PreDatA - Preparatory Data Analytics on Peta-Scale
Machines

Fang Zheng®, Hasan Abbasi®, Ciprian Docan?, Jay Lofstead!, Scott Klasky?, Qing Liu®,
Manish Parashar?, Norbert Podhorszki®, Karsten Schwan?!, and Matthew Wolfl?3

1College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
Email: {fzheng,habbasi,lofstead,schwan,mwolf}@cc.gatech.edu
2Center for Autonomic Computing, Rutgers University, Piscataway, NJ 08854
Email: {docan,parashar}@cac.rutgers.edu
30ak Ridge National Laboratory, Oak Ridge, TN 37831
Email: {liug,klasky,pnorbert} @ornl.gov

Abstract—Peta-scale scientific applications running on High
End Computing (HEC) platforms can generate large volumes of
data. For high performance storage and in order to be useful
to science end users, such data must be organized in its layout,
indexed, sorted, and otherwise manipulated for subsequent data
presentation, visualization, and detailed analysis. In addition,
scientists desire to gain insights into selected data characteristics
‘hidden’ or ‘latent’ in the massive datasets while data is being
produced by simulations. PreDatA, short for Preparatory Data
Analytics, is an approach for preparing and characterizing
data while it is being produced by the large scale simulations
running on peta-scale machines. By dedicating additional com-
pute nodes on the peta-scale machine as staging nodes and
staging simulation’s output data through these nodes, PreDatA
can exploit their computational power to perform selected data
manipulations with lower latency than attainable by first moving
data into file systems and storage. Such in-transit manipulations
are supported by the PreDatA middleware through RDMA-
based data movement to reduce write latency, application-specific
operations on streaming data that are able to discover latent
data characteristics, and appropriate data reorganization and
metadata annotation to speed up subsequent data access. As a
result, PreDatA enhances the scalability and flexibility of current
1/0 stack on HEC platforms and is useful for data pre-processing,
runtime data analysis and inspection, as well as for data exchange
between concurrently running simulation models. Performance
evaluations with several production peta-scale applications on
Oak Ridge National Laboratory’s Leadership Computing Facility
demonstrate the feasibility and advantages of the PreDatA
approach.

I. INTRODUCTION

Scientific applications running on High End Computing
(HEC) platforms can generate large volumes of output. As
these grow to peta-scale and beyond, fast write and read
accesses to massive data are becoming increasingly important,
both to speed up the simulation and to accelerate exploration of
data. A prerequisite to data exploration is that data is prepared
in terms of data layout, indexing, and annotation. For example,
some analysis tools prefer data to be laid out as contiguous
arrays for quick loading [51], and queries can be accelerated
if data is properly sorted and indexed [44]. In other words,
appropriate data preparation is critical for data analytics,

inspection, or visualization to operate. Finally, ‘hidden’ in the
large data sets being output by scientific simulation are latent
data characteristics of interest to end users, an example being
statistical measures that can be used to validate the veracity of
the ongoing simulation, gain understanding of the simulation
progress, and potentially, take early action when the simulation
operates improperly [19].

The object of our research and topic of this paper is the
development of efficient methods that properly prepare data
for subsequent inspection, storage, analytics, and even for
input into concurrent simulation models (e.g., as in climate
modeling). Our approach associates such data preparation with
the output actions taken by HEC codes in ways that speed up
output actions and thus improve application performance using
minimal machine resources. The software artifact developed
and used for these purposes is the PreDatA middleware.
PreDatA provides scalable and flexible ways of associating
data preparation operations with the 1/O actions of HEC
applications by generalizing the 1/0O stack used by HEC codes
taking advantage of the ADIOS 1/O library [29] used in a
wide variety of peta-scale codes. With this enhanced 1/0
stack, output performance is improved by writing data to files
using intermediate, log-structured data, avoiding the overheads
caused by synchronization and meta-data generation [30]
experienced when using standard file formats like HDF-5.
At the same time, the use of these formats enables efficient
operations on output data via predefined or user-provided
computational functions. These functions are performed while
I/0 is ongoing by staging data to where PreDatA can leverage
the computational power of selected machine nodes supporting
I/0O and/or connected to the storage subsystems. Further, by
using PreDatA to index or properly annotate data, a reduction
in the volume of subsequent reads performed by scientific
workflows engaged in data analysis can be achieved. This
improves performance by limiting interference at the parallel
file system due to simultaneous writes used by output and
reads used by scientific workflows.

The PreDatA middleware exploits the additional computa-

tional and memory resources provided by a staging area resi-
dent on the peta-scale machine. Output data are moved from
compute to staging area nodes asynchronously to reduce write
latency. PreDatA operations are applied to data prior to leaving
the compute node and/or on data buffered in the staging area.
The middleware provides a pluggable framework for executing
user-defined operations such as data re-organization, real-
time data characterization, filtering and reduction, and select
analysis (or pre-analysis). These are specified in ways natural
to the ‘streaming’ context. Despite this rich functionality,
PreDatA offers levels of performance not provided by current
file system-based approaches to analyzing output data, as
shown with extensive experiments in this paper.

PreDatA performance is evaluated with several production
peta-scale applications on Oak Ridge National Laboratory’s
Leadership Computing Facility platform. For one application,
GTC [22], at the scale of 16,384 compute cores and with
1.5% additional resource usage, PreDatA hides write latency
by up to 99.9%, improves total simulation time by 2.7%, and
achieves a 1.5% saving in total CPU usage compared with
performing pre-analytics in the compute nodes. In this exper-
iment, PreDatA generates scientifically meaningful statistics
from the 260GB output data in one simulation time step
in about 40 seconds. For another application, Pixie3D [10],
using PreDatA to re-organize the array layout of output data
from 16,384 cores improves subsequent read performance for
these output files by 10 times compared to when no such
reorganization is performed. At the same time, total execution
time of the simulation is increased by 1% with only 0.7%
additional resource usage.

The remainder of the paper is organized as follows. Sec-
tion 1l introduces the data management challenges for the two
motivating applications. Sections Il and IV present the design
and implementation of PreDatA, respectively. Section V ap-
plies the PreDatA approach to the two driver applications, and
Section VI evaluates the resulting performance demonstrating
the advantage over other online and/or offline approaches. Sec-
tion VIl summarizes related work, and Section VIII concludes
the paper.

Il1. APPLICATION DRIVERS

The development of PreDatA has been driven by the output
and analysis needs of two production peta-scale codes, GTC
and Pixie3D, both of which are capable of scaling to tens of
thousands of cores and generating Terabytes of data in typical
production runs.

A. The GTC Fusion Modeling Code

The Gyrokinetic Toroidal Code (GTC) [22] is a 3-
Dimensional Particle-In-Cell code used to study micro-
turbulence in magnetic confinement fusion from first principles
plasma theory. It outputs particle data that includes two
2D arrays for electrons and ions, respectively. Each row of
the 2D array records eight attributes of a particle including
coordinates, velocities, weight, and particle label. The last
two attributes, process rank and particle local ID within

sorted amray EP file

Promuy
= ¢

Index file

Sort]—~
Particle array))

g —-[Histogram]—-[Plotter]_. k‘ .

\ a0l
?DHistogram]f -[Plotter } - *

llustration of PreDatA Operations on GTC Particle Data

Fig. 1.

the process, together form the particle label which globally
identifies a particle. They are determined on each particle in
the first simulation iteration and remain unchanged throughout
the particle’s lifetime. These two arrays are distributed among
all cores and particles move across cores in a random manner
as the simulation evolves resulting in an out-of-order particle
array. In a production run at the scale of 16,384 cores, each
core can output two million particles roughly every 120 second
resulting in 260GB of particle data per output. GTC employs
the ADIOS BP format [29], a log-structured, write-optimized
file format for storing particle data.

As illustrated in Fig. 1, three analysis and preparation tasks
are performed on particle data. The first involves tracking
across multiple iterations a million-particle subset out of the
billions of particles, requiring searching among the hundreds
of 260GB files by the particle label. To expedite this operation,
particles can be (and for our example are) sorted by the label
before searching. The second task performs a range query
to discover the particles whose coordinates fall into certain
ranges. A bitmap indexing technique [44] is used to avoid
scanning the whole particle array and multiple array chunks
are merged to speed up bulk loading. The third task is to
generate 1D histograms and 2D histograms on attributes of
particles [20] to enable online monitoring of the running GTC
simulation. 2D histograms can also be used for visualizing
parallel coordinates [20] in subsequent analysis.

B. The Pixie3D Code

Pixie3D [10] is a 3-Dimensional extended MHD (Magneto
Hydro-Dynamics) code that solves the extended MHD equa-
tions in 3D arbitrary geometries using fully implicit Newton-
Krylov algorithms. Pixie3D employs multigrid methods in
computation and adopts a 3D domain decomposition. The
output data of Pixie3D consists of eight, 3D arrays that
represent mass density, linear momentum components, vector
potential components, and temperature, respectively.

