PROJECT REPORT FORM

PROJECT NO. 1857 COOPERATOR Institute REPORT NO. 1 DATE August 24, 1955 NOTE BOOK 1248 PAGE 33 TO 73 SIGNED Hordon Hammes Gordon Hammes Copies to: <u>Files</u> Swanson Hammes

A PRELIMINARY INVESTIGATION OF THE FUNDAMENTAL PROPERTIES OF PITCH AND ITS COMPONENTS

SUMMARY

This report is concerned with the study of the fundamental properties of pitch films in an attempt to discover methods of controlling pitch problems in papermaking.

Four different methods of collecting pitch were attempted.

(1) The collapse of a monomolecular layer of pitch (obtained from an alcohol-benzene extract of groundwood).

(a) Tap water substrate yielded very poor results.

(b) A solution 10^{-6} M in calgon and saturated with thorium chloride yielded 0.0076 grams of pitch after collapsing ten films, and 0.0181 grams after collapsing twenty-five films.

(2) The collapse of a monomolecular layer of pitch formed in a continuous manner by bubbling air through a groundwood pulp solution. The substrate was distilled water 10^{-3} in thorium nitrate and adjusted to a pH of 6.9 with sodium hydroxide. Quantitative film collection was impossible; contamination of the surface film by small pulp fibers was great. A similar experiment using slash pine sawdust as a film source was also unsatisfactory.

and the second second

(3) Continuous pitch extraction without film collapse. Air was bubbled through a groundwood pulp solution causing film formation on the surface of a small tray of water. The film ran into an empty flask by means of a piece of filter paper looped over the edge of the tray. This method was too slow and cumbersome to be practical.

(4) Collection of foam. Air was bubbled through a flask containing groundwood pulp. The bubbles were swept into another beaker by means of a stirring rod. Two liters of foam resulted in a residue which contained 0.0974 grams of alcohol soluble material. This method gave a very contaminated foam and filtering was necessary.

Analysis of the pitch collected by foaming gave the following results: 20% rosin acids, 5.13% unsaponifiables, 3.4% fatty acid, and insoluble material which tested positive for lignin and weakly positive for carbohydrates.

Analysis of pitch collected by an alcohol-benzene extraction of groundwood pulp gave the following results: 10.5% rosin acids, 22.5% unsaponifiables, and 17.2% fatty acids.

Another pitch sample extracted from groundwood with alcoholbenzene and evaporated to dryness was only 78.2% soluble in an alcoholbenzene solution. This indicates polymerization or some similar insolubilizing process occurs during evaporation.

Pressure-area/gram curves were obtained for monolayers of pitch and its fractions by means of a surface balance. Doubly distilled water adjusted to a pH of 3 was used for these studies. The curves obtained contain many kinks. These may be real or may be due to the equipment used. Evidence points to extremely heterogeneous films with peculiar pressure-area curves. Pitch collected by foaming and pitch collected by extraction give different curves indicating different compositions. Extrapolation values (Table XVII) of the straight line portion of the curves for the different pitch types differed greatly.

The deposition of pitch films on step wedges of stearic acid was attempted. The substrate was doubly distilled water containing the following foreign ions: 1.60×10^{-3} in KHCO₃; 2.40×10^{-4} in BaCl₂ • 2H₂O; and 1.58×10^{-5} in CuCl₂ • 2H₂O. At pH 6.95 deposition was very poor. When the pH was raised to 8.2 with sodium hydroxide, better deposition occurred. By comparison with a known step wedge, a monomolecular pitch film was found to have approximately the same thickness as that of a stearic acid monolayer (25 Å). Evidence points to the fact that a pitch surface film may have a large gaseous phase.

More experimental work is needed before any general conclusions can be drawn.

INTRODUCTION

£

Project 1857 was created for the purpose of finding a solution to the problem of pitch control in the paper industry. This problem has faced papermakers for many years, but although many solutions have been suggested, no adequate one has been found.

The basic assumption of this investigation is that pitch exists as a surface film; therefore a study of the properties of this surface film should provide insight into the pitch problem. To gain this end, pitch must be collected and studied as a surface film by various instruments and techniques such as a surface balance and deposition on metal slides.

If our basic assumption is correct, a thorough knowledge of the properties of a pitch surface film should make the solution of the whole pitch problem only a matter of putting together pieces of experimental data.

EXPERIMENTAL WORK AND DISCUSSION

The first problem facing this project was the collection of pitch in large enough quantities so that it could be closely examined. Since the basic assumption underlying this project is that pitch exists as a surface film, only surface active materials should be collected for experimentation. Four different methods of collecting surface active pitch were attempted; none of these methods proved wholly successful.

. . . .

The method first attempted was the collapsing of the surface film in a trough filled with water. For preliminary experimentation a plexiglass tray, whose edges were covered with teflon tape, was used. Pitch was obtained from an alcohol-benzene extraction of groundwood pulp. This pitch was spread onto the surface of the water contained in the previously mentioned tray. The film was then collapsed by compressing it from both ends with glass barriers covered with teflon tape. When the film was collapsed in the middle of the tray, it was scooped from the water by a small scoop made of aluminum foil. The substrate first employed was tap water; however this was found to be unsatisfactory. A solution 10^{-6} M in calgon and saturated with thorium chloride was then tried. Because of the high pH of tap water, thorium hydroxide precipitated out of the solution and could be seen in the bottom of the tray. This precipitate was gradually depleted as films were collected indicating that thorium ion was combining with the surface film. Samples were collected and dried in the air for about an hour and a half. A brown sticky residue was found in the following amounts:

(a) Ten film collapses yielded 0.0076 grams.

(b) Twenty five film collapses yielded 0.0181 grams.

Since one film collapse takes from five to ten minutes this method of collection is obviously too slow to be of practical value.

In order to increase the efficiency of film collection, a larger tray was constructed (1 ft. by 4 ft.). A large flask with a notch in one side was mounted at one end of the tray.

The flask was filled with a pulp solution and air was bubbled through this flask by means of a gas dispersion tube. The pitch, being surface active, attaches itself to the air bubbles and rises to the surface where it spreads a film on the surface of the water in the tray. By use of this method. film formation is continuous. The collapsing and collecting of pitch films, therefore, should be very rapid. The substrate used in this experiment was a distilled water solution 10⁻³ M in thorium nitrate adjusted to a pH of 6.9 with sodium hydroxide. Using a two per cent solution of groundwood pulp as a source of pitch, film collection was attempted. Two difficulties immediately arose: film collapse was not very good; and small fibers came over from the flask and contaminated the film. A screen was put over the slot to control the latter difficulty, but it was not very effective. In order to obtain an uncontaminated film, a two per cent solution of slashed pine sawdust was put into the flask. This also proved unsuccessful because of tiny contaminating fibers present and poor film collapse.

The following apparatus was used in an attempt at a method of continuous pitch extraction.

Air_____Filter Paper Extracted with Benzene-Alcohol Pulp Solution_____Collected Pitch Film + H₂0

TOP VIEW

SIDE VIEW

Pitch film forms on the tray as in the previous experimental setup, but the film is carried to another flask by means of a piece of filter paper. This method of pitch collection proved impractical because of the large amount of water carried over with the film and because of the slowness of the process.

The collection of pitch as a surface film appeared to be impossible; therefore a foaming technique was employed to collect all surface active materials present in the pulp. A pulp solution was put into a large beaker, and air was bubbled through the solution by means of a gas dispersion tube. The bubbles that formed on the surface were swept into another beaker by means of a glass rod. In preliminary experimentation, the concentrated foam solution was evaporated to dryness, and, as a purification procedure, ether extractions were made of the residue. The results were as follows:

(1) 25 cc. of foam yielded 0.0027 g. of pitch

(2) 125 cc. of foam yielded 0.0141 g. of pitch

Two liters of the foam were collected and filtered. The resulting solution was evaporated to dryness in a vacuum at 40°C. Two extractions were performed on the residue. An ethyl alcohol extraction yielded a residue of 0.0974 grams when evaporated to dryness, while a benzene extraction immediately following the alcohol extraction yielded a residue of 0.0125 grams when evaporated to dryness. The residue obtained from the alcohol extraction was used as pitch in later studies. The foaming technique of collecting pitch has two major disadvantages: the residue obtained at first is essentially a water extract of the pulp because of the pulp fibers that are swept along with the foam; and the collection of foam is a very lengthy and tedious process.

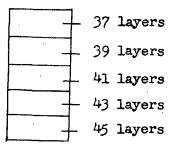
Before studying the properties of pitch film itself, the pitch was divided into four fractions: rosin acids, unsaponifiables, fatty acids, and insoluble material. The pitch collected by the forementioned foam technique contained 20.0% rosin acids, 5.13/unsaponifiables, and 3.4% fatty acid esters. The remaining insoluble material gave a positive test for lignin and a weak positive test for carbohydrate. Because the foam technique yielded a very small amount of pitch, pitch was also obtained by the extraction of groundwood pulp with a 2:1 alcohol-benzene solution. This extract was evaporated to dryness in a vacuum and separated into fractions. This pitch contained 10.5% rosin acids, 22.5% unsaponifiable,

and 17.2% fatty acids. Another sample of pitch collected in a similar manner was found to be 78.2% soluble in an alcohol-benzene solution. This seems to indicate that during the evaporation procedure oxidation or polymerization occurs resulting in the formation of insoluble materials. All samples of pitch and its fractions were stored in a dessicator under nitrogen to prevent oxidation.

The next step was to study the pressure-area curves of pitch and its fractions by means of a hydrophil balance. In this manner, some of the characteristics of monolayers of pitch and its fractions can be determined. A Cenco hydrophil balance with a steel torsion wire was set up in a trough and calibrated. In preliminary experiments, an aluminum trough coated with paraffin was employed; however this was later replaced by a plexiglass trough whose edges were covered with teflon tape. Preliminary work with pitch (obtained from an alcohol-benzene extract of groundwood pulp) and groundwood pulp itself revealed that their surface monolayers behaved very differently than monolayers of pure substances.

Pitch and its fractions were put into a benzene-alcohol solution. Known amounts of solution were put onto the surface of the water by means of a micropipette. In all cases doubly distilled water lowered to a pH of about 3 with hydrochloric acid was used. The surface film was compressed, expanded and recompressed in all cases. Graphs were made with the pressure being plotted against the area per gram. In the case of rosin acids, a

molecular weight of 302 (abietic acid) was assumed, and plots of pressure versus area per molecule were made. Typical data are summarized in Tables I-XVI, while typical graphs are shown in figures 1-10.


Examination of the graphs shows that all of the curves contain characteristic kinks which indicate phase changes. The kinks are not commonly found in pressure-area curves of pure substances, but they may be due to the heterogeneity of the monolayers of pitch and its fractions. The expansion and recompression curves are probably a function of time. Since no great effort was made at controlling this factor, these curves can be of little significance. Extrapolation of the straight line portion of each curve should give an area per gram (or area per molecule) which is constant for each particular substance. Extrapolation values obtained are summarized in Table XVII. Pure fatty acids give an area per molecule extrapolation value of approximately 20 $Å^2$ per molecule; however this value is not valid for heterogeneous films. In the case of pure rosin acids, the extrapolation value is from 40 to 50 $Å^2$ per molecule. Once again, however, heterogeneous films do not necessarily give these values.

The data obtained for pitch fractions acquired by foaming are probably less accurate than those obtained for pitch acquired by extraction because of the small weights involved in the former (3-5 mg.). Both types of pitch fractions, however, give different curves indicating that

the composition of these pitch fractions differ. Further data must be obtained in order to gain a thorough understanding of the pressure-area curves of these heterogeneous films.

A preliminary attempt to discover the conditions under which a pitch monolayer will deposit on a metal slide was made. At the same time, it was also possible to approximate the thickness of a pitch monolayer. In order to do this, stearic acid monolayers were deposited on chromium slides. Using the procedure outlined by Blodgett (1), step wedges of stearic acid were made, each step differing by two film thicknesses of stearic acid.

A TYPICAL STEP WEDGE

Each step has a particular color when viewed at a low angle with monochromatic light. By depositing a known number of layers on a stearic acid step wedge, the approximate thickness of the pitch layers can be determined by comparison with a duplicate step wedge with no pitch film deposited on it. A doubly distilled water solution of the following composition was used as substrate for the deposition of pitch film on stearic acid step wedges: 1.60×10^{-3} M in KHCO₃, 2.40×10^{-4} M in

 $B_aCl_2 \cdot 2H_20$, and 1.58 x 10⁻⁵ in $CuCl_2 \cdot 2H_20$. Attempts at pitch film deposition were made at two pH's:

- (1) pH 6.95 = Very spotty deposition. Impossible to determine film thickness.
- (2) pH 8.20 = The substrate was made basic by the addition of sodium hydroxide. Film deposition was greatly improved but not to the point of smooth film formation on the slide.

By comparison of the second slide with a step wedge of stearic acid, a pitch monolayer was found to be about the same thickness as a stearic acid monolayer (25 Å). Because of the fact that the pitch film is very easily compressed and because of the fact that film deposition is not even, one strongly suspects that the pitch monolayer has a large gaseous phase.

This concludes the experimental work accomplished thus far. Only the groundwork has been laid; the largest part of the work lies ahead.

FUTURE WORK

The first problem which must be resolved is how can pitch samples be collected? From the work done thus far, evidence points to the fact that the composition of pitch varies with the method of collection. An alcohol-benzene extraction of wood pulp does not guarantee that all

of the surface active materials have been obtained. Necessity may force the experimenter to go back to film collapse as a means of pitch collection. Possibly the best pitch source would be a hot water extract of wood pulp. This should contain all surface active material present in the pulp. Hand in hand with this problem is the obtaining of an accurate analysis of pitch. Until these problems are mastered, an accurate study of pitch film properties is impossible.

Once a method of pitch collection is found, further surface balance studies are necessary. Improved equipment must be built in order that accurate pressure-area curves can be found. Many of the apparent kinks in the curves obtained thus far may be due to faulty equipment rather than to the surface film. The time required to take a reading on the surface balance must be a constant for all readings. This is especially true of the expansion and recompression curves which appear to be direct functions of time. As soon as accurate pressure-area curves have been obtained for pitch and its fractions, a study of the pure substances should be made for the purpose of comparison, i.e. surface balance studies of abietic acid etc. should be made. The behavior of heterogeneous pitch films will then be more easily understood.

Further attempts at the deposition of pitch films on metal slides is also a necessity. The condition under which smooth films can be deposited should be determined. The film pressure necessary for

film deposition should also be found. This may be the key to the whole pitch problem.

Although much work remains to be done, the basic approach of Project 1857 to the pitch problem appears to be a good one. Through a study of the fundamental properties of pitch films, a solution to the paper industry's age old pitch problem should be only a matter of time.

LITERATURE CITED

1. Blodgett, K. B., J. Am. Chem. Soc., <u>57</u>, 1007 (1935).

gh/mab

TABLE I

ROSIN ACIDS OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = 24.8°C.

	Dynes/cm.		A	Area/	Area/
Compression	Expansion	Recompression	Area cm. ²	Gram x 10 ⁻⁵ cm. ²	Molecule
2.07	1.01		345	154	77.2
2,93			318	142	71.2
4.03		1.27	290	129	64.8
5.50	1.27		262	117	58.8
6.84		3.67	234	104.8	52.4
	2.28		221	9 8.8	49.4
8.69		4.96	207	93.8	46.4
9.52	4.66		193	86.4	43.2
10.1		9.02	179	80.0	40.0
10.7	7.59		166	74.4	37.2
10.8 (5)		10.7	152	67.6	33.9
11.0	10.4		138	61.6	30.9
12.3	11.0	11.7	110	49.6	24.8
13.9			96.6	43.2	21.6
15.9	14.1	16.7	82.8	37.2	18.6
18.2			69.0	30.8	15.4
20,5		21.6	55.2	25.6	12.8

TABLE II

ROSIN ACIDS OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $24.8^{\circ}C_{\bullet}$

	Dynes/cm.		A	Area/	Area/
Compression	Expansion	Recompression	Area cm. ²	$\frac{10^{-5}}{\text{cm}^2}$	Molecule A2
2.40			414	148	74.0
2.61			386	138	68.8
3.62			359	128	64.0
4.56			331	118	59.2
5.57	· ,		30 3	108	54.4
6.94	,		276	98.4	49.2
8.24	0.00		248	88.4	44.4
9.01			221	7 8.8	39.5
9.21	3.79	5.62	193	68.8	34.4
9.45		8.20	166	59.2	29.6
11.0	8.86	9.11	138	49.2	24.6
12.0			124	44.4	22.2
13.4	9.41	10.7	110	38.4	19.2
14.7			96. 6	34.4	17.2
16.2	13.5	16,3	82.8	29.6	14.8
18.8			69.0	24.8	12.4
20.5		20.6	55.2	19.6	9.8

TABLE III

 \mathbf{r}_{i}

UNSAPONIFIABLES OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $25.4^{\circ}C$.

	Dynes/cm.		Area	Area/Gram x 10^{-5}
Compression	Expansion	Recompression	cm. ²	cm ²
3.36			359	82.6
3.92			331	74.4
5.55			304	69.9
6,17			290	66.7
7.16	0.329		276	63.4
7.66			262	60.3
8.64	0.886	1.44	248	57.1
9.46			234	53.8
10.1	2.18	3.77	221	50.8
10.7	4.51	6.58	193	1111 11
13.9	8.03	10.1	166	38.2
16.6			152	34.9
18.8	10.3	11.0	138	31.8
21.0			124	28.5
22.7		18.0	110	25.4
		24.3 (?)	82.8	19.0

TABLE IV

.

UNSAPONIFIABLES OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $26.0^{\circ}C$.

	Dynes/cm.		A	· /a
Compression	Expansion	Recompression	Area cm. ²	Area/Gram x 10 ⁻⁵ cm. ²
2,66			455	83.7
3.75			41 4	76.2
4.51	0.00		380	69.9
5.52			359	66.0
7.22			331	60.9
7 .77			317	58 . 3
8.04	1.82	3.98	304	55.9
10.1	3.80	5.65	276	50.7
10.2 (5) .			262	48.2
10.4		9.32	248	45.6
10.6 (5)	9.50	10.1 (5)	221	40.7
13.9	10.4 (5)	10.9	193	35.5
16,2			179	32.9
18.3	13.4	15.2	166	30.5
20.5			152	28.0
21.7		21,1	138	25.4

TABLE V

FATTY ACIDS OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $27.0^{\circ}C$.

