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Abstract

Birds, �sh, and many other animals are able to move

gracefully and e�ciently as a herd, 
ock, or school. We

would like to reproduce this behavior for herds of arti-

�cial creatures with signi�cant dynamics. This paper

develops an algorithm for grouping behaviors and eval-

uates the performance of the algorithm on two types

of systems: a full dynamic simulation of a legged robot

that must balance as well as move with the herd and a

point mass with minimal dynamics. Robust control al-

gorithms for group behaviors of dynamic systems will

allow us to generate realistic motion for animation us-

ing high-level controls, to develop synthetic actors for

use in virtual environments, mobile robotics, and per-

haps to improve our understanding of the behavior of

biological systems.

1 Introduction

To run as a herd, animals must remain in close prox-

imity while changing direction and velocity and while

avoiding collisions with other members of the herd and

obstacles in the environment. In this paper, we explore

the performance of a control algorithm for modulating

the motion of each individual in a herd of dynamically

simulated legged robots. A photograph of 100 simu-

lated robots running as a herd is shown in �gure 1.

The herding algorithm computes a desired velocity

for each individual based on the location and veloc-

ity of its visible neighbors. This desired velocity is

then used as an input to the locomotion control sys-

tem for the robot. We compare the performance of

this algorithm on a herd of point-mass objects and a

herd of dynamically simulated running robots for a test

yThis paper will appear in the Proceedings of Arti�cial Life
IV.

Figure 1: Photograph of a herd of 100 simulated one-legged

robots. The herd had run stably for 5 minutes before this pho-
tograph was taken.

suite of four problems: steady-state motion, accelera-

tion and deceleration, turning, and avoiding obstacles.

For this test suite, all individuals in the herd of robots

remained upright and only a small number of collisions

occurred. However, the performance of this herd was

not as robust as that of the point-mass system.

In contrast to most previous implementations of al-

gorithms for group behaviors, we are using this algo-

rithm to control a robot herd where the individuals

have signi�cant dynamics. The problem of controlling

the robot herd more closely resembles that faced by bi-

ological systems because of the underlying dynamics of

the individuals in the herd. Each robot in the herd is

a dynamic simulation of a physical robot and a control

system. As such, the robots have limited acceleration,

velocity, and turning radius. Furthermore, the con-

trol algorithms are inexact, resulting in both transient

and steady-state errors in velocity control. Required

changes in velocity are delayed by as much as half a

running step because the control system can in
uence
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velocity during only the stance phase of the running

cycle. To understand the e�ect of the underlying dy-

namics, we compared the performance of the herding

algorithms on the robots with full dynamics and on

particle systems with perfect velocity control.

Algorithms for high-level behaviors of dynamic sim-

ulations are needed for the construction of synthetic

actors with robust and realistic motion that can re-

spond interactively to changes in the environment. A

dynamic simulation in concert with a control system

will provide natural looking motion for low-level be-

haviors such as walking, running, and climbing. High-

level behaviors such as obstacle avoidance, grouping,

and rough terrain locomotion will allow the actor to

function in and interact with a complex and unpre-

dictable environment.

2 Background

Recent advances in robotics have produced au-

tonomous agents capable of performing a variety of

tasks in di�erent domains. At the same time, re-

searchers in the arti�cial life community have con-

tributed to our understanding of the evolution of com-

plex behaviors through the use of simulations that pro-

duce emergent behaviors. By building on work from

these �elds, we should be able to create multi-agent

robotic systems that mimic the elegant grouping be-

haviors of biological organisms.

Herding, 
ocking, and schooling behaviors of ani-

mals have been studied extensively over the past cen-

tury and this research serves as motivation for the cre-

ation of arti�cial creatures with similar skills. Group-

ings exemplify an attraction that modulates the desire

of each member to join the group with the desire to

maintain a particular separation distance from nearby

creatures (Shaw 1970). As an example of this attrac-

tion, Cullen, Shaw, and Baldwin (1965) report that the

density of �sh is approximately equal in all planes of

the school, as if each �sh had a sphere around its head

with which it wished to contact the sphere of another

�sh. Herding bene�ts the average group member by

limiting the average number of encounters with preda-

tors (data summarized in Veherencamp 1987). Group-

ing behaviors allow animals to hunt more powerful an-

imals than those they could overpower as individuals.

Due to the success of behaviors such as these in bio-

logical systems, it seems reasonable to assume that it

would be advantageous to reproduce them in robotic

systems.

