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Abstract

This paper considers congestion-related performance
metrics in tandem networks of Stochastic Fluid Models
(SFMs), and derives their IPA gradient estimators with
respect to buffer sizes. Specifically, the performance met-
rics in question are the total loss volume and the cu-
mulative buffer workload (buffer contents), and the con-
trol parameter consists of buffer limits at both the node
where the performance is measured and at an upstream
node. The IPA estimators are unbiased and nonparamet-
ric, and hence can be computed on-line from field mea-
surements as well as off-line from simulation experiments.
The IPA derivatives are applied to packet-based networks,
where simulation results support the theoretical develop-
ments. Possible applications to congestion management
in telecommunications networks are discussed.

Key words. IPA, stochastic flow networks, telecom-
munications networks, congestion management.

1 Introduction

The deployment of Infinitesimal Perturbation Analysis
(IPA) to queuing networks has been fraught with tech-
nical difficulties, largely due to the fact that IPA gradi-
ents are generally biased. To get around this problem,
Stochastic Flow Models (SFM) recently have been con-
sidered as an alternative paradigm to queuing networks
for modeling and simulation of telecommunications net-
works [1, 7, 2, 8]. SFM networks offer two distinct ad-
vantages over their queuing-network counterparts: they
can be faster to simulate, and they give unbiased IPA gra-

�This work is supported in part by NSF under contract number ANI-
9977544 and DARPA under contract numbers N66002-00-1-8934 and
F30602-00-2-0556.

dient estimators for a large number of network configu-
rations, queuing disciplines, and performance functions
[6]. On-going research in IPA for SFM has been focused
on congestion-related performance measures as functions
of various operational parameters and traffic parameters,
like inflow rates, transmission bandwidth, and buffer lim-
its [1, 7, 2, 8]. The performance metrics in question were
either the total loss volume, or the cumulative buffer con-
tents (workload), over a given time interval. The derived
IPA gradient estimators have had an additional appealing
property: they were nonparametric, namely, computable
by formulas that are independent of the probability law
underlying the network. This suggests that they can be
deployed not only in off-line simulation, but also in on-
line provisioning, management and control.

Most of the results obtained so far pertain to single-
node systems with either a single-flow class [1, 7] or sev-
eral multi-flow classes [2]. Tandem networks have been
considered in [8], where the loss volume at a given node
is considered as a function of the buffer limit at an up-
stream node. We will summarize these results and sup-
plement them with the IPA derivative of the buffer work-
load at a node as function of the buffer limit at an up-
stream node. Since the derived IPA derivative estimators
are nonparametric, they can be used not only in SFM net-
works, but also in packet-based networks. We demon-
strate this point by presenting simulation results showing
the efficacy of the IPA derivatives in performance predic-
tion. We mention that, based on queuing-network models,
the IPA derivatives are biased and hence cannot be ade-
quately used in performance prediction. What we do is to
derive the IPA derivatives in the setting of fluid-flow net-
works, where they are unbiased and nonparametric, and
then apply them to queuing-based models. The results ex-
hibit good performance prediction.

Section 2 presents the basic SFM paradigm, and Sec-
tion 3 surveys the existing results derived for single-node
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Figure 1: The Basic SFM

systems. Section 4 presents the results for tandem net-
works, and Section 5 contains simulation results. Finally,
Section 6 concludes the paper and discusses some possi-
ble applications to network management and control.

2 The Basic SFM

The basic single-server, single-flow SFM is shown in Fig-
ure 1. It consists of a fluid server preceded by a storage
tank. Its inflow rate and service rate at time t are denoted
by �(t) and �(t), respectively, where the time t is as-
sumed confined to a given interval [0; T ]. The processes
f�(t)g and f�(t)g are stochastic processes defined over a
suitable common probability space, (
;F ; P ). Let c de-
note the buffer size, and suppose that c > 0. The inflow-
rate process f�(t)g and service-rate process f�(t)g de-
fine, together with the buffer size, much of the behavior
of the SFM, and hence are labeled the defining processes
(see [6]).

