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SUMMARY

In this thesis, we show results for some well-studied problems from learning theory

and combinatorial optimization.

Learning Parities under the Uniform Distribution: We study the learnability of

parities in the agnostic learning framework of Haussler [54] and Kearns et al. [65]. We

show that under the uniform distribution, agnostically learning parities reduces to learning

parities with random classification noise, commonly referred to as the noisy parity problem.

Together with the parity learning algorithm of Blum et al. [21], this gives the first nontrivial

algorithm for agnostic learning of parities. We use similar techniques to reduce learning

of two other fundamental concept classes under the uniform distribution to learning of

noisy parities. Namely, we show that learning of DNF expressions reduces to learning noisy

parities of just logarithmic number of variables and learning of k-juntas reduces to learning

noisy parities of k variables.

Agnostic Learning of Halfspaces: We give an essentially optimal hardness result for

agnostic learning of halfspaces over Qn. We show that for any constant ε finding a halfspace

that agrees with an unknown function on 1/2+ε fraction of examples is NP-hard even when

there exists a halfspace that agrees with the unknown function on 1−ε fraction of examples.

This significantly improves on a number of previous hardness results for this problem. We

extend the result to ε = 2−Ω(
√

log n) assuming NP * DTIME(2(log n)O(1)
).

Majorities of Halfspaces: We show that majorities of halfspaces are hard to PAC-learn

using any representation, based on the cryptographic assumption underlying the Ajtai-

Dwork cryptosystem. This also implies a hardness result for learning halfspaces with a high

rate of adversarial noise even if the learning algorithm can output any efficiently computable

hypothesis.

Max-Clique, Chromatic Number and Min-3Lin-Deletion: We prove an improved

ix



hardness of approximation result for two problems, namely, the problem of finding the size

of the largest clique in a graph (also referred to as the Max-Clique problem) and the problem

of finding the chromatic number of a graph. We show that for any constant γ > 0, there is

no polynomial time algorithm that approximates these problems within factor n/2(log n)3/4+γ

in an n vertex graph, assuming NP * BPTIME(2(log n)O(1)
). This improves the hardness

factor of n/2(log n)1−γ′
for some small (unspecified) constant γ′ > 0 shown by Khot [69]. Our

main idea is to show an improved hardness result for the Min-3Lin-Deletion problem.

An instance of Min-3Lin-Deletion is a system of linear equations modulo 2, where each

equation is over three variables. The objective is to find the minimum number of equa-

tions that need to be deleted so that the remaining system of equations has a satisfying

assignment. We show a hardness factor of 2Ω(
√

log n) for this problem, improving upon the

hardness factor of (log n)β shown by H̊astad [52], for some small (unspecified) constant

β > 0. The hardness results for Max-Clique and chromatic number are then obtained using

the reduction from Min-3Lin-Deletion as given by Khot [69].

Monotone Multilinear Boolean Circuits for Bipartite Perfect Matching: A mono-

tone Boolean circuit is said to be multilinear if for any AND gate in the circuit, the minimal

representation of the two input functions to the gate do not have any variable in com-

mon. We show that monotone multilinear Boolean circuits for computing bipartite perfect

matching require exponential size. In fact we prove a stronger result by characterizing the

structure of the smallest monotone multilinear Boolean circuits for the problem.

x



CHAPTER I

INTRODUCTION

1.1 Agnostic Learning of Parities and Halfspaces

Parities and halfspaces are among the most fundamental concept classes in learning theory.

Both of these concept classes are long-known to be learnable when examples given to the

learning algorithm are guaranteed to be consistent with a function from the concept class

[25, 83, 55]. Each example above is a pair 〈x, b〉 where b ∈ {0, 1} is called the label of

the point x. The examples labeled 1 are called positive examples and those labeled 0 are

called negative examples. Real data is rarely completely consistent with a simple concept

and therefore this strong assumption is a significant limitation of learning algorithms in

Valiant’s PAC learning model [104]. A general way to address this limitation was suggested

by Haussler [54] and Kearns et al. [65] who introduced the agnostic learning model. In

this model, informally, nothing is known about the process that generated the examples

and the learning algorithm is required to do nearly as well as is possible using hypotheses

from a given class. This corresponds to a common empirical approach when few or no

assumptions are made on the data and a fixed space of hypotheses is searched to find the

“best” approximation of the unknown function.

This model can also be thought of as a model of adversarial classification noise by

viewing the examples as coming from some function f∗ in the concept class C, but with

labels corrupted on an η∗ fraction of examples. It is worth noting that unlike in most other

models of noise, the learning algorithm is not required to recover the corrupted labels but

only to classify correctly “almost” (in the PAC sense) 1− η∗ fraction of examples.

1.1.1 Learning Parities Under the Uniform Distribution

Let x1, x2, . . . , xn be a set of binary variables. A parity function is the XOR of some subset

T = {xi1 , xi2 , . . . xit} of the set of variables. In the absence of noise, one can identify the

set T by running Gaussian elimination on the given examples. The presence of noise in
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the labels, however, leads to a number of challenging and important problems. We address

learning of parities in the presence of two types of noise: random classification noise (each

label is flipped with some fixed probability η randomly and independently) and adversarial

classification noise (that is the agnostic learning). When learning with respect to the uniform

distribution these problems are equivalent to decoding of random linear binary codes (from

random and adversarial errors, respectively) both of which are long-standing open problems

in coding theory [16, 85, 20]. Below we summarize the known results about these problems.

• Adversarial Noise: Without any restrictions on the distribution of examples the

problem of proper agnostic learning parities is known to be NP-hard (proper here

refers to the fact that the algorithm must produce a hypothesis from the same class

of functions against which its performance is compared). This follows easily from

NP-hardness of maximum-likelihood decoding of linear codes proved by Berlekamp et

al. [16] (a significantly stronger version of this result follows from a celebrated result

of H̊astad [52]). We are unaware of non-trivial algorithms for this problem under any

fixed distribution, prior to our work. The problem of learning parities with adversarial

noise under the uniform distribution is equivalent to finding a significant Fourier

coefficient of a Boolean function and related to the problem of decoding Hadamard

codes. If the learner can ask membership queries (or queries that allow the learner to

get the value of function f at any point), a celebrated result of Goldreich and Levin

[46] gives a polynomial time algorithm for this problem. Later algorithms were given

by Kushilevitz and Mansour [80], Levin [81], Bshouty et al. [28] and Feldman [38].

• Random Noise: The problem of learning parities in the presence of random noise, or

the noisy parity problem is a notorious open problem in computational learning theory.

Blum, Kalai and Wasserman [21] gave an algorithm for learning parity functions on n

variables in the presence of random noise in time 2O( n
log n

) for any constant noise rate

η. Their algorithm works for any distribution of examples. We will also consider a

natural restriction of this problem in which the set T is of size at most k. A brute-

force algorithm for this problem is to take O( 1
1−2ηk log n) samples and then find the

2



parity on k variables that best fits the data through exhaustive search in time O(nk).

While some improvements are possible if η is a sufficiently small constant, this seems

to be the best known algorithm for all constant η < 1
2 .

1.1.2 Agnostic Learning of Halfspaces

A halfspace is a linear threshold function over the input variables. More formally:

Definition 1.1.1 Given a set x1, x2, . . . , xn of variables, a halfspace is a function sign(∑
i∈[n] wixi − θ), where w1, . . . , wn, θ are real numbers, [n] denotes the set {1, 2, . . . , n} and

sign(a) is the function that is 1 if a ≥ 0 and 0 otherwise.

The problem of learning a halfspace is one of the oldest and well-studied problems in machine

learning, dating back to the work on Perceptrons in the 1950s [1, 96, 86]. If a halfspace

that classifies all the examples correctly does exist, one can find it in polynomial time using

efficient algorithms for linear programming. When the positive and negative examples

can be separated with a significant margin, simple online algorithms like Perceptron and

Winnow are usually used (which also seem to be robust to noise [43, 4]).

In practice, positive examples often cannot be separated from negative examples using

a linear threshold. Therefore much of the recent research in this area focuses on finding

provably good algorithms when the data is noisy or inconsistent [19, 8, 29, 62]. Halfspaces

are properly PAC learnable even in the presence of random noise: Blum et al. [19] showed

that a variant of the Perceptron algorithm can be used in this setting (see also [29]). They

also explicitly state that even a weak form of agnostic learning for halfspaces is an important

open problem.

In this thesis we address proper agnostic learning of halfspaces. Uniform convergence

results from Haussler [54] (see also Kearns et al. [65]) imply that learnability of halfspaces

in the agnostic model is equivalent to the ability to come up with a function in a concept

class C that has the optimal agreement rate with the given set of examples. It is known

that finding a halfspace with the best agreement rate is NP-hard [60, 56]. However, for

most practical purposes a hypothesis with any non-trivial (and not necessarily optimal)

performance would still be useful. These weaker forms of the agnostic learning of a function
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class are equivalent to a natural combinatorial approximation problem or, more precisely, to

the following two problems: approximately minimizing the disagreement rate and approxi-

mately maximizing the agreement rate (sometimes referred to as co-agnostic learning). We

refer to these optimization problems as HS-MD and HS-MA respectively.

The HS-MA problem (maximizing agreements with a halfspace) was first considered

by Johnson and Preparata [60] who proved that finding a halfspace that has the optimal

agreement rate with the given set of examples over Zn is NP-hard (see also Hemisphere

problem in [44]). In the context of agnostic learning Höffgen et al. [56] showed that the

same is true for halfspaces over {0, 1}n. A number of results are known on hardness of

approximating HS-MA. Amaldi and Kann [5], Ben-David et al. [15], and Bshouty and

Burroughs [26] proved that HS-MA is NP-hard to approximate within factors 262
261 , 418

415 and

85
84 respectively.

The results of Höffgen et al. imply that approximating HS-MD, the problem of minimiz-

ing disagreement rate of a halfspace, within c log n is NP-hard for some constant c. Further

Arora et al. [8] improved this factor to 2log0.5−δ n under the stronger complexity assumption

NP 6⊆ DTIME(2(log n)O(1)
).

1.2 Max-Clique and Chromatic Number

A clique in a graph is a subset of vertices such that any pair of vertices in the subset is

connected by an edge. Max-Clique is the problem of finding the size of the largest clique

in a graph. It has been a pivotal problem in the field of inapproximability, leading to the

development of many important tools in this field.

The best known approximation algorithm for Max-Clique is due to Feige [36]. The algo-

rithm achieves an approximation factor of O(n(log log n)2

log3 n
), where n is the number of vertices

in the input graph. There has been a long series of results showing hardness of approximat-

ing Max-Clique starting with Feige et al. [33] and leading up to the result of Khot [69] (see

Table 4.1.1.1 for details). Khot showed that assuming NP * ZPTIME(2(log n)O(1)
), Max-

Clique cannot be approximated within a factor of n

2(log n)1−γ′ , for some small (unspecified)

constant γ′ > 0.
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The chromatic number of a graph G is the minimum number of colors required to color

the vertices of G such that for any edge, its end-points receive different colors. For this

problem too, there has been a series of hardness of approximation results starting with

Feige and Kilian [35] and leading to Khot [69]. Khot showed a hardness factor of n

2(log n)1−γ′

for some constant γ′ > 0, assuming NP * ZPTIME(2(log n)O(1)
).

1.3 Monotone Boolean Circuits for Bipartite Perfect Matching (BPM)

A monotone circuit is a Boolean circuit with only AND and OR gates. Let BPM denote

the problem of finding whether a bipartite graph has a perfect matching. A Boolean circuit

for BPM will have input gates for each pair of vertices of the bipartite graph and the gate

is set to 1 if the edge is present and 0 otherwise. The circuit must output 1 if and only if

there is a matching in the graph. Razborov [95] showed a super-polynomial lower bound

on the size of monotone circuits for this problem, thus establishing a super-polynomial gap

between the power of general Boolean circuits (that also have NOT gates) and monotone

circuits. Tardos [102] subsequently showed that there are other polynomial-time computable

functions for which the gap is exponential. It has been shown by Raz and Wigderson [94]

that monotone circuits for perfect matching require linear depth. The upper bound on size

of arithmetic circuits for permanent in Jerrum and Snir [59] yields a 2O(n) size monotone

Boolean circuit for BPM directly (replace the product and plus gates with AND and OR

gates respectively). The depth of these circuits is Ω(n log n). But it is also possible to

construct linear depth monotone circuits for BPM (see Section 5.2). Thus although we

know the tight (up to a constant) bound on the depth of monotone circuits for BPM, the

question of whether the correct bound on the size of monotone circuits for this problem is

exponential or only super-polynomial remains an interesting open problem.

1.4 Contributions of this Thesis

1.4.1 Learning Parities under the Uniform Distribution

In this thesis, we reduce a number of fundamental open problems on learning under the

uniform distribution to learning noisy parities under the uniform distribution, establishing

the central role of noisy parities in this model of learning.
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1.4.1.1 Learning Parities with Adversarial Noise

We show that under the uniform distribution, learning parities with adversarial noise reduces

to learning parities with random noise. In particular, our reduction and the result of Blum

et al. [21] imply the first non-trivial algorithm for learning parities with adversarial noise

under the uniform distribution.

Theorem 1.4.1 For any constant η < 1/2, parities are learnable under the uniform dis-

tribution with adversarial noise of rate η in time O(2
n

log n ).

Equivalently, this gives the first non-trivial algorithm for agnostically learning parities.

The restriction on the noise rate in the algorithm of Blum et al. [21] translates into a

restriction on the optimal agreement rate of the unknown function with a parity (namely

it has to be a constant greater than 1/2).

Our main technical contribution is to show that an algorithm for learning noisy parities

gives an algorithm that finds significant Fourier coefficients (i.e., correlated parities) of a

function from random samples. Thus an algorithm for learning noisy parities gives an ana-

logue of the Goldreich-Levin/Kushilevitz-Mansour algorithm for the uniform distribution,

but without membership queries. This result is proved using Fourier analysis.

Subsequent to our work, Kalai et al. [61] gave an algorithm for agnostically learning

parities under any distribution that runs in time 2O(n/ log n). However, their algorithm does

not output a parity as a hypothesis. They suggest a alternate definition for weak agnostic

learning and show that a weak learning algorithm under this definition can be boosted to

obtain an algorithm that outputs a hypothesis which is very close to the best possible. They

also give a (non-proper) weak agnostic learning algorithm for parities in this model. These

two results together imply their result for agnostically learning parities under an arbitrary

distribution.

1.4.1.2 Learning DNF Formulae

Learning of DNF expressions from random examples is a famous open problem originating

from Valiant’s seminal paper [104] on PAC learning. In this problem we are given access to

6



examples of a Boolean function f on points randomly chosen with respect to distribution

D , and ε > 0. The goal is to find a hypothesis that ε-approximates f with respect to D in

time polynomial in n, s = DNF-size(f) and 1/ε, where DNF-size(f) is the number of terms

in the DNF formula for f with the minimum number of terms. The best known algorithm

for learning DNFs in this model was given by Klivans and Servedio [75] and runs in time

2Õ(n1/3).

For learning DNFs under the uniform distribution a simple quasi-polynomial algo-

rithm was given by Verbeurgt [107]. His algorithm essentially collects all the terms of

size log (s/ε) + O(1) that are consistent with the target function, i.e., do not accept neg-

ative points and runs in time O(nlog (s/ε)). We are unaware of an algorithm improving on

this approach. Jackson [58] proved that DNFs are learnable under the uniform distribution

if the learning algorithm is allowed to ask membership queries. This breakthrough and in-

fluential result gives essentially the only known approach to learning of unrestricted DNFs

in polynomial time.

We show that learning of DNF expressions reduces to learning parities of O(log (s/ε))

variables with noise rate η = 1/2− Õ(ε/s) under the uniform distribution.

Theorem 1.4.2 Let A be an algorithm that learns parities of k variables over {0, 1}n for

every noise rate η < 1/2 in time T (n, k, 1
1−2η ) using at most S(n, k, 1

1−2η ) examples. Then

there exists an algorithm that learns DNF expressions of size s in time Õ( s4

ε2
·T (n, log B,B) ·

S(n, log B,B)2), where B = Õ(s/ε).

1.4.1.3 Learning k-juntas

A Boolean function is a k-junta if it depends only on k out of its n input variables. Learning

of k-juntas was proposed by Blum and Langley [23, 17] as a clean formulation of the problem

of efficient learning in the presence of irrelevant features. Moreover, for k = O(log n), a k-

junta is a special case of a polynomial-size decision tree or a DNF expression. Thus, learning

juntas is a first step toward learning polynomial-size decision trees and DNFs under the

uniform distribution. A brute force approach to this problem would be to take O(k log n)
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samples and then run through all nk subsets of possible relevant variables. The first non-

trivial algorithm was given only recently by Mossel et al. [87] and runs in time roughly

O(n0.7k). Their algorithm relies on new analysis of the Fourier transform of juntas. However,

even the question of whether one can learn k-juntas in polynomial time for k = ω(1) still

remains open (see Blum [18]).

We give a stronger and simpler reduction from the problem of learning k-juntas to

learning noisy parities of size k.

Theorem 1.4.3 Let A be an algorithm that learns parities of k variables on {0, 1}n for

every noise rate η < 1/2 in time T (n, k, 1
1−2η ). Then there exists an algorithm that learns

k-juntas in time O(22kk · T (n, k, 2k−1)).

This reduction also applies to learning k-juntas with random noise. A parity of k

variables is a special case of a k-junta. Thus we can reduce the noisy junta problem to a

special case, at the cost of an increase in the noise level. By suitable modifications, the

reduction from DNFs can also be made resilient to random noise (see Feldman et al. [40]

for details).

Even though at this stage our reductions for DNFs and juntas do not yield new al-

gorithms they establish connections between well-studied open problems. Our reductions

allow one to focus on functions with known and simple structure viz parities, in exchange

for having to deal with random noise. They show that a non-trivial algorithm for learn-

ing noisy parities of O(log n) variables will help make progress on a number of important

questions regarding learning under the uniform distribution.

The reductions to learning noisy parity are described in Chapter 2 and are based on

joint work with Vitaly Feldman, Parikshit Gopalan and Subhash Khot [40].

1.4.2 Hardness of Proper Agnostic Learning of Halfspaces

In this thesis we give essentially optimal hardness results for agnostic learning of halfspaces.

Our result applies to the standard agnostic learning model in which the learning algorithm

outputs a hypothesis from the same class as the class against which its performance is
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measured. By analogy to learning in the PAC model this restriction is often referred to as

proper agnostic learning.

We give the optimal (up to the second order terms) hardness result for HS-MA with

examples over rationals. Namely we show that even if there is a halfspace that correctly

classifies 1 − ε fraction of the input, it is hard to find a halfspace that is correct on 1
2 +

ε fraction of the inputs for any ε > 0 assuming P 6= NP. Under stronger complexity

assumptions, we can take ε to be as small as 2−
√

Ω(log n) where n is the size of the input.

Theorem 1.4.4 If P 6= NP then for any constant ε > 0 no polynomial time algorithm can

distinguish between the following cases of the halfspace problem over Qn:

• 1− ε fraction of the points can be correctly classified by some halfspace.

• No more than 1/2+ε fraction of the points can be correctly classified by any halfspace.

Moreover if we assume that NP * DTIME(2(log n)O(1)
) we can take ε = 2−Ω(

√
log n).

Thus HS-MA is NP-hard to approximate within factor 2 − ε for any constant ε > 0.

This result implies that even weak agnostic learning of halfspaces is a hard problem. In an

independent work Guruswami and Raghavendra [47] showed that an analogous hardness

result is true even for halfspaces over points in {0, 1}n.

The crux of our proof is to first show a hardness result for solving systems of linear

equations over the reals. Equations are easier to work with than inequalities since they

admit certain tensoring and boosting operations which can be used for gap amplification.

We show that given a system where there is a solution satisfying a 1 − ε fraction of the

equations, it is hard to find a solution satisfying even an ε fraction. We then reduce this

problem to the halfspace problem.

We note that the approximability of systems of linear equations over various fields is

a well-studied problem. H̊astad [52] showed that no non-trivial approximation is possible

over Z2. Similar results are known for equations over Zp and finite groups [52, 57]. How-

ever, to our knowledge this is the first optimal hardness result for equations over Q. A

natural question raised by our work is whether a similar hardness result holds for systems
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of equations over Q, where each equation involves only constantly many variables. Such a

result was proved recently by Guruswami and Raghavendra [48].

1.4.2.1 Hardness of Representation Independent Learning

As opposed to proper-learning results, one could hope to show that a certain concept class is

hard to PAC-learn, irrespective of the hypothesis representation, under some cryptographic

assumptions [67]. We show such a hardness result for threshold circuits of depth 2. Since

a single threshold gate is just a halfspace, these are thresholds of halfspaces. Such circuits

correspond to two-level neural networks used in machine learning. They also capture several

important concept classes: a convex polytope is an intersection of halfspaces in Rn, whereas

a DNF is a union of halfspaces over {0, 1}n.

There are numerous negative results known for proper learning of such concepts [106, 3],

and for learning in the Statistical Query model [77]. Based on certain cryptographic as-

sumptions, Kearns and Valiant [66] showed that constant depth threshold circuits cannot

be learned over a certain distribution using any representation. Kharitonov [68] strength-

ened this result by allowing membership queries, and using the uniform distribution. We

obtain a hardness result for threshold circuits of depth 2 independent of the hypothesis rep-

resentation, based on the cryptographic assumption used in the Ajtai-Dwork lattice-based

cryptosystem [2].

Theorem 1.4.5 Assuming the security of the Ajtai-Dwork cryptosystem, there is no weak

PAC-learning algorithm for the concept class of (unweighted) Threshold circuits of depth 2.

To our knowledge, this is the first such result for depth-2 circuits of any kind. This result

follows the general outline for proving inherent unpredictability of [66]. We show that the

decryption of a modification of the Ajtai-Dwork cryptosystem [2] by Goldreich et al. [45] can

be done by a depth-2 threshold circuit. This result was obtained independently by Klivans

and Sherstov [76]. Known algorithms for learning intersections of k-halfspaces typically

have running time exponential in k [22, 106, 73]. Our result suggests this is unavoidable. A

recent result of Khot and Saket [72] gives another evidence. They show that for any number
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l, it is hard to weakly PAC-learning the intersection of two halfspaces using any function of

of l linear thresholds.

Finally, using the Discriminator Lemma of Hajnal et al. [49], we show that Theorem

1.4.5 implies the hardness of learning halfspaces with adversarial noise of high rate even

when the learning algorithm is allowed to output a hypothesis of its choice.

