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SUMMARY 

An analytical investigation of the effects of finite rate dis

sociation and recombination reactions on the base pressure for super

sonic, two-dimensional, laminar flow is presented,, The Chapman-Korst 

flow model and the ideal dissociating gas model are usedo The problem 

considered has negligible initial boundary layer thickness. The re

attachment region of the flow is assumed to be chemically frozen and 

isentropic. The recompression of the inviscid flow is assumed to be 

governed by the frozen oblique shock relations. The resulting model 

requires detailed investigation of two regions -- the inviscid, non-

equilibrium expansion into a constant-pressure region and the laminar 

free shear layer with finite rate reactions, 

The exterior inviscid expansion into a constant-pressure region 

is treated by the method of characteristics. All flow properties 

along the constant-pressure boundary are found to vary monotonically, 

in contrast to the overexpansion observed in the nonequilibrium expan

sion around a convex corner. The compression waves generated by the 

chemical reactions in the expansion fan reflect from the constant-pres

sure boundary as expansion waves, thus eliminating the possibility of 

a recombination shock wave. As a matter of general interest, a line

arized theory for the inviscid expansion is also presented. 

The laminar, constant-pressure mixing region is investigated by 

means of an implicit finite difference method. The nonequilibrium 

boundary layer equations are first transformed to the incompressible 



XVI1 

form by means of a Howarth type of transformation and then to a finite 

coordinate range, in the normal direction, by means of a hyperbolic 

tangent transformation. 

The results indicate that finite reaction rates do not signifi

cantly influence the velocity. The temperature and degree of dissoci

ation profiles for finite rate flow are found to be bounded by the 

solutions for frozen and equilibrium flow. 

Chapman's analysis of the laminar free shear layer is extended 

to the case of frozen flow with unity Lewis number. The finite differ

ence solutions for frozen flow with constant Prandtl number, Schmidt 

number, and density viscosity product agree well with the results of 

the extended Chapman theory. However, these results do not compare 

well with the finite difference solutions with variable properties. 

The two regions are coupled and several base pressure problems 

are investigated. The closed base solutions are obtained by interpo

lation of the base bleed. The results are summarized in the following 

statements. 

1. Finite rate reactions in the inviscid exterior flow tend to 

cause an increase in the base pressure. This agrees with the predic

tion of Resler that the base pressure on a body in equilibrium flow is 

greater than the base pressure on a body in frozen flow. 

2. If the recirculation region is hot (on the order of the 

freestream stagnation temperature), chemical recombination increases 

the dividing streamline temperature, thus decreasing the dividing 

streamline kinetic energy. This tends to increase the resulting base 

pressure. 
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3. If the recirculation region is cool, the dividing streamline 

temperature is decreased due to dissociation and the kinetic energy is 

increased. The base pressure for this condition tends to decrease as 

the flow varies from frozen to equilibrium flow. 



1 

CHAPTER I 

INTRODUCTION 

Background and Review of Recent Literature 

The development of rockets and re-entry vehicles has produced a 

number of new aerothermodynamic problems and revived interest in many 

unsolved problems. A criterion of re-entry vehicle design, that the 

vehicle be able to survive the intense heating while decelerating 

through the atmosphere, leads to the use of a blunt body whose form 

drag is much greater than its friction drag. In problems where the 

heat transfer is not of primary concern, such as artillery shells and 

supersonic wings with finite trailing edges; the reduction of drag is 

often important. All of these problems share two important similari

ties: they involve supersonic velocities, and they have a region of 

separated flow over the base. 

Much interest has centered lately on the real gas effects 

associated with the base flow. The trail of ionized gas created by a 

re-entry body gives a characteristic radar return which can be used 

to identify the body. The analysis of the high heat transfer rates 

encountered in clustered rocket engines requires a knowledge of the 

high temperature flow in the base region. 

Nash[l] and Lykoudis[2] have presented reviews of the investi

gations into base flow and other associated separated flow phenomena. 

Lykoudis presents more than 180 references which were available in 

January of 1965. Of the 19 base flow references cited in this thesis, 
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8 have been completed since 1965, giving some idea of the effort di

rected toward this problem. 

Chapman[3] pointed out the indeterminate character of an entirely 

inviscid solution to the supersonic base flow problem and concluded that 

the effect of viscosity must be considered to obtain a unique solution. 

He introduced a physical model of the near wake, and gave a qualitative 

description of the effect of viscosity on the base flow. 

Shortly thereafter, two methods of analysis for the base flow, 

the Crocco-Lees method and the Chapman-Korst method, were introduced. 

The former method is based on the Crocco-Lees[4] theory for the inter

action between dissipative and nearly isentropic streams. By consider

ing an overall picture of the base flow, the Crocco-Lees theory attempts 

to describe the balance which must exist between the external inviscid 

flow and the internal dissipative flow governed by the transport of mo

mentum between the two flows. The dissipative mixing is described by 

semi-empirical integral quantities which are. adjusted to account for 

laminar or turbulent dissipation. 

The Chapman-Korst method is based on the independent works of 

Chapman, et al.[5] and Korst, et al.[6] which advanced a simplified 

model of the supersonic base flow for laminar and turbulent flows, re

spectively. The base or recirculation region and the exterior inviscid 

flow are assumed to be separated by a thin viscous shear layer. The 

Chapman-Korst approach allows the flow to be subdivided into its con

stituent parts. These parts are then analyzed to discover their role 

in determining the base pressure. A unique solution to the problem is 

obtained by a suitable matching of these regions. 
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The supersonic, laminar flow over the upper half of a two-di

mensional base is illustrated in Figure 1. The flow is symmetric about 

the centerline and thus only half of the flow need be considered,, 

The flow over the forebody is regarded as steady, uniform, and 

supersonic, except near the body where a thin boundary layer is formed. 

At the corner, the flow expands and separates into a region of constant 

pressure. Since there is a subsonic region in the attached boundary 

layer, it is possible for the base region to exert an influence on the 

flow upstream of the corner. Theoretical investigations by Weiss and 

Nelson[7] and experimental results of Hama[8] indicate that the expan

sion process is influenced for several boundary layer thicknesses up

stream. This influence causes a larger initial turning angle of the 

inner boundary of the separated flow compared to the values computed 

neglecting the upstream influence. At hypersonic Mach numbers, this 

overexpansion results in the formation of a separation shock wave. In

vestigations by Weiss and Weinbaum[9] have shown, however, that for 

initially small supersonic Mach ?numbers, the departure from Prandtl-

Meyer theory is not severe. 

Except for cases involving large amounts of bleed into or from 

the base, the recirculation region is a region of relatively low ve

locity flow. Therefore, most investigators have assumed it to be a 

semi-infinite region of stagnant fluid and thus also a region of con

stant pressure. Attempts have been made by Viviand and Berger[lO], 

Weiss[ll], and others to account for the conservation of angular mo

mentum in this region with an approximate solution to the Navier-

Stokes equations. This consideration results in the correct dependence 
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Uniform, Steady, 2-Dimensional /Expansion 
Supersonic Flow / Fan 

Oblique 
Shock 

Recirculation 
Region 

Wake Centerline 

a. Closed Base 

Stagnating 
Streamline 

b. Base Bleed 

Figure 1. Physical Model of the Base Flow 
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on the Reynolds number at lower Reynolds numbers. Weiss[ll] has con

cluded that for Reynolds numbers (based on the forebody length) larger 

than lCr , the flow takes on a shear layer character and for Reynolds 

numbers greater than 108 , an essentially inviscid core is formed and 

there is no longer a Reynolds number dependence. 

For high Reynolds numbers, the expanded exterior inviscid flow 

is separated from the recirculating region by a thin viscous shear 

layer. A dividing streamline, which defines the inner boundary of the 

fluid originating upstream, emerges from the corner. The shear layer 

mixing occurs at a constant pressure, the value of which is determined 

by the adjacent inviscid stream. This fact has been substantiated by 

the experiments of Chapman, et al.[5] and Charwat and Yakura[l2] for 

moderate supersonic Mach numbers and Reynolds numbers of 105 and 

larger. 

The free shear layer has received much attention, since it oc

curs in other separated flow phenomena such as flow over cavities. 

Chapman[l3] has obtained a similar solution for the asymptotic limit 

as the ratio of the initial boundary layer thickness to the shear layer 

length approaches zero. By assuming the product of density and vis

cosity coefficient to be constant, the momentum and energy equations 

are uncoupled, resulting in a constant: velocity along the dividing 

streamline. Chapman also reports a solution for variable pjj, resulting 

in a dependency of the dividing streamline velocity on the Mach number. 

Denison and Baum[l4], Sills[l5], and Lew[l6] have employed finite 

difference methods to investigate the development of a free shear layer 

with an initial Blasius flat plate profile. Denison and Baum use the 
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Crocco coordinate system and the assumptions of unity Prandtl number 

and constant pjj,, while Sills has employed a finite range transfor

mation, and the assumptions of constant PU and constant but arbitrary 

Prandtl number. Although the solutions in references [14] and [15] 

approach Chapman's solution as the ratio of the flat plate length to 

the shear layer length approaches zero, the authors conclude that, for 

most practical applications, the length of the near wake is much too 

short for the Chapman profile to be appropriate. 

As the exterior inviscid flow approaches the wake centerline, 

it is turned back parallel to the centerline. Chapman[5] assumes that 

the recompression is accomplished by a gradual turning so that the 

shock wave does not form near the neck> and the exterior recompression 

can be treated as isentropic. Korst[6j, however, considers the turning 

to be abrupt and thus governed by the oblique shock wave relations. 

Both Chapman and Korst assume that the recompression of the 

shear layer occurs isentropically. The stagnating streamline (See 

Figure lb.) is defined as the streamline which separates the recircu

lating flow from the flow which passes downstream. The fluid above 

the stagnating streamline has sufficient kinetic energy to negotiate 

the pressure rise, while that below the stagnating streamline is re

versed and contained in the recirculating region. Since for steady 

flow the mass in the recirculating region is conserved, the mass flow 

between the dividing streamline and the stagnating streamline must be 

the rate of mass bleed into the base. A unique base pressure solution 

corresponds to the solution which satisfies both of the above require

ments, i.e., the conservation of mass in the recirculating region and 
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the conservation of mechanical energy on the stagnating streamline. 

Both experimental evidence and physical reasoning indicate that 

the reattachment actually occurs in a region of continuous positive 

pressure gradient. Because of the viscous interaction, the pressure at 

reattachment is less than the maximum. Nash[l7], in his investigation 

of turbulent reattachment, has concluded that the neglect of the initial 

boundary layer combined with the reattachment pressure assumption lead 

to cancelling errors. 

Lykoudis[2] has pointed out that the effects of finite rate 

chemistry are relevant since at higher attitudes where the flow is 

laminar, the flow will not, in general, be in equilibrium. Considera

tion of high temperature gasdynamic effects has been confined primarily 

to ionized far wake studies. Lew[l6] has proposed research into dis

sociating base flows, but as yet none has been reported. 

Purpose of the Research 

This thesis is concerned with the effects of finite rate dis

sociation-recombination reactions on the base pressure. The flow is 

analyzed by using relatively simple models -- the ideal dissociating 

gas model and the Chapman-Korst flow model. 

The exterior inviscid flow is investigated by the method of 

characteristics for reacting flows. A linearized theory is developed 

and compared with the method of characteristics. 

Non-similar solutions for the laminar shear layer are obtained 

by a finite difference method. The effects of variable properties and 

finite reaction rates on the velocity, species concentration, and 

temperature profiles are investigated. A comparison is made between 
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frozen, finite rate, and equilibrium profiles. 

Finally, the base pressure is computed and compared with the 

results of Chapman's solution. 
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CHAPTER II 

FLOW MODEL AND ANALYTICAL APPROACH 

As previously noted, one advantage of the Chapman-Korst model 

is that it divides the flow field into regions which are analyzed 

independently. It is now possible to analyze these regions to de

termine which regions are influenced by finite rate chemistry, in 

particular, dissociation-recombination reactions. 

Flow conditions will be chosen to illustrate the effects of 

finite reaction rates. Experiments of Chapman, et al.[5] indicate that 

the stability of shear layers increases with an increase in Mach num

ber, and at a Mach number of 4, they can remain laminar for Reynolds 

numbers of the order 10s. For this investigation, the flow will be 

restricted to relatively high Reynolds numbers (104 < Rey < 10 s), moder

ate supersonic Mach numbers (2 < Mco < 4), and shear layers, which are 

assumed to be laminar. 

The initial boundary layer thickness is assumed to be vanish-

ingly thin and upstream influence is neglected. 

The expansion of the uniform, two-dimensional, supersonic flow 

of a perfect gas into a constant-pressure region is a simple problem. 

There is no characteristic length in the problem and the flow consists 

of two uniform parallel flows joined by a Prandtl-Meyer fan. The pro

blem is, in fact, identical to the problem of the flow over a convex 

corner. For flows with finite rate reactions, however, a relaxation 

length enters through the fluid properties and the problem is extremely 
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complex. The flow downstream of the corner is not uniform, and the 

boundary of the flow is curved. 

The boundary conditions for the shear layer must now include the 

temperature and degree of dissociation gradients of the inviscid flow. 

Although the mixing is at a constant pressure, flow similarity is not 

preserved since a relaxation length is involved. 

The recirculating region is assumed to be stagnant. The gas in 

this region is in equilibrium. 

A frozen shock recompression of the exterior inviscid flow is 

assumed. Correspondingly, the length of the reattachment region is 

small and the recompression of the stagnating streamline is also as

sumed to be frozen. 

The solution to the base pressure problem can no longer be ex

pressed in closed form. With a given base pressure, the exterior in

viscid flow is computed. This solution gives the boundary conditions 

for the shear layer as well as the recompression shock strength im

mediately adjacent to the shear layer. The shear layer is then computed 

until the reattachment point is reached.. The stagnation pressure pro

file for the shear layer is calculated, and the stagnating streamline is 

identified as the streamline with a stagnation pressure equal to the 

static pressure in the inviscid flow behind the shock. A base bleed 

rate is obtained by calculating the mass flow rate between the dividing 

streamline and the stagnating streamline. By performing a number of com

putations using different base pressure values, a solution for the case 

of zero bleed is obtained by interpolation. 

Based on the postulated flow model, the solutions for the inviscid 
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expansion and the shear layer development must be obtained and then 

coupled to obtain the base pressure. The solutions of these two pro

blems are discussed in the following two chapters. It is noted that in 

addition to being intermediate steps in the solution to the base pres

sure problem, these two problems have additional applications so that 

the methods presented are of further interest. 
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CHAPTER III 

INVISCID EXPANSION OF A DISSOCIATING GAS 
INTO A CONSTANT-PRESSURE REGION 

In this chapter the problem of the supersonic expansion of an 

inviscid dissociating gas into a region of constant pressure is con

sidered. A numerical solution of this problem is obtained by the 

method of characteristics. A linearized solution is obtained which is 

valid for weak expansions. The features of the flow field are dis

cussed and a comparison is made between the two theories. 