As illustrated in Fig. 2, various diagnostic routines are per-
formed on Pixie3D output data to generate derived quantities
such as energy, flux, divergence, and maximum velocity for
diagnostics purpose. These derived quantities, along with the
raw output data, are then read by visualization tools like Vislt
for interactive visual data exploration. Pixie3D employs the
BP file format for fast write performance. Array layout re-
organization is performed to speed up read access.

Dlagnostics

Particle Diag. I | Toroldal flux Diag. l

Momentum Diag. J .\Mmlqr divergence Diag. j

Energy Diag || Growth rate Diag [

Current Diag. I | Maximum velocity Diag. I Visualization by Visit

BPw‘;‘l!M }—-{BP'E'. "JI| - ﬂ:

Ilustration of PreDatA Operations on Pixie3D Output Data

L Layout Re-organization H

Fig. 2.

C. Using the Saging Area for Flexible Scalable 1/0 and Pre-
Data Analytics

Conventionally, data preparation and analytics are per-
formed either in compute nodes where the simulation is
running (see Fig. 3(a)) or offline (see Fig. 3(b)):

In-Compute-Node approach: operations are performed in
the compute nodes where output data is generated. The pro-
cessed output is then written to the parallel file system.

Offline approach: the simulation dumps data to a parallel
file system. Analysis codes running on other resources read
such data and operate on it.

These two approaches to processing simulation output data
differ in terms of their respective costs and limitations. For
the In-Compute-Node approach, the overhead of data pro-
cessing operations is visible to the simulation with conse-
quent expenses in terms of CPU hours at scale. Performance
advantages result if In-Compute-Node actions reduce output
volumes, but severe performance penalties arise if data pro-
cessing operations do not scale with the simulation. For the
Offline approach, if the data volume is large, intermediate
files may consume considerable storage resources, and parallel
file system write and read times can be dominant causing
high latencies and unacceptable levels of perturbation of peak
file system performance. Therefore, it is clear that additional
methods are needed to satisfy the 1/0 and data processing
needs of the two representative peta-scale codes mentioned
above.

One such method is the Staging Area approach shown in

(a) In-Compute-Node

8L (8 ()L
CN| |CN| --- IE:J
LGN
F

(b) Offline
E’é?j
CN
&
[P_aﬁrré
_FS
(c) Staging Area

Fig. 3. Alternative Data Processing Methods for Scientific Simulations. ‘CN’
denoes compute tnode, ‘S’ denotes simulation, and ‘F’ denotes data operation

Staging node

[Compute node

Application | Data Operation J High-level Data Service

‘ ADIOS] ‘ High-level Abstraction]

Data Operation ‘ Buffer Management| ‘ Stream Processing l

| Data Extraction | | Data Movement || Data Shuffling |

Fig. 4. PreDatA Middleware Architecture

Fig. 3(c). In this approach, a reasonable number of compute
nodes are reserved as a Staging Area for staging data and
hosting operations to apply to staged data before it reaches
storage. Asynchronous execution within the Staging Area
hides the processing costs from the simulation and affords
an opportunity to employ less scalable operations ‘at scale’
since the Staging Area is small in comparison to the number
of compute nodes being used (e.g., using a ratio of 128:1
for compute cores to staging cores). It is also possible to
reduce disk accesses by pre-processing data so as to permit
later analytics to focus on the data that is most relevant. Using
these insights, the PreDatA middleware exploits the benefits
of the Staging Area approach.

I1l. PREDATA MIDDLEWARE DESIGN

The PreDatA middleware design augments the current 1/0
stack on HEC platforms with data staging and in-transit
processing capabilities by exploiting computational resources
in both compute nodes and the staging area for preparatory
data analytics.

As shown in Fig. 4, the PreDatA middleware resides in
both the compute nodes on which the application runs and
the staging nodes. Operations can be hosted in either location.
When the application performs I/O actions, PreDatA acquires
output data through the ADIOS 1/O interface [27], stages data
from compute nodes to staging nodes and performs in-transit
data processing along the data flow.

There are several key features of PreDatA:

Asynchronous data movement. Data movement from com-
pute to staging nodes is performed asynchronously to hide
write latency from the simulation at a moderate cost of data
buffering in the compute nodes. PreDatA explicitly schedules
such asynchronous data movement to minimize interference
with the simulation’s communications.

Pluggable pre-data analytics. PreDatA provides a pluggable
framework making it straightforward for end users to specify,
deploy, and debug data processing operations. The program-
ming interface is general enough to implement a variety
of operations, including data re-organization, real-time data
characterization, filtering and reduction, and lightweight data
analysis.

User-defined operations. The middleware supports user-
defined data operations with common services for data access,
buffer management, scheduling and executing data processing
actions, and high performance data exchange and synchroniza-
tion across staging nodes.

Higher-level Data Services. The middleware also provides
supports for building higher-level data services ranging from
data indexing and query to inter-application data exchange.

Integrated operations, separated from application codes.
PreDatA hides from data processing codes the complexities
of data access in the staging area while meantime offering
high performance through permitting such codes to directly
access buffered data. 1/0 stack integration is performed so as
to separate application codes from the potential complexities
of data processing actions.

IV. PREDATA MIDDLEWARE IMPLEMENTATION

The PreDatA middleware’s implementation leverages our
earlier work [2] on efficiently scheduling data movement from
compute nodes to the Staging Area. The EVPath [16] high
performance event system is used for efficient data buffering
and manipulation in the Staging Area. The FFS [17] binary
data encoding facility is used for in-transit data to provide
PreDatA operations access to buffered data with rich meta-
data information. The ADIOS [27] library is the basis for
integrating PreDatA with application 1/0O.

A. Data Extraction and Movement

PreDatA uses the ADIOS 1/O library as the basis for both
the simulation’s 1/0 stack and for PreDatA operations to access
data output by the simulation. ADIOS allows for introducing
PreDatA processing into the compute nodes without requiring
changes to application codes, thereby insulating application
code from the complexities of additional processing actions
in the 1/0O stack. ADIOS also explicitly defines the structure
of application’s output data, and such meta-data information
is used as a common interface for application and PreDatA
operations to coordinate sharing data.

PreDatA also uses the scheduled, asynchronous RDMA [7]
operations explained in [2] for extracting and moving data
from compute nodes to staging nodes. The use of asyn-
chronous RDMA reduces the write latency visible at com-
pute nodes and scheduling such RDMA operations helps
minimize interference between communications performed by
the simulation vs. those used for output. This is particularly
important when output data movement overlaps collective
communications among compute nodes and thereby may cause
severe perturbation on simulation performance.

B. In-transit Data Processing along Data Flow

PreDatA augments the 1/0 stack resulting in the overall
data flow shown in Fig. 5. There are four stages in the
data flow: (1) data extraction and optional local processing in
compute nodes, (2) optional aggregation in staging nodes, (3)
asynchronous data movement from compute nodes to staging
nodes, and (4) data stream processing in staging nodes.

When 1/O is triggered in the compute nodes, output data is
passed to the PreDatA runtime in the compute nodes via the
ADIOS interface (shown as Stage 1 in Fig. 5). Typical output
data of compute nodes consists of one or more scalars, local ar-
rays, and/or partial chunks of global arrays. PreDatA executes

Compute Node Staging Node
Application
v A
-~
; Data Requests @
3 (i - =
T e
= 1 | r
1b) Output Data Stream (4)

—r / 3:|

-

) Py
Packed Partial Data Chunk | | Local

Bl

ggreg

| Aggregated Data

[Data Request tream Processing

Fig. 5. Overall Data Flow of PreDatA

a user-defined routine, if provided, on the local output data
(shown as Stage l1a in Fig. 5). This constitutes a optional first
pass of processing on the output. Possible operations include
generating meta-data such as array dimension information,
calculating local min/max values of partial array chunks, and
filtering out undesired regions. All output data (scalars, local
arrays, partial chunk of global arrays) are then packed into a
contiguous buffer, termed a packed partial data chunk, using
the FFS [17] binary data encoding facility (shown as Stage 1b
in Fig. 5). The structure of each packed partial data chunk is
compatible with the ADIOS output data group definition, and
metadata about the data structure is embedded in the packed
partial data chunk. A data fetch request is sent to the staging
node chosen by a user-overridable function Route() (shown as
Stage 1c in Fig. 5). PreDatA provides an interface that permits
the data operation in Stage la to attach small partial results
to data fetch requests, allowing for additional flexibility in the
staging area. The compute node then resumes computation
while the data movement and operations are performed.

