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Vibration of Plates with Constrained V-Notches or Cracks 
O. G. McGee1; A. W. Leissa2; J. W. Kim3; and Y. S. Kim4 

A b s t r a c t : This paper reports the first known free vibration solutions for thin circular plates with V-notches having various edge 
conditions. The classical Ritz method is employed with two sets of admissible functions assumed for the transverse vibratory displace
ments. These sets include: (1) mathematically complete algebraic-trigonometric polynomials which guarantee convergence to exact 
frequencies as sufficient terms are retained; and (2) corner functions which account for the bending moment singularities at the sharp 
re-entrant corner of the V-notch. Extensive convergence studies summarized herein confirm that the corner functions substantially enhance 
the convergence and accuracy of nondimensional frequencies for circular plates having a free circumferential edge and various combi
nations edge conditions of the V-notch. Accurate (five significant figures) frequencies are presented for clamped-free, clamped-binged, and 
hinged-free notches for the spectra o f notch angles (1° ,5° ,10 < > ,30 0 ,60 0 ,90 0 ) , causing a re-entrant vertex corner o f the radial edges. For very 
small notch angles, a clamped-free, clamped-hinged, or hinged-free radial crack ensues. One general observation is that, for the range of 
notch angles considered, there is a substantial increase in the first six frequencies as the notch depth increases. The frequency increase 
with increasing notch depth is more pronounced in the higher modes than the lower ones, and is quite substantial for segmental plates with 
notch angles equal to 180°. A large reduction in frequencies is also observed as the notch angle decreases at a constant notch depth. A new 
database of accurate frequencies and mode shapes for sectorial, semicircular and segmental plates is presented with which future solutions 
drawn from alternative numerical procedures and finite element and boundary element techniques may be compared. Normalized contours 
of the transverse vibratory displacement are shown for plates with various notch depths and notch angles of 5° , 30°, 60", 90°, and 180°. 
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I n t r o d u c t i o n 

Documented in a summarizing monograph (Leissa 1969) and a 
series of review articles (Leissa 1977, 1981, 1987) are hundreds 
of technical publications explicating the free vibration character
istics o f complete circular and annular plates with various support 
conditions along the circumferential boundaries or at interior 
points. The scope of vibration publications has been extended to 
annular plates having nonconcentric interior circumferential 
boundaries (Nagaya 1977, 1979; Eastep and Hemming 1978; 
Khurasia and Rawtani 1978) and to plates having doubly con
nected arbitrary shape (Nagaya 1981, 1983). Collectively, these 
publications provide one with a perspective of the need for new 
information on the tide problem in the vibration literature. 

Accurate (at least four significant figures) frequencies and 
mode shapes have been reported in some recent work on circular 
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plates with free circumferential edge and free or rigidly con
strained V-notches (Leissa et al. 1993; McGee et al. 1995). The 
present paper summarizes first-of-the-kind studies on the free vi
brations of thin plates having free circular edges and with three 
other combinations of clamped, simply supported or free straight 
edges which may occur along the notch, including stress singu
larity effects at the sharp vertex corner (see Fig. 1). The relative 
depth of the notch is defined as {a — c)la, and the notch angle is 
defined as (360°—a). For a very small notch angle (say, one de
gree or less), the notch may be regarded as a constrained crack. 
For c/a — 0, the special case of a sectorial plate with constrained 
radial edges and free circumferential edge is formed. N o pub
lished vibration data is available for such sectorial plates with 
re-entrant angles ( a > l 8 0 ° ) or for the special case of a semicir
cular plate (cc = 180°), albeit a substantial amount of data exist for 
salient angles ( a < 1 8 0 ° ) . 

The Ritz method is adopted with the transverse displacement 
field approximated as a complete set o f admissible algebraic-
trigonometric polynomials in conjunction with an admissible set 
of corner functions that exactly model the singular vibratory mo
ments which exist at the vertices of corner angles (a) which ex
ceed 180° (Williams 1951; Huang 1991). The first set guarantees 
convergence to exact frequencies as sufficient terms are retained. 
The second set substantially accelerates the convergence o f fre
quencies, which is demonstrated through several convergence 
studies summarized herein. Reported in this paper is an accurate 
database of nondimensional frequencies showing the effects of 
changing relative notch depth (a-c)/a and corner angle a . To 
fully ascertain the significance o f the stress singularities existing 
in the title problem, normalized contour plots of the vibratory 
transverse displacements are studied for plates having notch 
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Fig. 1. Geometry of circular plate with V-notch 

depths c / a = 0.75, 0, - 0 . 5 , and sector angles a = 9 0 ° , 180°, 270°, 
300° , 330°, and 355°. 

Methodology 

Consider the polar coordinates ( r , 8 ) originating at the vertex of 
the notch of a circular plate of radius, a, shown in Pig. 1. The 
transverse motion w o f the plate is assumed to vibrate simple 
harmonically, as follows; 

w(r,Q,t)=W(r,Q)sinu>t (1) 
where f=time; and (i>=ctrcular frequency of vibration. In using 
the Ritz method, one requires the maximum values of potential 
energy (which is strain energy in this situation) and kinetic energy 
which occur during a cycle o f vibratory motion. 