Theorem 1.4.6 Assuming the security of the Ajtai-Dwork cryptosystem, there exists a

polynomial p(n) such that halfspaces (in fact majorities) are not weakly learnable with ad-

versarial noise of rate 1
2 −

1
p(n) .

This result is incomparable to Theorem 1.4.4, since one hand it is independent of the

representation of the hypothesis. On the other hand, it applies only when the noise rate is

very close to 1
2 .

The hardness results for learning halfspaces mentioned here are described in Chapter 3

and are based on joint work with Vitaly Feldman, Parikshit Gopalan and Subhash Khot

[40, 39].

1.4.3 Max-Clique and Chromatic Number

We believe that it is an important open problem whether inapproximability of Max-Clique

can be improved to n
2O(

√
log n)

, or even n/polylog(n) (see Section 4.1.1.2). We show the

following inapproximability results for Max-Clique and chromatic number, taking us closer

to that goal.

Theorem 1.4.7 Assuming NP * BPTIME(2(log n)O(1)
), for any constant γ > 0, Max-

Clique on an n vertex graph cannot be approximated within a factor better than n/2(log n)3/4+γ

by any probabilistic polynomial time algorithm.

Theorem 1.4.8 Assuming NP * ZPTIME(2(log n)O(1)
), for any constant γ > 0, chro-

matic number of an n vertex graph cannot be approximated within a factor better than

n/2(log n)3/4+γ
by any probabilistic polynomial time algorithm.

Our main idea is to show an improved hardness factor for the Min-3Lin-Deletion prob-

lem. In the Min-3Lin-Deletion problem we are given a system A of linear equations modulo
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2 where each equation is over exactly three variables. The goal is to find the smallest

number of equations that must be deleted so that the remaining system has a satisfying

assignment. We denote by Opt(A) the smallest fraction of equations that must be deleted

to accomplish this. The following result was shown by H̊astad.

Lemma 1.4.9 ([52]) For any constants ε, δ > 0, there exists a polynomial time algorithm

A1 that when given a 3SAT formula φ of size n produces a Min-3Lin-Deletion instance A1

of size N1 = nO(1) such that:

• (Yes Case:) If φ is satisfiable, then there exists an assignment that satisfies all but at

most ε fraction of the equations. That is, Opt(A1) ≤ ε.

• (No Case:) If φ is not satisfiable, then no assignment satisfies more than 1/2 + δ

fraction of the equations. That is, Opt(A1) ≥ 1/2− δ.

H̊astad also showed that the above result holds with ε = δ = (log N1)−β for some (tiny)

constant β > 0 if N1 and the running time of the reduction are allowed to be slightly

super-polynomial in n. In particular Min-3Lin-Deletion-((log N1)−β, 0.4) is hard. This is

the starting point for Khot’s [69] hardness results for Max-Clique and chromatic number.

Our main contribution is the following improved hardness result for Min-3Lin-Deletion.

This in turn implies improved hardness results for Max-Clique and chromatic number:

Theorem 1.4.10 There exists a 2O(log2 N1) time algorithm A that when given a Min-3Lin-

Deletion instance A1 of size N1 outputs a 7-regular Min-3Lin-Deletion instance A of size

N = 2O(log2 N1) such that:

• (Yes Case:) If Opt(A1) ≤ 0.1, then Opt(A) ≤ 2−Ω(
√

log N).

• (No Case:) If Opt(A1) ≥ 0.4, then Opt(A) ≥ Ω(log−3 N).

The two operations tensoring and boosting we used to show this result also proved

useful for showing hardness of approximating equations over rationals, and in turn yields

the hardness result for maximizing agreement with a halfspace (Theorem 1.4.4).

The hardness results for Max-Clique and chromatic number are explained in detail in

Chapter 4 and are based on joint work with Subhash Khot [70]
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1.4.4 Monotone Multilinear Boolean Circuits for BPM

Since attempts to show an exponential lower bound on the size of monotone circuits for

bipartite perfect matching (BPM) have not succeeded, it seems worthwhile to check if such

a bound can be shown for restricted monotone circuits. A successful approach in the case

of arithmetic circuits has been to consider a restriction called multilinearity first defined by

Nisan and Wigderson [89]. We consider an analog of multilinear arithmetic circuits in the

Boolean setting.

Definition 1.4.11 We say a variable influences a gate if there is an assignment to all the

other variables such that changing its value from 0 to 1 changes the output of the gate. We

say a Boolean circuit is multilinear if at any AND gate with input gates g1 and g2, the sets

of variables that influence g1 and g2 do not have any variable in common.

This restriction is a bit weaker than that considered in Sengupta and Venkateswaran [99] and

Krieger [79]. There the two inputs of any AND gate must be computed from disjoint sets of

variables (i.e., every variable must be reachable from at most one of its two input gates). We

call such circuits constrained multilinear. As stated in Krieger [79], constrained multilinear

Boolean circuits generalize non-deterministic read-once branching programs and ordered

binary decision diagrams. They are also capable of computing many functions efficiently

(for example, for the threshold function
∑n

i=1 xi ≥ k, the DNF representation has
(
n
k

)
size,

but there are multilinear Boolean circuits of size O(nk)). We show that this is not the case

for BPM.

Theorem 1.4.12 Monotone multilinear Boolean circuits for BPM require exponential size.

Krieger [79] showed that a constrained multilinear Boolean circuit of the smallest size for a

monotone function is also monotone. So the above theorem also shows that all constrained

multilinear Boolean circuits for BPM require exponential size.

The proof of Theorem 1.4.12 is given in Chapter 5 and is based on joint work with H.

Venkateswaran [91].
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CHAPTER II

LEARNING PARITIES WITH NOISE

2.1 Introduction

In this chapter, we describe our reductions from learning of parities with adversarial noise

to learning of parities with random noise. We will also show applications of this reduction to

learning of DNFs and juntas. We describe the main technical component of our reductions

in Section 2.3: an algorithm that using an algorithm for learning noisy parities, finds a

heavy Fourier coefficient of a Boolean function if one exists. Following Jackson [58], we call

such an algorithm a weak parity algorithm.

The high-level idea of the reduction is to modify the Fourier spectrum of a function f

so that it is “almost” concentrated at a single point. For this, we introduce the notion of

a probabilistic oracle for real-valued functions f : {0, 1}n → [−1, 1]. We then present a

transformation on oracles that allows us to clear the Fourier coefficients of f not belonging

to a particular subspace of {0, 1}n. Using this operation we show that one can simulate an

oracle which is close (in statistical distance) to a noisy parity.

2.2 Preliminaries

2.2.1 Learning Models

The learning models discussed in this work are based on Valiant’s well-known PAC model

[104]. In this model, for a concept c : X −→ {0, 1} and distribution D over X, an example

oracle EX(c,D) is an oracle that upon request returns an example 〈x, c(x)〉 where x is

chosen randomly with respect to D . For ε ≥ 0 we say that function g ε-approximates a

function f with respect to distribution D if PrD [f(x) = g(x)] ≥ 1− ε.

Definition 2.2.1 For a concept class C, we say that an algorithm A PAC learns C, if for

every ε > 0, c ∈ C, and distribution D over X, A given access to EX(c,D) outputs, with

probability at least 1/2, a hypothesis h that ε-approximates c. The learning algorithm is

efficient if it runs in time polynomial in 1/ε, and the size s of the learning problem where
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the size of the learning problem is equal to the length of an input to c plus the description

length of c in the representation associated with C. An algorithm is said to weakly learn C

if it produces a hypothesis h that (1
2 −

1
p(s))-approximates (or weakly approximates) c for

some polynomial p.

The random classification noise model was introduced by Angluin and Laird [6]. In

this model for any η ≤ 1/2 called the noise rate the regular example oracle EX(c,D) is

replaced with the noisy oracle EXη(c,D). On each call, EXη(c,D), draws x according to

D , and returns 〈x, c(x)〉 with probability 1− η and 〈x,¬c(x)〉 having the wrong label with

probability η. When η approaches 1/2 the label of the corrupted example approaches the

result of a random coin flip, and therefore the running time of algorithms in this model is

allowed to polynomially depend on 1
1−2η .

2.2.1.1 Agnostic Learning Model

The agnostic PAC learning model was introduced by Haussler [54] and Kearns et al. [65] in

order to relax the assumption that examples are labeled by a concept from a specific concept

class. In this model no assumptions are made on the function that labels the examples.

In other words, the learning algorithm has no prior beliefs about the target concept (and

hence the name of the model). The goal of the agnostic learning algorithm for a concept

class C is to produce a hypothesis h ∈ C whose error on the target concept is close to the

best possible by a concept from C.

Formally, for two Boolean functions f and h and a distribution D over the domain, we

define ∆D(f, h) = PrD [f 6= h]. Similarly, for a concept class C and a function f , define

∆D(f, C) = infh∈C{∆D(f, h)}. Kearns et al. [65] define the agnostic PAC learning model as

follows.

Definition 2.2.2 An algorithm A agnostically (PAC) learns a concept class C if for every

ε > 0, a Boolean function f and distribution D over X, A when given access to EX(f,D)

outputs, with probability at least 1/2, a hypothesis h ∈ C such that ∆D(f, h) ≤ ∆D(f, C)+ ε.

As before, the learning algorithm is efficient if it runs in time polynomial in s and 1/ε.
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The agnostic learning model can also be thought of as a model of adversarial noise. By

definition, a Boolean function f differs from some function in c ∈ C on ∆D(f, C) fraction of

the domain (the fraction is measured relative to distribution D). Therefore f can be thought

of as c corrupted by noise of rate ∆D(f, C). Unlike in the random classification noise model

the points on which a concept can be corrupted are unrestricted and therefore we refer to

it as adversarial classification noise. This noise model is also different from the model of

malicious errors defined by Valiant [105] (see also Kearns and Li [64]) where the noise can

affect both the label and the point itself, and thus possibly change the distribution of the

data-points. Note that an agnostic learning algorithm will not necessarily find a hypothesis

that approximates c – any other function in C that differs from f on at most ∆D(f, C) + ε

fraction of the domain is acceptable. This way to view the agnostic learning is convenient

when the performance of a learning algorithm depends on the rate of disagreement (that is

the noise rate).

Besides algorithms with this strong agnostic guarantee it is natural and potentially useful

to consider algorithms that output hypotheses with weaker yet non-trivial guarantees (e.g.

having error of at most twice the optimum or within an additive constant of the optimum).

We refer to such agnostic learning as weakly agnostic (along with a specific bound on the

error when concreteness is required).

2.2.2 Fourier Transform

Our reduction uses Fourier-analytic techniques which were first introduced to computational

learning theory by Linial et al. [82]. In this context we view Boolean functions as functions

f : {0, 1}n → {−1, 1}. All probabilities and expectations are taken with respect to the

uniform distribution unless specifically stated otherwise. For a Boolean vector a ∈ {0, 1}n

let χa(x) = (−1)a·x, where ‘·’ denotes an inner product modulo 2, and let weight(a) denote

the Hamming weight of a.

We define an inner product of two real-valued functions over {0, 1}n to be 〈f, g〉 =

Ex[f(x)g(x)]. The technique is based on the fact that the set of all parity functions

{χa(x)}a∈{0,1}n forms an orthonormal basis of the linear space of real-valued functions
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over {0, 1}n with the above inner product. This fact implies that any real-valued func-

tion f over {0, 1}n can be uniquely represented as a linear combination of parities, that

is f(x) =
∑

a∈{0,1}n f̂(a)χa(x). The coefficient f̂(a) is called Fourier coefficient of f on a

and equals Ex[f(x)χa(x)]; a is called the index and weight(a) is called the degree of f̂(a).

We say that a Fourier coefficient f̂(a) is θ-heavy if |f̂(a)| ≥ θ. Let L2(f) = Ex[(f(x))2]1/2.

Parseval’s identity states that

(L2(f))2 = Ex[(f(x))2] =
∑

a

f̂2(a).

For a Boolean function f , this implies that L2(f) = 1.

2.3 Finding Heavy Fourier Coefficients

Given the example oracle for a Boolean function f the main idea of the reduction is to

transform this oracle into an oracle for a noisy parity χa such that f̂(a) is a heavy Fourier

coefficient of f . First we define probabilistic oracles for real-valued functions in the range

[−1, 1].

Definition 2.3.1 For any function f : {0, 1}n → [−1, 1] a probabilistic oracle O(f) is the

oracle that produces samples 〈x, b〉, where x is chosen randomly and uniformly from {0, 1}n

and b ∈ {−1,+1} is a random variable with expectation f(x).

For a Boolean f this defines exactly EX(f,U ), where U is the uniform distribution.

Random classification noise can also be easily described in this formalism. For θ ∈ [−1, 1],

and f : {0, 1}n → {−1, 1}, define θf : {0, 1}n → [−1, 1] as θf(x) = θ · f(x). A simple

calculation shows that O(θf) is just an oracle for f(x) with random noise of rate η =

1/2− θ/2. Our next observation is that if the Fourier spectra of f and g are close to each

other, then their oracles are close in statistical distance.

Claim 2.3.2 The statistical distance between the outputs of O(f) and O(g) is upper-bounded

by L2(f − g).

Proof: For a given x, the probability that O(f) outputs 〈x, 1〉 is (1 + f(x))/2 and the

probability that it outputs 〈x,−1〉 is (1−f(x))/2. Therefore the statistical distance between

O(f) and O(g) equals Ex [|f(x)− g(x)|]. By Cauchy-Schwartz inequality,
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(Ex [|f(x)− g(x)|])2 ≤ Ex

[
(f(x)− g(x))2

]
and therefore the statistical distance is upper bounded by L2(f − g). �

We now describe the main transformation on a probabilistic oracle that will be used in

our reductions. For a function f : {0, 1}n → [−1, 1] and a matrix A ∈ {0, 1}m×n define an

A-projection of f to be

fA(x) =
∑

a∈{0,1}n,Aa=1m

f̂(a)χa(x),

where the product Aa is performed mod 2.

Lemma 2.3.3 For the function fA defined above:

1. fA(x) = Ep∈{0,1}m [f(x⊕AT p)χ1m(p)].

2. Given access to the oracle O(f) one can simulate the oracle O(fA).

Proof: Note that for every a ∈ {0, 1}n and p ∈ {0, 1}m,

χa(AT p) = (−1)aT ·(AT p) = (−1)(Aa)T ·p = χAa(p)

Thus if Aa = 1m then Ep[χa(AT p)χ1m(p)] = Ep[χAa⊕1m(p)] = 1 otherwise it is 0. Now let

gA(x) = Ep∈{0,1}m [f(x⊕AT p)χ1m(p)].

We show that gA is the same as the function fA by computing its Fourier coefficients.

ĝA(a) = Ex[Ep[f(x⊕AT p)χ1m(p)χa(x)]]

= Ep[Ex[f(x⊕AT p)χa(x)]χ1m(p)]

= Ep[f̂(a)χa(AT p)χ1m(p)]

= f̂(a)Ep[χa(AT p)χ1m(p)]

Therefore ĝA(a) = f̂(a) if Aa = 1m and ĝA(a) = 0 otherwise. This is exactly the definition

of fA(x).

For Part 2, we sample 〈x, b〉, choose random p ∈ {0, 1}m and return 〈x⊕AT p, b ·χ1m(p)〉.

The correctness follows from Part 1 of the Lemma. �
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We will use Lemma 2.3.3 to project f in a way that separates one of its significant

Fourier coefficients from the rest. We will do this by choosing A to be a random m × n

matrix for appropriate choice of m.

Lemma 2.3.4 Let f : {0, 1}n → [−1, 1] be any function, and let s 6= 0n be any vector.

Choose A randomly and uniformly from {0, 1}m×n. With probability at least 2−(m+1), the

following conditions hold:

f̂A(s) = f̂(s) (1)∑
a∈{0,1}n\{s}

f̂A
2
(a) ≤ L2

2(f)2−m+1 (2)

Proof: Event (1) holds if As = 1m, which happens with probability 2−m.

For every a ∈ {0, 1}n \ {s, 0n} and a randomly uniformly chosen vector v ∈ {0, 1}n,

Pr
v

[v · a = 1 | v · s = 1] = 1/2

Therefore, Pr
A

[Aa = 1m | As = 1m] = 2−m

Whereas for a = 0n, PrA[Aa = 1m] = 0. Hence

EA

 ∑
a∈{0,1}n\{s}

f̂A
2
(a)

∣∣∣∣∣∣ As = 1m


≤

∑
a∈{0,1}n\{s}

2−mf̂2(a) ≤ 2−mL2
2(f).

By Markov’s inequality,

Pr
A

 ∑
a∈{0,1}n\{s}

f̂A
2
(a) ≥ 2−m+1L2

2(f)

∣∣∣∣∣∣As = 1m


≤ 1/2.

Thus conditioned on event (1), event (2) happens with probability at least 1/2. So both

events happen with probability at least 2−(m+1). �

Finally, we show that using this transformation, one can use an algorithm for learning

noisy parities to get a weak parity algorithm.
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Theorem 2.3.5 Let A be an algorithm that learns parities of k variables over {0, 1}n for

every noise rate η < 1/2 in time T (n, k, 1
1−2η ) using at most S(n, k, 1

1−2η ) examples. Then

there exists an algorithm WP-R that for every function f : {0, 1}n → [−1, 1] that has a θ-

heavy Fourier coefficient s of degree at most k, given access to O(f), with probability at

least 1/2, finds s. Furthermore, WP-R runs in time O(T (n, k, 1/θ) · S2(n, k, 1/θ)) and uses

O(S3(n, k, 1/θ)) random examples.

Proof: Let S = S(n, k, 1/θ). The algorithm WP-R proceeds in two steps:

1. Let m = d2 log Se + 3. Let A ∈ {0, 1}m×n be a randomly chosen matrix and O(fA)

be the oracle for A-projection of f . Run the algorithm A on O(fA).

2. If A stops in T (n, k, 1/θ) steps and outputs r with weight(r) ≤ k, check that r is at

least θ-heavy and if so, output it.

Let s be a θ-heavy Fourier coefficient of degree at most k. Our goal is to simulate an

oracle for a function that is close to a noisy version of χs(x).

By Lemma 2.3.4, in Step 1, with probability at least 2−m−1 , we create a function fA

such that |f̂A(s)| ≥ θ and

∑
a 6=s

f̂A
2
(a) ≤ 2−m+1L2

2(f) ≤ L2
2(f)
4S2

≤ 1
4S2

.

By Claim 2.3.2, the statistical distance between the oracle O(fA) and oracle O(f̂A(s)χs(x))

is bounded by

L2(fA − f̂A(s)χs(x)) =

∑
a 6=s

(f̂A
2
(a))

1/2

≤ 1
2S

,

hence this distance is small. Since A uses at most S samples, with probability at least

1
2 , it will not notice the difference between the two oracles. But O(f̂A(s)χs(x)) is exactly

the noisy parity χs with noise rate 1/2 − f̂A/2 . If f̂A ≥ θ we will get a parity with

η ≤ 1/2− θ/2 < 1/2 and otherwise we will get a negation of χs with η ≤ 1/2− θ/2. Hence

we get (1 − 2η)−1 ≤ 1/θ, so the algorithm A will learn the parity s when executed either

with the oracle O(fA) or its negation. We can check that the coefficient produced by A is

indeed heavy using Chernoff bounds, and repeat until we succeed. Using O(2m) = O(S2)

20



repetitions, we will get a θ-heavy Fourier coefficient of degree k with probability at least

1/2. An A-projection always clears the coefficient f̂(0n) and therefore we need to check

whether this coefficient is θ-heavy separately. �

Remark 2.3.6 A function f can have at most L2
2(f)/θ2 θ-heavy Fourier coefficients. There-

fore by repeating WP-R O((L2
2(f)/θ2) · log (L2(f)/θ)) = Õ(L2

2(f)/θ2) times we can, with high

probability, obtain all the θ-heavy Fourier coefficients of f as it is required in some applica-

tions of this algorithm.

2.4 Learning of Parities with Adversarial Noise

A weak parity algorithm is in its essence an algorithm for learning of parities with adversarial

noise. In particular, Theorem 2.3.5 gives the following reduction from adversarial to random

noise.

Theorem 2.4.1 The problem of learning parities with adversarial noise of rate η < 1
2

reduces to learning parities with random noise of rate η.

Proof: Let f be a parity χs corrupted by noise of rate η. Then f̂(s) = E[fχs] ≥ (1− η) +

(−1)η = 1 − 2η. Now apply the reduction from Theorem 2.3.5 setting k = n. We get an

oracle for the function f̂(s)χs(x), which is χs(x) with random noise of level η. �

Blum et al. [21] give a sub-exponential algorithm for learning noisy parities.

Lemma 2.4.2 ([21]) Parity functions on {0, 1}n can be learned in time and sample com-

plexity 2O( n
log n

) in the presence of random noise of rate η for any constant η < 1
2 .

This algorithm together with Theorem 2.4.1 gives Theorem 1.4.1.

One can also interpret Theorem 2.4.1 in terms of coding theory problems. Learning a

parity function with noise is equivalent to decoding a random linear code from the same

type of noise. More formally, we say that a code C is an [m,n] code if C is a binary linear

code of block length m and message length n. Any such code can be described by its n×m

generator matrix G as follows: C = {xG | x ∈ {0, 1}n}. A random linear [m,n] code C is

produced by choosing randomly and uniformly a generator matrix G for C (that is, each
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element of G equals to the outcome of an unbiased coin flip). It is now easy to verify that

Theorem 2.3.5 implies the following result.

Theorem 2.4.3 Assume that there exists an algorithm RandCodeRandError that corrects

a random linear [m,n] code from random errors of rate η with probability at least 1/2 (over

the choice of the code, errors, and the random bits of the algorithm) in time T (m, n). Then

there exists an algorithm RandCodeAdvError that corrects a random linear [M,n] code from

up to η ·M errors with probability at least 1/2 (over the choice of the code and the random

bits of the algorithm) in time O(m2 · T (m,n)) for M = O(m3).

The sample bounds in Theorem 2.3.5 correspond to the block length of linear codes. Note

that for η ≥ 1/4, there might be more than one codeword within the relative distance η. In

this case, by repetitively using RandCodeAdvError as in Remark 2.3.6, we can list-decode

the random code.

2.5 Learning DNF Expressions

Jackson’s [58] celebrated result gives a way to use a weak parity algorithm and Freund’s

[42] boosting algorithm to build an algorithm for learning DNF expressions with respect to

the uniform distribution. His approach can be adapted to our setting. We give an outline

of the algorithm and omit the now-standard analysis.