In the Staging Area, each staging node waits for data
fetch requests from compute nodes. When the staging node
finishes gathering requests from all compute nodes it serves,
it extracts partial results attached to requests, if there are
any, and performs user-defined aggregation functions on them
to generate aggregated results such as global array size and
offsets, prefix sum, and global min/max values (shown as
Stage 2 in Fig. 5). Each staging node then begins to fetch
packed partial data chunks from compute nodes (shown as
Stage 3 in Fig. 5). Data chunks are processed by staging nodes
one by one in a streaming manner (shown as Stage 4 in Fig. 5)
and the aggregated results generated in Stage 2 are accessible
from the stream processing operations.

In summary, the PreDatA middleware provides two passes
across an application’s output data. The first pass optionally
done on compute nodes is suitable for operations that do not
require global communications and/or synchronization. The
second pass performed on staging nodes, in a data streaming
fashion, can be used to compute global data properties and/or
to reorganize data for later storage. Data streaming is critical
because it is unlikely for staging nodes to have sufficient
memory to hold all of the raw data generated by multiple
and, often, even single simulation output steps. As is shown

in Section V, this two-pass model is sufficient to implement
a variety of useful data pre-analytics.

C. Stream Processing in the Staging Area

As mentioned above, the output data of each compute node
is packed into a contiguous memory buffer, i.e., a packed
partial data chunk and moved in its entirety into the Staging
Area. From the Staging Area’s perspective, incoming data
consists of a finite number of packed partial data chunks
streamed from compute nodes participating in the 1/0 dump.
When there are multiple staging nodes, the packed partial data
chunks are split into multiple streams across these nodes.

Each staging node is responsible for processing a stream of
packed partial data chunks with each chunk from one compute
process, which is the forth stage of the dataflow as shown in
Fig. 5. The processing of such a stream is divided into five
phases (as shown in Fig. 6):

Initialize: the Initialize() function of each operation is exe-
cuted once at the beginning of an 1/0O dump with aggregated
result data generated from the pre-fetch process (as shown in
Fig. 5) as a parameter to initialize the operation-specific data
structure and for other setup tasks.

Map: the Map() function of each operation is executed on
each packed partial data chunk. Intermediate results are tagged
and stored in a local buffer.

Shuffle: when the last chunk within the 1/0O dump is pro-
cessed, partial results are combined locally, if the Combine()
function is provided. Each staging node applies the Partition()
function to route intermediate result to other staging nodes
according to the associated tag.

Reduce: each staging node groups intermediate results,
both local and those received from other staging nodes, by
associated tags and then performs the Reduce() function on
each group of intermediate results to aggregate results.

Finalize: when the Reduce phase finishes, each staging
node executes the Finalize() function of each operation, which
writes final results to disk, feeds data to other consumers,
and/or performs necessary cleanup.

Note that this data processing model is similar to the
MapReduce [11] paradigm, with five notable differences: (1)
the data processing model requires that the operations only
need to read data once so that data can be processed in a
streaming fashion, (2) the addition of the initialize and finalize
phases, (3) users can can customize the data shuffling (see
Section 1V-D), (4) there is no central master that has global

o
LTI

Fig. 6.

Stream Processing in the Staging Area

knowledge of data location and task progress, and (5) there is
only one round of data exchange.

A user can plug their own data operations into PreDatA
middleware by implementing the functions mentioned above.
They may also customize data movement scheduling policy to
place data chunks within the data stream into specific order
(e.g., fetching chunks in order of compute nodes’ MPI rank
for calculating prefix sum). Detailed API definitions are listed
in Table | in Appendix.

The staging area is running as a separate MPI program
launched independently with the simulation. Each MPI process
runs on one staging node. Within each staging node, there are
multiple threads in each MPI process that execute different
pieces of the execution flow shown in Fig. 6 to exploit
concurrency.

D. Data Shuffling

In the Shuffle phase of stream processing, the PreDatA
runtime system adopts a general ring-based communication
paradigm for shuffling data among staging nodes, as shown in
Fig. 7. Since every pair of nodes needs to exchange data, a
series of NV —1 messaging rounds with the ‘distance’ between
each pair starting at 1 and going to NV — 1 nodes. This scheme
is also used in the HiMach framework [46].

Distance=1 owa
Distance=2 0@3@
Distance=3 @ o 9 a

Fig. 7. Data Shuffling among Staging Nodes

Custom inter-staging-node communication can be employed
using MPI for explicit message passing and using the provided
access for the intermediate data buffers.

E. Buffer Management

On compute nodes, additional buffering is needed to hold
packed partial data chunks with a buffer size roughly equal
to the output data sizes and configurable through the ADIOS
configuration file. On staging nodes, all incoming packed
partial data chunks are stored in buffers provided by the
PreDatA runtime. The runtime maintains reference counts for
recycling a buffer when the input chunk has been processed
by all operations. For intermediate data received from other
staging nodes during shuffling, data operation routines indicate
to the runtime system when to recycle those buffers. Private
buffers maintained by individual operations are its own re-
sponsibility. The latter is consistent with a basic assumption
about the staging area made by the PreDatA middleware,
which is that all data is maintained in in-core buffers. This
means that for extremely large datasets, it is the responsibility
of specific PreDatA operations to be aware of and deal with
memory limitations. For assistance, PreDatA provides explicit

memory manipulation routines that retrieve information about
available memory space and allocate/de-allocate buffer space.
The in-core assumption is reasonable for our target application
workloads and platform, since there are no local hard disks or
Solid State Drives (SSD) [36] attached to staging nodes in the
tested environment. If such were present or if there were fast
access to a shared parallel file system as an external buffer
without concerns about perturbing output performance [28],
buffer management should be extended to include out-of-core
functionality.

F. The DataSpaces Global Data Knowledge Service

The purpose of this section is to show that the ‘in-transit’
and ‘online’ approach of data output and manipulation used
in PreDatA can be used to implement the model-to-model
communications used in high performance coupled codes [3],
[53]. Toward that end, we are integrating into PreDatA the
high level ‘DataSpaces’ data indexing and query services.
The intent is to demostrate the extent to which pre-data
analytics can be enriched to also support the rich and flex-
ible methods for online access to generated data required
for general inter-application interactions. DataSpaces provides
higher level programmable and managed services for (1) data
sharing — between operations working on a common set of
data; (2) data redistribution — between operations with different
data discretization and running on a different number of
processors; (3) data indexing — data hashing for fast access;
and (4) data querying — application data retrieval based on
custom selectors. With (1)-(4), it provides the abstraction
of a virtual semantically-specialized shared data space that
can be asynchronously and flexibly accessed using simple yet
powerful operators (e.g., put() and get()) that are agnostic of
the location or distribution of data.

DataSpaces incorporates flexible mechanisms that can fetch
and index data, on-the-fly, from multiple different sources,
as shown in Fig. 8. It can even extract data directly from
a running application. It can store incoming data locally in
the staging area or share it with the collaborating frameworks,
index it for fast access, and serve it in response to logged or
incoming user queries. Datasets composed of both, homoge-
neous data types, e.g., doubles, floats or integers, as well as
heterogeneous data types, e.g., aggregate structures of doubles,
floats or integers, are supported.

DataSpaces implements a flexible querying mechanism that

User Queries
Applications/ i
Data Producers 3
9 5y o
Q..

Staging Nodes

Application Queries

‘)l Sub-domain Query |

5‘2(@‘:‘
w.

Domain
Decomposition

DataSpaces

Sub-domain

Fig. 8. Example of application to application coupling implemented using
the querying framework.

allows applications to request individual values as well as
contiguous regions of data based on simple descriptors that
are semantically meaningful to the application. For exam-
ple, in the case of typical simulation data, data can be
indexed based on its geometric coordinates within the multi-
dimensional discretization used by the simulation allowing it
to be queried using geometric descriptors that are meaningful
to the application. Queries may be generated by users or by
other applications. For example, each instance of a distributed
querying application running on multiple nodes can query
distinct and relevant sub-regions of data as needed. Similarly,
a user can query sub-regions of interest only when they are
needed or can register sub-regions of interest for continuous
querying. In the latter case, for example, the user is notified
automatically every time new data items that lie within the
regions of interest are inserted into the space.

DataSpaces also supports aggregation and reduction queries.
For example, queries can request the maximum or minimum
value for a particular field in a given sub-region, or the average
value of a specified field within a given region. Note that,
from the perspective of a querying end user or application,
the querying and data transfer process is transparent and
independent of data distribution, i.e., the data comprising
the query response may come from different nodes of the
application that generated the data and served by different
DataSpaces framework nodes.

DataSpaces complements the indexing and querying ser-
vices with an in-memory data storage service. The storage
service can be used to maintain private copies of the data
extracted directly from a running application or store shared
copies of the data processed by collaborating frameworks. The
storage service incorporates a data coherency protocol that
manages interactions with the data and ensures data integrity
when multiple entities simultaneously query the data.

DataSpaces maintains load balancing at two levels. First, the
storage service distributes the data evenly across the DataS-
paces nodes, and second, the indexing service dynamically
distributes the index metadata across the DataSpaces nodes to
distribute incoming queries across these nodes.