The maximum strain energy Vmax in the plate due to bending 
in a vibratory cycle is 

r r a a x=4 / |^(x,+ X 8 ) 2 - 2 ( l - v ) ( X r X e - X r

2 e ) ] ^ (2) 

where dA = rdrdQ\ £> = £ /? 3 / 12 ( l - v 2 )=f lexura l rigidity; 
fc=plate thickness; £ = Y o u n g ' s modulus; v=Poisson's ratio; and 
Xr, Xei and Xre^1113*"1111111

 bending and twisting curvatures 
[s inu>/=l assumed in Eq. (1)] 

d2w i dW i d2w a (i aw] 
X^~r~^+7W X^Tr\-rW) (3) 

The maximum kinetic energy is 

Tr^=^~j ^W2dA (4) 
where p = m a s s per unit area of the plate. 

The plates studied in this work all have their circular edges 
free, and boundary conditions along the straight edges (6 = ± a / 2 
in Fig. 2) which are clamped, simply supported, or free. The latter 
boundary conditions are labeled accordingly as CF, CS, or SF. 
Displacement trial functions are assumed as the sum o f two finite 
sets: W=Wp+Wc, where Wp are algebraic-trigonometric poly
nomials and Wc are corner functions. N o symmetry exists for the 
CF, CS, and SF plates examined here. Thus, the admissible poly
nomials are written as 

2 2 Account 
0.2,4 » = 0,2,4 

Ml m M3 m 
+ 2 2 AmnrmcosnQ+ 2 2 BmnrmsinnQ 
m - 1,3,5 n= 1,3.5 m = 2.4 n = 2,4 
Mt m \ 

+ 2 2 Bmnr»smn*\ (5) 
m= 1,3,5 n= 1,3,5 / 

in which for the 

CF plate; g(r,d) = (r/a)2(d/a)2
 (6o) 

CS plate: g(r,e) = ( r / a ) 2 ( G / a ) [ ( 8 / a ) - 1 ] 2 (66) 

SF plate: g(r,Q) = ( r / a ) 2 ( 0 / a ) (6c) 
In Eqs. (6), g(r,Q) is defined to satisfy the essential boundary 

conditions along the radial edges 1 - 2 (see Fig. l ) . In Eq. (5), Am„ 
and Bmn are arbitrary coefficients, and the values of m and n have 
been specially chosen Ho eliminate those terms which yield unde
sirable singularities at r = 0, and yet, preserve the mathematical 
completeness of the resulting series as sufficient terms are re
tained. Thus, convergence to the exact frequencies is guaranteed 
when the series is employed in the present Ritz procedure. 

The displacement polynomial Eq. (5) should, in principle, be 

CS CF SF 
Fig. 2. Circular plates with clamped-hinged, clamped-free, and hinged-free V-notch 
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capable o f yielding accurate frequencies. However, the number of 
terms required may be computationally prohibitive. This problem 
is alleviated by augmentation of the complete polynomial set with 
admissible corner Junctions, which introduce the proper singular 
vibratory moments at the vertex corner formed by the V-notch 
radial edges (Fig. 1). The set of comer functions is taken as 

^ c=2 ckw*k 
(7) 

where C*=arbitrary coefficients; and W*= solutions of the 
fourth-order biharmonic, static equilibrium equation for bending 
of plates at acute corner angles (Williams 1951) 

W* = r x * + ' [ 0 j t s i n ( \ * + 1)6 +bk cos(\k+ l)Q + ck s i n ( X t - 1 )8 

+ dkcos(\k~l)Q] (8) 

The boundary conditions along a representative radial edge 
e=a/2 may be clamped {i.e., fT(r ,a/2) = (l/r)[3F(/-,a/2)/ae] 
= 0 } , simply supported [i.e., W{r,al2)~Mr(r,a/2)=>0], or free 
[i.e., F r ( r , a / 2 ) = A / r ( r , a / 2 ) = 0 ] , where Mr and VT are the usual 
radial moment and shear force defined elsewhere (Leissa 1969). 
These conditions are used in Eq. (8) to construct a set of algebraic 
equations from which the values X* are obtained as roots of the 
vanishing determinants. 

