

Results are summarized in Table 2.1. As can be seen, the measured aberrations are quite 

small, and in general for multi-photon microscopy, it is found that for pulses longer than 

50 fs, aberrations are negligible [28]. 
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 Figure 2.1. Spatio-spectral phase φs(x,ω) of an oil-immersion microscope 
objective reconstructed by two-dimensional spectral interferometry 
(published in Ref. [28]). 

 

 

Figure 2.2. Curve fits to extract the parameters for defocus and spherical 
aberration (crosses), and chromatic aberration (triangles). The dashed line 
is the pulse-front. (Published in Ref. [28]). 
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Table 2.1. Measured aberration parameters in different optical systems 
(adapted from [28]). 

Optical system Tdef [fs/mm2] Tsph [fs/mm4] Tchr [fs/mm2] 
Parabolic mirror (f = 12 mm) 
   Paraxial focus 
   Best focus 

 
− 
− 

 
<0.001 
−0.008 

 
0.36 
0.35 

Aspheric lens (New Focus, 20×, NA 0.50) 0.03 0.004 4.6 
Microscope objective (Zeiss, 100×, NA 1.25) 
   Paraxial focus 
   Best focus 

 
0.18 
−0.68 

 
0.06 
0.07 

 
4.0 
4.4 

 

2.3.6 Spectral interferometry at zero delay 

Spectral interferometry is usually performed by introducing a delay τ between the 

unknown signal pulse and the reference pulse in order to obtain the interference fringes as 

a function of frequency ω, as in Equation (2.3). Note that in this case position x and 

frequency ω play symmetric roles, except for the presence of the term ωτ in the cosine. 

The equivalent of this term in the spatial domain (i.e., kx x) corresponds experimentally to 

crossing the signal and reference beams at an angle α, in which case the resulting 

interferogram becomes: 
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  (2.14) 

In the small bandwidth approximation, the spatial period of the resulting fringes is 

constant and equal to λ0/sin α, and spatial fringes are observed along the x dimension. The 

Fourier transform algorithm can still be used to reconstruct the spatio-spectral phase, 

φs(x,ω). At first sight, the interferogram of Equation (2.3) or the one of Equation (2.14) 

seem to yield the same information, i.e., φs(x,ω). However, when a relative delay τ is 
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used, Fourier filtering is performed in the spectral domain, resulting in a reduced spectral 

resolution in the reconstructed phase. When a small crossing angle is used, the phase is 

reconstructed with a reduced spatial resolution, while maintaining the full spectral 

resolution of the spectrometer that is used to perform the measurement [50]. 

To choose between crossing the reference and signal pulses, and introducing a 

relative delay, one must consider the complexity of the spatio-spectral field that is 

measured. When the electric field of the unknown pulse contains higher order terms in x 

than in ω, it is preferable to sacrifice spectral resolution. However, for pulses with a 

complicated spectral structure (and less or little spatial structure), it is preferable to 

generate spatial rather than spectral fringes, so that the spectral intensity and phase can be 

measured with the full spectral resolution of the imaging spectrometer. 

Figure 2.3 illustrate this point. We show the result of the measurement of a pulse 

with a complex spectral structure that is performed with spectral interferometry at zero 

delay. The figure corresponds to a double pulse, with an inter-pulse separation of 14 ps. 

The spectrum and spectral phase of the double pulse contain very fine structures that are 

easily resolved by this measurement technique [29]. 
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Figure 2.3. The reconstructed spectral electric field of a 14-ps double 
pulse generated using a Michelson interferometer (adapted from Ref. 
[29]). 

2.4 Conclusions 

Two-dimensional interferometric techniques such as spatially-resolved spectral 

interferometry are invaluable to measure either pulses with fine spectral features, or to 

measure in a single-shot geometry the two-dimensional electric field E(x,ω) or E(x,t), 

provided that a reference pulse is available. As such, they are well suited to measure the 

distortions (or deliberate shaping) of pulses in two dimensions, in particular in optical 

systems that possess cylindrical symmetry. They can precisely measure distortions to the 

wave-front and pulse-front along one spatial coordinate x. 

However, these techniques are not directly applicable to situations where the two 

spatial coordinates x and y play asymmetric roles. In the context of femtosecond lasers, 

this happens frequently: astigmatism in crystals cut at Brewster’s angle or in off-axis 

curved mirrors [16], residual horizontal angular dispersion in prism and grating pulse 
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compressors [51], and various other distortions result in laser pulses with different 

characteristics along x and y, and in particular different spatio-temporal couplings along 

the horizontal and vertical dimensions. 

In the next chapter, we introduce a new three-dimensional interferometric 

technique that characterizes the electric field of femtosecond pulses along both transverse 

spatial coordinates, allowing a complete characterization of the electric field at a given 

plane, E(x,y,t). 
 

25 



 

CHAPTER 3 

WAVELENGTH-SCANNING DIGITAL HOLOGRAPHY 

The work presented in this chapter originally appeared in the following paper: 
[52] P. Gabolde and R. Trebino, Self-referenced measurement of the complete 
electric field of ultrashort pulses, Optics Express 12 (9) 4423-4429 (2004). 

3.1 Digital holography 

Digital holography is a spatial interferometric technique that is widely used to 

characterize light fields in intensity and phase, in particular if they are monochromatic. 

Traditionally, digital holography has been used in laser measurement to characterize the 

complex spatial electric field E(x,y) of a single-frequency beam, but we will show in this 

chapter that this method can be extended to broadband light (such as femtosecond 

pulses). Used in combination with FROG, it can be applied to the measurement of the 

complete three-dimensional field of femtosecond pulses, E(x,y,t). 

3.1.1 Comparison with film-based holography 

In holography, an interference pattern is recorded as a function of one or two 

spatial coordinates. The traditional recording media (photographic films) have been 

replaced by photo-detectors such as digital cameras that have opened the field of digital 

holography, where data acquisition is fast and convenient, and the film development 

process is instead performed numerically on a personal computer. 

Film-based holography was pioneered by Gabor [53]. Originally based on 

electronic waves, his work was later applied to optical frequencies by Leith and 
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Upatnieks. Holography (from the Greek words holo, “whole” and graphe, “writing”) is a 

way of taking three-dimensional pictures on a film by recording an interference pattern 

that contains the complete (i.e., intensity and phase) spatial field scattered by an object. 

This film (or “hologram”) can be later illuminated in such a way that the image of the 

object is perceived in three dimensions [54]. 

To record a hologram, a laser beam is often split into a first beam that scatters off 

an object of interest, and a second “reference” beam that interferes with the “unknown” 

scattered beam. The resulting interference pattern is recorded by a photographic film 

(Figure 3.1(a)). If one later views the film while it is illuminated by the same reference 

beam that was used in the recording process, a virtual thee-dimensional image of the 

original object is perceived by an observer (Figure 3.1(b)). 

 

Figure 3.1. Setup for film-based holography. (a) Hologram recording. (b) 
Hologram observation. 

3.1.2 Digital recording and reconstruction 

In a digital holography setup, a digital camera replaces the film [55]. This not 

only offers a convenient and versatile setup, but also provides a detector that is much 

more linear with respect to the incident intensity than a photographic film. The recording 
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setup is practically unchanged compared to the film-based version, but the reconstruction 

process is quite different. The digital hologram captured by the digital camera is 

processed by a computer program to extract the intensity and phase distributions 

corresponding to the object. The exact algorithm that is used varies with the experimental 

setup: two common arrangements involve using collinear unknown and reference beams 

(on-axis configuration), or crossing them at a small angle (off-axis configuration). 

3.1.3 Off-axis digital holography (Leith-Upatnieks configuration) 

In off-axis digital holography, the unknown and reference pulses are crossed on 

the digital camera at an angle α [56], as depicted on Figure 3.2. 

 

Figure 3.2. Setup for off-axis digital holography, showing the recording 
and reconstruction steps. 

The digital hologram recorded under c.w. illumination (at frequency ω0) and for a 

small crossing angle α  1 is: 
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Equation (3.1) is the analog of Equation (2.2) in two dimensions with ω replaced 

by x, and τ by (ω0/c)α. Thus, an algorithm similar to the one used in one-dimensional 

spectral interferometry can reconstruct the field of the unknown signal beam, Es(x,y) [32]. 

Briefly, this algorithm consists of the following steps: 

● A two-dimensional Fourier transform is applied to H(x,y) as shown on Figure 

3.3.  

● One of the interference terms is selected and inverse Fourier-transformed to 

yield Es(x,y)Er(x,y)*. 

● The reference field, Er(x,y), is divided from the remaining data to obtain 

|Es(x,y)|2 and φs(x,y) as shown on Figures 3.4 and 3.5. 

 

Figure 3.3. Two-dimensional Fourier transform of the digital hologram of 
Figure 2.2. The rectangle (black solid line) shows the region that is used to 
reconstruct the unknown image. 
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Figure 3.4. Intensity of the reconstructed unknown field. 

 

 

Figure 3.5. Unwrapped phase of the reconstructed unknown field. 

The limitations encountered in Fourier-transform spectral interferometry (see 

Section 2.3.6) apply similarly to digital holography. In particular, one notices a reduced 

resolution due to Fourier filtering that only affects the x dimension (the unknown phase 

φs(x,y) is reconstructed with the original spatial resolution along y). Note that Figure 3.5 

displays the unwrapped phase, a delicate operation in two dimensions, in particular on 

experimental, noisy interferograms [57]. 
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3.1.4 On-axis digital holography (Gabor configuration) 

In the original configuration proposed by Gabor, the unknown and reference 

pulses interfere collinearly. Fourier filtering cannot be used to reconstruct Es(x,y) because 

of the absence of regularly-spaced fringes. One way to perform the reconstruction is to 

record multiple phase-shifted holograms [31, 58-60]. Another way is to use unknown and 

reference beams with different radii of curvature. In this case, a Fresnel transform can be 

used to reconstruct the unknown field [59, 61]. On-axis digital holography has found 

numerous applications in biomedical imaging of small structures because these objects 

naturally scatter diverging beams which are needed for the reconstruction algorithm [62]. 

3.2 Digital holography with ultrashort pulses 

The basic concepts of digital holography presented above apply to c.w. light (with 

a very long coherence time), but they are easily extended to ultrashort pulses, or any 

other light sources with a short coherence time. One important consequence of the use of 

ultrashort pulses is the localization of the spatial fringes in time which reduces the fringe 

visibility. 

Consider two ultrashort pulses Es(x,y,ω) and Er(x,y,ω) interfering at the camera at 

“zero delay” (i.e., τ = 0). If the unknown pulse crosses the reference pulse at a small 

horizontal angle α, this introduces a small x-component in its wave vector, 

ks,x = [(ω0 + ω)/c]α, and therefore the unknown pulse must be re-written as follows:  

  0( , , ) exp ( / ) exp ( / ) ( , , )s sE x y i x c i x c E x yω ω α ω α ω⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦→   (3.2) 
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Note that in Equation (3.2) and in most equations in this study, ω refers to the 

angular frequency measured with respect to ω0. (See Ref. [22] for an explanation of this 

convention.) It is very instructive to compare Equation (3.2) with Equation (2.2) obtained 

for Fourier-transform spectral interferometry. In the case of pulses, crossing two beams at 

an angle α is not exactly equivalent to introducing an inter-pulse delay τ because of the 

additional phase term (xω/c)α. This term results in a reduced fringe visibility as we will 

show in the next section and as shown in other texts [63]. 

3.2.1 Fringe visibility and coherence time 

Because photo-detectors are slow square-law detectors, at each position they 

measure a time-integrated energy, or equivalently (because of Parseval’s theorem) a 

frequency-integrated energy. Therefore the measured digital hologram is 

  
2

0( , ) ( , , )exp ( / ) exp ( / ) ( , , ) .s rH x y E x y i x c i x c E x y dω ω α ω α ω⎡ ⎤ ⎡ ⎤⎣ ⎦⎣ ⎦= +∫ ω   (3.3) 

For simplicity, we assume that there are no spatio-temporal couplings, so that the 

fields can be written as a product of a spatial function with a spectral function. We also 

assume that both pulses have the same spectral field which is uniform in the interval 

[ω0 − ∆ω/2, ω0 + ∆ω/2]. The measured hologram then reduces to 
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Equation (3.4) is the same as Equation (3.1) except for an additional factor 

corresponding to a decreased visibility of the fringes: 
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The region where fringes are visible corresponds roughly to |x| < 2πc/(α∆ω), 

resulting in a number of visible fringes equal to ω0/∆ω, the number of optical cycles in a 

transform-limited pulse. For very short pulses, digital holographic measurements must 

therefore be spectrally resolved, or the spatial fringes will not be visible. 