V. APPLICATION EXPERIENCES

The two driver applications mentioned in Section Il are
used to evaluate the PreDatA middleware and higher level
DataSpaces services. This section describes the implementa-
tion of various data operations for the two applications with
the PreDatA middleware.

A. GTC

Sorting, histogram, and 2D histogram operations are tested
for GTC. The sorted particle data are written into BP files
from the Staging Area. The Bitmap index is not explored for
paper space reasons.

Sorting and BP Writer: Two PreDatA operations are used
to sort and store electron and ion arrays, respectively. For
each operation, the first pass on the data, done in compute
nodes, gathers the sizes of all local arrays. Based on that,

the Initialize() function pre-allocates buffers to hold particles
belonging to the local staging node and calculates prefix-
sums for a subsequent merge sort. The Map() function emits
each particle as a key-value pair, in which the key is the
process rank attribute of the particle and the value consists
of all eight attributes of each particle. The Partition() function
routes particles to their respective staging nodes where they
are grouped by key. The Reduce() function performs a merge
sort and copies each particle to its proper location in the global
array. The Finalize() function writes the sorted global array to
a single BP file using ADIOS MPI-I10 output method and frees
the local buffers.

Histogram: The first pass on the data, done in compute
nodes, gathers the min/max values of all attributes in local
arrays. The Initialize() function calculates global min/max
values from that and sets up bin boundaries. For each attribute
of each particle, the Map() function determines which bin the
attribute value falls into and emits a key-value pair where
the key is in the form of (attribute ID, bin ID) and the
value equals to 1. The Combine() function merges partial
results. The Partition() function returns ‘staging node 0’ so
that all intermediate count values are sent to that node. The
Reduce() function merges intermediate counts to determine
global counts. The Finalize() function generates a histogram
graph for each attribute from global count values using the
PGPLOT [38] library and saves both images and raw binary
histogram data.

2D Histogram: the 2D histogram operation calculates a 2D
histogram for each pair of adjacent attributes. The implemen-
tation is similar to Histogram except that it uses (attribute ID,
bin ID of first attribute, bin ID of second attribute) as the key
to tag the intermediate results.

B. Pixie3D

An array layout re-organization operation is created for
Pixie3D. This operation merges partial array chunks into larger
contiguous ones for each of the eight 3-Dimensional arrays
in Pixie3D’s output and writes merged arrays to a BP file.
Implementation of various diagnostic routines for Pixie3D
output data are ongoing.

Array Layout Re-organization: the Route() function per-
formed on each compute node redistributes 3-Dimensional
array data to staging nodes along the minor dimension of
3-Dimensional arrays. This data redistribution scheme makes
sure array chunks moved to the same staging node are adja-
cent. The Initialize() function pre-allocates a contiguous buffer
to hold organized arrays. The Map() function copies each slice
of an array to its destination in the buffer. There is no data
exchange among staging nodes because of the redistribution
schemes used on compute nodes. The Reduce() function is
empty. The Finalize() function writes reorganized arrays to a
single BP file using the ADIOS synchronous MPI-10 method
and frees the buffer.

VI. PERFORMANCE EVALUATION

As described above, the placement of operations can greatly
affect their performance, the timeliness of the output, and
impact the overall system performance. By evaluating sev-
eral different operators using different placement choices, the
benefits of the flexible placement and in-transit processing is
demonstrated. Operations for two peta-scale applications, GTC
and Pixie3D, are used to evaluate the PreDatA middleware.
Performance of DataSpaces global data knowledge service
is also evaluated with GTC to demonstrate the feasibility of
building high-level data services with PreDatA.

A. Experimental Environment

Experiments are run on Oak Ridge National Laboratory’s
Cray XT4/XT5 Jaguar platform. The XT5 partition contains
18,688 compute nodes in addition to dedicated login/service
nodes. Each compute node contains two quad-core AMD
Opteron 2356 (Barcelona) processors running at 2.3 GHz,
16GB of DDR2-800 memory, and a SeaStar 2+ router. The
resulting partition contains 149,504 processing cores, more
than 300TB of memory, over 6 PB of disk space, and a peak
performance of 1.38 petaflop/s. The XT4 partition contains
7,832 compute nodes in addition to dedicated login/service
nodes. Each compute node contains a quad-core AMD Opteron
1354 (Budapest) processor running at 2.1 GHz, 8 GB of
DDR2-800 memory, and a SeaStar2 router. The resulting
partition contains 31,328 processing cores, more than 62 TB of
memory, over 600 TB of disk space, and a peak performance
of 263 teraflop/s. For each case described below, we run each
test case 5 times and use the best samples in both In-Compute-
Node and Staging configuration for plotting to control for
interference in the shared experimental environment.

B. GTC Performance

The GTC experiments are performed on the XT5 partition
of Jaguar. As is typical with a production run, the GTC jobs
are configured to deploy a single MPI process per node that
spawns 8 OpenMP worker threads, one per core. 1/O is only
performed by the MPI processes. For GTC, three operations
are tested: particle sorting, histogram generation, and 2D
histogram generation. Each of these operators is applied to
both the electron and ion particle arrays output with 1/O
interval of about every 120 seconds. Weak scaling is employed
with 132MB total written per process for the two particle
arrays. The Staging Area is configured to deploy 2 MPI
processes per node with 4 worker threads per MPI process.
The size of the Staging Area is adjusted to maintain a ratio
of compute cores to staging cores of 64:1 (1.5%). That is, for
each 64 nodes with compute processes (512 OpenMP worker
threads), 1 node (2 staging processes for a total of 8 worker
threads) is employed for staging. The tests are performed in
two ways. First, all operations are performed in compute nodes
and use synchronous MPI-I/O to write results (‘In-Compute-
Node’ configuration). Then they are performed in Staging Area
(“Staging’ configuration).

ONerge Sart
WShutfla S 0E
BLoeal Sort

DFkatngh 10
' Commuicat on
B Cumgraation

o

Be

Tanse (Seconds

5 |
Gl —
— |

W - —

o

Hemdes of Comgute Co

(c) 2D Histogram in Compute Node

& 88 ad

Tine
o BB ®

SED MEA) AWEOE) ORI 5121 240 M@

(d) Sorting in Staging Area

Fig. 9.

1) Performance of Individual Operations: In this section
we study the performance results for each operation.

Sorting Operation: Fig. 9(a) and 9(d) compare the perfor-
mance of sorting using the In-Compute-Node configuration
and the Staging configuration. Sorting is an example of
communication intensive operations because it involves all-to-
all communication and has minimal computational demands.
When sorting in compute nodes, the data shuffle time among
compute nodes increases dramatically as the operation scales
and such cost is visible to simulation. On the other hand,
sorting in the Staging Area takes at most 33 seconds at all
scales, which is much less than the 120-second I/O interval.
Therefore, performing sorting operation in Staging Area can
mask the cost of sorting from simulation because of asyn-
chrony. There are, however, 30 seconds of latency in Staging
configuration, two orders of magnitude longer than the In-
Compute-Node configuration. This tradeoff demonstrates the
importance of placement: if the goal is to optimize simulation
time, placing the sorting operation in Staging Area is better,
but if the latency of generating sorted data is more critical,
placing the operator in compute nodes is a better choice.

Histogram Operation: As shown in Figs. 9(b) and 9(e), the
histogram operation is computation dominant with commu-
nication contributing only a very small portion of the total
operation time. While performing this style of computation
intensive operation in the compute nodes takes less wall clock
time, the perturbations to the total simulation time can be
much larger due to the impact of I/O operation for saving
histogram results. The time for writing the 8 MB histogram
files ranges from 0.25 seconds to 7 seconds, which adds to
the total simulation time. This reveals a different advantage
for the Staging configuration: insulating simulation from vari-
ation in file system performance. Since the increased cost of
computing the histogram is hidden by the asynchronous data
transfer and operation savings, using the Staging configuration
is still generally advantageous. For those cases where one
has computation-intensive operations without a subsequent
I/0 operation or if latency is very important, using the ‘In-
Compute-Node’ configuration is superior.

4 AMEIE) BIOZOR) 163 L)
rrrrrrrrrr smpate Cores Mmbar af Staging Hades) Fuaber of Coapute Corex(anber of Stagiag Bades)

(e) Histogram in Staging Area

(f) 2D Histogram in Staging Area

Timing Results for Individual Operations

2D Histogram Operation: Similar to the Histogram oper-
ation, the 2D Histogram operation is computation dominant,
as shown in Figs. 9(c) and 9(f). While the computation and
communication requirements for generating the 2D histograms
is larger, the same conclusions can be drawn.