Formulation of the Problem 

The conservation equations for the steady, two-dimensional, 

continuum flow of an inviscid, adiabatic, dissociating gas are [18] 

the continuity equation, 

itol + ilex). = 0 (1) 
ox oy 

the momentum equations, 

du du dp n ,0v 

Pu toi + Pv *j + S5 = ° (2) 

pu |2 + p v |2 + |E = o , (3) 
H dx K dy dy 

the energy equation, 

pU 4 (h + \ u2) + pv i7 <h + \ u2> " ° ' (4) 
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the species conservation equation. 

da , da ,_. 
u -r— + v ^— = a) , (5) 

ox oy ' 

an equation of state, 

h = h(p, p, a) , (6) 

and an equilibrium relation, 

ae = ae^Pi p ) ' ( 7 ) 

For the present problem, an orthogonal x-y coordinate system is 

fixed at the corner. The initially uniform freestream is considered to 

be in chemical equilibrium, with the velocity in the x-direction. 

Method of Characteristics 

For supersonic flow, the set of non-linear equations, (1) through 

(7), can be solved numerically, using an extension of the well-known 

method of characteristics of perfect fluid dynamics. 

Derivation of the Characteristic Equations for a Dissociating Gas 

A convenient definition [18] of the characteristic directions is 

that they are the special directions along which a system of partial 

differential equations reduces to a system of ordinary differential 

equations. Along a streamline, defined by 

g = tan 9 , (8) 
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where 9 is the angle of inclination of the streamline, three ordinary 

differential equations can be written. The three equations valid along 

a streamline are the streamline momentum equation, 

pUdU + dp = 0 , (9) 

the species conservation equation, 

Uda - yods = 0 , (10) 

and the energy equation, 

UdU + dh = 0 , (11) 

where ds is a differential element of length along a streamline. 

Along the left running characteristic curve, the compatability 

relation, 

(*h) 
^M2

f - 1 dp + pU2d6 - ) - ^ P , P af(Jodll = 0 , (12) 

d p / P , a 

where dT| is a differential element of length along the characteristic, 

is valid. The left running characteristic direction is defined by 

& = tan(9 + nf) , (13) 

where 

[j, = Arctan I —— J , (14) 

^M|-l 
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and Mf is the frozen Mach number based on the frozen sound speed, af, 

defined in Appendix A, equation (A-11). Written in terms of the thermo

dynamic variables, the frozen sound speed for an ideal dissociating gas 

is 

(4+a)(l+a)R T 

4 = r - ^ • (15> 

The compatability relation, 

*Pf - 1 dp - pU2d9 - T | ^ P : , P afood§ = 0 , 

\dp/p,a 

(16) 

is valid along the right running characteristic curve with incremental 

distance d§, and direction defined by 

£- = tan(0 - p,f) . (17) 

The importance of the frozen Mach number in defining two of the 

characteristic directions was discussed by Wood and Kirkwood[l9] and 

Chu[20]. Since the frozen Mach number is always smaller than the equi

librium Mach number, Mf > 1 is a sufficient: condition for supersonic 

flow. This thesis will consider only flows for which Mf > 1. 

The last term in equations (12) and (16) is indicative of the 

vorticity created by the chemical reactions,. As in the case of a per

fect gas with rotation, it is not possible to integrate equations (12) 

and (16) once and for all. Instead, a step-by-step numerical method 

must be used. 
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For an ideal dissociating gas (see Appendix A), the caloric equa

tion of state is 

h = R [(4 + a)T + ae,l mc 7 dJ (18) 

and the thermal equation of state is 

P = p(l + a)RmT . (19) 

The derivatives (— ] and (z—- j required in equations (12) and (16) 
\Ba/p,p \Sp/p,a 

are thus 

^) = R 

oWp,p m 

3T 
L d (1+of). 

(20) 

and 

|h) = ..R (4 + a)I . 
dp/p,a m p 

(21) 

The governing equations will be written in dimensionless form by 

introducing non-dimensional variables based on freestream conditions: 

u* = T » ) * = - ^ , a n d p * = — E _ _ . 
p p U2 ' 

I^OO CO 

T* = — and 9-
d T 

(22) 

and s * = * I ' *-b and sw = i 

Since there is no geometric length associated with the problem, a 

reference length has meaning only in relation to a relaxation length. 
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It will be shown that t can be expressed in terms of the coefficient of 

the rate equation. 

In dimensionless form, the streamline momentum equation is 

p*U*dU* + dp* = 0 , (23) 

the species conservation equation is 

U*da -• u)*ds* = 0 , (24) 

and the energy equation is 

U*dU* + 

c°° L 
(4 + cv)dT* + (0* + T*)da = 0 , (25) 

where 

and 

E = 
C« R T 

m oo 

I D * = 
oyt 

(26) 

Similarly, the compatability relations (12) and (16), are written 

in dimensionless form as follows: 

A*dp* + B*d0 •• D*dTl* = 0 

A*dp* - B*d9 - D*d§* = 0 

(27) 

(28) 

where 
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and 

A* = J^ - 1 , 

B* = p * U ^ , 

D* = (4^)Pd^)Mf ( l ~ ) M + «><>3 " 3T* }- ) 
tea too 

(29) 

Computational Procedure 

The set of differential equations (23), (24), (25), (27), and 

(28) is solved by a numerical approach in the form of a finite differ-

ence scheme. In the finite difference approximation of the differen

tial equations, average quantities are used for the terms in the coef

ficients. For example, equation (23) is written 

rmn mn n m n m 

where the subscripts m and n denote two neighboring points on a stream

line, with the properties at the point m known and properties at n to 

be determined. The barred quantities are the linearly averaged values 

5m+gn 

where g is any flow quantity. For example 

p * = 
p*+o* Km Fn 

mn 2 

The set of finite difference equations is solved using an 



19 

iterative method. For the first iteration, the values of g are taken 
ton 

to be equal to g . For subsequent iterations, the values of g obtained 

from the preceding iteration are used. The iteration continues until 

the coefficients change less than one tenth of one per cent between 

iterations, 

Referring to Figure 2, the flow properties at points 1, 2, and 3 

are known, and the flow quantities at point. 4 (intersection point of the 

§ and T) characteristics through points 3 and 2, respectively) are to be 

determined. 

From the geometry of Figure 2, the coordinates of point 4 are 

approximated by 

x* = x * + A5* cos(9 9 / i - j l f 9 / i ) == x * + AT]* c o s ( e „ , 4- £ ) "| 
>4 " 2 ^ — ^ 2 4 K f 2 4 / - ~3 U1| .— v~34 P f 3 4 

y% = yf + A§* sin(e24 - £f24) = y* + AT]* sin(e34 + ̂ f 3 4) 

(30) 

This set of equations is solved for the incremental distances 

along the characteristics, A§>* and AT]*, yielding: 

(y*-yf) c o s ^34+^34) " (x |~xf) s i n ^34+^34) 
A | * = '• 

cos(e34+^f34) sin(e24--|If24) - cos(e24-^f24) sin(e34+^f34) 

(y^-yj) c o s (9 2 4 ' ^ f24 ) " ^XS-XJ) s i n ^ 2 4 ' ^ f 2 4 ) 

ATj* = 

ton 

c o s (634+^34) s in(§ 2 4 - i l f 2 4 ) » cos(§2 4-Jl f 2 4) sin(S3 4+il f 3 4) 

Using these values of A§* and AT]*, the coordinates of point 4 are 

determined by equations (30) . 
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Figure 2. Finite Difference Grid for the 
Method of Characteristics 
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Written in finite difference form, the compatability relations 

(27) and (28) become 

A* D* - B* 8 = D* AE* + A D* - B S = F* H24p4 24°4 24ZiS 24F2 24 2 f24 

~^t + B*494 = D*4A71* + A34p* + B3493 = FVc4 

(32) 

where F*. and F* are known to the first approximation. 

The pressure and flow deflection are obtained by solving equa

tions (32), yielding: 

n 
F!4B!4

+F34B24 

A!4B!4+534B54 

(33) 

and 

F34Al4-Ff4Al4 

A?4S?4+A?4B?4 

(34) 

With 9, known, the coordinates of point 5 are determined from the 

intersection of the streamline 4-5 with the line 2-1 (or 1-3). Proper

ties at 5 are obtained by linear interpolation based on the known values 

at points 1 and 2 (or 1 and 3). The incremental streamline length is 

found from 

As* = [(x* - x*)2 4- (y* - y*)2]^ . 

With p* known, the velocity at point 4 is obtained by writing the 
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streamline momentum equation (23) in finite difference form and solving 

for Ut explicitly: 

U* = U* -
4 .5 

p45 45 

p4 • P5V ' (35) 

The temperature is obtained from the energy equation (25), 

T* = T* + 
4 5 

C^45) k (P4 " n 
LP45 

»5 + T J 5 A a 4 - a5 , (36) 

where cy, is the result of the previous iteration. 

Equation (24) is solved for en, as follows: 

^45 
a, = or,. + As* , 

H5 

(37) 

where the averaged temperature used in the calculation of (jo* is based 

on the present iterate of T*. In this thesis, Freeman's form of the 

rate equation (discussed in Appendix A) is used. In non-dimensional 

form, this is 

IB* = 

£Cfp T 
I CO C 

u 
T*nn* 1 - Oi le 

e * 
d 

T* 
P3 

(38) 

Thus a convenient reference length can be written: 

I = 
:fP T

n 

trOO OD 

(39) 
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Initial and Boundary Conditions 

The initial conditions are specified on the frozen wave head 

(Figure 3), which is inclined to the freestream at the Mach angle based 

on the freestream frozen Mach number. The properties along this line 

are specified as the freestream properties. 

The boundary conditions at the corner are used to construct the 

expansion fan. The flow at the corner is frozen since As* = 0, and 

flow properties are obtained from the Prandtl-Meyer and isentropic re

lations with the degree of dissociation frozen at the freestream value. 

For a frozen Mach number, M , the. flow deflection is given by 

the Prandtl-Meyer relation: 

Y+l 

, -Y-l 
t an 

- 1 
£r>f-~0- tan_1 

Y^l 
M - i 

tan'YvM^T- l ) - t a n " 1 ^ ^ - l ) 

(40) 

The isentropic relations give the temperature 

T* = 
1 4 ^ M3. 

Z Ic 

f ' ^ " i 
(41) 

the pressure, 

If - T^" 1 

p * • f 
(42) 

and the density, 
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Frozen 
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Constant Pressure 
Boundary (p=pK) 

> 

Figure 3. Flow Regions for the Supersonic Expansion 
into a Constant-Pressure Region 
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1 

p* = Tfl , (43) 

where the expression for y, derived in Appendix A, is 

4+Qf 
CO 

The frozen Mach number immediately downstream of the corner is 

r e l a t e d to p* by 

1"1Y 1/2 
Y 

a-\M® C1^^)-1! • M 
[y 

At the corner, the flow properties are multi-valued and are di

vided into segments based on a linear division of the Mach number be

tween M and M . The flow quantities for each segment are obtained 
too t D 

from equations (40) through (43) based on the frozen Mach number at each 

division. 

Downstream of the corner, the pressure is constant along the 

streamline which forms the boundary of the flow. The coordinates of a 

point on the boundary, x* and y*, are given by 

x* = x* + As* cos945 = x* + A§* cos(§24 - \^tll) 

y* = y* + As* sin945 := y* + AS* sin(924 - jlf24) 

(45) 

; 

where the subscript 5 indicates the preceding point on the boundary 

streamline, and 2 is the adjacent point on the right running 
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characteristic passing through 4. Solving for the incremental dis

tances yields 

As* = 

AS* = 

(y*-y*) cos^24',J'f24) " (*%~XP sin^24"1^f24) 

sine45 cos(024-^f24) - cos645 sin(524-Jlf24) 

(x*-x*) sin§45 - (y*-y|) cos§45 

sin045 cos(924-pJf24) - cos945 sin(9^-^24) 

(46) 

Using the known value of p*, the flow deflection, 0,, is c 

puted from the first of equations (32), 

om-

e, = 
A24Pb J24 

B<v 
*24 

(47) 

Since the pressure is constant along the boundary streamline, 

by equation (35), the velocity is constant. The temperature is given 

by 

T* = T£ + 
4 5 

(eg+Tfo) 
(4+«45> 

aU - a5 
(48) 

and the degree of dissociation is given by 

a4 = a5 + u f As* ' (49) 

The set of equations (45) through (49) is iterated until the non-
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linear coefficients change less than one tenth of one per cent between 

iterations. 

This investigation is concerned primarily with the resulting 

flow properties along the constant-pressure boundary. As shown in 

Figure 3, the general difference scheme is used to advance the calcula

tions of the right running waves from the initial frozen wave head 

through the expansion and relaxation region until it intersects the 

constant-pressure boundary. 

Results and Discussion 

A test case for frozen flow was run on the Burroughs B 5500 com

puter to check the computer program. The resulting flow field agreed 

with simple wave theory. 

Since the expansion of a dissociating gas into a constant-pres

sure region has not been previously reported, there is no existing so

lution for comparison with the present results. Flow around a convex 

corner has been reported (see, for example [21] and [22]), however, and a 

comparison of the flow features between the two problems will be made. 

The flow patterns for the two problems are shown in Figure 4. 

In the problem of flow around a convex corner, the pressure at the 

corner drops from p* to p*,.. Downstream of the corner, the pressure 
oo WI 

along the wall rises and overshoots the final value, which it then 

approaches from above. The temperature and degree of dissociation 

along the wall show a monotonic increase and decrease respectively. 

Feldman[23] has suggested that the compression waves reflected from 

the solid wall may coalesce to form a recombination shock wave. 

Appleton's[21] investigations, using an ideal dissociating gas, showed 
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Figure 4. Illustration of the Nonequilibrium Expansion Problems 
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no trace of a recombination shock, but later works by Glass and Takano 

[22] revealed the presence of a weak shock. The gas model used by 

Glass and Takano assumes the vibrational modes to be in equilibrium at 

the local temperature, and they suggest: that: this assumption is proba

bly responsible for the shock. 

A solution was obtained for the expansion of oxygen from 4.746 

to 1.414 atmospheres. The initial uniform freestream has a Mach number 

of 2.58, a temperature of 3720 K, and a corresponding degree of disso

ciation of 0.1816. The initial frozen flow deflection was 15,81 degrees. 

These initial conditions were used by Glass and Takano[22] for the ex

pansion around a 15 corner. 

The temperature and degree of dissociation along the constant-

pressure boundary are shown in Figures 5 and 6, respectively. Follow

ing the frozen expansion, the temperature increases monotonically. The 

degree of dissociation decreases monotonically. 

The flow deflection, shown in Figure 7, decreases monotonically. 

No overshoot of the flow deflection corresponding to the pressure over

shoot of the fixed wall problem of references [21] and [22] was ob

served. For the constant-pressure boundary problem, the right running 

: compression waves resulting from the chemical relaxation reflect from 

the constant-pressure boundary as left running expansion waves. No 

recombination shock appears. 

The frozen Mach number along the constant-pressure boundary is 

shown in Figure 8. The velocity is constant along the boundary so that 

the Mach number is influenced by the degree of dissociation and the 

temperature. These effects are opposing (Figures 5 and 6, and equation 
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(15)), but the temperature effect dominates and the frozen Mach number 

decreases from the initially frozen value. 