Dynes/cm.			Area	Area/ Gram x 10 ⁻⁵
Compression	Expansion	Recompression	cm. ²	Gram x 10 ⁻⁵ cm. ²
2.73			497	116
3.62			469	110
4.56			442	104
5.74			414	97.2
6.78	·		380	89.3
8.50			359	84.4
9.99	1.90		331	77.8
11.8 (5)			304	71.4
13.9	7.11	6.83	276	64.8
14.3			248	58.2
16.4 (5)	14.1 (5)	13.9 (5)	221	51.9
19.0	17.0 (5)	14.9	193	45.4
20.3			166	39.0
21.3		21.1	138	32.4

ł

TABLE VI

FATTY ACIDS OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $27.0^{\circ}C$.

Dynes/cm.			1700	Area/
Compression	Expansion	Recompression	Area cm. ²	$\frac{\text{Gram x 10}^{-5}}{\text{cm}^2}$
0.607			525	123
1.52			497	116
2.53			469	110
3.41			442	104 .
4,48			414	97.2
5.76			380	89.3
6.78			359	84.4
8.73	1.42		331	77.8
10.9			304	71.4
13.1	6.10	6.13	276	64.8
13.6 (5)			248	58.2
16.5	13.4 (5)	12.8	221	51.9
18.4	16.9	14,4	193	45.4
19.4 (5)			166	39.0
20.2 (5)		20,1 (5)	138	32.4

TABLE VII

ROSIN ACIDS OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = $27.0^{\circ}C$.

	Dynes/cm.		Amaa	Area/	Area/
Compression	Expansion	Recompression	Area cm. ²	Gram x 10-5 cm. ²	Molecule A2
1.39			580	74.4	37.2
2,35			525	67.3	33•7
3.87			469	60.2	30.1
5.09			414	53.1	26,6
6.31			380	48.7	24.4
7.04			359	46.0	23.0
8.61	0.00		331	42.4	21.2
9.66			304	39.0	19.5
10.5	2.33	4.02	276	35.4	17.7
10.7			248	31.8	15.9
11.0	7.64	9.72	221	28.4	14.2
11.2 (5)			193	24.8	12.4
12.0	10.9 (5)	11.1 (5)	166	21.3	10.7
13.0			138	17.7	8.86
14.4	12.9	13.5	110	14.2	7.10
16.3			82.8	10.6	5.30
18.3 (5)		18.2	55.2	7.07	3.54

TABLE VIII

ROSIN ACIDS OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = $28.2^{\circ}C$.

Dynes/cm.			Area	Area/	Area/ Malecula
Compression	Expansion	Recompression	cm.2	$\frac{10^{-5}}{\text{cm}^2}$	Molecule A2
1.74			552	70.7	35.4
3.39			469	60.2	30.1
5.16			414	53.1	26.6
6.27			380	48.7	24.4
6.93			359	46.0	23.0
8.34	0.00		331	42.4	21.2
9.92			304	39.0	19.5
10.7	2.33	4.02	276	35•4	17.7
10.9,			248	31.8	15.9
11.1	8.13	9.90	221	28.4	14.2
11.4			193	24.8	12.4
12.3	11.2	11.6	166	21.3	10.7
13.2 (5)			138	17.7	8.86
14.7 (5)	14.1	14.1	110	14.2	7.710
16.8			82.8	10.6	5.30
18.5		18.4	55.2	7.07	3.54

TABLE IX

UNSAPONIFIABLES OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = 28.0°C.

	Dynes/cm.		4.000	Area/
Compression	Expansion	Recompression	Area cm. ²	Gram x 10 ⁻⁵ cm. ²
2.66			359	71.8
4.53			331	66.2
6.56			304	60.8
7.04			290	58.0
8.35			276	55.2
9•35			262	52.4
10.6	0,380		248	49.6
11.3 (5)			234	46.8
11.5	3.24	4.78	221	44.2
11.7 (5)			207	41.4
12.0 (5)	8.18	9.85	193	38.6
13.1			179	35.8
14.2 (5)	11,5	11.6	166	33.2
15.5			152	30.4
16.4 (5)	13.4 (5)	13.4	138	27.6
17.4 (5)			124	24.8
18.5 (5)	17.2	16.8 (5)	110	22.1
19.4			96.6	19.3
20.4		19.2 (5)	82.8	16.6

TABLE X

; .

UNSAPONIFIABLES OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = $27.2^{\circ}C$.

	Dynes/cm.		Area	Area/ Gram x_10 ⁻⁵
Compression	Expansion	Recompression	cm. ²	Gram x 10 ⁻⁵ cm. ²
1.04			386	77.2
2.76			359	71.8
4.53			331	66.2
6.62			304	60.8
8.60	0.683		276	55.2
10.5			248	49.6
12.3	6.47	7.71	221	44.2
12.8	11.9	11.9	193	38.6
13 . 3			179	35.8
14.2 (5)	12.5 (5)	12.6 (5)	166	33.2
15.6			152	30.4
16.4	14.9	14.8	138	27.6
17.4			124	24.8
18.3	17.7	17.5*	110	22.1
19.4 (5)			96.6	19.3
20,3		18.5*	82.8	16.6

*Apparent loss of surface film.

TABLE XI

· -- 2.

- main

·· • ••

.

FATTY ACID ESTERS OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = $27.9^{\circ}C$.

	Dynes/cm.		Area	Area/
Compression	Expansion	Recompression	cm. ²	Gram x 10-5 cm. ²
1.36			414	86,2
2.86			359	74.9
4.86			304	63.3
6.13			276	57.5
7.42			248	51.7
8.79	1.14		221	46.1
9.83			207	43.2
10.3	4.00	4.88	193	46.3
10.7	7.04	8.49	166	34.6
11.5	10.4 (5)	10.5 (5)	138	28.8
13.1			124	25.8
14.5	12.4	12.0	110	23.0
15.4			96.6	20.1
16.3		16.3	82.8	17.3

and a strange the second

TABLE XII

FATTY ACID ESTERS OBTAINED BY FOAMING GROUNDWOOD PULP

TEMPERATURE = 28.2^{\circ}C.

Compression	Dynes/cm. Expansion	Recompression	Area cm. ²	Area/ Gram x 10 ⁻⁵ cm. ²
2.68			497	82.8
3.75			442	73.7
5.24			380	63 . 3
6.17			359	59.8
7.26	0.962		331	55.2
8.84			304	50.7
9.98	2.96	4.38	276	46.0
11.0	5.32	6.88	248	41.3
11.3		8.76	221	36.8
11.6	10.8	11.0	193	32.2
12.1			179	29.8
13.4 (5)	11.5	11.5	166	27.7
14.3 (5)			152	25.3
15.2 (5)	13.9	13.3*	138	23.0
16.6 (5)		15.8*	110	18.4

*Apparent surface film loss.

. • *

TABLE XIII

.

PITCH OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $27.3^{\circ}C$.

	Dynes/cm.		Area	Area/
Compression	Expansion	Recompression	cm. ²	$Gram \times 10^{-5}$ cm.
2.00			469	92.3
3.09			442	87.0
4.78			414	81.5
5.55			380	74.8
7.24	0.709		359	70.7
9.40			331	65.2
11.2 (5)	4.68	6.11	304	59.8
11.6			276	54.3
11,8 (5)	10.8	11.2	248	48.8
12 . 3			221	43.5
13.2	12.4	12.2 (5)	19 3	38 .0
14.3			166	32.7
15.7 (5)	14.7	15.9	138	27.2
17.0	16.5	17.1 (5)	110	21.7
18.5 (5)		18.7	82.8	16.3

• --- •

· .

TABLE XIV

÷

PITCH OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

TEMPERATURE = $27.8^{\circ}C$.

	Dynes/cm.		Area	Area/
Compression	Expansion	Recompression	cm. ²	$\frac{\text{Gram x 10}^{-5}}{\text{cm}_{\bullet}^2}$
1.29			552	87.0
2,43			525	82.7
3.70			497	78.3
4.68			469	73.9
6.02	0.937		442	69.5
7.24			414	65.2
9.00	3.09	3.65	380	59.8
10.7	5.50	6.94	359	56.6
11.8			331	52.2
11.9 (5)	9.86	10.2	304	47.9
12,1 (5)			276	43 .5
12.6	12.1 (5)	12.2	248	39.1
14.7			221	34.9
16.0	14.8	14.4	193	30.4
17.2 (5)			166	26.1
17.9 (5)	17.3	17.8 (5)	138	21.7
19.0		19.0	110	17.4

.

•

• • • •

TABLE XV

PITCH OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

)

:

TEMPERATURE = $28.1^{\circ}C$.

	Dynes/cm.		Area	Area/ Gram x 10 ⁻⁵
Compression	Expansion	Recompression	cm. ²	cm ²
2.15			580	91.4
2.99			552	87.0
3.90			525	82.7
4.96			497	.78.3
6.03	1.95		469	73•9
6.69			442	69.5
	4.43	4.96	414	65.2
6.96			380	59.8
7.55,	6.50	6.81	359	56.6
9.09			331	52.2
10.7	8.13	8.40	304	47.9
11.6			276	43.5
12.7	11.7 (5)	12.6	248	39.1
13.7 (5)			221	34.9
15.0	14.3 (5)	15.7	193	30.4
16.6			166	26.1
18.3 (5)		18.5	138	21.7

· • 5 ` ,

TABLE XVI

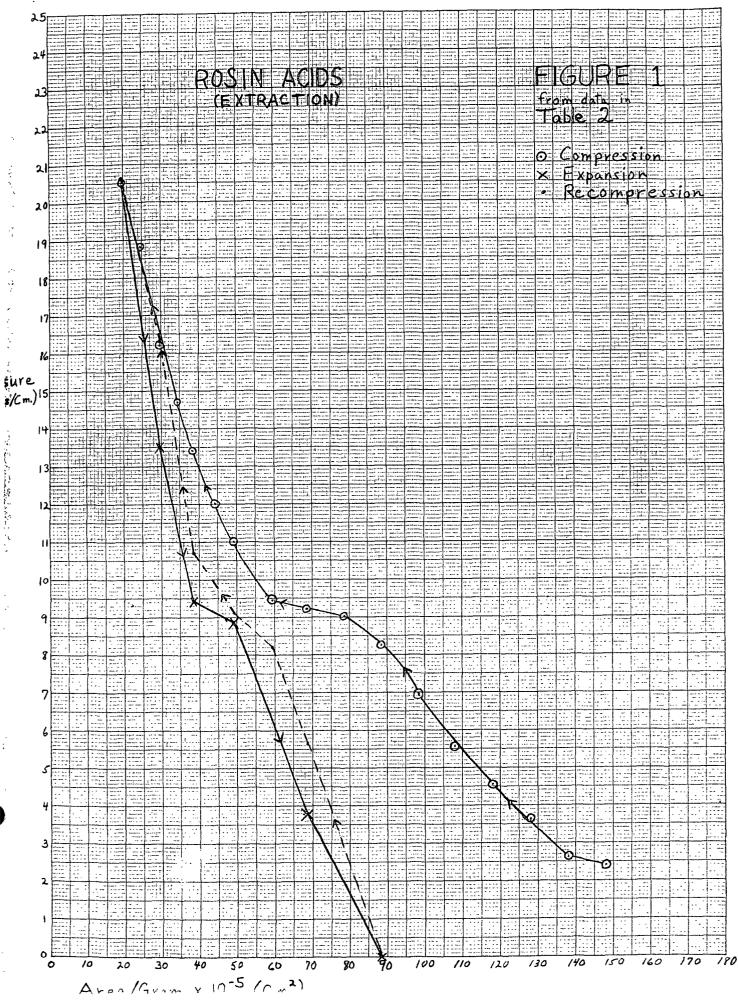
PITCH OBTAINED BY EXTRACTION OF GROUNDWOOD PULP

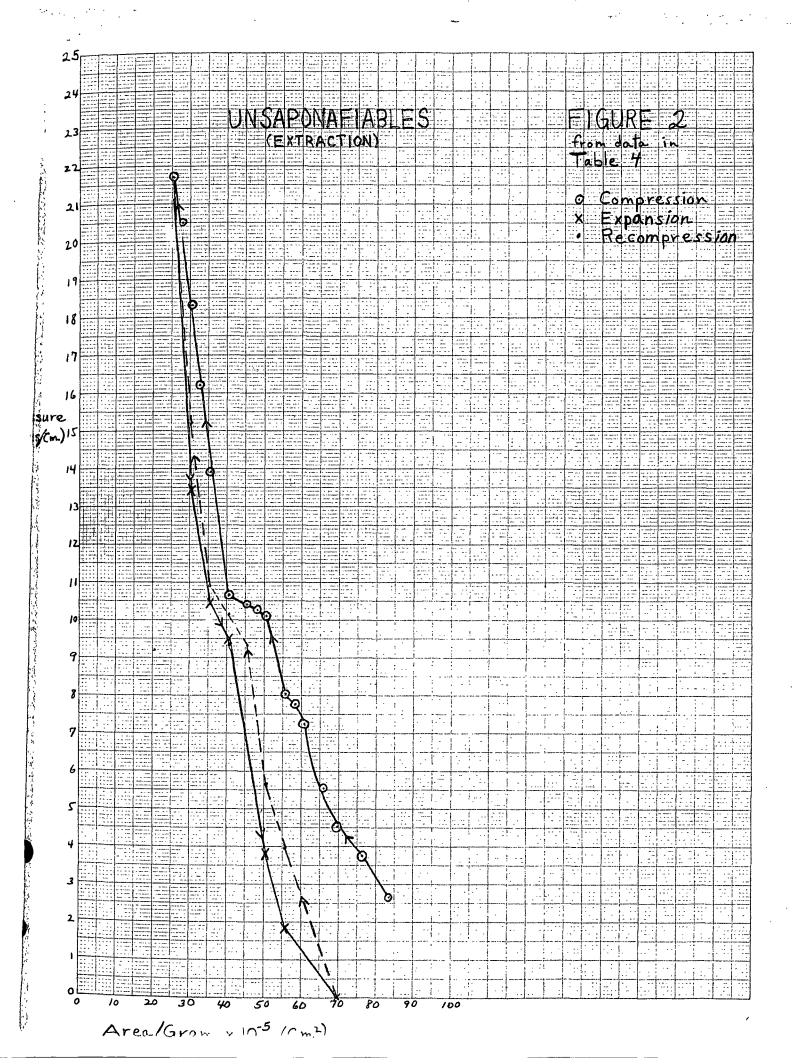
TEMPERATURE = $28.2^{\circ}C.$

	Dynes/cm.			Amer	Area/
	Compression	Expansion	Recompression	Area cm. ²	Gram x 10 ⁻⁵ cm. ²
	2.15			580	91.4
	3 .90			525	82.7
:	6.13	2.08		469	73.9
	6.98	4.96	5.19	414	65.2
	8.86*	6.68	6,86	359	56.6
13	9.52			331	52.2
	10.8	9.35	9.73	304	47.9
	11.6 (5)			276	43.5
	12.7 (5)	10.7	13.0	248	39.1
	13.7 '			221	34.9
	14.7	14.0	15.2 (5)	193	30.4
	16.0			166	26.1
	17.7		18.2	138	21.7

*Transition point missed.

с <u>`</u>


. .