We view a probability distribution D as a density function and define its L∞ norm.

Jackson’s algorithm is based on the following lemma (we use a refinement from Bshouty

and Feldman [27]).

Lemma 2.5.1 ([27, Lemma 18]) For any Boolean function f of DNF-size s and any

distribution D , over {0, 1}n there exists a parity function χa such that |ED [fχa]| ≥ 1
2s+1

and

weight(a) ≤ log ((2s + 1)L∞(2nD)).

This lemma implies that DNFs can be weakly learned by finding a parity correlated with

f under distribution D(x) which is the same as finding a parity correlated with the function

2nD(x)f(x) under the uniform distribution. The range of 2nD(x)f(x) is not necessarily
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[−1, 1], whereas our WP-R algorithm was defined for functions with this range. So in order to

apply Theorem 2.3.5, we first scale 2nD(x)f(x) to the range [−1, 1] and obtain the function

D ′(x)f(x), where D ′(x) = D(x)/L∞(2nD) (L∞(D) is known to the boosting algorithm).

We then get the probabilistic oracle O(D ′(x)f(x)) by flipping a ±1 coin with expectation

D ′(x)f(x). Therefore a θ-heavy Fourier coefficient of 2nD(x)f(x) can be found by finding

a θ/L∞(2nD)-heavy Fourier coefficient of D ′(x)f(x) and multiplying it by L∞(2nD). We

summarize this generalization in the following lemma.

Lemma 2.5.2 Let A be an algorithm that learns parities of k variables over {0, 1}n for

every noise rate η < 1/2 in time T (n, k, 1
1−2η ) using at most S(n, k, 1

1−2η ) examples. Then

there exists an algorithm WP-R’ that for every real-valued function φ that has a θ-heavy

Fourier coefficient s of degree at most k, given access to random uniform examples of φ,

finds s in time O(T (n, k, L∞(φ)/θ) · S(n, k, L∞(φ)/θ)2) with probability at least 1/2.

The running time of WP-R’ depends on L∞(2nD) (polynomially if T is a polynomial)

and therefore gives us an analogue of Jackson’s algorithm for weakly learning DNFs. Hence

it can be used with a boosting algorithm that produces distributions that are polynomially-

close to the uniform distribution; that is, the distribution function is bounded by p2−n

where p is a polynomial in learning parameters (such boosting algorithms are called p-

smooth). In Jackson’s result [58], Freund’s boost-by-majority algorithm [42] is used to

produce distribution functions bounded by O(ε−(2+ρ)) (for arbitrarily small constant ρ).

More recently, Klivans and Servedio have observed [74] that a later algorithm by Freund

[41] produces distribution functions bounded by Õ(ε). By using WP-R’ with this boosting

algorithm in the same way as in Jackson’s DNF learning algorithm, we obtain Theorem

1.4.2.

2.6 Learning Juntas

For the class of k-juntas, we can get a simpler reduction with better parameters for noise.

Since there are at most 2k non-zero coefficients and each of them is at least 2−k+1-heavy,

for a suitable choice of m, the projection step is likely to isolate just one of them. This

leaves us with an oracle O(f̂(s)χs). Since |f̂(s)| ≥ 2−k+1, the noise parameter is bounded

23



by η < 1/2− 2−k. Using Remark 2.3.6, we will obtain the complete Fourier spectrum of f

by repeating the algorithm O(k22k) times. The proof of Theorem 1.4.3 follows from these

observations. Instead of repeating WP-R one can also use a simple recursive procedure of

Mossel et al. [87, Sec 3.1] that requires only k invocations of WP-R.

2.7 Learning in the Presence of Random Noise

Our reductions from DNFs and k-juntas can be made tolerant to random noise in the original

function. This is easy to see in the case of k-juntas. An oracle for f with classification noise

η′ is the same as an oracle for the function (1− 2η′)f . By repeating the reduction used for

k-juntas, we get an oracle for the function O((1 − 2η′)f̂sχs). Hence we have the following

theorem:

Theorem 2.7.1 Let A be an algorithm that learns parities of k variables on {0, 1}n for

every noise rate η < 1/2 in randomized time T (n, k, 1
1−2η ). Then there exists an algorithm

that learns k-juntas with random noise of rate η′ in time O(k22k · T (n, k, 2k−1

1−2η′ )).

A noisy parity of k variables is a special case of a k-junta. Thus we have reduced the noisy

junta problem to a special case viz. noisy parity, at the cost of an increase in the noise level.

We refer the reader to Feldman et al. [40] for making the reduction from DNFs tolerant to

random noise.

2.8 Conclusions

We have shown connections between several well-studied open problems on learning under

the uniform distribution. Our reductions imply that, in a sense, the class of noisy parities

is the hardest concept class for this model of learning. A natural question is whether one

can reduce learning noisy parities of O(log n) variables to learning DNF (or juntas). On

the positive side, a non-trivial algorithm for learning parities of O(log n) variables will help

make progress on a number of important questions regarding learning under the uniform

distribution.
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CHAPTER III

HARDNESS OF AGNOSTIC LEARNING OF HALFSPACES

3.1 Introduction

In this chapter we prove a hardness result for agnostic learning of halfspaces over Qn. We

obtain this result by proving hardness of approximately minimizing disagreement with a

halfspace. We also show nearly optimal hardness result for maximizing agreement with a

halfspace. For this problem, we show that the trivial factor 2 approximation algorithm for

this problem is essentially the best one can do. The proof is by reduction from the gap

version of 5-regular vertex cover to an intermediate problem called Max-Lin-Q, and then

finally to the learning halfspaces problem.

The main step in showing the hardness of approximating Max-Lin-Q is repeated ap-

plication of two operations called tensoring and boosting. We first found these operations

handy in the context of equations over Z2 in order to show hardness for Max-Clique [70]

(details follow in Chapter 4). The main technical difference in adapting this technique to

work over Q is keeping track of “error-margins”. For the reduction to halfspaces, we need

to construct systems of equations where in the ‘No’ case, many equations are unsatisfiable

by a large margin. Indeed our tensoring and boosting operations resemble taking tensor

products of codes and concatenation with Hadamard codes over finite fields.

We begin by defining the Max-Lin-Q problem. Informally, we are given a system of

equations over rationals and we are expected to find an assignment that satisfies as many

equations as possible. We will show that even if a large fraction, say 99%, of the equations

can be satisfied, one can not efficiently find an assignment such that more than 1% of the

equations are “almost” satisfied. That is, the difference in the left hand side and right hand

side of all but 1% of the equations is “large”.
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Definition 3.1.1 Given a system of linear equations with rational coefficients

{ai0 +
n∑

j=1

aijxj = 0}i=1,2,...,M

as input, the objective of the Max-Lin-Q problem is to find (x1, x2, . . . , xn) ∈ Qn that satisfies

the maximum number of equations. A system of equations is said to be a (M, c, s, t) Max-

Lin-Q instance if the number of equations in the system is M and one of the following

conditions holds:

• At least cM of the equations can be satisfied by some assignment, or

• In any assignment,

|ai0 +
n∑

j=1

aijxj | < t

is true for at most sM values of i ∈ [M ].

The goal of the Max-Lin-Q problem when given such an instance is to find out which of

the two cases is true. If the system of equations satisfies the first condition, we say it has

completeness c. In the other case, we say it has soundness s under tolerance t.

An instance of Max-Lin-Q can be specified by a matrix

A =



a10 a11 . . . a1n

a20 a21 . . . a2n

...
...

...

aM0 aM1 . . . aMn


We will refer to A itself as an instance of Max-Lin-Q. We may also use the rows of A

to represent the equations in the instance. The Max-Lin-Q problem is to find a vector

X = (1, x1, x2, . . . , xn) such that AX has as many zeros as possible. The size of a Max-

Lin-Q instance depends on the number of equations, the number of variables and the size of

the largest coefficient. But in all the operations that we define on Max-Lin-Q, the number

of equations increases the fastest. Hence, we refer to the number of equations M itself as

the size of the instance.

The main steps in the reduction from vertex cover to the learning halfspaces problem

are as follows:
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• Obtain a (M, c, s, t) instance of Max-Lin-Q from the vertex cover instance for some

fixed constants c, s and t.

• Convert the above instance to a (M ′, 1 − ε, ε, t′) instance where ε is a very small

function of M ′. To achieve this, we use two operations called tensoring and boosting.

• Convert the instance of the Max-Lin-Q problem obtained to an instance of the halfs-

pace problem.

Our reduction to the learning halfspaces problem can produce a point x ∈ Qn as both

positive and negative examples. But as pointed out later in Section 3.2.2.2, this also implies

a hardness of approximation when such inconsistencies are not allowed.

3.2 Preliminaries

3.2.1 Approximation Algorithms and Hardness of Approximation

In a maximization (minimization) problem for a function Opt that only takes non-negative

values, we are given an an input I and the goal is to find an s that maximizes (minimizes)

Opt(s, I). We call the maximum (minimum) attainable by Opt(·, I) the optimum for I. For

example, in the Max-Clique problem, given a graph as input, the goal is to find a subset of

vertices that forms the largest clique in the graph.

For α > 1, we say A is an α-approximation for the problem of maximizing Opt if A on

any input I finds an s such that αOpt(s, I) ≥ maxtOpt(t, I). For α > 1, we say A is an

α-approximation for the problem of minimizing Opt if A on any input I finds an s such

that Opt(s, I) ≤ αmintOpt(t, I).

We say the problem of maximizing (minimizing) Opt is hard to approximate within α

assuming conjecture C if conjecture C implies the existance of a function f such that no

polynomial time algorithm A can always tell which of the following two cases is true for its

input I:

• (Yes Case:) The optimum for the input I is at least α · f(|I|).

• (No Case:) The optimum for the input I is at most f(|I|).
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In this case, we may also say that the hardness factor of maximizing (minimizing) Opt is α

assuming conjecture C.

3.2.2 Optimization Versions of Learning Problems

We have already introduced the agnostic learning model in Section 2.2.1. We now define

the optimization problems for halfspaces.

For a set of examples S ⊆ X × {0, 1}, we denote S+ = {x | 〈x, 1〉 ∈ S} and similarly

S− = {x | 〈x, 0〉 ∈ S}. For any function f and a set of examples S, the agreement rate of f

with S is AgreeR(f, S) = |Tf∩S+|+|S−\Tf |
|S| , where Tf = {x | f(x) = 1}. We allow S, S+ and

S− to be multisets. For a class of functions C, let AgreeR(C, S) = maxf∈C{AgreeR(f, S)}.

Definition 3.2.1 For a class of functions C and domain X, we define the maximum agree-

ment problem C-MA as follows: The input is a set of examples S ⊆ X×{0, 1}. The problem

is to find a function h ∈ C such that AgreeR(h, S) = AgreeR(C, S).

So for α ≥ 1, an α-approximation algorithm for C-MA is an algorithm that returns a

hypothesis h such that α · AgreeR(h, S) ≥ AgreeR(C, S). Similarly, an α-approximation

algorithm for the minimum disagreement problem C-MD is an algorithm that returns a

hypothesis h ∈ C such that 1− AgreeR(h, S) ≤ α(1− AgreeR(C, S)).

Recall that a halfspace is a function that is equal to 1 if
∑

i∈[n] wixi ≥ θ and 0 otherwise,

where w1, . . . , wn, θ are real numbers. We denote the concept class of all the halfspaces over

by HS. The examples provided to the learning algorithm will be from Qn.

3.2.2.1 Uniform Convergence

For the hardness results in this work we will deal with samples of fixed size instead of

random examples generated with respect to some distribution. One can easily see that these

settings are essentially equivalent. In one direction, given an agnostic learning algorithm

and a sample S we can just run the algorithm on examples chosen randomly and uniformly

from S, thereby obtaining a hypothesis with the disagreement rate on S equal to the error

guaranteed by the agnostic learning algorithm. For the other direction, one can use uniform

convergence results for agnostic learning given by Haussler [54] (based on the earlier work
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in statistical learning theory). They state that for every c ∈ C and sample S of size

poly(VC-dim(C), ε) randomly drawn with respect to a distribution D , with high probability

the true error of c will be within ε of the disagreement rate of c on S. Halfspaces over Qn

have VC dimension of at most n + 1. Therefore to show hardness of agnostic learning of

halfspaces, we will just show hardness of approximating agreement with halfspaces.

3.2.2.2 Allowing Inconsistencies in the Sample

We work with a more general form of the agnostic learning model (Definition 2.2.2) in

which the examples are drawn from an arbitrary distribution over X × {0, 1} (and not

necessarily consistent with a function). That is, we allow the set of examples S to contain

contradictory examples: both 〈x, 0〉 and 〈x, 1〉 can be present. We will show that this does

not make the learning problem harder. Consider any h ∈ C. Now suppose we delete all

pairs 〈x, 0〉 and 〈x, 1〉 of inconsistent examples to get a new set of samples S′. It is obvious

that the agreement rate of h with S \ S′ is 1/2. Therefore, if h is a hypothesis such that

α · AgreeR(h, S′) ≥ AgreeR(C, S′), then

α · AgreeR(h, S) = α · (γAgreeR(h, S′) + (1− γ) · 1
2
)

= γ · αAgreeR(h, S′) + α · (1− γ)/2

≥ γAgreeR(C, S′) + (1− γ)/2 ≥ AgreeR(C, S).

Therefore a hardness result for approximating the maximum agreement problem with incon-

sistent samples also implies the same hardness result when no inconsistencies are allowed.

A similar argument also holds for minimizing disagreements.

3.2.3 Expanders

Expander graphs are frequently used to get strong guarantees on successfully hitting an

unknown subset of a universe when independent trails can be prohibitively expensive. We

need expanders to keep the boosting operation from blowing up the size of Max-Lin-Q

instances fast.

Definition 3.2.2 Let GM denote the 5-regular Gabber-Galil expander on M = 2p2 vertices.
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The exact kind of expander is not particularly important for our application; we just need

them to be polynomially computable.

Definition 3.2.3 A walk of length σ on a graph G is an ordered sequence of vertices

(v1, v2, . . . , vσ) such that there is an edge between vi and vi+1 in G for all 1 ≤ i < σ.

Denote by MG the incidence vector of a graph G. Also define an eigenvalue of a matrix

M to be a real number γ such that there exists a vector x that satisfies Mx = γx. It can

be shown that the largest eigenvalue of MG for a d-regular graph G is d. The second largest

eigenvalue is commonly denoted by λ. For expanders, λ is upper bounded by a constant

strictly smaller than d. An important consequence of this fact is following lemma stated

implicitly in [84]:

Lemma 3.2.4 ([84, Section 15]) Let λ be the second largest eigenvalue of MG for a d-

regular graph G = (V,E). Let W be a subset of the vertices of G. Then the probability that

a walk of length σ picked uniformly at random does not contain a vertex from W̄ is at most

(
√
|W |/|V |+ λ/d)σ.

Informally, the above states that once we use O(log M) random bits for our first attempt

to hit W̄ (by picking a random starting vertex for the walk), for every additional O(1) bits

(to pick the next O(1) vertices of the walk), we will have a constant factor of hitting W̄ .

For the 5-regular Gabber-Galil graph GM , the second eigenvalue of MGM
is λ2 ≤

5 − c2

1024+2c2
for c = 2−

√
3

4 [88, Chapter 6]. Consider the (multi)graph Gk
M obtained by

taking all walks of length k + 1 in GM and adding an edge from the starting vertex to the

ending vertex of the graph. It is easy to check that this graph has degree dk and that its

transition matrix is (MGM
)k. This second fact implies that its second eigenvalue is λk

2.

Using these observations, we get the following corollary to Lemma 3.2.4.

Corollary 3.2.5 Let W be a subset of GM containing at most a fraction 1/10 of the ver-

tices. Then, there exists a constant r < 1 such that for sufficiently large M , at most rσ

fraction of all walks of length σ in GM are contained within W .
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Proof: Pick a constant k large enough so that λk
2/dk ≤ (1 −

√
|W |/|V |)/2. Then apply

Lemma 3.2.4 for walks of length σ′ = σ/k on Gk
M . To get a random walk of length σ′ on

Gk
M , we can take a walk of length σ on GM and then just take every kth vertex. Since a

random walk of length σ′ on Gk
M does not visit W̄ with probability at most

(
√
|W |/|V |+ (λ2/d)k)σ′ ≤

(
1 +

√
|W |/|V |
2

)σ′

= 2−O(σ),

a random walk of length σ on GM only has lower chance. �

The following is true for any regular graph.

Lemma 3.2.6 Let W denote a subset of the vertices of a regular graph G. If W contains

at least 1 − ε fraction of the vertices for some ε, then at most σε fraction of the walks of

length σ contain a vertex from W̄ .

Proof: Pick a walk uniformly at random from all possible walks of length σ on Gp The

probability that the ith vertex of the walk is contained in W̄ is at most ε. This is because

the graph is regular and hence all vertices are equally likely to be visited as the ith vertex.

Taking union bound over the σ possible locations for a vertex in the walk, the probability

that at least one of the vertices in the walk is contained in W̄ is at most σε. �

3.3 A Small Hardness Factor for Max-Lin-Q

We first state the gap version of the NP-hardness result for regular vertex cover.

Lemma 3.3.1 ([90, 10]) There exist constants d and ζ such that given a 5-regular graph

with N vertices, it is NP-hard to decide whether there is a vertex cover of size ≤ dN or

every vertex cover is of size at least (1 + ζ)dN .

Arora et al. [8] give a reduction from the above gap version of vertex cover of regular

graphs to Max-Lin-Q. They show that if there is a “small” vertex cover, the reduction

produces a Max-Lin-Q instance in which a “large” fraction of the equations can be satisfied.

But when there is no small vertex cover, only a small fraction of the equations can be exactly

satisfied. We show that the proof can be strengthened so that if there is no small vertex

cover, only a small fraction of equations can be satisfied even within a certain tolerance.
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Lemma 3.3.2 There exists a polynomial time algorithm that when given a 5-regular graph

G = (V,E) with N vertices as input produces a (M, c0, s0, t0) Max-Lin-Q instance A over

N variables as output where M = NO(1), c0 and s0 are absolute constants satisfying s0 < c0,

t0 = 1/3 and:

• If G has a vertex cover of size dN , then at least c0 fraction of the equations in A can

be satisfied.

• If G has no vertex cover smaller than (1+ζ)dN , then for any vector X = (1, x1, x2, . . . ,

xN ), at least (1− s0) fraction of the entries in AX have magnitude ≥ t0.

Proof: The instance A contains one variable xi for every vertex vi ∈ V . Corresponding to

every vertex, there is a constraint xi = 0. Corresponding to every edge between vi and vi′ ,

we add three constraints

−1 + xi + xi′ = 0

−1 + xi = 0

−1 + xi′ = 0.

In all, A has N + 3m equations, where m = |E| = 5N/2. If there is a vertex cover V0 of

size dN , set xi = 1 if vi ∈ V0 and xi = 0 otherwise. This satisfies at least (1 − d)N + 2m

equations.

Suppose there is no vertex cover smaller than (1 + ζ)dN . We will show that not too

many of the N + 3m equations in A can be satisfied under a tolerance of 1/3. Under a

tolerance of 1/3, the N equations for the vertices relax to |xi| < 1/3, and the equations for

an edge relax to

| − 1 + xi + xi′ | < 1/3

| − 1 + xi| < 1/3

| − 1 + xi′ | < 1/3.

Note that no more than two of the three inequalities for an edge can be simultaneously

satisfied. We will show that given any rational assignment to the xis, there is a {0, 1}

assignment that is just as good or better. Consider any X = (1, x1, x2, . . . , xN ), where

xi ∈ Q. Set yi = 0 if xi < 1/3 and yi = 1 otherwise. It is clear that yi satisfies the
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inequality for vertex vi if xi does. Now suppose at least one of the three inequalities for an

edge (vi, v
′
i) is satisfied by the xis. Then, either xi > 1/3 or xi′ > 1/3. In this case, at least

one of yi and yi′ is set to 1. But then two of the equalities

yi + yi′ = 1

yi = 1

yi′ = 1

are satisfied. Therefore, the yi are at least as good an assignment as the xi.

Let Y = (1, y1, y2, . . . , yN ). If there is no vertex cover of size less than (1 + ζ)dN , AY

must contain at least (1 + ζ)dN + m entries that are 1. That is, AY contains at most

(1− (1 + ζ)d)N + 2m zeros. The claim about the soundness follows. �

3.4 Amplifying the Gap for Max-Lin-Q

We define two operations called tensoring and boosting. Tensoring converts a (M, 1− ε, 1−

δ, t) Max-Lin-Q instance to a (M2, 1 − ε2, 1 − δ2, t2) Max-Lin-Q instance. We use this to

get the completeness close to 1. But as a side-effect, it also gets the soundness close to 1.

We use boosting to overcome this problem. A (σ, ρ)-boosting converts a (M, c, s, t) Max-

Lin-Q instance to a ((ρM)σ, cσ, sσ, t/2) Max-Lin-Q instance. We amplify the (c, s) gap for

Max-Lin-Q in four steps:

• Obtain a (1− ε, 1−Kε) gap for very large constant K using tensoring.

• Obtain a (1−ε0, ε0) gap for a very small constant ε0 > 0 by using a boosting operation.

This gap is sufficient to prove a 2 − ε hardness factor for HS-MA for any constant

ε > 0.

• Improve the completeness even further to 1− o(1) while keeping the soundness below

a constant, say 1/20. This is done by alternately tensoring and boosting many times.

At this stage, it is essential to use a more efficient variation of boosting called pseudo-

boosting. A (σ, ρ)-pseudo-boosting converts a (M, c, s, t) Max-Lin-Q instance to a

(O(ρ)σM, cσ, sΩ(σ), t/2) Max-Lin-Q instance. Since we require cσ > sΩ(σ) for the
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reduction to be meaningful, we need some minimum gap between c and s. This is

guaranteed by the first two steps.

• Using one more boosting operation, decrease the soundness. This gives the (M ′, 1 −

ε, ε, t′) instance where ε = 2−Ω(
√

log M ′) as desired.

3.4.1 Large constant gap for Max-Lin-Q

We define the first operation called tensoring. This operation is similar to an operation

defined by Dumer et al. [30] on linear codes. Informally, the tensoring of a system of

equations contains one equation for the “product” of every pair of equations. In this product,

we replace the occurrence of xj1xj2 with xj1j2 and xj with x0j respectively.

Definition 3.4.1 The tensoring of the system of equations

{ai0 +
n∑

j=1

aijxj = 0}i=1,2,...,M

is the system

{ai10ai20 + ai10(
n∑

j2=1

ai2j2x0j2) + ai20(
n∑

j1=1

ai1j1x0j1) + (
n∑

j1=1

n∑
j2=1

ai1j1ai2j2xj1j2)

= 0}i1,i2=1,...,M .