Linearized Theory 

Clarke[24] has derived the linearized, equations for a dissoci

ating gas. By employing a Laplace transform method, he has obtained 

an exact solution to the linearized equations for the expansion around 

a convex corner. 

In this section, the linearized equations and boundary condi

tions for the two-dimensional, supersonic expansion of a dissociating 

gas into a constant—pressure region are derived. The problem is solved 

by a Laplace transform method. 

Derivation of the Linearized Equations for a Dissociating Gas 

The basic equations, sometimes called the acoustic equations, 

are derived here for reference in the solution. The method of deriva

tion is similar to that of Vincenti and Kruger[l8]. 

The equations of motion for the steady, two-dimensional flow of 

an inviscid, dissociating gas were presented in the previous section 

as equations (1) through (7). For the derivation of the acoustic equa

tions, it is advantageous to write the energy equation (4) in the 

following form: 

S n j_ dh d£ dp n ,cnN 

PU S + PV 3y • u Sx ~ v d? = ° ' (50) 

The linearization procedure begins with the introduction of 

small disturbance quantities: 
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p = 

T = 

P = 

h = 

P (1 + p ' ) 
CO 

T (1 + T ' ) 
CO 

p (1 + p') 
CO 

h (1 + h ' ) 

U = U (1 + u ' ) 
CO 

V == U V1 

CO 

01 ~ 01 +01* 

a = a + otx 

e co e 

(51) 

where the subscript °° indicates freestream conditions. The local equi

librium degree of dissociation, a , is the value that ct would have if the 

flow were in equilibrium at the local values of p and p. 

The primed quantities represent small disturbances from the un

disturbed freestream. The quantities at* and a' are both much smaller 
e 

than a o All other primed quantities and their derivatives are assumed 
co i i 

to be much less than, unity, so that to a first approximation, the pro

ducts of prime quantities can be neglected. 

If the disturbances are small, it is possible to introduce the 

small disturbance form of the rate equation, 

LU 

a -o> e 
(52) 

where T i s a c h a r a c t e r i s t i c time of d i s s o c i a t i o n defined by 

1 

oWp,p 

(53) 

Substituting equations (51) and (52) into equations (1), (2), 

(3), (50), (5), (6) and (7), and neglecting higher order terms, gives 

the linearized forms of the continuity equation, 
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dp , du dv „ /C/N 

v«- + T*^ + -z*r- •- 0 , (54) 
dx dx oy 

the momentum equations, 

u2 & + P l£- == o p U^ ^ r - + p t^e- == 0 (55) 
Koo oo £ X

 r co ( } x 

U2 Svl Sgl = 0 ( 5 6 ) 
Koo co d x

 roo 6 y 

the energy equation, 

P h |£- - P ^ = 0 , (57) 
00 °° ox c° dx 

the species conservation equation, 

! r = < -«' • ^8) 

the caloric equation of state, 

V = p»(§)p,c/ + P - © P , < / + (i)P)P-' • ^9) 

and the equilibrium relation, 

K - p»(ifV' + p»(af )PP' ' (60) 

where 

x ~ y 
U T y == U T ' 

(61) 
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x and "y represent the ratios of the flow length to the relaxation length, 

The limit of frozen flow is represented by x or y approaching zero, and 

equilibrium flow is represented by 'x or 'y approaching infinity. 

The species conservation equation (58) is differentiated twice 

with respect to 'x, giving 

dV 
2~,« a** d2a' (62) 

Solving equation (59) for a', differentiating the result with respect 

to "x, and eliminating r*- and T?&- by means of equations (54) and (57), 

gives 

da' 
^T 

\3D/P.Qf 

0 0 

' Poo 

\3a/p,p 
0 0 

' Poo 

(2*\ . 1 
Ndp/P><*_£ 

dp/P ,a 

^ + p ra»L + |i-I 
dx °°|_ox ay J 

(63) 

Differentiating equation (60) with respect to K, substituting for v£r-

from equation (54) and combining with equation (63) gives 

d(a -a) 

~~33T" 

| [ 7 ^ , flh\ (^e 
L\doJp,v \d t t /p ,p \dp yp 

111 
o V p , p 

(64) 

f!!e\ Ylh\ /*h\ _ 1 
\ M M I £ \apyP>« a 

^ + (*A p e 
Sp/p,or \B<y/p,p\dp . 

oa.v 

pvdp yp 

I61 

ox 

- p, 
dia' dv 
.3x~ Sy '-] 
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The frozen sound speed, a , given by 

/dhX _ I > ^ D ; 

op^p,a p 

and the equilibrium sound speed, a , given by 

•̂ v-i \ / ^ ' U > / OC* 

\dp/P,g \cWp,pVaP 7P 
a e " /BhX +/3hN /3ae) _ 1 ^ 

\dp/p,a \da/p,p\-^p p 

are substituted into equations (63) and (64), and the velocity deriva

tives in equations (63) and (64) are eliminated by means of equations 

(55) and (56). The resulting equations, now in terms of the deriva

tives of p' only, are differentiated again with respect to 'x and sub

stituted into eqiiation (62). The result is the acoustic equation in 

terms of p1 only: 

where 

r = ^ E ^ _ . ( 6 8 ) 

[(&\ + (m (^e\ 1 
L\dp/P,a \da/p,p\dp / p j 

Similarly, another equation is derived by differentiating equa

tion (58) once with respect to x and once with respect to y. The re

sulting equation is now in terms of v1 only: 
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Solution of the Linearized Equations 

The problem under consideration is the expansion of a supersonic 

stream into a region of constant pressure. As before, the term super

sonic refers to the frozen Mach number, thus assuring a supersonic equi

librium Mach number also. 

The initial conditions are established by the freestream, where 

all primed quantities are zero. The boundary condition on equation 

(67) is specified by the pressure in the base region 

pb = p„ ( i + p;> • ( 7 o > 

where in the linearized analysis, this condition is imposed along 

y' = 0. The boundary condition for equation (69) is obtained from the 

linearized streamline definition. A streamline is defined by 

v == u tan 6 , 

which in linearized form, becomes 

v' = 0 . (71) 

As a result, equation (69) is written directly in terms of 0. 

rUi^-^-m<^-^-p-o. (72) 
The Laplace transform is defined by 

00 

L{9} = / 6(x,y) exp(-qx)<& (73) 
o 
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Applying the transformation to equation (72) gives 

2 I - D 2 

wi^) - w [ji$y ^ = ° > ™ 
where 

and 

B2 = Ml 
I tc 

1 , B2 = yP - 1 , 
e eoo 

B2 = dr > i -
B f 

(75) 

Of the two exponential solutions to equation (74), the negative 

exponential is appropriate. 

L^3 = K, exp(-qBf[f^J 7) . (76) 

To evaluate K.. , it is necessary to transform equation (56) and 

replace v' by 0 to obtain 

^-•MU^)]- (77) 

Since the two acoustic equations (66) and (72) are identical except for 

the dependent variables, the solution for the Laplace transform of the 

pressure disturbance is also given by the negative exponential. 

L{p'} = K2 exp(-qB£ 
r-o2 

«mfy (78) 
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From equation (70), the transformed boundary condition is 

L{p'} =-- (79) 

for y = 0. Thus, 

K„ = — . 
^ q 

Equation (78) is differentiated with respect to y and substituted into 

equation (77) to give 

p » / p b L W = J^- Bf 
n>2 

Lf̂ ?) ̂ i m 7) (80) 

The inverse transformation can be found along the boundary where y = 0. 

Erdlyi, et al.[25] have found the inverse to be 

9, = 
VVf 

'b " o U2 exp 
(B2+l) x\ /1-B? x 

2 IV o\ 2 r 
(81) 

+ B* '•xp\ 2 v1o\rr~ wJdw 

where I is the zeroth order modified Bessel function of the first kind, 
o 

T is simply a weighting function which does not affect the limit

ing values for frozen and equilibrium flow. Thus for frozen flow 

(x = 0), the flow deflection is 
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eb = S ^ L - T ' (82) 

which is recognized as the result of perfect gas linearized theory, 

where now the Mach number is designated as the frozen Mach number. 

Clarke[24] has shown that as x' approaches infinity, the integral in 

equation (81) approaches B . The equilibrium limit for the flow de

flection is therefore given by 

P Ph I 

9, = -*£ Jtf - 1 , (83) 
b n U v eoo 

which is the classical expression based on the equilibrium Mach number. 

In order to obtain the density perturbation, the continuity 

equation (54) is transformed, giving 

qL{P') =-^5-L{p'} - U h W ) • (84) 
^ m CO J 

Equation (79) and the derivative of equation (80) are substi

tuted into equation (84) and evaluated at y = 0, yielding 

* y - fefe * TGfso • 
The inverse transformation is 

p_p; 
P ; = f F t + B f [ B 2 - <* - D exp(-S)] 

" o o co i — -

The limit for frozen flow (x = 0) is given by 

(86) 
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P_.PT 

P ; = *e 0 U2 foo ' 
" m m 

(87) 

Simi l a r l y , as x ->- <», equat ion (85) approaches the equ i l i b r ium l i m i t 

given by 

p p h 
p ' = ^ M 2 

^b p I r eoo 
(88) 

The degree of dissociation is found by integrating the energy 

equation (57) and substituting the result: into the caloric equation of 

state (59). Dividing the result by p (T~) gives 

a' 
(-) 
\ Q W P , P 

[ \dp/p,a 

= " P P , 

dh\ __r 
d p / p ? g p_ 

(-) 
\Bp/P,a J 

" PmP (89) 

The term in brackets on the right-hand side of equation (89) is defined 

in equation (65) in terms of the frozen sound speed, so that the right-

hand side of equation (89) becomes 

P Ph oo b , 
72 PmP 

Using the expression for the frozen sound speed of an ideal dissoci

ating gas, (15), the right-hand side of equation (89) becomes 

r
 3 p b , i 

P°°L(4~KX ) " P b J ' 

The derivatives (̂ —) and ( ̂ — ) , given in equations (20) and 
\da/p,p \dp/p,a' 6 M 

P_.Pt
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(21), are evaluated at freestream conditions and substituted into equa

tion (89) to give 

(1-kv ) ^p'B^B 2-!) 
a! = 

b [(-.)£" 3] 
p i — - r - -(-?)] • co) 

The perturbation of the degree of dissociation varies from the initially 

frozen value, a' = 0, to the limit as x -> <»: 
b 

(l-to ) r3P;B
2(B2-l) 

•i - 7—T7-: P i ] • CD 
[MF-] 

The temperature is obtained by logarithmically differentiating 

the equation of state (19). 

T' = P1 " P' " a f c • (92) 

The frozen flow limit is obtained by substituting equation (87) 

for p', p' for p', and a' = 0, to give 

Tfb = K ( ^ > <93> 

where 

4-K* 
00 

Substitution of equations (88) and (91) for the density and degree of 



45 

dissociation perturbations as x •* », gives the equilibrium limit 

T ; = P; I -
eoo 

w 
3B2

f(B
2-l.) 

Y eo loo 0-
\8rf "1 

tor h r - 3 *£ 

(94) 

Transformation to Physical Coordinates 

The relaxation time, T, was defined in equation (53) as follows: 

1 

oWp,p 

The rate equation in Freeman's form 

u> = C f T n
p [ ( l 

.'k 
a )e - -2- a2 

Pd J 
(95) 

can be differentiated and substituted into equation (53), giving 

T = CfT
np (1-cQ 

(l-a) n + 4 + 1 
1 e< 
le T +-2-

Pd 
2a -

k. 

"v" 

2 1 
na 1 

- i - l 

1 e< 
le T +-2-

Pd 
2a -

k. 

(1+cx) 
/ 1 

. (96) 

The accuracy of the linearized rate equation (52) depends on the 

ability to select a suitable mean value for T. Due to the exponential 

dependence of T on temperature, the selection of the reference tempera

ture is critical. 

Good results were obtained when T was evaluated based on the 

asymptotic downstream value of T1 , i.e., the limit as x -> oo. This 

limit is expressed in equation (94). 

The derivatives [rr~) and fr— ) are obtained from equations 
\dp/P,a \cWp,p 
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(20) and (21), and (T—J is obtained by differentiating the equilibrium 

relation 

^ P, "TT 
T * - = ~ e T . (97) 
1-Q? p 

Substituting these derivatives into equation (68), the expression for T 

is 

4+cv 

^.WM-o^n) -ttr-rr^—zj^ • (98) 
00 00 00 [{2-^){l^hXx-aJr] 

Results and Discussion 

Calculations were carried out using the linearized theory for 

the expansion of oxygen from 1 atmosphere to 0.8 atmospheres. The 

freestream temperature was 4250 K and the frozen Mach number was 1.83. 

The corresponding equilibrium Mach number was 2.12 so that B2 = 1.496. 

These conditions were chosen so that Clarke1s[24] values for the inte

gral in equation (81) can be used,. 

Using the same initial and boundary conditions, calculations by 

the method of characteristics were obtained on the Burroughs B 5500. 

The flow deflection, density, temperature, and degree of disso

ciation perturbations as obtained by linear theory and the method of 

characteristics are compared in Figures 9 through 12. The agreement 

is good, in spite of the rather large expansion ratio. The discrepancy 

in the flow deflection is due primarily to the defect in the perfect 
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gas limit of the linearized theory, rather than the chemical effects. 

The results for the flow deflection are replotted in Figure 13, where 

the results are now plotted as the ratio of the flow deflection to the 

flow deflection immediately after expansion, 9b/9bf, versus the length 

xVr. Allowing for the classical defects in the linearized theory, the 

solution appears to give a good description of the relaxation zone 

after expansion. 
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CHAPTER IV 

LAMINAR MIXING OF A DISSOCIATING GAS 

The problem of the nonequilibriurn , viscous mixing region is 

treated in this chapter. First, the governing differential equations 

are derived and transformed into a form suitable for the finite differ

ence solution. Next, the finite difference system of equations is 

derived and the stability, convergence, and method of solution are dis

cussed. The extension of Chapman's similar solutions to account for the 

frozen flow of a dissociated gas, derived in Appendix B, is discussed 

and compared with the finite difference solutions. Finally, a compari

son is made between solutions for finite rate, frozen, and equilibrium 

flow. 

Derivation of the Governing Equations 

Neglecting thermal diffusion, the boundary-layer equations for 

the steady, laminar, constant-pressure, two-dimensional flow of a dis

sociating gas, with x measured along the dividing streamline and y 

s s 

measured normal to x , are written (see, for example, reference [26]) 

as follows: the continuity equation, 

hr M + fe- M = ° • (99) 

s s 

the species conservation equation, 

3CY , bet d / _ da \ , n n m 

eu ^ + ev ay = a7VDi2 ^ + pUi ' (100) 

s •'s s Js 
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the momentum equation, 

du , du d ( du \ .- - N 

PU 3T + PV 3 F = aTV* aTV ' ( 1 0 1 ) 

and the energy equation, 

s s s s s s 

where the subscripts A and M denote atomic and molecular species, re

spectively. 