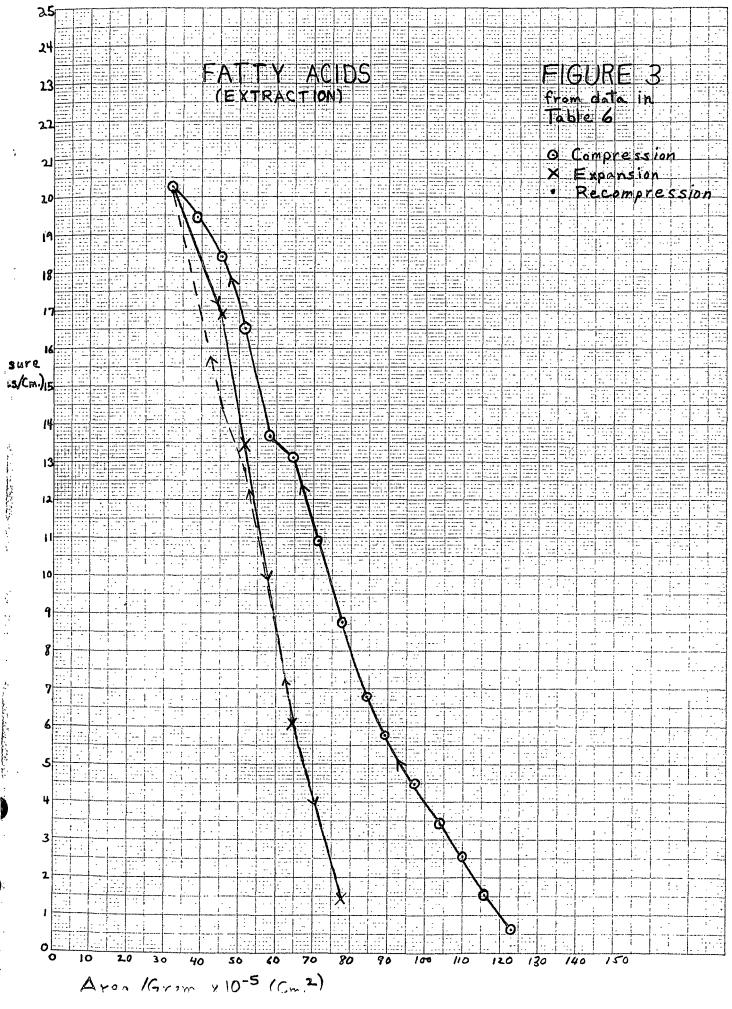
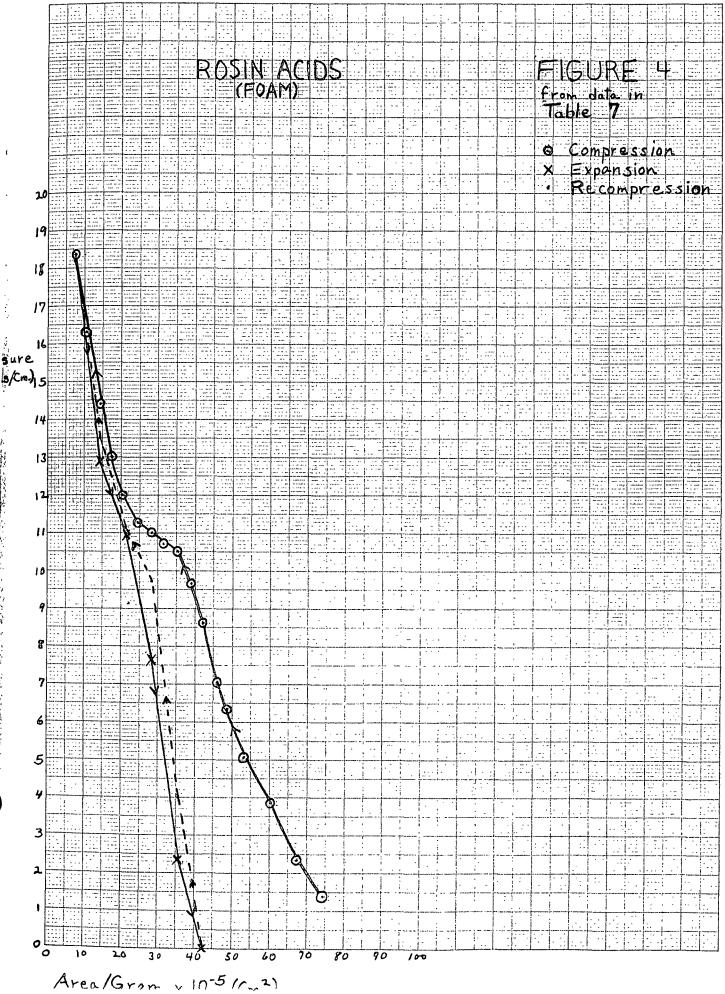
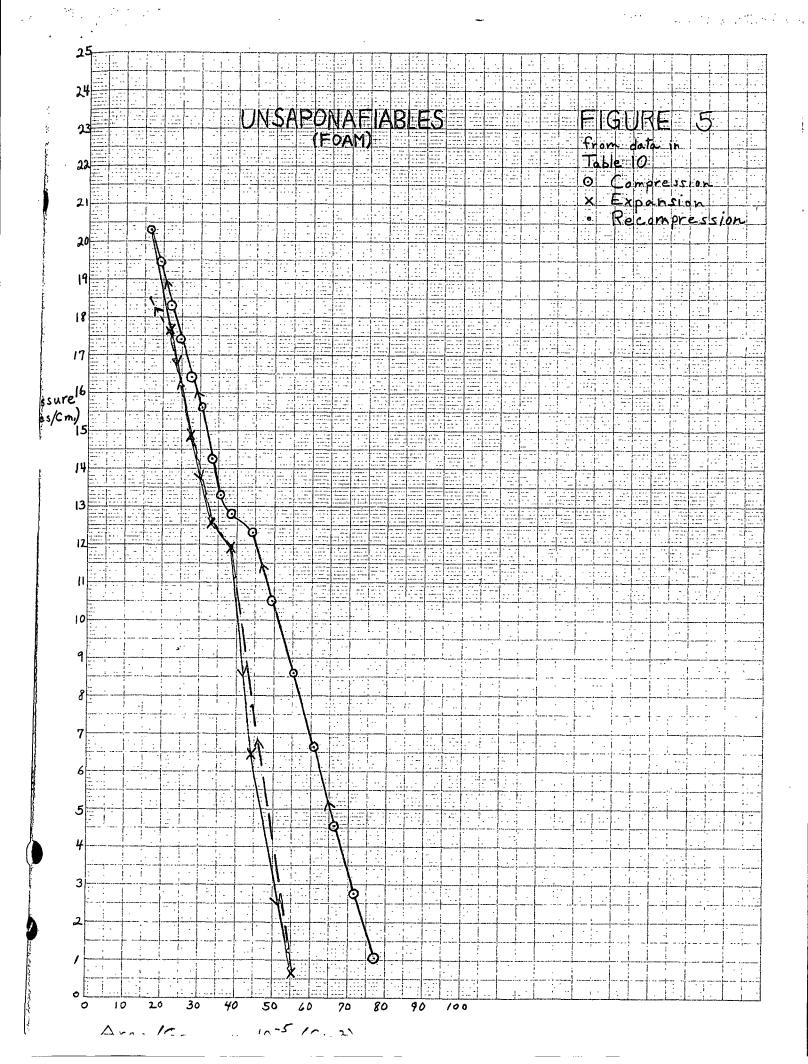
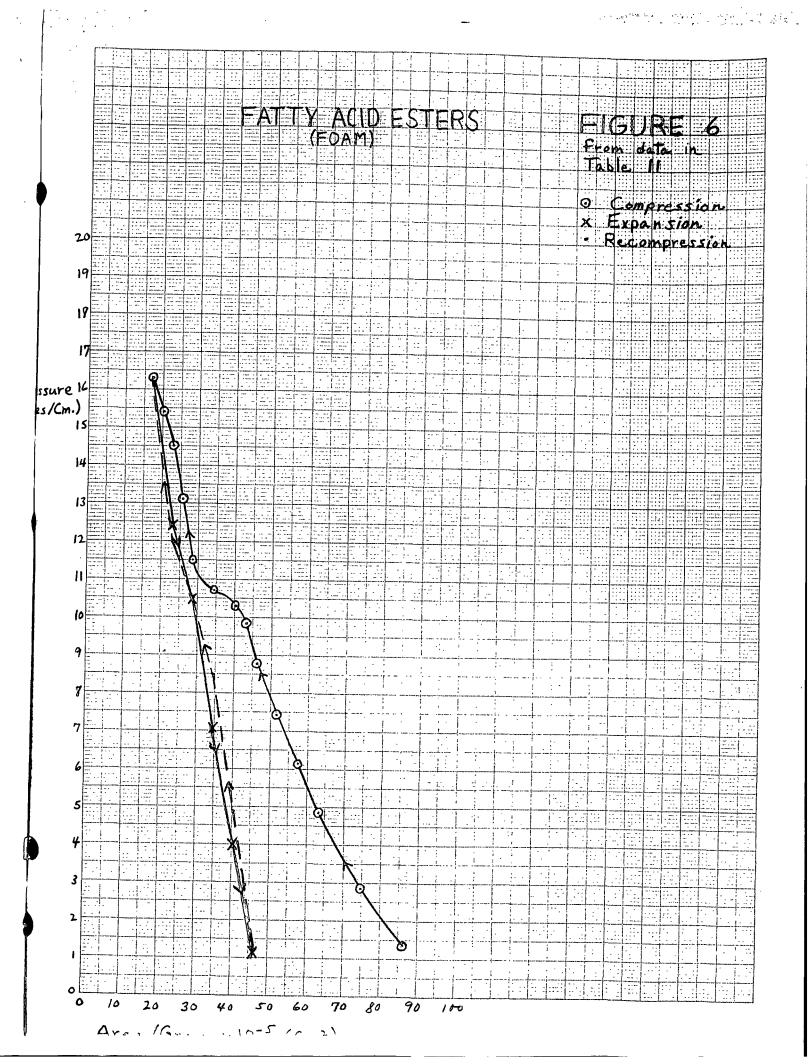
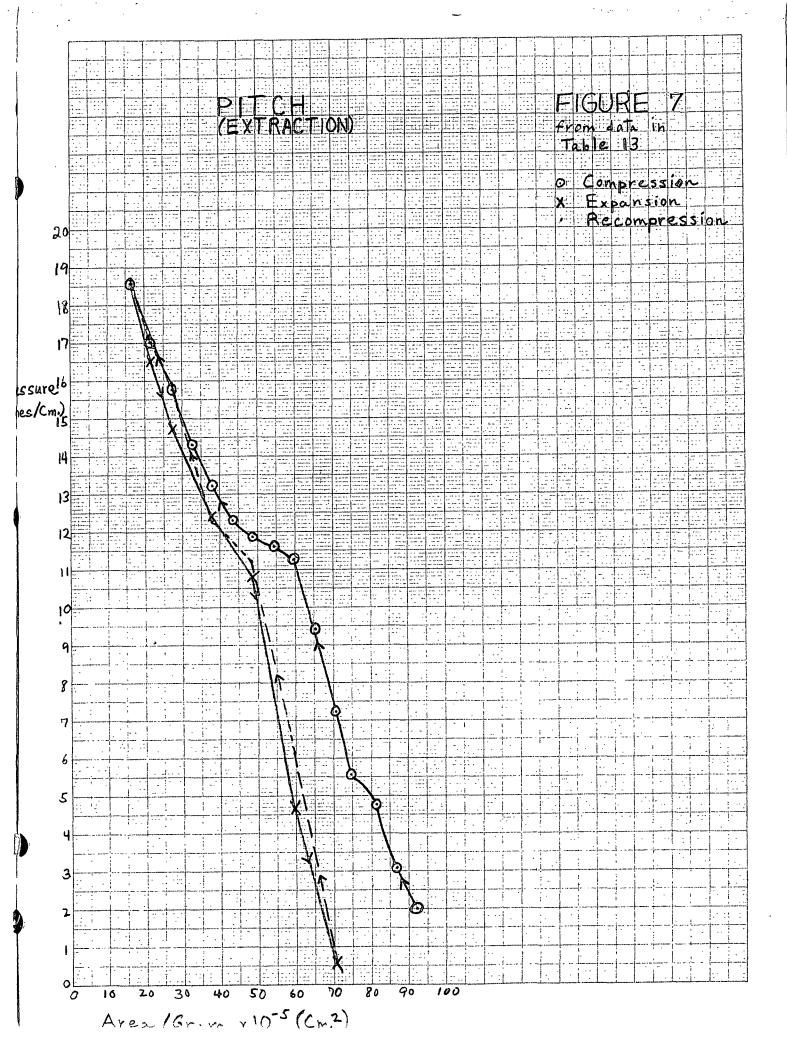

•

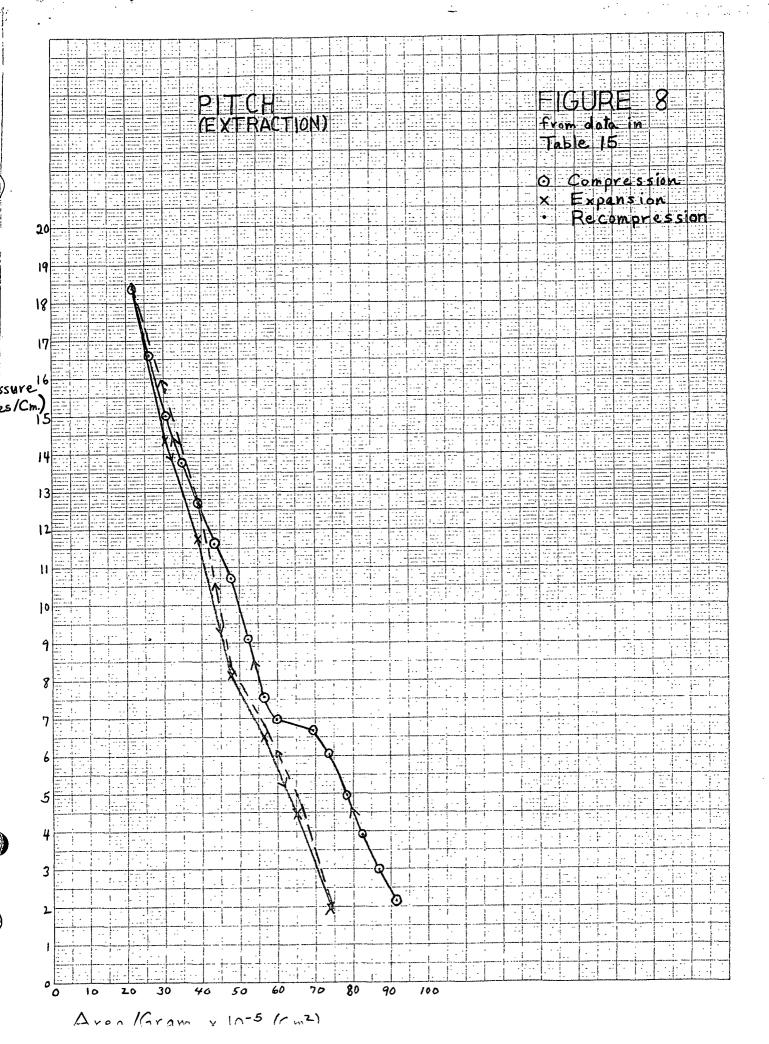
TABLE XVII

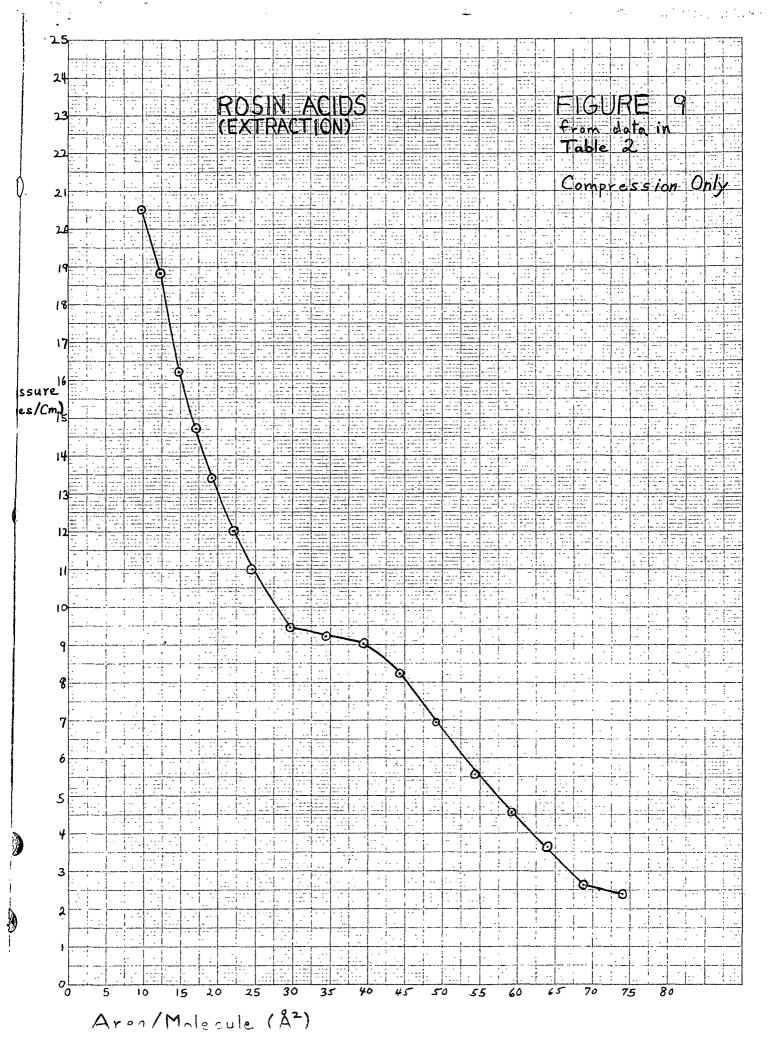

Table Number	Substance	Method of Collection	Extrapolation Area/ Gram x 10 ⁻⁵ cm.	Value Area/ Molecule A ²
I	Rosin Acids	Extraction	77.2	40.2
ĨĨ	Rosin Acids	Extraction	71.2	37.8
III	Unsaponifiables	Extraction	57.0	
IV	Unsaponifiables	Extraction	56.4	
V	Fatty Acids	Extraction	91.0	
VI	Fatty Acids	Extraction	91.5	
VII	Rosin Acids	Foaming	41.8	20.1
VIII	Rosin Acids	Foaming	41.5	20.6
IX	Unsaponifiables	Foaming	76.1	
x	Unsaponifiables	Foaming	75.9	
XI	Fatty Acid Ester	rs Foaming	49.0	
XII	Fatty Acid Ester	rs Foaming	47.2	
XIII	Pitch	Extraction	87.6	
XIV	Pitch	Extraction	85.5	
XV	Pitch	Extraction	Extrapolation Impossible	
XVI	Pitch	Extraction	Extrapolation Impossible	

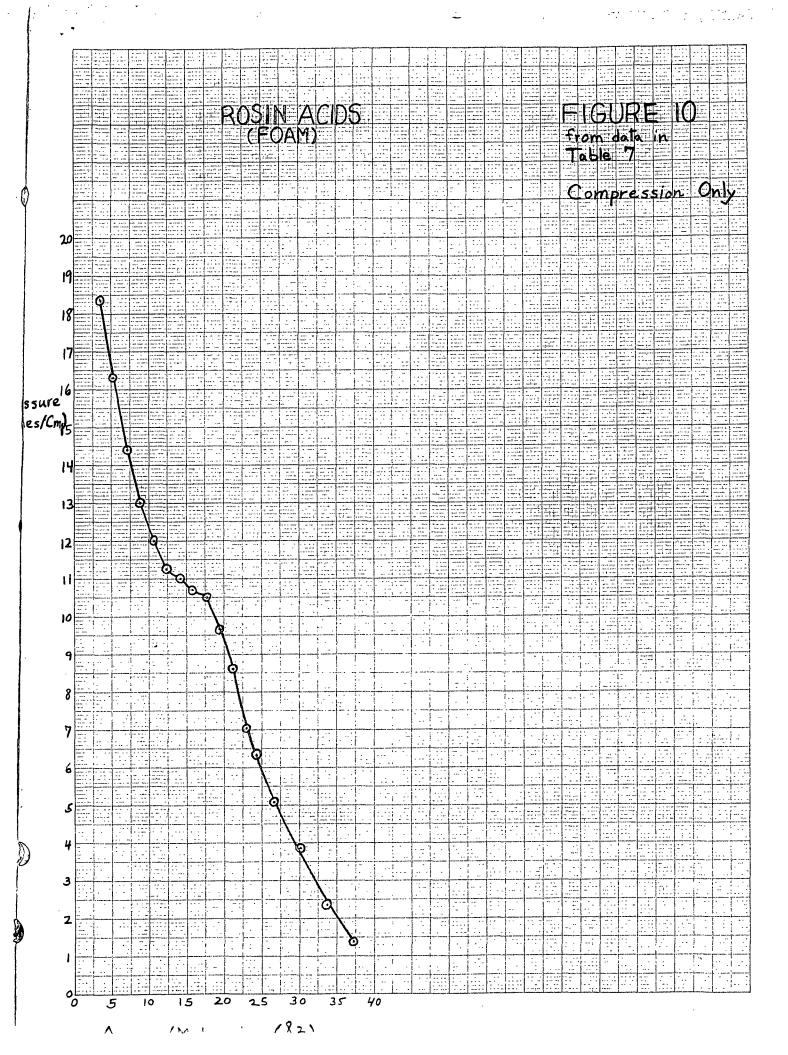







•





PROJECT REPORT FORM

Copies	io:	Files
		Swanson
		Mellen

· · · · · · · · · · · · · · · · · · ·	'ri e	Insti	line	Οſ	Paper	
COOPERATOR-		2			[str	
REPORT NO.		March	-			
DATE		1248				
NOTE BOOK	80	<u></u>		TES.		
PAGE				1		
SIGNED	sale	ry Y	rfel	ke.	n -	
•	Sull	r z ey Mo	errei	1		

THE PITCH FILM OF SULFITE PULP

SUMMARY

This report is concerned with a number of aspects of the pitch problem: collections of pitch film from a calgon substrate, deposition of pitch film on a solid, chromatographic separation of pitch into its various constituents, and the conditions for the formation of a solid, rigid type pitch film.