Associated with these defining processes are three de-
rived processes, namely the workload (buffer contents)
fx(t)g, overflow rate f(t)g, and outflow rate fÆ(t)g (see
Figure 1, where the dependence of the various processes
on t is implicit). The workload x(t) is the amount of fluid
in the buffer at time t, and it depends on the defining pro-
cesses via the following one-sided differential equation
(where �(t) is defined by �(t) = �(t) � �(t)):

dx(t)

dt+
=

8<
:

0; if x(t) = 0 and �(t) � 0;

0; if x(t) = c and �(t) � 0;

�(t); otherwise;

(2.1)

whose boundary condition is set to x(0) = 0 to simplify
the presentation. The overflow rate (t) is the spillover
rate due to full buffer, and it is defined by

(t) =

�
�(t); if x(t) = c and �(t) � 0;

0; otherwise:
(2.2)

Finally, the outflow rate Æ(t) is the fluid discharge rate
from the server, defined by

Æ(t) =

�
�(t); if x(t) > 0;

�(t); if x(t) = 0:
(2.3)

We will be concerned with two performance measures:
the loss volume, and the buffer workload. The loss vol-

ume, denoted by LT , is defined by

LT :=

Z T

0

(t)dt; (2.4)

and the buffer workload, denoted by QT , is defined by

QT =

Z T

0

x(t)dt: (2.5)

We mention that a number of congestion-related per-
formance measures of interest are related to LT and
QT , like the average loss rate T�1E[LT ] (E[�] de-
noting expectation), the loss probability defined by
E[(
R T
0
�(t)dt)�1LT ], and the expected delay (sojourn

time) which can be obtained from E[QT ] via a fluid vari-
ant of Little’s Law [3, 4].

We note that the processes f�(t)g and f�(t)g can have
fairly general form and, in particular, need not be statis-
tically independent. Their realizations, namely the func-
tions �(t) and �(t), may be discontinuous, and are only
required to be piecewise continuously differentiable.

3 IPA Derivatives: Single-Stage

Consider the loss volume and buffer workload in the ba-
sic SFM described in Section 2 as functions of the buffer
size (also called the buffer limit). In order to conform
to the notation commonly used in the literature on IPA,
we denote the buffer size by �; � = c. We observe
that the defining processes f�(t)g and f�(t)g are inde-
pendent of �, but the derived processes, fx(t)g, f(t)g,
and fÆ(t)g, certainly depend on �, and hence are denoted
by fx(�; t)g, f(�; t)g, and fÆ(�; t)g, respectively. This
dependence is apparent by Eqs. (2.1)–(2.3) which now
merit the notational modification of replacing x(t), (t),
and Æ(t) by x(�; t), (�; t), and Æ(�; t). Subsequently, the
performance measures of loss volume and buffer work-
load also depend on �. Respectively denoted by L(�) and
Q(�), they assume the following forms,

L(�) =

Z T

0

(�; t)dt; (3.1)

and

Q(�) =

Z T

0

x(�; t)dt; (3.2)

where an explicit notational dependence on T is omitted
for the sake of simplicity.

The IPA derivatives, described below, will be denoted
by L

0

(�) and Q
0

(�), respectively, where “prime” denotes
derivative with respect to �. To describe these derivatives,
we observe that a typical trajectory of the buffer workload,
x(�; t), switches between three states: empty, partial, and
full. In the empty state the buffer is empty and the server
discharges fluid “molecules” as soon as they arrive with-
out any buffer buildup; in the full state the buffer is full
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Figure 2: Buffer State Trajectory

and spillover occurs as a result; and in the partial state the
buffer is neither full nor empty. An empty period is a max-
imal subinterval of [0; T ] in which the buffer is empty; a
full period is a maximal subinterval of [0; T ] in which the
buffer is full; and a partial period is a supremal interval
in which the buffer is neither full nor empty. Since the
function x(�; t) is generally continuous in t for a fixed �,
it follows that empty periods and full periods are closed
intervals, whereas partial periods are open intervals in the
relative topology induced by [0; T ]. A buffering period,
also called busy period in [1], or nonempty period in [7],
is defined as a supremal subinterval of [0; T ] during which
the buffer is not empty. Observe that buffering periods are
unions of partial periods and full periods. A buffering pe-
riod is said to be lossy if some loss occurs during any time
in it, that is, it is the union of some partial periods and at
least one full period incurring loss.