The ideal dissociating gas model, discussed in Appendix A, pro

vides the following relations: the thermal equation of state, 

p = p(l + a)RmT , (103) 

the c a l o r i c equat ion of s t a t e , 

h = Rm[(4 + Cf)T + <*ed] , (104) 

the equilibrium relation, 

ed 

^ pd "F 

I ^T = T e ' (105) 

e r 

and the rate equation, 

u> = CfT
n
p[(l - a)e

 T - -B- a3] . (106) 

The differential of the enthalpy is obtained from equation (104) 
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and w r i t t e n 

dh = R {(4 + a)dT + (6 , + T)da] 
m d 

(107) 

With t h i s , the energy equat ion (102) i s 

pR (4 + *){u | ^ + v f-T-T 4- PR (ft + T){u | 2 - + v | 9 L l (108) K m L ox dy J m d i. ox By J 

UK IT) + R i e
d
 + T)IT<^I2 g-

s s s s 

+ "(aT) 

where 6, » T. Substituting equation (100) into equation (108) gives 

the energy equation for finite rate flow. 

pv*+ «>{» i - + v t r l = kiK w)+ "(IT) • wT>p»(109) 

The species continuity equation and energy equation for frozen 

flow are obtained from equations (100) and (109) by setting uo = 0. 

For equilibrium flow, the species conservation equation (100) is 

replaced by the equilibrium relation (105). Since the mixing takes 

place at constant pressure, the enthalpy for equilibrium flow is a 

function of temperature only, and is written 

dh = (M) 
\ d T / p , a \bajp9T dT 

dh> 
do-

dT (110) 

Substituting equation (110) into equation (102), the energy equation 



56 

for equ i l ib r ium flow i s w r i t t e n 

pv(u oT dT 
T .+ V T " 

p r \ ox oy 
s s 

By \ r ~dy ^ B W ' k 2L) + Jp- (in) 

where 

ohN do1 

C = 1 ^ + ('lh\ ^ 
pr "" VdT/pjO/ \daf /p ,T dT (112) 

and 

k
r = K + pDi2(i) 

da 

2\aa/p,T dT 
(113) 

A generalized energy equation, which incorporates the three flow 

conditions is written 

*£ !r+ v frl = Mk §H+ ̂ ) " PV*
 + T > " • (114) 

s • s 

subject to the following conditions 

Finite Rate Flow: 

C = (4 4- a)R 
p m 

k = K 

uu :np[0 C£T" - a)e 
Pi J 

(115) 

Frozen Flow: 

C = (4 + a)R p m 
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k = K 

U) = 0 

(116) 

E q u i l i b r i u m Flow: 

C = C = R 
p pr m 

(4 + a) + 2 1 1 = 9 ^ + x)»] 

k = k = K. + pD, » 
r 12 

uu = 0 . 

alkoif Id x 
2 T - * ^ T (117) 

Howarth Transformation 

Because of the assumption of variable py,, the momentum and conti

nuity equations are coupled to the energy and species conservation equa

tions. It is advantageous, however, to employ a restricted Howarth 

transformation (only the normal coordinate is transformed), since it re

duces the coupling. In addition, the mass flow rate between two stream

lines becomes a simple integration of the. streamwise velocity in the 

transformed plane. As before, an arbitrary reference length, t, is 

introduced, and the coordinates (x y y ) are transformed to the non-di-
iD S 

mensional coordinates (s*, Y*) defined by 

(118) 

Y* _ *ARey r^ 
Pc» 

dy. (119) 

where the Reynolds number is 
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Rey = 
p U I 

M-co 
(120) 

Implicit differentiation of equations (118) and (119) gives the 

transformation relations 

dx I bs* ' dx dY* 

S l 2- AT— ° 
— = -• ̂ - Jkey — 

J S ^oo 

(121) 

The stream function is defined by 

dY 
Pu = P=o 97 

dY 
OV ss-p T 

K<=° O X 

(122) 

Equations (122) are transformed by equations (121), giving 

il ^ 
dY* ~ ̂ .ey U 

dY 
ds* 

—i_ 
Jkey 

V 

(123) 

where V is defined by 

V = *- jRey v + -^— > 
dx 

(124) 
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The continuity equation is now given by 

t* + W* = °- ' <»5> 

The transformation relations (121) are now used to write two im

portant operators: 

d d U d , V d f ^ n c . \ 
u hT + v W = I 'ai* + I B ^ (126) 

s s 

3_i a 3_J\ = 1 4_ Ba„ 1/ „ £_ 9\ 
S " S ayvPar; = F r R e y ^ v p r ^ • (127) 

where (3 is any variable. 

Applying these operators, equations (126) and (127), to the mo

mentum (101), species conservation (100) and generalized energy (114) 

equations gives: 

the momentum equation, 

du du Re_y_ d /_pja du \ 
ds* dY* " £p dY*\p dY*/ ' 

"no "ro 

(128) 

the species conservation equation, 

.2 p*D 
u |2L + v {£_ = MX | _ ( 1 - A 2 to x 

d s * dY* £p dY*\ p dY*/ ' v ' d s * dY* In dY*V p dY^ 
•^rco Too 

and the generalized energy equation, 

2 
u ^ L + v ST Rey_ d / k f i d j _ \ ^ p R e y / d u X ( } 
U ds* + V dY* " C £p dY*\p d W C 7 J \ W U ^ 

p ^co oo p^oo 
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-tuiR (6,+T) 
ra d 

These equations are non-dimensionalized by introducing the 

following definitions for the dependent variables: 

u 

,* = -2-

V* =: 

U 

T 

(131) 

the non-dimensional ratios 

C = 

Pr = 

_ ou-
PooM-oo 

R - ^ 

Sc = ^ 
pi) 12 

IT 
Eco =: c T 

pOO CO 

(132) 

and the dimensionless form of the rate equation (107), 

@* 

a* = KT*np*[(l - a)e T* - P^ a2] , (133) 

where 

K = "U Poo (134) 
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and 

8, p, 

es = T n = r (135) 
OQ "CO 

are dimensionless parameters. 

The expressions for the transport properties are derived in 

Appendix A. 

Substitution of equations (131), (132), (133), and (135) into 

equations (125), (128), (129), and (130) yields the continuity equa

tion, 

du* dv* 

di^ + dY* == ° ' (136) 

t h e momentum e q u a t i o n , 

, du* , . du* d / _ du*\ /-.OTN 
u* a?f + v* aF - s W 55*) • (137) 

the species conservation equation, 

. da . da d _/C da \ , . / IOON 
u* a?r + v,c s^ = ̂ *\iZ aW + " » * (138) 

and the genera l i zed energy equat ion , 

CF 
* £1* + •* < ^ _ I ^_/CR dT*\ _ V d u * \ 2 , 

U ^ d s * V ' dY* " R 3Y*\Pr dY*/ ~R~\dY*/ U J 

- ( e 2 + T*)r ** • 
R 

r 

P 
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Finite Interval Transformation 

The computations involved in the implicit finite difference 

method to be used in the solution of this problem are greatly simpli

fied if the interval of the normal coordinate is finite. Therefore, 

the normal coordinate, Y*, is transformed by the hyperbolic tangent 

transformation, as used by Sills[l5]. The new normal coordinate, £, is 

defined by 

£ = tanh(AY*) , (140) 

where A is a dimensionless constant which is used to control the grid 

spacing. This transformation transforms the, infinite interval -°° < Y* 

< oo to the finite interval -1 < Q < 1. 

This transformation succeeds in "eliminating some of the arbi

trariness involved in defining a boundary layer edge, and offers 

several additional advantages. Equally spaced grid points in the £-

direction transform into unequally spaced points on the Y-axis with a 

closer spacing near Y = 0, where the largest gradients occur. This 

transformation (140) has a closed form inverse given by: 

Y* = \s <* 'i±q 
-i-cJ (141) 

Since £ is independent of s*, the coordinate transformation is 

accomplished with the relations 

BY* V C hr 

and (142) 



63 

= A2 1 - £ - 2Q ~r + 1 - C 

The transformation equations (142) are applied to equations (136) 

through (139) to give the continuity equation, 

2H£ - -Ad . f2\^l (143) 

the momentum equation, 

U* t ^ = _ A ( X " ^ ) [ V * + 2ACr° " A ( X 2 \dC~IBu* 
(144) 

+ A' (i - C) 
2 &u* 

3C 2 ' 

the species conservation equation, 

31 £ 
- ^ - ^ - ^ [ - . ^ - ( l - ^ ^ g (145) 

• ^ - f ) ££*.+ - . 

and the generalized energy equation, 

3s* A fe A Pr R ScVPr/J If ("6) 

CE 

+ *{i-eJc*$t+?<i-eWf 

R , N 

" * * c V e d + T * ) • 

file:///dC~IBu*
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Boundary and Initial Conditions 

The boundary conditions in the physical plane are: 

u = U a = a, (x ) T = T , ( x x ) a t y = +00 "̂  
00 n <5 n c; J 

v = 0 

u = 0 Qi = a 
es 

T == T 

a t y = 0 . 

a t y = -00 

(147) 

The initial conditions are: 

u = u(y) 

v = v(y) 

QI =: Qi(y) 

T = T(y) 

at xg= 0 . (148) 

The boundary conditions in the transformed plane, appropriate to 

equations (143) through (146) are: 

u* = 1 a - a^ (;s'*) 
D 

T* = 
Tb (s*) 

v* = 0 

u* = 0 a = a 
es 

T* = 

at £ = +1 

at £ = 0 ,} (149) 

at Q = -1 

and the initial conditions are: 

u* =-- u*(£) 
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v* = v*(£) 

a* * = (*(£) \ at s* = 0 . . (150) 

T* = T*(£) 

The Finite Difference Solution 

Because of the complexity of the system of non-linear partial 

differential equations derived in the previous section, a numerical 

solution must be employed. A finite difference method will be used, 

wherein the derivatives are replaced by finite difference approxima

tions . 

Two types of finite difference methods are available; implicit 

and explicit. Explicit methods have been successfully applied to 

boundary layer problems (see, for example, references[27] and [28]), 

but often involve very stringent limits on the allowable step size 

ratios. 

Lately, much attention has been directed to the use of an im

plicit finite difference method known as the "Crank-Nicholson Method" 

(see, for example, references [29], [.30], [15], [28], and [31]). In 

this method, the normal, £, derivatives are approximated by average 

central differences and the streamwise, s , derivatives by forward dif

ference approximations. This method has stability advantages over ex

plicit methods, as shall be discussed later. The Crank-Nicholson method 

is used in this thesis. 

Finite Difference Equations 

The finite difference approximations are based on the grid shown 

in Figure 14. With the mesh points equally spaced in the ^-direction, 
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the approximations are: 

dg g i + l , i " g i , i 

as* As* 

_ i r / g j + i , i - n - g i + i , i - i \ / g i , i + r g i , i - i 
2 \ \ 2AC 2AC 

3lg L_ 
d r " 2(ACV 

; i + l , . j + r g i + l , j - l + g i , i + l ~ g i , j - 1 

4A£ 

(151) 

8 i + i , j - r 2 g
i + i , j

 + g
i + i , j - i ^ i , j + r 2 g i / g i 5 J - i 

where g is any of the dependent variables u*, a, or T*; i is the index 

in the s^-direction; j is the index in the ^-direction; As* is the incre

mental distance between two neighboring streamwise stations; and A£ is 

the distance between two neighboring vertical stations. 

Equations (151) are substituted into the momentum equation (144), 

species conservation equation (145), and generalized energy equation 

(146) resulting in a set of difference equations relating the unknown 

variables, u*, a, and T*, at the i + 1st station in terms of the known 

variables at the ith station. 

In the iterative method to be used, all non-linear coefficients 

are replaced by average quantities and denoted by a bar. For example, 

u* ,+u* . 
G* = 1+1'J 1 U 
i 2 

For the first iteration, u* , . is assigned the value of u. .. For 

subsequent iterations, the value of u* .. ., obtained from the preceding 
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iteration, is used. The thermodynamic and transport properties are e-

valuated at the averaged temperature T* and degree of dissociation a.. 

Introduction of the finite difference approximations (151) into 

the momentum equation (144) yields: 

"i+i.j-iL-V1-^ - V 1 ' ^ + u* ., . 
i+l,j 

r- U * 

.2As* + 2 A2 (i,j)] (152) 

+ ui+l,j+l[Al(1^) " A2(i'j)] 

= u* . , 
i,J-l 

A1(i,j) + A2(i,j) + u. . 
J i,jL2As 

* - 2A0(i,j) 

+ u* .,-
i, J+1 

-A^i.j) + A2(i,j)] 

where A-.(ijj) is composed of the coefficients of the first order Q-

derivatives in equation (144), and is given by 

Aa-c3,),. 
V^-TST^J 

3 \ 2 A 2 d - ^ ) 

ft+ 2A£J5j}+-W-fo-i - v J - (153) 

and A?(i,j) is the coefficient of the second order ^-derivative in equa

tion (144); 

2 \2 A2d-CJ) 
A 2(i,j)=- (-^"C_ (154) 

The finite difference approximation of the species conservation 

equation (145) is 
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"i+Lj-lt-M1^ - W'V] + "l+l.jfe + 2 C 2 ( i > J > ] (155) 

+ a i + 1 , j + l 
C1(i , j) " C 2 ( i , j ) ] 

= a i , j - i [ c i ( i ' J > + c 2 ( i ' J ) ] + a i , j 

r~u* 
—L - 2f 

_2As* 2 ( i , j ) ] 

+ a f l , J + l [ " C l C ± ' J ) + C 2 ( ^ j ) . 

+ u)* , 
J 

where 

C 1 ( i , j ) 
A C 1 - ^ ) , , p x , A 2 ( l - ^ ) 

4AC^H + 2 A ^)} + 

2 ) 2 _ 

8(AC) 2 - l \ S c / j - l ' VScJj+li (156) 

and 

A 2 ( l -£ 2 ) 2 , 5 , 
C2(i , j) = 2(A£> fe>j • (157) 

The finite difference approximation of the generalized energy 

equation (146) is 

u* 
T I + I , J - I [ - E I C 1 ' J > " E 2 ( i , 3 ) ] + ^l.jfe + 2 E 2 ( i - J > ] <158> 

+ n + i , j + 1 [ E i ( i ' j ) -E2 ( i-j>] 
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r i r̂ 1* n 

= ^ . j - iLv 1 ^ + v1^]+ n.hfc; - 2E2(l'j)J 
+ T l ; J + l[-E l ( i 'J> + V £ > - » ] 

R , . A 2 (1 -£ 2 . ) S .CE r-

rte + T*>* + -4#<-ir)L(ut J+I - %j-i> 

( u ? + l ) j + l - u i + l , j - l > 

where 

and 

:i(1-J) = ̂ T % + 2 A^(S:}+
 ^ ^ L { © J - I - (i) j+i} (159 ) 

A2 ( 1 - C 2 ) 2 -

The averaging procedure used in the rate equation, u)*, is very 

important, due primarily to the exponential dependence of OJ* on the 

temperature. In order to speed convergence, it is helpful to include 

the influence of the rate equation in the coefficients of the unknown 

temperature and degree of dissociation in equations (158) and (155), 

respectively. This is done by linearly averaging the rate equation as 

follows: 

i* = 1 + 1'-1 2
 X'1 . (161) 

Following the suggestion of Fay and Kaye[.31], the rate equation at the 
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i + 1st station is written as a Taylor's series expansion from the ith 

station. 