Two methods of collecting pitch film were tried.

1. The collapse of a monomolecular layer of pitch film obtained by bubbling air through a hot water extract of sulfite pulp. A tap water substrate which contained 8×10^{-6} <u>M</u> calgon was used. The amount of pitch collected was not sufficient for analysis.

2. The collapse of a monomolecular layer of pitch film obtained by the dropwise addition of benzene-alcohol extract of sulfite pulp on the calgon tap water substrate. Analysis showed the pitch to contain 27.1% fatty acids, 9.3% resin acids, and 40.1% unsaponifiables.

Deposition of pitch film from alcohol-benzene extracts, hot and cold aqueous extracts, and hot alkaline extracts was investigated. The effect of pH, multivalent ions, and pressure were observed. Generally, the film deposited by "y" type deposition, but did not adhere to the solid

THE INSTITUTE OF PAPER CHEMISTRY

(a chromium-plated slide). The slide emerged wet from the solution, and on the immersion stroke, the deposited monomolecular film came off.

An exploration into the possibility of chromatographic separation of pitch film into various components showed no quick, easy application of the known procedures, which use Whatman No. 1 filter paper. Preliminary experiments with reversed phase paper chromatograms gave some indication of the usefulness of this type of chromatography once the technique is mastered. Column chromatography was not tried.

A series of qualitative film rigidity studies were done with hot aqueous and hot alkaline extracts. In order to obtain a solid rigid film, two conditions are necessary--a high pH (approx. 10) and the presence of calcium ion. A rigid film can be formed, at least temporarily, by bubbling nitrogen gas into a substrate of pH 8-9 with 10^{-3} <u>M</u> CaCl₂. Unless calcium ion is present, pH appears to have little effect on film rigidity. Likewise, unless the pH is sigh, calcium ion has little effect.

INTRODUCTION

The deposition of pitch on various surfaces such as on the wire of a paper machine constitutes a major problem to papermakers. The basic hypothesis of this project is that pitch films form on the surface of water-pulp sharries. The folding and collapse of these films cause pitch tall formation and deposition of pitch on the paper machine. In an attempt to prove this hypothesis and to find a method of controlling or possibly alleviating pitch difficulties, a series of experiments were done on the surface film formed by a pitchy sulfite pulp. This report discusses several of these exploratory studies. In order to obtain conclusive evidence,

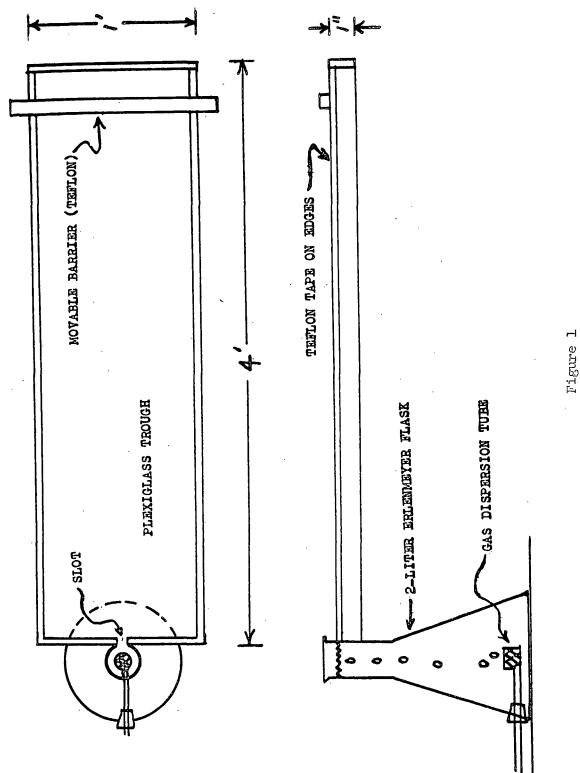
Project 1857 March 12,1956 Page 3

sections of this report should be repeated, and the work expanded.

EXPERIMENTAL RESULTS AND DISCUSSION

COLLECTION OF PITCH FILM

From information gained from preliminary experiments¹ using various substrates and modes of collection, it was decided to use an apparatus similar to that pictured in Figure 1 and a substrate of tap water $\partial x 10^{-6}$ <u>M</u> in calgon* (using a molecular weight of 615).


A trough 4' x 1' x 1" was covered with fresh paraffin wax. Teflon tape was attached to the edges of the trough. The barriers were glass rods covered with teflon tape. No paraffin was put at the connection of the flash to the trough. The apparatus was the same as that shown in Figure 1 except a hole was not cut in the bottom of the flask. A gas dispersion tube was used to bubble air through the extract.

Sulfite pulp was obtained from the Flambeau Paper Company of Park Falls, Misconsin. An approximate fiber analysis of a sample received January, 1956 showed the pulp to contain:

softwood sulfite (spruce, also some hemloch) 75% hardwood sulfite (aspen and birch) 25%

Not Water Extract

A 2-1/2 liter slurry of sulfite pulp containing approximately 1.3% pulp was heated to 95°C. with rapid stirring. It was stirred for fifteen minutes at this temperature and then filtered through a pad of filter-aid *The crushed calgon was obtained from Calgon Inc., Pittsburgh. Pa. APPARATUS FOR COLLECTION OF PITCH FILM

> Project 1857 March 12, 1956 Page 3a

in a coarse porosity fritted glass funnel. The extract was cooled to about room temperature.

For about an hour, air was bubbled through the extract and a film was spread on the calgon substrate. The film was collapsed between two barriers and collected in an aluminum foil scoop. Fresh extract was added about every four hours (twice a day) and the substrate was changed every two days.

Gordon Hammes $(\underline{1})$ found that there was fractionation in the film formation. The first films were of the gaseous type whereas later films became more rigid.

The amount of dirt and impurities from the air which settled on the film was discovered to be about 50% of the collection. A wooden and plastic cover was made to alleviate this situation. Only 11 mg. of dust-free pitch film was collected in a couple of weeks. This amount was not enough for an analysis.

Benzene-Alcohol Extract of Sulfite Pulp

Net sulfite pulp was extracted in a soxhlet type apparatus for about six hours with benzene - 95% ethanol (2:1). The extract was concentrated on a hot plate under a stream of air.

The apparatus and substrate for the hot water extract films were used. The connection between the flask and the trough (labeled slot in Figure 1) was sealed off with paraffin wax.

Project 1.57 March 12, 1950 Page 5

The extract was placed dropwise on the calgon substrate. Fifteen minutes were allowed for benzene evaporation. The film was collapsed with the teflom-covered glass barriers and collected. Good film collapse was observed. The wet pitch film was scraped into a weighing bottle. It was partially dried by heating in a water bath under a stream of air and finally in a vacuum oven at 40°C, using concentrated H_2SO_4 as dehydrating agent. In this manner almost 100 mg, of pitch film was collected in a day. The substrate was changed twice a day. A total of 0.68 g, of pitch film was analyzed together with the benzene-alcohol extract. The results are given in Table I.

TABLE I

AMALYSIS OF PITCH FILM AND BENZENE-ALCOHOL EXTRACT

•	Benzene 95(Ethanol (2:1) Entract of Sulfite Pulp	Film Collected From Benzene- Alcohol Extract
Satty Acids, 👙	53.9	2~.1
Resin Acids, eta	9.7	9.3
Uasaponifiables, (31.5	40.1
Total	75.1	76.5
Methory1, $\%$		1.68

Pro ect 1857 March 12, 1956 Page 6

· · · · · ,

الواجعي ميرك مصفحان الاسترك

CHROMATOGRAPHY OF PITCH

Matman No. 1 Filter Paper Chromatograms

Separation of the various components of pitch by paper chromatography was attempted but was not very successful. Mnatuan No.1 paper was spotted with pitch*, abletic acid, and tall oil. Chromatograms were run in the following solvent systems:

Butanol - pyridine - water (6:4:3 parts by volume)
 Ethyl acetate - acetic acid - water (9:2:2)
 Butanol - pyridine - water (10:3:3)
 Butanol - acetic acid - water (63:10:27)
 Iso-propanol - water (5:35)
 The top layer of butanol - water - ammonium hydroxide (50:28:2)
 Ethyl acetate - acetic acid - formic acid - water (10:3:1:4)
 Butanol - ethanol - water (40:11:19)
 Phenol - water (5:1), 50 of the water was formic acid
 Propanol - ethanol - buffer (10:50:50)
 Whe buffer was 1.6 H in respect to NH₂ and (NH₂)₂ 00₉

Areas were detected with ultraviolet light and with various sprays.

1. Exocothymol blue (2, 5). This spray is a very sensitive acid indicator. Bither carbon dioxide from the air or acid retaining on the chromatogram from the use of an acid solvent system interforms with the detection of acid areas. Sometimes fogging the chromatogram with annonia celped.

*The pitch sample was obtained from David Nortenhof

2. Starch spray $(\frac{h}{2})$. This acid indicator reagent is applied to chromatograms in two steps:

a. 4% HCHO solution in ethanol is sprayed on the chromatogram.
b. After drying, 0.3% KI and 0.2% KIO3 dissolved in 2% starch solution is sprayed.

5. Phenol in CCl_{4} (5). This is a good spray for resin acids but hazardous to handle. The chromatograms are sprayed with a 50% phenol solution, and then exposed to bromine vapors.

Table II gives the results of the observations of several of the chromatograms. Because the chromatograms did not show any separation and the detected areas were near the solvent front, it was decided to explore the possibilities of using reversed phase chromatography.

TABLE II

WHAMMAN NO. 1 FILFER PAPER CHROLATOGRAMS

		· · · · · ·	Solvent System	
	Indicator	50 B tanol 28 Water 2 Aumonium hydroxide	lO Propanol 60 Ethanol 30 Buffer, 1.6 <u>M</u> in respect to NH ₃ and (NH ₄) ₂ CO ₃	3 Phenol 1 Water, 37 of which was formic acid
	Ultraviolet light	Mise fluorescence Rf 0.9	Smear near solvent front	Blue fluorescence
Tall oil	Phenol spray (<u>5</u>)	Yellow, Rf 0.9	blue	perple-brown
	Color to the eye			yellow
	Ultraviolet light	Smear near solvent front	Smear near solvent front	Some fluorescence
Abietic Acid	Phenol spray	Snear near solvent front	blue	purple-brown
	Color to the eye	·		yellow
	Ultraviolet light	Smear near solvent front	Smear near solvent front	Some fluorescence
Pitch*	Phonol spray		blue	purple-brown
	Color to the eye	·		yellow

"The pitch area near solvent front was fluorescent under ultraviolet light, gave a slightly positive puloroglucited test, and a live color with the iron reagent spray for phonolic substances.

Project 1357 March 12, 1956 Page 8 1.

.

Project 1857 Marca 12, 1955 Page 9

Reversed Phase Chromatography

Whatman Ho. 1 filter paper was impregrated with various substances in an attempt to prepare a coated paper suitable for the chromatography of pitch. Those substances tried with the results obtained are listed below:

1. Dow Latex 512-K. Whatman paper was dipped in the latex, and was very heavily coated. The solvent front proceeded very slowly. Dilution of the latex with an organic solvent would be necessary in order to achieve a suitable paper for reversed phase work.

2. Quilon (<u>6</u>). Whatman filter paper was dipped in a 25 solution of Quilon. The paper was allowed to drip partially dry in the hood and then was dried in a 100-110°C. oven for about 5 to 10 minutes. The quilontreated paper had a bluish cast to it, and water did not wet it.

5. "Mineral Spirits" (5). A 25% solution of "Mineral Spirits" in ether was prepared. Whatman paper was dipped in the ether solution, and the excess was removed by blotting.

4. Paraffin Oil. Whatman paper was dipped in paraffin oil and pressed dry between blotters. The paper appeared greasy. The solvent front was extremely slow and uneven. If paraffin oil is used again, it should be diluted, possibly with ether.

5. Artiac H. T. Whatman paper was dipped in a 0.5% solution of Armac in water and pressed dry between blotters. The paper was heated in a 100-110°C. oven for 5 to 10 minutes. A time study of the movement of the solvent front using the descending technique is given in Table III. Various solvent systems were tried. The term smearing indicates those chromatograms where the solvent front did not proceed evenly down the coated paper. Armac ET and paraffin oil would probably not give good chromatograms unless their coating media was diluted.

A group of reversed phase chromatograms were spotted with pitch, abietic acid, and tall oil. Table IV lists the areas which were detected with the phenol spray for resin acids.

Purified known samples of abietic-type resin acids* were chromatographed using the reversed phase technique. The phenol spray sensitive areas are shown in Table V. The unknown was the resin acid fraction of the surface collected pitch sample which was separated by the analytical department.

|--|

MOVEMENT OF SOLVENT FRONT ON REVERSED PHASE CHROMATOGRAMS

Solvent System T	reated Paper	E la psed Start		47 min.	l hr. 52 min.	3 hr. 54 min.	4 hr. 44 min.	5 hr. 52 min.	6 hr. 1 29 min. 1	2 hr. 7 min. 2	24 hr.	
55 Iso- propanol 35 Water	Quilon Armac HP Mineral spirits Paraffin oil	0 cm.* 0 0 0	1.3 cm. 0 1.3 0	2.6 cm 0 2.3 0	5.9 cm. 2 5 0	ll cm. 6.5 1.5	12.8 cm 0.3 2**	• 15.2 cm 10.5 3	. 16.5 cm. 11.8 14.2 3	27.2 cm. 21.2 23.3 7	45 cm. 36 42 16	
40 Butanol 11 Ethanol 19 Water	Quilon Armac MP Mineral S p irits Paraffin Oil	2 0 1.7 0	4.2 0.5** 3.5 0	5.6 2 4.8 0	9.8 5 8.6 1	15.3 11.8 17 1	18 14 	20.8 16.5 18.8 2	22.2 10 20 2.5	34 29.5 30.5 4	46.5 46.5 15	
		Elapsed Start		47 min.	l hr. 52 min.	3 hr. 55 min.	4 hr. 47 min.	5 hr. 57 min.	6 Eur. 31 min.	12 hr. 22 min.	24 hr.	
9 Ethyl Acetate 2 Acetic Acid 2 Water	Quilon Armac IC Mineral Spirits Paraffin Oil	5.2 0 4.2 0	6.3 1.0*** 7.2 0	3.5 2 9.2 1	10.5 4.3 14. 1	22 8.2 24 4.0	25.5 10 27.3 5.8**	29.8 17.8 32.2 7	31.2 19.5 34.0 7.5	49 34.2 52 16	 38	
5 Butanol 4 Pyridine 3 Water	Quilon Armac <u>Al</u> Limeral spirits Paraffin oil	2.3 0 2.0 0	47 0*** 5 0	6.3 1.0 6.5 0	14 3.5 15 2	17 8 16.8 2	19 10 19 3•5**	22.2 14 22 2	25.0 15 25.5 2.5	36.5 26 36 5.5	44 15	ſ
		Elapso Start	d Time 25 min.	45 min.	l h r. 57 min.	3 hr. 52 min.	4 hr. 42 min.	5 hr. 47 min.	6 hr. 27 min.	12 hr. 12 min.	24 hr.	b -4
50 Butanol 28 Water 2 NH40N (top layer)	Quilon Armac HF Mineral spirits Paraffin oil	2 0 0.3 0	4.5 1.5 2.2 0	6 3 3.6 0	12 7 8 0	17 11.3 13 0.5***	19.5 13 14.8 1	22 15.2 17 1.5	25 17 18 2	34 27 25 3•5	 32	Project 1957 Larch 12, 1956 Page 11
	* Centimeters sol	vent from	nt moved	from ort	igin							156 11

1

* Centimeters solvent front moved from origin ** Smearing TABLE IV

REVERSED PLASE CHROMATOGRAMS SPRAYED WITH PHENOL SPRAY FOR RESIN ACIDS (5)

Whatman	Columnate Cristian		Areas Rea	active with Phenol S	pray from
No . 1 p a per treated with	Solvent System Used		Abietic Acid	Tall Oil	Pitch
Quilon	6 Butanol 4 Pyridine 5 Nater	Color RT*	Yellow-brown 0.89	blue-pink 0.92	red-pink 0.86
Quilon	40 Butanol 11 Ethanol 19 Water	Color Rî	dark 0.35	dark 0.94	dark 0.91
Quilon	65 Iso-propanol 35 Water	Color Rf	yellow-green 0.91	yellow-green 0.93	
Quilon	50 Butanol 20 Water 2 MH ₄ 0H (top layer)	Color Rf		black 0.70	
"Mineral Spirits"	6 Butanol** 4 Pyridine 3 Water	Color Rf	dark 0.70	dark 0.97	dark 0.97
"Mineral Spirits"	40 Butanol 11 Ethanol 19 Water	Color Rf	dark 0.05	dark 0.09	dark 0.89
"Eineral Spirits"	65 Iso-propanol*** 55 Water	Color Rî	black 0.95	black 0.95	black 0.93
"Mineral Spirits"	50 Betanol 20 Water 2 ISLAON (top layer)	Color R2	streaked 0.25	streafed oor chronatogram)	0.91
Armac MT	65 Iso-propanol 35 Water	Color Rf	dark 0.89	dark 0.39	red and dark 0.00).89

"The ratio of the distance the spot traveled from the origin to the distance the solvent front moved. **Areas at Rf 0.91 reacted with the acid indicator spray bromothymol blue. ***These same areas were visible onder ultraviolet light.