Satisfaction o f the hinged-free (S-F) radial edge conditions 
results in the following characteristic equation for the \ k : 

v - 1 

s i n 2 \ ^ a = j ^ X * sin 2a 
(9) 

The corresponding S-F comer function is 

^*(r,e)=r^ ,[sin(X J t-r-l)e~ 7 l icos(X t+l)e 

- 7 2 j t sin(X*- 1 )0 + -y3> cos(X*- 1 ) 8 ] (10) 

where 

sin(Xt+l)ct/2 
c o s ( A * + l ) a / 2 

(M-l)Q-l) sin(XJt+l)qy2 
72*== \k(v~ l ) + (3 + v) a i n ( X . J t - l ) a / 2 

( X , + l ) ( v - l ) s i n ( A . A + l ) a / 2 
1 3 ~ X , ( v - I ) + ( 3 + v ) cos(X^-l)a/2 

(11a) 

(11*) 

(He) 
Imposition of the hinged-clamped (S-C) radial edge conditions 

yields the characteristic equation for the \ k 

v - 1 
sin2X.ct= — — X i sin 2 a 

* 3 + v * 
(12) 

and the corresponding S-C comer function 

HP?(r,8) = , A * + 1 s i n ( X > + l)a/2 

s i n ( X t + 1 )8 „ • ncaa{\k+\)% 
K * cos(X A+l)a/2 * 

s i n ( X j t + l ) a / 2 
^ s in(X^- 1)6 

s i n ( X * - l ) a / 2 

s i n ( X j + l ) a / 2 
c o s ( X * - l ) a / 2 * * 

(13) 

Finally, the characteristic equation in X t for the clamped-free 
(C-F) radial edges is 

s in 2 \ka = l-v X? s in 2 a (14) 
( l -v ) (3 + v) 3 + v * 

and the associated C-F comer function is 

rF*(r ,6 ) = r K * + ' [s in(X^+ 1 )6 + Ci 4 cos(A* + 1 )8 

+ £ 2 t s i n ( X A - 1 )0 + ̂  c o s ( X j t - 1 ) 0 ] (15) 

with 

to* 
S,»--87» ^ 5 * ' ^"oT (16a) 

M- ( X * ~ 1 )Th, sin(X*+ 1 ) — ( X * + 1 ) t | ,^ c o s ( X i + 1 )j sin(X* 

- l ) a + ( X ^ - l ) T 1 l s i n ( X * + l ) Y C O s ( X * - l ) a 06b) 

1*2̂ (̂ +1) •n 1 1
 c o s ( ^* - 1 ) J " *1 2 k cos( X i - 1) j cos( X k + 1) a 

— •q3 j tsin(X i— l )ys in (Xi - l - l ) a (16c) 
M - 3 i = ( X , + l ) T|j tsin(XA-Uj+tij^s^X^-l)jcos(X^+l)a 

u. 

-tj 3^cos(X a- l )ys in (X A +l)a 

8* - (X A - l ) i l 2 j h cos (X J t +l )2~(X*+l ) ' n^s in (X A +l )ys in (X / t 

- l ) a - ( X j k - l ) T l ] ^ c o s ( X i + l ) ^ c o s ( X i - l ) a (16e) 

in which 

•<lv=Mv-l) + (3 + v), n 2 t = ( X , + l)(v-l) 

^(^-l)(v-l) (16 / ) 

Some of the X t obtained from Eqs. (9), (12), and (14) may be 
complex numbers, and thus, result in complex comer functions. 
In such cases, both the real and imaginary parts are used as inde
pendent functions in the present Ritz procedure. The required area 
integrals in the dynamical energy Eqs. (2) and (4) are performed 
numerically, except in the special case of a sectorial plate (c/a 
= 0 ) , where exact integrals are tractable when \ k is real. 

Substituting Eqs. (5 ) - (8 ) , (10), ( I I ) , (13), (15), and (16) into 
Eqs. (2 ) - (4 ) and using the frequency minimizing equations 

dc„ ( ̂max Tmax) — 0 (17) 

yields a set o f homogeneous algebraic equations involving the 
coefficients Am„ (or Bm„) and Ck. 

The roots of the vanishing determinant of these equations are a 
set o f eigenvalues, which are expressed in terms o f the nondimeri-
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sional frequency parameter w a 2 v p A D commonly used in the 
plate vibration literature. Eigenvectors involving the coefficients 
Am„ , B„„ , and are determined in the usual manner by substi
tuting the eigenvalues back into the homogeneous equations. Nor
malized contours o f the associated mode shapes may be depicted 
on a r —9 grid in the sector plate domain, once the eigenvectors 
are substituted into Eqs. (5) and (7). 

C o n v e r g e n c e S t u d i e s 

Addressed in this section is the important question of the conver
gence rate of V-notched circular plate frequencies, as various 
numbers of the assumed algebraic-trigonometric polynomials and 
corner functions are retained. All of the results shown in the 
present and following sections are for materials having a Pois-
son's ratio (v) equal to 0.3. Numerical calculations of all vibratory 
frequencies and mode shapes were performed on an DBM/RS-
6000 970 powerserver with an IBM/RS-6000 340 workstation 
cluster using double precision (14 significant figure) arithmetic. 