I D * , i • 
1+1, J ^5J

+(l^)p,T a. 
i-rl, j 

a. 
i,J 

:L>J 

(162) 

+ \dT*/p,a 
T* 
i+l,j 

X* 
i» j 

J-.J 

Substituting equation (162) into equation (161) gives oPv: 

U)* = 
i,J 

1/dou* 

2\oa "l+l.j 
au + 

1/3<JO*\ 

2\BT*y 

1 > J 

( T * . - T* .") (163) 
V l+l,j 1,J/ 

i> J 

where the subscripts on the derivatives have been dropped. Substitu

ting equation (163) into the species conservation equation (155) and 

regrouping terms gives 

_* 
u. 

(164) 

«i+i,j-it-V1^ - c 2 ^ > ] + «i+i,j[ifs*
+ 2C2 -̂J> - K i X J 

+ "i+i,j+i[ci (1 'J> - V 1 ' ^ ] 

= "i.j-itv1^ + V1-"] + "i.ilk - ' V 1 ^ - ¥M)ui\ 

+ a i > j + l [ - C l ( i > J ) + C 2 ( i ' J > ] 

+ k^mi^-nj] 
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where C (i,j) and C (i,j) are given by equations (156) and (157). Simi

larly, the generalized energy equation (158) becomes 

^ l . J - l l / V 1 ^ " E2(1'J>] (165) 

+ T ? + i , j [ i + 2E2^-J> + IT ( e3 + **>(!£). .] 
P 1 > J 

+ T ! + l , j + l [ E l ( 1 ' J ) " E2 (1 'J>] = T* [E1(i,J) + E2(1.J) 

+ T* . . 
1>J 

_* 
r-u. 

J m 
2As* 

2 E 2 ( i , j ) • - ~ - ( 9 * + T*) 
" 'p 

f3uu*l ~j 

R (e*+f*). 
m d + n.j+it-v1^+ v1^] - -Sr—h,j 

3CB* 

3a i , j l + l , j i , j 

+ A 2 ( i - t 2 ) ' 
+ 4(AC)2 

CE 

R rJ.j-i-"*,^ u i + i , j - r u i + i , j + i j 

where E,(i,j) and E (i,j) are given by equations (159) and (160). 

The derivatives of the rate equation are obtained by differentia

ting equation (133), yielding: 

3co* 1 
3a P.T 

*n 
2KT p* 
(1+a) 

* 

..id 
T* p* 

e + a — 

(166) 
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and 

bdi* 
ST J 

= KT*n_1o* (1 - a)e 

Q2 
"T* 

e* 
-A 
IT* 

+ n - 1 (167) 

+ ^ a2 (2 - n) 

Pd 

The interval -1 ^ ^ 1 is divided into 2N segments with the 

grid points j = ±N corresponding to £ = ±1 and j = 0 is £ = 0 (the 

dividing streamline). Each equation in the set (152), (164), and (165) 

represents a set of 2N-1 equations, since each equation is valid at the 

2N-l(i = -N+l, . . . -1,0,+1, . . . i = N-l) grid points of the finite 

difference mesh. Therefore, each equation can be represented as a ma

trix equation. For example, the species conservation equation (164) is 

written 

Z oi - d 
mn n m (168) 

where a represents the unknown quantity a. - , Z contains the cor-
n l+l,n mn 

responding coefficients of Of,,, , and d is the right-hand side of r ° l+l,n m ° 

equation (164), also known. 

The boundary conditions (149) for the three sets of equations 

(152), (164), and (165) are specified at j = N(£ = 1) and j = -N(£ = -1) 

and are incorporated into the known vector d . Due to the choice of r m 

finite difference approximations, the resulting form of Z is tridi-
rr & mn 

agonal (i.e., the only non-zero elements in the matrix are those along 

the main diagonal element and the elements to either side of the main 
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diagonal) and can be rapidly solved using a method of Gaussian elimina

tion known as "line inversion" described in reference [32]. 

In the finite difference scheme used in this thesis, with the 

rate equation averaged according to equation (163), the parameter K, 

given in equation (134), appears in both Z and d . By Cramer's rule, 

the solution for Of is a quotient of two determinants, each now contain

ing K, so that for near equilibrium flow as K approaches infinity, the 

solution is bounded. If, on the other hand, co* in equations (155) and 

(156) was calculated based on the linearly averaged T* and a, i.,e., 

i* = U>*(T*,QO , 

then K would appear only in d . Actual computing experience using the 

latter scheme has shown the convergence to be very slow for near equi

librium flow. 

The continuity equation (143) is first order and is solved ex

plicitly. The values of u* are known on the columns i and i+1 from the 

solution of the momentum equation (152), so that the continuity equa

tion (143) is used to evaluate v* on the line i+1. Following the sug

gestion of Wu[27], the continuity equation (143) is evaluated by the 

use of an averaged backward difference approximation for the s-deriva-

tive, 

^ j u. , , .-u. ,+u. ., . - -u. . , 

9£ " 2As* ( 1 6 9 ) 

and a central difference approximation for the ^-derivative 
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3v* __ i+1, j i+l,j-l 

K AC 
(170) 

For points above the dividing streamline (£ > 0), the continuity 

equation is solved explicitly for v* as follows: 

v* = v* Vi+l,j Vi+l,j-l 
. _4L 
2AAs* 

u* .-u* .+u* . -u* , . 
1+1,,i i,j 1+1,1-1 1,1-1 

[] (C-fC,--!)' 
4 • ] 

. (171) 

The solution begins with the boundary condition v* = 0 on the dividing 

streamline, j = 0(£ = 0), and marches upward to j = N(£ = 1). 

The solution for the normal velocity below the dividing stream

line marches downward from j = 0 by means of the explicit relation 

i + l , J 
= v* + AL 

i + l , j + l 2AAs* 

u* , . -u* +u* ., . , - u * . -
i + l , j i , j i + l , i + l i , i + l 

L [ -
(c r c 1 + 1 ) 3

n 
4 J 

, (172) 

which is simply a convenient rearrangement of equation (171) obtained by 

replacing j by j + 1 and solving for v* , .. 

Initial Profiles 

Initial profiles of the Wu[27] type were selected for the free 

shear layer calculations. For all grid points above the dividing stream

line, the initial conditions were given as 

u* = 1 

a = a 

T* = 1 

o < <; < l , 
s* = 0 

(173) 

while on and below the dividing streamline, the initial conditions are 
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given by 

u* = 0 

01 = Oi 
es 

T* = -=r 
T 

1 < Q < 0 , 
S* =: 0 

(174) 

where T is the specified stagnation region temperature, and a is the 
s es 

corresponding equilibrium degree of dissociation. The initial vertical 

velocity is zero at all grid points. 

v* = 0 
s* = 0 

(175) 

Iterative Procedure 

The momentum equation is dependent: on the temperature and degree 

of dissociation through the term p*p,*. This coupling is not strong, 

and the following procedure, illustrated in Figure 15, is used. 

For the first approximation, the product p*u,* is computed based 

on the known fluid properties at station i, and the average velocities 

u* and v* are set equal to the velocities u* . and v* ., respectively. 
i,J i,J 

The momentum equation (152) is solved by "line inversion," and the re

sulting values of u* , . are used in the continuity equations (171) and 

(172) to find v* - .. New values of u* and v* are computed by linear 
i+l, J 

averaging, and the solutions are iterated until the changes in u* and 

v* between iterations is less than one tenth of one per cent. 

With the above "u-v" iterations completed, the average velocities 

u* and v* are used in the solution of the species conservation (164) and 
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Input Solution at Station i, 
Fluid Properties Assigned Values at i, e.g., Pr. =Pr. . 
Average Values Set Equal to Values at i, e.g., u*=u* 

Yes 

Solve the 
Momentum 
Equation 

Solve the 
Continuity 
Equation 

No 

Check Convergence 
of "u-v-a-T" 

Iterations Yes 

-* -* 
Compute u , v . 

Check Convergence 
of "u-v" I te ra t ions 

No 

Solve the 
Species 

Conservation 
Equation 

Calculate 
Fluid Properties 

C, Pr, etc. No 

Solve the 
Energy 

Equation 

Compute a,T* 
Check Convergence 

bf "a-T" Iterations 
Yes 

Solution at Station i+1 Complete. 

Figure 15. Iteration Procedure for the 
Finite Difference Solution 
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energy (165) equations. The rate equation (133) and its derivatives 

(166) and (167) are computed at station i and remain fixed. For the 

first iteration, the average degree of dissociation a and temperature 

T* are assumed to be given by a. . and T* . and the average fluid pro-

perties (132) are computed. The species conservation equation (164) 

and the energy equation (165) are solved by "line inversion." New 

average values of a and T* are computed by linear averaging, and new 

average fluid properties are calculated. The "a-T" iterations continue 

until the successive values of a and T* change less than one tenth of 

one per cent. 

For subsequent approximations, the last computed values of a 

and T* are used to compute p*|j,*. The entire, procedure is repeated un

til all average values vary less than one tenth of one per cent between 

successive approximations, 

Stability and Convergence 

The first important consideration which must be given to a fi

nite difference approximation to a partial differential equation is 

that of stability. If a finite difference equation is stable, then any 

small error, such as roundoff error, introduced at a point in the calcu

lation decays as the solution proceeds,, An unstable solution propagates 

and magnifies these errors so that the solution becomes invalid. One 

of the advantages of the implicit type of equation used in this solu

tion is that there is generally no restriction of the ratio of step 

sizes, As* to A£> such as encountered in explicit types of solutions 

[30]. As will be shown, there are restrictions on the coefficients of 

certain terms in the equations. 
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The second consideration is that of "convergence," i.e., does 

the solution of the finite difference, equation converge to the solution 

of the differential equation as the grid spacings are decreased. Exist

ing evidence indicates that a finite difference approximation which is 

stable is also convergent (for example, see reference [30]), and thus 

the question of convergence will not be considered here. 

No special consideration need be given to the continuity equa

tions (171) and (172) since they are first order and the random round

off errors are simply added at each station, and thus it is stable. 

If the non-linear terms encountered in the remaining three equa

tions (152), (164), and (165) are replaced by average values, which are 

assumed to be known, a von Neumann stability analysis may be used. This 

method (see, for example, references [30] and [15]) introduces an error 

distribution and investigates the propagation of the error. The require

ment that the eigenvalue of the resulting matrix be less than unity in 

magnitude imposes the conditions of stability. 

For the momentum equation (152), the requirement is 

A2 (l-£2 )2C.As* 

25*(A£)a J a ° ' (176) 

which requires u* ^ 0, or no regions of reversed, flow. Because of this 

requirement, great care must be exercised in the acceptance of the first 

profiles of the velocity. Because of the large initial gradient, the 

first velocity profiles generated tend to have a small negative velocity 

due to numerical error. The equations must be iterated until this 

vanishes. 
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For the species continuity equation (164), the criterion is 

A 2 ( l - :QV: ; 

[2 u*-
L J 

da j 

1 
1 

C^ 
Sc J (AC) 8 " ° ' 

(177) 

Since u* > 0, 

on stability. 

ISCJ da P.T 
^ 0, there is no new restriction 

The energy equation (165) is stable if 

A2(l-C?)2 

_1 (9*+T*)R 
o -*. d m 

2 v~5"— 
BOD* 

I ST * J 

Pr 
&sj 

'jCAC)1 
£ 0 . (178) 

Since the thermodynamic and transport properties are always positive, 

duo 
the solution is stable, since 

LdT*J 
> 0. 

P»a 
The sign of the derivatives of the rate of atom production equa

tions can be obtained from the mathematical expressions (166) and (167) 

or from physical reasoning. If a volume of partially dissociated gas 

is disturbed from equilibrium by the sudden addition of atoms, while 

maintaining a constant temperature, the system will be required to re-

combine some atoms to molecules in order to return to equilibrium, 

(-CD). Similarly, increasing the temperature of a closed system at 

equilibrium will require a further increase in atoms (+ao) to reach 

equilibrium. 

Chemical Relaxation Parameter 

TU 
A chemical relaxation parameter, defined by T* = — 5 is intro-

X 

duced to indicate the flow process in the shear layer. Since T repre

sents the chemical relaxation time and x/u represents the flow time, 
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the ratio T* is indicative of the local relaxation process. For exam

ple, frozen flow is approached as T* approaches infinity, while T* 

approaching zero, indicates equilibrium flow. Using equation (96), 

the parameter T* is 

T = 
U 

xCfT
np > 

1 + + n (l-q) 
(1+cO 

-t-i 
na 
(1+a) 

- 2a (179) 

This expression is written in terms of the dimensionless varia

bles by use of equations (131) and (134) :: 

T = 
X* 

s*T* p*K 
1 + T4 + n (1-cO 

(1+a) 
n 
(1+a) 

"IT1 

2a 

Check of the Solution Method 

In Appendix C, the finite difference solutions for laminar mix

ing are compared with solutions available in the literature. In par

ticular, the velocity profiles for low temperatures are compared with 

Chapman's[l3] similar solution; and the degree of dissociation profiles 

are compared with the profiles of Kovitz and Hoglund[34] for the case 

of the mixing of two streams with the same velocity but different de

grees of dissociation. For these problems the flow is considered to 

be frozen and thus, only diffusion and convection are involved. It is 

shown in Appendix C that the finite difference solutions give results 

in good agreement with the similar solutions. 
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Extension of Chapman's Similar Solutions to the Analysis of 

the Frozen Flow of a Dissociated Gas 

Under special circumstances, it is possible to reduce the gover

ning partial differential equations to ordinary differential equations 

in terms of a single "similarity" variable. The variable boundary con

ditions, and especially the finite reaction rates, which are essential 

to this thesis, destroy the possibility of similarity. However, if the 

flow is considered to be frozen, constant boundary conditions are speci

fied, and the properties are assumed to be constant; flow similarity is 

assured. The resulting similarity solutions can be used for comparison 

with the finite difference solution. 

Chapman[l3,33] has investigated the laminar shear layer for an 

undissociated gas, and obtained solutions for the velocity and enthalpy 

profiles. The density-viscosity product and the Prandtl number are con

sidered to be constant. 

In Appendix B, similar solutions are obtained for the frozen flow 

of a dissociated gas. The properties are assumed to be constant and 

the Lewis number is taken to be unity. In this thesis, the term "con

stant properties" is used to denote constant values of Pr, Sc, and C. 

The momentum, species conservation, and energy equations become 

ordinary differential equations when written in terms of the similarity 

variable 

\ l 71 = ~ , (180) 

c JC 

where 
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Y* 

\i - ^ < 1 8 1 > 

is the usual Blasius similarity variable. The resulting momentum equa

tion is uncoupled from the energy and species conservation equations. 

The momentum equation has been solved by Chapman[l3]. 