In summary, the results shown in this section demonstrate
that for operations with different computation and commu-
nication characteristics, offloading operations from compute
nodes to staging nodes generally helps mask the cost and
variation of operation and associated 1/0 activity from sim-
ulation because of asynchrony but introduces longer latency
for operation to finish because of the capacity mismatch
between compute nodes and staging nodes. Depending on the
latency requirements and variability in the system, performing
these operations in a Staging configuration can contribute a
performance improvement for some operations and insulation
from system variability for others. In both cases, strict or weak
latency requirements can override a short-term cost for an
overall benefit.

2) Smulation Performance: This section evaluates the
GTC simulation performance in two different configuration.
Fig. 10(b) shows the total execution time of the GTC simu-
lation for the two different configurations at various scales
ranging from 512 to 16,384 compute cores. The Staging
configuration improves the simulation’s total execution time
by 2.7% to 5.1% over the In-Compute-Node configuration (as
shown in Fig. 10(a)).

The breakdown of total execution time (shown in Fig. 10(b))
explains the performance advantage of the Staging over the In-
Compute-Node approach:

Firstly, the Staging approach hides write latency via asyn-
chronous data movement. For example, at the scale of 16,384
compute cores, 8.6 seconds are required, on average, to write
260GB of particle data with the ADIOS synchronous MPI-
I/0 method. The visible 1/O blocking time with the Staging
configuration is reduced to 0.30 seconds on average. This
improvement of write latency increases with simulation scale.

Secondly, the Staging approach also insulates the simulation
from the increasing time costs for performing the operations

—a— Total Execution Time
[= CPUUsge

Improvermest (%,
= — 2= [-+ o =2
—T

512 1024 2048 4096 8192
Munber of Compute Cores

16384

(a) Improvement of GTC Simulation Performance and Cost
1,800

1,700
W operation
M i

W finalize

[initialize
M main loop

1,600

1,500

Time (Seconds)

1,400

1,300

1,200

z

9

L

- wn

512 1,024 2,048 4,096 8,192
Number of Compute Cores

(b) GTC Total Execution Time Breakdown

32
L g
- n

In-CN
Staging
In-CN
Staging
taging
In-CN
Staging
n-CN
taging

=

16,384

Fig. 10. GTC Simulation Performance

as the simulation scales since these operations are done in
the Staging Area concurrently and asynchronously with the
simulation. For the In-Compute-Node configuration, the time
spent in operations increases from 3.0% to 4.1% as the
simulation scales from 512 to 16,384 cores. With the Staging
approach, the simulation spends no time carrying out such
operations. While it is true that the Staging Area experiences
a larger proportional time in performing the operations, the
time insulating effects of asynchronous 1/0 afford using more
time without impacting the application wall clock time.

Thirdly, potential interference between asynchronous data
movement with the simulation’s communications is minimized
by properly scheduling data movement. The comparison of
main loop time for the two different configurations shows that
Staging may slow down the computation due to contention
on the shared network, especially at large scales. However,
by properly scheduling data movement, this interference is
controlled to be less than 6%.

Overall, the reduction in visible 1/0 and operation times
on compute nodes outweighs the interference experienced by
the simulation due to asynchronous 1/O and the insulating
effects of decoupling the simulation 1/0 from variations in
the file system performance improves the total execution time
and reduces variation in the performance in spite of some
increased latencies for performing some styles of operations.
In terms of total CPU usage cost, calculated as total simulation
time multiplied by total cores used, the Staging configuration
is less costly when compared with the In-Compute-Node
configuration at all scales (as shown in Fig. 10(a)). There is a
decline of savings from 8,192 to 16,384 cores mainly due to
the interference of asynchronous data movement. At the scale
of 16,384 compute cores, however, running the simulation with

the Staging configuration still saves 98 CPU hours in total
compared with the In-Compute-Node configuration for a 30-
minute simulation run. This suggests that the Staging approach
helps GTC achieve better scalability in terms of total cost of
both simulation and data preparation.

3) Offline Operations Discussion: Considerations for using
offline operations are different from online operations. Instead
of compute time and communication load being dominant
factors, data storage requirements and file system interference
generated are major concerns. Typically, offline operations,
while slower to perform and much longer latency to com-
pletion, can be done cheaply or free. For operations that
do not generate a reduction in data and instead generate
approximately equivalent data in a different organization, such
as sorting and layout re-organization, an offline approach
would cost additional storage resource for intermediate data
and meanwhile impact the file system by reading all of the data
and writing it again. For example, when running at the scale of
65,536 cores, the particle data of GTC is 1TB per 1/0O dump.
Offline sorting would cost 1 TB additional storage space every
120 seconds and the entire 1 TB would have to be read back
in before it is rewritten. This moves the data through the disk
controllers three times rather than once. Secondly, given the
huge volume of GTC data, the read and write latency would be
hundreds of seconds making the offline approach unsuitable
for online data monitoring. For these sorts of operations, in-
transit data manipulation is a big win.

For operations like the histogram and 2D histogram, the
advantage of in-transit is still present. Using the same 1 TB
per 1/O dump output, two trips through the disk controller
are required. While the output of this style of operation is
comparatively very small, the impact of reading all of the
data to generate the histograms both generates potentially large
latency and long-term impact to the file system performance.

4) Evaluation of the DataSpaces Global Data Knowledge
Service: To evaluate if the DataSpaces query engine can
service queries on particle data in a timely manner without
blocking the simulation between two successive I/O opera-
tions, a prototype implementation of the DataSpaces indexing
and querying service is deployed on the staging nodes. The
particles output from the GTC application are first sorted using
the sorting operation, and then indexed by DataSpaces based
on the local id and rank attributes to create a 2 - 109 x 256
2-D domain space. This spaces is then uniformly distributed
across the DataSpaces compute cores in the Staging Area. On
average, at all simulation scales ranging from 512 to 16,384
cores, the time required to fetch data from the GTC simulation
is 20.3 seconds, sorting takes 30.6 seconds, and indexing takes
2.08 seconds. In total, it takes no more than 55 seconds for
DataSpaces to prepare the data for query.

A test querying application that queries the entire domain
space is deployed on additional compute cores (referred to as
‘querying application cores’ in subsequent text). In the exper-
iments, the querying application cores partition the particle
data among themselves and issue 11 consecutive queries to
disjoint regions of the data. The particle sub-regions is 200MB

Number of Compute Cores (GTC Application)
512 1024 2048 4096 8192 16384
T T

"Setup Time wawme
Hashing Time &5

Time(s)

Number of Staging Cores, Querying Cores

Fig. 11.

Setup and Hashing Time

Number of Compute Cores (GTC Application)
512 1024 2048 4096 8192 16384

T T
Query time EXX=

15

Query time(s)

05

8,16 16, 32 32,64 64,128
Number of Staging Cores, Querying Cores

128, 256 256, 512

Fig. 12. Query Time

in size for each querying application core. Since no a-priori
knowledge is assumed about the existence of the particles
data or its distribution, the first query includes query setup
operations such as hashing, data discovery, query routing and
data retrieval, and is significantly more expensive to perform as
seen in Fig. 11. However, it is a one-time cost and subsequent
queries are much faster. The setup time shown in Fig. 11 is an
average value across the number of querying application cores
and the hashing time is an average over the number of setup
queries received at each core running a DataSpaces server in
the staging area.

The query execution time for different numbers of querying
application cores is plotted in Fig. 12. The plotted times are
an average over the number of queries executed and over the
querying application cores. The query time increases with
the number of cores used since the domain size increases
and is mapped to a larger number of cores in the staging
area. In the presented example, one instance of the querying
application receives replies to its query from multiple cores in
the DataSpaces. The longer query time for the 256 application
querying cores is due to load variability and interferences in
the host system — we are investigating this further.

Note that DataSpaces indexes particles data and responds
to all queries in less than 80 seconds. Considering the 1/0
interval is about 120 seconds, such an online query service
can function effectively and without blocking the simulation.

C. Pixie3D Performance

Pixie3D performance is evaluated on the XT4 partition of
Jaguar. Production runs use one MPI process per compute
core. The data output from each process mainly consists of
eight double-valued arrays. Each local array is part of a 3D
global array, respectively. The tested setting uses a 32x32x32
local array size, which is a typical setting for production
runs. For each run, the simulation performs 1/0 about every
100 seconds. The ratio of compute cores to staging cores
is maintained at 128:1 during weak scaling. Each process
generates about 2 MB of data making this ratio workable.

Pixie3D is tested with an In-Compute-Node configuration
and a Staging configuration. For the In-Compute-Node con-
figuration, each MPI process writes output data to a single
BP file using the ADIOS synchronous MPI-IO method. This
results in a file in which local array chunks are scattered. In
the Staging configuration, output data of compute nodes are
sent to the Staging Area where they are merged to form larger,
contiguous global arrays.