In the matrix representation, the tensoring of

a10 a11 . . . a1n

a20 a21 . . . a2n

...
...

...

aM0 aM1 . . . aMn





1

x1

...

xn


= 0

is the system

a10 a11 . . . a1n

a20 a21 . . . a2n

...
...

...

aM0 aM1 . . . aMn





1 x01 . . . x0n

x01 x11 . . . x1n

...
...

...

x0n xn1 . . . xnn





a10 a20 . . . aM0

a11 a21 . . . aM1

...
...

...

a1n a2n . . . aMn


= 0
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where the xijs in the second matrix are the variables in the new instance. Note that the

number of equations, the number of variables and the magnitude of the largest coefficient

all roughly get squared.

Lemma 3.4.2 Let A be a (M, c, s, t) instance of Max-Lin-Q. Let B be obtained by tensor-

ing A. Then B is a (M2, 1− (1− c)2, 1− (1− s)2, t2) instance

Proof: We first prove the claim about the soundness. Suppose that for any vector X =

(1, x1, x2, . . . , xn), at least (1 − s) fraction of the entries in AX have magnitude greater

than or equal to t. Consider any assignment to the variables (xj1j2) in B. Let X∗ denote

the matrix 

1 x01 . . . x0n

x01 x11 . . . x1n

...
...

...

x0n xn1 . . . xnn


We will show that at least (1 − s)2M2 entries in AX∗AT have magnitude ≥ t2. Let

X = (1, x01, x02, . . . , x0n). The vector AX has at least (1 − s)M entries with magnitude

≥ t. Let J be the set of indices of these entries. Let V = (AX∗)T . Note that since the first

column of X∗ is X, V has at least (1 − s)M entries in the first row that have magnitude

≥ t. Let V j denote the jth column of V . Note that if j ∈ J , AV j contains at least

(1 − s)M entries that have magnitude ≥ t2. Therefore, AX∗AT = V T AT = (AV )T has

at least (1 − s)2M2 entries with magnitude ≥ t2. It remains to show the claim about the

completeness.

Suppose there is a vector X = (1, x1, x2, . . . , xn) such that AX has a zero in cM

entries. Define x0j = xj and xj1j2 = xj1xj2 for j1 ≥ 1. This satisfies all but (1 − c)2M2 of

the equations in B. �

We now define an operation called boosting. Roughly speaking, we pick σ equations

at a time from the Max-Lin-Q instance A. We add ρσ linear combinations of these to the

boosted instance B. The intention is that even if one of the σ equations fails under some

assignment, a lot of the ρσ corresponding equations in B must fail. This is accomplished

by using a construction similar to Hadamard code.
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Definition 3.4.3 Let A be a Max-Lin-Q instance with M equations. Let ρ, σ be two

arbitrary natural numbers. We define the (ρ, σ)-boosting to be the Max-Lin-Q instance B

obtained as follows. For every possible choice (Ai1 ,Ai2 , . . . ,Aiσ) of σ rows of A and a

vector (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ, add a row ρ1Ai1 + ρ2Ai2 + . . . + ρσAiσ to B. We call the ρσ

rows of B that correspond to a choice of (Ai1 ,Ai2 , . . . ,Aiσ) a cluster.

The idea behind adding ρσ equations to each cluster is the following. If b1 ≥ t, then for

any b, ρ1b1 + b lies in the interval (−t/2, t/2) for at most one value of ρ1 ∈ [ρ]. Similarly,

for any given values of ρ2, . . . , ρσ and b2, . . . , bσ,
∑σ

i=1 ρibi, lies in the interval (−t/2, t/2)

for at most one value of ρ1 ∈ [ρ]. An analogy to Hadamard codes is that if a bit in a string

is 1, then half of the positions in its Hadamard code are 1.

Lemma 3.4.4 Let A be a (M, c, s, t) Max-Lin-Q instance. Let B be a (ρ, σ)-boosting of

B. Then B is a ((ρM)σ, 1− σ(1− c), sσ + ρ−1, t/2) instance.

Proof: There are Mσ choices for (Ai1 ,Ai2 , . . . ,Aiσ) and ρσ choices for (ρ1, ρ2, . . . , ρσ).

This proves the claim about the size of B.

Fix an assignment that satisfies c fraction of the equations in A. Let W denote the

set of equations in A that are satisfied by this assignment. The probability that all of

the σ equations in a random choice of (Ai1 ,Ai2 , . . . ,Aiσ) are in W is at least cσ ≥ 1 −

σ(1 − c). When this happens, all the equations in the cluster corresponding to the choice

of (Ai1 ,Ai2 , . . . ,Aiσ) are satisfied by the same assignment.

Now suppose for any X = (1, x1, x2, . . . , xn), at least sM fraction of the entries in

AX have magnitude ≥ t. Fix any assignment X to the variables in A. Consider σ rows

Ai1 ,Ai2 , . . . ,Aiσ from A. Now suppose |Ai1X| ≥ t. Let b ∈ Q. Then, for at most one

value of ρ1 ∈ [ρ], ρ1Ai1X + b has magnitude less than t/2. Therefore, for all but a 1/ρ

fraction of (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ,

|(ρ1Ai1 + ρ2Ai2 + . . . + ρσAiρ)X| ≥ t/2

If (Ai1 ,Ai2 , . . . ,Aiσ) are σ random rows of A, the probability that none of Ai1X,Ai2X,

. . . , AikX have magnitude ≥ t is at most sσ. Therefore, at most sσ +(1−sσ)ρ−1 ≤ sσ +ρ−1
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fraction of the entries in BX have magnitude less than t/2. This proves the claim about

the soundness. �

We now use tensoring and boosting to obtain a 1− ε0 versus ε0 gap for Max-Lin-Q.

Lemma 3.4.5 For any constants ε0 > 0, 0 < s < c ≤ 1 and t > 0, there exists a polynomial

time algorithm that when given a (M, c, s, t) Max-Lin-Q instance A as input produces a

(M1, 1− ε0, ε0, t1) instance where M1 = MO(1) and t1 > 0 is a constant.

Proof: Let B be the instance obtained by repeatedly tensoring A q times. Then, B is a

(MQ, 1 − (1 − c)Q, 1 − (1 − s)Q, tQ) Max-Lin-Q instance, where Q = 2q. Choose q large

enough so that ⌈
ln(2/ε0)
(1− s)Q

⌉
≤ ε0

(1− c)Q
.

Now we use (ρ, σ)-boosting on B where ρ = d2/ε0e and

σ =
⌈

ln(2/ε0)
(1− s)Q

⌉
.

The result is a (M1, c1, s1, t1) instance where

c1 ≥ 1− σ(1− c)Q ≥ 1− ε0

and

(1− (1− s)Q)σ ≤ (1/e)σ(1−s)Q ≤ e− ln(2/ε0) = ε0/2.

Therefore, s1 = (1− (1− s)Q)σ + ρ−1 ≤ ε0 and t1 = tQ/2. �

Note that combining Lemma 3.4.5 with Lemma 3.5.1 suffices to show a 2 − ε hardness

factor for HS-MA for any constant ε > 0. We now focus on obtaining an improved hardness

result where ε is sub-constant.

3.4.2 Super-constant gap for Max-Lin-Q

We will now prove a (1− ε, ε) hardness for Max-Lin-Q for a sub-constant (as a function of

the size M) value of ε. One hurdle to be overcome is the rapid increase in the size of the

instance produced by both tensoring (from M to M2) and boosting (from M to Mσ). To

overcome this problem we now define a pseudo-random boosting, or simply pseudo-boosting,
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that achieves a similar improvement in soundness (with a similar expense in completeness)

as normal boosting does, but increases the size by only a constant factor.

Definition 3.4.6 Let A be a Max-Lin-Q instance with M equations. Let ρ, σ be two

arbitrary numbers. We define the (ρ, σ)-pseudo-boosting to be the Max-Lin-Q instance B

obtained as follows. Let GM be the 5-regular Gabber-Galil graph on M vertices. Associate

every vertex v of GM to an equation Av in A. For every possible walk (v1, v2, . . . , vσ) of

length σ on GM and a vector (ρ1, ρ2, . . . , ρσ) ∈ [ρ]σ, add a row ρ1Av1 +ρ2Av2 + . . .+ρσAvσ

to B. We call the ρσ rows of B that correspond to a walk on the rows of A a cluster.

The specific kind of expander used in pseudo-boosting is not important. We would

like to point out that since Gabber-Galil graphs are defined only for integers of the form

2p2, we might have to add some trivially satisfied equations to A. This only improves

the completeness of A. The soundness suffers by at most O(1/
√

M), which is a negligible

increase if the soundness of the instance A were constant. Hence, we ignore this issue from

now on.

Lemma 3.4.7 Let A be a (M, c, 1/10, t) Max-Lin-Q instance. Let B be a (ρ, σ)-pseudo-

boosting of B. Then B is a (5σ−1ρσM, 1− σ(1− c), rσ + ρ−1, t/2) instance, where r is the

constant guaranteed by Corollary 3.2.5.

Proof: The proof of the lemma will closely parallel that of Lemma 3.4.4. The number of

walks of length σ beginning from each vertex in a graph GM is 5σ−1. Corresponding to

each walk, we add ρσ rows to B. This proves the claim about the size of B.

Fix an assignment that satisfies c fraction of the equations in A. Let W denote the set

of equations in A that are satisfied by this assignment. From Lemma 3.2.6, we know that

at most σ(1−c) fraction of walks of length σ visit a row from W̄ . If all of the σ rows visited

by a walk are satisfied, then all the equations of B in the cluster corresponding to this walk

are also satisfied under the same assignment.

Now suppose for any X = (1, x1, x2, . . . , xn), at least M/10 fraction of the entries in AX

have magnitude ≥ t. Fix any assignment X to the variables in A. If (Av1 ,Av2 , . . . ,Avσ)
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is a random walk on GM , then from Corollary 3.2.5, the probability that none of Av1X,

Av2X, . . . ,Avk
X have magnitude ≥ t is at most rσ for large enough M . Therefore, as in

Lemma 3.4.4, at most rσ + (1 − rσ)ρ−1 ≤ rσ + ρ−1 fraction of the entries in BX have

magnitude less than t/2. This proves the claim about the soundness. �

We now use tensoring with pseudo-boosting to obtain a super-constant hardness factor

for Max-Lin-Q.

Theorem 3.4.8 There exists a 2(log N)O(1)
time reduction that when given a 5-regular graph

G on N vertices outputs a Max-Lin-Q instance A3 of size M3 = 2(log N)O(1)
such that

• If there is a vertex cover of size dN , then there is an assignment that satisfies 1 −

2−Ω(
√

log M3) fraction of the equations.

• If every vertex cover is of size ≥ (1 + ζ)dN , then under any assignment, at most

2−Ω(
√

log M3) fraction of the equations can be satisfied within a tolerance as large as

2−O(
√

log M3).

where d and ζ are the constants mentioned in Lemma 3.3.1. The number of variables n in

A3 is M
O(1)
3 .

We first use Lemma 3.3.2 and Lemma 3.4.5 to convert a vertex cover instance to a

(M1, 1 − ε0, ε0, t1) Max-Lin-Q instance A1. We then alternately tensor and pseudo-boost

A1 so that the soundness stays below 1/20, but the completeness progressively comes closer

to 1. As a final step, we pseudo-boost once more so that the completeness is 1− ε and the

soundness is ε for a small value ε as desired.

Proof: Fix

ε0 = min
{

log r−1

4 log 40
,

1
20

}
,

σ0 = d(4ε0)−1e and ρ0 = 40.

We first use Lemma 3.3.2 and Lemma 3.4.5 to convert the graph to a (M1, 1−ε0, 1/20, t1)

Max-Lin-Q instance A1, where M1 = NO(1). Suppose B1 is the result of tensoring and

(ρ0, σ0)-pseudo-boosting A1 once. Then B1 is a (O(M1)2, 1−σ0ε
2
0, r

σ0 +ρ−1
0 , t21/2) instance

(The claim about soundness follows since the soundness after tensoring is 1− (1− 1/20)2 ≤
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1/10 and we can apply Lemma 3.4.7 to bound the soundness after the pseudo-boosting).

Since σ0ε0 ≤ 1/2 < 1, after one round of tensoring and pseudo-boosting, the completeness

comes closer to 1. Also, the soundness stayed below 1/20 after one round since rσ0 + ρ−1
0 ≤

2log r/(4ε0) + 1/40 ≤ 1/20. Now, let A2 be the result of repeatedly tensoring and (ρ0, σ0)-

pseudo-boosting A1 q1 times. Let Q1 = 2q1 . Then A2 is a (M2, c2, 1/20, t2) instance where

M2 = O(M1)Q1 , c2 = 1−O(1)Q1 and t2 = Ω(1)Q1 .

As a final step, we now use (ρ2, σ2)-pseudo-boosting on A2 where ρ2 = 3Q1 , σ2 =⌈
1 + Q1

log(1/r)

⌉
. This produces a (M3, c3, s3, t3) instance where M3 = O(ρ2)σ2M2 = 2O(Q1

2)MQ1
1 ,

c3 = 1 − O(Q1)O(1)Q1 = 1 − O(1)Q1 , s3 = rσ2 + ρ−1
2 ≤ 2−Q1 and t3 = Ω(1)Q1 . Choose

the smallest q1 so that Q1 ≥ log M1. Then log M3 = O(log2 M1), which implies Q1 =

Ω(
√

log M3). That is, A3 is a (M3, 1− 2−Ω(
√

log M3), 2−Ω(
√

log M3), 2−O(
√

log M3)) instance.

The total number of times we tensor is O(q1) (a constant number of times in Lemma

3.4.5 and q1 times here). Therefore the number of variables is NO(2q1 ) = NO(Q1) = M
O(1)
3 ,

since boosting and pseudo-boosting don’t increase the number of variables.

�

3.5 From Max-Lin-Q to HS-MA

Lemma 3.5.1 There exists a polynomial time algorithm that when given a (M, c, s, t) in-

stance A of Max-Lin-Q over n variables produces a instance of the halfspace problem with

2M points over Qn such that:

• If there is a solution to the Max-Lin-Q instance that satisfies ≥ cM of the equations,

there is a halfspace that correctly classifies ≥ 2cM of the points.

• If A has soundness s under tolerance t, then no halfspace can correctly classify more

than (1 + s)M of the points.

Proof: We can rewrite each equation of A as two inequalities

−t′ ≤ ai0 +
n∑

j=1

aijxj ≤ t′
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or simply

(ai0 + t′) +
∑n

j=1 aijxj ≥ 0

(ai0 − t′) +
∑n

j=1 aijxj ≤ 0
(3)

for any t′ ∈ Q satisfying 0 < t′ ≤ t/2 < t. We choose a t′ also satisfying t′ < mini:ai0 6=0|ai0|.

This ensures that the constant term in every constraint is non-zero and if ai0 6= 0, then

both ai0 + t′ and ai0 − t′ have the same sign. We now divide by the appropriate number

(and flip the direction of the inequality if necessary) to make all the constant terms equal

to 1. We get 2M constraints of the form

1 +
n∑

j=1

hijxj ≥ 0 or 1 +
n∑

j=1

hijxj ≤ 0 (4)

where i ∈ {1, 2, . . . , 2M}. At this stage, the set of inequalities (3) and (4) are equivalent.

Next we convert the ≤ constraints in (4) to < and homogenize the resulting set of constraints

to get

x0 +
n∑

j=1

hijxj ≥ 0 or x0 +
n∑

j=1

hijxj < 0. (5)

If we could satisfy cM equations in A, (5) has a solution satisfying 2cM inequalities (with

strict inequality since t′ > 0) by setting x0 to 1. Suppose there is a solution (x0, x1, . . . xn)

satisfying more than (1 + s)M of the inequalities in (5). Note that if x0 < 0, then since

t′ > 0, we will satisfy at most one of the two inequalities corresponding to an equation of

A. If x0 = 0, we satisfy one constraint from the pair corresponding to row i in A if ai0 6= 0,

and maybe both constraints if ai0 = 0 (If ai0 = 0, the two corresponding inequalities in (5)

are ≥ inequalities). But not more than sM of the ai0s can be zero (otherwise more than sM

equations can be satisfied by setting all variables to zero in A). So we can assume x0 > 0.

Now we can scale the values of xis so that x0 is 1. Then, (x1, x2, . . . xn) is a solution to A

that satisfies more than s fraction of the equalities within tolerance t, a contradiction.

We now define the halfspace instance. The halfspace instance produced is over Qn.

For an inequality of the first form in (5), add the point (hi1, hi2, . . . , hin) to S+. For an

inequality of the second form add the point (hi1, hi2, . . . , hin) to S−. The correspondence

between a constraint in (5) being satisfied by an assignment (x0, x1, . . . , xn) and a point
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from (S+, S−) being classified correctly by the hyperplane x0 +
∑n

j=1 xjlj ≥ 0 is clear. This

completes the proof of the lemma. �

Proof of Theorem 1.4.4: We give a reduction from the vertex cover problem on 5-regular

graphs mentioned in Lemma 3.3.1. The reduction will have running time 2(log N)O(1)
for N

vertex graphs.

Let G be the input graph with N vertices. We use the reduction mentioned in Theorem

3.4.8 to produce a (M3, c3, s3, t3) Max-Lin-Q instance A, where c3 = 1 − ε, s3 = ε, ε =

2−Ω(
√

log M3) and t = 2−O(
√

log M3) > 0. We transform A3 to a halfspace instance (S+, S−)

as described in Lemma 3.5.1. Note that the number of examples is M ′ = 4M3. We now

analyze the completeness and soundness.

• (Yes Case:) If there is a vertex cover of size ≤ dN in G, there is a halfspace that

correctly classifies c3 = 1− ε fraction of the points.

• (No Case:) If there is no vertex cover of size smaller than (1 + ζ)dN in G, there is no

halfspace that correctly classifies ≥ 1
2(1 + s3) = 1

2(1 + ε) fraction of the points.

Finally, observe that the number of dimensions n in the halfspace instance produced is

O(M3) = O(M ′). �

For the HS-MA problem the gap obtained is c3/(1
2(1 + s3)) = 2(1− ε)/(1 + ε) = 2(1−

O(ε)) = 2− 2−Ω(
√

log n). The gap for HS-MD is (1− 1
2(1 + s3))/(1− c3) = (1/2− s3/2)/ε =

2Ω(
√

log n).

3.6 Thresholds of Halfspaces

We show that under certain cryptographic assumptions, it is not possible to learn a circuit

of depth 2 with unweighted threshold gates.

Definition 3.6.1 An unweighted threshold gate (or majority gate) is a gate that when

given (x1, x2, . . . , xn) ∈ {0, 1}n outputs 1 if more than half of its inputs are 1 and outputs

0 otherwise. Let TC0
2 denote the class of depth two polynomial (in the number of inputs)

sized circuits with majority gates.
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3.6.1 The Cryptosystem of Goldreich et al. [45]

The result relies on an assumption regarding the hardness of a certain lattice problem,

which underlies the security of the Ajtai-Dwork cryptosystem [2].

Definition 3.6.2 Given a set of vectors a1, a2, . . . , an ∈ Rm, the objective of SVP is to find

the shortest non-zero vector in the set S = {
∑n

i=1 ciai|c1, c2, . . . , cn ∈ Z}. The set of points

S is called the lattice generated by the basis vectors a1, a2, . . . , an.

We say a lattice is p(n)-unique if every vector of the lattice which is of length at most

p(n) times the shortest vector is an integer multiple of the shortest vector. The p(n)-unique

SVP is the problem of finding the shortest vector in a p(n)-unique lattice.

Assumption 3.6.3 There does not exist a randomized polynomial time algorithm for n8-

unique SVP.

Under the above assumption, building on the Ajtai-Dwork cryptosystem, Goldreich,

Goldwasser and Halevi (GGH) [45] construct a public-key encryption scheme and show it

to be secure. In their cryptosystem, the decryption is error-free, which is convenient for

proving our hardness result. The cryptosystem is specified by a triple K, E and D, which

are the key generation, encryption and decryption algorithms respectively. We only sketch

the first two, since they are not directly needed to prove our result.

The key generation algorithm K when given a security parameter n as input generates

private-key public-key pair (u, e) as the output. Here, u is a vector picked uniformly from

the unit sphere in Rn. The coordinates of vector u and all real numbers that follow need to

be specified only to n bits of precision. The encryption of a bit 0 or 1 using the public-key

e is a random vector from Rn contained in a sphere of radius 2O(n log n) around the origin.

Let Ee(x) denote the distribution on cipher-texts when the bit x is encrypted by E using

public-key e.

If A,B ⊆ R, let A + B = {a + b|a ∈ A, b ∈ B}. To decrypt a cipher-text v′ using

private-key u, Algorithm D computes u · v′.

1. If u · v′ ∈ Z + [−2/n, 2/n], v′ is decrypted as a 0.
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2. Otherwise, u·v′ is guaranteed to lie in the set Z+1/2+[−2/n, 2/n] and v′ is decrypted

as a 1.

Goldreich et al. prove that if a randomized algorithm can differentiate between the encryp-

tion of 0 and 1 with reasonable success with knowledge of only the public key, then there

a randomized polynomial time algorithm for n8-unique SVP. Our goal is now to show that

the decryption can be implemented using a depth two threshold circuits.

3.6.2 Thresholds of Halfspaces are not PAC-learnable

Lemma 3.6.4 For any key to the GGH encryption scheme, the decryption can be done by

a TC0
2 circuit of size polynomial in n, the security parameter.

Proof: Let the cipher-text be the vector x = (x1, x2, . . . , xn), where each of the coordinates

xi is specified up to a precision of n bits. That is we are given bits xij where xi =
∑

j 2jxij .

The decoding algorithm D needs to compute u · x and check if it is strictly within 2/n of

an integer. The quantity u · x can be computed as

u · x =
∑

i

uixi =
∑

i

ui

∑
j

2jxij =
∑
i,j

ui2jxij

Let fij denote the fractional part of ui2j . Then the fractional part of u·x is the same as that

of
∑

fijxij . Also, ax =
∑

fijxij is a quantity in the range from 0 to N for some N = O(n2).

Since either ax ∈ Z + [−2/n, 2/n] or ax ∈ Z + 1/2 + [−2/n, 2/n], we can round off all the

weights fij to 4 log n decimal places. This results in an error of at most N
n4 = O(1/n2) in

calculating ax. Therefore, x is the cipher-text of 0 if and only if ax is within O(1/n) of an

integer.