Shown in Tables 1 -3 are the first six nondimensional frequen
cies ma14pi'D for representative CS, CF, and SF V-notched 
plates (a = 330°, c/a = 0) with free circular edges. Numerical re
sults are shown as 40, 60 , 84, and 112 polynomial terms are 
retained in Eq, (5), in conjunction with 0, 1 , 5 , 10, 15, and 20 
comer functions employed in Eq. (7). A s can be seen in Table 1, 
the lowest-frequency mode of the CS plate converges very slowly 
as the number of polynomial terms (Wp) is increased with no 
corner functions. Adding a single corner function improves con
vergence substantially. That is, the trial set using only a single 
comer function (corresponding to the lowest A.*) along with as 
little as 40 polynomials yields an upper bound tx>a2^p/D value 
which is much lower than those shown in the first row of data. 
One can clearly see that by adding the first ten corner functions to 
as few as 60 polynomials yields the converged value of 2.1315, 
which is exact to five significant figures. 

For the CF and SF radial edge conditions, Tables 2 and 3 show 
similar levels of convergence accuracy in the ma1 \]p/D values 
achieved by using hybrid trial sets of admissible polynomials and 
corncT functions. Further data using other numbers of corner 
functions have shown that the frequencies obtained with 20 cor
ner functions have converged to five significant figures. More 
detailed, similar convergence studies when the interior straight 
edges are both free may also be seen in Leissa et al. (1993), and 
for clamped edges can be seen in McGee ct al. (1995). 

A slight deterioration in the convergence o f coa 2 \lp/D may 
occur for large Wp+Wc, which is attributed to the onset of ma
trix ill-conditioning due to round-off errors. It should be noted 
that the associated eigenvalue problem is positive definite, and 
thus, the frequency data shown in Tables 1 -3 was obtained by 
using a QL algorithm combined with Cholesky factorization 
(Stewart 1970; Stoer and Bulirsch 1980). For large Wp+Wc, 
however, the mass operator employed in the above QL algorithm 
may become ill-conditioned. No such ill-conditioning was en
countered in computing the first six nondimensional frequencies 
(converged to five significant figures) shown in Tables 1 -3 . Al
though not compared in Tables 1 - 3 for the sake o f brevity, a 
larger notch angle ( a < 3 3 0 ° ) does not degrade the overall conver
gence rate and accuracy of frequencies. Furthermore, the conver
gence is improved to a small degree for a sectorial plate (c/a 
= 0 ) having a large notch angle rather than a small one. For a 
shallow notched plate ( c / a = 0 .75) , one may encounter somewhat 
further deterioration in the convergence o f <aa2^lp/D at large Wp+Wc, which is attributed to the onset of ill-conditioning. 

Table 1. Convergence of Frequency Parameters wo 2Vp/JO for 
Seconal Plate with Clamped-Simply Supported Radial Edges and 
Free Circumferential Edge (ct=330°, c /a = 0) 

Number T o t a l n i m 3 b e r of terms in Wp 

Mode of corner • —— 
number functions 40 60 84 112 

0 2.8672 2.7749 2.7081 2.6572 
1 2.1524 2.1484 2.1457 2.1437 

1 5 2.1318 2.1316 2.1316 2.1315 
10 2.1316 2.1315 2.1315 2.1315 
15 2.1316 2.1315 2.1315 2.1315 
20 2.1316 2.1315 2.1315 2.1315 

0 3.3672 3.3222 3.2932 3.2729 
1 3.3416 3.3024 3.2768 3.2589 

2 5 3.1598 3.1596 3.1595 3.1595 
10 3.1594 3.1594 3.1594 3.1594 
15 3.1594 3.1594 3.1594 3.1594 
20 3.1594 3.1594 3.1594 3.1594 

0 5.5483 5.1990 5.0095 4.8941 
1 5.2471 5.1292 4.9649 4.8635 

3 5 4.5371 4.5357 4.5351 4.5348 
10 4.5360 4.5352 4.5349 4.5347 
15 4.5357 4.533] 4.5348 4.5347 
20 4.5355 4.5331 4.5348 4.5347 

0 7.8654 7.7452 7.6934 7.6668 
1 7.8543 7.7412 7.6915 7.6657 

4 5 7.6228 7.6171 7.6145 7.6132 
10 7.6144 7.6126 7.6116 7.6112 
15 7.6131 7.6121 7.6114 7.6111 
20 7.6129 7.6119 7.6114 7.6111 

0 12.170 11.801 11.658 11.593 
1 12.160 11.795 11.653 11.589 

5 5 11.730 11.618 11.568 11.543 
10 11.509 11.506 11.504 11.503 
15 11.506 11.505 11.504 11.503 
20 11.506 11.504 11.504 11.503 

0 16.388 16.216 16.163 16.144 
1 16.387 16.216 16.163 16.144 

6 5 16.277 16.182 16.149 16.136 
10 16.143 16.130 16.125 16.122 
15 16.127 16.124 16.122 16.121 
20 16.126 16.123 16.122 16.121 