Fig. 13(b) shows the total simulation execution time for
both the In-Compute-Node and Staging configurations. The
Staging configuration slows the simulation in most cases by
0.01% to 0.7% when compared against the In-Compute-Node
configuration. Unlike GTC, Pixie3D does not have enough
computation intensity for asynchronous 1/0O to be an effective
technique for offloading data. In each iteration, the inner loop
of pixie3d performs collective communications (MP1_Reduce
and MPI_Bcast) multiple times and between the mass com-
munications are computations that only last about 0.7 seconds
making it difficult to overlap data movement with computation
without impacting the intensive messaging. The results show
that the main loop time is increased because of asynchronous
data movement. Although the 1/0 blocking time is well hidden,
since it is such a tiny portion of the total execution time, this
savings cannot outweigh the slowdown of computation due
to communication interference. The operations tested for the
GTC application were all intended to be performed before any
data analysis were performed in order to speed read operations.
The same is true for this data reorganization operation. While
GTC’s operations were a win-win for both writing and reading
at all scales, Pixie3D’s data reorganization requires larger job
sizes to reach a tipping point where simulation performance
can be improved by employing staging. Figure 13(a) shows the
total cost of CPU seconds. As the simulation scales up, the
I/0 overhead weighs more in total execution time, and hence
the impact of computation caused by data staging becomes
less evident. Overall, there is a trend that the cost of Staging
approach catches up with that of In-Compute-Node approach
with increased simulation scale.

It is worth examining the savings generated during reading
operations due to the reorganized data. Fig. 14 shows the read
performance on two files generated by two 4096-compute-
core runs with Stingy and In-Compute-Node configuration,
respectively. This result, along with the simulation cost shown
in Fig. 13(a), shows that at the scale of 4096 compute

Percent (30)
&
i

T
=
=
o
=
=)
&
o
=
]

—+— Total Fxeuction Tirme

L

—a— CPU Usage

o

Munber of Compute Cores

(a) Improvement of Pixie3D Simulation Performance and Cost
1,600

1,550
M| i

W finalize

[initialize
[main loop

1,500
1,450

1,400

Time (Seconds)

1,350
1,300

1,250

1,200

3£
£t 2
= un

2,048
Number of Compute Cores

In-CN
Staging
In-CN
Staging
taging

4,096 8,192
(b) Pixie3D Total Execution Time Breakdown

Fig. 13. Pixie3D Simulation Performance

100

—a—nerged

!l —@— unmer ged

1 20 40 &0 80 100 120

HNumber of Read Processzes

=
= =

Time (Seconds)

=
-

.01

Fig. 14. Time to read one global array of one time step from two 80GB BP
files. ‘merged’ denotes the read time from a file written from Staging Area
and ‘unmerged’ denotes the read time from a file written from compute nodes
directly. Both files are generated by 4096-compute-core runs.

cores, 0.93% additional cost in simulation yields 10 times
improvement in read performance of output data. This saving
is more evident as scale increases.

In summary, the performance results show that in-transit
data manipulation enabled by PreDatA middleware can im-
prove the latency to operation completion compared with
offline approach, reduce overall wall clock time of simulation
even compared to online configuration at large scales, and
reduce the impact on the shared file system when compared
against both online and offline configurations. It is also shown
that high-level data services can be efficiently built on top of
PreDatA middleware.

VIl. RELATED WORK

In this section we summarize previous research related to
PreDatA work.

Scalable 1/0 and Data Analytics. Efficient access, under-
standing and management of voluminous and complex data

generated by scientific simulations presents daunting chal-
lenges to both computational and computer scientists [18],
[37]. Recent work in parallel file systems [8], [35], [50] and
I/0 middleware [21], [30], [40], [52], [54] aims at optimiz-
ing data storage and access for scientific application work-
loads. Beyond pure high I/O bandwidth, however, scientists
also require complex data analysis, search, and visualization
technologies to facilitate better understanding of their data.
Specialized data preparation, such as sorting, filtering, and
indexing, is needed before data can be understood or visu-
alized [9], [41], [45]. Our work extends the 1/0O middleware
stack to exploit computational power along the output data
flow to perform data preparation, characterization, and re-
organization, which would facilitate subsequent data analysis.

Data Saging and Offloading in supercomputers. Previ-
ous work on data staging and asynchronous 1/0 [4], [15],
[24], [25], [32], [34], [43] derives substantial performance
advantages from hiding 1/0 latency with asynchronous data
movement. Our recent work [1], [2] shows the importance of
minimizing interference of asynchronous data movement with
the application to achieve overall improvements in simulation
time. One observation is that the computational resources on
staging nodes are often under-utilized and the time interval
between 1/0 dumps are sufficient for extra processing on
buffered data. In this paper, we take one step forward and
demonstrate the use of staging nodes for a diversity of data
operations to achieve not only high write performance, but
high read performance and timely monitoring of output data
and simulation.

Active Storage. Active Storage [39] deploys data processing
operations directly on the storage nodes where the data are
buffered to reduce the amount of data movement between
storage and compute nodes. The storage nodes have limited
computation and memory resources which are shared among
applications, so one potential problem with Active Storage
is how to manage such resources to meet deadlines for
multiple applications and minimize performance downgrade of
storage nodes. Abacus [5] demonstrates the benefit of flexible,
dynamic function placement in Active Storage, and we are
planning to investigate similar mechanism for Staging Area.

In-situ Data Analytics and Visualization. Hercules [48]
applies an end-to-end approach to tightly couple together
all simulation components, including meshing, partitioning,
solver, and visualization, and runs all components on the
same supercomputer. It eliminates intermediate 1/0 and data
movement between simulation components to address the 1/0
bottleneck, but requires scaling data analysis and visualiza-
tion to the level where simulation runs and all simulation
components needed to be changed to efficiently share data
with each other. PreDatA couples the staging area with the
application more loosely and through the ADIOS interface,
which requires minimal changes to application code and
provides more flexibility of composing the simulation pipeline.

Scientific Workflows. Scientific workflow systems such as
Pegasus [13] and Kepler [31] are used to automate scien-
tific data and simulation management. Unlike the end-to-

end approach used in In-situ visualization mentioned above,
components in the workflow are usually connected through
file-based interface, so the performance of workflow is very
sensitive to data placement and movement and may easily
affected by poor I/O performance [12]. PreDatA can serve as
the early stage in the whole workflow pipeline and can applies
application-specific data reduction, validation, and filtering
operation before data hits disk to reduce data volume to be
processed by subsequent steps in workflow.

Scientific Data Stream Processing. Scientific data stream
processing, such as filtering [6], sampling [49], query [26],
and transformation [22], is related to our work. PreDatA
complements such work and can be used either as an in-
transit data processing framework for implementing streaming
processing tasks, or as a data forwarding layer to directly feed
data to existing streaming processing systems.

Code Coupling. Memory-to-memory code coupling ad-
dresses some of the issues faced by PreDatA, such as data
movement and re-distribution [3], [23]. PreDatA provides the
underpinnings for supporting the rich model-model communi-
cations needed for inter-application interactions [14].

Interactive Computational Steering. Runtime steering can
aid scientists in debugging and monitoring their simula-
tions [19], [47]. The capability of extracting and inspecting
data from running simulation with small overhead and inter-
ference makes PreDatA a potential infrastructure for online
steering of running application.

Data-intensive Computing in the HPC Domain. Recently,
there is increasing interest in building high-level abstractions
and programming models for data intensive applications in
HPC domain. HiMach [46] applies the MapReduce model to
analyze molecular dynamics simulation trajectories and shows
decent efficiency at tera-byte scale. On the other hand, expe-
riences from implementing materialized ground models [42]
show poor performance of MapReduce because some features
provided by MapReduce is unnecessary for target application.
AllPairs [33] gains similar insights that mismatch between the
application workload and the available abstraction can result
in poor performance. Currently, PreDatA provides a two-pass
streaming processing model which has shown to be sufficient
for the applications we have experienced. Investigating new
abstraction and programming model will be on agenda when
we find new requirements from applications.

By comparing and associating PreDatA with related re-
search efforts, it is clear that PreDatA enhances the flexibility
and scalability of current I/0 stack on HEC platform and
can be used to support a wide range of data analytics to
facilitate the storage, monitoring, analysis, and understanding
of massive scientific data.

VIIl. CONCLUSIONS AND FUTURE WORK

This paper presents the PreDatA middleware for preparing
and characterizing data ‘in-transit’, that is, while data is being
produced by the large scale simulations running on peta-scale
machines. PreDatA offloads output data from a running simu-
lation with low-overhead using asynchronous data extraction.

It also exploits the computational power of dedicated staging
nodes to perform select data manipulations. PreDatA enhances
the scalability and flexibility of current I/O stacks on HEC
platforms and is useful for data pre-processing, runtime data
analysis, and inspection. The DataSpaces services now being
integrated into PreDatA also demonstrate its potential utility
for rich model-model interactions in large-scale HPC codes.
Performance evaluations with several production scientific ap-
plications on ORNL’s Peta-scale machines show the feasibility
of the PreDatA approach and show the performance advan-
tages derived from using the PreDatA 1/O stack compared to
existing synchronous approaches.