Now fix � 2 �, and consider the state trajectory x(�; t).
Suppose there are K = K(�) lossy buffering periods in
the interval [0; T ]. Then the following propositions were
proved in [1, 7] under mild assumptions.

Proposition 3.1. L
0

(�) = �K, and this IPA derivative is
unbiased. 2

Regarding the IPA derivative Q
0

(�), let us denote
by vk;1 the first time the buffer becomes full in the k th

lossy buffering period, and let �k(�) be the last time-point
in that buffering period. The following proposition was
proved in [1, 7].

Proposition 3.2. The IPA derivative Q
0

(�) has the
following form,

Q
0

(�) =

KX
k=1

[�k(�)� vk;1(�)];

and it is unbiased. 2

We remark that these two IPA derivatives are clearly
nonparametric: L

0

(�) requires the counting of lossy
buffering periods in the interval [0; T ], and Q

0

(�) requires
identifying those time-points in which the buffer becomes
full or empty. To illustrate, consider Figure 2, where
L

0

(�) = �1 and Q
0

(�) = �1 � v1.

4 IPA Derivatives: Tandem

Consider the network shown in Figure 3, consisting of two
SFMs in tandem. Denoting them by SFM1 and SFM2,

SFM1 SFM 2
α 1 δ1

α 2 δ2=

Figure 3: Tandem Network
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Figure 4: Buffer State Trajectory in SFM2

we note that the inflow process to SFM2 consists of the
outflow process from SFM1. The various traffic pro-
cesses and other variables will be labeled with the sub-
script 1 or 2 according to the relevant SFM. Thus, we
see in Figure 3 that �2(�; t) = Æ1(�; t). The network is
assumed to operate over a fixed time horizon [0; T ], and
both SFMs are assumed to be empty at time t = 0.

Let us consider the loss volume and buffer workload at
SFM2 as functions of the buffer size at SFM1. Thus, de-
noting the above buffer limit by �, we define the functions
L(�) and Q(�), respectively, by

L(�) =

Z T

0

2(�; t)dt; (4.1)

and

Q(�) =

Z T

0

x2(�; t)dt: (4.2)

The dependence of these functions on � comes through the
inflow rate at SFM2, which is identical to the outflow rate
at SFM1. Indeed, by Eq. (2.3), �2(�; t) has the following
form,

�2(�; t) = Æ1(�; t) =

�
�1(t); if x1(�; t) > 0

�1(t); if x1(�; t) = 0:
(4.3)

Thus, � affects L and Q through the switchover points
(times) of �2(�; t) back and forth between �1(t) and
�1(t). A switch from �1(t) to �1(t) corresponds to the
event that the buffer at SFM1 ceases to be empty. Such
events generally depend on the defining processes �1(t)
and �1(t) but not on �, and hence the switching time is
locally independent of �. On the other hand, a switch in
the opposite direction, namely from �1(t) to �1(t), corre-
sponds to the end of a buffering period at SFM1. Such a
time-point generally depends on � as long as the buffering
period ending at SFM1 experienced some loss. Thus, an
infinitesimal perturbation in � is propagated from SFM1

to SFM2 only through the end points of lossy buffering
periods at SFM1 (this will become apparent from the
formulas for the IPA derivatives, presented later). Con-
sequently, we label such time-points as active switchover
points.
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Consider now a typical state trajectory in SFM2

(namely, the graph of x2(t) for t 2 [0; T ]; see Figure 4
as a visual aid). Suppose it has N lossy buffering periods,
denoted by Bn, n = 1; : : : ; N , in increasing order (in
Figure 4, N = 1). Let Bn start at the point �n, and let sn
be the last time-point in Bn when the buffer is full. The
IPA derivative L

0

(�) consists of the sum of all the con-
tributions of the various active switchover points. Under
mild assumptions, this contribution can be summarized as
follows.