The energy equation for the frozen flow of a dissociated gas 

with constant properties is identical to the energy equation investi

gated by Chapman[33]. The differential equation is non-homogeneous 

and the resulting solution is written 

U2 

h * = l + (h* -. l ) g l (T) c ,P r ) + ^ 2 - g20Tlc ,Pr) . (182) 
00 

Profiles of the functions g1 and g~ are tabulated in Reference [33] for 

various Prandtl numbers. 

When written in similarity form, the species conservation equa

tion for frozen flow is identical to the homogeneous part of the energy 

equation. The solution is given by 

a = a + (p. - a ) g, (T], ,Sc) . (183) 
co S oo 1 C 

Thus, Chapman's profiles of g.. provide the solution of the species con

servation equation. 

Results and Discussion 

Since the laminar free shear layer for a dissociating gas has not 

been previously analyzed, several cases are presented and discussed. 

First, the frozen flow limit is investigated. The recirculation 
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region temperature is taken to be low, to increase the time ratio T*. 

Finite difference solutions were obtained for finite rate flow with 

variable properties, frozen flow with variable properties, and frozen 

flow with constant properties. The finite difference solutions for 

constant properties are compared with the similar solution (Appendix C) 

as a further check on the finite difference solution. The variable 

property profiles are compared with the constant property profiles to 

evaluate the assumption of constant properties. 

The second case considers nearly equilibrium flow. Profiles for 

frozen, finite rate, and equilibrium flow are compared. 

The third case considers a cool freestream mixing with a hot dis

sociated stagnation region. The conditions are selected to give results 

controlled by finite rate reactions. Solutions for frozen, finite rate , 

and equilibrium flow are compared. 

Case 1 

M = 2.0 
00 

p =0.01 atmosphere 
00 

Gas - Oxygen 

T = 4240° K T = 1950° K 
oo S 

a - 0.996 a = a = 0.002 
oo s e s 

At x = 3 meters, the freestream T* was found to be 15 and on the 

dividing streamline r* = 1#88, The difference in temperature and degree 

of dissociation profiles for frozen and finite rate flow was found to 

be small, as indicated by the large values of T*. 
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The finite difference velocity profiles for variable C and con

stant C are compared with Chapman1 s[_ 13] similar solution in Figure 16. 

For the present example, which involves variable G, an average value of 

G(= 1»544), as obtained using the method mentioned in Appendix C, was 

used in the finite difference solution with constant C and in the con

version of the similar solution from T| to U . It is seen that the 

finite difference solution with constant: C exhibits very good agree

ment with Chapman's solution. However, the agreement with the varia

ble property solution appears rather poor. 

As shown in Figure 17, however, if the average value of C is 

taken to be 1.0, the constant C solution gives a better approximation 

to the variable G. solution. Thus, if an appropriate average value of 

G is chosen, the similar solution does give a fair representation of 

the velocity profile for variable C The method of selecting an aver

age value of C as suggested by Eckert and discussed in Appendix C, how

ever, is not adequate for dissociated gases. Furthermore, since the 

dividing streamline is located at T] = 0 , the average value of C has no 

influence on the dividing streamline velocity. This value is required 

in the evaluation of the base pressure for closed bases. 

Degree of dissociation profiles for frozen flow with variable 

properties and frozen flow with constant properties (Sc =1.0 and Sc = 

0.655) are presented in Figure 18. The conversion from T| to T) was 

accomplished using C = 1.0. 

Figure 18 indicates that the effect of variable Schmidt number 

on the degree of dissociation profile is rather large and the error in

curred by assuming a constant value of the Schmidt number is also rather 
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1.0 

Finite Difference Solution-
Variable C 

Finite Difference Solution-
Constant: C (=1.544) 

Chapman's Similar Solution 

16. Comparison of Velocity Profiles from the Finite 
Difference Solution for Variable and Constant 
C (1.544) with Chapman's Solution 
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-8.0-

-10.0 

1.0 

Finite Difference Solution 
Variable C, s* = 3.0 

Similar Solution (C = 1.0) 

Figure 17. Comparison of the Constant Property "Best Fit" 
(C = 1.0) Velocity Profile with the Variable 

Property Solution 
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6.0 

4.0 -

2.0 

nbl 

0 

-2.0 

-4.0 -

-6.0 

-8.0 

Computer Solution at s* = 3.0 

Similar Solution Sc = 1.0 

Similar Solution Sc = 0.655 

Figure 18. Comparison of the Degree of Dissociation 
Profiles for Variable and Constant 
Properties (Frozen Flow) 
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large. Note that for similar solutions the degree of dissociation on 

the dividing streamline, as opposed to the velocity, depends on the 

assumed value of the Schmidt number. 

The temperature profiles for frozen flow with variable proper

ties and frozen flow with constant properties (Pr =1.0 and Pr = 0.655, 

Le = 1.0) are shown in Figure 19. Although the Prandtl number is 

nearly constant, the temperature is strongly dependent on the degree 

of dissociation and the agreement is not good. 

The velocity, degree of dissociation, and temperature on the 

dividing streamline are summarized in Table 1. These values are re

quired in the determination of the base pressure for cases without 

base bleed. 

Table 1. Comparison of the Flow Properties 
on the Dividing Streamline 

Chemical Rate 
Assumption 

Property 
Assumption a 

Finite Rate Variable 0.557 0.585 0.986 
Frozen Variable 0.558 0.547 1.097 
Frozen Pr = Sc = 0.655 0.587 0.606 1.089 
Frozen Pr = Sc = 1.00 0.587 0.586 1.158 

Case 2 

M = 2.0 
00 

p =1.0 atmosphere 
00 

Gas - Oxygen 
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Computer Solution at s* = 3.0 

0.5 

Similar Solution,Pr = Sc = 0.655 

Similar Solution, Pr = Sc = 1.0 

0.6 0.7 0..8 0.9 1.2 

Figure 19. Comparison of the Temperature Profiles for Variable 
and Constant Properties (Frozen Flow) 
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T = 4240° K T = 1950° K 
oo S 

a = a = 0.753 a = a 0.000 
oo eoo s es 

Note that the Mach number and temperatures are the same as 

Case 1, but the pressure is increased and the resulting equilibrium 

dissociation degrees are lowered. Correspondingly, the time ratio 

_;? 
at x = 3 meters was found to be 3.6 x 10 ' in the freestream and 

s 
-2 

3.4 x 10 on the dividing streamline. 

Variable property solutions were obtained by the finite dif

ference method for frozen, finite rate, and equilibrium flow. 

The velocity profiles are shown in Figure 20. The profiles for 

all three rate considerations are a single curve. This illustrates the 

weak coupling between the momentum and continuity equations, and the 

species conservation and energy equations. Note however that the divid

ing streamline velocity, u*, at x = 3 meters in this case is about 0.562 

whereas it was about 0.557 with a pressure of 0.01 atmosphere. 

The profiles for the temperature and the degree of dissociation 

at x = 3 meters are presented in Figures 21 and 22. As predicted by 

the small values of T*, the curves for finite rate flow and equilibrium 

flow are indistinguishable. Since the heat of dissociation is very high, 

the temperature is strongly dependent on the degree of dissociation. 

The chemical reactions tend to smooth out the temperature profile in 

this case and lower the temperature of the dividing streamline. 

Within the mixing region v"v is always greater than or equal to 

zero. Thus, below the dividing streamline, the convection is always 

toward the dividing streamline while above the dividing streamline? the 
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-6.0 -

-8.0 • 

Figure 20. Velocity Profiles at x s = 3 Meters 
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-8.0 - Finite Rate (and 
Equilibrium) Flow 

Frozen Flow 

-12.0-

-20,0 

Figure 21. Temperature Profiles at xs = 3 Meters for 
Frozen, Finite Rate, and Equilibrium Flow 
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8.or 

Fini te Rate 
(and Equilibrium) 

Frozen Flow 

Figure 22. Degree of Dissociation Profiles at 
xs = 3 Meters for Frozen, Finite Rate, 
and Equilibrium Flow 
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the convection is always away from the dividing streamline. By defini

tion, v* is zero on the dividing streamline. Diffusion and heat conduc

tion across the dividing streamline do occur, however, resulting in the 

transport of species and energy. 

In the case under consideration, the atomic species concentra

tion gradient causes the atoms to diffuse toward the stagnant region, 

i.e., the diffusion opposes the convection. If the flow is considered 

to be frozen, the atoms can penetrate a large distance below the divid

ing streamline. As atoms from the hot freestream are being diffused 

toward the stagnant region, molecules from the cool stagnant region are 

being diffused and convected toward the freestream. 

If the flow is considered to be frozen, atoms entering the cooler 

region remain dissociated. If chemical reactions are allowed, recombi

nation occurs. The heat of dissociation released during recombination 

thus increases the temperature of the gas below the dividing streamline. 

Similarly, molecular dissociation takes place in the high temperature 

region created by the viscous dissipation, and the temperature decreases 

Case 3 

M = 2.62 
00 

p = 0.0364 
00 

Gas - Oxygen 

T = 1464° K T = 3142° K 

co S 

a = 0.000 a = 0.407 
co S 

The temperature of the stagnant region is the frozen stagnation 

temperature of the freestream. At x = 3 meters, the time ratio T is 
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about 4 x 10 in the freestream and 6 on the dividing streamline. The 

cool, high velocity freestream produces a large T*, indicating frozen 

flow, while in the stagnant region, the low velocity and high tempera

ture give a low T*, indicating equilibrium flow. 

The velocity profiles, shown, in Figure 23, for frozen, finite 

rate, and equilibrium flow with variable properties are indistinguisha

ble, with u* = 0.588 on the dividing streamline. Although the dividing 

streamline velocity is the same as Chapman's, it is coincidental. 

The degree of dissociation and temperature profiles at 3 meters 

are shown in Figures 24 and 25. In this example, the normal convec

tion, atomic diffusion, and thermal conduction are all toward the free-

stream. The maximum temperature if found in the stagnant region. The 

dissociation degree and temperature profiles show that the degree of 

dissociation corresponding to equilibrium flow is always less than the 

frozen degree of dissociation and the equilibrium temperature is al

ways greater than the temperature for frozen flow. The finite rate 

profiles indicate recombination is occurring throughout the shear layer. 
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-2.0 

-3.0H 

Figure 23. Velocity Profiles at x =3.0 
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3.0 

2.0 

1.0 

'bl 

-1.0 • 

-2.0 

-3.0 • 

-4.0 

Frozen Flow 

Finite Rate Flow 

Equilibrium Flow 

Figure 24. Degree of Dissociation Profiles at 
x s = 3 Meters for Frozem, Finite Rate, 
and Equilibrium Flow 
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3.or 

— — Frozen Flow 

Finite Rate Flow 

Equilibrium Flow 

2.2 

Figure 25. Temperature Profiles at x<, = 3.0 for 
Frozen, Finite Rate, and Equilibrium Flow 
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CHAPTER V 

EVALUATION OF THE BASE PRESSURE 

As discussed in Chapter II, an iterative process is used to ob

tain the base pressure. For a given set of flow conditions, M , T , 

p , and T_, a first guess of the base pressure, p_., is made. The 

reference length, £, is taken to be the base half height, H. The in

viscid flow region consisting of the flow expansion to the base pres

sure and the subsequent chemical relaxation is computed by the method 

of characteristics as described in Chapter III. The computation of the 

inviscid flow region continues until the boundary of the inviscid flow 

intersects the base centerline. The frozen shock angle |3f (Figure 26) 

is obtained from the frozen oblique shock relations 

2 cot p.0£.sin3p -1) 
_'fN fa yf 

t a n \ ' £ (V +cos 20T2 « ° • <1 8 4> 

where 

4+Qfe 
Yo == T * 

P 3 
The p r e s s u r e r a t i o a c r o s s t h e shock , — , i s o b t a i n e d from 

P 2 

P2 PB " V2+l 
hr[l^sin33 f-l l . (185) 
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Point 1—Speciiied by 
Frozen Prandt.1--Meyer 
Relations 

Point 2—Given by 
Method of Characteristics 
Calculations Point 3— 

Specified by 
Frozen Shock 
Relations 

Figure 26. Flow Regions for Base Pressure Calculations 
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For the shear layer calculations, the initial velocity, tempera

ture, and degree of dissociation profiles are step profiles. The ini

tial values above the dividing streamline correspond to the conditions 

following the frozen expansion of the inviscid flow. The initial u 

velocity on and below the dividing streamline is zero and the degree of 

dissociation is the equilibrium value, <y , corresponding to the assumed 
eB 

base pressure, p , and the specified value of T . The vertical velocity 
B B 

is zero at the initial station. 

The boundary conditions for temperature and degree of dissocia

tion at £ = +1, are specified functions of s*, previously obtained from 

the inviscid solution. The pressure throughout: the mixing region is a 

constants, p„» The boundary conditions at: f = -1 are u = 0, T = T , and 
B ° B 

0i = 01 „. 
eB 

Using the implicit finite difference method discussed in Chapter 

IV, the velocity, temperature and species concentration profiles in the 

mixing region are computed up to the s*-station where the oblique shock 

in the inviscid flow occurs. At this station, the frozen Mach number, 

Mf., is computed at each grid point (j = -N,„..,0,...,+N). The cor

responding stagnation to static pressure ratio is computed at each grid 

point from the relation: 

1± 
P . - P *. • / V.-l \Y-~1 

ir^-ifM^V^ J • <"« 
J B 

where 

file:///Y-~1
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Y 
_ J L 

J 3 

The relation 

^ = ^ - S ^ (187) 

establishes the stagnating streamline as the streamline through grid 

point ss&o 

Since the flow is steady, the mass in the recirculating region 

is conserveds and the rate of mass bled into the base region is equal 

to the mass flow rate between the stagnating streamline and the di

viding streamline. If the stagnating streamline is below the dividing 

streamline, the mass flow will be considered positive, indicating 

bleeding into the base region,, The mass flow is written 

,0 
m 

yss£ 

pudy , (188) 
b 

where y is the stagnating streamline location. Transforming to the 

Stewartson coordinate (119), and introducing the non-dimensional varia

bles (131), equation (188) becomes 

2 ^ = [° u*dY* . (189) 

ss£ 

Application of the finite range transformation (140) gives 
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The non-dimensional base bleed is numerically integrated using Newton-

Cotes integration formulae. 

To summarize then, with specified upstream flow conditions, 

stagnation region conditions, and base height, a base pressure value is 

assignedo The external, expansion, relaxation and recompression are com-

puted to find the recompression pressure ratio. The viscous mixing is 

solved to obtain the stagnation pressure profile for the assigned base 

pressure. The mass flow between the stagnating streamline, which has 

sufficient kinetic energy to penetrate the recompression rise, and the 

dividing streamline is computed. The assigned base pressure is thus 

the solution corresponding to the specified conditions with the calcu

lated amount of base bleed. 

In order to obtain a base pressure solution for a closed base 

(zero bleed), different base pressure values are assigned. Base bleeds 

corresponding to the assigned base pressures are determined. The 

closed base solution is determined bv plotting p_/p versus the base 
D CO 

bleed. This procedure gives, in addition to closed base solutions, 

solutions for cases involving base bleed. 