3.2.2 Fringe visibility and inter-pulse delay 

When the unknown and reference pulses are longer than a few optical cycles 

(∆ω  ω0), but separated in time by a delay τ ≠ 0, a similar situation arises: the visibility 

of the fringes decays with delay as sinc[(∆ω/2)τ]. The physical interpretation is very 

clear: fringes will only be visible if the inter-pulse delay is less than the coherence time of 

the laser source. This property can be used to make “holographic movies” of fast events. 

For instance, researchers have used a series of a nanosecond pulses to generate multiple 

holograms in a single camera frame, resulting in a few snapshots of plasma dynamics. 

Each hologram was produced by a reference pulse that arrived at a different time and at a 

different angle [64]. The dependence of the fringe visibility with inter-pulse delay can 

also be used to compare the pulse-front of a distorted pulse with a reference pulse, for 

example to measure the pulse-front curvature introduced by lenses [65]. 

3.2.3 Fringe visibility and frequency 

Although a zero (or very small) inter-pulse delay is necessary for spatial fringes to 

be visible, it is not sufficient. The unknown and reference pulses must also share common 
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frequencies ω; at each position, the visibility of the fringes is a function of the temporal 

and spectral local overlap of the two pulses. Although this dependence of the fringe 

visibility calls for some experimental care, it can also be used to detect couplings that 

may exist between space and time, or space and frequency. 

Consider for instance an arbitrary unknown pulse, Es(x,ω), and a reference field, 

Er, that is not a pulse, but a monochromatic plane wave at ω = ωr, i.e.: 

 ( , ) ( ).
rrE x ωω δ ω=  (3.6) 

In off-axis digital holography, these two fields are crossed at a small angle α and 

the interferometric term in Equation (3.3) that contains Es becomes: 

 ( , ) ( )*exp
rs

xE x i
cω
ω dω δ ω α ω⎡ ⎤

⎢ ⎥⎣ ⎦∫  (3.7) 

Because the reference beam is monochromatic, this integral simply reduces to: 

 ( , )exp .r
s r

xE x i
c
ωω α⎡ ⎤

⎢ ⎥
⎣ ⎦

  (3.8) 

As usual, Fourier filtering along the x coordinate can be used to reconstruct 

Es(x,ωr), which is the spectral component of Es(x,ω) for the frequency ωr. By simply 

scanning the frequency of the reference wave, it is therefore possible to observe 

couplings between the spatial characteristics of the pulse and its frequencies. It is even 

possible to completely reconstruct the spatio-temporal field Es(x,ωr) using a related 

method, called wavelength-scanning digital holography [52, 66] or sometimes Fourier-

synthesis digital holography [67]. This method is presented in details in Section 3.4. 
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Because visible spatial fringes also require a common state of polarization 

between the unknown and reference beam, digital holography has also found applications 

in polarization imaging [68]. 

3.3 Self-referential measurements in digital holography 

So far the nature of the reference pulse used in digital holography has not been 

explicitly discussed. Since the reference pulse needs to be coherent with the unknown 

pulse, a beam-splitter is often introduced in the laser beam before the “unknown” pulse is 

obtained, such as in Figures 3.1 and 3.2. In many cases, however, the reference pulse can 

be obtained from the unknown pulse itself using spatial filtering. If that is not possible, 

another technique called spatial-shearing interferometry can be used to measure the 

spatial field of the unknown pulse without an additional reference pulse. 

The spatial filtering technique is the easiest to implement: a beam-splitter is 

inserted in the unknown beam after it is obtained, and one of the beams emerging from 

the beam-splitter passes through a spatial filter (usually a pinhole in the Fourier plane of a 

telescope; see Figure 3.6). The resulting reference beam is a plane wave (approximated 

experimentally by a large collimated beam), although any well-characterized beam can be 

used. 
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Figure 3.6. Self-referential digital holography setup with spatial filtering 
to generate the reference beam from the unknown beam. 

An alternative to spatial filtering is simply to use a replica of the beam itself, but 

shifted (or “sheared”) up or down by a small amount δy. If the unknown beam is Es(x,y), 

the “reference” beam is just Er(x,y) = Es(x,y − δy). By crossing these two beams at a 

small horizontal angle and recording their digital hologram as in Figure 3.7, it is possible 

to numerically reconstruct their phase difference, φs(x,y) − φr(x,y) = φs(x,y) − φs(x,y − δy). 

When δy is small compared to the scale of the changes in the spatial phase, this phase 

difference accurately approximates δy (∂φs/∂y)(x,y). The unknown spatial phase φs(x,y) is 

then obtained (up to an additional constant) by integration [25]. 

 

Figure 3.7. Setup for spatial-shearing digital holography. (a) Top view 
showing the two beams crossing at an angle θ. (b) Side view showing the 
vertical shear δy. 
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The resulting interferogram can be observed on a screen, or captured by a digital 

camera to obtain the digital holograms shown on Figure 3.8. Non-collimated beams, for 

example, result in a tilt of the spatial fringes; beam collimation can therefore be achieved 

by simple observation of the interferogram. 

 

Figure 3.8. Simulations of spatial-shearing digital holograms. (a) 
Collimated beam. (b) Defocused beam. 

3.4 Wavelength-scanning digital holography 

As explained in Section 2.2, spectral interferometry and spatially-resolved 

spectral interferometry can be used to measure the two-dimensional spectral phase of an 

unknown signal pulse [69, 70]. With the introduction of a shear in space or in frequency 

[71-73], it is possible to perform a self-referenced measurement of the phase function 

φ(x,ω). Such measurements have also been reported using a combination of spectral 

interferometry and FROG [74], but no extension has been proposed to implement the full 

measurement of the pulse electric field in space and frequency, E(x,y,ω). 

We show here that such a measurement can be performed using digital 

holography, extended to broadband laser sources. A related approach has been followed 

in the past: digital holographic measurements have been performed at different 
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wavelengths, sequentially [67], or simultaneously, both with continuous-wave and 

nanosecond-pulsed laser sources [75, 76], or at different times, on the picosecond time 

scale [77]. In these experiments, however, the phase function was not measured versus 

frequency (or time) and therefore they do not constitute a complete measurement of the 

electric field. 

In this section we show how to combine a variation of Fourier-synthesis digital 

holography [78] with FROG to achieve true self-referenced three-dimensional 

measurements of the field of potentially arbitrary pulses, E(x,y,t). We first discuss the 

theoretical foundations of the method, before applying it to experimental laser pulses 

with common spatio-temporal couplings, such as spatial chirp and pulse-front tilt. 

3.4.1 Details of the method 

Our method allows the measurement of the four-dimensional electric field, 

E(x,y,z,t), of ultrashort pulses as they propagate through free space or known optical 

elements. First, because the electric field satisfies the wave equation, we note that it is 

sufficient to measure it at a given position z = z0 along the propagation axis. Numerical 

integration, for example using the Fresnel transform, can later be used to numerically 

propagate forward (or backward) each monochromatic component by an arbitrary 

distance d. Therefore it suffices to measure the pulse for only one value of z, and hence 

we will suppress the z-coordinate in the rest of this study, and write the complex electric 

field as ( , , ) ( , , ) exp[ ( , , )]E x y S x y i x yω ω ϕ ω≡ . Its inverse Fourier transform is 

( , , ) ( , , ) exp[ ( , , )],E x y t I x y t i x y tφ≡  which we approximate by a summation over 

discrete frequencies: 
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π π

+∞

−∞

= + +∑∫  (3.9) 

 

Figure 3.9. Schematic of the experiment: (a) four-prism second-order 
spectral phase (φ2) control; (b) two-prism spatial chirp (∂x0/∂λ) control; M, 
mirror; BS, beam-splitter; TF, tunable filter (band-pass) tuned to frequency 
ωr; P, pinhole; FM, flip-mirror to perform the FROG measurement. 

From a single digital holographic experiment one may at the same time isolate 

and measure an individual complex Fourier component E(x,y;ωk). The principle of our 

experiment is depicted on Figure 3.9. A replica of the pulse to be measured is spectrally 

and spatially filtered by a narrow band-pass filter and a pinhole in order to obtain a quasi-

monochromatic, quasi-planar wave in the far field. This wave interferes with the original 

pulse at an angle α, i.e., in the off-axis configuration of digital holography (see Section 

3.1.3). Note that in this geometry, the original pulse is merely reflected a few times off 
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mirrors and beam-splitters, so that the device does not distort the input pulse. Following 

the naming convention of holography, we call the tilted, spherical wave the reference 

wave ( )exp( ) exp ( / )sin ,r r rE i t R ix cω ω≡ α  and the original pulse the signal wave 

( , , ) exp( ) ( , ; ) exp( ( , ; )).s k kE E x y t i t S x y i x yω ω ϕ≡ ∝ +∑ kω  The resulting interferogram 

is recorded by a slow detector (a CCD camera) to form the digital hologram H(x,y): 

 

( ) ( )

2( , )

( , ; )

exp ( / )sin ( , ; ) exp ( , ; ) c.c.

r o
t

k
k

r r r

H x y E E

R S x y

R ix c S x y i x y

ω

ω α ω ϕ ω

≡ +

= +

⎡ ⎤+ −⎣ ⎦

∑
+

 (3.10) 

Because of the time averaging 
t

⋅ performed by the CCD camera, all the cross-

terms present in the expansion of |Er + Es|2 vanish, except when .k rω ω=  Therefore, the 

last term in Equation (3.10), located at positive spatial frequency ( / )sinr ru cω α≡  

contains the intensity and (conjugated) phase ( , ; ) exp( ( , ; ))rS x y i x y rω ϕ ω− at frequency 

ωr, and is easily isolated by the well-established reconstruction algorithm based on spatial 

Fourier transforms presented in Section 3.1.3. 

By tuning the band-pass filter to other frequencies, we obtained the discrete set of 

intensity and phase functions, S and φ, necessary to fully characterize the electric field. 

But because these measurements are self-referenced, the absolute phase of φ(x,y) is lost 

for each frequency ωk, i.e., the spectral phase of the pulse is not measured. Therefore we 

perform an additional FROG measurement over a small spatial portion of the beam, to 

correctly set the relative phase of each Fourier component. A similar rephasing procedure 

has already been used in frequency-resolved wave-front measurements of ultrashort 

pulses [79]. It will be successful only if there exists a point (x0,y0) in the pulse where the 
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local spectrum |E(x0,y0;ω)|2 contains all the optical frequencies. As long as the beam 

spatial profile of each frequency extends over this point, this condition is satisfied, for 

example in the case of moderate amounts of spatial chirp presented below. 

3.4.2 Experimental implementation 

We measured the spatio-temporal profiles of trains of pulses generated by a 

mode-locked Ti:sapphire oscillator (KMLabs Inc.) with a typical bandwidth of 40 nm. 

The FROG measurements were performed with a single-shot second-harmonic FROG 

device (Swamp Optics 8-20) [80], which had a spectral resolution of 4 nm (see Table 

A.1). This determines the spacing δω  of the holographic measurements, as well as the 

upper bound of the bandwidth of the band-pass filter. We typically perform 20 

measurements to cover the bandwidth of the oscillator (down to 5% of the spectrum 

peak), using four interference filters that we angle-tuned [81, 82]. The band-pass filters 

were stock items (CVI Laser) with central wavelengths (at normal incidence) of 780, 800, 

807 and 835 nm. A 50-µm pinhole (Fort Wayne Wire Die, Inc.) spatially filters the 

resulting quasi-monochromatic wave. 

Because two independent functions, S(x,y) and φ(x,y), are extracted from a single 

real-valued hologram H(x,y), a loss of spatial resolution is unavoidable. When no 

additional frame is recorded to subtract the low spatial frequency term ( , ; ),kR S x y ω+∑  

the optimal effective resolution is on the order of three times the size of a pixel. From a 

13-µm-pitch camera (Pulnix TM-72EX) we obtained a resolution of 50 µm. From an 

experimental point of view, however, the low spatial frequency term is quite useful. By 

application of Parseval’s theorem, 
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 ( , ; ) ( , , ) ( , , ) .k t
k

S x y I x y t dt I x y tω δω
+∞

−∞

∝∑ ∫  (3.11) 

Thus it appears that the second term in Equation (3.10), centered at zero spatial 

frequency, can also be isolated by the reconstruction algorithm, and may be used to 

measure the time-averaged intensity of the entire pulse. The location of each frequency 

component can thereafter be measured with respect to the center of the pulse 

intensity ( , , ) ,
t

I x y t making the device much more tolerant to beam walk-off as the band-

pass filter is angle-tuned. 