F r e q u e n c i e s a n d M o d e S h a p e s 

Table 4 summarizes the results o f extensive convergence studies 
o f the least upper bound frequency parameters <aa2yjp/D for the 
first three modes of the CS, CF, and SF plates with increasing 
sector angles (decreasing notch angles), a(or 360°—a.) 
=90°(270°) , 180°(180°), 270°(90°), 300°(60°), 330°(30°), 
350°(I0°) , 355°(5°), and 359°(I°) , and with increasing notch 
depths c/a=0.75, 0.5, 0, and - 0 . 5 . Depicted in Fig. 3 are four 
typical plate configurations which were analyzed to construct the 
summary o f results in Table 4. These plate configurations are 
distinguished by their notch depths, ranging from a shallow notch 
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Table 2. Convergence of Frequency Parameters ua2\Jp/D for Table 3 . Convergence of Frequency Parameters va2y]p/D for 
Seconal Plate with Clamped-Free Radial Edges and Free Circumfer- Seconal Plate with Simply Supported-Free Radial Edges and Free 
ential Edge (a=330° , c /a = 0 ) Circumferential Edge (ct=330°, c/a~0) 

Number X o t a l a u m b e r of terms in W Number X o t a l n u m o e r o f t e r m s i n Wp 

Mode of comer Mode of comer — • 
number functions 40 60 84 112 number functions 40 60 84 112 

0 3.4196 3.2195 3.0669 2.9496 0 3.8253 3.6852 3.5488 3.4162 
1 2.2914 2.2818 2.2731 2.2652 1 1.9753 1.9744 1.9739 1.9736 

1 5 1.8256 1.8241 1.8231 1.8224 1 5 1.9732 1.9730 1.9729 1.9729 
10 1.8202 1.8201 1.8200 1.8199 10 1.9729 1.9728 1.9728 1.9728 
15 1.8199 1.8199 1.8198 1.8198 15 1.9728 1.9728 1.9728 1.9728 
20 1.8198 1.8198 1.8198 1.8198 20 1.9728 1.9728 1.9728 1.9728 

0 4.0346 3.7586 3.5883 3.4689 0 4.1379 3.8930 3.7336 3.6332 
1 3.4196 3.2286 3.0912 2.9884 1 3.8636 3.7604 3.6792 3.6123 

2 5 2.3504 2.3489 2J479 2.3473 2 5 2.9967 2.9956 2.9950 2.9947 
10 2.3463 2.3460 2J458 2.3456 10 2.9943 2.9943 2.9943 2.9943 
15 2.3455 2.3454 2.3454 2.3453 15 2.9943 2.9943 2.9943 2.9943 
20 2.3454 2.3453 2.3453 2.3452 20 2.9943 2.9943 2.9943 2.9943 

0 5.3247 4.9153 4.6625 4.4865 0 5.2421 4.9816 4.8444 4.7669 
1 5.1654 4.7988 4.5765 4.4224 1 5.0401 4.8985 4.8089 4.7512 

3 5 3.6251 3.6155 3.6092 3.6050 3 5 4.5848 4.5837 4.5830 4.5827 
10 3.5933 3.5924 3.5918 3.5913 10 4.5824 4.5823 4.5823 4.5823 
15 3.5907 3.5905 3.5904 3.5902 15 4.5823 4.5823 4.5823 4.5823 
20 3.5903 3.5902 3.5901 3.5900 20 4.5823 4.5823 4.5823 4.5823 

0 7.8597 7.2315 6.8576 6.6014 0 9.2999 8.5781 8.2800 8.1188 
1 7.8594 7.2314 6.8575 6.6012 1 9.2231 8.5603 8.2568 8.0935 

4 5 5.7145 5.6877 5.6705 5.6593 4 5 7.7695 7.7569 7.7501 7.7468 
10 5.6447 5.6389 5.6353 5.6328 10 7.7440 7.7436 7.7435 7.7434 
15 5.6300 5.6293 5.6287 6.6282 15 7.7435 7.7434 7.7434 7.7434 
20 5.6286 5.6282 5.6278 5.6275 20 7.7434 7.7434 7.7434 7.7434 

0 11.615 10.696 10.177 9.8390 0 12.041 11.872 11.786 11.740 
1 11.440 10.542 10.051 9.7373 1 12.041 11.868 11.775 11.724 

5 5 9.4602 9.2476 9.1361 9.0704 5 5 11.631 11.628 11.626 11.625 
10 8.9087 8.8921 8.8833 8.8777 10 11.626 11.625 11.624 11.624 
15 8.8714 8.8697 8.8688 8.8679 15 11.625 11.624 11.624 11.624 
20 8.8687 8.8680 8.8674 8.8669 20 11.624 11.624 11.624 11.624 

0 15.728 14.711 14.169 13.824 0 17.581 16.741 16.451 16J26 
1 15.723 14.711 14.166 13.817 1 17.422 16.623 16.342 16.218 

6 5 14.626 13.843 13.477 13.278 6 5 16.677 16.253 16.105 16.050 
10 12.995 12.933 12.903 12.887 10 16.009 16.005 16.004 16.003 
15 12.875 12.868 12.866 12.864 15 16.003 16.003 16.003 16.003 
20 12.865 12.863 12.862 12.862 20 16.003 16.003 16.003 16.003 

{cla —0.15) to an extremely deep notch (c/a= — 0 .5) . All fre
quency results are converged to the five significant figures shown 
in Table 4. Hence, Table 4 provides a very accurate database of 
frequencies for V-notched circular plates having various radial 
edge conditions and notch angles against which future results 
using experimental or other theoretical methods (such as finite 
element analysis) may be compared. 