Early work in the simulation of grouping behaviors

was performed by Reynolds (1987). Actors in his sys-

tem are bird-like objects and are similar to the point

masses used in particle systems except that each bird

also has an orientation. The birds maintain proper po-

sition and orientation in the 
ock by balancing their

desires to avoid collisions with neighbors, to match the

velocity of nearby neighbors, and to move towards the

center of the 
ock. Each bird uses only information

about nearby neighbors. This localization of informa-

tion simulates perception and reaction in biological sys-

tems and allows for proper balancing of the three 
ock-

ing tendencies. Reynolds's work demonstrates that

realistic-looking animations of group formations can

be created by applying simple rules to determine the

behaviors of the individuals in the 
ock.

Yeung and Bekey (1987) propose a decentralized ap-

proach to the navigation problem for multiple agents.

Their system �rst constructs a global plan without tak-

ing into account moving obstacles. When a collision is

imminent, the system locally re-plans using inter-robot

communication to resolve the con
ict. Because of the

two levels of planning, this solution requires the com-

munication overhead associated with grouping behav-

iors only when a pair of robots perceive an impending

collision.

Sugihara and Suzuki (1990) demonstrated that mul-

tiple robots can form stable formations when each

robot executes an identical algorithm for position de-

termination within the group. In their simulation, each

robot can perceive the relative positions of all other

robots and has the ability to move one grid position

during each unit of time. By adjusting the position of

each robot relative to either the most distant or the

closest neighbor, a regular geometric shape such as a

circle can be formed by the robots in the world. Fur-

thermore, the movement of one robot in a formation

can cause a chain reaction that results in a translation

of the group in world coordinates. By carefully con-

structing the algorithms that each robot uses in de-

termining intra-group position, formations will emerge

without a priori knowledge about the total number of

robots. Designation of leaders allows the simple rules

of the group to create leader-following algorithms and

to demonstrate the division of a formation into smaller

groups.

Wang (1991) investigated the navigation of multiple

robots in formation and the resulting group dynam-

ics. Each robot in the model is simulated as a point

mass and perceives other robots in the region contained

in a cone extending from the center of the robot and

heading in the direction of travel. Formations are rep-

resented as a set of o�sets from a prede�ned reference

robot. In this way, a formation can be directly de-

�ned as a set of positions for each robot relative to

the leader, closest neighbor, or set of closest neighbors.
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Wang shows that the error in desired position relative

to actual position diminishes to zero for each indepen-

dent robot in the formation and therefore the desired

formation is asymptotically stable. Simulations for up

to four point-mass robots demonstrate that these navi-

gation strategies can produce stable group formations.

Arkin explored the question of communication in a

group of interacting mobile robots using schema-based

reactive control (Arkin 1992, Arkin and Hobbs 1992).

Example schemas are move-to-goal, move-ahead, and

avoid-static-obstacle. Each behavior computes a veloc-

ity vector that is combined with the velocity vectors

from the other behaviors and is used to control the

robot. Arkin demonstrated that for some tasks robots

can interact with no communication other than obser-

vations of the environment or with very limited ex-

plicit communication. The herding algorithms we im-

plemented are also examples of an algorithm in which

there is no explicit leader and all communication is

through observations of the environment.

Mataric researched emergent behavior and group

dynamics in the domain of wheeled vehicles. These

robots, like Arkin's, do not explicitly communicate

state or goals and the system has no leaders. This work

demonstrated that combinations of such simple behav-

iors as attraction and repulsion can produce complex

relationships such as dispersion and 
ocking in phys-

ical robots in the laboratory (Mataric 1992a,b). The

robots utilize the knowledge that they are all identical

when executing behaviors, but an extension to these re-

sults found that heterogeneous agents do not perform

signi�cantly better than homogeneous ones (1993). In

these experiments, a hierarchy is created in which an

ordering between the agents determines which agent

will move �rst in completing tasks such as grouping

and dispersing.

3 Algorithms for Herding

The herding algorithms described in this paper were

evaluated on two systems: a one-legged robot simula-

tion with full dynamics and a particle simulation with

minimal dynamics. The next two sections describe the

herding algorithms and the two simulations.

The herding algorithm consists of three parts: a per-

ceptual model to determine the visible creatures for

each individual in the herd, a placement algorithm to

determine a desired position for each individual given

the locations of the creatures that are visible to it, and

a spring/damper control system to compute a desired

velocity given the current position and the desired po-

sition. The herding algorithm is run for each individual

visibility region

direction
of travel

Figure 2: One creature is visible to another if it is within a
certain radius and is one of the n closest visible creatures (n is six
for this example). The black circles represent visible creatures
and the grey represent creatures that can not be seen by the
individual under consideration.

in the herd to compute a desired velocity for that indi-

vidual. The control system for each legged robot then

uses the desired velocity provided by the herding algo-

rithm to determine how the leg should be positioned

during 
ight to achieve the desired change in forward

velocity. The particles in the point-mass herd use this

desired velocity as their actual velocity on the next

time step.