1.

.

Project 19 Marci: 12, 19 Page

TABLE V

CHROMATOGRAMS OF RESIN ACIDS

	Ultraviolet Light	Phenol Spray for Resin Acids (5)
Neoabietic acid .	no fluorescent areas	green streak
Dehudroabietic acid	no fluorescent areas	no reaction
Nixed dihydroabietic acid and tetrahydroabietic acid	no fluorescent areas	violet streak

Unknown Resin acid fraction of pitch

Solvent system 65 Iso-propanol 95 Mater Machan paper treated with guilon Blue streak (Rf 0.5) blue fluorescent areas (Rf. 0.6 and 0.85) no reaction

Project March 12,

ect 105 12, 195 Page 1

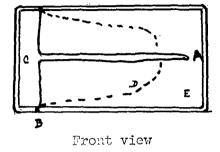
Project 1857 March 12, 1956 Page 14

CONDITIONS FOR PITCH DEPOSITION

A series of experiments were conducted to determine under what conditions a pitch film deposits on a solid, and does or does not adhere to that solid. The first experiments were performed using a paraffincoated pyrex trough 9"x15"x2" (Figure 2), and manually controlling the movement of the slide. After a few preliminary attempts, it was decided to use a deeper trough and a dipping apparatus (Figure 3).

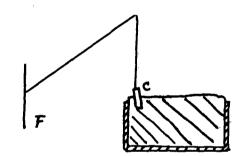
A chromium-plated slide was used as the solid. The slide was thoroughly soaped with alkanox and rinsed in tap water. It was then scoured with wet celite filter-aid. The final rinsing was done in tap water holding the slide with a pair of tweezers. A monomolecular layer was deposited on the slide by the following methods:

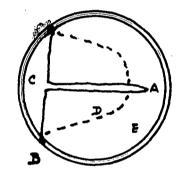
1. Stearic acid. The slide was dipped repeatedly in a benzene solution of stearic acid with drying intervals. It was polished with diaper cloth to leave only a monomolecular layer of stearic acid.


2. Pitch. The clean, wet slide was placed in the trough at point C (see Figure 3). The benzene-alcohol extract was added. After time was allowed for benzene evaporation, the slide was withdrawn and air dried.

3. Wet. Occasionally, the clean, wet slide was used with no monomolecular layer deposited on it. The benzene-alcohol extract was first placed on the substrate. Time was allowed for benzene evaporation. The slide was then dipped into the pitch film.

Project 1857 March 12, 1956 Page 15


APPARATUS FOR PITCH DEPOSITION



Side view

Side view

Front view

Pigure 3

- A. Teflon Wiread
- B. Attachment for teflon threadC. Point for pitch addition and slide dipping
- D. Teflon thread expanded after addition of pitch
- E. Position for piston oil addition
- F. Dipping apparatus

Project 1357 March 12, 1956 Page 16

Deposition experiments were done (1) by spreading a film from pulp the benzene-alcohol extract of sulfite on a substrate and (2) with hot and cold aqueous and hot alkaline extracts of sulfite pulp.

Table VII, in the appendix, gives the conditions and the results of the experiments performed with the benzene-alcohol extract. The substrate was poured into the freshly paraffin-coated pan of Figure 3. Several drops of benzene-alcohol extract were added at C. Fifteen minutes were allowed for benzene evaporation. Pitch film deposition on the chromium-plated slide was observed with substrates of tap water and distilled water at different pH's, with Blodgett's substrate for best stearic acid deposition (7) and with two alum substrates ($\underline{\beta}$). Two piston oils were tried, oleic acid and castor oil ($\mathbf{1} = 29.5$ dynes/cm. and $\mathbf{1} = 16$ dynes/cm., respectively). It was extremely difficult to observe the movement in (toward C) or out of the teflon thread with castor oil as piston oil.

Under most conditions the film deposited by y type deposition for a single cycle (one immersion and one emersion). There was no deposition when the slide was moved in an out of the substrate rapidly.

A group of deposition experiments using aqueous and alkaline extracts of the sulfite pulp was performed. Tables VIII and IX of the appendix give information about these experiments. The results were the same as those observed for the pitch film of the benzene-alcohol extract. The apparatus shown in Figure 3 was used. The extract was poured into the paraffin-coated pan. Time was allowed for film formation. The surface was swept halfway with a barrier and a toflon thread was attached. It was found necessary to add piston oil in order to more easily observe movement of the toflon thread.

Project 1357 March 12, 1956 Page 17

At a high alkaline pH and with 10^{-2} <u>M</u> CaCl₂, brown and white crystals deposited on the slide. The crystals were analyzed to be of the appendix CaCO₅. Table X shows the conditions for CaCO₃ formation.

Attempts were made to measure the thickness of the pitch film. Sulfite pulp extract was acidified and H_2 gas was passed into the solution. The extract was made alkaline and 10^{-5} <u>M</u> CaCl₂ was added. Film went on the stearic acid step wedge (9) by y type deposition. Comparison with another step wedge showed the pitch to have shifted it about 2 wedges. Therefore one layer of pitch is equivalent to two layers of stearic acid or about 50 Å.

QUALITATIVE FILM RIGIDITY STUDIES

A study of the film formation on hot water and hot alkaline extracts of subfite pulp was undertaken to investigate the relationship between conditions, length of time, and the type of film formed.

Decause of the qualitative nature of this series of experiments, very general terms of classification of the film formed were used. (Markins $(\underline{10})$ gives a much more elaborate system, but precise instruments are needed.) A piece of bond paper is cut (about 0.5 x 3.cm.) and folded in thirds to form a boat. It is placed on the surface of the film and blown. The extent of the boat's movement qualitatively measures the film rigidity. The following terms with their respective meaning indicated the state of the pitch film:

Project 1357 March 12, 1956 . Page 18

1. Gaseous. When blown on, the boat moved freely and in no particular direction. Movement continued after blowing ceased.

1.000

2. Gaseous - liquid. The boat moved freely in the direction blown. Movement continued after blowing ceased.

5. Liquid. The boat moved in the direction blown and stopped when the blowing ceased.

4. Liquid - solid. The boat showed some resistance to moving in the direction blown.

5. Solid. When blown on, the boat resists movement. It practically snaps back into its original position. This indicates a rigid film.

A hot-water extract and a hot-alkaline extract of sulfite pulp were aciditied with hydrochloric acid and nitrogen gas was bubbled into the extract through a gas dispersion tube. The extract was poured into a paraffin-coated petri dish and film formation was observed in a dust-free enclosure.

Elapse of time and film rigidity were recorded for different pHsand some with 10^{-5} <u>M</u> CaCl₂ · 2H₂O. The results are shown in Table VI. One experiment was done at a high pH with calcium ion present to observe the effect of calcon addition. This film was extremely rigid.

General conclusions which can be drawn from the film formation studies are:

Project 1057 March 12, 1956 Page 19

1. A high ph and the presence of calcium ion produce a rigid film.

2. The removal of dissolved O_2 from the water by fulbling H_2 gas into the extract may aid, at least temporarily, in the formation of a rigid film.

3. The presence of calgon in the extract aids in the formation of a rigid film.

4. Vilm formation is rapid and its final state is reached in a few minutes.

NUPURE MORK

Collection of the pitch film formed from the hot alkaline entract of sulfite pulp might prove of interest. The entract could be acidified and nitrogen gas bubbled in to empli air before a file is spread from the extract.

Further work using a countegraphic means of separation of pitch components should yield a good method for determining pitch constituents. Here use of the reversed phase too might is needed to develop it into a usable instrument for chromatographic work. Johunn chromatography using magnesel or another adsorbent may prove valuable.

Puture pitch deposition studies should be done with more elaborate apparatus. A long shallow rectangular trough with a deep well at one end is needed. The enterial used to make the apparatus should be paraffin-covered plexiglass. It might be advantageous to place a stopcoch in the bottom in order to facilitate quich and easy recoval of the substrate. A film pressure sensitive device might also be included.

Project 1357 March 12, 1956 Page 20

The role of solubilization should be studied in an attempt to understand the importance of this phenomenon to the pitch problem. The ether solubles of a hot alkaline and an alumentract of the pitchy sulfite pulp could be determined.

Project 1857 March 12, 1956 Page 21

TABLE VI

FILM RIGIDITY STUDIES

Conditions .	Elapse hours	ed Time, minutes	Rigidity of Film (Boat Test)
Hot Mater Extract of Sulfite Pulp The effect of pH pH 3.4 (ICL added)	1 1 2 4 2 3	0 20 30 50 5 25 45 0 15 30	Caseous gaseous gaseous gaseous gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
рн 6.3	1 1 1 4 14 25	0 35 50 10 20 45 15	gaseous gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
pH 10.5 (HaOH added)	1 1 3 4 4 22	0 20 35 55 15 30 45 30	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
The effect of Ca ion (10 ⁻³ <u>M</u> CaCl ₂) pH 7.1	19	0 15 15	gascous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
p. 10.5	17	0 15 40	gaseous-liquid solid solid liquid-solid

Project 1.57 March 12, 1956 Page 22

and the second secon Second second

TABLE VI (Continued)

Conditions	Elap h o urs	sed Time, minutes	Rigidity of Film (Boat Test)
Not Alkaline Extract of Sulfite Pulp			
The elfect or pH pH 2.5	1 4 5	0 15 35	Caseous Gaseous gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
рН 5.9	3 4 4	0 25 50 50 5 45	gaseous gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
pII 10	. 3 4 4	0 15 40 40 35	gaseous gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
The effect of Ca ion (10 ⁻³ <u>H</u> CaCl ₂) pH 5.3		0 15 55	gescous-liquid gascous-liquid gascous-liquid
pd 8.3 Eulolod H ₂ into the solution Stood approx. 30 min.		0 20 35 45	ceseous-liquid gaseous-liquid ceseous-liquid gaseous-liquid caseous-liquid caseous-liquid
pf 9.2		0 10 25 40	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
Bubbled H2 firto the solution			solid
Stood approx. 30 min.			liquid
pD 10.3		0 15 50	gascous-liquid liquid-solid solid

.

Project 1057 Norch 12, 1950 Page 23

و مرتبع المحمود محمد بعد المحمد المحمولية من المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال المحمد المحمد

LITERATURE CITED

	1.	Pro	ect	Report	1
--	----	----------------------	-----	--------	---

- 2. Baker, R. G., Eiochem. J., <u>54</u>, Proc. XXXIX (1953).
- 3. B. D. shley and W. Westphal, Arch. Biochem., Biophys., 57, 1-10(1955).
- 4. A. J. Van Duuren Rec. Trav. Chim., <u>72</u>, 889-92, (1953).
- 5. J. S. Mills and A. E. A. Werner, Nature, <u>169</u>, 1064 (1952).
- 5. D. Kritchevsky and M. R. Kirk, C. Amer. Chem. Soc., 74, 4484-6 (1952).
- 7. K. B. Blodgett and Irving Langmuir, The Physical Review, <u>51</u>, No. 11 964-902 (June, 1937).
- C. Per Ekwall and E. H. Bruun, Tappi 37, No. 7 (-uly, 1954).
- 9. K. B. Blodgett, J. Am. Chem. Soc., <u>57</u>, 1007 (1935).
- 10. Wm. D. Harkins, Surface Chemistry Publication, No. 21 AAAS, Wash., D. C., p. 40-87, (1943).

APPENDIX

TABLE VII

CONDITIONS FOR PITCH DEPOSITION ON SOLIDS BENZENE ALCOHOL EXTRACT OF SULFITE PULP

Substrate	b <u>I</u> I	©eimp. ⊙C.	Piston Oil	State of Pitch Film (Boat Test*)	What is deposited a monomolecular on chromium-plated slides	as Type Deposition	Remarks
Blodgett 72003 BaCl2 CuCl2	10.5 (HaOH added)	Roon Temp	Olcic Acid		Stearic Acid	у	Terlon thread moved in on both innersion and emersion strokes
Blodgett NRCO3 BaCl2 CuCl2	ll.3 (HaOd added)	Room Temp.	Oleic Acid		Stearic Acid		When oleic acid was added, the pitch film was greatly com- pressed as evidenced by a sharp novement in of the teflon thread. Could not control the slide well enough to keep from wotting the edges.
Tap vater	10.0	18	Oleic Acid		Stearic Acid	7	Very slow deposition (10 min. cycle). Difficult to observe, but thread appears to move in on both strokes.
Tap vater	10.0	17	Oleic Acid		Stearic Acid	None	Rapid strokes emersionfilm on; wet slide immersionfilm off
Tap water	9.0	IC	Oleic Acið		Pitch Wet slide Stearic acid	y y	Slow single cycle for each
Tap water	9.5	10	Oleic Aciã		Stearic acid	3	One slow cycle
Tap water	9.2	25	Oleic Acid		Pitch	У	One slow cycle In the second
*An explana	tion of t	he boat t	lest is give	n on page 18 of 1	this report.		

- |

TABLE VII (Continued)

vater	9.2	23	Oleic Acid	gaseous	Pitch wet slide stearic acid		One single, slow cycle
water	8	17	Oleic Acid	v	Pitch stearic acid	y y	One slow cycle
water	6 . 0	5¢	Oleic Acid		Pitch wet slide stearic acid	У У Г	One slow cycle
water	6.2	15	Oleic Aciá	Caseona	Pitch wet slide stearic aciã	у У У	One slow crcle
water	5.8	13	Oleic Aciâ	gaseour	Pitch wet slide stearic acid	у 27 У	One slow cycle
wator.	3. • 7	21	Oleic Acid	Jaseous	Pitch wet slide stearic acid	у У У	One slow cycle
water	3.0	12	Oleic Acid		Pitch		Could not keep from wetting slide.
water	2.0	Room Tenno.	Oleic Aciá		Pitch Wet stearic acid	y None None	One slow cycle (Up strokethread in (Down strokethread out
water	2.0	Room Telp.	Oleic Acid		Stearic Acid	х, у	Slow deposition (20-25 min./ cycle) down strokethread in difficult to tell on upstroke
Water	9 . :	13	Castor Oil	Caseons	Pitch wet slide	¥	difficult to tell on upstroke by the store b
water	0,0	17	Castor ()il		Pitch	y or x	Difficult to tell movement of
					stearic acid	x, j or i	

TABLE VII (Continued)

Tap water	1.2	Room	Castor oil		Pitch	lione	No apparent movement of thread	
		Tend .			stearic aciù	lione	for 6 cycles downstrokethread in upstrokethread out	
Tap water	6.0	26	castor oil	gaseous	Pitch	х, у	Slow cycles, very difficult to observe movement of thread especially on upstroke.	
					wet stearic acid	.∨ Ƴ	Appears to move in	
Tap water	G.5	Room Temp.	ca s tor oil		Pitch	none	One slow cycle	
Tap water	3.0	24	castor oil		Stearic acid	none	Slow 10-min. cycle	
						none	Rapid Cycles downthread out upthread in	
Tap water	2.0	Room Temp.	castor oil		Pitch	none	after about 12 cycles some deposi- tion when slide is moved up rapidly.	
Dist. water	6.5	24	oleic acid gaseous state	gaseous- liquid	Pitch	; none	one rapid cycle; 1 slow c. (3 min.) z-type, wet slide, then off.	
Dist. water) _{1.0} γ (Π _ρ SO _{lt} added)	23	oleic acid gaseous	gaseous	Pitch	y none	one slow cycle z-type, wet slide, film moves off	
Dist. water	6.4	23	olcic acid gaseous	gaseous- liquid	Pitch) wet) stearic)	y none	one slow cycle z-type, wet slide, film moves off (10-sec. cycles)	
Alum solution A	5.9- 4.0	23	oleic acid	gaseous	pitch wet	y) y)	one slow cycle	
			24 21			stearic acid pitch, wet stearic acid	y) none K	z-type, uet slide, film moves off الم (20-sec. cycles)

ļ

Marc: 12, 1957 Marc: 12, 1957

. ۰.

.

			AT				
Alum solution A	4.2 (IaON added)	24	Oleic acid gaseous-lig.	liquid		y none	One slow cycle z-type,wet slide, off (if allow slide to dry, film will again deposit on downstrokey type deposition.)
Alum solution B	5.0	21	Oleic acid	gaseous	Pitch wet stearic aci	.â y	One slow cycle
	5.3	24	Oleic acid	gaseous	Pitch stearic aci	none .d	
	6.1- 6.2	25	Oleic acid	liquid	Pitch wet stearic aci	none .d	z-type, wet slide, film off (if allow slide to dry, film Will again deposit on downstroke y type deposition.)

Project 1857 March 12, 1956 Page 27

ø

,

`

. .