We now specify how to check if the number ax is close to an integer using a TC0
2 circuit

with 2N +3 gates, provided ax ∈ [0, N ]. Note that for any z ∈ Z and any a ∈ R, at least one

of the two constraints a < z +1/8 and a > z−1/8 is satisfied. Both the constraints are met

if and only if a ∈ (z−1/8, z+1/8). Therefore, for any a ∈ [0, N ], at least N +1 of the 2N +2

constraints a < z+1/8 and a > z−1/8 are satisfied, where z ∈ {0, 1, 2, . . . , N}. If a is within

1/8 of some integer, then exactly N + 2 of the constraints are satisfied. Otherwise exactly

N + 1 of the constraints are satisfied. Each of the constraints
∑

fijxij < z + 1/8 (and by
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a similar argument, the constraints
∑

fijxij > z− 1/8) can be checked by a majority gate.

This is because 24 log nfij is an integer in the range 0 through n4. Consider a polynomial

sized list in which we add n4fij copies of the variable xij . We want to check if less than

n4(z + 1/8) entries in the list are 1. This can be done using a majority gate. Checking

whether N + 1 or N + 2 of these 2N + 2 gates evaluate to true can be done using another

majority gate. �

We use the notation of Kearns and Valiant [66] to define our learning problem for depth

2 threshold circuits.

Definition 3.6.5 We say the concept class C is weakly PAC learnable if there exists a

randomized polynomial time algorithm A and a polynomially evaluatable hypothesis class H

with the following properties:

• (Input:) The algorithm is given access to oracles POS and NEG that generate points

from some distributions D+
c and D−

c over the positive and negative examples respec-

tively of a concept c.

• (Output:) With probability at least 1/2, the algorithm outputs a hypothesis h ∈ H such

that

Pr[h(x) = 1 when c(x) = 1] ≥ 1
2

+
1

p(n)

Pr[h(x) = 0 when c(x) = 0] ≥ 1
2

+
1

p(n)

for some polynomial p(n).

Proof of Theorem 1.4.5: Suppose there exists a weakly PAC learning algorithm A for

the class TC0
2. We construct an algorithm D′ for decoding a bit encrypted using the scheme

of Goldreich et al. [45] with a reasonable success probability.

Let e be the public-key used generated by the key-generation algorithm K. This key

specifies a distribution De(0) and De(1) on the cipher-texts of 0 and 1 (the positive and

negative examples) respectively. It is easy to sample from these distributions since the

public-key and the encryption algorithm are known. We also know from Lemma 3.6.4 that

there is a TC0
2 circuit that correctly identifies if its input is the encryption of a 0 or 1.
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Algorithm D′ uses Algorithm A to learn this circuit. Suppose that with probability ≥ 1/2,

Algorithm A outputs a hypothesis h such that

Pr[h(x) = 0|x ∈R De(0)]− Pr[h(x) = 0|x ∈R De(1)] ≥ ε(n)

for some ε(n) that is inverse polynomial in n, where x ∈R D is used to denote that x is a

random element from the distribution D . Then, D′ when given a string that is the random

encryption of a 0 or a 1 can use h to decode the input with reasonable success:

Pr[D’ outputs 0 when given random encryption of 0]

− Pr[D’ outputs 0 when given random encryption of 1]

≥ ε(n)

This contradicts the security assumption of the GGH encryption scheme. �

3.6.3 Further Hardness of Learning Halfspaces with Adversarial Noise

Our result on hardness of learning TC0
2 circuits also implies hardness of learning halfspaces

with adversarial noise of high rate even when the learning algorithm is allowed to output

any circuit. The proof is immediate from the “discriminator lemma” due to Hajnal et al.

[49].

Lemma 3.6.6 ([49]) For any Boolean functions g1, . . . , gk on X, f = MAJ(g1, g2, . . . , gk)

and any distribution D on X there exists i ≤ k such that |PrD [f = gi]− 1
2 | ≥

1
2k .

If it holds that PrD [f = gi] ≥ 1
2 + 1

2k , then examples of f drawn from distribution D

can be seen as examples of gi with adversarial noise of rate 1
2 −

1
2k . Similarly, if PrD [f =

gi] ≤ 1
2 −

1
2k , then the examples are equivalent to examples of ¬gi with adversarial noise of

rate 1
2 −

1
2k . The negation of a halfspace is a halfspace (in fact the negation of a majority is

a majority of negated variables). Thus the discriminator lemma implies that a TC0
2 circuit

is equivalent to a halfspace with adversarial noise. Hence Theorem 1.4.5 implies Theorem

1.4.6.
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3.7 Conclusions

Our hardness results essentially resolve the status of proper agnostic learning of halfspaces.

A challenging open problem is to allow more general hypothesis classes. A recent result of

Khot and Saket [72] shows such a result for intersection of halfspaces. They show that for

any number l, it is not possible to even weakly PAC-learn intersection of two halfspaces

using any function of l linear thresholds. We took a step in this direction for halfspaces and

showed that at least when the noise rate is high, weak non-proper learning of halfspaces is

hard.
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CHAPTER IV

BETTER INAPPROXIMABILITY RESULTS FOR MAX-CLIQUE,

CHROMATIC NUMBER AND MIN-3LIN-DELETION

4.1 Introduction

4.1.1 Max-Clique

As mentioned before, the best approximation algorithm for Max-Clique is an O(n(log log n)2

log3 n
)-

approximation algorithm by Feige [36]. It was conjectured that the Lovász θ-function

might be an O(
√

n) approximation for Max-Clique (see [78] for details). Since the Lovász

θ-function can be computed to any desired degree of accuracy in polynomial time, the con-

jecture implies an O(
√

n) approximation algorithm for Max-Clique. For “perfect” graphs,

Lovász θ-function equals the size of the largest clique. For random graphs, the gap between

these two values can be as bad as Ω(
√

n/ log n). The conjecture says that this may essen-

tially be the worst possible gap. Feige [32] disproved the conjecture by showing that the

Lovász θ-function does not approximate Max-Clique better than n
2
√

c log n
, where c > 0 is a

constant.

4.1.1.1 Previous Results for Hardness of Approximating Max-Clique

The first inapproximability result for Max-Clique was obtained by Feige et al. [33] who

discovered the connection between hardness of approximation and Probabilistically Check-

able Proofs(PCPs). We summarize the progress on showing hardness results for Max-

Clique in Table 4.1.1.1. Let PCPc,s(r(n), q(n)) denote the class of languages that have

a non-adaptive verifier with the following properties. For an input string of length n,

the verifier uses r(n) random bits and queries q(n) bits from the proof. If the input be-

longs to the language, there is a correct proof that is accepted with probability c. Oth-

erwise, no proof is accepted with probability more than s. Feige et al. [33] showed that

NP ⊆ PCP1,1/2(O(log n log log n), O(log n log log n)). Arora and Safra [11] and Arora et al.

[10] improved this result to show that NP ⊆ PCP1,1/2(O(log n), O(1)), a result known as
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Table 1: Hardness Results for Max-Clique.

Hardness Factor Assumption
Feige et al. [33] 2log1−ε n, for any ε > 0 NP * DTIME(2(log n)O(1)

)
Arora and Safra [11] 2(log n)1/2−ε

P 6= NP
Arora et al. [10] nc, for some c > 0 P 6= NP
Bellare et al. [13] n1/30 NP * BPP
Bellare et al. [13] n1/25 NEXP * BPEXP
Feige and Kilian [34] n1/15 NP * coRP
Bellare and Sudan [14] n1/4−ε NP * ZPP
Bellare et al. [12] n1/3−ε NP * ZPP
H̊astad [51] n1/2−ε NP * coRP
H̊astad [50] n1−ε NP * ZPP
Engebretsen and n

2O(log n/
√

log log n)
NP *

Holmerin [31] ZPTIME(2O(log n(log log n)3/2))
Khot [69] n

2(log n)1−γ′ , for some γ′ > 0 NP * ZPTIME(2(log n)O(1)
)

the PCP Theorem. Since then, many different PCP constructions for languages in NP have

led to inapproximability results for several other problems in addition to Max-Clique.

Bellare and Sudan [14] defined a parameter called amortized free bits for PCPs. They

showed that if problems in NP have PCPs that use logarithmic randomness and f̄ amortized

free bits, then Max-Clique is hard to approximate within a factor of n1/(1+f̄)−ε unless

NP ⊆ ZPP. They constructed PCPs with 3 + δ amortized free bits for arbitrarily small

δ > 0. This implies a hardness factor of n1/4−ε for Max-Clique. The result was improved by

Bellare et al. [12] by constructing PCPs with 2 + δ amortized free bits. Finally, H̊astad [50]

gave a construction that achieved an amortized free bit complexity of δ for any constant

δ > 0, proving n1−ε hardness for Max-Clique. Simpler proofs of H̊astad’s result were given

by Samorodnitsky and Trevisan [97] and H̊astad and Wigderson [53]. Both these results

achieved amortized free bit complexity δ and amortized query complexity 1 + δ for any

constant δ > 0 (both parameters are optimal).

Khot [69] showed that Max-Clique cannot be approximated within a factor of n

2(log n)1−γ′

for some small constant γ′ > 0, assuming NP * ZPTIME(2(log n)O(1)
).
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4.1.1.2 Significance of Improved Hardness Results for Max-Clique

We consider it to be a significant problem to prove a hardness factor of n
2O(

√
log n)

for Max-

Clique. As mentioned before, Feige [32] showed that the Lovász θ-function can have an

approximation ratio as bad as n
2c
√

log n
for some constant c > 0. It would be interesting

to prove the same lower bound for any polynomial time algorithm. It would also fit in

nicely with Trevisan’s [103] lower bound of d
2O(

√
log d)

for Max-Clique on degree d graphs

(d thought of as a large constant). Blum [24] showed that if there exists a factor n
2
√

b log n

quasi-polynomial time approximation algorithm for Max-Clique, then there exists a quasi-

polynomial time algorithm to color a 3-colorable graph with nε colors, where ε = O(1/b).

Therefore, strong lower bounds for Max-Clique give evidence that the graph coloring prob-

lem is hard. Another motivation comes from a result of Feige and Kogan [37] who showed

that if the balanced bipartite clique problem can be approximated within a constant factor,

then there is a n
2O(

√
log n)

approximation for Max-Clique. We refer to Srinivasan’s paper [100]

for several other interesting consequences of proving strong hardness results for Max-Clique.

4.1.2 Chromatic Number

Feige and Kilian [35] showed the connection between randomized PCPs and inapproximabil-

ity of chromatic number. Using this result, they prove that it is hard to approximate chro-

matic number within a factor better than n1−ε for any constant ε > 0, assuming NP * ZPP.

Khot [69] constructs a more efficient verifier and obtains a hardness factor of n

2(log n)1−γ′ for

some constant γ′ > 0, assuming NP * ZPTIME(2(log n)O(1)
). We would like to emphasize

that the constant γ′ in Khot’s hardness results for Max-Clique and chromatic number is a

non-explicit (possibly extremely tiny) constant that depends on the proof of Raz’s Parallel

Repetition Theorem [92].

4.2 Our Techniques

Our main step to prove the improved inapproximability result for Max-Clique and chromatic

number is to first to show an improved inapproximability result for Min-3Lin-Deletion.

Definition 4.2.1 Let ⊕ denote addition modulo 2. Given a system of linear equations
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modulo 2

{ai0 ⊕ (
l
⊕

j=1
aijxj) = 0}i=1,2,...,M

as an input, Min-Lin-Deletion is the problem of finding the minimum number of equations

that need to be deleted so that the remaining system of equations has a satisfying assignment.

Min-3Lin-Deletion is the special case where exactly three of the coefficients ai1, ai2, . . . , ail

are non-zero for all i (i.e., each equation is over exactly 3 variables). An instance of the

Min-Lin-Deletion problem can be specified by a (M, l + 1) matrix

A =



a10 a11 . . . a1l

a20 a21 . . . a2l

...
...

...

aM0 aM1 . . . aMl


In this case, we say that A is a (M, l)-Min-Lin-Deletion instance. We refer to the minimum

fraction of equations that need to be deleted to find a satisfying assignment as the optimum

of A, denoted by Opt(A). That is, Opt(A) is the minimum possible fraction of 1s in AX,

where the minimum is taken over all vectors X = (1, x1, . . . , xl).

Min-Lin-Deletion-(c, s) is the problem of deciding whether the optimum of the input is

at most c or at least s (we let c and s depend on the size of the input). The parameters c

and s are called the completeness and soundness of this problem.

We say a Min-Lin-Deletion instance is k-restricted if each equation is over at most k

variables. We say a Min-Lin-Deletion instance is k-regular if every variable appears in

exactly k equations.

All instances of Min-Lin-Deletion considered in this chapter have the property that the

maximum number of variables in an equation is at most the number of linear equations

in that instance. Therefore, for simplicity, we assume that the size of a Min-Lin-Deletion

instance is the number of equations in it.

4.2.1 Reduction from Min-3Lin-Deletion to Max-Clique

We briefly explain here how the improved hardness result for the Min-3Lin-Deletion problem

leads to improved hardness results for Max-Clique (and similarly for chromatic number).
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Khot’s [69] reduction from Min-3Lin-Deletion to Max-Clique proceeds in two steps. (see

Section 4.3.1 and Section 4.3.2 for a detailed description of these steps). First, the Min-3Lin-

Deletion instance is reduced to the so-called Raz Verifier and a PCP is built on top of the

Raz Verifier. Then, the hardness result for Max-Clique follows from the PCP construction

using known techniques (see Lemma 4.3.5).

The strength of the hardness result for Max-Clique depends directly on the strength of

the Raz Verifier. To be precise, one would like to have a Raz Verifier with as low soundness

as possible, without losing much in completeness. Khot [69] starts with a size N instance

of Min-3Lin-Deletion-((log N)−β , 0.4) which is shown to be hard by H̊astad [52]. The Raz

Verifier is obtained via Parallel Repetition of a certain protocol constructed from the Min-

3Lin-Deletion instance. If u is the number of repetitions, then the soundness of the Raz

Verifier is 2−Ω(u). Thus the soundness can be lowered by taking u large enough. However,

the completeness of the Raz Verifier suffers with parallel repetition. The completeness of

the Min-3Lin-Deletion instance is (log N)−β and this limits u to be at most (log N)β . Note

that β > 0 is a tiny constant.

On the other hand, we start with the Min-3Lin-Deletion-(2−Ω(
√

log N), Ω (log−3 N))

instance given by Theorem 1.4.10. The completeness is good enough so that we may take

up to u = 2Ω(
√

log N) repetitions (we however take much fewer repetitions since we do not

want to blow up the size of the Raz Verifier). For some fixed constant c0, the soundness of the

Raz Verifier is (1− (1/ log3 N)c0)u, which is roughly 2−u/ log3c0 N . We pick u = (log N)K+3c0

for a large constant K and achieve a Raz Verifier with much lower soundness than earlier.

4.2.2 Overview of Our Construction

The main steps involved in showing inapproximability of Min-3Lin-Deletion are shown in

Figure 1. We start with the Min-3Lin-Deletion-(10−10, 0.4) problem shown to be NP-hard

by H̊astad [52]. We repeatedly perform two operations called tensoring and boosting on

this problem. This gives a reduction to a version of Min-Lin-Deletion that has a big gap

between completeness and soundness. But the instances of Min-Lin-Deletion produced by

the reduction can have equations with large number of variables. We first reduce the number
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Min-Lin-Deletion-(2−Ω(
√

log N3), 0.15)

log3
N3-restricted

7-regular

Min-3Lin-Deletion-(2−Ω(
√

log N), Ω(log−3
N))

[H̊astad]

Min-Lin-Deletion-(2−Ω(
√

log N2), 0.4)

Sum-Check Protocol

and

Low-degree Test

and boosting

Repeated tensoring

Trivial way to break a linear

equation into linear equations

over three variables

Min-3Lin-Deletion-(10−10, 0.4)

Figure 1: The main steps in proving an improved hardness factor for Min-3Lin-Deletion.

of variables appearing in an equation significantly by using the Sum-Check protocol and the

Low-degree Test. We then break each of the linear equations into equations over at most

three variables in a trivial way by introducing auxiliary variables. We now describe these

steps in more detail and explain the new ideas involved.

4.2.2.1 Hardness of Approximation Result for Min-Lin-Deletion

We define two operations called tensoring and boosting on Min-Lin-Deletion. These are

similar to the operations defined on Max-Lin-Q in Chapter 3. Tensoring involves taking

all possible pairs of linear equations, computing their “product”, and then replacing the

terms of the form xixj with xij and xi with x0i to get back a linear equation. This converts

a Min-Lin-Deletion-(c, s) instance to a Min-Lin-Deletion-(c2, s2) instance. Our aim is to

bring the completeness close to zero, while keeping the soundness close to 1/2. Therefore,

we cannot use tensoring repeatedly by itself (otherwise the soundness would also tend to

zero). We use a boosting step after every tensoring operation to work around this problem.

Given a Min-Lin-Deletion instance, boosting produces a new Min-Lin-Deletion instance by

picking O(1) equations from its input and adding all possible linear combinations of these
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equations to the output instance. The idea is that even if one the O(1) equations are

not satisfied by some assignment, half of the linear combinations of these equations will

also not be satisfied by the assignment. To keep the size of the output Min-Lin-Deletion

instance small, we pseudo-randomly generate only O(n) of the nO(1) possible ways to pick

O(1) equations from n equations. In this sense, this is similar to pseudo-boosting for Max-

Lin-Q. The reason we don’t need a separate kind of boosting here to get the initial gap

is that Lemma 1.4.9 already lets us choose any initial gap we want for Min-Lin-Deletion.

When given a Min-Lin-Deletion-(c, 0.16) instance as an input, boosting produces a Min-

Lin-Deletion-(σc, 0.4) instance as the output, for some absolute constant σ. Here, σ is the

length of a random walk we need to perform on the expander so that the probability of

visiting a subset containing 0.16 fraction of the vertices is at least 0.8.

After applying tensoring and boosting once to a Min-Lin-Deletion-(c, 0.4) instance, we

get a Min-Lin-Deletion-(σc2, 0.4). If we start with the completeness c = 1/(2σ), we could

apply tensoring and boosting repeatedly. The completeness will decrease each time while

the soundness stays at 0.4.

Both tensoring and boosting increase the number of variables appearing in each equation.

As a result, even though we start with a Min-3Lin-Deletion instance, the final instance of

Min-Lin-Deletion has a large number of variables appearing in an equation. To obtain the

inapproximability result for Min-3Lin-Deletion, we cannot simply break the equations into

smaller equations with at most three variables in the trivial way by introducing auxiliary

variables. The reason is that the gap between the completeness and soundness of the Min-

Lin-Deletion problem will then become insignificant. We instead use a technique based on

the Sum-Check Protocol.

4.2.2.2 Reducing the Size of Equations in a Min-Lin-Deletion Instance

We use the Sum-Check Protocol combined with the Low-degree Test (see Arora [7]) to

construct a PCP verifier for Min-Lin-Deletion. A typical constraint of the Min-Lin-Deletion

instance looks like:

x1 ⊕ x2 ⊕ . . .⊕ xn = a (6)
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The verifier tries to verify that this constraint is satisfied using logO(1) n queries (with access

to auxiliary tables as explained below). The test of the verifier is a linear predicate in the

logO(1) n bits read. This gives a reduction to the Min-Lin-Deletion problem in which every

equation is over at most logO(1) n variables. We can then break the equations into smaller

equations in the trivial way.

Let F be a field. Given a r-variate degree d polynomial f and a ∈ F, the Sum-Check

Protocol can be used to verify if the sum of the values of f on the sub-hypercube Sr of Fr

is equal to a, without having to read the value of f at all points on Sr. The prover needs to

provide some auxiliary data in the form of a Partial Sums Table. The non-adaptive verifier

under this protocol randomly reads a few values from the Partial Sums Table and uses the

value of f at one point in Fr and accepts or rejects the proof based on these values. We use

this protocol to check if a constraint of the input Min-Lin-Deletion instance (such as (6))

is satisfied. We fix a field F of characteristic 2 and associate the values of the variables to

points in Sr, for some appropriately chosen values of the parameters |F|, |S| and r. There

exists a polynomial f of “low” degree that takes these values on Sr. Checking if a linear

equation is satisfied is then basically the task of checking if the sum of the values of f on

the points in Sr (weighted by the coefficients of the variables in the equation) is a certain

target value. We use the Sum-Check Protocol for this purpose. The polynomial f is not

known to the verifier (since the values of the variables are not known to the verifier). Hence

we expect the prover to also provide a Points Table, a table with the value of f at all the

points in Fr. For the protocol to work, we need to make sure that the Points Table is in

fact “close” to a low degree polynomial. We use the Low-degree test for this purpose.

The Low-degree test expects a Lines Table as an auxiliary input. The Lines Table is

supposed to contain the restriction of f to every line in Fr. The test picks a random point

and a random line through the point. It then checks that the value of the point as reported

in the Points Table and the value of the line as reported in the Lines Table are consistent.

All the tests performed by the Sum-Check protocol and the Low-degree Test are linear in

the field elements. Since the field F has characteristic 2, these can be replaced by linear

tests over Boolean values if the field elements are encoded as appropriate bit strings. The
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number of queries is logO(1) n and hence we get linear constraints with logO(1) n size.

Layout of the Chapter

We provide an overview of the construction of Khot’s [69] PCP for Min-3Lin-Deletion

in Section 4.3.1. We explain how this implies inapproximability of Max-Clique using a

result from Zuckerman [108] and Bellare et al. [12] in Section 4.3.2. We mention the tools

from Feige and Kilian [35] and Khot [69] required to show our inapproximability result for

chromatic number in Section 4.3.3.

Section 4.4 shows the gap amplifying reduction from Min-3Lin-Deletion to Min-Lin-

Deletion. We use this to show a improved hardness factor for Min-3Lin-Deletion in Section

4.5. We combine these results in Section 4.6 and Section 4.7 to show an improved hardness

for Max-Clique and chromatic number respectively.

4.3 Preliminaries

4.3.1 PCP Verifier of Khot [69]

In this section, we explain the main steps involved in the construction of Khot’s PCP

verifier. As with other PCP based constructions, the first step is the construction of a Raz

Verifier (also known as the outer verifier) based on a 2-Prover 1-Round game. Khot [69]

uses a Raz Verifier for the gap version of Min-3Lin-Deletion shown to be hard by H̊astad

[52]. The Raz Verifier reads a constant number of locations from the proof which is over a

large alphabet. The PCP verifier is obtained from this verifier by encoding the proof using

Hadamard Codes.