Also, we would like to point out that it is unrealistic to approximate the reference 

wave in our configuration as a tilted plane wave. No matter how large the distance L from 

the pinhole to the camera, the reference wave will manifest a curved wave-front in 

addition to the tilt. A more precise approximation should therefore be 

2 2exp( ) exp[ ( / )sin ( ) /(2 )].r r r rE i t R ix c i x y Lω ω α ω= + + c  Thus the reconstruction 

algorithm will yield 2 2( , ; ) exp[ ( ) /(2 ) ( , ; )].r rS x y i x y Lc i x yω π ω ϕ ω+ − r  The phase is 

contaminated by a pure quadratic term due to defocus, which is easily removed by 

calculating the projection of the measured phase 

φm(x,y;ωr) = π(x2 + y2)ωr/(2Lc) − φ(x,y;ωr) into the Zernike polynomial 2(x2 + y2) − 1 that 

corresponds to defocus and subtracting that term numerically [83, 84]. The advantage of 

using a pinhole, as opposed to a telescope with a large magnification for example, is that 

the former creates known intensity and phase reference profiles with minimal aberrations. 
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3.4.3 Experiments with couplings between space and frequency 

To test our method, we generated pulses that exhibited a coupling between space 

and frequency, i.e., whose electric field cannot be written as E(x,y,ω) = f(x,y)g(ω). This 

happens when cross terms xω or yω are present in the intensity S(x,y,ω), because of 

spatial chirp, or in the phase ( , , ),x yϕ ω  because of angular dispersion. We studied spatial 

chirp because an independent measurement was readily available in this case: a spatially-

resolved spectrum is a measurement of S(x,ω) and therefore of spatial chirp along  .x

Experimentally we introduced spatial chirp (without angular dispersion) in the 

beam with a pair of prisms in the arrangement shown in Figure 3.9. This results in a quasi 

linear variation of wavelength with position over the bandwidth of the oscillator. 

We measured spatial chirp in two different ways: beam center position versus 

frequency (or wavelength), 0( )x λ and 0( );y λ and average frequency (or wavelength) at a 

fixed position, 0( , ).x yλ  The change of the beam center position with wavelength is 

clearly illustrated in Figure 3.10, which also demonstrates the usefulness of the low-

spatial-frequency term ( , , )
t

I x y t  as a spatial reference. Our measurement matched very 

well the one obtained from a spatially-resolved spectrum. 

 

Figure 3.10. Plots of the intensity S(x,y;ωk) of three spectral components, 
for ωk corresponding to 782 nm, 806 nm and 830. The color scales 
represent the normalized intensities, and the dotted white lines are contour 
plots of the entire pulse intensity. This pulse exhibits a clear spatial chirp 
(∂x0/∂λ). 
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3.4.4 Experiments with couplings between space and time 

In the (x,y,t) domain, cross-terms xt or yt represent pulse-front tilt if present in the 

intensity term I(x,y,t), and spatial chirp if present in the phase term ( , , ).x y tφ  For pulses 

without focusing or angular dispersion, the (x,y,t) domain provides a very convenient way 

of displaying the complex electric field because the phase (derivative) yields the 

instantaneous wavelength 1( , , ) 2 [ ( , , ) / ] .inst x y t c x y t tλ π φ −≡ ∂ ∂  Quite conveniently, 

variations of λinst(x,y,t) with position reveal spatial chirp, and variations with time reveal 

temporal chirp, while a tilt in the shape of I(x,y,t) is a signature of pulse-front tilt. 

Therefore, a colored surface plot (see Figure 3.11) can be used to display the complete 

two-dimensional ( , )x t  experimental profile of the complex electric field of well-

collimated laser pulses (the / t∂ ∂  operator acting on the phase function removes time-

independent spatial effects such as focusing). 

 

Figure 3.11. Profiles in the (x,t) domain of two ultrashort pulses. Both the 
vertical axis and brightness represent the intensity I(x,t), while colors 
represent the temporal derivative of the phase, ( , ) / ,x t tφ∂ ∂ converted to 
instantaneous wavelength. The solid gray lines that are projected onto the 
top of each cube correspond to the pulse-front t0(x). The angle of these 
lines with respect to a reference pulse-front (black dotted line) is a direct 
measurement of pulse-front tilt, measured in space (left: 4.5 mrad, right: 
11.3 mrad). 
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To represent the complete experimental three-dimensional (x,y,t) intensity-and-

wavelength profile of an ultrashort pulse, the most intuitive format is a movie so that 

space and time in the movie naturally represent the spatial and temporal evolution of an 

ultrashort pulse, respectively. A frame of such a movie is presented on Figure 3.12; the 

complete movie is available in one of our publications in an online journal [52] and can 

also be viewed at http://oe.osa.org/viewmedia.cfm?id=81166&seq=1. 

 

Figure 3.12. A frame from a movie representing the complete electric 
field E(x,y,t) of a femtosecond laser pulse at a fixed time t. The color code 
is the same as in Figure 3.11. The complete movie is available at 
http://oe.osa.org/viewmedia.cfm?id=81166&seq=1. 

3.4.5 Experiments at λ = 1.5 µm 

We also implemented wavelength-scanning digital holography at λ = 1.5 µm, a 

wavelength largely used for telecommunication applications because of the existence of 

low-loss optical fibers in that spectral region [85]. Many elements of the 800-nm setup 
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have been replaced in order to have an optical setup compatible with standard 

telecommunication equipment, where optical fibers are ubiquitous. 

Firstly, the laser source is an erbium-doped mode-locked fiber laser 

(MenloSystems TC-1550-B). The fiber is optically pumped by laser diodes at 980 nm and 

laser action occurs at 1567 nm, at the edge of the telecommunication C-band. The typical 

average power is 20 mW (13 dBm), or about one tenth of the typical average power of a 

Ti:sapphire oscillator. Passive mode-locking is achieved by a semi-conductor saturable 

absorber mirror (SESAM) [11, 86, 87] and results in ~300-fs pulses at a repetition rate of 

26 MHz. Table 3.1 summarizes the differences between the Er:fiber laser and our 

standard Ti:sapphire laser. 

Table 3.1. Comparison of the Ti:sapphire and Er:fiber mode-locked lasers 
used in this study. 

Gain medium Ti:sapphire Er:fiber 
Pump wavelength 532 nm (frequency-doubled 

Nd:YAG laser, or equivalent) 
980 nm (laser diode) 

Laser central wavelength 800 nm 1567 nm 
Laser bandwidth (FWHM) ~40 nm ~8 nm 
Transform-limit pulse duration ~30 fs ~300 fs 
Mode-locking Passive: Kerr lens Passive: SESAM 
Average power ~400 mW (typical) ~20 mW 
Repetition rate 89 MHz 26 MHz 
Polarization Linear (horizontal) Unpolarized 

 

In addition to the laser source, the spectral filtering process that we use at 1.5 µm 

differs from the one used at 800 nm (which consisted of a set of interference band-pass 

filters that are angle tuned). We used an automated spectral shaper (Newport OSP-9100) 

that allows for an arbitrary modification of the spectral intensity. This device is based on 

a Texas Instrument chip containing an array of small micro-actuated mirrors [88] 
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illuminated by the input light dispersed by a diffraction grating. The spectral resolution is 

0.1 nm, and the insertion loss of the device is below 7 dB. The spectral shaper is 

controlled over a serial interface and is programmed in LabView to generate a band-pass 

spectral filter with a tunable central wavelength and a bandwidth of 0.4 nm. Figure 3.13 

shows the spectra recorded by a grating spectrometer when the central wavelength of the 

spectral shaper is tuned. 

 

Figure 3.13. Spectra recorded by a grating spectrometer as the central 
wavelength of a band-pass filter (0.4 nm FWHM) is scanned by steps of 
2 nm in a programmable spectral shaper. The horizontal axis was not 
calibrated since the central wavelength and bandwidth of the fiber laser are 
known. 

At 1.5 µm it is not possible to use inexpensive CCD or CMOS silicon-based 

detectors; instead we used an InGaAs detector array (Oriel InstaSpec VI), limited to a 

one-dimensional geometry for cost reasons, but that allows detection in the 1.5-µm 

region. 

Figure 3.14 shows a basic setup based on the elements described above that can 

be used to characterize the electric field of short pulses at 1.5 µm, as a function of x and 
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ω. The optical components are connected by standard single-mode fibers (Thorlabs SMF-

28). If a two-dimensional InGaAs camera is available, such a setup could be use to fully 

characterize short pulses by reconstructing the full field, E(x,y,ω). 

 

Figure 3.14. Basic setup to perform wavelength-scanning digital 
holography at 1.5 µm. SMF: single-mode fiber, L: lens, BS: beam-splitter, 
M: mirror, OSP-9100: programmable spectral filter (Newport) used as a 
tunable band-pass filter, InGaAs: photo-detector array (one-dimensional 
or two-dimensional). The pulse to be measured is generated in the signal 
arm, and interfered at the detector with the reference pulse. 

The electric field E(x,ω) is obtained by recording the digital holograms as a 

function of x while the central wavelength of the band-pass filter of the programmable 

spectral shaper is scanned along the bandwidth of the pulse under test. This results in a 

“stack” of holograms (one for each wavelength during the scan), as shown on Figure 

3.15. 
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Figure 3.15. Stack of holograms as a function of position x (along which 
interference fringes are visible) and central wavelength of the programmed 
band-pass filter. The data is recorded by an InGaAs photo-detector array 
that contains a few malfunctioning elements resulting in dark vertical 
lines. 

From the data on Figure 3.15, it is possible to fully reconstruct the electric field 

E(x,t) of an unknown pulse, provided that its spectral phase is known at one position 

(e.g., at x = 0). Such a measurement can be performed with a FROG device (Swamp 

Optics 15-100; see Table A.1), which at 1.5 µm is based on the optical crystal proustite 

(Ag3AsS3, silver arsenic sulfide) [89]. 

3.5 Conclusions 

Wavelength-scanning digital holography is a powerful and very general technique 

to measure the complete complex electric field of a train of ultrashort pulses. We have 

presented two implementations of this technique for femtosecond lasers at 800 nm and 

1.5 µm. This method is well suited to the measurement of spatio-temporal distortions, 
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such as spatial chirp and pulse-front tilt. Such distortions are the lowest order distortions 

that may contaminate an ultrashort laser pulse, but the presented technique is naturally 

sensitive to higher-order spatio-temporal profiles. 

However, because a wavelength scan is performed as the measurement is carried, 

this technique is limited to the characterization of trains of identical femtosecond pulses. 

Although such an assumption is usually satisfied in the case of mode-locked oscillators 

generating pulses of moderate energies, it is more questionable in the case of amplified 

femtosecond lasers, where shot-to-shot variations are not negligible and can even be 

problematic when nonlinear optical processes are involved. This issue is addressed in the 

next chapter where we present a related method allowing for a complete measurement of 

the electric field, E(x,y,t), in a single-shot geometry. 
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CHAPTER 4 

WAVELENGTH-MULTIPLEXED DIGITAL HOLOGRAPHY 

The work presented in this chapter originally appeared in the following paper: 
[90] P. Gabolde and R. Trebino, Single-shot measurement of the full spatio-temporal 
field of ultrashort pulses with multi-spectral digital holography, Optics Express 14 
(23) 11460-11467 (2006). 

4.1 Measuring the complete spatio-temporal field 

Wavelength-scanning digital holography, the method presented in Chapter 3, 

offers an original solution to the problem of completely measuring the spatio-temporal 

field of a femtosecond pulse. Such a method is especially useful to measure, for example, 

a pulse contaminated by spatio-temporal distortions introduced by optical elements (e.g., 

focusing elements). Our approach [52] extended the traditional two-dimensional 

information that is obtained from standard optoelectronic sensors using various 

techniques (linear and nonlinear spectral interferometry [69, 70, 73, 91], direct wave-

front sensing [23, 24, 84], or two-dimensional digital holography [58, 61, 78]), by 

providing a three-dimensional measurement of the electric field. It is even possible to 

obtain a four-dimensional measurement (in free space) by using numerical methods to 

obtain the electric field dependence on the z-coordinate. 

However, the scan of the wavelength that is required in our approach necessitates 

multiple frames of data to be recorded. This, in turn, requires a stable train of identical 

pulses. For low-intensity experiments, performed for example using mode-locked 

oscillators, this condition is usually satisfied. This requirement can be prohibitive, 
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however, for amplified laser systems that operate at very low repetition rates or have 

important shot-to-shot intensity fluctuations. 