<u>`</u>

TABLE VIII -

CONDITIONS FOR PITCH DEPOSITION ON SOLIDS NOT WATER EXTRACT OF SULFITE PULP

vn		പഞ്ഞം	Rigidity of Pitch Film			Piston	O il Rep ea ted				
,хр. :о.	pH	od.	(boat tes',	l C ycle	Cycles		Crcles	Remarks			
	5.5-5.6	25	gaseous		none			x-type deposition, then film moved off.			
	2-4	25		У	x			H ₂ SO ₄ injected into substrate x-type deposition for 10 sec. cycles.			
l					none	-		for rapid repeated cycles.			
•	3 - 10	25	-	77	noue			NaOII injected into substrate			
	3-10	25		Ту V	none			10 ⁻² <u>M</u> CaCl ₂ injected into substrate.			
	5.3	24					none				
2	4	24				X	none	H ₂ SO4 injected into substrate deposition on 10 sec. strokes.			
	10	24				х	none	NaOH injected into substrate.			
3	5.3	24	gaseous	? •	?			No observed movement of teflon thread			
-	5.3	24	gaseous			x	SOME	Some deposition on emersion and			
								immersion stroke on areas of the			
						<u>``</u>		slide which were dry.			
<u>1</u> ;	5	24				x	none	H2SO4 added			
	2.3	24		X	SOTICE			Some deposition on emersion and			
5								immersion stroke on areas of the slide which were dry.			
-	2.3	24				x	Some				
								Slide which were dry. Some deposition on emersion and immersion stroke on areas of the slide which were dry. Difficult to observe movement			
~	2 2 `							S S S S			
ن ر	ن.11	24	6 7			x or y	đani pog	Difficult to observe movement の アフロ の の の の の の の の の の の の の の の の の の の			
	5.8	24	Caseous	?	?			Difficult to observe movement			
7	5.8	21+	(10.000 N) D					of teflon thread.			
	<u>ل</u>	<i>۲</i> ۰	gaseous			U U	none	Film deposits on emersion stroke and spreads back on the substrate on immersion.			

 TABLE VIII (Continued)

7	5.8	24	gaseous			ÿ	none	10 ⁻² M CaCl added. Film deposits on emersion stroke and spreads back on the substrate on immersion.
8	5.0	25	liquid	?	?			Difficult to observe movement of teflon thread.
	5. C	25	liquid		~=	У	none	Film deposits on emersion stroke but spreads on substrate on immersion.
	5 . ú	25	liquid			У	none	10-2 <u>M</u> CaCl ₂ added. Film deposits on emersion stroke but spreads on substrate on immersion.
9	.5	22	gaseous	?	?			Difficult to observe movement of teflon thread.
	6.5	22	gaseous			У	none	Film deposits on emersion stroke, but spreads on substrate on immersion.
		22				у	none	10 ⁻² <u>M</u> CaCl ₂ added. Film deposits on emersion stroke, but spreads on substrate on immersion.
10	2.7-2.8	25	solid	?	?			Difficult to observe movement
	2.7-2.3	25	solid			Ĩ	none	of terlon thread. Film deposits on emersion stroke, but spreads on substrate on immersion.
11	11.3	25	solid			У	none	10^{-2} <u>M</u> CaCl ₂ added

Ň very blotch? film deposited on slide. •

ورو المحمد ا

. .1

1

TABLE IX

PITCH DEPOSITION STUDIES

FILM FORMED OF HOT WATER EXTRACT OF BLEACHED SULFITE PULP

Experiment No.	pH	Tenm., °C.	Boat Test* Pitch Film	One Cy cl e	Repeated Cycles	One Cycle	Repeated Cycles	Remarks
1	9-10 (NaOH addeo	23 1)		y (?)**	none			
	9-10	25		500 am		у	none****	
2	ರ . 1	22	Liquid-solid	? ***	? **			
	3.1	22	Liquid-solid			У	none***	
	8 . 1	22	Partially solid		 .	У	none***	10-2 <u>M</u> CaCl ₂ injected into substrate
3	5.7	23	Liquid-solid	? **		••••		
	5.7	23	Liquid-solid			У	none****	
	5.7	23					ca a.	10 ⁻² <u>M</u> CaCl ₂ injected into substrate
24	4	25	gaseous	?***				
	24	23				У	none****	
	4	23		-		У	none****	10-2 <u>M</u> CaCl ₂ injected into substrate

*Boat test explained on page 10

**Difficult to observe any movement of terlon thread

***Film deposits on emersion. The slide is wet and the film spreads on substrate on immersion.

Project 1357 March 12, 1956 Page 30 TABLE X

COMDITIONS FOR DEPOSITION OF CaCO3

Substrate	· IIg	Temp., oc.	Conc. of CaCl2	Deposition of CaCO, and Pitch	Type Deposition one Cycle	Remarks
l. Cold water slurry of sulfite pulp			No CaCl ₂ added		x	Film deposited on immersion stroke
2. Filtrate of cold water slurry of sulfite pulp			llo CaCl ₂ added	5) m	x	Film deposited on immersion stroke
3. Cold water slurry of sulfite pulp	alkaline		<u>10</u> -2 <u>M</u>	yes	У	White crystals visible under microscope
	11.2	24	10- ¹ : <u>H</u>	yes	?	Some white crystals. Difficult to tell type deposition. Film in solid state
	. 9.8	24	No tall ₂ added	yes	У	Maybe some white crystals. Film in solid state
	11.3		10 - 3 <u>K</u>	yes	у	Some white crystals
4. Hot water extract of sulfite pulp	11.3	25	10-2 <u>N</u>	yes	У	White crystals
	11.5	22	10 ^{-1,} <u>M</u>	yes	V	White crystals 여번

Project 1357 rch 12, 1956 Page 31

PROJECT REPORT FORM

PROJECT NO. 1857
COOPERATOR I. P. C.
REPORT NO. 3
December 6, 1956
NOTE BOOK 1248
PAGE 149-160-1502 pp. 7-144
SIGNED Shirley M. Cordingly
Signed Shirley M. Cordingly
DUTITE' Nº COLUTURY

Copies to: Files Swanson Cordingly

SURFACE CHEMICAL STUDIES ON PITCH FILMS

SUMMARY

This report is a continuation of work begun and described in Project Reports 1 and 2. (1, 2). It is divided into four sections; solubilization of pitch, surface viscosity of pitch film, collection of pitch film, and surface balance studies of pitch and its components.

In an attempt to understand what roll solubilization might play in the pitch problem, hot alum, hot alkaline, and hot water extracts of a sulfite pulp were prepared. The amount of ether soluble materials in the three extracts was 0.05-0.10% of the pulp. These results did not show any significant differences in the amount of pitchy substances removed.

The surface viscosity of pitch film spread on calgon and/or alum substrates at different pH's was observed. The presence of aluminum ion gave a solid, rigid film at a neutral or a slightly acid pH, depending on the concentration of alum. The addition of calgon did not appreciably effect the surface viscosity.

Table V gives an analysis of pitch films collected by:

1. collapse of monolayers of pitch film obtained by bubbling air through a hot alkaline extract of Flambeau sulfite pulp. A distilled water substrate containing 10^{-4} M aluminum ion was used.

December 6, 1956 Project 1857 page 2

2. Collapse of monolayers of pitch film obtained by bubbling air through hot alkaline, hot water, and hot acid extracts of sulfite pulp. This study showed that at lower pH's less film was collected and the film formed on the substrate was less rigid. The table also gives an analysis of a benzene-alcohol extract. A known sample of stearic acid, abietic acid, and unsaponifiables was prepared and analysed. A 95% recovery was made.

Pressure-area curves, (Figures 1-21), were obtained for pitch and its fractions by means of a surface balance. The substates used were dilute hydrochloric acid, distilled water, * sodium hydroxide, distilled water containing 3×10^{-4} M aluminum ion, and tap water containing 8×10^{-6} M Calgon. Table VI summarizes the properties of the films illustrated in the figures.

EXPERIMENTAL RESULTS AND DISCUSSION

Solubilization of Pitch

Hot alum (0.5% alum solution), hot alkaline (pH 10), and hot water (pH 5-7) extracts of Flambeau sulfite pulp were prepared using a 2 1/2-3 liter slurry. The pulp slurries were heated to 95° C. with constant, rapid stirring and were filtered while hot. After cooling, the filtrates were neutralized to approximately pH 7 and concentrated either at reduced pressure or on a hot plate under a stream of air.

^{*} The water used in these experiments was distilled twice, unless otherwise indicated.

December 6, 1956 Project 1857 page 3

The concentrates were then extracted three times with ether. The amount of ether soluble materials was determined on the basis of ovendry pulp. Table I shows that there was little difference in the amount of ether solubles in the three pulp extracts. The large range shown for the hot alkaline extract may be due to the difficulty encountered in making a clean separation of the ether-water layers.

TABLE I

Extract

Hot alkaline Hot alum Hot water Ether soluble material

0.05-0.10% 0.06-0.07% 0.05%

SURFACE VISCOSITY OF PITCH FILMS

Hot water and hot alkaline extracts of Flambeau sulfite pulp were prepared, and varying amounts of calgon and/or alum were injected into the extracts. Film formation and viscosity were observed at different pH's. Other experiments were run using a benzene -95% ethanol (2:1) extract of Flambeau pulps spread on calgon and/or alum substrates. From the data summarized in Tables II, III, and IV, it appears that the addition of calgon does not appreciably effect the film viscosity. The presence of aluminum ion gives a solid, rigid type film.

This work was a continuation of experiments begun and reported in Project Report 2. (2).

TABLE II

THE EFFECT OF ALUMINUM ION ON PITCH FILM VISCOSITY

Substrate	Aluminum ion concentration	* Hg	Film Viscosity in one hour-Boat Test (2)
Hot alkaline extract	- 10 ⁻⁵ <u>M</u>	2.8 5.2 7.4 11.6	gaseous-liquid gaseous-liquid solid gaseous-liquid
Hot water extract	10 ⁻⁵ M	3.1 4.8 7.2 11.5	liquid gaseous-liquid solid gaseous-liquid
Hot alkaline extract	10 ⁻⁴ <u>M</u>	2.5 5.7 7.2 10,4	liquid solid solid gaseous-liquid
Hot water extract	10 ⁻⁴ <u>M</u>	2.8 5.0 7.0 10.1	gaseous-liquid solid solid gaseous-liquid
Hot alkaline extract	$3 \times 10^{-4} M$	3.0 5.5 7.1 7.8 11.6	solid solid soli d gaseous-liquid gaseous-liquid
Hot water extract	3 x 10 ⁻⁴ <u>M</u>	2.9 4.9 6.9 7.3 9.3	solid solid gaseous-liquid gaseous-liquid liquid

*The pH was adjusted either with hydrochloric acid or sodium hydroxide.

December 6, 1956 Project 1857 page 4

THE EFFECT OF CALGON ON PITCH FILM VISCOSITY

Substrate	Calgon concentration	pH [*]	Film Viscosity in one hour-Boat Test (2),
Hot alkaline extract	8 x 10 ⁻⁶ <u>M</u>	2.0 2.5 6.5 8.0	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
Hot water extract	8 x 10 ⁻⁶ <u>M</u>	10.5 2.2 2.5 6.6 6.8 10.5	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
Hot alkaline extract	10 ⁻⁵ <u>M</u>	11.0 2.9 6.9 8.1	gaseous-liquid gaseous gaseous-liquid gaseous-liquid
Hot water extract	10 ⁻⁵ <u>M</u>	10.3 2.4 6.0 7.2	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
Hot alkaline extract	10 ⁻⁴ <u>M</u>	10.1 2.8 6.6 7.7 10.3	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid
Hot water extract	10 ⁻⁴ <u>M</u>	2.8 6.0 7.1 10.4	gaseous-liquid gaseous-liquid gaseous-liquid gaseous-liquid

* The pH was adjusted either with hydrochloric acid or sodium hydroxide.

December 6, 1956 Project 1857 page 5 1.

TABLE IV

.

THE EFFECT OF CALGON AND ALUMINUM ION ON PITCH FILM VISCOSITY

Substrate		Source of Pitch Film			Viscosity of Control Aluminu Containing only and cal Aluminum ion		
	* Hq				Boat test (2)	Calgon Concentrat	Viscosity ion Boat test (2)
Hot alkaline extract	9.5	hot alkaline extract	15	$3 \times 10^{-4} M$	gaseous-liquid	none	gaseous-liquid
extract		extract	30 45 60		gaseous-liquid gaseous-liquid gaseous-liquid	$8 \times 10^{-6} M$ 2 × 10^{-5} M 2 × 10^{-5} M	gaseous-liquid gaseous-liquid gaseous-liquid
Hot alkaline	8.8	hot alkaline	15	3 x 10 ⁻⁴ <u>M</u>	gaseous-liquid	none	gaseous-liguid
extract		extract	30 30 45		solid solid solid	$8 \times 10^{-6} M$ $2 \times 10^{-5} M$ $2 \times 10^{-5} M$	gaseous-liquid gaseous-liquid solid
Hot alkaline extract	9.3	hot alkaline extract	15	3 x 10 ⁻⁴ <u>M</u>	gaseous-liquid	none	gaseous-liquid
extract		extract	30 40 55		solid solid solid	8×10^{-6} 2×10^{-5} M	liquid-so li d solid solid
Hot water extract	7.2	hot water extract	15	-4 3 x 10 <u>M</u>	liquid	none	liquid
			30 45 60		liquid liq uid-s olid liquid-solid	$ \overset{\text{none}}{\underset{2 \times 10^{-5} \underline{M}}{\underline{M}} } $	liquid liquid-solid liquid-solid
Hot water extract	6.8	hot water extract	15	$3 \times 10^{-4} M$, gaseous-liquid	none	gaseous-liguid
			30 45 60 75		gaseous-liquid gaseous-liquid gaseous-liquid liquid	none $8 \times 10^{-6} M$ $2 \times 10^{-5} M$	gaseous-liquid of gaseous-liquid of gaseous-liquid of
Distilled water	4.8	benzene-95% ethanol	15	10 ⁻⁴ <u>M</u>		none	liquid

December 6, 1956 Project 1857 page 7 Ľ,

Collection of Pitch Film

The apparatus, the preparation of the pulp extract, and the method of film collection are described in Project Report 2 (2),

The pH's of the pulp slurries were adjusted either with sodium hydroxide or hydrochloric acid. The extracts were spread on a distilled water substrate containing 10^{-4} M aluminum ion.

An approximate fiber analysis of Interlake Mill pulp showed the pulp to be an unbleached, medium cooked 100% spruce sulfite, whereas the Flambeau pulp was 75% softwood sulfite (spruce, also some hemlock), 25% hardwood sulfite (aspen and birch).

A study of the pitch films obtained from extracts at different pH's is given in Table V. As the extract pH was lowered the film became less rigid and the amount of film collected was less. Because it was necessary to collapse and collect many films for an analysis, fractionation was not shown.

Table V also gives the composition of a benzene -95% ethanol (2:1) extract of Interlake Mill pulp.

To test the reliability of the analytical determination for resin acids, fatty acids, and unsaponifiables, a known mixture containing abietic acid, stearic acid, and the unsaponifiable fraction from the benzene -95% ethanol extract was prepared. The total recovery was 95%. The data are given in Table V.

December 6, 1956 Project 1857 page 9

SURFACE BALANCE STUDIES OF PITCH AND ITS COMPONENTS.

A series of surface balance studies were made both on whole pitch, obtained from a benzene -95% ethanol (2:1) extract of sulfite pulp, and the fatty acid, resin acid, and unsaponifiable fractions isolated in an analytical determination (Table V) of the benzene-alcohol extract. The fatty acid esters were hydrolyzed to fatty acids.

A Cenco hydrophil balance was attached to a plexi-glass trough, 30 inches x 5-7/8 inches x 1/2 inch, which was mounted on a marble slab. The apparatus was enclosed in a plexi-glass case. A motor driven, constant speed barrier was used to compress or decompress the films. The edges of the trough were covered with teflon tape, and the barrier was coated with fresh paraffin wax. Readings were recorded while the barrier was moving. The only time the machine was stopped was to allow the gears to reverse directions.

A study of the effect of pH, aluminum ion and calgon on films from whole pitch and its components was made. Data obtained from the films are given in the appendix, Tables VII-XXVIII. Pressure-area curves were drawn, Figures 1-21. Table VI lists the properties of the films formed on various substrates.

Apparently, on the alkaline and the calgon substrates salts are formed of the fatty and resin acids, and they dessolve into the substrate. In this way the number of grams of fatty and resin acids used to compute the area per gram is not the true value. This effect would account for the highly compressible curves and the low extrapolated area values.

December 6, 1956 Project 1857 Pege 10

The formule for compressibility and methods of reporting surface pressure-area information are in the literature $(3, \frac{\mu}{2}, 5, 6)$

Key for Table VI

 ${\rm A}_{\rm o}$ area where first increase in pressure occurs

A, area at 1 dyne per cm.

Alg area at 10 dynes per cm.