Alternatively^ with each assigned base pressure, the dividing 

streamline stagnation pressure is compared to the pressure after the 

recompression shock. The closed base solution corresponds to the case 

where these two pressures are equal. This method allows the exterior 

inviscid flow and the viscous shear layer to be separated and thus, the 

effects of dissociation in the two regions are separated. 
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The Base Pressure for a Gas Without Dissociation 

In order to check the computer solution, a case was solved for an 

ideal dissociating gas with negligible, dissociation. Calculations were 

carried out for the following conditions: 

M = 3.55 
CO 

p =: 1 atmosphere 
CO 

T = 500° K 
CO 

T, = 1550° K 
B 

Gas - Air (M = 30.0) 

The recirculation region temperature corresponds to the freestream 

stagnation temperature. The base bleed as obtained from the computer 

solution is plotted against the corresponding base pressure in Figure 

27. 

The computed results are compared with values obtained using 

the Chapman[5] theory (C = const., Pr = 1.0) and the Chapman[l3,33] 

theory (C- T , Pr = 0.70) in Table 2. 

Table 2. Comparison of the Base Pressures for Closed Bases as 
Computed from the Finite Difference Solution and Similar 
Solutions for a Gas with Negligible Dissociation 

Base Pressure 
Method of Solution (Atmospheres) 

Finite difference, C-variable, Pr = 0.70 0.248 

Similar [5], C = const, Pr = 1.0 0.286 

Similar [13,33]; C-variable for u ; 0.256 
C = const, Pr = 0.70 for T* 
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Figure 27. The Dimensionless Base Bleed Rate 
versus the Base Pressure 
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The comparison indicates that the computer solution is in reasonable 

agreement with the Chapman results for Pr := 0.70. 

The dividing streamline velocity and temperature as computed by 

PB 
the three theories for — = 0.248 are compared in Table 3. The dividing 

00 

streamline velocity as computed by the finite difference method is the 

same as Chapman's result for variable C. However, the temperature for 

Chapman's solution with Pr = 0.70 is based on the velocity profiles for 

constant C, and is slightly high. 

Table 3. Comparison of the Velocity and Temperature on the Dividing 
Streamline at Recompression as Computed by the Finite Differ
ence Solution and the Similar Solutions for p = 0.248 atm. 

D 

"k -k 

Method of Solution u T 

Finite Difference, c-variable, Pr = 0.70 0.595 2.974 

Similar [5], c = const, Pr = 1.0 0.587 3.225 

Similar [13,33]; c-variable for u ; 
c = const, Pr = 0.70 for T* 0.596 3.081 

The Base Pressure for a Hot Dissociated Recirculation Region and 

Negligible Dissociation in the Exterior Flow 

In order to investigate the effects of finite rate dissociation 

in the shear layer on the base pressure, a case with a relatively cool 

exterior flow and a hot recirculating region was studied. The conditions 

were 

M = 2.0 
00 

p =0.1 atmosphere 

T = 1885° K 
00 
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T = 3412° K 
D 

H =1.0 meter 

Gas - Oxygen 

The base temperature, T_, corresponds to the frozen stagnation tempera-

ture, The degree of dissociation corresponding to the freestream con

ditions was negligibly small. Thus the entire external flow involved 

negligible dissociation and the expansion was Prandtl-Meyer. The de

gree of dissociation in the recirculation region was not negligible. 

For this case, therefore, the finite rate reaction effects enter only 

through the shear layer development. 

Figure 28 is a plot of the base pressure versus the non-dimen

sional base bleed for the problem under consideration. The curvature 

is due primarily to the fact that the mass flow is proportional to the 

velocity while the kinetic energy is proportional to the velocity 

squared. As an example, a non-dimensional bleed of 0.25 into the base 

region would raise the base pressure 17 per cent to 0.590 atmospheres. 

This bleed rate corresponds to about 3 per cent of the mass flow be

tween the dividing streamline and the shear layer edge. For the same 

non-dimensional bleed from the base region, the. pressure is decreased 

21 per cent to 0.40. This mass flow represents about 13 per cent of 

the mass flow below the dividing streamline. 

In Figure 29, the calculated inviscid recompression pressure 

ratio, p /p , and the dividing streamline static to stagnation pressure 
B 3 

ratio, p^p , are both plotted against the assumed base pressure ratio, 
B s t 

PB 
— . The dashed curve represents the inviscid recompression. It is 
P 
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noted that for this example, the exterior flow is frozen and the Mach 

number is low so that the recompression shock is very weak. As a re

sult, the pressure after the shock,p, is nearly equal to the upstream 

pressure, p . The curves representing the recompression of the shear 

layer are shown as solid lines. Curves are shown for frozen, finite 

rate, and equilibrium flow in the shear layer., 

The point of intersection of the p̂ /p,-, and p_/p curves gives 
D J D S t 

the base pressure solution for a closed base. It was found that the 

finite rate shear layer solution (p = 0.505) lies between the frozen 
B 

shear layer solution (p_, = 0.492) and the equilibrium solution (p^ = 
a B 

0o526)„ As discussed in Chapter IV, the dividing streamline velocity 

ratio, u*„ for the frozen, finite rate, and equilibrium cases are 

nearly identical. The differences in the base pressures for the three 

rate assumptions are primarily due to the differences in the dividing 

streamline temperature. The frozen shear layer dividing streamline 

temperature is lower than that of the equilibrium shear layer (Figure 

25). This means that the corresponding density is higher and the 

kinetic energy available for overcoming the recompression pressure 

rise is also higher. Thus the base pressure is lower. 

Since the computer time required to solve the shear layer is 

rather large, a simpler approach based on an extension of Chapman's 

theory (discussed in Appendix B) was attempted. 

In Figure 30, the calculated inviscid recompression pressure 

ratio, p /pQ,and the dividing streamline static to stagnation pressure 
D J 

PB 

ratio, pR/p . , are again plotted against the assumed base pressure,—. 
^00 

In addition to the p„/p curve for the shear layer solution with 
D s t 
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finite rate reactions, solutions for froz:en flow with Pr = Sc = 1.0 and 

Pr =2 Sc = 0.655, as obtained by Chapman's results, are shown. The re

sults are not in good agreement with the present solution. 

The Base Pressure for a Cool Recirculation Region with Dissociation 

Throughout the Flow Field 

In order to investigate the effects of finite rate reactions in 

the exterior inviscid flow and the effects due to cooling the recircu

lating region, the following case was considered: 

M = 3.2 
00 

p =0.10 atmosphere 

T = 3221° K 
00 

T_ K 3221° K 
B 

H = 1 and 2 meters 

The degree of dissociation corresponding to the freestream conditions 

is 0.3245. Calculations for the inviscid expansion and relaxation 

were carried out by the method of characteristics. 

Plots of the base pressure versus the non-dimensional base bleed 

for finite rate reactions and base half heights of one and two meters 

are shown in Figure 31. The curves indicate that the closed base pres

sure decreases as the base half height is increased 

In order to investigate the reasons for the decrease, it is 

helpful to examine Figure 32, which shows the exterior recompression 

pressure ratio, p /p , and the dividing streamline static to stagnation 

pressure ratio, p^/p > plotted against the assumed base pressure ratio, 
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The three dashed curves represent the exterior shock recompression pres

sure ratio, p /p , for zero (frozen flow),, one and two meter base half 

J D 

heights. The equilibrium limit for the inviscicl flow was not computed, 

but certainly the pressure after recompression could not be higher 

than the freestream pressure. The two shear layer curves (solid lines) 

represent the recompression for base half heights of one and two meters. 

This figure indicates that the finite reaction rates in the ex

terior flow tend to raise the base pressure. The effect of finite 

rates in the shear layer is larger, however, so that, at least in this 

case, the shear layer determines the base pressure change. 

The profiles of dissociation degree and temperature in the shear 

layer are shown in Figures 33 and 34. Since the recirculation region 

temperature is less than the stagnation temperature, a "hot spot" forms 

near the dividing streamline.* The dissociation of the gas in this re

gion absorbs this thermal energy and stores it as chemical energy. 

Thus, in the flow direction, the dividing streamline temperature de

creases, while the density and kinetic energy increase. As a result, 

with a large base height, the dividing streamline can overcome a 

greater recompression pressure rise and the base pressure is lower. 

This indicates that for a case with a cool base, the effect of 

the finite reaction rates in the shear layer is to reduce the base 

pressure from the frozen flow value. 

In reference [35], Resler considered the base pressure for a 

body with a specified amount of heat transfer. His qualitative analysis 

'vRecent experimental results of Batt and Kubota[35] at low temperatures 
(negligible dissociation) for base pressures on a cooled body have 
shown the existence of such peaks in the static temperature. 
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indicates that the base pressure value considering the flow to be in 

equilibrium is higher than that considering the flow to be frozen, 

The results for the inviscid (non-heat conducting) flow and the 

shear layers for hot bases agree with Resler's predictions. However, 

the results of this thesis indicate that, for the case of a cool base, 

the trend is opposite to that predicted by Resler. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

An investigation of the effects of finite rate dissociation-

recombination reactions on the base pressure has been made,, The ex

terior inviscid expansion has been treated by the method of character

istics for a reacting gas. A linearized theory for the inviscid 

expansion into a constant-pressure region has been developed„ The 

laminar mixing region has been investigated by means of an implicit 

finite difference methodo The two regions have been coupled, and 

several base flow problems have been studied. 

The results of the investigation led to the following conclu

sions i 

1. The inviscid expansion of an ideal-dissociating gas into a 

constant-pressure region represents a simpler flow than the previously 

reported expansion around a convex corner. Following the frozen ex

pansion, the flow deflection, degree of dissociation, and Mach number 

along the constant-pressure boundary decrease monotonically, while the 

temperature increases monotonically. No overshoot of the flow deflec

tion corresponding to the pressure overshoot for the problem of flow 

around a convex corner was observed. The waves reflecting from the 

constant-pressure boundary are expansion waves, and thus, a recombina

tion shock is not possible, 

2„ The linearized theory for the supersonic flow expanding into 

a constant-pressure region is very useful for small expansions and for 
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purposes of prediction. 

3» The implicit finite difference method with the finite range 

transformation offers a stable, accurate method of solution to boundary 

layer types of flows without reverse flow regions. The use of the 

Taylor series expansion of the rate equation reduces the calculation 

time by as much as 80 per cent, without any additional restrictions for 

stability., 

4. The velocity profiles in the mixing region are relatively 

insensitive to the rate process. The finite rate profiles for tempera

ture and degree of dissociation fall between the limits of frozen and 

equilibrium flow, as expected. 

5. Chapman's[33] results are extended to account for dissocia

tion in a frozen flow with constant Pr, Sc, and C. Furthermore, the 

finite difference results using the same assumptions show excellent 

agreement with the similar profiles. However, due to the large tem

perature differences encountered in this problem, the assumption of 

constant Pr, Sc, and C gives results in poor agreement with the solu

tions for variable properties. 

6. Finite reaction rates in the inviscid exterior flow cause 

an increase in the base pressure. This result agrees with the predic

tions of Resler that the drag on a body in equilibrium flow is less 

than the drag on a body in frozen flow. 

7. The effects of finite rate reactions in the mixing region 

depend on the temperature of the recirculation region. 

If the temperature of the recirculation region is on the order 

of the freestream. stagnation temperature:, atomic recombination occurs 
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near the dividing streamline so that the temperature increases and the 

dividing streamline kinetic energy decreases„ This loss in kinetic 

energy results in an increase in the base pressure. For example, an in

crease in p^/p from 0.492 to 0.526 was computed between the frozen and 
D 00 

equilibrium limits. 

If the recirculation region is cool, a peak in the static tem

perature, caused by viscous dissipation, forms near the dividing stream

line. The molecular dissociation in this region absorbs thermal energy 

and causes an increase in the kinetic energy of the dividing streamline. 

This results in a decrease in the base pressure. In the example for a 

cool base, presented in this thesis, the effects in the, shear layer 

overpowered the effect of the inviscid flow and the base pressure de

creased from 0.163 for a one meter base to 0,156 for a 2 meter base. 

In summary, the results of this thesis indicate that the effects 

of dissociation on the base pressure are important. The recombination 

in the inviscid flow tends to increase the base pressure. If the base 

region is hot, recombination occurring near the dividing streamline 

tends to increase the base pressure. However, if the base region is 

cool, dissociation occurs near the dividing streamline, which tends to 

decrease the base pressure. 

Although the method of solution used in this thesis is somewhat 

time consuming (each closed base solution requiring from 1/2 to 3 hours 

on the Burroughs B 5500 Computer), the simplified approaches have not 

produced useful results. 

Although there is a substantial amount of experimental base pres

sure data available for lower temperatures, practically no experimental 
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data for dissociating flows exists in the open literature. Therefore, 

experimental investigations of the base pressure for dissociating gases 

are strongly recommended. 

A theoretical investigation of the expansion of a dissociating 

gas with an initial boundary layer appears worthwhile, since the results 

of this thesis suggest that the decrease in flow deflection on the con

stant pressure boundary can be of the same order as the initial turning 

angle underestimation predicted by Weiss and Nelson[7]. 

Finally, the finite difference method used in this thesis can be 

applied to attached boundary layers, enabling further investigations in

to the effects of finite rate reactions on heat transfer and other re

lated problems. 
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APPENDIX A 

GAS MODEL 

In this appendix, a gas model will be presented which accounts 

for all of the properties of a dissociating gas. All gases of interest 

in this study will be symmetrical diatomic gases. Attention will first 

be focused on the determination of the molar concentrations of the indi

vidual species. This will involve the specification of an equilibrium 

relation based on the law of mass action., and a rate equation for non-

equilibrium situations. Consideration will then be given to the thermo

dynamic properties and, finally, the transport properties of the gas. 

The equilibrium concentration is determined by the dissociation-

recombination reaction of a symmetrical diatomic gas such as oxygen 

0 2 t 20 . (A-l) 

Reactions of this kind can be characterized by the degree of 

dissociation a, where 

mass of dissociated A-atpms 
Q> =  

total mass oi: the gas 

pA 
n ' ( A " 2 ) 

P 

and the subscript A denotes atoms. At equilibrium, the degree of dis

sociation is given by the law of mass action: 
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2 d 
ae Pd "T 
rr— = — e . (A-3) 
l-a p e M 

The characteristic density for dissociation, p , is a mildly varying 

function of temperature which is small compared to the variation of the 

exponential term. The widely accepted Lighthill[37] model of an ideal 

dissociating gas assumes that p, is a constant. Values of the con

stants p, and 9 , for oxygen are given in Table A-l. 

The rate equation for a symmetrical diatomic gas is given by 

Ti = ("f.A' + \n^}tbl " "> " IT*" o' M - "A-c 
(A-4) 

where the k 's are forward rate constants and K is the equilibrium f c n 

constant. 