To overcome this limitation, we introduce in this chapter a device capable of 

measuring the complete three-dimensional spatio-temporal electric field E(x,y,t) on a 

single-shot. Instead of recording multiple digital holograms for different wavelengths 

sequentially in time [52], we record them simultaneously in a larger two-dimensional 

camera frame. This large digital hologram contains all the necessary information to 

numerically reconstruct the full three-dimensional electric field E(x,y,t). For that reason, 

we call our technique Spatially and Temporally Resolved Intensity and Phase Evaluation 

Device: Full Information from a Single Hologram (STRIPED FISH).  

Setups for the simultaneous recording of a few holograms have been introduced in 

the past, but these involve a set of beam-splitters (or a special cavity) to generate a few 

replicas that must all be synchronized using delay lines [77]. As a result, they do not scale 

very well as the pulse becomes more complex in time (or frequency) and the number of 

necessary holograms increases. STRIPED FISH, on the other hand, involves a simple 

arrangement comprising only two main components that readily generate a large number 

of holograms. This configuration is more likely to scale to complex pulses in space 

and/or time. The multiple digital holograms are obtained by interfering the pulse under 

test with a well-characterized reference pulse or, alternatively, with a spatially-filtered 

replica of the pulse under test whose (spatially-uniform) spectral intensity and phase are 

measured by FROG. Thus STRIPED FISH is self-referencing, and should be ideal for 

low-repetition-rate systems. 
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4.2 Principle of wavelength-multiplexed digital holography 

We first briefly recall how digital holography can be used to reconstruct the 

intensity and phase of the spatial electric field E(x,y) of a monochromatic laser beam 

[61]. It involves crossing the “signal” beam (the beam to be characterized) and a 

“reference” beam (a pre-characterized beam) at a small angle α, for example in the 

vertical plane. One then measures the corresponding intensity I(x,y), or “digital 

hologram”, using a digital camera: 

  
2 2

* sin * sin

( , ) ( , ) ( , )

( , ) ( , ) ( , ) ( , )
s r

iky iky
s r s r

H x y E x y E x y

E x y E x y e E x y E x y eα α− +

= +

+ +
  (4.1) 

Because the last term of Equation (4.1) contains the modulation term 

exp[iky sinα], we may readily extract it from the measured intensity I(x,y) using a well-

established algorithm [32] that was introduced in Section 3.1.3. Assuming that we know 

the electric field of the reference pulse, Er(x,y), we can obtain the electric field of the 

signal pulse, Es(x,y), which contains both the spatial intensity (“beam profile”) and the 

phase (“wave-front”) of the beam. 

A holographic technique generalized for broadband pulses/beams, rather than 

monochromatic beams, involves frequency-filtering the reference and signal pulses and 

generating monochromatic holograms for each frequency in the pulses (see Section 

3.4.1). If we perform the reconstruction process at different frequencies ωk spaced by δω, 

which satisfy the sampling theorem and which cover the bandwidth of the signal and 

reference pulses, we obtain the electric field E(x,y) for each frequency ωk. If the reference 

pulse’s spectral phase is also known, it is then easy to reconstruct the signal field in the 
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frequency domain, which then yields the complete field in the time domain (Equation 

3.9). 

In contrast to multi-shot setups that rely on a scan of the wavelength to 

reconstruct E(x,y,t) [52], STRIPED FISH only requires a single camera frame to do so. 

We still cross the signal and the reference pulses at a small vertical angle, but we 

additionally generate multiple digital holograms on a single camera frame to obtain the 

complete spatial and spectral dependence of the signal pulse in a simple single-shot 

geometry. 

The principle of STRIPED FISH is illustrated on Figure 4.1. It involves generating 

multiple holograms, one for each frequency component in the pulse and then combining 

them to yield E(x,y,ω). Specifically, this entails interfering the signal pulse with the pre-

characterized reference pulse at a small vertical angle α (about the x-axis) as in standard 

off-axis holography in the Leith-Upatnieks configuration (see Section 3.1.3). These two 

pulses then pass through a diffractive optical element (DOE) – equivalent to a low-

resolution two-dimensional diffraction grating – which generates a two-dimensional array 

of replicas of the incident signal and reference pulses, yielding an array of holograms, all 

with horizontal fringes, where the beams cross. The second component of STRIPED 

FISH, a tilted interference band-pass filter or a Fabry-Pérot etalon, spectrally filters the 

beams into wavelengths that depend on the horizontal propagation angle [81, 82], because 

the band-pass filter is tilted by an angle β about the y-axis in the x-z (horizontal) plane. 

Finally, we also orient the two-dimensional diffraction grating so that it is rotated slightly 

by an angle φ about the optical axis z. As a result, the hologram array is also slightly 

rotated, so each hologram involves pairs of beams of a (uniformly spaced) different 
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wavelength. The resulting quasi-monochromatic holograms, each at a different color, yield 

the complete spatial field (intensity and phase) for each color in the pulse and can then be 

combined to yield the complete spatio-temporal field of the signal pulse, E(x,y,t). A single 

camera frame is all that is required. 

 

Figure 4.1. Three-dimensional view of STRIPED FISH. (D): DOE; (F): 
band-pass interference filter; (C): digital camera. The signal and reference 
pulses are crossed at a small vertical angle α. The diffractive optical 
element (D) is rotated by an angle φ about the z-axis, and the filter (F) is 
rotated by an angle β about the y-axis. The inset shows one of the spatial 
interferograms (“digital holograms”) captured by the digital camera. 

 

Figure 4.2. (Top) Side view (y-z plane) showing the signal and reference 
beams crossing at an angle α. (Bottom) Top view (x-z plane) showing how 
the frequencies transmitted by the band-pass filter increase with position x. 
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We choose the spatial period of the DOE to be much larger than the wavelength 

of the beams, so that many orders are diffracted at small and different angles.  At the 

same time, we also choose the spatial period to be smaller than the beam spatial features 

that need to be resolved. As long as the bandwidth of the input beam is small compared to 

its central wavelength, angular dispersion within each diffracted order remains negligible. 

4.3 Reconstruction of the electric field from a measured trace 

To obtain the complex electric field E(x,y,ω), we apply a variation of the standard 

reconstruction algorithm to the measured STRIPED FISH trace (Figure 4.3). It involves 

first performing a two-dimensional Fourier transform of the STRIPED FISH trace. When 

the different holograms are well separated (Figure 4.3(a)), the only spatial fringes that are 

visible are the ones due to the small vertical crossing angle α between the signal and the 

reference pulses. Therefore, in the Fourier domain (Figure 4.3(b)), we expect to obtain 

one central region corresponding to the non-interferometric terms, and two other regions 

corresponding to the interferometric terms due to the crossing angle α. We only retain the 

upper region, which is the equivalent of the last term of Equation (4.1), and we inverse-

Fourier-transform that region to obtain a complex-valued image (Figure 4.3(c)). 

This image contains a collection of spectrally-resolved complex electric fields 

E(x,y) measured at various frequencies ωk, once we divide by the field of the reference 

pulse. These electric fields are distributed over the camera frame and need to be centered 

one by one. We use data from a reference experimental image obtained from a pulse free 

of spatio-temporal distortions to find the beam center corresponding to each spatial 

electric field, so that the data can be reorganized in a three-dimensional data cube, 
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E(x,y,ω). During this registration step, each digital hologram is assigned a frequency ωk 

using calibrated data previously obtained by measuring the spectra of the various 

diffracted beams. 

Finally, we apply Equation (3.9) to reconstruct the field E(x,y,t) in the time 

domain. Using diffraction integrals, we can also numerically propagate the electric field 

through known elements along the z direction if desired, to attain the full four-

dimensional spatio-temporal field. 

 

Figure 4.3. Algorithm used to reconstruct the three-dimensional electric 
field from a single camera frame. A two-dimensional fast Fourier 
transform is applied to a simulated STRIPED FISH trace (a). The 
interferometric terms are selected in the Fourier plane (b), and transformed 
back to the original x-y plane (c). The resulting image contains both the 
spatial amplitude and phase, at the expense of a loss of vertical spatial 
resolution. A registration step is applied to center all the spatial 
distributions, and to assign the calibrated wavelengths, in order to obtain 
the multi-spectral complex data E(x,y,ω) (d). 
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The spatial resolution of STRIPED FISH is limited by three effects: the angular 

dispersion introduced by the diffraction grating, the period of the grating itself, and the 

size of the filtering window in the Fourier domain. Although the two-dimensional grating 

introduces some angular dispersion within each digital hologram, slightly blurring the 

spatial profile of the beam, a very narrow band-pass filter may be used to reduce this 

effect (except in the case of extremely short pulses) at the expense of a decreased 

throughput. The period of the diffractive element also limits the spatial resolution, 

although the input beam can be expanded to compensate for that effect, as long as a 

large-area digital camera is used. Finally, the spatial resolution can also be limited by the 

size of the filtered window in the Fourier plane, limiting the spatial resolution to a few 

pixels. In practice we are restricted by this last effect. 

Similarly, the spectral resolution is also controlled by two separate factors: the 

bandwidth δλ of the band-pass filter, and the number N of holograms that fit on the digital 

camera. The latter is usually the limiting factor: the spectral resolution is then simply a 

fraction of the pulse bandwidth ∆λ/N, where ∆λ is the input pulse bandwidth. 

Note that it is possible to favor the spectral resolution by using more (but smaller) 

holograms, which will in turn decrease the spatial resolution. Conversely, one could favor 

the spatial resolution using larger (but fewer) holograms. Thus, there is a trade-off 

between spatial and spectral resolution. We can quantify the overall performance of 

STRIPED FISH with regard to beam/pulse complexity: in our case the maximum time-

bandwidth product (TBP) that we can hope to measure is roughly equal to the number of 

holograms that are captured. Similarly, the maximum space-bandwidth product (SBP) is 

approximately equal to the number of spatial points obtained by the reconstruction 
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algorithm. In the end, the amount of information (number of independent data points), 

and therefore the maximum pulse complexity that our STRIPED FISH device can 

measure is estimated by introducing the space-time-bandwidth product, equal to 

TBP×SBP, which is on the order of 105 in our case. The space-time-bandwidth product 

may be increased by expanding the beam to be characterized, and by using a larger-area 

digital camera with a higher pixel count. 

4.4  Experimental setup and results 

4.4.1 Implementation as a Mach-Zehnder interferometer 

As a proof of principle, we set up a STRIPED FISH device as a Mach-Zehnder 

interferometer (Figure 4.4). A first beam-splitter is used to separate an incident ultrashort 

pulse (800 nm) from a mode-locked Ti:sapphire oscillator (KMLabs Inc.) into a reference 

and a signal pulse. The pulse to be characterized is then obtained from the signal pulse 

before the two pulses are recombined on a second beam-splitter. This recombination is 

quasi-collinear: a small vertical angle α is introduced in order to generate horizontal 

fringes on the digital camera, where both pulses are temporally and spatially overlapped. 

The temporal overlap requires the use of an adjustable delay line (see Figure 4.4) that 

requires a careful adjustment to maximize the visibility of the interference fringes. 

Between the second beam-splitter and the digital camera, we insert the rotated 

DOE and the tilted band-pass filter to generate the array of spectrally-resolved 

holograms. The coarse diffraction grating consists of an array of 10×10 µm reflective 

chrome squares, spaced by 50 µm, on the front surface of a quartz substrate. This optic can 
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be used in transmission or in reflection if dispersion from the substrate must be avoided. 

The interference band-pass filter (CVI Lasers) has a nominal wavelength λn = 837 nm and 

a bandwidth (FWHM) of 3 nm, and we tilt it by an angle β ~ 20° to transmit the pulses 

centered at 800 nm. We typically generate an array of a least 20 holograms, which are 

captured by a high-resolution (5-megapixel) CMOS camera (2208×3000 PixeLINK PL-

A781). The wavelength corresponding to each interferogram is calibrated by measuring the 

local spectrum at that point using a fiber-coupled grating spectrometer (Ocean Optics 

USB2000). 

 

Figure 4.4. Mach-Zehnder interferometer used to implement our 
STRIPED FISH device, drawn in the x-z plane. (BS1,2): beam-splitters. 
(D): DOE. (F): interference band-pass filter. (C): digital camera. The 
optical paths of both arms are matched using the delay stage, and a small 
vertical angle is introduced between the signal and reference pulses so that 
horizontal fringes are obtained on the digital camera. 
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Figure 4.5. Typical experimental STRIPED FISH trace (2208×3000 
pixels) obtained with a 5-megapixel CMOS camera. The central digital 
hologram is saturated because of the absence of anti-reflection coating on 
the DOE substrate used away from Brewster’s angle. 