A area at 15 dynes per cm. 15

 ${\bf A}_{\mbox{ext}}$ the extrapolated area

Compressibility $-k = \frac{1}{A} \begin{pmatrix} dA \\ dr \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$

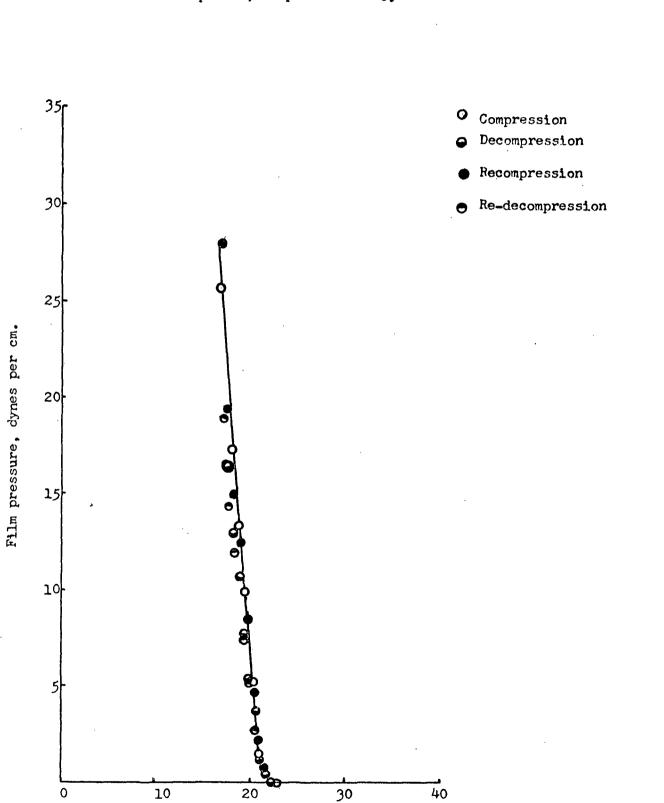
where k is the compressibility,

A is the area, and

 \mathcal{M} is the film pressure

PROPERTIES OF FILMS

Substrate	Film	Area A ₉	. per gr Al	am x 10 AlO	⁻⁵ , cm ^A 15	A _{ext}	Area per molecule, o2 A extrapolated	Compressibility, cm.per dyne at 15 dynes per cm.
Dilute hydrochloric acid, pHan 2	Whole pitch Fatty acid Resin acid Unsaponifiable	61 116 	59 110 68	36 67 54 47	21 59 43 <u>4</u> 2	60 81 75 57	 36.9 	0.129 0.025
Distilled water, pH 6.3-6.5	Whole pitch Fatty acid Resin acid Unsaponifiable	60 110 64 70	53 94 55 65	31 61 32 48	20 52 24 42	53 75 48 63	23.9	0.110 0.028 0.066 0.036
Sodium hydroxide, pH 10-11	Wnole pitch Fatty acid Resin acid Unsaponifiable	72 30 42 77	50 42-64 64	32 16 16 48	22 13 13 42	51 21 22 59	 11.0	0.082 0.031 0.031 0.029
Distilled water -4_{M} containing 5 x $10^{-4}M$ aluminum ion, pH 4	Whole pitch Fatty acid Resin acid Unsaponifiable	63 80 	60 71 68	40 5 7 55 50	25 52 50 43	63 65 63 65	 31.4	0.092 0.015 0.018 0.033
Tap water containing 8 x 10 M Calgon pH 7.4-8.7	₩hole pitch Fatty acid Resin acid Unsaponifiable	67 110 48 79	56 96 44 66	36 53 22 48	25 45 19 43	55 64 31 61	 15.4 	0.076 0.029 0.044 0.024

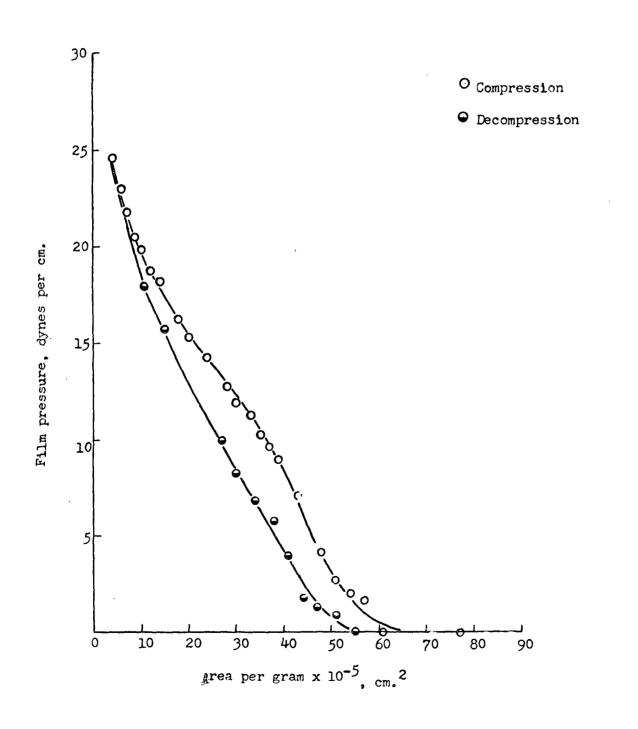

*Compressibility at 10 dynes per cm.

** Compressibility at 20 dynes per cm.

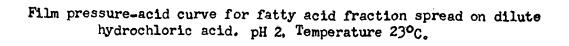
December 6, 1956 Project 1857 page 11

ىلە « سىمدەملىلاغىلە

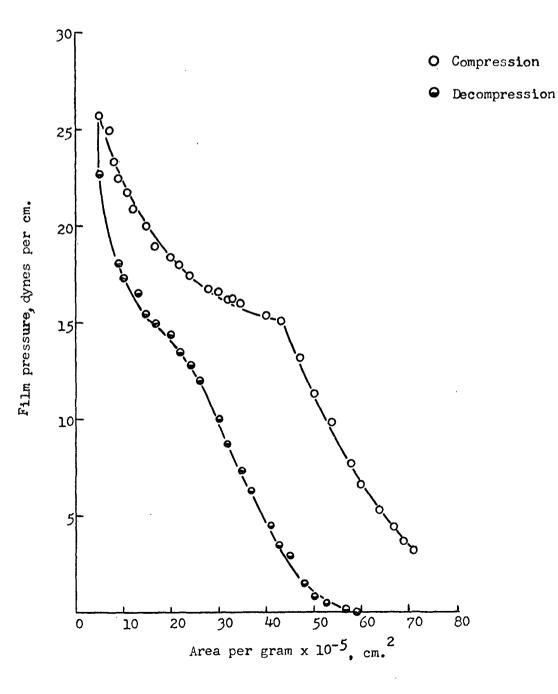
Figure 1



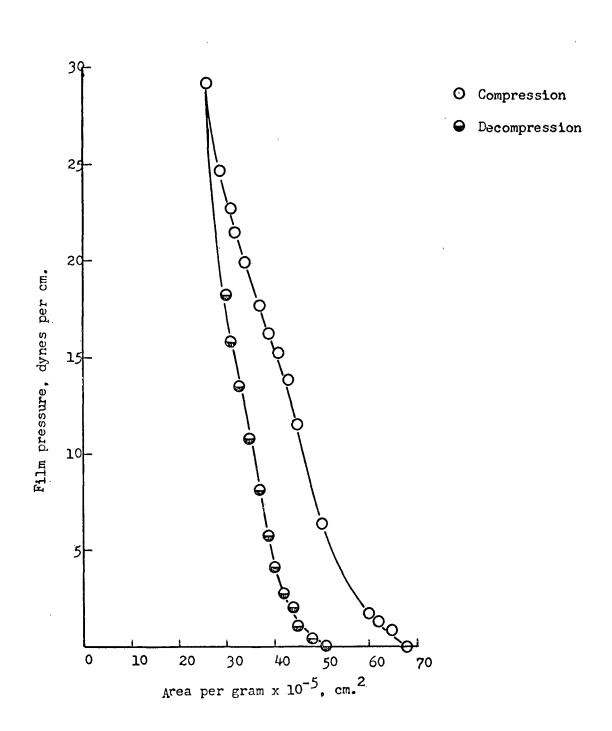
Area per molecule, \Re^2

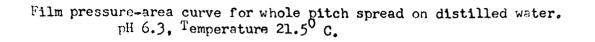

Film pressure-area curve for stearic acid spread on dilute hydrochloric acid pH 2.2, Temperature 21°C.

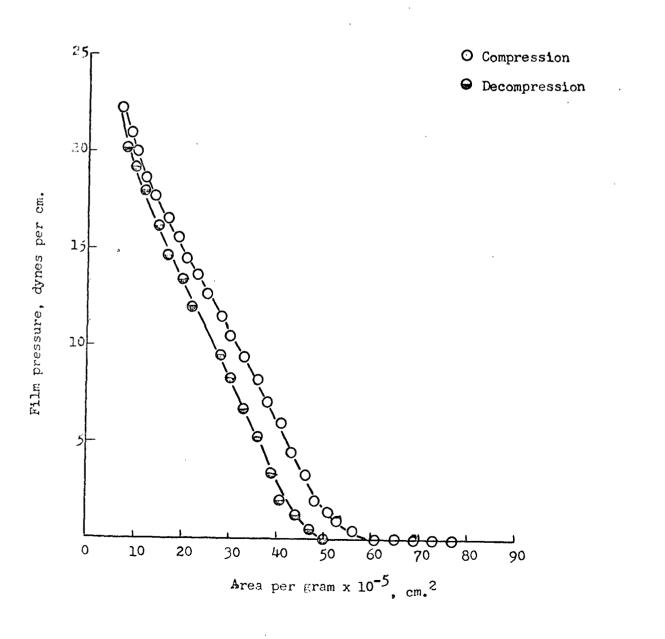
Film pressure-area curve for whole pitch spread on dilute hydrochloric acid. pH 1.7, Temperature 23°C.



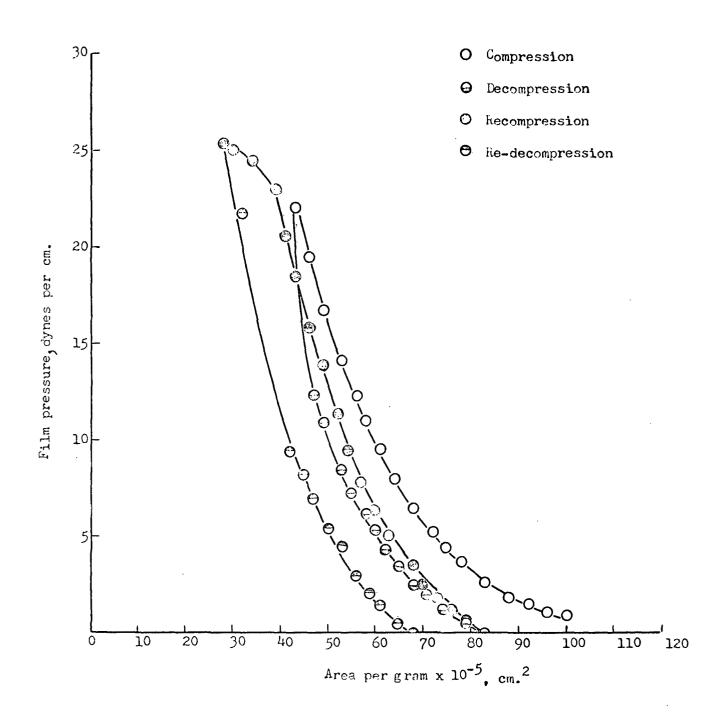
Figuro 4


Film pressure-area curve for resin acid fraction spread on dilute hydrochloric acid. pH 1.5, Temperature 24°C.


÷.,

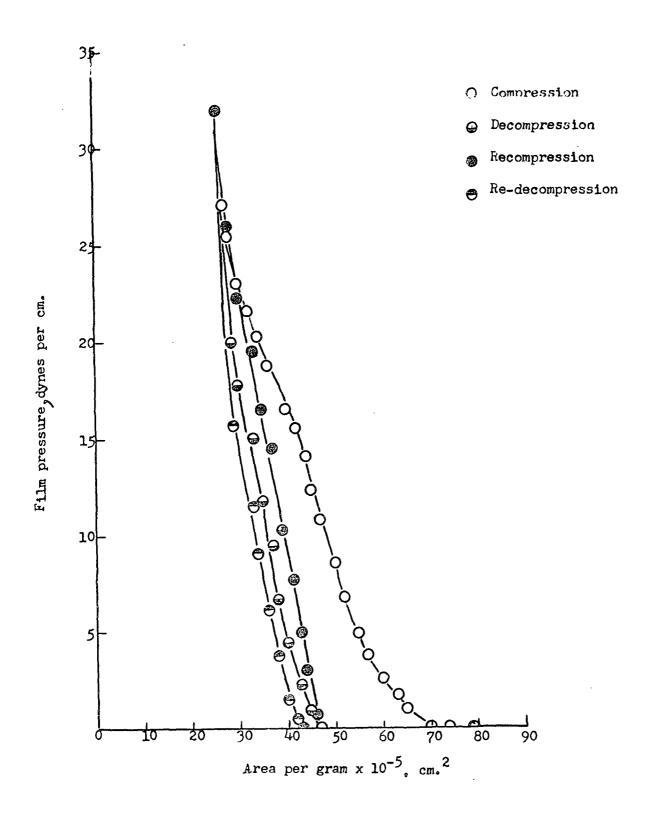

Page 16

Film pressure-area curve for unsaponifiable fraction spread on dilute hydrochloric acid. pH 2. Temperature 21°C.



A. . .

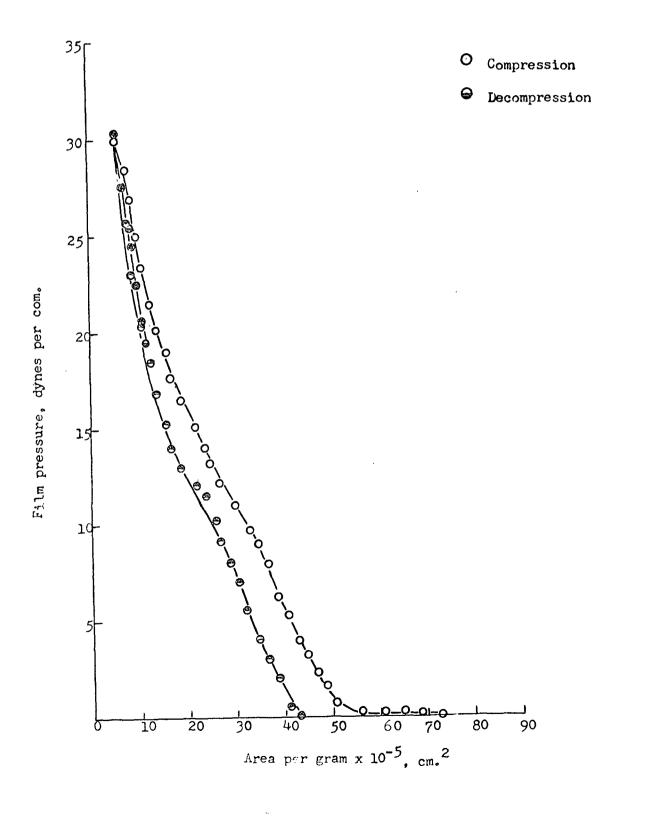
Film pressure-area curve for fatty acid fraction spread on distilled water. pH 6.5, temperature 21.5°C.


Film pressure-area curve for resin acid fraction spread on distilled water. pH 6.5, Temperature 21.5°C.

1,1

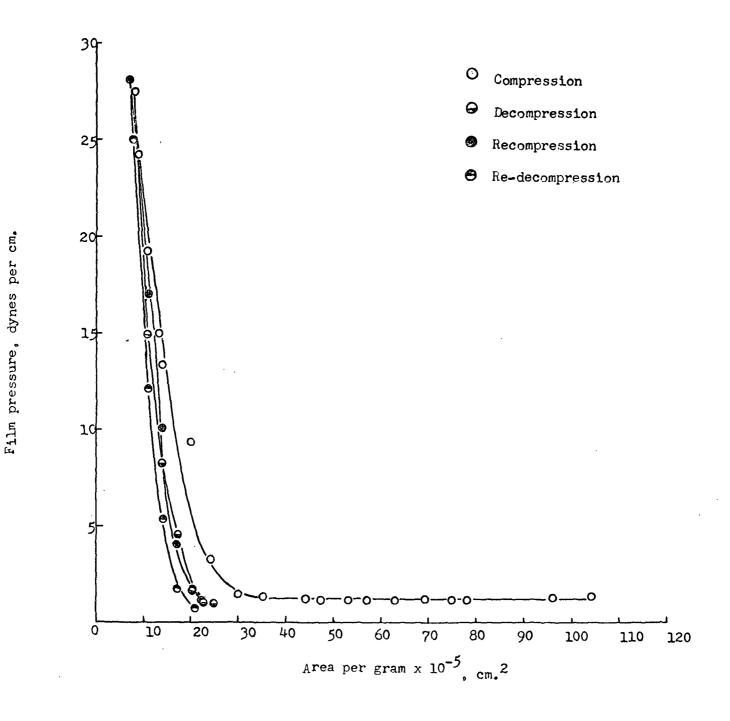
Figure 9

Film pressure-area curve for unsaponifiable fraction spread on distilled water. pH 6.5, Temperature 21.5°C.

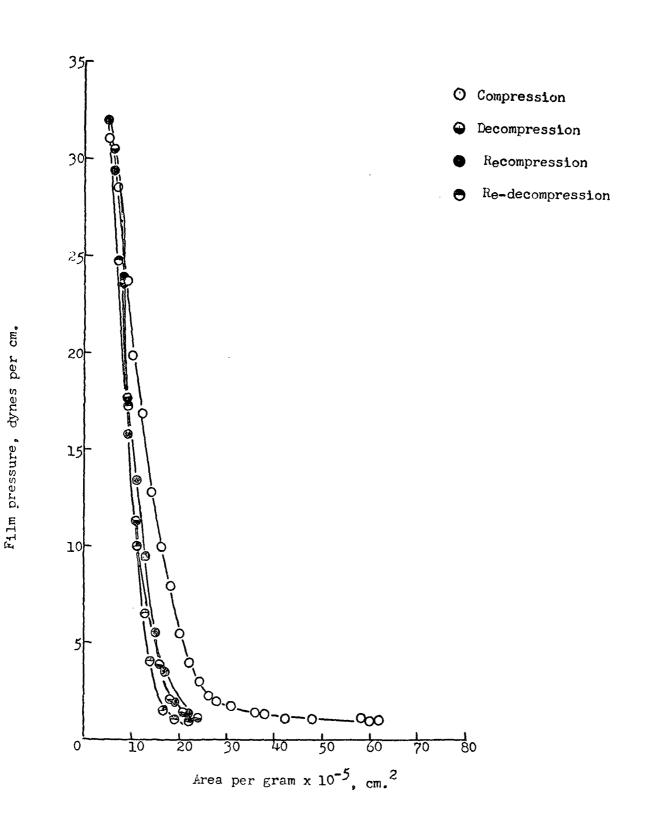


÷.,

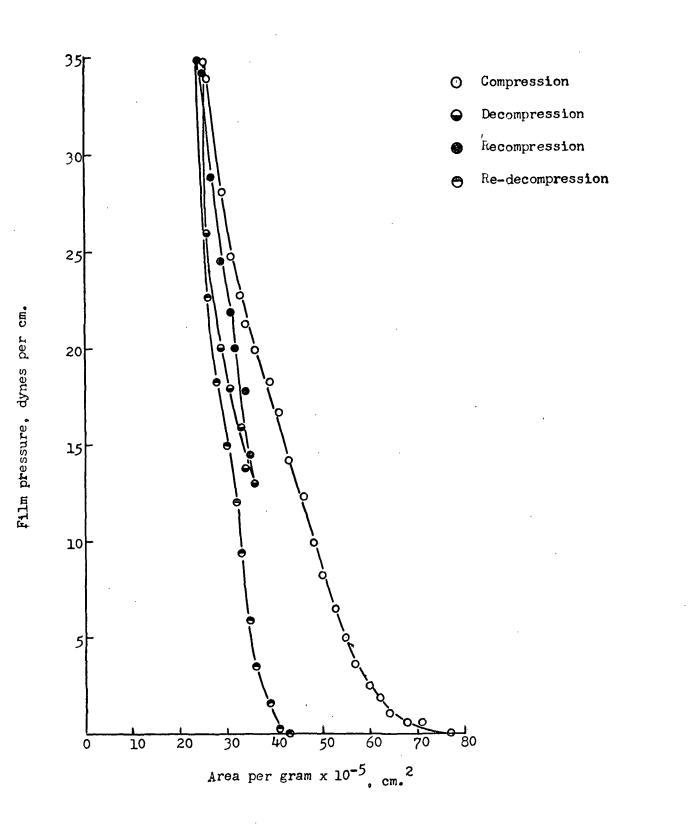
Figure 10

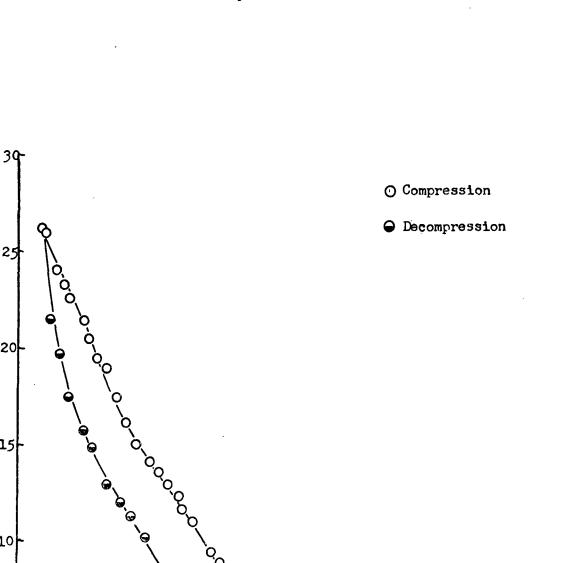

Film pressure-area curve for whole pitch spread on sodium hydroxide substrate. pH 11.3, Temperature 24.5°C.