� If an active switchover point is in one of the intervals
[�n; sn), then its contribution is 1.

� If an active switchover point is one of the points sn,
then its contribution is

�1(sn)� �2(sn)

�1(sn)� �1(sn)
:

� The contribution of all other active switchover points
is 0.

To formalize, let M denote the number of active
switchover points in the set

[Nn=1[�n; sn);

and define the index set � by

� = fn = 1; : : : ; N : sn is an active switchover pointg:

The following result was derived in [8] under mild
assumptions.

Proposition 4.1. L
0

(�) has the following form,

L
0

(�) = M +
X
n2�

�1(sn)� �2(sn)

�1(sn)� �1(sn)
; (4.4)

and this IPA derivative is unbiased. 2

It is apparent that the term M in the right-hand side of
Eq. (4.4) is nonparametric: all that its computation re-
quires is to determine where the active switchover points
fall in the state trajectory at SFM2. For example, con-
sider the state trajectory shown in Figure 4, and suppose
that the active switchover points are u1, u2 and u3. Then
the contributions of u1 and u2 are 1 each while the contri-
bution of u3 is 0, and therefore, L

0

(�) = 2. On the other
hand, the second term in the right-hand side of Eq. (4.4)
is nonparametric only to the extent that instantaneous flow
rates can be computed on-line. Each term in the sum was
shown in [8] to be in the interval [0; 1], and therefore it
may be possible to approximate it by 0.5. In fact, in our
simulation experiments we neglected this term outright
without apparent loss of precision.

Finally, consider the workload Q(�). As for L(�), the
active switchover points carry forward the perturbations
from SFM1 to SFM2. Let us denote by Pm, m =

1; : : : ;M , the partial periods at SFM2, in increasing or-
der, and suppose that each partial period Pm starts at a
point �m and ends at a point �m. That is, Pm = (�m; �m).
The contribution of each active switchover point to Q

0

(�)
can be summarized as follows.

� If an active switchover point u is in Pm, then its con-
tribution is �m � u.

� If �m is an active switchover point, then its contribu-
tion is

�2(�m)� �1(�m)

�1(�m)� �1(�m)
� [�m � �m]:

� The contribution of all other active switchover points
is 0.

Formally, let uk;m, k = 1; : : : ;Km denote the active
switchover points in the partial period Pm = (�m; �m),
and let 	 denote the following index set,

	 = fm = 1; : : : ;M : �m is an active switcho ver pointg:

Under mild assumption, the following n is in force (see
[9] for a proof).

Proposition 4.2. Q
0

(�) has the following form,

Q
0

(�) =

MX
m=1

MmX
k=1

[�m � uk;m] +

X
m2	

�2(�m)� �1(�m)

�1(�m)� �1(�m)
� [�m � �m]; (4.5)

and this IPA derivative is unbiased. 2

As an example, in figure 4 we have that Q
0

(�) = (�1 �
u1) + (�3 � u3).

5 Simulation Experiments

In this section, we describe the simulation experiments
we performed to validate that the IPA methodology can
be applied to packet based networks and make meaning-
ful predictions regarding the sensitivity of network per-
formance to small adjustments in network configuration
parameters. The simulation experiments were performed
using the popular and publicly available ns2 network sim-
ulator [5]. The ns2 simulator is a packet based, discrete
event simulation environment that models a wide variety
of network protocols and traffic characteristics.

Using the ns2 simulator, we created the network model
shown in Figure 5, consisting of the following elements.

1. n data sources, each of which is modeled as a bursty
on/off data generator with average rate �s bits per
second. The on and off periods for the generators
are sampled from a Pareto distribution with an � of
1:5. All results reported here are for n = 20, but we
obtained similar results for other values of n. The
value used for �s is discussed below.
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Figure 5: Simple Two–Stage Topology

2. A single–queue, single–server system S1 at stage 1.
The service rate at this queue is �1 bits per second,
and the buffer size is �1, specified in units of pack-
ets. For all experiments, �1 is 1 Megabit per second,
and the packet size is 512 bytes, a typical IP packet
size. The buffer size is varied from 10 packets to 50
packets as described below.