Figure 4.5 shows a typical STRIPED FISH trace. The central interferogram, 

corresponding to the undiffracted order of the DOE, is much more intense than the other 

holograms. This is due to the lack of anti-reflection coatings on the stock substrate 

(quartz) of the DOE. When possible, we try to minimize this effect by using signal and 

reference pulses with horizontal polarizations and incident on the DOE at Brewster’s 

angle. For a DOE fabricated on a quartz substrate, Brewster’s angle θB = Arctan(nDOE) 

corresponds to θB  57°. An example of a STRIPED FISH trace recorded at Brewster’s 

angle is shown on Figure 4.6. Compared to Figure 4.5, the brightness of the central 

(undiffracted) hologram is greatly reduced, and all the digital holograms can be 

simultaneously recorded within the dynamic range of a 10-bit digital camera. Note that 

there is a weak reflection present on the right of the central hologram; it is due to a 

reflection from the back surface of the DOE substrate and could be easily removed by an 

index-matching element. 
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Figure 4.6. Experimental STRIPED FISH trace recorded at Brewster’s 
angle.  

We demonstrate our technique using ultrashort pulses from a mode-locked 

Ti:sapphire oscillator. The pulses are centered at 800 nm and have approximately 30 nm 

of bandwidth (FWHM). Because of the high repetition rate (89 MHz) of the laser, our 

measurement averages over many pulses, but our STRIPED FISH device uses a single-

shot geometry, and no scanning occurs. With our 1-kHz chirped-pulse amplified system, 

recording single-shot STRIPED FISH traces was straightforward, however, since sub-

millisecond exposure times are readily obtained by digital cameras. 

4.4.2 Measurement of the spectral phase 

We now show that our STRIPED FISH device is sensitive to the spectral phase of 

the signal pulse. We introduce some group delay in the signal pulse by delaying it with 
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respect to the reference pulse. This modifies the absolute phase of the fringes of each 

digital hologram in the experimental STRIPED FISH trace. 

 

 

Figure 4.7. Encoding of the spectral phase in a STRIPED FISH trace. The 
lower left image is a STRIPED FISH trace. Two profiles are recorded 
along the gray lines, and graphed on the upper right plot. The insets show 
the profile of two holograms (a) and (b) recorded at two different 
wavelengths. Blue curves: zero delay. Green curves: group delay 
introduced in the signal pulse. 

Figure 4.7 depicts the situation. The lower left image corresponds to a STRIPED 

FISH trace, from which two profiles (gray lines) are extracted. These two profiles are 

shown using two blue curves on the upper right graph. These profiles are recorded at zero 

delay between the reference pulse and the signal pulse. A small group delay is then 

introduced in the signal pulse by slightly translating the delay line of the Mach-Zehnder 

interferometer. The corresponding STRIPED FISH trace looks very similar to the one of 
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Figure 4.7, except for the absolute position of the spatial fringes: if the same profiles are 

extracted from the trace along the gray lines, the curves in green are obtained. A careful 

inspection of two interferograms – labeled (a) and (b) – reveals that there is a relative 

phase shift that is introduced by the group delay. 

This fringe shift is recorded as a function of frequency, and corresponds to the 

spectral phase of the signal pulse (measured with respect to the reference pulse). As 

expected, a linear spectral phase characteristic of group delay is obtained (Figure 4.8(a)).  

A similar experiment can be performed by introducing a dispersive window in the 

signal arm of the interferometer, so that group-delay dispersion (GDD) is introduced in 

the spectral phase of the signal pulse. The same procedure is repeated, and a 

characteristic quadratic spectral phase is obtained experimentally (Figure 4.8(b)). 

 

Figure 4.8. (a) Fringe shift in each digital hologram as a function of 
frequency, showing a linear phase due to group delay. Open circles: 
measurement; dotted line: linear fit. (b) Fringe shift in each digital 
hologram as a function of frequency, showing a quadratic phase due to 
group-delay dispersion. Open circles: measurement; dotted line: quadratic 
fit. 
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4.4.3 Measurement of spatio-temporal couplings 

We now show the reconstructed field of a pulse with horizontal spatial chirp. We 

introduce spatial chirp in the signal beam using a pair of gratings. Figure 4.9 shows two 

slices of the reconstructed electric field E(x,y,t) that are obtained in this measurement; 

one slice is obtained at y = 0 (Figure 4.9(a)), and the other at x = 0 (Figure 4.9(b)). In 

these plots, the instantaneous wavelength is calculated from the derivative of the 

temporal phase. Any temporal gradient of the instantaneous wavelength corresponds to 

temporal chirp, and any spatial gradient is due to spatial chirp. Horizontal spatial chirp is 

clearly visible on Figure 4.9(a). 

 

 

Figure 4.9. (a) x-t slice of the measured electric field E(x,y,t) of a pulse 
with spatial chirp. The vertical axis shows the electric field intensity 
|E(x,t)|2 and the color shows the instantaneous wavelength derived from 
the phase φ(x,t). The spatial gradient of color shows the spatial chirp along 
the x direction. (b) y-t slice of the same measured electric field. No spatial 
chirp is present along the y direction, as expected. 

In the aforementioned proof-of-principle experiments, the Ti:sapphire oscillator 

pulse was used as the reference pulse, and a replica of that pulse was distorted in order to 
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create an interesting pulse for demonstration purposes (see Figure 4.4). The reference 

pulse was therefore spatially smooth, and had an approximately flat spectral phase. 

However, in most cases it is possible to perform a fully self-referenced measurement of 

the distorted signal pulse by spatially-filtering that pulse. The resulting pulse then has a 

well-defined (i.e., smooth) spatial profile, and its spectral intensity and phase may be 

readily characterized using a single-shot FROG device [80], so that it may be used as the 

reference pulse in the STRIPED FISH technique. This self-referencing implementation of 

STRIPED FISH is presented in Section 4.6. 

4.5 Design of the DOE 

The essential component of our STRIPED FISH device is the two-dimensional 

diffraction grating that we use to generate multiple replicas of an input beam. In this 

section, we describe the choice of the design parameters and the fabrication process of 

this element. 

For clarity, we first describe the action of the diffractive optical element (DOE) in 

one dimension (x). The DOE is an array of reflective squares on a quartz substrate. The 

corresponding one-dimensional transfer function D(x) is represented on Figure 4.10; a is 

the width of each square and b is the square separation distance. 
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Figure 4.10. One-dimensional representation of the transfer function D(x) 
of the DOE; a is the size of each square, and b is their separation. 
Typically, a = 10 µm and b = 50 µm. 

4.5.1 Working distance 

Clearly, a DOE with the reflectivity function D(x) pictured on Figure 4.10 acts as 

a reflective grating of spatial period b. Thus, under an angle of incidence θB equal to 

Brewster’s angle, multiple orders are diffracted in directions θm given by the grating 

equation: 

 ( ) Arcsin sinm
m
b
λ

B Bθ λ ⎛ θ θ⎞= + −⎜
⎝ ⎠

⎟  (4.2) 

In Equation (4.2), m is the order of diffraction, and the angle of the diffracted 

order m is measured with respect to the specular reflection (m = 0). These angles are 

defined in the far field of the DOE, i.e., at a distance z larger than its Fraunhofer distance 

[92]: 
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Additionally, we also require that the diffracted beams do not overlap after a 

distance z, where the digital camera is placed. For an input beam of size w, this 

geometrical condition requires that: 

  
0

bwz
λ

>   (4.4) 

Obviously, for the DOE to perform well, a large number of spatial periods b must 

be illuminated by the input beam of size w (i.e., w  b). Therefore satisfying Equation 

(4.4) ensures that Equation (4.3) is satisfied. 

To the lower bound of z set by Equation (4.4), we must also add an upper bound 

set by the Rayleigh range of the input beam. To avoid self-diffraction effects from this 

beam, we require that: 
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  (4.5) 

To conclude, the working distance of the DOE is given by the following range for 

z: 
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λ λ

  (4.6) 

Note that the working distance given by Equation (4.6) also holds for the case of a 

two-dimensional DOE. 

Figure 4.11 shows the effect of the DOE on a Gaussian beam (beam size 

w  3 mm) after a free-space propagation of 10 cm and 50 cm, for three different 
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wavelengths (750 nm, 800 nm, 850 nm) and for a spatial period b = 50 µm with b/a = 5. 

The initial near field interference effects quickly result in well-separated diffracted 

orders. Indeed, for this case the working distance is given approximately by 

20 cm  z  1000 cm. 

 

Figure 4.11. Free-space propagation of a 3-mm Gaussian beam reflecting 
off the DOE, after 10 cm (left) and 50 cm (right), for three different 
wavelengths (blue: 750 nm; green: 800 nm; red: 850 nm). 

4.5.2 Diffracted orders efficiency 

As with any diffraction grating, the relative efficiency with which the orders are 

diffracted in the far field depends on the shape of one individual spatial period. In the 

case of the reflection function D(x) of Figure 4.10, the efficiency function is given by the 

magnitude of the Fourier transform of a rectangle of length a, i.e., a sinc2 function with a 

characteristic width of 1/a. The characteristic shape of a sinc2 curve is clearly visible in 

the envelope of Figure 4.11. 

This efficiency curve determines the number of “useful” diffracted orders, i.e., 

orders that are efficiently diffracted. In one dimension, this number is roughly given by 
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the ratio b/a. In two dimensions, this number becomes (b/a)2. Larger ratios result in an 

increase in the number of useful diffracted orders, but reduce the overall efficiency of the 

DOE. Thus, there is a trade-off between the number of holograms on a STRIPED FISH 

trace, and the device efficiency, or equivalently, between the spectral resolution and the 

throughput, a situation comparable to the case of an imaging spectrometer equipped with 

an adjustable slit. 

4.5.3 Choice of a matching interference band-pass filter 

On Figure 4.11, it is clear that the diffracted orders suffer from angular dispersion 

and spatial chirp: within a diffracted order m ≠ 0, the frequency components of the 

original input beam are centered at different positions along the x axis. This dispersive 

property – the basis of grating spectrometers – may seem at first sight problematic in our 

application. This effect, however, is mitigated by the use of the spectral filter 

immediately after the DOE, and in practice does not affect our measurements, except in 

the case of extremely broadband pulses where successive orders start to overlap (in which 

case a DOE cannot be used). 

According to the principle of operation of STRIPED FISH described in Section 

4.2, the spectral filter must pass a different wavelength for each diffracted order m. After 

free-space propagation from the DOE, each order has a different center position, and a 

different angle θm. To spectrally resolve the diffracted orders, one must therefore use a 

band-pass filter whose transmitted wavelength depends on position, or angle. For narrow 

bandwidth pulses (∆λ/λ0  1), we use the angle-tuning property of interference band-

pass filters. If an interference band-pass filter has a nominal central wavelength λn and is 
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tilted by an angle β, then the wavelengths transmitted by the band-pass filter for each 

order m are given by [81, 82]: 

  ( )2
( )

21
2

mm
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β θ
λ λ
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⎛ ⎞−
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⎝ ⎠

,  (4.7) 

where µ is the effective refractive index of the interference filter [93]. This relation is 

valid for angles up to ~20°: for larger angles, the transmitted wavelength starts to depend 

on the light polarization. In this study, we limit ourselves to the p polarization (parallel to 

the plane of incidence, and usually in the plane of the optics table), and to angles up to 

~30° to avoid an excessive increase in the filter bandwidth [81]. As an example, Figure 

4.12 shows the wavelengths that are transmitted by an interference band-pass filter with a 

nominal wavelength λn = 820 nm and a transmission bandwidth of 3 nm (FWHM). In this 

experiment, the diffracted orders are generated by a two-dimensional diffraction grating 

with a spatial period b = 10 µm. The diffraction profile is shown on the inset of Figure 

4.12. The spectra of four diffracted orders (labeled A,B,C,D) are recorded with a fiber-

coupled grating spectrometer (Ocean Optics USB2000). 
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Figure 4.12. Spectra from a two-dimensional diffraction grating 
(b = 10 µm) and a tilted interference band-pass filter. The inset shows the 
locations of the diffracted beams in the far field. 

This experiment shows that a tilted band-pass interference filter is well suited to 

spectrally resolve pulses with a bandwidth of a few to several tens of nanometers. It is not 

clear, however, how large a bandwidth it can support, so we now describe how to 

estimate an upper bound on that parameter. 