The herding algorithms for an individual robot are

run each simulation time step while the robot is in


ight. For the particle system, the herding algorithms

compute a new desired velocity for each simulation step

and a new set of visible particles every ten simulation

steps.

3.1 Perception Model

Each individual in the herd can perceive the location

and velocity of the n nearest creatures that are within

a circle of radius r. In the trials reported in this paper

n was 30 and r was 24 m and the herd included 105 in-

dividuals. For most con�gurations the circle was large

enough to include all members of the herd. Figure 2

illustrates the perception model.

3.2 Desired Position and Velocity

The list of visible creatures provided by the perceptual

model is used to compute a desired position for each

individual in the herd. A desired position relative to

each visible creature is computed and then these de-

sired positions are combined with a weighted average.

The desired position of an individual relative to each

of the visible creatures is a constant distance D away

from the visible creature on the line between the two

creatures (�gure 3). In these experiments D was 2:5m.

This set of desired positions (one for each visible crea-

ture) is averaged with a weighting of 1=d2 to compute a
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global desired position 
(weighted average)

 desired position with 
 respect to this creature

Figure 3: The locations of the visible creatures are used to com-
pute a global desired position for the individual under considera-
tion. The algorithm computes a desired position with respect to
each visible robot by �nding the point on the line between the
individual and the visible creature that is a constant distance
D away from the visible creature. These desired positions are
averaged with a weighting equal to 1=d2 where d is the distance
between the two creatures.

global desired position where d is the distance between

the two creatures.

The global desired position for an individual is used

to compute a desired velocity for that creature using a

spring and damper system:

_xd = kpe � kv _e+ _xnom (1)

where _xd is the desired velocity in the plane, e is the

error between the current position of the creature and

the global desired position, _e is the rate of change of

the error, kp and kv are the proportional and deriva-

tive gains, and _xnom is the nominal velocity. For the

experiments reported here kp = 0:5 and kv = 0:3. The

nominal velocity _xnom was the average of the desired

velocities of the visible creatures. To provide the user

with control of the herd, one creature is selected by

the user. The nominal velocity in equation 1 for that

creature is set by the user rather than computed by

averaging the desired velocity of the visible creatures.

4 Simulating the Herd

The herd simulation consists of the equations of motion

for either the robot or the particle system, a copy of

the state vector for each individual in the herd, control

algorithms for running, a graphical image for viewing

the motion of the herd, and an interface that allows

the user to control the parameters of the simulation.

For the robot herd, the equations of motion represent

a rigid body model of a one-legged robot and control

algorithms that allow the robot to run at a variety of

speeds and 
ight durations. At each simulation time

step, the control system computes forces or torques

for each joint of the robot based on the actual and

desired state vector for that individual. The equations

Mass Moment of Inertia

Link (kg) (x; y; z kgm2)

Body 23.1 0.9 0.9 0.602

Upper Leg 1.4 0.018463 0.017297 0.001441

Lower Leg 0.64 0.0197 0.0197 0.000176

Table 1: Parameters of the rigid body model of a one-legged
robot. The moment of inertia is computed about the center of
mass of each link.

COM to COM to
Link Proximal (m) Distal (m)

Body 0.0

Upper Leg 0.095 -0.095

Lower Leg 0.221

Table 2: The distance from the center of mass of each link to the
distal and proximal joints in z for the canonical con�guration of
the robot (the distance in x and y is zero for this model).

of motion of the system are integrated forward in time,

and the resulting motion of the individuals in the herd

is displayed graphically and recorded for later use. The

equations of motion for the individuals in the herd do

not take into account the physical e�ects of collisions

between two members of the herd, although collisions

are detected and a count of collisions is recorded for

use in analyzing the data. The details of the robot

and particle models are described below.

4.1 One-legged Robot Simulation

The equations of motion for the robot were generated

using a commercially available package (Rosenthal and

Sherman 1986). The package generates subroutines

for the equations of motion using a variant of Kane's

method and a symbolic simpli�cation phase. The pa-

rameters of the robot are given in table 1 and table 2.

The reference angles of the model are shown in �gure 4.