We observe that the following key features distinguish the
class of preparatory data analysis we address here:

Easy data movement. Efficient PreDatA and DataSpaces
operations rely on the ability of the infrastructure to transfer
data to the preparatory processes without causing measurable
overhead to the application.

Global data knowledge. The availability of global knowl-
edge is essential in the pre-processing of data for analysis and
for application interaction.

Flexible partitioning of pre-analytics pipeline. The perfor-
mance requirements for a pre-analytics pipeline require the
ability to flexibly partition complex data processing operations.

Sreaming computation. The large size of data being pro-
cessed and the limitation on available memory space within
the processing area can limit the scope of viable operations
in the processing pipeline. A streaming computational model
circumvents these limitations by providing a window on the
data in which more expansive pipelines can be utilized.

Sandard programming model. Scientific developers are
familiar with using standard APIs such as MPI for the devel-
opment of analytical programs. An architecture that seeks to
address the needs of the scientific user must be able to utilize
standard parallel programs for the pre-analytic data processing
pipeline.

Our future work leverages these insights in several ways.
First, we plan to define a higher level programming model
and abstractions to support a broader set of applications and
pre-data analytics, including online data diagnostics and code
coupling. Second, we are going to investigate mechanisms
for dynamically adapting system configuration and operation
placement to cope with changing resource availability or per-
formance characteristics. Third, we will develop performance
models for sizing staging areas and provisioning their services.

ACKNOWLEDGMENT

This research used resources of the National Center for
Computational Sciences at Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Depart-
ment of Energy under Contract No. DE-AC05- 000R22725.
This research is based in part upon work supported by the
National Science Foundation through the High- End Comput-
ing University Research Activity (HECURA) Grant Number
0621538.

[1]

[2]

[3]

[4]

[5]

(6]

[71

(8]

[°]

[10]

[11]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

Hasan Abbasi, Jay Lofstead, Fang Zheng, Scott Klasky, Karsten Schwan,
and Matthew Wolf. Extending i/o through high performance data
services. In CLUSTER, 2009.

Hasan Abbasi, Matthew Wolf, Greg Eisenhauer, Scott Klasky, Karsten
Schwan, and Fang Zheng. Datastager: scalable data staging services for
petascale applications. In HPDC, 2009.

Hasan Abbasi, Matthew Wolf, Karsten Schwan, Greg Eisenhauer, and
A. Hilton. Xchange: coupling parallel applications in a dynamic
environment. In CLUSTER, 2004.

Nawab Ali, Philip Carns, Kamil Iskra, Dries Kimpe, Samuel Lang,
Robert Latham, Robert Ross, Lee Ward, and P. Sadayappan. Scalable
i/o forwarding framework for high-performance computing systems. In
CLUSTER, 2009.

Khalil Amiri, David Petrou, Gregory R. Ganger, and Garth A. Gibson.
Dynamic function placement for data-intensive cluster computing. In
USENIX Annual Technical Conference, 2000.

Michael D. Beynon, Renato Ferreira, Tahsin M. Kurg, Alan Sussman,
and Joel H. Saltz. Datacutter: Middleware for filtering very large
scientific datasets on archival storage systems. In MSST, 2000.

Ron Brightwell, Trammell Hudson, Kevin T. Pedretti, Rolf Riesen, and
Keith D. Underwood. Implementation and performance of portals 3.3
on the cray xt3. In CLUSTER, 2005.

Philip Carns, Sam Lang, Robert Ross, Murali Vilayannur, Julian Kunkel,
and Thomas Ludwig. Small-file access in parallel file systems. In
IPDPS 2009.

SDM Center. Scidac scientific data management center. https://sdm.lbl.
gov/sdmcenter/, September 2009.

L. Chacon. A non-staggered, conservative, VsB —= 0, finite-
volume scheme for 3D implicit extended magnetohydrodynamics in
curvilinear geometries. Computer Physics Communications, 163:143—
171, November 2004.

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data
processing on large clusters. In OSDI, 2004.

Ewa Deelman and Ann Chervenak. Data management challenges of
data-intensive scientific workflows. In CCGRID, 2008.

Ewa Deelman, Gurmeet Singh, Mei hui Su, James Blythe, A Gil, Carl
Kesselman, Gaurang Mehta, Karan Vahi, G. Bruce Berriman, John Good,
Anastasia Laity, Joseph C. Jacob, and Daniel S. Katz. Pegasus: a
framework for mapping complex scientific workflows onto distributed
systems. Scientific Programming Journal, 13:219-237, 2005.

Ciprian Docan, Manish Parashar, Julian Cummings, Norbert Podhorszki,
and Scott Klasky. Experiments with Memory-to-Memory Coupling for
End-to-End Fusion Simulation Workflows. Technical Report TR-104,
Center for Autonomic Computing (CAC), Rutgers University, July 2009.
Ciprian Docan, Manish Parashar, and Scott Klasky. Dart: a substrate for
high speed asynchronous data io. In HPDC, 2008.

Greg Eisenhauer. Evpath: event transport middleware layer. http://www.
cc.gatech.edu/systems/projects/EVPath/, September 2009.

Greg Eisenhauer, Fabian E. Bustamante, and Karsten Schwan. Native
data representation: An efficient wire format for high-performance
distributed computing. |EEE Trans. Parallel Distrib. Syst., 13(12):1234—
1246, 2002.

Jim Gray, David T. Liu, Maria Nieto-Santisteban, Alex Szalay, David J.
DeWitt, and Gerd Heber. Scientific data management in the coming
decade. SGMOD Rec., 34(4):34-41, 2005.

Weiming Gu, Greg Eisenhauer, Karsten Schwan, and Jeffrey S. Vetter.
Falcon: On-line monitoring for steering parallel programs. Concurrency
- Practice and Experience, 10(9):699-736, 1998.

Chad Jones, Kwan-Liu Ma, Allen Sanderson, and Lee Roy Myers Jr.
Visual interrogation of gyrokinetic particle simulations. J. Phys.: Conf.
Ser., 78(012033):6, 2007.

Wei keng Liao and Alok N. Choudhary. Dynamically adapting file
domain partitioning methods for collective i/o based on underlying
parallel file system locking protocols. In SC, 2008.

S. Klasky, S. Ethier, Z. Lin, K. Martins, D. McCune, and R. Samtaney.
Grid -based parallel data streaming implemented for the gyrokinetic
toroidal code. In SC. IEEE Computer Society, 2003.

Jae-Yong Lee and Alan Sussman. High performance communication
between parallel programs. In IPDPS 2005.

Jonghyun Lee, Robert B. Ross, S. Atchley, M. Beck, and Rajeev Thakur.
Mpi-io/l: efficient remote i/o for mpi-io via logistical networking. In
IPDPS 2006.

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]
[38]
[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Jonghyun Lee, Robert B. Ross, Rajeev Thakur, Xiaosong Ma, and
Marianne Winslett. Rfs: efficient and flexible remote file access for
mpi-io. In CLUSTER, 2004.

Ying Liu, Nithya Vijayakumar, and Beth Plale. Stream processing in
data-driven computational science. In GRID, 2006.

Jay Lofstead, Scott Klasky, Karsten Schwan, Norbert Podhorszki, and
Chen Jin. Flexible io and integration for scientific codes through the
adaptable io system (adios). In CLADE at HPDC, 2008.

Jay Lofstead, Qing Liu, Scott Klasky, Michael Booth, Ron Oldfield,
Karsten Schwan, and Matthew Wolf. High performance io on busy
systems. In PDSW at SC, 2009.

Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. In-
put/output apis and data organization for high performance scientific
computing. In PDSW at SC, 2008.

Jay Lofstead, Fang Zheng, Scott Klasky, and Karsten Schwan. Adapt-
able, metadata rich io methods for portable high performance io. In In
IPDPS 2009.

Bertram Ludascher, llkay Altintas, Chad Berkley, Dan Higgins, Efrat
Jaeger, Matthew Jones, Edward A. Lee, Jing Tao, and Yang Zhao.
Scientific workflow management and the kepler system. Concurrency
and Computation: Practice and Experience, 18(10):1039-1065, 2006.
Xiaosong Ma, Jonghyun Lee, and Marianne Winslett. High-level
buffering for hiding periodic output cost in scientific simulations. |EEE
Trans. Parallel Distrib. Syst., 17(3):193-204, 2006.

Christopher Moretti, Jared Bulosan, Douglas Thain, and Patrick J. Flynn.
All-pairs: An abstraction for data-intensive cloud computing. In IPDPS
2008.