For a typical value of µ = 1.45, an angle β − θm of 30° gives in Equation (4.7) a 

maximum normalized blue shift of: 

  
max

6%n t

n

λ λ
λ
−   (4.8) 

The longest wavelength that can be passed in this configuration is therefore λn (for 

θm = β); β in chosen in accordance with Equation (4.7) so that the central wavelength is λ0 

(for θ0 = 0), the central wavelength of the pulse. The spectral content that can be resolved 

in this manner is therefore limited to ~2×(λn − λ0). According to Equation (4.5), this limits 
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the maximum pulse bandwidth to less than ~6% of its central wavelength (i.e., less than 

50 nm at 800 nm). For larger pulse bandwidths it is possible to use a linear variable 

interference band-pass filter where the passed wavelength depends on the transverse 

position x (e.g., Schott VERIL VIS-60).  

To match the design of the DOE to the characteristics of an interference band-

pass filter (or vice-versa), we must satisfy two conditions: (i) the wavelengths transmitted 

by the filter must cover the spectral content of the input pulse (i.e., two or three times its 

bandwidth ∆λ), and (ii) the number of diffracted orders must be equal to the covered 

spectral range divided by the desired spectral resolution, δλ. 

Let us consider the first condition. According to Equation (4.7), the longest 

wavelength that is passed by the filter is given by: 
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  (4.9) 

In Equation (4.7), β is chosen so that the undiffracted order m = 0 is passed with 

the central wavelength of the pulse λ0, i.e.: 
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Since the number of diffracted orders (in one dimension) is given approximately 

by b/a, we approximate mmax by b/(2a) to estimate a value for θmax: 
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To simplify this equation, we assume that λ0  a. We will show later that this 

assumption is consistent with the narrow bandwidth approximation (∆λ  λ0). In this 

case we obtain simply θmax  λ0/(2a). Note that while the diffracted angles of the various 

orders depend on b in Equation (4.2), the largest diffracted angle depends on a (because 

there are about b/a diffracted orders). 

The spectral content covered by the filter is then: 
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βθ λ βλ λ λ
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−   (4.12) 

A simple calculation shows that the bandwidth that can be covered by the filter is 

given by: 
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This result indicates that the DOE parameter 1/a2 controls the (normalized) 

bandwidth that the system can support in one dimension. Equation (4.13) also applies 

unchanged to the two-dimensional case because adding the other transverse dimension to 

the problem does not affect the value of θmax. 

Now let us consider the second condition regarding the desired spectral resolution 

δλ of the system. We assume that the bandwidth of the interference filter is smaller than 

δλ, even under an oblique incidence. In that case, δλ is simply given by the spectral range 

(~2∆λ) divided by the number of diffracted beams. In the two-dimensional case, we 

obtain: 
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To compare with Equation (4.13), we can also normalize the spectral resolution 

by the central wavelength to obtain: 
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To summarize, Equation (4.13) and (4.15) can be used to choose the parameters a 

and b of the DOE to obtain a desired spectral range and spectral resolution. To satisfy the 

working distance requirement of Equation (4.6), it might therefore be necessary to change 

the input beam size w using a telescope or a 4-f imaging system. Alternatively, it is 

possible to image the beams diffracted by the DOE so that the diffracted angles match the 

values required by a given interference band-pass filter. 

4.5.4 Fabrication of a custom DOE 

Because an optimal DOE requires a careful choice of the design parameters a and 

b, it is unlikely that stock two-dimensional diffractions gratings (e.g., Max Levy FA079, 

Thorlabs BPD254-FS) satisfy the conditions set forth by Equations (4.6), (4.13) and 

(4.15). To allow for more flexibility, we chose to design our own custom DOE. 

Fortunately, this optical element closely resembles photo-masks (also called 

reticles) that are used in the micro-electronics industry [94]. As a fortunate consequence, 

customs photo-masks are inexpensive to fabricate. They typically consist of a transparent 

substrate (soda lime or quartz) on which a layer (iron oxide or chromium) opaque to UV 

light is patterned by electron-beam lithography. For our application, we choose 
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chromium, a metal opaque in the UV (the spectral region normally used with photo-

masks) but partially reflective in the near IR. 

We design our photo-masks using industry-standard CAD tools such as Cadence 

Virtuoso or AutoCAD. The design files are converted to a format that is understood by a 

pattern generator that writes the pattern on the DOE substrate. Feature sizes on the order 

of a few microns were easily obtained during the fabrication of such masks both on site 

(Georgia Tech Micro-electronics Research Center) and in an external company (Photo 

Sciences Inc.). 

4.6 Fully self-referenced STRIPED FISH 

The setup presented in Figure 4.4 is not completely self-referenced because the 

pulse to be measured (the “signal” pulse) is generated within the Mach-Zehnder 

interferometer upon which STRIPED FISH is built. Furthermore, the spectral phase of 

the signal pulse was not measured: only changes of that spectral phase from one 

experiment to the next were measured, for example in Figures 4.7 and 4.8. 

In this section, we present another implementation of STRIPED FISH that is fully 

self-referenced. This device requires only one input pulse, the pulse under test. This pulse 

is split into two replicas, one of which is spatially filtered to result in a reference pulse (a 

pulse whose spatial phase is essentially constant). The spectral phase of that reference 

pulse is therefore free of any spatial dependence, and is measured by a FROG device 

(e.g., GRENOUILLE) matched to the pulse characteristics [80, 95]. This completely 

characterizes the reference pulse that can then interfere with the signal pulse in the usual 
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configuration (two-dimensional diffraction grating followed by a spectral filter and a 

digital camera). 

 

Figure 4.13. Mach-Zehnder interferometer used for a fully self-referenced 
STRIPED FISH. L1,2: achromatic doublets arranged as a telescope; P: 50-
µm pinhole in the focal plane of the doublets; BS: half-silvered broadband 
mirror; Comp: compensating plate. In this top view, the signal and the 
reference pulses are displaced vertically and overlap on the drawing. The 
interferometer is dispersion-compensated over 150 nm. 

Figure 4.13 shows an implementation of a fully self-referenced STRIPED FISH. 

This optical setup is further optimized for broadband light. Note that we place two 

achromatic doublets with identical focal lengths outside the interferometer in order to 

form a spatial filter in the reference arm with a 50-µm pinhole. While the two lenses can 

simply be contained within the reference arm of the interferometer, placing them in the 

common path of the interferometer reduces the effects of dispersion. To further minimize 

dispersion, a 1-mm fused silica compensating plate is used to cancel the effects of the 

substrate of the beam-splitter. We also use a half-silvered plate as a beam-splitter to 
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prevent the higher-order dispersion terms due to multi-layer resonance usually present in 

dielectric beam-splitters [96]. 

As a result, this interferometer is dispersion-compensated over a large bandwidth. 

This is demonstrated by the observation of a STRIPED FISH trace spanning over 150 nm 

(Figure 4.14). This trace was obtained by measuring a very broadband pulse generated by 

white-light continuum. An amplified pulse from the chirped-pulse amplifier (~50 µJ, 

~200 fs) is focused into a long fused silica window. Because of third-order nonlinear 

effects, the pulse undergoes self-focusing and self-phase modulation in bulk fused silica 

[97], resulting in very broadband light that appears white to the eye. 

 

Figure 4.14. STRIPED FISH trace recorded with a fully self-referenced 
broadband interferometer from white-light continuum in bulk fused silica. 
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The Mach-Zehnder interferometer results in two (pairs of) outputs. One pair of 

output beams, composed of the signal and reference pulses is crossed at a small vertical 

angle α and is directed to the two-dimensional diffraction grating. In the other pair of 

output beams, the signal pulse is blocked and the reference pulse is sent to a FROG 

device to measure its spectral phase. The FROG device that is used must match the 

characteristics (bandwidth, duration, complexity) of the pulse to be measured as well as 

the desired temporal and spectral resolution. Various FROG devices are available [8], and 

whenever possible we used a compact single-shot SHG FROG device [80]. Its principle 

of operation and characteristics are detailed in Appendix A. Once the STRIPED FISH 

trace is recorded, the complete electric field is then analyzed using the same algorithm as 

presented in Section 4.3. 

4.7 Conclusion and perspectives 

Wavelength-multiplexed digital holography allows for the first time to completely 

characterize (i.e., in intensity and phase and as a function of three dimensions x, y and t) 

the electric field of a femtosecond laser pulse on a single-shot basis. This method has 

been experimentally implemented using a simple device (STRIPED FISH) based on only 

a few key elements, in particular a diffractive beam splitter and a high resolution digital 

camera. We demonstrated the measurement of spatio-temporal distortions, a chief 

preoccupation in amplified systems. 

The design of our current implementation, however, leaves room from 

improvement. One drawback, for instance, is the overall low efficiency of the DOE, in 

particular when a large number of diffracted beams is sought (i.e., b/a  1). This poses a 
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problem for the single-shot measurement of unamplified pulses. One potential solution is 

to use a DOE with phase (rather than amplitude) modulation; another approach that could 

be investigated is the “recycling” of the strong undiffracted order that could be used as a 

reference pulse after appropriate spatial filtering and zero-delay synchronization (a 

similar idea has been demonstrated in the context of film holograms [98]). 

Another area that can benefit from an improved design is the spectral and spatial 

resolution of the device. The spectral resolution is presently limited by the bandwidth of 

the stock interference filter. Custom dielectric layers or a high-finesse etalon should be 

able to considerably improve the spectral resolution of the device. The spatial resolution 

currently depends on the number of pixels in the digital camera. Although we used a 

fairly high pixel-count system (>5 megapixels), the resolution of these systems is ever 

increasing (Dalsa Corp. announced last year that it successfully manufactured a ~10×10-

cm chip with over 110 megapixels). With a higher pixel-count, it can be expected that the 

spatial resolution of a STRIPED FISH device can be substantially increased. 
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CHAPTER 5 

SPATIO-TEMPORAL CORRELATION COEFFICIENTS 

The work presented in this chapter originally appeared in the following paper: 
[99] P. Gabolde, D. Lee, S. Akturk and R. Trebino, Describing first-order spatio-
temporal distortions in ultrashort pulses using normalized parameters, Optics 
Express 15 (1) 242-251 (2007). 

5.1 Introduction 

Ultrashort-pulse lasers are carefully designed to generate the shortest possible 

pulses, as this is highly desirable in most experimental situations, from micro-machining 

to multi-photon microscopy [5, 18]. Unfortunately, in propagating through materials, 

different frequencies ω experience different group delays τ(ω), so all transmissive optical 

components broaden and chirp pulses. Fortunately, pulse compressors can compensate 

for this group-delay dispersion (GDD) [100]. But, in order to operate, pulse compressors 

(as well as shapers and stretchers) deliberately rely on an array of spatio-temporal 

distortions, which include angular dispersion, spatial chirp, pulse-front tilt, and angular 

delay, to name a few. While in theory perfect alignment of a compressor guarantees that 

the output pulse is free of any of these distortions, in practice residual distortions are 

often present. 

Fortunately, measurement techniques for temporal chirp have been available for 

decades [8, 21, 80], but convenient diagnostics for most spatio-temporal distortions are 

just becoming available [9, 71, 72, 101, 102]. As a result, while temporal chirp is well 

understood, the various spatio-temporal distortions that can occur in ultrashort pulses are 

not understood as well. Such distortions are as detrimental to experiments as temporal 
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chirp, especially when the pulse is focused onto a sample [103]. A solid understanding of 

such distortions is therefore critical, and must begin with a common language with which 

to discuss them. 

Unfortunately, such a language does not currently exist. Consider, for example, 

the case of spatial chirp. Spatial chirp is a coupling between x and ω and corresponds to a 

variation of the beam center vs. frequency that can be characterized by the derivative 

dx/dω (called spatial dispersion) to first order. But spatial chirp may equally well be 

described by a variation in the center frequency vs. position, and hence the derivative 

dω/dx (called frequency gradient), and these two derivatives are not reciprocal [104]. To 

further complicate matters, some authors use the frequency υ rather than the angular 

frequency ω [105], while others prefer the wavelength λ. As a result, spatial chirp 

measurements alone can be reported using six different derivatives, all with different 

units. Worse, it is difficult to estimate the severity of spatial chirp from any of these 

quantities, and how much – or how little – it may eventually affect the performance of an 

ultrafast system. The cases of pulse-front tilt, angular dispersion, and angular delay are 

similar. They can be described, respectively, by the derivatives dt/dx, dkx/dω, and dkx/dt. 

Or they can be described by the several additional analogous definitions. Thus studies of 

other spatio-temporal distortions suffer from the same problems. 