4.3.1.1 The Raz Verifier

We first define a 2-Prover 1-Round game based on the 7-regular Min-3Lin-Deletion problem.

The game consists of a verifier and two provers. The aim of the provers is to convince the

verifier that there exists an assignment to the variables in the Min-3Lin-Deletion instance

A which satisfies almost all equations. The verifier picks a random variable x and a random

equation that contains the variable x. The verifier then passes the variable and the equation

to the first and the second prover respectively. The first prover returns an assignment to
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x and the second prover returns a assignment to the three variables in the equation. The

verifier accepts if the assignments to x returned by both the provers are equal and the

equation is satisfied by the values returned by the second prover. It is easy to check that

if Opt(A) ≤ ε, then there exists a proof that is accepted with probability at least 1− ε. If

Opt(A) ≥ s, then the verifier rejects any proof with probability at least s/3.

The Raz Verifier is obtained by repeating this protocol u times in parallel. It picks u vari-

ables U = (x1, x2, . . . xu) independently at random and u equations W = (C1, C2, . . . Cu),

where each equation Ci is a random equation containing the variable xi. The proof is

supposed to consist of two parts: one part consisting of a u-bit string P (U) corresponding

to every u-tuple U of the variables, and another part consisting of a 3u-bit string Q(W )

corresponding to every u-tuple W of the equations. The string P (U) is interpreted as an

assignment to the u variables in U and the string Q(W ) is interpreted as an assignment to

the 3u variables in the u equations of W . In any honest proof, P (U) will be the projection

of u coordinates from Q(W ). Define πU,W : F3u
2 → Fu

2 to be the projection that maps

an assignment to the variables in W to an assignment to the variables in U . The verifier

performs two tests with the strings P (U) and Q(W ). It accepts if πU,W (Q(W )) = P (U)

and Q(W ) satisfies the u equations in W .

It follows that if Opt(A) ≤ ε, then there exists a proof that is accepted with probability

at least (1 − ε)u ≥ 1 − εu. To upper-bound the acceptance probability of the verifier, we

need the following version of the Parallel Repetition Theorem which is implicit in Raz [92]

(see remark about Theorem 1.1 in [92]).

Lemma 4.3.1 If no proof for the 2-Prover 1-Round game is is accepted with probability

greater than 1 − s, then the Raz Verifier does not accept any proof with probability greater

than (1− sc0)u for some absolute constant c0.

4.3.1.2 The Hadamard Code Based Verifier

Based on the Raz Verifier defined above, Khot [69] constructs a Hadamard code based

verifier Vlin for Min-3Lin-Deletion which is more efficient and easier to analyze than Long

code based verifiers for 3SAT. We next define Hadamard codes. Recall χα defined in Section
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2.2.2.

Definition 4.3.2 Let F2 = {0, 1} denote the field over two elements.

The Hadamard code of a u-bit string a ∈ Fu
2 , denoted by Hadamard(a), is the string of

length 2u given by (χα(a))α∈Fu
2
.

The construction and analysis of the verifier Vlin are based on the verifiers of Sudan and

Trevisan [101] and Samorodnitsky and Trevisan [97]. The queries of the verifier are chosen

so as to minimize a parameter known as the amortized free bit complexity.

Definition 4.3.3 A PCP verifier is said to use f free bits if there exists a set of f bits

from its queries such that for any possible answer for these queries, there is a unique answer

to the remaining queries that makes the verifier accept. The amortized free bit complexity

f̄ is defined to be f
log(c/s) , where c and s are the completeness and soundness of the verifier.

Both the tests of the outer verifier, checking if P (U) and Q(W ) are consistent and

checking if Q(W ) satisfies the u equations corresponding to W , have to be performed by

reading a few bits from the proof. Instead of the values of the strings P (U) and Q(W ), the

verifier Vlin expects the proof to contain Hadamard codes of P (U) and Q(W ). The second

test is performed implicitly by a technique known as folding.

Folding: Let W = (C1, C2, . . . Cu) be a list of u linear constraints. The 3u-bit string

y = Q(W ) provided in the proof is supposed to satisfy the u constraints Ci. That is,

the Raz verifier checks if the string y satisfies hiy = ζi for i = 1, 2, . . . , u. Let B be the

Hadamard code of y. Let h = ⊕ρihi for any ρi ∈ {0, 1}. That is, h is a vector in the linear

span H of the vectors {hi}i=1,2,...,u. Then,

B(b⊕ h) = (−1)y(b⊕h) = (−1)yb(−1)
P

i ρiyhi = B(b)(−1)
P

i ρiζi

Since the above statement is true as long as B is a valid Hadamard code, instead of reading

B(b⊕h) from the proof, the verifier Vlin can read B(b) and compute B(b⊕h) from it. The

verifier identifies one element (say, the lexicographically smallest element) from each of the

set-theoretic cosets of H in F3u
2 as the representative of the coset. The prover is expected
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to provide the value of B only at these points. We call this the folding of B with respect

to the constraints W = (C1, C2, . . . Cu). If b is a representative of a coset, then the value of

B at some other point b⊕ h in the coset is computed using the identity above.

We now mention an important consequence of folding of Hadamard codes shown by

Khot [69]. Recall from Section 2.2.2 that Parseval’s identity implies that for any function

A : Fu
2 → {−1,+1},

∑
α∈Fu

2
Â2

α = 1. Khot [69] shows that if B is folded with respect to W ,

then B̂β 6= 0 for some β ∈ F3u
2 only if β satisfies the u equations corresponding to W , i.e.,

hiβ = ζi for all i = 1, 2, . . . , u. This property is used to “decode” a “good” proof for the

verifier Vlin to obtain a “good” proof for the Raz Verifier. Given a purported Hadamard

code A (or B), it is decoded to the string α (or β) with probability Âα (or B̂β, respectively).

This defines a natural way to convert a proof for Vlin to a proof for the Raz verifier. A

consequence of folding is that such a proof will always succeed the second test of the Raz

Verifier. That is, the label Q(W ) will always satisfy the u equations in W .

The Test of the Verifier: We now define the verifier Vlin for Min-3Lin-Deletion. Vlin

expects the Hadamard codes of P (U) and Q(W ) for all U and W . The Hadamard code for

Q(W ) is assumed to be folded over W . The verifier performs the following test.

1. Pick a random u-tuple U of the variables.

2. Define two nodes U and W to be neighbors if ∀i ∈ {1, 2, . . . u}, the ith equation in W

contains the ith variable in U . Pick k u-tuples (Wj)j∈1,...,k of equations independently

from the set of neighbors of U . Let πj = πU,Wj be the projection from Wj to U . Let

π−1
j : Fu

2 → F3u
2 be the function such that π−1

j (a) is the unique string that maps to a

under the projection πj and contains zeros at the 2u coordinates that get mapped out.

Let A be the purported Hadamard code of P (U). Let Bj be the purported Hadamard

code of Wj . As mentioned above, the Bj are folded over Wj .

3. Pick k strings a1, a2, . . . , ak ∈ Fu
2 independently at random. Pick k strings b1, b2, . . . ,

bk ∈ F3u
2 independently at random.
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4. Test whether ∀i, j ∈ {1, 2, . . . k}

A(ai)Bj(bj)Bj(π−1
j (ai)⊕ bj) = 0

and accept if all the k2 linear tests above succeed.

The following is a slightly modified version of Theorem 3.1 in [69].

Lemma 4.3.4 The verifier Vlin when given a 7-regular Min-3Lin-Deletion instance A of

size N

• Uses r = u log N + O(ku) random bits.

• Queries 2k + k2 bits from the proof. Of these, f = 2k are free query bits.

• If Opt(A) ≤ ε, then the verifier accepts with probability ≥ 1− εku.

• If Opt(A) ≥ s and (1 − (s/3)c0)u ≤ δ2, then the verifier accepts any proof with

probability at most 2−k2
+ δ, where c0 is the constant mentioned in Lemma 4.3.1.

The first two claims about the verifier are easy to check. We now justify the claim about the

completeness of the verifier. Suppose there exists an assignment satisfying 1− ε fraction of

the equations in the Min-3Lin-Deletion instance. Consider a proof for Vlin constructed from

one such assignment honestly. The ku equations corresponding to the Wjs are all satisfied

with probability (1− ε)ku ≥ 1− εku. The projection functions πj are always satisfied for a

honest proof. Let x = P (U) and yj = Q(Wj) so that πj(yj) = x ∀ 1 ≤ j ≤ k. Then,

A(ai)Bj(bj)Bj(π−1
j (ai)⊕ bj) = (−1)xai(−1)yjbj (−1)yj(π

−1
j (ai)⊕bj)

= (−1)xai(−1)πj(yj)ai = 1

The proof of claim about the soundness of Vlin is based on the analysis of Samorodnitsky

and Trevisan [97] and Fourier analysis of Hadamard codes. Khot [69] shows that if there

exists a proof that is accepted by Vlin with probability greater than 2−k2
+ δ for any δ > 0,

then it can be decoded to get a proof for the Raz Verifier that is accepted with probability

δ2. If Opt(A) ≥ s and (1− (s/3)c0)u ≤ δ2, where c0 is the constant defined in Lemma 4.3.1,

this contradicts the soundness of the Raz Verifier. Khot [69] only considers the special case

when s is a constant, like 4/10.
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4.3.2 From PCPs to Hardness of Approximating Max-Clique

The following theorem implicit in [108] and [12] relates the properties of a verifier for 3SAT

to the inapproximability of Max-Clique. The proof of the theorem involves two main steps.

The first step is the construction a FGLSS graph (see [33]) based on the verifier. The second

step involves boosting the gap in the size of the largest clique in the FGLSS graph using

a technique of Zuckerman [108] based on dispersers. The reader is referred to Engebretsen

and Holmerin [31, Lemma 6.3] for the explicit statement and proof of the theorem.

Lemma 4.3.5 Assume there exists a verifier for 3SAT that uses r random bits, makes f

free queries and achieves completeness c and soundness s. Let R > r be any integer. Let

D = (R + 2)/ log s−1. Then, there exists a reduction from 3SAT to Max-Clique that when

given a 3SAT instance φ produces a graph G with N ′ = 2R+Df vertices such that:

• If φ is satisfiable, then with probability 2/3, there is a clique of size at least cD2R/2

in G.

• If φ is not satisfiable, then with probability 2/3, the size of the largest clique in G is

at most 2r.

The running time of the reduction is polynomial in N ′ and the running time of the verifier.

In the same way as in Khot [69], we combine it with Lemma 4.3.4 which implies a verifier

for 3SAT with low amortized free bit complexity and obtain the inapproximability result

for Max-Clique.

4.3.3 Randomized PCPs and Hardness of Approximating Chromatic Number

Feige and Kilian [35] showed the connection between randomized PCPs and inapproxima-

bility of chromatic number. We first define randomized PCPs before we state their formal

result.

Definition 4.3.6 A pair (S, ν) is said to be an accepting pattern of a PCP verifier on input

x if for some random string, S is the set of bits read from the proof and ν is an assignment

to these bits that makes the verifier accept. We denote by Tx the set of all accepting patterns
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for input x. A proof Π is said to be consistent with τ = (S, ν) if the value specified by Π for

the positions in S is ν.

A PCP verifier V is said to be a randomized PCP for language L with parameters

(r, f, ρ, s) if the verifier uses r random bits, uses f free bits and satisfies the following

conditions:

• If the input x to the verifier V belongs to L, then there exists a set of proofs {Π1,Π2, . . .}

and a probability distribution on the proofs such that for all τ ∈ Tx,

Pri[Πi is consistent with τ ] ≥ ρ.

In this case, we say that x has a ρ-covering set of proofs.

• If the input x to V does not belong to L, then for any proof Π,

Pr[V accepts the proof Π] ≤ s

Feige and Kilian [35] start with the Long code based PCP verifier for 3SAT given by

H̊astad [50] and then randomize it. Given an instance φ of 3SAT, they construct the

FGLSS graph G (see [33]) based on this verifier, construct the product graph Gt and take

its randomly induced subgraph G′ of appropriate size. For our purposes, we will need the

following result of [35] that relates the satisfiability of φ to the chromatic number of G′. This

theorem is implicit in [35] and the reader is referred to Khot [69] for the explicit statement

and proof.

Lemma 4.3.7 If 3SAT has a randomized PCP with parameters (r, f, ρ, s), then for any

integer h, there exists a randomized reduction from 3SAT to chromatic number that when

given a 3SAT instance φ produces a graph G′ over N ′ = (2r/s)h vertices satisfying the

following conditions:

• If φ is satisfiable, χ(G′) ≤ 2 ln N ′

ρ .

• If φ is unsatisfiable, with probability 1/2, χ(G′) ≥ N ′

h2r+f , where χ(G′) denotes the

chromatic number of the graph G′.
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The running time of the reduction is polynomial in N ′ and the running time of the random-

ized PCP verifier for 3SAT.

Khot [69] gives an alternative approach to obtain a randomized PCP based on his

Hadamard code based verifier for Min-3Lin-Deletion. This verifier is easier to randomize

and yields a stronger hardness factor for chromatic number. The first step is to show

a stronger reduction from 3SAT to Min-3Lin-Deletion such that if the 3SAT instance is

satisfiable, then instead of just one good assignment to the Min-3Lin-Deletion instance, we

have a collection of assignments that “cover” all the equations in it.

Lemma 4.3.8 ([69]) For any constants ε, δ > 0, there exists a polynomial time algorithm

A′1 that when given a 3SAT formula φ of size n produces a Min-3Lin-Deletion instance A1

such that:

• (Yes Case:) If φ is satisfiable, there exists a set of assignments Λ for A1 such that

for every equation in A1, at least (1 − ε) fraction of the assignments satisfy it. We

say that A1 is (1− ε)-coverable and Λ is a (1− ε)-covering for A1.

• (No Case:) If φ is not satisfiable, then no assignment satisfies more than 1/2 + δ

fraction of the equations.

We finally need the following result from Khot [69] to construct a randomized PCP for

coverable Min-3Lin-Deletion.

Lemma 4.3.9 ([69]) For any ε, k, u > 0 (where all the parameters can be a function of

N), there exists a randomized PCP verifier Vrand for Min-3Lin-Deletion such that Vrand

when given an input A of size N :

• Uses r = u log N + O(ku) random bits and f = 2k free query bits.

• If A is (1 − ε)-coverable and εku ≤ 1/2, then there exists a ρ-covering proof for A

where ρ = 2−(2k+1).

• If no assignment satisfies more than 1 − s fraction of the equations in A and (1 −

(s/3)c0)u ≤ δ2, then the verifier accepts any proof with probability at most 2−k2
+ δ,

where c0 is the constant mentioned in Lemma 4.3.1.
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The running time of Vrand is polynomial in 2r.

4.4 Hardness of Approximating Min-Lin-Deletion

We begin by analyzing two operations on Min-Lin-Deletion necessary to accomplish Step 1

in Figure 1. The first operation called tensoring is similar to the operation of tensor product

of two linear codes used in [30].

Definition 4.4.1 The tensoring of a system of linear equations modulo 2

{ai0 ⊕ (
l
⊕

j=1
aijxj) = 0}i=1,2,...,M

is the system

{ai10ai20 ⊕ (
l
⊕

j2=1
ai10ai2j2x0j2)⊕ (

l
⊕

j1=1
ai1j1ai20x0j1)⊕ (

l
⊕

j1=1

l
⊕

j2=1
ai1j1ai2j2xj1j2)

= 0}i1,i2=1,...,M

In other words, for every pair of equations, the tensoring contains a linear equation

that is obtained by taking the product of the two equations and replacing xj1xj2 in each

term with the variable xj1j2 and xj with x0j . In the matrix form, the tensoring of the

Min-Lin-Deletion instance

a10 a11 . . . a1l

a20 a21 . . . a2l

...
...

...

aM0 aM1 . . . aMl





1

x1

...

xl


= 0

is 

a10 a11 . . . a1l

a20 a21 . . . a2l

...
...

...

aM0 aM1 . . . aMl





1 x01 . . . x0l

x01 x11 . . . x1l

...
...

...

x0l xl1 . . . xll





a10 a20 . . . aM0

a11 a21 . . . aM1

...
...

...

a1l a2l . . . aMl


= 0

where the the xijs in the second matrix are the variables in the new instance.

Lemma 4.4.2 Let Opt(A) ≤ ε for some instance A of Min-Lin-Deletion. Let B be the

Min-Lin-Deletion instance obtained by tensoring A. Then Opt(B) ≤ ε2
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Proof: Fix an assignment to the variables x1, x2, . . . , xl in the Min-Lin-Deletion instance

{(
l
⊕

j=1
aijxj)⊕ ai0 = 0}i=1,2,...,M

that satisfies at least a fraction 1− ε of the equations. Define xj1j2 = xj1xj2 and x0j1 = xj1

for all j1, j2 ∈ {1, 2, . . . , l}. Then,

ai10ai20 ⊕ (
l
⊕

j2=1
ai10ai2j2x0j2)⊕ (

l
⊕

j1=1
ai1j1ai20x0j1)⊕ (

l
⊕

j1=1

l
⊕

j2=1
ai1j1ai2j2xj1j2)

= ai10ai201.1⊕ (
l
⊕

j2=1
ai10ai2j2 .1.xj2)⊕ (

l
⊕

j1=1
ai1j1ai20xj1 .1)

⊕ (
l
⊕

j1=1

l
⊕

j2=1
ai1j1ai2j2xj1xj2)

= (ai10 ⊕ (
l
⊕

j1=1
ai1j1xj1))(ai20 ⊕ (

l
⊕

j2=1
ai2j2xj2))

Clearly this evaluates to 1 only if the ith1 equation and the ith2 equation of the Min-Lin-

Deletion instance A are both not satisfied. Therefore if at most εM equations of the instance

A are not satisfied, then at most ε2M2 equations of the instance B are not satisfied. �

Lemma 4.4.3 Let Opt(A) ≥ s for some instance A of (M, l)-Min-Lin-Deletion. Let B be

the Min-Lin-Deletion instance obtained by tensoring A. Then Opt(B) ≥ s2

Proof: Fix any assignment (xj1j2) to the tensoring of A. Denote by X∗ the matrix

1 x01 . . . x0l

x01 x11 . . . x1l

...
...

...

x0l xl1 . . . xll


We want to show that the M ×M matrix AX∗AT has a 1 in at least s2 fraction of the

entries.

Let X = (1, x01, x02, . . . , x0l). Since Opt(A) ≥ s, AX has at least sM non-zero entries.

Define V = AX∗ Then, V is an M × (l + 1) matrix with at least sM 1s in the first

column. That is, V T has at least sM columns that have a 1 in the first row. Again,

since Opt(A) ≥ s the product of each of these sM column vectors with A results in a

column vector with sM 1s. Therefore, AV T has a 1 in s2M2 entries, and hence so does

AX∗AT = V AT = (AV T )T . �
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We next define an operation called boosting that brings the optimum of a Min-Lin-

Deletion instance closer to 1/2.

Definition 4.4.4 Let A be a (M, l)-Min-Lin-Deletion instance. Let GM be the 5-regular

Gabber-Galil graph with M vertices (If M is not of the form 2p2, add a sufficient number of

all-zeros rows to A). Associate each vertex v of GM with a row Av of A. Let σ = 5× 109.

We define the boosting of A to be the (l5σ−12σ, l)-Min-Lin-Deletion instance B obtained

as follows. For each of the l5σ−1 possible walks (v1, v2, . . . , vσ) on Gp of length σ, add 2σ

rows to B where each row is one of the 2σ possible linear combinations of the row-vectors

Av1 ,Av2 , . . . ,Avσ . We call each such group of 2σ rows a cluster of rows.

In the above definition, we generate cluster of rows corresponding to only O(M) of all

possible elements of V σ. We do so in order to keep the size of the Min-Lin-Deletion instances

produced small. We also note that, for our purposes, any class of expander graphs that can

be generated in polynomial time will do in the above definition.

Lemma 4.4.5 Let A be a (M, l)-Min-Lin-Deletion instance with Opt(A) ≤ ε, and let B

be its boosting. Then, Opt(B) ≤ σε.

Proof: Adding zero-rows to A to make the number of rows of the form 2p2 only decreases

Opt(A). Hence we ignore that issue in the proof. Fix a vector X = (1, x1, . . . , xl) such

that AX has the minimum number of 1s possible. Let (v1, v2, . . . , vσ) be a walk on GM .

Suppose AviX = 0 for all 1 ≤ i ≤ σ. Then any linear combination of the Avis also has a

dot-product zero with X. That is, all rows of B in the cluster corresponding to this walk

have dot-product zero with X. It is a easy consequence of Lemma 3.2.6 that at least a

fraction 1− σε of the clusters in B satisfy this property. This implies that BX is a vector

with at least 1− σε fraction of the entries being zero. �

We use the following corollary to Lemma 3.2.4 to analyze the soundness of the boosted

instance. The proof is similar to that of Corollary 3.2.5.

Corollary 4.4.6 Let W be a subset of GM containing at most a fraction 0.85 of the vertices.

Then, for σ = 5 × 109, the fraction of walks of length σ that do not contain a vertex from

W̄ is at most 0.2.
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Lemma 4.4.7 Let A be a (M, l)-Min-Lin-Deletion instance with Opt(A) ≥ 0.16, and let

B be its boosting. Then, for M large enough, OPT (B) ≥ 0.4.

Proof: Since we need to add only O(
√

M) zero-rows to A to make the number of rows

to be of the form 2p2, we can assume Opt(A) ≥ 0.16 − O(
√

M/M) ≥ 0.15 for M large

enough. Fix any vector X = (1, x1, . . . , xl). Then, AX has a 1 at at least 0.15 fraction of

the entries. Consider a walk (v1, v2, . . . , vσ) on Gp. Suppose AviX 6= 0 for some 1 ≤ i ≤ σ.