3. A single–queue, single–server system S2 at stage 2.
The service rate at this queue is �2 = 2�1. The
buffer size �2 is fixed at 20 packets for all experi-
ments.

4. A data generator modeling competing, background
traffic (cross traffic) into the stage 2 queue. The
background traffic rate �b, representing the data rate
in bits per second, is periodically sampled from the
uniform distribution on the interval [0:5�1 : : : 1:5�1].
Since the overall service rate at stage 2 is 2�1, and
the background traffic consumes an average of � 1,
the remaining bandwidth available for servicing traf-
fic from stage 1 is �1bitspersecond.

5. A multiple–queue, multiple–server system modeling
the traffic sinks. The service rate for each is large
relative to the amount of traffic offered, and thus little
queuing or delay is seen at this point.

6. The average data rate for each data source �s is de-
fined to be �1(�1=n). In other words, the average
aggregate traffic intensity offered at S1 is �1. For our
experiments, we used values for �1 of 0.85, 0.95, and
1.00.

7. The simulator was run for a total of 100 simulation
seconds, and the results analyzed as described below.

The purpose of this simulation experiment was to
demonstrate that, by using simple counting processes de-
scribed previously, we can make accurate predictions of
the affect of changing the buffer size �1 at stage 1 on the
packet loss rate at stage 2. The realization of the counting
process is defined by the following algorithm.

1. Initialize an accumulator to 0.

2. Initialize a temporary variable to 0.

3. Monitor the queue at stage 1 for an active switchover
point. At the time of each active switchover point
found in stage 1:

(a) If the queue at stage 2 is full, add 1 to the accu-
mulator.

(b) If the queue at stage 2 is in a buffering period,
add 1 to the temporary variable.

4. Monitor the queue at stage 2 for transitions from a
buffering period to a full period. On each such tran-
sition, clear the temporary variable to 0.

5. Monitor the queue at stage 2 for transitions from a
buffering period to a lossy period. On each such tran-
sition, add the temporary variable to the accumulator
and clear the temporary variable to 0.

At the completion of the simulation, the negative value
of the accumulator is the IPA sensitivity estimator of the
loss volume at stage 2 as function of the buffer size at
stage 1. In other words, increasing the buffer size �1 by
one packet should increase the number of lost packets at
stage 2 roughly by the number of packets specified in the
accumulator.

The simulation experiments described were executed
41 times, varying the queue limit �1 from 10 to 50 inclu-
sive. For each run k, the value of the accumulator Ak was
noted, along with the total number of packets lost (Lk) at
the stage 2 queue. The predicted value for Lk+1 for each
run is Lk+1 = Lk+Ak. The results from one set of exper-
iments with �1 = 0:95, are shown in Figure 6. The graph
shows the observed value of the number of lost packets for
each run, and the predicted values for the numbers of lost
packets. As can be seen, the observed values very closely
match the predictions, with the two graph lines essentially
on top of each other. The largest error is 7 packets out
of 1734 packets. For all �1 queue limits (buffer sizes)
greater than 24, the prediction error is 1 packet or less.
Figure 7 shows the same data presented as a percentage
error relative to the total number of packets dropped. As
can be seen, the percentage error is never more than 0.5%,
and typically less than 0.05%.

6 Conclusions and Future Research

We have demonstrated the efficacy of IPA derivative es-
timators for performance predictions in tandem queuing
networks. The performance functions of interest were the
loss volume and workload over a given time horizon. In
the setting of packet based models, the IPA estimators for
these performance functions are biased. Consequently,
we derived the IPA derivatives in the setting of stochas-
tic fluid models, where they were shown to be unbiased
and nonparametric, and then applied them to the discrete
setting of packet based networks. In some practical sit-
uations, the tandem configuration can be used to model
paths in general–topology networks, where, owing to the
nonparametric nature of the IPA derivatives, it would be
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possible to assess the impact of cross traffic by direct ob-
servations. In these situations it may be possible to use
the IPA derivative estimators in on-line congestion man-
agement and control.
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