In this chapter we propose an intuitive formalism to describe spatio-temporal 

distortions. Rather than using first-order derivatives, we rely on normalized correlation 

parameters that were introduced in the context of perfect Gaussian pulses and beams [27]. 

We also show that such normalized parameters are well adapted to experimental 
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situations where the spatio-temporal distortions of pulses and beams of arbitrary profiles 

must be minimized in real time. 

5.2 Definition of spatial chirp and other spatio-temporal couplings 

We begin by recalling the formal definitions of the above-mentioned normalized 

spatio-temporal couplings parameters. We first consider (horizontal) spatial chirp, a 

coupling in the x–ω domain. Generalization to the other spatio-temporal couplings, 

namely pulse-front tilt, angular dispersion, and angular delay, is immediate by 

considering the x–t, kx–ω and kx–t domains. Extension to the y coordinate is also 

immediate. 

We call I(x,ω) ≡ |E(x,ω)|2 the (spatio-spectral) intensity distribution of the pulse, 

where x and ω are measured with respect to the beam center and the carrier frequency 

(that is, have the mean position and mean frequency subtracted off). The intensity I(x,ω) 

is normalized such that its integral over space and frequency is 1. We now define the 

normalized spatial chirp parameter ρxω as the first mixed moment of I(x,ω), divided by 

the global beam size ∆x and the global bandwidth ∆ω: 
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 (5.1) 

Analogous quantities can be defined for the other first-order spatio-temporal 

distortions (see Section 5.5). 
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This definition of spatial chirp as a linear correlation coefficient is applicable to 

pulses of arbitrary profiles [106], and is consistent with the frequency gradient dω/dx and 

spatial dispersion dx/dω parameters introduced in Ref. [27] for Gaussian pulses, in the 

sense that: 

 x
x d

dx x dω
dxω ωρ

ω ω
∆ ∆

= =
∆ ∆

 (5.2) 

Note that since ρxω is calculated from |E(x,ω)|2, it does not include a coupling 

between x and ω that may appear in the phase of E(x,ω). This coupling essentially 

amounts to angular dispersion [27], and is treated in Section 5.5. 

There are numerous properties of this correlation coefficient that make it an 

attractive choice from a practical point of view: 

● It is an extension to arbitrary pulses and beams that is consistent with previous 

definitions of frequency gradient and spatial dispersion.  

● It is symmetric: when I(x,ω) is recorded using a camera, it does not matter 

whether the position axis is vertical and the frequency axis horizontal, or vice-versa.  

● It is scale-invariant: except for a possible change of sign, it is unaffected by the 

transformations x → αx or ω → βω. Thus, beam magnification does not affect the result. 

An important practical implication is that experimental trace need not be calibrated: the 

variables x and ω can represent pixel numbers on a camera, and not necessarily physical 

quantities with proper units.  

● It is a dimensionless number. 
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● Because ρxω can be identified with the linear correlation of the joint distribution 

I(x,ω) [106], it is even possible to show that: 

  1 xω 1.ρ− < <  (5.3) 

● Conveniently, ρxω = 0 corresponds to the absence of the distortion to first order, 

while an increased value of |ρxω| indicates an increase in the magnitude of spatial chirp 

(see Figure 5.1). 

● The sign of ρxω simply reveals whether the beam center position increases or 

decreases with ω.  

● Also, for all but near-single-cycle pulses, the change from frequency ω to 

wavelength λ is a linear transformation: λ = -λ0
2ω/(2πc); again, λ is measured with respect 

to the central wavelength λ0. Written in this form, the change from ω (or υ) to λ is just a 

change of scale and sign, and therefore: 

  x x xλ ν ωρ ρ ρ= − = −  (5.4) 

● Finally, ρxω is equal to the eccentricity of an elliptical beam caused by spatial 

chirp. 

To see that the last statement is true, consider a collimated beam with an initial 

circular beam profile going through an optical device that introduces spatial chirp in the x 

direction (for example, a misaligned stretcher). We take the input beam to have the same 

size in the x and y directions: ∆x = ∆y. Because of spatial chirp, the size of the output 

beam in the x direction increases to ∆x’. The output beam is therefore elliptical, and can 

be characterized by its eccentricity exy: 
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Figure 5.1. Profiles of an ultrashort pulse with increasing amounts of 
spatial chirp, and hence with increasing values of ρxω. Upper row: spatio-
temporal profiles. The pulses have a central wavelength of 480 nm, and 35 
nm of bandwidth. Lower row: corresponding profiles of I(x,ω), from 
which ρxω is calculated. (a) ρxω = 0.00. (b) ρxω = 0.30. (c) ρxω = 0.60. (d) 
ρxω = 0.90. 

Comparing Equation (5.5) with Equation (45) in Ref. [27], we see that |ρxω| = exy. 

Although it is easy and intuitive to think of ρxω in terms of the eccentricity of the spatial 

profile, for precise measurements it is preferable to rely on ρxω obtained from the 

intensity distribution I(x,ω). In addition, note that if spatial chirp results in a spatial 

broadening of the beam, and therefore in an elliptical beam, it also results in a temporal 

broadening of the pulse, because of the decrease of available bandwidth at each point x in 

the beam. Thus, in the presence of spatial chirp, the duration of a pulse with a flat spectral 

phase does not reach its Fourier limit, as can be clearly seen on Figure 5.1(d). 
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As a side note we would like to point out that the correlation parameter ρxω – and 

more generally any correlation coefficient ρ that appears in this chapter – is very sensitive 

to small amounts of spatio-temporal coupling, but saturates to a near-unity value for 

extremely large amounts of coupling (this situation is explored in more details in Section 

5.5). 

5.3 Experimental measurements 

We now present a simple arrangement (Figure 5.2) that we used to measure the 

intensity distributions I(x,λ) and I(y,λ), and we show how to calculate ρxλ and ρyλ from 

experimental data. 

The beam under test is first dispersed in the horizontal plane by a diffraction 

grating G1, and the diffracted order m1 = 1, focused by a cylindrical lens, illuminates a 

digital camera. Simultaneously, the specular reflection (m1 = 0) from G1 is sent onto a 

second grating G2 that disperses the beam vertically in a Littrow configuration so that all 

the beams of interest are contained in the same horizontal plane; the first order (m2 = -1) 

of G2 is focused by a second cylindrical lens and illuminates the same digital camera. By 

blocking the order m1 = 1 from G1, the camera records I(x,λ), while by blocking the order 

m1 = 0, the camera records I(y,λ). 
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Figure 5.2. Apparatus used to record I(x,λ) and I(y,λ). G1 diffraction 
grating (dispersing in plane); L1 cylindrical lens (collimating in plane); G2 
diffraction grating (in Littrow, dispersing out of plane); L2 cylindrical lens 
(collimating out of plane). 

Once the two images have been recorded, extracting the parameter ρxλ and ρyλ 

from I(x,λ) and I(y,λ) is a direct application of Equation (5.1), as long as the integrals are 

replaced by discrete sums. As stated in Section 5.2, it is not necessary to calibrate the 

axes of the digital camera: x, y and λ can simply refer to pixel numbers. Additionally, we 

use the fact that the wavelength axis can be either horizontal or vertical. However, 

Equation (5.1) does require that the function I(x,λ) be centered with respect to its axes. 

When pixel numbers are used, this is never the case, and therefore it is easier to rewrite 

Equation (5.1) in the case of un-centered, discrete distributions. To do so, we first 

introduce the moments µpq of the intensity distribution I(x,λ): 

  
,

( , ) p q
pq

x
I x x

λ

µ λ λ≡ ∑  (5.6) 
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The spatial chirp parameter ρxλ is then computed using the following equation, 

which is a convenient form of Equation (5.1) that does not require the data I(x,λ) to be 

centered: 

  11 01 10
1/ 2 1/ 22 2

20 10 02 01

xλ
µ µ µρ

µ µ µ µ

−
=

⎡ ⎤ ⎡ ⎤− −⎣ ⎦ ⎣ ⎦
 (5.7) 

Note that some devices are able to detect spatial chirp without the complete 

measurement of I(x,λ) [9]. In that case the spatial chirp parameter ρxλ may be calculated 

using Equation (5.2) instead. 

Because Equation (5.7) involves sums on the entire image, it is likely to include 

various background effects, such as scattered light or thermal noise, that might affect the 

recorded image, in particular in regions where the intensity I(x,λ) is low. To mitigate 

these effects, it is desirable to apply a threshold to I(x,λ) before calculating ρxλ, by setting 

to 1 any values of the intensity that are above a pre-defined threshold, and setting the 

others to 0 (see Figure 5.3 for an example). As a simple alternative, it is possible to let the 

camera saturate a large portion of the trace, and only retain the saturated values (i.e., 

setting non-saturated values to zero) before applying Equation (5.7). We found both 

methods to be consistent and equivalently robust to noise, and numerical simulations 

show that they yield the same result as a direct application of Equation (5.7). 

In summary, Equation (5.6) and (5.7) provide a simple, efficient and robust 

method to calculate ρxλ. This procedure is extremely well adapted to data-processing 

computer programs like MATLAB, and allows easy monitoring of the spatial chirp in 

real time during the alignment of complex ultrafast laser systems. 

89 



5.4 Experimental results 

We applied this method to monitor spatial chirp as we aligned a mode-locked 

Ti:sapphire laser with an external pulse compressor seeding a chirped-pulse amplifier 

(Quantronix RGA 4800). The apparatus was set up as described above, and images were 

captured by a 1024×728 Firewire digital camera (Sony XCD-710) directly in MATLAB 

where the parameters ρxλ and ρyλ were calculated and displayed in real time. 

 

Figure 5.3. Typical raw experimental data obtained during real-time 
monitoring of a Ti:sapphire oscillator and its external prism pulse 
compressor, showing the parameters ρxλ (top row) and ρyλ (bottom row) 
obtained after applying a threshold on the measured images. (a) Oscillator 
output before the external pulse compressor. (b) External pulse compressor 
output, misaligned in the vertical plane. (c) External pulse compressor 
output, adjusted in the vertical plane. 

We should point out that in this study we chose to monitor spatial chirp as an 

example; of course, it is well known that spatio-temporal distortions from a stretcher or a 

compressor arise from residual angular dispersion [51]. However, as the pulse emerging 
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from these devices propagates in free space, angular dispersion results in spatial chirp, 

and minimizing spatial chirp in the far field amounts to minimizing residual angular 

dispersion. 

To ensure a proper alignment of the gratings and cylindrical lenses in the setup, 

we used a reference pulse that was spatially filtered using a single-mode fiber. We then 

monitored the values of spatial chirp along x and y as we aligned the system (Figure 5.3). 

Table 5.1 shows typical values of spatial chirp that we found during this procedure. A 

misaligned stretcher exhibits typical values of ρ = 0.50–0.60, and occasionally values as 

high as 0.80 or 0.90. Realignment of a retro-reflector inside the unit brought ρ to values 

typically below 0.20. Even smaller values are obtained after amplification and re-

compression, which we attribute to the spectral clipping that happens in our compressor 

unit. During these alignment procedures, beam pointing changes resulted in deviations of 

ρxλ on the order of 0.01, which can be roughly considered as the experimental detection 

limit of our setup. 

Table 5.1. Typical values of spatial chirp measured in different ultrafast 
optical systems. 

Laser system |ρxλ| |ρyλ| 
Ti:sapphire oscillator (spatially filtered) <0.01 <0.01 
Ti:sapphire oscillator <0.05 <0.05 
Ti:sapphire oscillator (with an external pulse compressor) 0.05–0.10 0.05–0.10 
Misaligned pulse stretcher in a CPA 0.20–0.50 ~0.60 
Realigned pulse stretcher in a CPA 0.20 <0.01 
CPA output pulse (stretched, amplified, recompressed) 0.05–0.20 0.05–0.20 
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5.5 Analogy with pulse broadening and extension to other distortions 

There is a perfect analogy between the effects due to dispersion, and those due to 

spatio-temporal distortions. The first-order cause of pulse broadening due to dispersion is 

often characterized by the group-delay dispersion, dτ/dω, although this can also be 

considered as a temporal variation of the instantaneous frequency ωinst at a constant rate 

dωinst/dt. In analogy with Equation (5.2), it is possible to define a temporal chirp 

parameter ρωt, normalized by the pulse duration ∆t and the bandwidth ∆ω, and that 

satisfies: 

  inst
t

dt
dt t dω

dω ω τρ
ω ω

∆ ∆
= =
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 (5.8) 

The temporal chirp parameter ρωt can also be defined in a form similar to 

Equation (5.1) by considering the Wigner distribution of the pulse IW(ω,t). As an 

example, consider a chirped Gaussian pulse with a bandwidth ∆ω and a group-delay 

dispersion dτ/dω: 
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The Wigner distribution of this pulse is given by [48]: 
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Note the presence of the coupling term t − (dτ/dω)ω, whose ω-dependent term 

becomes important when dτ/dω  ≠ 0 (i.e., ρωt ≠ 0), and which is similar to the coupling 

term, x − (dx/dω)ω, that arises in the case of spatial chirp (ρxω ≠ 0). 