Then, exactly half of the 2σ linear combinations of the Avis have non-zero dot-product with

X. From Corollary 4.4.6, at least 0.8 fraction of the walks of length σ visit a row that has a

non-zero dot product with X. Since half of the rows in the cluster corresponding to such a

walk have a non-zero dot-product with X, BX has at least 1/2× 0.8 = 0.4 fraction of the

entries as non-zero. Since this statement is true for any arbitrary vector X = (1, x1, . . . , xl),

Opt(B) ≥ 0.4. �

Theorem 4.4.8 There exists a 2O(log2 n) time algorithm A2 that when given a Min-3Lin-

Deletion instance A1 of size N1 outputs a Min-Lin-Deletion instance A2 of size N2 =

2O(log2 n) such that:

• (Yes Case:) If Opt(A1) ≤ 10−10, then Opt(A2) ≤ 2−Ω(
√

log N2)

• (No Case:) If Opt(A1) ≥ 0.4, then Opt(A2) ≥ 0.4

Proof: The algorithm A2 works by repeatedly tensoring and boosting A1. Let B1 be

the Min-Lin-Deletion instance obtained by tensoring A1 and let B′
1 be the boosting of

B1. If Opt(A1) ≤ ε, then Opt(B′
1) ≤ σε2. On the other hand, if Opt(A1) ≥ 0.4, then

Opt(B′
1) ≥ 0.4 too since B1 will have soundness 0.42 = 0.16. B1 has N2

1 equations and

hence B′
1 has at most O(N2

1 ) equations.

Let A2 be obtained from A1 by repeatedly tensoring and boosting it q = log log N1

times. Then, A2 has N2 = (O(N1))2
q

equations. The construction of A2 from A1 takes

2O(log2 n) time since tensoring and boosting are both polynomial time operations in their

input size. We also have:

67



• (Yes Case:) If Opt(A1) ≤ 10−10, we get Opt(A2) ≤ (O(1))2
q

since εσ ≤ 1/2. This

implies log N2 = O(2q log N1), and hence log N2 = O(log2 N1). Therefore, 2q =

log N1 ≥ Ω(
√

log N2).

• (No Case:) If Opt(A1) ≥ 0.4, then Opt(A2) ≥ 0.4.

�

4.5 Hardness of Approximating Min-3Lin-Deletion

In this section, we formally state the second step mentioned in Figure 1. The equations in

A2 produced by A2 in Theorem 4.4.8 can be over a large number of variables. We use the

Sum-Check Protocol combined with the Low-degree Test (see Arora [7]) to get the number

of variables in an equation down to a poly-logarithmic number.

Theorem 4.5.1 There exists a polynomial-time reduction A3 from a Min-Lin-Deletion in-

stance A2 of size N2 to a Min-Lin-Deletion instance A3 such that:

• A3 has size N3 = N
O(1)
2 . Also, A3 is log3 N3-restricted. That is, each equation of A3

is over at most log3 N3 variables.

• Opt(A3) ≤ Opt(A2). This implies that Opt(A3) ≤ 2−Ω(
√

log N3) if we have Opt(A2) ≤

2−Ω(
√

log N2).

• Assuming N2 is large enough, Opt(A2) ≥ 0.4 implies Opt(A3) ≥ 0.15.

Proof: To prove the theorem, we first construct a probabilistic polynomial-time verifier V

for Min-Lin-Deletion with the following properties:

1. The acceptance test is non-adaptive. That is, V determines the test only based on A2

and its random string.

2. Each test of V is a logical AND of k smaller tests, where k = O(log N2) and each of the

smaller tests is a linear equation mod 2 over O(log2 N2) bits of the certificate/proof.

We call these the basic tests corresponding to the random string.

3. A3 uses O(log N2) random bits.
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4. (Yes Case:) There exists a certificate for A2 that is accepted with probability ≥

1−Opt(A2).

5. (No Case:) If Opt(A2) ≥ 0.4, then any certificate for A2 is accepted with probability

at most 0.7.

The variables in the output Min-Lin-Deletion instance A3 then correspond to the bits in the

certificate. For each possible random string of length O(log N2) to V, A3 adds 2k = 2O(log N2)

equations, corresponding to all possible linear combinations of the basic tests mentioned

in Property 2. Therefore, A3 has N3 = N
O(1)
2 linear equations where each equation is

over kO(log2 N2) = O(log3 N2) variables. By Property 4, there is an assignment to the

variables in A3 such that all the 2k equations corresponding to 1 − Opt(A2) fraction of

the random strings are accepted. If Opt(A2) ≥ 0.4, then it follows from Property 5 that

for at least a 0.3 fraction of the random strings, one or more of the O(log N2) basic tests

corresponding to each of these strings must fail. This implies that if Opt(A2) ≥ 0.4, then

Opt(A3) ≥ 0.3× 1/2 = 0.15. We next describe the verifier.

Let the number of variables in A2 be n2. Then, n2 ≤ N2
2 since each equation in A2 is

over at most N2 variables. Define h = dlog n2e, m = dlog n2/ log log n2e and d = (h− 1)m.

Then, hm ≥ n2. The verifier V picks a field (F,+, ·) of characteristic 2 with 2q elements,

where 2q ≥ d3m. Let S be any subset of F of size h. The elements in F can be represented

by bit strings of length q such that for any α = (α1, α2, . . . , αq) and α′ = (α′1, α
′
2, . . . , α

′
q) in

F, we have

• α + α′ is the bitwise xor of the two strings.

• The kth bit of α · α′ is ⊕i,j=1,2,...,qαicijkα
′
j , where the cijk only depends on the field.

Let the prover wish to prove that a certain assignment to the variables x1, x2, . . . , xn2

in A2 satisfies a “large” number of linear equations. The prover is expected to provide a

certificate consisting of:

• The values of a multivariate polynomial f(y1, y2, . . . , ym) on the points in Fm, where

f has degree h− 1 in each of the m variables. This is called the Points Table.

69



Sm

F
m

xi ↔ (y1, y2, . . . , ym)

Figure 2: The hypercube Fm.

• For every line l in Fm, a univariate degree d = m(h − 1) polynomial gl(t). This is

called the Lines Table.

• For the ith line in Fm, for every k = 0, 1, . . . ,m−1 and every (θ1, θ2, . . . , θk) ∈ Fk, the

coefficients of a univariate polynomial pi,θ1,θ2,...,θk
(yk+1) with degree 2(h− 1). This is

called the Partial Sums Table. The polynomials for k = 0 are denoted as pi,∅(y1).

All the field elements are expected to be provided as bit-strings with the aforementioned

properties. V associates the variables in A2 to different points in Sm (see Figure 2). The

last bit of f(y1, y2, . . . , ym) is supposed to be the value to be assigned to the variable xj

corresponding to (y1, y2, . . . , ym). It can be verified that the degree of f is large enough

to represent any assignment to the variables xj . Let ci(y1, y2, . . . , ym) be the unique mul-

tivariate polynomial of degree ≤ h − 1 in each variable such that ci(y1, y2, . . . , ym) is the

coefficient of the variable xj corresponding to (y1, y2, . . . , ym) in the ith equation of A2 (If

no variable xj corresponds to (y1, y2, . . . , ym) ∈ Sm, then ci(y1, y2, . . . , ym) is defined to be

zero). Note that ci(y1, y2, . . . , ym) can be computed from A2. Then testing that an equation

ai0 ⊕ (
m
⊕

j=1
aijxj) = 0 is satisfied reduces to checking if

∑
(y1,y2,...,ym)∈Sm

ci(y1, y2, . . . , ym)f(y1, y2, . . . , ym) = ai0

Note that ci(y1, y2, . . . , ym)f(y1, y2, . . . , ym) is a degree 2(h− 1)m polynomial. The polyno-

mial pi,θ1,θ2,...,θk
(yk+1) is supposedly the unique degree 2(h− 1) univariate polynomial such
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that

pi,θ1,θ2,...,θk
(yk+1) =∑

yk+2,...,ym∈Sm−k−1

ci(θ1, . . . , θk, yk+1, . . . , ym)f(θ1, . . . , θk, yk+1, . . . , ym)

Also, gl(t) is the supposed restriction of the polynomial f to the line l. That is, if l(t) =

θ+θ′t is the parametric representation of the line l for some θ,θ′ ∈ Fm, then gl(t) = f(l(t)).

The verifier performs the following tests:

1. (The Low-degree Test) Repeat the following 4δ−1 times, where δ = 10−4/2. Pick a

line l in Fm and t ∈ F uniformly at random. Check that gl(t) = f(l(t)).

2. (The Sum-Check Protocol) Pick i ∈ {1, 2, . . . , N2} uniformly at random (i.e., the

verifier is trying to verify the ith equation of A2). Pick θ = (θ1, θ2, . . . , θm) from Fm

uniformly at random.

(a) Check that
∑
y1∈S

pi,∅(y1) = ai0

(b) Check that ∀j : 1 ≤ j ≤ m− 1,

∑
yj+1∈S

pi,θ1,...,θj
(yj+1) = pi,θ1,...,θj−1

(θj)

(c) Check that pi,θ1,...,θm−1(θm) = ci(θ1, . . . , θm)f(θ1, . . . , θm)

The verifier accepts if all the above tests succeed. The test is clearly non-adaptive. All the

O(1)+1+O(m)+1 = O(m) basic tests mentioned above are linear in the field elements read,

and hence can be broken down into k = O(m log |F|) = O(m log(d3m)) = O(log N2) smaller

linear tests over the bits read. Each of these smaller tests is over at most O(d) log |F| =

O(log2 N2) bits read. The randomness used is O(log |F|) + O(log N2) + O(m log |F|) =

O(log N2). It is easy to see that if the prover selects the best assignment to A2 and

constructs the proof honestly as expected, it is accepted with probability ≥ 1 − Opt(A2).

On the other hand, if Opt(A2) ≥ 0.4), then no proof is accepted with probability ≥ 0.7.

The analysis of Sum-Check Protocol and Low-degree Test are based on Theorem 4.15 and

Lemma 4.12 of Arora [7].
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Suppose the prover selects the best assignment to the variables in A2 and constructs

the certificate honestly as expected. The Low-degree Test always succeeds. The Sum-

Check Protocol also succeeds when the equation of A2 that is selected is satisfied by the

assignment. This happens with probability at least 1−Opt(A2). Therefore, there is always

a certificate that is accepted with probability 1−Opt(A2).

Let us now consider the case when Opt(A2) ≥ 0.4. Assume the Low-degree Test succeeds

with probability ≥ 1/4. Since |F| = Ω(d3m) and δ ≤ 10−4, Arora [7, Theorem 4.15] implies

that f agrees with some degree d = m(h − 1) polynomial F on all but δ fraction of the

points in Fm. Therefore, with probability 1 − δ, f and F agree on the point (θ1, . . . , θm)

used in the Sum-Check Protocol.

We now analyze the Sum-Check Protocol. Pick a value of i uniformly at random. With

probability at least 0.4,

∑
(y1,y2,...,ym)∈Sm

ci(y1, y2, . . . , ym)F (y1, y2, . . . , ym) 6= ai0

Assume this is the case. From Lemma 4.12 in [7], with probability at least 1 − 2dm/|F|,

either one of the tests in Test 2a or Test 2b fails, or

pi,θ1,...,θm−1(θm) 6= ci(θ1, . . . , θm)F (θ1, . . . , θm)

With probability 1 − δ, f and F agree at (θ1, . . . , θm). Therefore, with probability ≥

0.4(1− 2dm/|F|)− δ = 0.4(1− Ω(d−2))− δ, the Sum-Check protocol fails.

Therefore, assuming N2 is large enough, either the Low-degree Test fails with probability

≥ 3/4, or the Sum-Check Protocol fails with probability ≥ 0.3. That is, no proof is accepted

with probability greater than 1− 0.3 = 0.7. �

Proof of Theorem 1.4.10: The algorithm A first uses A2 and A3 to convert a Min-3Lin-

Deletion instance A1 of size N1 to a Min-Lin-Deletion instance A3 of size N3 = 2O(log2 n). A

produces its output by breaking each linear equation in A3 into O(log3 N3) smaller equations

having at most 3 variables by introducing auxiliary variables. An equation of the form

x1 ⊕ x2 ⊕ . . .⊕ xk = a0
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is broken into

x1 ⊕ x2 ⊕ y1 = 0

y1 ⊕ x3 ⊕ y2 = 0

...

yi−2 ⊕ xi ⊕ yi−1 = 0

...

yk−3 ⊕ xk−1 ⊕ xk = a0

We call the smaller equations added for an equation in A3 to be a cluster of equations

corresponding to it. For simplicity, we will assume that each cluster has the same number

of equations (just add enough number of trivially satisfied equations). The size of A is

N = O(N3 log3 N3).

It is easy to see that all the equations in a cluster can be satisfied if the equation in

A3 corresponding to the cluster is satisfied. It then follows immediately that Opt(A) ≤

Opt(A3). Also, if Opt(A3) ≥ 0.15, then Opt(A) ≥ Ω(log−3 N3). This is because for any

assignment, at least 0.15 fraction of equations in A3 are unsatisfied, and for each unsatisfied

equation, at least one equation in its cluster is not satisfied.

The Min-3Lin-Deletion instance A as defined above is not regular. But it can be con-

verted to a 7-regular Min-3Lin-Deletion instance as in the proof of Theorem 10.2 in [9].

This only incurs a constant factor loss in the soundness. �

4.6 Hardness of Approximating Max-Clique

We now prove Theorem 1.4.7. The proof is by reduction from 3SAT to Max-Clique. We

first construct a verifier for 3SAT. We then apply Lemma 4.3.5 to this verifier.

Proof of Theorem 1.4.7: Fix any constant γ > 0. Let β > 0 be a constant that will

later be fixed to a large enough value. Let A1 be a polynomial time reduction from 3SAT

to Min-3Lin-Deletion-(10−10, 0.4) whose existence is guaranteed in Lemma 1.4.9. We first

compose the algorithms A1 and A to obtain a 2O(log2 n) time algorithm that when given

a 3SAT instance φ of size n produces a 7-regular Min-3Lin-Deletion instance A of size

N = 2O(log2 n) such that:
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• If φ is satisfiable, then Opt(A) ≤ ε, where ε = log−β N (note that 2−Ω(
√

log N) ≤

log−β N).

• If φ is not satisfiable, then Opt(A) ≥ s′, where s′ = Ω(log−3 N) can be achieved.

We next use the verifier Vlin mentioned in Lemma 4.3.4 with the parameters as u =
1
2

3

√
5

ε2 log(1− s′c0)−1
and k = 3

√
log(1− s′c0)−1

5ε
to obtain a verifier for 3SAT with the

following parameters:

• The constant β can be made large enough so that r = O(ku) = O(ε−1) = O(logβ N) =

(log n)O(1). The number of free bits is f = 2k.

• If φ is satisfiable, the verifier accepts with probability c ≥ 1− εku ≥ 1/2.

• Let δ = 2−k2
. Then (1 − s′c0)u ≤ δ2, which implies the soundness s of the verifier is

at most 2 · 2−k2
.

Note that k = O((logβ/3 N)×(log−c0 N)) = (log n)O(1) and u = O((log2β/3 N)×(logc0 N)) =

(log n)O(1). Therefore, u = O(k2 log3c0 N).

As the final step we use Lemma 4.3.5 on the above verifier for 3SAT with the parameter

R = rk. Then, D = (R + 2)/(k2− 1) and N ′ = 2R+Df ≤ 22R = 22rk ≤ 2O(k2u) ≤ 2(log n)O(1)
.

Then, assuming NP * BPTIME(2(log n)O(1)
), there cannot exist a polynomial time algorithm

that can distinguish if there is a clique of size at least cD2R/2 or there is no clique of size

more than 2r. This implies that the size of the largest clique in a graph with N ′ vertices

cannot be approximated within a factor N ′α where

α =
log(cD2R/2)− log 2r

log N ′ =
D log c + R− 1− r

R + Df
= 1− Df + D log(1/c) + r + 1

R + Df

≥ 1−

(
R+2
k2+1

)
(2k + 1) + r + 1

R +
(

R+2
k2+1

)
2k

≥ 1−O(r/R) = 1−O(1/k)

The fact that N ′ ≤ 2O(k2u) implies log N ′ = O(k4 log3c0 N) = O((log N)4β/3−c0). For a

large enough value of β, β/3− c0 > (4β/3− c0)(1/4− γ) which implies α ≥ 1−O(1/k) ≥

1− (log N ′)−1/4+γ . �
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4.7 Hardness of Approximating Chromatic Number

It turns out that repeated applications of tensoring and boosting on a Min-Lin-Deletion

instance improve its “coverability” (see Lemma 4.3.8) and our process for converting Min-

Lin-Deletion to Min-3Lin-Deletion preserves the “coverability”.

Proof of Theorem 1.4.8: We first give a reduction from 3SAT to the covering version

of Min-3Lin-Deletion. Given a 3SAT formula φ of size n, we produce a Min-3Lin-Deletion

instance A1 of size N1 = nO(1) using the reduction given by Lemma 4.3.8 with the param-

eters ε = 10−10 and δ = 0.4. We use the reduction A defined in Theorem 1.4.10 to convert

A1 to a 7-regular Min-3Lin-Deletion instance A of size N = 2O(log2 N1) = 2O(log2 n). If φ

is unsatisfiable, the analysis of Theorem 1.4.10 shows that A has no assignment satisfying

more that 1− s′ fraction of the equations for some s′ = Ω(log−3 N). We now consider the

case when φ is satisfiable. Lemma 4.3.8 guarantees that A1 is (1 − 10−10)-coverable. We

now show how the various steps of reduction A change the covering parameter. Let B be

a Min-Lin-Deletion instance and let Λ be a ρ-covering for B.

• Tensoring: Any pair of assignments in Λ naturally translates to an assignment to the

tensoring B′ of B. It can be verified that the set Λ′ of assignments to the variables

in B′ that consists of these |Λ|2 assignments is a 1− (1− ρ)2-covering for B′.

• Boosting: If B′ is the boosting of B, then Λ is a (1− σ(1− ρ))-covering for B′. This

is because given any set of σ equations in B, the probability that a randomly picked

assignment from Λ does not satisfy at least one of them is at most σ(1− ρ).

• Sum-Check Protocol and Low-degree Test: Let B′ be the output of the reduction A3

defined in the proof of Theorem 4.5.1 on input B. We can construct |Λ| proofs for

the verifier V based on each assignment in Λ, which eventually gives a set Λ′ of |Λ|

assignments to the variables in B′. If the equation from B picked by V for some

random string is satisfied by the assignment used to construct the proof, the V will

accept the proof. That is, all the linear predicates of V are satisfied in this case. It

follows from this argument that that Λ′ is a ρ-covering for B′.
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• Breaking equations to obtain a Min-3Lin-Deletion instance: Let B′ be the result of

breaking the equations in B as stated in the proof of Theorem 1.4.10 by introducing

auxiliary variables. Let xis be the variables in B, and let yjs be the auxiliary variables

introduced in B′. For any given assignment to the xis, there exists an assignment

to yjs such that if an equation in B is satisfied, then all the equations in the cluster

corresponding to it in B′ are satisfied.

This shows that if φ is satisfiable, then A has a (1 − 2−Ω(
√

log N))-covering. We now use

Lemma 4.3.9 to obtain a randomized PCP for 3SAT. Let γ > 0 be any constant. Let β > 0

be a constant that will be fixed to a large enough value later. As in the proof of Theorem

1.4.7, set ε = log−β N , u =
1
2

3

√
5

ε2 log(1− s′c0)−1
and k = 3

√
log(1− s′c0)−1

5ε
. This gives a

randomized PCP for 3SAT with the following parameters:

• The constant β can be made large enough so that r = O(ku) = O(ε−1) = O(logβ N) =

(log n)O(1). The number of free bits is f = 2k.

• If φ is satisfiable, then it has a 2−(2k+1)-covering proof since 1− εku ≥ 1/2.

• Let δ = 2−k2
. Then (1 − s′c0)u ≤ δ2, which implies the soundness s of the verifier is

at most 2.2−k2
.

Let ρ = 2−(2k+1). As the final step, we use Lemma 4.3.7 for this (r, f, ρ, s) randomized

PCP for 3SAT with h = u to obtain a reduction from 3SAT to chromatic number. When

given a 3SAT formula φ of size n, the reduction produces a graph G′ of size N ′ = (2f/s)h =

2h(2k+k2−1) = 2O(k2u) = 2(log n)O(1)
such that:

• If φ is satisfiable, χ(G′) ≤ 2 ln N ′

ρh .

• If φ is unsatisfiable, with probability 1/2, χ(G′) ≥ N ′

h2r+f , where χ(G′) denotes the

chromatic number of the graph G′.

Therefore, assuming NP * coRTIME(2(log n)O(1)
) or equivalently NP * ZPTIME(2(log n)O(1)

),

no randomized polynomial time algorithm can approximate chromatic number in a graph
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with N ′ vertices better than N ′α where

α =
log(N ′ρh)− log(h2r+f2 ln N ′)

log N ′ = 1− h log(1/ρ) + log h + r + f + 1 + log(lnN ′)
log N ′

≥ 1−O

(
hk

h(2k + k2 − 1)

)
≥ 1−O(1/k)

where the first inequality follows since log(1/ρ) = O(k), r = O(ku) = O(hk) and f = O(k).

Once again as in Theorem 1.4.7, we can make β large enough so that β/3 − c0 > (4β/3 −

c0)(1/4− γ) which implies α ≥ 1−O(1/k) ≥ 1− (log N ′)−1/4+γ . �

4.8 Conclusions

Recently, Samorodnitsky and Trevisan [98] showed that, assuming the Unique Games Con-

jecture of Khot [71], it is hard to approximate Max-Clique in degree d graphs better than

d/polylog(d). This suggests that Max-Clique on general graphs could be hard to approxi-

mate within n/polylog(n). We think it is a challenging (and important) open problem to

prove such a hardness result, or even to improve the hardness result to n
2O(

√
log n)

.
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CHAPTER V

MONOTONE MULTILINEAR BOOLEAN CIRCUITS FOR

BIPARTITE PERFECT MATCHING REQUIRE EXPONENTIAL SIZE

5.1 Introduction

Let BPM (PM) denote the problem of finding whether a bipartite (general) graph has a per-

fect matching. In this chapter, we show that under two different restrictions on the function

calculated by AND gates and OR gates, monotone circuits for BPM require exponential

size.

As defined by Nisan and Wigderson [89], an arithmetic circuit is multilinear if at each

gate the power of any variable in minimal representation of the polynomial computed is at

most 1. Equivalently, for any product gate, the minimal representation of the polynomials

of its two input gates have no variable in common. A recent result of Raz [93] shows

a super-polynomial lower bound on multilinear arithmetic formulas for the permanent.

Multilinearity for arithmetic circuits has been extensively studied due to the lack of strong

lower bounds for general arithmetic circuits and because they seem to be the most intuitive

circuits for multilinear functions [89, 93].

We already defined multlinearity for Boolean circuits (Definition 1.4.11). To the best

of our knowledge, our lower bounds are not implied by any of the known lower bounds for

arithmetic and Boolean circuits. When a multilinear Boolean circuit for BPM is converted

to an arithmetic circuit in the natural way (by replacing the AND and OR gates by product

and plus gates), it does not necessarily yield a multilinear arithmetic circuit for permanent

because Boolean circuits can use idempotence.