For the range o f a examined in Table 4, it can be seen that in 
some instances bia2^p/D exhibits either an increase before a 
decrease, or vice versa, as the notch depth increases (i.e., cla 
decreases). The frequency variability with notch depth is exhib
ited in all modes, more so in the lower ranges of a than in the 

higher ones. It should be noted that the CF plates essentially 
vibrate as cantilevered ones, rigidly clamped along one radial 
edge, whereas the fundamental (lowest frequency) mode of the 
SF plates is a rigid body rotation about the hinged radial edge (at 
zero frequency, which is not shown in Table 4). Naturally, the 
plates with a = 9 0 ° or 180° (semicircular) do not form a V-notch. 
Nonetheless, the frequency data for a = 9 0 " do delineate some 
interesting special cases o f plates with decreasing cla (see Fig. 4) 
for which no previously published frequency results are known to 
exist. For 350°=Sa«359° , the range in <oa 2 Jp/D due to the notch 
effect (decreasing cla) is comparatively less, as one observes the 
various ranges in wa24plD with decreasing cla over all a. 
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Table 4. Fundamental Frequency Parameters iaa2jp/D for Circular Plates Having Various Radial Edge Conditions and Free Circumferential 

Edge _ _ _ _ 

Case number c/a 90 180 270 300 330 350 355 359 

0.75 2.9070 1.0275 1.0115 0.9998 0.9583 0.9240 0.9153 0.9084 
1 0.5 4.0672 1.4177 1.4186 1.4548 1.4133 1.3577 1.3435 1.3322 

0 9.3413 2.9913 2.5161 2J670 2.1315 2.0010 1.9748 1.9557 
-0 .5 37.116 9.7790 4.0651 2.9258 2.1458 1.7862 1.7125 1.6576 

0.75 8.9921 2.6876 1.6105 1.4986 1.4501 1.4450 1.4459 1.4472 
CS 2 0.5 12.383 3.6942 2.0337 1.8206 1.7403 1.7402 1.7436 1.7470 

0 27.458 7.3860 3.5591 3.2274 3.1594 3.1535 3.1509 3.1475 
-0 .5 104.63 23.132 10.207 7.7956 5.7452 4.7323 4.5170 4.3546 

0.75 13.987 5.8987 4.3515 4.3043 4.3179 4.3371 4.3418 4.3453 
3 0.5 18.999 7.8816 4.9149 4.5822 4.4118 4.3645 4.3593 4.3568 

0 41.896 14.806 6.7273 5.4633 4.5347 4.0615 3.9605 3.8848 
-0 .5 160.15 39.852 12.488 9.9622 8.0305 6.8415 6.5738 6.3694 

0.75 1.7092 1.0111 0.8635 0.8447 0.8312 0.8232 0.8214 0.8200 

1 0.5 2.2297 1.3637 1.2130 1.1945 1.1826 1.1754 1.1735 1.1718 
0 4.4927 2.4769 2.1656 1.9580 1.8198 1.7637 1.7534 1.7460 

-0 .5 15.483 5.1297 1.8718 1.4190 1.1476 1.0327 1.0100 0.9933 
0.75 4.5592 2.0806 1.5674 1.4833 1.4212 1.3885 1.3815 1.3762 

CF 2 0.5 6.1723 2.5476 1.8967 1.7843 1.6959 1.6484 1.6380 1.6301 
0 13.571 4.1541 2.4793 2.4349 2.3452 2.2403 2.2100 2.1850 

-0 .5 52.030 12.289 5.3052 3.9840 3.0048 2.5251 2.4237 2.3474 
0.75 9.5867 4.8819 4.2919 4.2615 4.2544 4.2547 4.2552 4.2556 

3 0.5 12.557 5.7698 4.4856 4.3814 4J323 4.3171 4.3148 4J133 
0 24.895 9.6393 4.6903 3.9968 3.5900 3.4492 3.4263 3.4109 

-0 .5 83.101 26.490 9.9304 7.7371 5.8204 4.8055 4.5859 4.4195 
0.75 3.4651 1.7636 1.1578 0.9735 0.8242 0.7675 0.7607 0.7575 

1 0.5 4.5616 2-0108 1.3968 1.2458 1.1319 1.0886 1.0828 1.0796 
0 9.4966 2.7664 2.2165 2.2117 1.9728 1.7918 1.7520 1.7222 

- 0 . 5 34.312 5.1867 3.5685 2J630 1.5186 1.1556 1.0876 1.0395 
0.75 6.9781 4.2979 3.9799 4.0283 4.1285 4.1954 4.2098 4.2202 

SF 2 0.5 9.0402 5.0360 4.1387 4.0705 4.0872 4.1206 4.1312 4.1401 
0 18.055 7.6352 3.5006 3.0320 2.9943 3.0431 3.0543 3.0621 

-0 .5 61.863 17.542 4.8946 4.1863 3.2557 2.7005 2.5782 2.4853 
0.75 11-880 7.6039 6.0297 5.7083 5.4639 5.3544 5.3358 5.3239 

3 0.5 14.979 8.9503 6.0221 5.5638 5.2558 5.1138 5.0856 5.0651 
0 29.179 14.852 6.8796 5.5628 4.5823 4.0677 3.9548 3.8691 

- 0 . 5 100.62 34.998 10.298 8.3440 7.1815 6.3205 6.1058 5.9378 
Note: CS=clamped-hinged; CF=clamped-free; and SF=hinged-frec. 