It is very instructive to consider the relation between ρωt and the pulse duration ∆t 

because dispersion effects are easily and intuitively interpreted in the time domain. 

Figure 5.4 shows the dependence of the pulse duration (normalized to its Fourier limit) 

with ρωt. It is obvious that the parameter ρωt is very sensitive to small amounts of 

dispersion: a value of ρωt = 0.30 corresponds to a pulse stretched by only 5%, which is 

acceptable in many situations. On the other hand, very large stretching ratios, such as 

those obtained by pulse stretchers in CPA systems, correspond to values of ρωt very close 

to 1, and rapidly become indistinguishable. Thus, these correlation coefficients are ideal 

for monitoring ultrafast systems that must approach the Fourier limit, but less than ideal 

for cases in which one is deliberately attempting to introduce massive amounts of these 

distortions.  

In this respect, it is also interesting to compare the normalized parameters that we 

introduce here with another normalized parameter that was proposed for the study of 

spatio-temporal distortions in general: the degree of spatio-temporal uniformity µ [71]. 

This parameter is calculated from the spatially and spectrally resolved electric field 

amplitude: 
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The degree of spatio-temporal uniformity µ may be measured experimentally 

using linear techniques, and it describes all possible spatio-temporal couplings, which 

can be convenient in some cases: µ = 1 corresponds to a pulse free of spatio-temporal 

distortions, while 0 < µ < 1 indicates that some distortions are present. However, the 

parameter µ is not very sensitive to small amounts of spatio-temporal distortions. As 

shown in Figure 5.5 in the case of spatial chirp, there is little change in µ in the region of 

small distortions (ρxω  0).  

 

 

Figure 5.4. Normalized temporal chirp parameter ρωt as a function of pulse 
broadening. Because pulse-front tilt also results in pulse broadening, this 
curve can also represent ρxt, as well as ρxω if pulse broadening is replaced 
by beam magnification along x. 
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Figure 5.5. Numerical simulations of the degree of spatio-temporal 
uniformity µ as a function of the spatial chirp parameter ρxω in the case of a 
Gaussian beam. 

Due to the analogy between spatial and temporal chirp, it seems logical to impose 

equivalent tolerances on ρωt and ρxω. In practice, |ρ| ≤ 0.30 or 0.40 seems a reasonable 

condition to aim for. These considerations are also valid for the parameters ρxt, ρkω and 

ρkt, which can be used to measure pulse-front tilt, angular dispersion, and angular delay, 

respectively, as long as the intensity distributions I(x,t), I(kx,ω) and I(kx,t) are known: 

  

( , )
 (pulse-front tilt)

( , )
(angular dispersion)

( , )
 (angular delay)

xt

x x
k

x

x x
kt

x

dxdtI x t xt

x t
dkd I k k

k

dkdtI k t k t

k t

ω

ρ

ω ω ω
ρ

ω

ρ

≡
∆ ∆

≡
∆ ∆

≡
∆ ∆

∫∫

∫∫

∫∫

 (5.12) 

At least to some extent, all of these spatio-temporal distortions are present at the 

same time in real pulses. It is an experimental challenge to control all these distortions, 

especially considering the fact that they are often entangled. Pulse-front tilt, for example, 

can be caused by angular dispersion [107] or simultaneous spatial and temporal chirp 
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[108]. In the latter scenario, it is possible to derive an exact expression for pulse-front tilt 

in the ideal case of Gaussian pulses and beams: dt/dx = (dτ/dω)×(dω/dx). This formula 

can be expressed in terms of normalized ρ-parameters as well: ρxt = ρxω×ρωt (see Figure 

5.6 for an example). For more complex pulses however, closed-form expressions for 

relationships between spatio-temporal distortions become difficult to establish, and from 

a practical point of view it is preferable to aim at maintaining all the various ρ-parameters 

below a certain threshold (e.g., 0.30) that eventually depends on the overall spatio-

temporal pulse quality that is sought. 

 

Figure 5.6. Temporal profiles of an ultrashort pulse with increasing 
amounts of positive temporal chirp, and hence with increasing values of 
ρωt. The pulses have a central wavelength of 480 nm, and 35 nm of 
bandwidth. (a) ρωt = 0.00 (transform limit). (b) ρωt = 0.30 (5% 
broadening). (c) ρωt = 0.60 (25% broadening). (d) ρωt = 0.90 (130% 
broadening). 

 

Figure 5.7. Spatio-temporal profiles of an ultrashort pulse with increasing 
amounts of temporal and spatial chirp, and hence with increasing values of 
ρxt. The pulses have a central wavelength of 480 nm, and 35 nm of 
bandwidth. (a) ρxt =  0.00. (b) ρxt = 0.30. (c) ρxt = 0.60. (d) ρxt = 0.80. 
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5.6 Conclusion and perspectives 

We have presented an intuitive description of various spatio-temporal distortions 

in terms of a set of normalized correlation coefficients. Spatial chirp, pulse-front tilt, 

angular dispersion and angular delay, and also temporal chirp, can all be described to first 

order by dimensionless parameters that vary in the range [-1,1] and readily indicate the 

severity of these distortions. These parameters are especially sensitive to small amounts 

of distortion. We also presented a simple, practical apparatus allowing the real-time 

monitoring of the corresponding spatial-chirp parameters ρxλ and ρyλ. We believe that 

these parameters will help better understand spatio-temporal distortions and their 

consequences, and will be used as a benchmark enabling the comparison of the 

performance of ultrafast lasers. 

One obvious restriction of the description of the spatio-temporal distortions 

presented in this chapter is that all these distortions are considered at a fixed plane along 

the optical axis. While it seems intuitive that some distortions (e.g., angular dispersion) 

should remain unaffected by free-space propagation, it is obvious that others (e.g., spatial 

chirp) can evolve as a short pulse propagates. Indeed, angular dispersion can be regarded 

as the source of spatial chirp. 

As an example, Figure 5.8 shows a numerical simulation of the build up of spatial 

chirp along the direction of propagation of a beam with angular dispersion at z = 0. Such 

preliminary simulations suggest that the characteristic distance with which spatial chirp 

appears in the beam scales as ρkω
-1/2. Further work is needed to confirm such a trend and 
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to generalize it to the other spatio-temporal distortions (pulse-front tilt and angular 

delay), especially in the presence of temporal dispersion. 

 

Figure 5.8. Numerical simulation of the increase of spatial chirp ρxω with 
free-space propagation for a Gaussian beam of Rayleigh range zR and 
initial angular dispersion ρkω = 0.50 at z = 0. 

Another possible extension of the work presented in this chapter is a definition 

and study of normalized spatio-temporal distortion parameters in the case of higher-order 

distortions. Indeed, the ρ-parameters also seem to offer the possibility to describe spatio-

temporal distortions beyond the first order, such as chromatic aberrations in lenses, or 

pulse-front curvature, by considering higher-order cross moments µpq of the relevant 

intensity distributions. Including spectral or temporal phase terms beyond the second 

order would also greatly extend the range of application of any theory of spatio-temporal 

distortions. 
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APPENDIX A 

FREQUENCY-RESOVED OPTICAL GATING 

 

In this appendix, we describe frequency-resolved optical gating (FROG), the 

standard technique that we use to obtain the temporal (or spectral) intensity and phase of 

femtosecond pulses, notably the reference pulses that are used in many experiments 

presented in this study. FROG is an extension of the intensity autocorrelation that can be 

implemented experimentally as a compact single-shot device. 

A.1 Intensity autocorrelation of femtosecond pulses 

Among the first attempts to measure the temporal shape of femtosecond pulses is 

the use of the intensity autocorrelation. The pulse under test, E(t), is mixed in a doubling 

nonlinear crystal with a delayed replica, E(t – τ), to obtain the signal field E(t)E(t − τ). 

For pulses with a center wavelength of λ0 = 800 nm, the nonlinear crystal of choice is 

often BBO (β-barium borate) because of its extended transparency and phase-matching 

properties down to ~200 nm, its large nonlinear coefficients and high damage threshold 

[109]. Figure A.1 shows a typical intensity autocorrelation setup. 
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Figure A.1. Setup to measure the non-collinear second-harmonic 
background-free intensity autocorrelation. 

To record the intensity autocorrelation, the delay τ between the two replica of the 

pulses is scanned while the intensity of the sum-frequency signal, I(t)I(t − τ), is recorded 

at the second harmonic (~400 nm) with a slow detector to yield the “background-free” 

intensity autocorrelation [21]: 

  ( ) ( ) ( )A I t I t dtτ τ
+∞

−∞

= −∫   (A.1) 

Obviously, the intensity autocorrelation function, A(τ), must contain information 

regarding the input pulse duration, ∆t, since it must be maximum at τ = 0 and must vanish 

for τ  ∆t. Indeed, the root-mean-square (rms) width of the intensity autocorrelation is 

simply 2  times the rms width of the pulse intensity duration [22, 110]. The intensity 

autocorrelation therefore gives a good estimate of the pulse duration, but Equation (A.1) 

clearly shows that it is insensitive to the (temporal) phase of the pulse under test. 
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A.2 Spectrally-resolved intensity autocorrelation 

To overcome the limitations of the intensity autocorrelation, various schemes 

have been proposed and implemented [21, 34, 111-113]. Among them, one is a simple 

extension of the intensity autocorrelation: FROG is just a spectrally-resolved intensity 

autocorrelation. To measure a FROG “trace” one merely replaces the photo-detector used 

to measure the intensity autocorrelation by a spectrometer that resolves in frequency the 

signal field generated in the nonlinear crystal. Mathematically, the FROG trace is 

therefore a two-dimensional function of delay τ and frequency ω: 

  
2

( , ) ( ) ( ) i t
FROGI E t E t e dtωω τ τ

+∞
−

−∞

= −∫   (A.2) 

Unlike Equation (A.1), Equation (A.2) depends on the temporal phase of the input 

electric field. However, a closed-form inversion of Equation (A.2) is not possible, and 

instead an iterative algorithm is used to find the electric field E(t) whose FROG trace best 

matches the recorded experimental trace [113]. A typical FROG setup is pictured on 

Figure A.2. In this case two pulses are crossed in a doubling crystal to generate a sum-

frequency signal, but other geometries are possible depending on the experimental 

situation [8]. 
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Figure A.2. Setup to measure the non-collinear second-harmonic FROG 
trace. 

A.3 Single-shot geometry 

The setup pictured in Figure A.2 requires a mechanical scan of a delay line to 

record the two-dimensional FROG trace. This requires a fine optical alignment of the 

various elements and prevents a single-shot operation of the device. To overcome these 

limitations, compact single-shot FROG devices have been developed. The beam-splitter 

and delay line are replaced by a Fresnel bi-prism so that two beams cross within the 

nonlinear crystal that is imaged onto a detector [80, 114]. The device is further simplified 

by using a long nonlinear crystal to decrease its phase-matching bandwidth so that the 

sum-frequency signal that is generated in the crystal is angularly dispersed according to 

the phase-matching angle [80]. Figure A.3 depicts how a delay-scanning second-

harmonic FROG setup can be converted to a single-shot geometry. 
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Figure A.3. Delay-scanning second-harmonic-generation FROG setup 
(top) replaced by an equivalent single-shot geometry (bottom). 

In this single-shot geometry, FROG traces are recorded using a two-dimensional 

digital camera. The same iterative algorithm can be used as for delay-scanning FROG to 

retrieve the electric field of the input pulse, E(t). The range of pulses that can be 

measured with a given device is mainly determined by the crystal and the geometry that 

are used. Table A.1 lists the characteristics of the devices we have used in this study to 

measure the temporal (and spectral) dependence of the reference pulses. 

Table A.1. Characteristics of the single-shot FROG devices used in this 
study. 

Model number 8−20 8−50 15−100 
Laser wavelength 800 nm 800 nm 1.5 µm 
Pulse duration range 20−200 fs 50−500 fs 100−1000 fs 
Max. spectral content 160 nm 50 nm 60 nm 
Spectral resolution 4 nm 2 nm 1.7 nm 
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