In what follows, we will assume that all circuits are monotone Boolean circuits in which

the AND and OR gates have fan-in 2 (but the fan-out can be unbounded). The size of

a circuit is the number of gates in it. The inputs to the circuit correspond to potential

edges of a graph G on a set V = {1, 2, . . . n} of n vertices, where n is even. So in the
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BPM problem there is an input for each pair {i, j} in BPM where i ∈ {1, 2, . . . , n/2} and

j ∈ {n/2 + 1, n/2 + 2, . . . , n}. In PM we have a input for all pairs {i, j}. The input

corresponding to edge {i, j} is 1 if the edge is present in G and 0 otherwise.

5.2 Upper Bounds on Depth and Size of Monotone Boolean Circuits
for PM

Let S be an even sized subset of V . A subset m of edges is said to be an S-matching if m is

a matching with an edge incident on each vertex of S and no edge in m has one end point

in S and the other in S̄ = V − S (m may contain edges that have both end-points in S̄).

We say that m is an exact S-matching if m is an S-matching and m has no edge incident

on a vertex in V − S.

We first describe the depth upper bound for PM.

Lemma 5.2.1 PM has monotone circuits of O(n) depth.

Proof: We first give the construction when n = 2k for some number k. If n = 2, the

construction is trivial. So assume n > 2. Suppose for each S ⊆ V, |S| = n/2, we are given a

circuit CS that evaluates to 1 iff there is a S-matching in the input graph G. If we take the

AND of CS and CS̄ , we get a circuit CP that evaluates to 1 iff there is a perfect matching

that does not cross the partition P = {S, S̄}. If we take the OR of all circuits corresponding

to the partitions of V into two sets of n/2 vertices, we get a circuit CV for perfect matching

on V (see Figure 3). Since the number of partitions of V into n/2 vertices is n!
2!(n/2)!2

, the

depth of the OR gates at the output of CV is blog n!− log 2!−2 · log(n/2)!c ≤ d(n) for some

function d(n) = O(n). Therefore the depth of CV is d(n)+max
S

depth(CS) where depth(C)

is the depth of circuit C. The CS may be recursively constructed the same way as CV since

CS is a circuit for perfect matching on the graph induced by S. Therefore the depth of

C ≤ d(n) + d(n/2) + . . . = O(n). If n were not a power of 2, at each level of recursion,

split the set of vertices into two sets of even sizes in the most balanced way. For example if

n = 36, we need to consider all subsets of size 18 at the first level, all subsets of size 8 and

10 at the second level, all subsets of size 4 and 6 at the third level and so on. We still get

that d(CS) = O(|S|) and gives depth(CV ) = O(n). �
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OR gate

AND gate

CSr
CS2

CS1
CS̄1

CS̄2
CS̄r

Figure 3: Construction of circuit CV for showing the depth upper bound.

The upper bound on size for PM obtained above is nO(1)23n/2 as the level of recursion

that contains the maximum number of gates is the second level with O(
(

n
n/2

)(n/2
n/4

)
) gates.

Since finding if there is a perfect matching in a bipartite graph on n vertices is the same as

checking whether the permanent of the n/2×n/2 incidence matrix is not zero, we can obtain

a upper bound of nO(1)2n/2 on size for BPM by replacing the product and sum gates in the

arithmetic circuit for permanent given in Jerrum and Snir [59]. The same approach can

be generalized to obtain a better size upper bound for PM as follows. In the construction

in Lemma 5.2.1, instead of considering partitions {S, S̄} into the most balanced even sets,

consider all partitions such that S is a set of two vertices, one of which is the vertex of

smallest index in V . Now the circuit for each S̄ can be constructed recursively. At level 2,

we need at most
(
n−1
n−2

)
subcircuits to compute the different possible values for S̄. In general,

at level i, we need at most
(

n−i
n−2i

)
subcircuits. Solving for the value for i that maximizes(

n−i
n−2i

)
, we get that the circuit constructed has size O(20.695n).

5.3 Lower Bound on Size of Restricted Monotone Circuits for BPM

Throughout this section, we assume that the inputs to a circuit correspond to the edges of

a bipartite graph G on a bipartition {V ′, V̄ ′} of V into equal sets. We use the notion of

minterm from Karchmer and Wigderson [63] to analyze the circuits.

Definition 5.3.1 A minterm of a monotone Boolean function is a minimal set of variables
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that when set to 1, the function evaluates to 1 irrespective of the value of the other variables.

Let C be a circuit and let g be a gate in it. The function computed by g is defined as

the Boolean function representing the output of g in terms of the input gates. The set of

minterms of g in circuit C, denoted by mintermC(g) (or minterm(g) if the circuit is clear

from the context) is the set of minterms of the function computed by g.

The edge set of gate g is the set of all edges that appear in some minterm of g. The

vertex set of a subset m of the edges is the set of all end points of the edges in m. The

vertex set of g is the vertex set of its edge set. The edge set and vertex set of a subcircuit

of C are defined to be the respective values for the output gate of the subcircuit.

We will use the following easy to verify facts about minterms (below g is a gate with input

gates g1 and g2):

• If g is an OR gate and m is a minterm of g, then m is a minterm of either g1 or g2.

• If g is an OR gate and m1 is a minterm of g1, then there exists a minterm m of g such

that m ⊆ m1.

• If g is an AND gate and m is a minterm of g, then there exist a minterm m1 of g1

and minterm m2 of g2 such that m = m1
⋃

m2.

• If g is an AND gate and m1 and m2 are minterms of g1 and g2 respectively, then there

exists a minterm m of g such that m ⊆ m1
⋃

m2.

5.3.1 Lower Bound for Circuits in Simple Form

Definition 5.3.2 A circuit is said to be in simple form if for any OR gate g in the circuit

with input gates g1 and g2, the vertex sets of g, g1 and g2 are the same.

It can be seen by induction that in a circuit in simple form, the vertex set of any minterm

of a gate is the same as the vertex set of the gate. The statement is true for input gates of

the circuit. If it is true for the input gates g1 and g2 of an OR gate g, it is true for g as well

since minterms of g are minterms of either g1 or g2. If the statement is true for the input

gates g1 and g2 of an AND gate g, all the minterms of g have the same vertex set since any
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minterm of g is the union of some minterm of g1 with some minterm of g2 and all minterms

of g1 have the same vertex set, as do minterms of g2.

Lemma 5.3.3 Assume n > 2. Let C be a monotone circuit for BPM in simple form. For

any perfect matching m, ∃Vm ⊆ V , |V |/3 ≤ |Vm| ≤ 2|V |/3 such that Vm is the vertex set of

some gate g and m is a Vm-matching.

Proof: Set U = V , m′ = m and let g be the output gate of C. At any stage later, we will

ensure that (U,m′, g) satisfy the following constraints:

(1) U is the vertex set of g.

(2) m′ is a subset of m, m′ is a minterm of g and U is the vertex set of m′ (and hence m

is a U -matching).

Also, let U > 2|V |/3, which is true initially when U = V . Since |V | = n > 2, the gate g

can not be an input gate.

• If g is an OR gate, one of the two input gates g1 or g2 of g, say g1, has m′ as a

minterm. Set g ← g′ and repeat.

• If g is an AND gate, let V1 and V2 be the vertex sets of its input gates g1 and g2

respectively. Without loss of generality, let |V1| ≥ |V2|. There must be some minterm

m1 of g1 and m2 of g2 such that m′ = m1
⋃

m2. From a remark above the lemma,

we know that the vertex sets of m1 and m2 are V1 and V2 respectively, and hence

U = V1
⋃

V2. Therefore (V1,m1, g1) satisfy conditions (1) and (2).

– If |V |/3 ≤ |V1| ≤ 2|V |/3, then V1 is the required value for Vm.

– If |V1| > 2|V |/3, set g ← g1 and U ← V1 and repeat.

– The case |V1| < |V |/3 is not possible since otherwise |V1| + |V2| ≤ 2|V |/3, con-

tradicting |U | > 2|V |/3.

Since C has a finite depth, and input gates have vertex sets of size 2, we will successfully

find a value for Vm. �
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The problem with proving the above lemma for general monotone circuits for BPM is

that for a particular gate, there can be two minterms with different vertex sets. So we can

not associate a set of vertices with each gate such that all its minterms are exact matchings

for the set.

Lemma 5.3.4 Monotone circuits for BPM in the simple form require Ω(2.459n) size.

Proof: Let n > 2 and let C be a monotone circuit in simple form for BPM. Enumerate

one set Vm satisfying the conditions of Lemma 5.3.3 for each possible perfect matching m

on the bipartition {V ′, V̄ ′}. For each U ⊆ V of size p, there are at most (p/2)!n−p
2 ! perfect

matchings that do not cross it (assuming G is a complete bipartite graph, this number

is exactly (p/2)!n−p
2 ! if U contains the same number of vertices from V ′ and V̄ ′ and zero

otherwise). Therefore, each U ⊆ V such that |V |/3 ≤ |U | ≤ 2|V |/3 corresponds to at

most (n/6)!(n/3)! perfect matchings. Since the number of perfect matchings in a complete

bipartite graph is (n/2)!, we must have enumerated

(n/2)!
(n/6)!(n/3)!

= nΩ(1)2(n/2 log 3−n/3) = Ω(2.459n)

distinct subsets of V , each of them corresponding to a different gate of C. Therefore, the

number of gates in C is Ω(2.459n). �

5.3.2 Lower Bound for Multilinear Circuits

An equivalent way of stating Definition 1.4.11 for circuits for BPM is that a circuit is

multilinear if the edge set of any AND gate is the disjoint union of the edge set of its input

gates. Unlike circuits in simple form, multilinear circuits are expressive enough to compute

any monotone Boolean function.

Definition 5.3.5 A circuit is said to be in the simplest form if it is in simple form and the

vertex set of any AND gate is the disjoint union of the vertex set of its input gates.

It can be seen that the circuits used to show the upper bounds on depth and size in Section

5.2 are all in the simplest form. Also note that circuits in simplest form are also multilinear.
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Theorem 5.3.6 A multilinear circuit of smallest possible size for BPM is also in the sim-

plest form.

Idea: Let C be a multilinear circuit for bipartite perfect matching on {V ′, V̄ ′} of smallest

possible size. We will define a required vertex set Vg for each gate g such that (g, Vg) satisfies

the following:

(1) If g is an AND gate with input gates g1 and g2, the required vertex of g is the disjoint

union of the required vertex sets of g1 and g2.

(2) If g is an OR gate with input gates g1 and g2, the required vertex sets of g, g1 and g2

are the same.

(3) There is at least one minterm of g that is an exact Vg-matching.

(4) All minterms of g have an edge to each vertex in Vg.

Definition 5.3.7 For two functions f and h, we say h is a pruning of f with respect to

V0 ⊆ V if every minterm of h is the superset of some minterm of f and every minterm of

f that is an exact V0-matching is also a minterm of h.

Note that pruning f multiple times with respect to the same set V0 results in a pruning of

f with respect to V0. Continuing with the properties of (g, Vg):

(5) Let g be a gate with an input g1. Let the output from g1 to g be replaced by the

output of a new subcircuit that computes a function f (see Figure 4). Assume that

f is a pruning of the output of g with respect to Vg1 . Then the new output of g is a

pruned function of the original output of g.

Intuitively, if an input gate g1 of an OR gate g has no minterm that is an exact Vg-

matching, we can replace the output from g1 to g with a zero input without affecting the

function calculated by the circuit. For gate g, the effect of this change is to increase the

size of some minterms while some minterms drop out. But all minterms that are exact

Vg-matchings are unaffected as they must have been minterms of the other input gate to
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Figure 4: Pruning the output from gate g1 to gate g.
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g1

g2

0

gOR
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Figure 5: Disconnecting the output of gate g1 to gate g in Lemma 5.3.8.

g. This pruning effect cascades all the way to the output gate. But the function calculated

by the output gate will remain the same as all its minterms will be exact matchings on its

required vertex set, namely V . We first formalize the intuition in the following lemma.

Lemma 5.3.8 Let C be a circuit for BPM. Let gOR be an OR gate in circuit C with

children g1 and g2. Assume there exists a set Vg defined for each gate g on the path from

gOR to the output (gOR inclusive) such that (g, Vg) satisfies (5). If g1 does not have any

minterm that is an exact VgOR-matching, then replacing the input from g1 to gOR with a

zero input (as shown in Figure 5) does not change the function calculated by C.

Proof: If m ∈ mintermC(gOR) is an exact gOR-matching, then m /∈ mintermC(g1). There-

fore m ∈ mintermC(g2). This implies m ∈ mintermC′(gOR). If m ∈ mintermC′(gOR), then
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m ∈ mintermC(g2). Therefore, ∃m′ ∈ mintermC(gOR) such that m′ ⊆ m. That is, the

output of gOR in C ′ is a pruned function of the output of gOR in C. Therefore, applying

property (5) to gate gOR and subsequently to all the gates along the paths to the output

gate, we see that the outputs of circuits C and C ′ are the same. �

We will apply a series of such pruning changes. One subtle point is that when pruning

is applied, it may violate multilinearity for AND gates (only) on the path between the gate

pruned and the output gate. But we get back multilinearity once all possible prunings are

performed since all minterms that are not exact Vg-matchings for a gate g will drop out

(hence the name pruning).

In the proof below, we might modify C by removing the connection between some gates.

If at any time, there is no path from a gate to the output gate, we assume that the gate has

been deleted without loss of generality (since such a gate can no longer affect the output of

the circuit).

Proof of Theorem 5.3.6: We first define the required vertex set in a top-down fashion.

The required vertex set of the output gate is defined to be its vertex set V . It can be seen

that it satisfies conditions (3) and (4). We define the required vertex set of a gate based on

the required vertex sets of its parents (gates to which it supplies an input) in C. For this

purpose, once the required vertex set of a gate g is defined it passes a requirement, a subset

of V , to each of its children g1 and g2 as defined below. We will not alter the subcircuit

rooted at a gate g before we define its required vertex set and pass the requirements to its

children. We will finally show that if C is in fact the smallest multilinear circuit, then we

could not have altered the circuit by pruning. Suppose the required vertex of a gate g has

been defined.

• Case 1: g is an AND gate: By property (3), ∃m ∈ minterm(g) such that m is

an exact Vg-matching. Therefore, ∃m1 ∈ minterm(g1) and ∃m2 ∈ minterm(g2) such

that m = m1
⋃

m2 and m1
⋂

m2 = ∅ (since the edge sets of g1 and g2 are disjoint. This

is because of the multilinearity of the original circuit and the fact that the subcircuit

rooted at g has not yet been modified). The requirements passed to g1 and g2 are the
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vertex sets of m1 and m2, say V1 and V2, respectively. We now show some properties

of (g1, V1) (analogous properties hold for (g2, V2)).

– Since V1 is the vertex set of m1, m1 is an exact V1-matching.

– Suppose some m′ ∈ minterm(g1) does not have an edge to some v ∈ V1. Then

some subset m′′ of m′⋃m2 is a minterm of g. Also, m2 does not have an edge to

v since m1
⋃

m2 was a V1
⋃

V2-matching and m1 has an edge to v. But then m′′

does not have an edge to a vertex v in the required vertex set of g, contradicting

(4) for (g, Vg). Therefore, all m′ ∈ minterm(g1) have an edge to each vertex of

V1.

– This also means that any m′ ∈ minterm(g) which is an exact Vg-matching is

produced by the (disjoint) union of m′
1 ∈ minterm(g1) and m′

2 ∈ minterm(g2)

where m′
1 and m′

2 are exact V1-matching and exact V2-matching respectively

(Since m′ = m′
1

⋃
m′

2 is an exact Vg-matching, if m′
1 is not an exact V1-matching,

then ∃e1 ∈ m′
1 such that e1 has an endpoint v2 ∈ V2. But m′

2 has some edge e2

incident on v2. For m′
1

⋃
m′

2 to be a matching, e1 and e2 must be the same edge.

But this contradicts the multilinearity of the original circuit).

– We will now show that pruning the output from g1 to g with respect to V1 prunes

the output of g with respect to Vg. Suppose we replace the output from g1 to

g with the output from a new subcircuit C1 having output gate g′1 to obtain a

new circuit C ′. Let the output of g′1 be a pruned function (with respect to V1)

of the output of g1. Then if m ∈ mintermC′(g), then ∃m1 ∈ mintermC′(g′1) and

m2 ∈ mintermC′(g2) = mintermC(g2) such that m = m1
⋃

m2. Since m1 is the

superset of some minterm of g1 in C, m is the superset of some minterm of g

in C. Also, if m ∈ mintermC(g) and m is an exact Vg-matching, then m is in

mintermC′(g) too (this follows from the previous property). That is, the output

of g in C ′ is a pruned function of that in C.

• Case 2: g is an OR gate: If g1 does not have any minterm that is an exact Vg-

matching, then we can modify C using Lemma 5.3.8; this will disconnect g1 from g.
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Gate g passes Vg as the requirement to g1 if it was not disconnected. We do the same

for g2 also. For now, assume that we don’t disconnect g1 from g. We will show some

properties for (g1, Vg) (analogous properties hold for (g2, Vg) if g2 was not disconnected

from g). If g2 were disconnected from g, treat g2 below to be the zero-gate.

– Obviously, there is a minterm of g1 that is an exact Vg matching, say m1 (other-

wise we would have disconnected g1 from g).

– Since every minterm of g1 is the superset of some minterm of g, all minterms of

g1 have an edge to every vertex in Vg.

– We will now show that if Vg were defined to be the required vertex set of g1,

then pruning the output from g1 to g with respect to Vg prunes the output of g

with respect to Vg. Suppose we replace the input to g from g1 with the output

from a new subcircuit C1 having output gate g′1 to obtain a new circuit C ′. Let

the output of g′1 be a pruned function (with respect to Vg) of the output of g1.

Then if m ∈ mintermC′(g), it is a superset of some minterm of g in C since

any minterm of g′1 in C ′ is a superset of some minterm of g1 in C and the set of

minterms of g2 is the same in C and C ′. If m ∈ mintermC(g) is an exact Vg-

matching, then this is still a minterm in C ′ since all minterms of g1 (respectively,

g2) in C that are exact Vg-matchings are minterms of g′1 (respectively, g2) in C ′

and the other minterms either did not shrink or they dropped out.

We have shown that for any requirement Vg1 passed to a gate g1, (g1, Vg1) satisfies (3)

and (4). But this must mean that all requirements passed to g1 from its parents must be

the same. We can then define this to be the required vertex set of g1.

We will now show that the required vertex set of a gate is in fact also the vertex set of the

gate. Let g be a gate whose required vertex set is not the same as its vertex set. Therefore

∃m ∈ minterm(g) with an edge e to a vertex outside its required vertex set. If g is an OR

gate, one of its two input gates, say g′, has m as a minterm. Since the required vertex sets

of g and g′ are the same, g′ too has an edge to a vertex v outside its required vertex set. If

g is an AND gate with inputs g1 and g2, then ∃m1 ∈ minterm(g1) and m2 ∈ minterm(g2)
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such that m1
⋃

m2 = m. Let e ∈ m1. Then g1 has a minterm m1 that has an edge to a

vertex v outside its required vertex set (since the requirement passed by an AND gate to

its input gate is a subset of its required vertex set). Since C has finite depth, we reach an

input gate of the circuit whose required vertex set is not the same as its vertex set. But

this is a contradiction of property (3).

Therefore, from conditions (1) and (2), circuit C is now in simplest form. But if we

removed the connection between an OR gate and its child using Lemma 5.3.8, we would

have decreased the size of the circuit (because we can eliminate the OR gate as explained

before the proof). This would contradict the assumption that the original circuit was a

multilinear circuit of smallest size for BPM. Hence a multilinear circuit for BPM of the

smallest size is also in the simplest form. �

Proof of Theorem 1.4.12: This is easily seen from Lemma 5.3.4 and Theorem 5.3.6,

since circuits in simplest form are also in simple form. �

5.4 Conclusions

We gave an analogue of Raz’s [93] lower bound for arithmetic formulas computing the

permanent in the Boolean setting. The class of circuits in simplest form that attain the

lower bound for multilinear circuits for BPM also happen to achieve all the upper bounds

we mentioned in Section 5.2. The upper bound on size mentioned in Section 5.2 and the

lower bound shown in Lemma 5.3.4 for BPM are very close showing that the analysis of the

lower bound for monotone multilinear Boolean circuits is quite tight.

As justified above, circuits in simplest form seem to be most natural circuits for PM and

BPM. An interesting open problem is to try and generalize our result to show that circuits

in simplest form are also the smallest (or close to the smallest) circuits for other kinds of

monotone circuits for BPM. Another interesting problem is to construct circuits not in the

simplest form that beat the upper bounds shown in Section 5.2.
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APPENDIX A

SOME BASIC NOTATION

The vertex cover of a graph is a subset of the vertices such that each edge of the graph has

at least one endpoint in the susbset.

A graph is said to be d-regular if the degree of every vertex is d.

A 3SAT instance is a conjunction of disjunctions where each disjunction is over exactly

three variables. The 3SAT problem is to decide whether a given 3SAT instance is satisfiable.

poly(n) (or simply polyn) is defined to be the set of all finite polynomials on n. Also,

Õ(f(n)) = O(f(n)poly log f(n)).

We denote by [n] the set {1, 2, . . . , n}.

Q denotes the set of rational numbers. R denotes the set of real numbers.

We denote the complement of a set S by S̄.

A.1 Complexity Classes

We give a brief description of the complexity classes that we used. Below, n is used to

denote the size of the input to an algorithm.

• P: The class of languages that have deterministic polynomial time algorithms.

• NP: The class of languages that have a polynomial time “verifier”. The verifier takes

takes a pair of strings (x, y) as input and satisfies the following:

– If x is in the language, there exists a “proof” y satisfying |y| ≤ p(|x|) that causes

the verifier to accept (x, y), where p is a polynomial that depends on the verifier.

– If x is not in the language, (x, y) is rejected for all y satisfying |y| ≤ p(|x|).

• DTIME(f(n)): The class of languages that have deterministic algorithms with running

time f(n).
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• BPTIME(f(n)): The class of languages that have algorithms that make (two-sided)

error with probability at most 1/3 and have running time f(n). BPP is defined as

BPTIME(nO(1)).

• ZPTIME(f(n)): The class of languages that have randomized algorithms that have

expected running time f(n) and make no error. ZPP is defined as ZPTIME(nO(1)).
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