The locomotion algorithms for the one-legged robot

control 
ight duration, body attitude, and forward and

sideways velocity. Flight duration is controlled by ex-

tending the leg during stance. Body attitude (pitch,

z
y

x

leg length

hip
 (x, y, z rotation)

y rotation
of hip

Figure 4: The reference angles for the controlled degrees of free-

dom of the robot. The controlled degrees of freedom are three
degrees of freedom at the hip and the length of the leg.
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Figure 5: The con�guration of the herd at the start state and
every 100 s thereafter for a commanded steady-state velocity
of 2:0 m=s in the x direction for the user-controlled creature.
The top set of graphs shows the motion of the robot herd; the
bottom set shows the motion of the particle system. Each graph
represents the x, y position of each robot or particle in the herd.
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Figure 6: The con�guration of the herd at the start state and

every 30 s thereafter for an initial steady-statedesired velocity of
2 m=s in the x direction, followed by a desired velocity of 3 m=s
for 30 s and 1:5 m=s for 30 s for the user-controlled creature.

The top graph represents the herd of robots; the bottom graph
represents the herd of particles. The path shown between the

snapshots of the herd is the trajectory that the user-controlled
robot or point mass followed.

roll, and yaw) is controlled by exerting a torque be-

tween the body and the leg during stance. The velocity

is controlled by the position of the foot with respect to

the center of mass of the body at touchdown. For a

constant velocity, the foot is positioned in the center of

the distance that the body is expected to travel while

the foot is on the ground. To increase the speed, the

foot is positioned closer to the hip. To decrease the

speed, the foot is positioned further from the hip. The

details of the locomotion control algorithms are given

in Raibert (1986).

4.2 Particle Simulation

The particle simulation has minimal dynamics. The

desired velocity computed by the herding algorithm is

used by the dynamic simulation as the actual velocity
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Figure 7: The con�guration of the herd as the user-controlled
creature follows a zig-zag pattern. Beginning with a steady-state
run of 2:0m=s in the x direction for 5 s, the y desired velocitywas
increased to 1:41 m=s and the x desired velocitywas decreased to
1:41 m=s. After 20 s the y desired velocity was set to �1:41m=s

for the next 20 s. This pattern was repeated a second time.
The top graph represents the herd of robots, the bottom graph,
the herd of particles. The path shown between the snapshots

of either herd is the trajectory that the user-controlled robot or
point mass followed.

on the next time step. There are no limits on acceler-

ation or velocity. The particle system di�ers from the

robots in that there is no delay in the implementation

of a new desired velocity and the new velocity exactly

matches the desired velocity.

5 Results

We tested the herding algorithms in four situations:

steady-state movement, acceleration, turning, and

avoiding obstacles. For steady-state movement, both

the herd of robots and particles began in the same con-

�guration, and the user-controlled creature was com-

manded to move at 2:0 m=s for 300 s. As is shown

in the snapshots of the herd con�gurations in �gure 5

both herds contracted to form a nearly circular shape.

The second test began with the ending point of the

steady-state test for each system. The commands to

the user-controlled creature were an acceleration to

3m=s in the x direction for 30 s and then a deceler-

ation to 1:5 m=s for 30 s (�gure 6). Both the particle

system and the robots continued to move as a herd al-

though the user-controlled robot moved ahead of the

herd during the acceleration phase of the experiment

and dropped back into the herd during the decelera-

tion.

The third test involved turning. Beginning with a

steady-state run of 2:0 m=s in the x direction, the y

desired velocity was increased to 1:41 m=s and the

x desired velocity was decreased to 1:41 m=s. After

5



100

110

120
y 

po
si

tio
n 

(m
)

2890 2900 2910 2920 2930 2940

x position (m)

100

110

120

y 
po

si
tio

n 
(m

)

2890 2900 2910 2920 2930 2940

x position (m)

Figure 8: The trajectory of the members of the robot herd and

the particle system herd as the creatures avoid an obstacle. The
top graph represents the herd of robots, the bottom graph, the

herd of particles. Both herds ran for 15 s at a nominal speed of
2 m=s in this experiment and the herds were moving from left

to right.

20 s the y desired velocity was set to �1:41m=s for the

next 20 s. This zigzag pattern was repeated a second

time (�gure 7). The particle system had no collisions

but the robot herd had multiple collisions as the herd

changed direction. The particle system herd tracked

the user-controlled point-mass much more closely than

the robot herd tracked the user-controlled robot al-

though both herds retained an approximately circular

shape. The user-controlled robot does not follow the

desired zigzag pattern closely because its velocity is af-

fected by its position relative to the other members of

the herd.

The �nal test involved obstacle avoidance (�gure 8).