Arifa Nisar, Wei keng Liao, and Alok N. Choudhary. Scaling parallel
i/o performance through i/o delegate and caching system. In SC, 2008.
Ron Oldfield, Lee Ward, Rolf Riesen, Arthur B. Maccabe, Patrick
Widener, and Todd Kordenbrock. Lightweight i/o for scientific applica-
tions. In CLUSTER, 2006.

Stan Park and Kai Shen. A performance evaluation of scientific i/o
workloads on flash-based ssds. In IASDS at CLUSTER, 2009.

PDSI. Scidac petascale data storage institute. http://www.pdsi-scidac.
org/, September 2009.

PGPLOT. Pgplot graphics subroutine library. http://www.astro.caltech.
edu/~tjp/pgplot/, September 2009.

Juan Piernas, Jarek Nieplocha, and Evan J. Felix. Evaluation of active
storage strategies for the lustre parallel file system. In SC, 2007.

Milo Polte, Jiri Simsa, Wittawat Tantisiriroj, and Garth Gibson. Fast
log-based concurrent writing of checkpoints. In PDSW at SC, 2008.
Oliver Rubel, Prabhat, Kesheng Wu, Hank Childs, Jeremy Meredith,
Cameron G. R. Geddes, Estelle Cormier-Michel, Sean Ahern, Gun-
ther H. Weber, Peter Messmer, Hans Hagen, Bernd Hamann, and E. Wes
Bethel. High performance multivariate visual data exploration for
extremely large data. In SC, 2008.

Steven W. Schlosser, Michael P. Ryan, Ricardo Taborda-Rios, Julio
Lopez, David R. O’Hallaron, and Jacobo Bielak. Materialized com-
munity ground models for large-scale earthquake simulation. In SC,
2008.

K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-
directed collective i/o in panda. In SC, 1995.

Rishi Rakesh Sinha and Marianne Winslett. Multi-resolution bitmap
indexes for scientific data. ACM Trans. Database Syst., 32(3):16, 2007.
Kurt Stockinger, John Shalf, E. Wes Bethel, and Kesheng Wu. Dex:
Increasing the capability of scientific data analysis pipelines by using
efficient bitmap indices to accelerate scientific visualization. In SSDBM,
2005.

Tiankai Tu, Charles A. Rendleman, David W. Borhani, Ron O. Dror,
Justin Gullingsrud, Morten @. Jensen, John L. Klepeis, Paul Maragakis,
Patrick Miller, Kate A. Stafford, and David E. Shaw. A scalable par-
allel framework for analyzing terascale molecular dynamics simulation
trajectories. In SC, 2008.

Tiankai Tu, Hongfeng Yu, Jacobo Bielak, Omar Ghattas, Julio C. Lopez,
Kwan-Liu Ma, David R. O’Hallaron, Leonardo Ramirez-Guzman,
Nathan Stone, Ricardo Taborda-Rios, and John Urbanic. Analytics
challenge - remote runtime steering of integrated terascale simulation
and visualization. In SC, 2006.

Tiankai Tu, Hongfeng Yu, Leonardo Ramirez-Guzman, Jacobo Bielak,
Omar Ghattas, Kwan-Liu Ma, and David R. O’Hallaron. Scalable
systems software - from mesh generation to scientific visualization: an
end-to-end approach to parallel supercomputing. In SC, 2006.

[49]

[50]

[51]
[52]

[53]

[54]

Huai Wang, Srinivasan Parthasarathy, Amol Ghoting, Shirish Tatikonda,
Gregory Buehrer, Tahsin M. Kurg, and Joel H. Saltz. Design of a next
generation sampling service for large scale data analysis applications.
In ICS 2005.

Brent Welch, Marc Unangst, Zainul Abbasi, Garth A. Gibson, Brian
Mueller, Jason Small, Jim Zelenka, and Bin Zhou. Scalable performance
of the panasas parallel file system. In FAST, 2008.

Hongfeng Yu and Kwan-Liu Ma. A study of i/o methods for parallel
visualization of large-scale data. Parallel Comput., 31(2):167-183, 2005.
Weikuan Yu, Jeffrey S. Vetter, and Sarp Oral. Performance characteri-
zation and optimization of parallel i/o on the cray xt. In IPDPS 2008.
Li Zhang and Manish Parashar. Seine: a dynamic geometry-based
shared-space interaction framework for parallel scientific applications.
Concurrency and Computation: Practice and Experience, 18(15):1951—
1973, 2006.

Xuechen Zhang, Song Jiang, and Kei Davis. Making resonance a
common case: A high-performance implementation of collective i/o on
parallel file systems. In IPDPS 2009.

APPENDIX

The programming interface of PreDatA is listed in Table I.

TABLE |
PREDATA PROGRAMMING INTERFACE

Functions Implemented by User

typedef int (* SMORES_route_func) (uint64_t);
/I called by compute node to determine destination staging node.

typedef int (* SMORES_partial_calculate_ func) (void *);
/I called by compute node to generate first-pass partial results.

typedef int (* SMORES_aggregate_func) (void *);
/I called by staging node to generate aggregate partial results.

typedef int (* SMORES_initialize_func) (void *);
/I called by staging node to initialize streaming processing.

typedef int (* SMORES_map_func) (void *, uint64_t);
/I called by staging node to perform Map on one packed partial data chunk.

typedef int (* SMORES_reduce_func) (void *, uint64_t, void *);
/I called by staging node to perform Reduce on a key and associated values.

typedef int (* SMORES_partition_func) (void *, uint64_t);
/I called by staging node to determine the staging node rank for the specified key.

typedef void (* SMORES_combine_func) (void *, uint64_t, void *);
/I called by staging node to perform Combine to aggregate local key values.

typedef int (* SMORES_compare_key_func) (void *, uint64_t, void *, uint64_t);
/I called by staging node to compare two keys.

typedef int (* SMORES_finalize_func) (void *);
/I called by staging node to finalize streaming processing.

Functions Provided by PreDatA Runtime

int SMORES_initialize();
/I called by staging node to initialize PreDatA runtime.

int SMORES_finalize();
/I called by staging node to exit PreDatA finalize.

SMORES_operation SMORES_create_operation(void*);
/I called by staging node to create a data operation.

int SMORES_delete_operation(SMORES_operation);
/I called by staging node to destroy a data operation.

int SMORES_add_initialize(SMORES_ operation, SMORES _initialize_func);
/I called by staging node to register Initialize() function to a data operation.

int SMORES_add_map(SMORES_operation, SMORES_map_func);
/I called by staging node to register Map() function to a data operation.

int SMORES_add_reduce(SMORES_operation, SMORES _reduce_func);
/I called by staging node to register Reduce() function to a data operation.

int SMORES_add_partition(SMORES_ operation, SMORES_combine_func);
/I called by staging node to register Partition() function to a data operation.

int SMORES_add_combine(SMORES_operation, SMORES_combine_func);
/I called by staging node to register Combine() function to a data operation.

int SMORES_add_finalize(SMORES_operation, SMORES_finalize_func);
/I called by staging node to register Finalize() function to a data operation.

int SMORES_add_compare_key(SMORES_operation, SMORES_compare_key_func);
/I called by staging node to register Compare_key() function to a data operation.

int SMORES_do_initialize(SMORES_ operation, void *);
/I called by staging node to execution operation’s Initialize() (blocking call).

int SMORES_do_map(SMORES_operation, void *, uint64_t);
/I called by staging node to execution operation’s Map() (non-blocking call).

int SMORES_do_reduce(SMORES_operation);
/I called by staging node to execution operation’s Reduce() (non-blocking call).

int SMORES_do_combine(SMORES_operation);
/I called by staging node to execution operation’s Combine() (blocking call).

int SMORES_do_shuffle(SMORES_operation);
/I called by staging node to shuffle data and Group data by key (blocking call).

int SMORES_do_finalize(SMORES_operation, void *);
/I called by staging node to execution operation’s Finalize() (blocking call).

int SMORES_barreir(SMORES_operation);
/I called by staging node to wait for Map or Reduce to finish. (blocking call).

int SMORES_extract_key_values(SMORES_operation, void *);
/I called by staging node to copy operation’s key value buffer.

int SMORES_merge_key_values(SMORES_operation, void *);
/I called by staging node to add key-values to operation’s key value buffer.

int SMORES_delete_key_values(SMORES _operation);
/I called by staging node to free operation’s key-values buffer.

int SMORES_emit_intermediate(void *, uint64_t, void *, uint64_t);
/I called by staging node (in Map or Combine) to register intermediate key value pair.

int SMORES_emit(void *, uint64_t, void *, uint64_t);
/I called by staging node (in Reduce) to register key-value pair.

uint64_t SMORES_count_chunks(int64_t);
/I called by staging node to get number of chunks in the incoming stream.

int SMORES_get_next_chunk(int64_t, void *, uint64_t *);
/I called by staging node to get a chunk in the incoming stream.

int SMORES_attach(void *, uint64_t);
/I called by compute node (in Partial_Calculate function) to attach first-pass partial result.