Table A-l. Constants for the Gas Used in this Thesis 

Oxygen 

"a 

8d 

c f 

n 

ft 
M 

150 gm/ 3 
cm 

59,000° K 

1.19 X i o 2 0 

-1.5 

100 

32 

M M £ 

PI 
"o^ 

4 . 6 2 

al2
2 3.199 
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Expressing the forward rate constants in terms of the temperature and 

the equilibrium constant in Lighthill1s form, the applicable rate equa

tion becomes: 

nl n2 fl 
C T Cf T fd 

&- - T - • + - f c - C 1 - •) p [> -a>'"T - f: * (A-5) 
"A % K J L ?d 

Since there is a substantial amount of uncertainty in the values of C , 

a simplified form of the rate equation, proposed by Freeman[38], is 

used. 

__d 
da 

•np{(l - a)e T - 2-op) . (A-6) = C^T 
"d 

dt f p 

The values of C and n used in this thesis are also shown in Table A-1. 

Assuming that all species in the mixture behave as thermally 

perfect gases, Dalton's Law is used to write the thermal equation of 

state in the familiar form 

p = p(l + o)RmT . (A-7) 

The enthalpy is taken in the form consistent with the ideal dis

sociating gas based on zero energy in the molecular state at absolute 

zero. 

h = R [(4 + a)T + ae,] . (A-8) 
m d 

The corresponding internal energy is given by 

e = Rm[3T + a9d] ., (A-9) 
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For frozen flow, a is independent of T, and the ratio of specific heats 

is written 

Yf = " y • (A-10) 

Although a more exact formulation for the enthalpy would be 

proper for the precise numerical technique used in the solution, it is 

desired to separate the effects of vibration and dissociation. This is 

effectively done by the ideal dissociating gas model. In the tempera

ture range of interest in this study, 1000 - 5000 K, this model should 

give good quantitative results. For the cases examined at low tempera

tures for comparison purposes, the ideal dissociating gas model is only 

qualitatively correct, since the vibrational excitation term is not in

cluded, 

In high temperature gas dynamics, the classical thermodynamic 

state variable known as the speed of sound requires an additional con

straint. The pressure is now a function of three variables so that 

the condition of constant entropy is no longer sufficient to define a 

sound speed. A study of the "acoustic" equations (references [19] and 

[20]) results in the discovery of two important sound speeds, frozen 

and equilibrium. For an ideal dissociating gas, these are 

3fiZ 

\>dp/p,a p 

2 _ _\ap/£ag 
f " (2k\ . 1 

(A- l l ) 

R T (4+cO (1-K*) 
m 
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a = 

3h \ 
+ &L\ fee 

\dp/p»a \ d a / p , o \ d p / p 

dp/p,a \oWp,p\oWp p 

(A-12) 

a (l-o^)(l+2T/9,)+(8+3a -a3) (T/6 , ) 2 

_ R T _e e d e e d 
" m1 ^ ( l - o ) + 3 ( 2 - a ) ( T / 9 , ) 2 

e e e d 

where the subscript e indicates equilibrium values of a, obtained from 

equation (A-3). 

Although the molecular theory of transport coefficients is well 

developed within the restrictions of the Chapman-Enskog theory, the 

interpartide potential for high temperature gases is unknown. Un

certainties exist even in the choice of constants for a particular po

tential result in uncertainties of 45 per cent or more in transport 

coefficients. 

The coefficients of viscosity and diffusion are written as 

follows: 

M = 26.693 
Me P. 

(2,2)* 
x 10 gm/cm-sec (A-13) 

pD = 0.002628 

12 
v^ 
2M AMM 

cm 

fi 
(1,1)* sec 

(A-14) 
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The values of the parameters £ and o were taken from Brokaw [39], based 

on the Leonard-Jones 6-12 potential and are shown in Table A-l. The 

collision integrals (see, for example, Reference {26], page 296) were 

approximated by the polynomials 

3 

(1 1)* (T^1 

nK±>XJ = -0.06H log -
L£ 

+ 0.3112 log n 

-0.7350 log - + 1.2266 

and 

(2 2)* Sl^>'> = -0.0589 

_ 3 

4 + 0.30726 

2 

log 
rTi 

-0.7443 5lF + 1.3196 

For a gas mixture, the viscosity is dependent upon the viscosi

ties of the constituent species. However, for diatomic gases the 

molecular viscosity is approximately equal to the atomic viscosity. 

For a monotomic gas, the Chapman-Enskog theory gives the thermal 

conductivity as 

1 5 p 

KA
 = T VA 

(A-15) 
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Using Hirschfelder's improvement to the Eucken correction, the expres

sion for the thermal conductivity of diatomic molecules is [26.] 

15_ 
KM ' 4 y lM 

Cp 
0.115 + 0.354 - M 

*M 
(A-16) 

where the specific heat is obtained from Equation (A-8). 

The thermal conductivity of the mixture is given to a first 

approximation by 

K = 
1-a 
1+a <M

 + 
2al 
1+a 

Substituting Equations (A-15) and (A-16), the thermal conductivity for 

the mixture becomes 

K = 5.7375 ^y 
M 
1 + 1.62a 
1 + a 

(A-17) 

Because of the r e l a t i o n s h i p between K and y, the P r a n d t l number i s 

simply 

P r = MCp_ = 7Q [(1+0.250) (1-hx) 
1 + 1.62a 

(A-18) 
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APPENDIX B 

EXTENSION OF CHAPMAN'S RESULTS TO INCLUDE DISSOCIATION 

In reference [33], Chapman presents an analysis of the free 

shear layer for a thermally perfect gas. The Prandtl number and the 

product of density and viscosity are assumed to be constant. The 

resulting momentum equation is independent of the energy equation and 

is solved numerically. The energy equation is then solved in terms 

of integrals of the velocity. 

It will be shown here that Chapman's analysis can be easily 

extended to the frozen flow of a dissociated gas, and in fact no addi

tional calculations need be performed. 

In addition to the assumptions incorporated in the boundary 

layer equations (99) through (103), the following additional assumptions 

will be made 

1. Pr = Sc = constant (Le= 1.0) 

2. p*u* = constant 

3. The flow is frozen (to = 0). 

The governing differential equations are the continuity 

equation 

MEHl+3ieHl. 0 , (B_1} 

9x dy 

the momentum equation 
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8u , 3u 3 
pu — + pu — • = — -

3x 3y 3y 
3u 
3yJ 

(B-2) 

the species conservation equation 

3a , 3a 3 
PU r pv -— = -— 
M 3x 3y 3y 

y 3_a 
Sc 3y 

(B-3) 

and the energy equation 

3h _, 3h 
pu — + pv — 

3x 3y 

JL 9h 
3y |Pr 3y + y 

3u 
L^yJ 

(B-4) 

The stream function, î , defined in equation (122), is used to 

transform equations (B-1), (B-2), (B-3), and (B-4) to (s,i[i) coordinates 

The transformation is accomplished with the aid of the relations 

f3' 
w 

= pu. 
p 

X °° 

3 

X 

3x 
'y 

pv 
l9*J 

+ 
X 

f •> 

3 
3x> * ' 

(B-5) 

Due to the choice of coordinates, the continuity equation is automat

ically satisfied. Applying relations (B-5) and the dimensionless vari

ables (131) to equations (B-2) and (B-4) gives the non-dimensional form 

of the momentum equation 

3u* _ _3__ 
3 s * " di\>* 

3u*_ 
8ip* 

(B-6) 
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the species continuity equation 

3a 
9 s* Sc dip* 

u* 9a 
dp 

(B-7) 

and the energy equation 

9h 
ds* Pr 9^* 

u* 
9h *> 

9iJ;*j 

U 
+ 

9u* 
dip* 

(B-8) 

where 

and 

h " h " 

j * = 

M U LC 
oo oo 

Since there is no reference length in this problem (the flow is 

frozen), similar solutions appear possible. The differential equations 

are transformed from (IJJ*,S*) to (z,s*), where 

z = •~J:— (B-9) 

The momentum equation (B-6) is thus reduced to the non-linear ordinary 

differential equation 
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z_ du* _ _d_ 
2 dz dz 

du* 
dz 

(B-10) 

The numerical solution to this differential equation, subject to the 

boundary conditions u*(+°°) = 1 and u*(-°°) = 0, is discussed in reference 

[13]. 

The species conservation equation (B-7) is also transformed to 

(z,s*) coordinates: 

*2 

U* z- + 
dz 

2 dz 
8a * 9a_ . 

Sc s —-T- = 0 
dz dS* 

(B-ll) 

sub jec t to the boundary cond i t ions 

a (+00) = a a(_oo) = a^ m 

Since the boundary conditions are not functions of s, and the flow is 

3 a, 
frozen, the derivative — ^ is assumed to be zero. Equation (B-ll) thus 

becomes a homogeneous, linear second order ordinary differential equa

tion. The general solution is 

a = a + A/ 4u* 
du* 
"dz 

Sc 
dz 
2u* 

(B-12) 

Defining 
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the constant A is determined from the boundary condition 

a B = a « + A F l ( z B ) 

where z^ is the finite value of z corresponding to u* = 0. Thus the 
B 

solution to the species conservation equation is 

a = <*. + <V ao° ) gl ( z ) (B-14) 

where 

s i ( z ) = W 
(B-15) 

The energy equation is transformed to the (z,s*) coordinate 

8h 
system, and — — is assumed to be zero. The resulting form 

2 * 
,*9_h_ 

a 2 
dZ 

+ 
•o z , du* Pr y + -:— 

I dz 
dh* 
dz" 

U 
00 

P rtT 
du* 
dz 

(B-16) 

v. J 

is a linear, second order, ordinary differential equation. The general 

solution is [33]: 

u2 

•k oo 

h = 1 + C1F1(z) + — F2(z) 

where 

V z ) = / 4u* dm* dz 

Pr 
dz 
2u* 

(B-17) 
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z 
4u* 

du* 
dz 

Pr 
G(z) 

dz 
2u* ' 

(B-18) 

and 

G(z) = J 
o 

4u* du* 
dz 

2-Pr 

2u* " 
(B-19) 

The constant C. is determined from the boundary condition 

hB = 1 + ci Fi ( zB ) + arW • 

Thus the enthalpy is written: 

7S CC 

h* = 1 + (hB-l)gl(z) + 2£- 8 2
( z ) (B-20) 

where the normalized functions g-. (z) and g~(z) are defined as 

gl(z) = F1(z)/F2(zB) , (B-21) 

and 

g2(z) = F2(z) - g1(z>
F
2(

z
B) (B-22) 

Note that the species conservation equation (B-11) is simply the 

homogeneous form of the energy equation (B-16). The resulting functions 

F and g1 are the same for both equations. 

Values of the functions g1(z) and g?(z) are tabulated in refer

ence [33] for various values of the Prandtl (or Schmidt) number. Since 
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the dividing streamline is of primary concern in the solution of the 

base flow problem, the results for the dividing streamline from refer

ence [33] are plotted versus the Prandtl number in Figure B-1. 
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Figure B-1. The Functions g. (0) and g~(0) versus 

the Prandtl (or Schmidt) Number 
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APPENDIX C 

COMPARISON OF THE FINITE DIFFERENCE MIXING 

SOLUTIONS WITH AVAILABLE SOLUTIONS 

In this appendix, the finite difference solutions of the laminar 

mixing problem are compared with solutions available in the literature, 

The velocity profiles are compared with Chapman's similar solution. 

Degree of dissociation profiles for the problem of the constant velocity 

mixing of two reaching streams having constant fluid properties are 

compared with the results of Kovitz and Hoglund. 

The Laminar Free Shear Layer 

The similar solution obtained by Chapman [13] is used as a test 

of the finite difference solution, For this comparison, the thermo

dynamic and transport properties obtained in Appendix A are replaced by 

constant properties (in this case Pr = C = 1) in the solution. The 

selection of C = 1, transforms the variable n into the variable used by 

Chapman. 

v 
n = 

c /c" 

where the subscript C denotes Chapman's variable. The initial profiles 

were of the Wu type. A value of N = 25 was chosen, so that there were 

-3 
51 grid points in the n-direction. Initial step sizes of As = 2 * 10 



141 

and 6 x 10 were used. The step size was increased as the square root 

of s. 

The velocity profiles are shown in Figure C-l. The agreement is 

seen to be excellent. 

Figure C-2 shows the velocity along the dividing streamline for 

various s* stations. The scale is enlarged so that the approach to the 

asymptotic limit, can be seen. With the larger initial step size the 

dividing streamline velocity is at 96 per cent of the asymptotic limit 

at s* = 0.36, and 98 per cent at s* = 3.00 which is a reasonable 

distance for a short base. 

Under the conditions of constant properties, the finite differ

ence equations reduce to the equations of reference [15]. In this 

reference the Chapman solution was used as an initial profile, and it 

was shown that the finite difference scheme preserves these profiles. 

The Constant Velocity Mixing of Two Reacting Streams 

Kovitz and Hoglund [34] have examined the mixing of two streams 

at constant velocity. The two streams are separated by a semi-infinite 

partition along x < 0 and y = 0. Each stream consists initially of the 

same symmetric diatomic gases but with different enthalpies and there

fore different concentrations. 

The similarity coordinate can be expressed in terms of the vari

able Zv.used in reference [34] by the transformation 

%i 2 \ 
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O Chapman 

Finite Difference Solution 

-10.0L 

Figure C-1. Comparison of the Velocity Profile from the 
Finite Difference Solution at s* = 3 with 
Chapman's Similar Solution 
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Figure C-2. Influence of the Initial Step Size on the Dividing 
Streamline Velocity Ratio for Constant Properties 
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The numerical solution presented by Kovitz and Hoglund was for 

the mixing of oxygen at a pressure of 0.01 atmosphere. The upper stream 

consisted entirely of atoms at a temperature of 4240°K, and the lower 

stream was entirely molecular at T = 1950°K. 

Finite difference solutions were obtained for variable and con

stant properties. For the constant property solution, a reference 

temperature was obtained by the method suggested by Eckert [39]. 

h = ̂ (h +hv) + 0.0833 U2 

Assuming equilibrium, the law of mass action (A-3) and the caloric 

equation of state (A-8) can be iterated to obtain T = 2970°K and 

a =0,42. (In the frozen flow solution the temperature along the 

dividing streamline was found to be 2900°K, but a = 0.38.) 

Following the assumption of Kovitz a.nd Hoglund that the Lewis 

number is unity, the Prandtl and Scmidt numbers were taken to be 0.655. 

The value of C was computed to be 1.544. 

The three solutions for the degree of dissociation for frozen 

flow are shown in Figure C-3. The finite difference solution for con

stant properties converges to the profile presented by Kovitz and 

Hoglund. The effect of variable properties is immediately evident. 

The degree of dissociation along the dividing streamline for the flow 

with variable properties approached the value of 0.43 as compared to 

the constant value of 0.50 of Kovitz and Hoglund, and 0.49 of the 

constant property finite difference solution. 
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6.0 
Finite Difference Solution with 
Variable Properties (s* = 10) 

Finite Difference Solution with 
Constant Properties (s* =10) 

Similar Solution of Kovitz 
and Hoglund 

? 

6.0L 

Figure C-3. Comparison of the Degree of Dissociation 
Profiles for the Frozen Constant 
Velocity Mixing of Two Streams 
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