For constant c/a, one can see in Tabic 4 that there is, for the 
most part, a decreasing trend in w_2Vp7o for the first three 
modes, as a increases. Physically speaking, one can even expect a 
monotonic decrease in <aa2\jp/D versus ot, for a > 3 6 0 ° (i.e., a 
very thin plate wrapped under itself) due to the increasing 
strength of the singular moments at r~ 0. A closer scrutiny of the 
frequency data does reveal a number of slight exceptions to this 
overall trend, which would be too numerous and tedious to ex
plain here. However in Table 4 , e.g., Mode 3 for CS (c/a 
= 0.75) and Mode 2 for SF ( c / a = 0 ) , a slight increase in 
wa2Vp/JD can be seen as a approaches 360°. The frequency re
sults as a approaches 360° are special cases o f circular plates 
having what are described here as a hrnged-clamped, clamped-
frec, or hinged-firee radial crack. It is seen in Table 4 that rela
tively minimal change in uc^Jp/D with c/a results with either a 

constrained, sharp V-notch ( a = 3 5 5 ° ) or radial crack ( a = 3 5 9 ° ) . 
Moreover, the frequencies for the sharp notch and the radial crack 
are seen to be only slightly different. 

Normalized contours of the transverse vibratory displacement 
are shown in Figs. 5 - 7 for plates having a = 9 0 p , 180°, 270° , 
300°, 330°, and 355° sector angles, for increasing notch depths of 
c / a = 0 . 7 5 , 0, and - 0 . 5 . Increasing the notch depth has a signifi
cant effect on the nodal patterns of Modes 1 - 3 (Note that 
the node lines are shown in Figs. 5 - 7 as darker contour lines 
of zero displacement [.(WIWmn=0) during vibratory motion]. In 
addition, increasing the notch depth causes distinct nodal line 
separations, and noticeable distortions and sharp curvature of 
the normalized displacement contours (WIWasx) near the notch 
vertex, more so to a small degree in the higher modes than in the 
lower ones. The contour plots of Figs. 5 - 7 are normalized with 
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c/o-0.5 c/r/=0 

Fig. 3 . V-notched circular plates with various depths 

respect to the maximum transverse displacement component(i.c., 
-l^W/Wmax^l, where the negative values o f WIW^ 
are depicted as dashed contour lines in Figs. 5 - 7 , and the nondi
mensional frequencies shown correspond to the data listed in 
Table 4). 

What is particularly interesting about the subject problem is 
that the large bending moment stresses in the neighborhood of the 
vertex of the constrained, sharp notch or crack do indeed signifi
cantly influence the nature of the vibratory behavior of circular 
plates. It is important to emphasize that the singular stresses at the 
constrained vertex o f such sharp notches or cracks can become 
quite serious during vibration by constituting an origin for crack 
propagation during fatigue. A reasonable simulation of this propa
gation effects is shown in the displacement contours of Figs. 5 - 7 . 
Similar contours o f the radial (Mr), circumferential ( A / 6 ) , and 
twisting (M,e) moments may be obtained from the following: 

Mr=-D(Xr+vx»). Me=~D(x« + vXr) 

Mrs=~D(l-v)Xro (18) 

Additional studies (the results of which are not shown here) re
vealed that approximate normalized values of the vibratory mo
ments - l^(Mr/Mr ;M«/M6 jM^/A/rf )*sl are highly lo-

max max max 

calized around the vertex o f the notch or crack. Since the 
vibratory moments asymptotically approach infinity in the limit as 
r approaches zero at the vertex, approximate maximum values of 
Mr, M9, and M , 9 were assumed within a very small radial dis-

Fig. 4 . Plates with a = 9 0 ° and various cla ratios 

tance from the sharp corner of the vertex. Given that the moments 
are indeed infinite at the sharp corner, depictions of these approxi
mate normalized moment variations elsewhere in the plate do
mains, relatively speaking, were of little interest. 

C o n c l u d i n g R e m a r k s 

A Ritz procedure in conjunction with classical thin-plate theory 
has been developed to obtain highly accurate frequencies and 
mode shapes for circular plates having a free circumferential edge 
with clamped-hinged, clamped-free, and hinged-free V-notches or 
sharp radial cracks. In this approximate procedure, the assumed 
transverse displacement of the plate consists of a hybrid set of 
complete algebraic-trigonometric polynomials along with corner 
functions that account for the proper singular bending moments at 
the vertex of acute corner angles. The modeling capability o f such 
corner functions has been substantiated through supporting con
vergence studies of nondimensional frequencies. 