The creatures on a collision path with the obstacle

moved to avoid the obstacle by aiming for a point out

to the side of the obstacle at a distance of 1:5 times

the radius of the obstacle. This sideways motion was

incorporated into the calculation for the desired posi-

tion with a weighted average. The herd of point masses

were able to avoid the obstacle and quickly rejoined to

form a single herd on the far side of the obstacle. The

�rst robot in the robot herd was unable to avoid the

obstacle and this herd was slower to regroup on the

far side of the obstacle. In easier tests where the herds

had more time to react the performance of the point

mass herd and the robot herd were similar.

The herding algorithms used for these two sets of

tests were identical and di�erences in performance can

be attributed to di�erences between the two dynamic

systems. The point-mass herd ran more tightly un-

der changes in magnitude and direction of velocity be-

cause of the exact control of velocity. The behavior

of the robot herd was not as robust as that of the

point-mass system because the herd did not track the

user-controlled robot as closely. The robot herd had

more variability and motion within the herd and tests

more often resulted in collisions between members of

the herd. In more di�cult tests than those reported

here, an individual in the herd sometimes lost its bal-

ance and fell down. The particle systems had no no-

tion of balance or of maximum speed or acceleration

and could not fail in this way.

In other ways, the performance of the robot herd

was superior to that of the particle system. The nat-

ural damping of the individual behavior of the robots

appears to increase the stability of the herd in some sit-

uations and the robot herd was more stable than the

point mass herd for tests where the number of visible

creatures was reduced below 30.

A serious limitation of this herding algorithm is the

knowledge required by a robot about the desired veloc-

ity of a neighbor because this information could not be

measured with a sensor. An implementation that used

actual rather than desired velocity would be preferable

but was not stable for the robot herd. The dynamic in-

teraction of the leg with the ground and inaccuracies in

the locomotion control system prevent the robots from

running at exactly the commanded velocity. A linear

�t between the actual and desired velocities was not a

su�ciently accurate model to correct this problem, and

the herd ran increasingly faster or slower depending on

the constant chosen for the linear �t. In the particle

system, actual and desired velocities were identical and

there is no di�erence between these two approaches.

There are other limitations to the herding algorithm

we implemented. In some situations, the desired veloc-

ity moved two individuals closer to a collision. In our

current implementation there is no re
exive reaction

to an impending collision.

With this algorithm, a breakaway group of su�cient

size will not rejoin the main herd unless a member of

the main herd is visible to a member of the breakaway

group. This problem could be solved by the addition

of a separate behavior that causes individuals to look

further a�eld for another herd to join.

We experimented with other perceptual models,

adding occlusion and reducing the visibility of crea-

tures behind as opposed to in front of the individual in

question. Occlusion reduced the stability of the parti-

cle system without qualitatively changing the behav-

ior of the robot herd. When the list of visible crea-

tures changes because of the addition of a previously

occluded individual, the desired position and velocity

may change signi�cantly thereby causing an immedi-
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ate ripple e�ect in the particle system simulation. The

natural inertia of the robot simulation appears to mit-

igate this e�ect.

Although reducing the visibility of creatures that are

behind the one under consideration might appear to

be a more natural perceptual model for an animal or

a human, it was not a good heuristic for this simple

herding algorithm. Unequal front and back visibility

caused the creatures in front to contribute more heavily

to the desired position than the creatures in back. The

desired position would then be in front of the current

position, and the velocity of the robot or particle would

continually increase.

We have not yet explored the question of how the al-

gorithms will perform on a heterogeneous population.

Currently the robots have identical mass and inertia

properties and identical control systems, but we plan

to vary the parameters of the system and to introduce

noise to study how the performance of the herding al-

gorithms is a�ected. A further extension would be to

develop \personalities" for the individuals as Bates did

in his woggles simulation (Bates et al 1993). In the

case of the dynamic robot simulation, a simple person-

ality might consist of adjustments to the gains in the

herding algorithm and the locomotion control system

so that the robot appears to behave in an aggressive

or timid fashion.

Although the simulation of the robots is a full dy-

namic simulation, many factors are missing in the sim-

ulation that would be present in a physical robot. The

simulated motors do not have a maximum torque or

limited bandwidth, the joint and perceptual sensors do

not have noise or delay, and the environment used for

testing the herding algorithms does not contain uneven

or slippery terrain.

One application of this work is to provide high-level

controls of simulated creatures for use in computer

animations or virtual environments. To be useful in

interactive virtual environments, the motion of simu-

lated actors must be computed in real time (simula-

tion time must be less than wall clock time). Our im-

plementation of a single one-legged robot runs faster

than real time on a Silicon Graphics Indigo2 Com-

puter with a R4400 processor. We anticipate that with

improved simulation techniques and the continued in-

crease in workstation speed, a small herd of robots or

more human-like models will run in real time within a

few years.
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