Detailed numerical tables have been presented, showing the 
variations of nondimensional frequencies (accurate to five signifi
cant figures) over a wide range of notch depths cla and vertex 
angles a. The frequency variability with notch depth is exhibited 
in all modes, to a larger extent, in the higher ranges o f a than in 
the lower ones. For constant cla, there is, generally speaking, a 
decreasing trend in a>a2^p/D for the first three modes, as a in
creases, with noticeable variability o f bia2yJp/D with a in the 
higher modes of plates with notch depths exceeding one-half of 
the plate radius. 

Besides this, some new understanding has been offered here 
with the previously unpublished mode shapes for circular plates 
with a constrained V-notch or a sharp radial crack. Generally 
speaking, for a > l 8 0 ° highly localized bending moment stresses 
at the vertex of clamped-free, hinged-clamped, and hinged-free 
sharp notches or cracks may become detrimental in connection 
with vibration, by constituting an origin for crack propagation 
during fatigue. Reinforcement and repair of such crack propaga
tion and growth with a rigid material or hinge may serve to in
crease the plate resistance somewhat to localized fatigue stresses 
during lateral vibration. Some fundamental understanding of the 
effect o f these localized stresses on V-notched circular plate dy
namics can be obtained through careful examination of the fre
quency and mode shape data offered herein. What is discerned 
from these previously unavailable results is that the present 
method is an effective one for modeling the unbounded vibratory 
stresses which exist at the sharp comer of constrained V-notches 
or cracks of circular plates. Finally, the accurate vibration data 
presented here serves as benchmark values for comparison with 
data obtained using modern experimental and alternative theoret
ical approaches. 
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No. 
a (degrees) 

0.75 

2.9070 1.0275 

270 

1.0115 

355 

37.116 9.7750 A.0651 3.9251 2.1451 1.7125 

0.73 j 

1.6105 U9M 

0.0 

17.45S 5.5591 3.1509 

104.63 I0JOT 7.7956 5.7452 

0.75 

I4.S06 6.7173 5.4635 4.5347 

-0.5 « 
160.15 39.852 I2.4M 7.9622 B.030J 6.5738 

F i g . 5 . Normalized transverse displacement contours (W/IV,^) for CS plates 
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|MMc| 
No. 

a(degrees) 

0-75 

1.7092 

170 330 

0S312 

355 

0.0 

4.4927 2.4769 2.1656 1.8198 

•0.5 

15.483 5.1297 

0.75 

4,5592 2.0806 1.5674 1.4133 1.4212 1.3815 

0.0 

2.4793 3.4349 2.2100 

-0.5 

52X30 112*9 53052 3.9(40 3.0048 

0.75 

0.0 

24.893 9.6393 4.6903 3.5900 3.4263 

-0.5 

83.101 26.490 9.9304 7.7371 5.8204 4.5«9 

Fig. 6. NoiTnalized transverse displacement contours ( W I W , ^ for CF plates 
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No. da 90 

0.75 

1M$\ 

ISO 270 

1.157* 

300 

0.9735 

330 

0.8242 

355 

0.0 

9/4966 2.2165 2.2117 1.9721 

-0.5 

34312 5.1867 3.56(5 2.3630 1.51 k 1.0J76 

0.75 

4J979 3.9799 4.02S3 4.1285 4.2098 

0.0 

18.055 7.6352 3.0320 2.9943 3.0543 

-0.5 

61.163 17342 4.8946 4.1863 3.2557 2.5782 

0.75 

ll.8«0 6J0297 

0.0 

29.179 14.852 6J796 5.5621 43823 

-0.5 

100.62 3438* 10.298 8.3440 7.1815 6.1058 

Fig. 7 . Normalized transverse displacement contours (W1Wimx) for SF plates 
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Notation 

The following symbols are used in this paper: 
A = plate area; 

= generalized coefficient in Eq. (5); 

a plate radius; 

ck 
= generalized coefficient in Eqs. (7); 

c = notch vertex offset distance (see Fig. 1); 

D plate flexural rigidity; 

E = Young's modulus; 

8 radial edge equation; 

h = plate thickness; 

Mr,M6,Mr<s = radial, circumferential, and twisting moments; 
r - local polar coordinate at vertex corner; 

T 
' max 

maximum kinetic energy; 
/ = time; 

V 
' max - maximum strain energy; 

VT 
= radial shear force; 

wc 
= corner functions trial series; 

- algebraic-trigonometric polynomial trial 
series; 

w - transverse displacement of plate; 

Xr.Xe .Xr9 maximum radial, circumferential, and twisting 
curvatures; 

a = corneT angle (see Fig. 1); 

e = local polar coordinate at vertex corner. 
= roots of characteristic Eqs. (9), (12), (14); 

V -- Poisson's ratio; 

P = mass density; and 
CO circular frequency of vibration. 
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