1.1



Film pressure-area curve for fatty acid fraction spread on sodium hydroxide substrate. pH 10.0, Temperature 23.5⁰C.



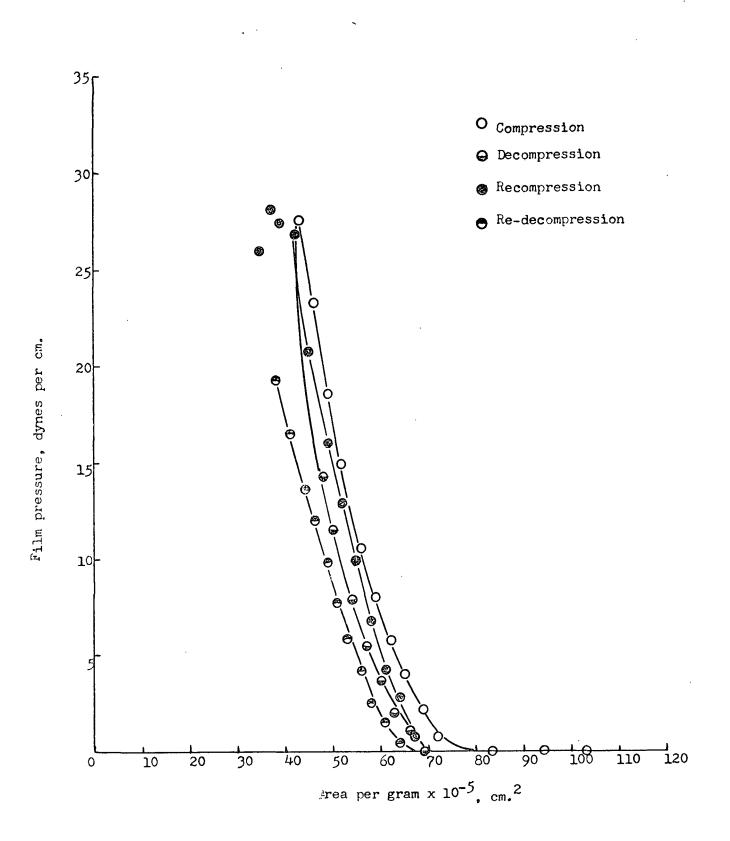

Film pressure-area curve for resin acid fraction spread on sodium hydroxide substrate. pH 11.0, Temperature 25°C.

Film pressure-area curve for unsaponifiable fraction spread on sodium hydroxide substrate. pH 11.0, Temperature 25°C.

Film pressure-area curve for whole pitch spread on a distilled water substrate containing 5×10^{-4} M aluminum ion. pH 4.1, Temperature 24° C.

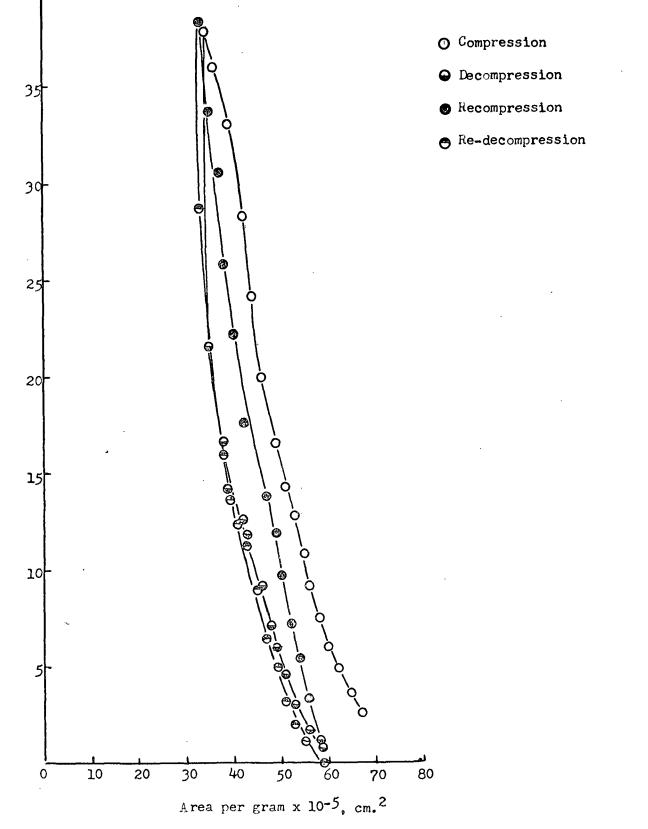
Contraction and the second second

Page 24 a


Film pressure, dynes per cm.

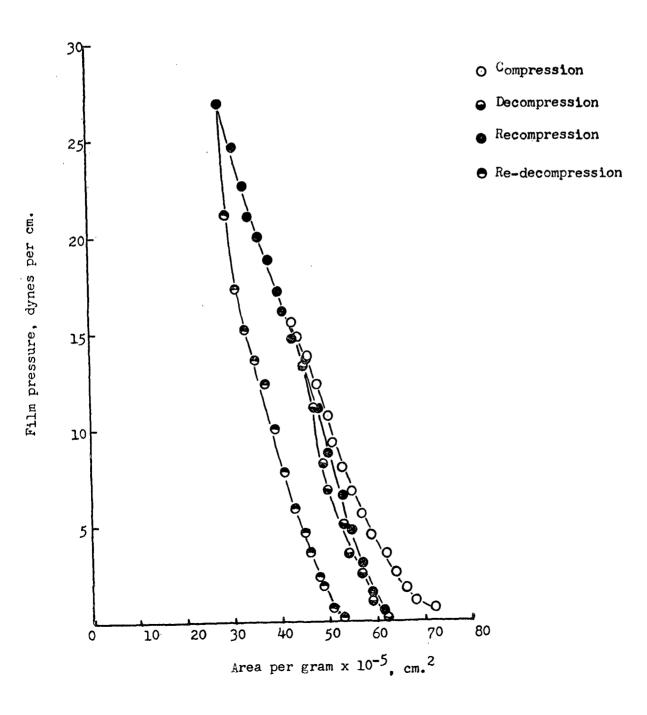
Õ Area per gram $\times 10^{-5}$, cm.²

۰,


Figure 15

Film pressure-area curve for fatty acid fraction spread on a distilled water substrate containing 5 x 10⁻⁴M aluminum ion. pH 4.1, temperature 24°C.

. .


Film pressure-area curve for resin acid fraction spread on a distilled water substrate containing 5×10^{-4} M aluminum ion. pH 4.1, Temperature 24° C.

Film pressure, dynes per cm.

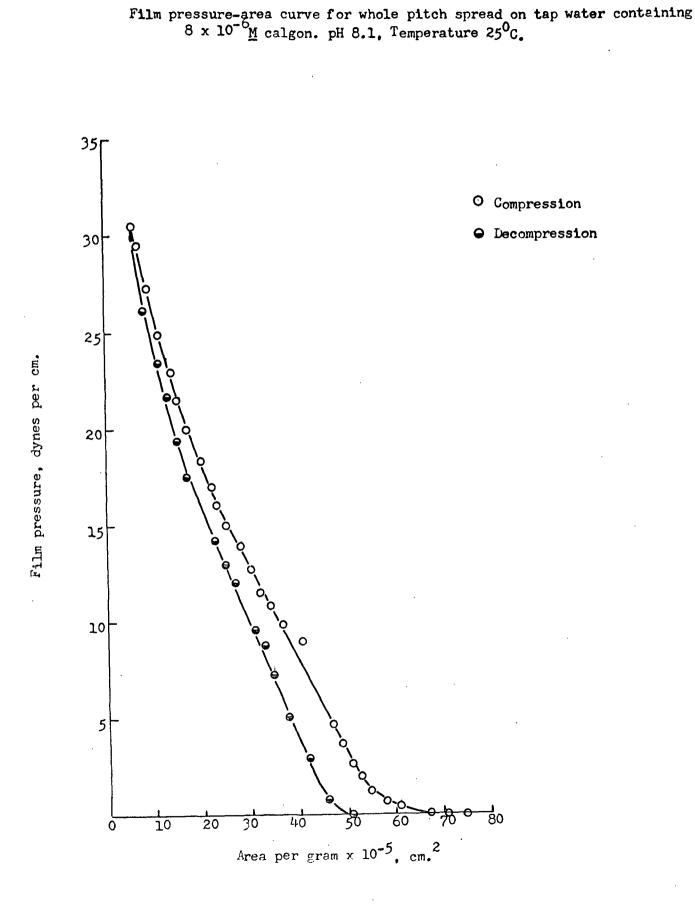
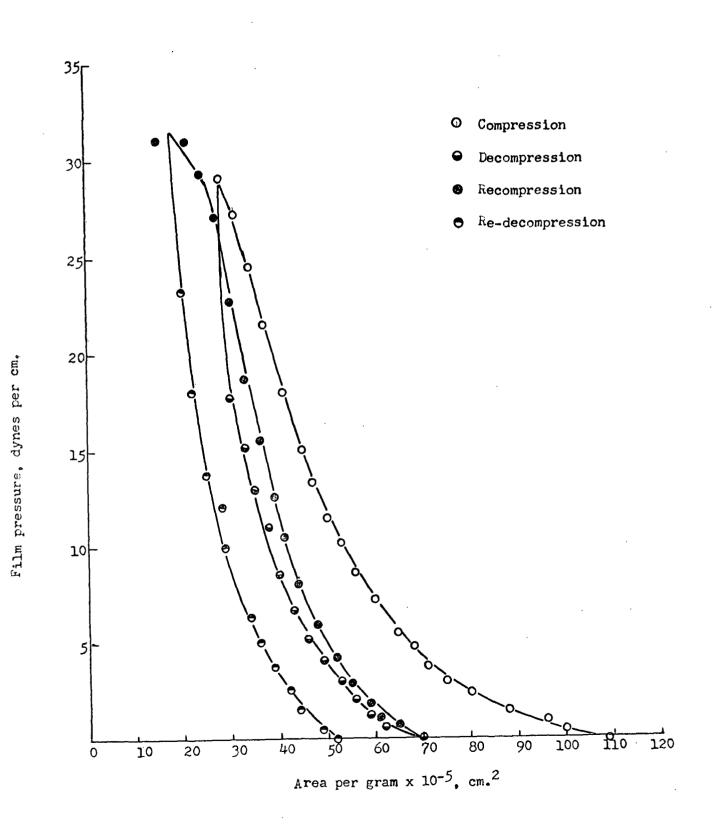
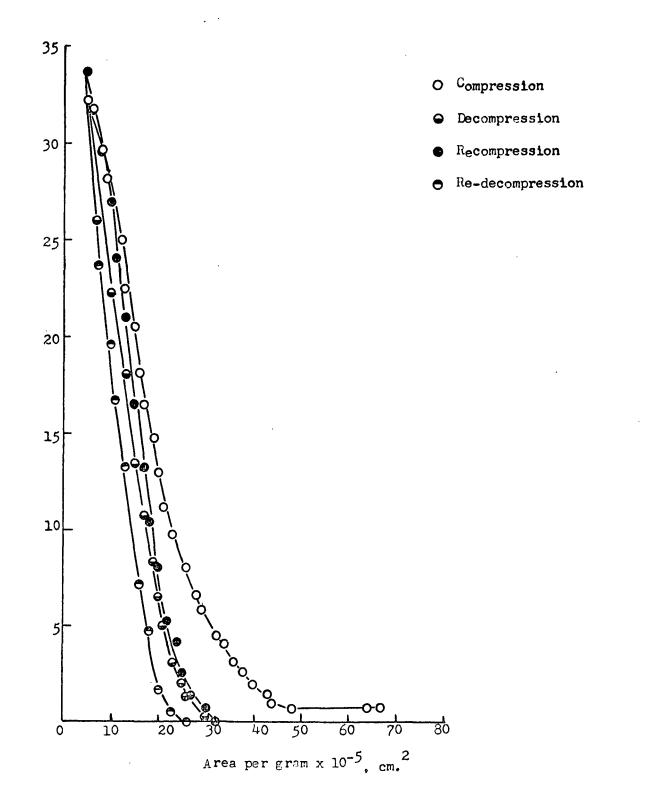

4**0**

Figure 17

Film pressure-area curve for unsaponifiable fraction spread on a distilled water substrate containing 5 x 10⁻⁴M aluminum ion. pH 4.2, Temperature 21.5°C.



Film pressure-area curve for fatty acid fraction spread on tap water containing 8 x 10⁻⁶ <u>M</u> calgon. pH 8.7, Temperature 24.5^oC.



Ζ.


顶近地

Figure 20

Film pressure-area curve for resin acid fraction spread on tap water containing 8 x 10⁻⁶ <u>M</u> calgon. pH 7.4, Temperature 25^oC.

Film pressure, dynes per cm.

at the second second second

Page 31

December 5, 1956 Profect 1857 Page 32

References

- 1. Hammes, Gordon, Project Report 1, August 24, 1955.
- 2. Mellen, Shirley F., Project Report 2, March 12, 1956.
- 3, Harkins, W. D., and Anderson, T. F., J. Am. Chem. Soc 59: 2189-2197(Nov., 1937).
- 4. Dervichian, D. G., J. Chem Phys 7, 931(1939).
- 5. Meeder, A. L. Jr., and Criddle, D. W., J. Colloid Science <u>8</u>, p. 170(1953).
- Bruun, H. H., Surface balance studies of rosin acid monolayers, Abo Akademi, Abo, 1954.

December 5, 1956 Project 1857 page 33

APPENDIX Table VII

Film pressure-area data for stearic acid spread on dilute hydrochloric acid pH 2.2, temperature $21^{\circ}C$.

mpression	Film pressure, dyna Decompression	es per cm. Recompression	Re-decompression	Film area cm. ²	Area per ₀₂ molecule A
0	0		0	346 339 335	22.8 22.4 22.1
	0.48	0 . 79	0.79	329 328 325	21.7 21.6 21.5
49	1.33	2.22	, ,	323 320 317	21.3 21.1 21.0
26	3.88	4.79	2 .7 6 5 . 26	312 310-308 . 302	20.6 20.4 19.9
80	5.42	8.59		300 298 296	19.8 19.7 19.5
41	7.80 10.81	12.55	7.45	292 288 285-284	19.3 19.0 18.8
.37	13.00	14.96	11.89	2 7 8 2 76 2 7 3	18.3 18.2 18.0
	16.58	19.37	14.42	269 266 264	17.7 17.6 17.4
.68	٢	28.18	18.92	259 253 251	17.1 16.7 16.6
1				<i>L) L</i>	TOPO

project 1857 page 34

Table VIII

Film pressure-area data for whole pitch spread on dilute hydrochloric acid pH 1.7, temperature 23°C.

Film pressure, Compression	dynes per cm. Decompression	Film area, cm. ²	area per gram x 10 ⁻⁵ , cm. ²
0		474	77
0		371	61
1.65		348	57
-	0	339	55
2.06		329	54
2.76	0.89	314-310	51
4.18	-	297	48
	1.33	291	47
	1.71	273	44
7.10		265	43
•	3.96	248	41
8.91		239	39
-	5.77	230	39 38
9.67		· 225	37
10.30		215	37 35 34 33
	6.85	209	34
11.22		200	33
פ8. יו	8.24	187-184	30
12.74		173	28
	9.92	164	27
14.20		147	24
15.37		125	20
16.26		111	18
	15.75	95	15
18.20		83	14
18.73		72	12
	17.97	72 67	11
19.84		63	10
20.54		54	9
21.90		42	9 7 6
22.92		35	6
24.60		27	4

December 6, 1956 Project 1857 page 35

Table IX

Film pressure-area data for fatty acid fraction spread on dilute hydrochloric acid. pH 2, temperature 23°C.

mpression	Film pressure, d Decompression	lynes per cm. Recompression	Re-decompression	Film area, cm.	Area per gram x 10 ⁻⁵ , cm. ²
59 78				416	99
78				397	94 87 84
0				367	87
35				353	84
•			0	326	77
79				311	74
			0.29	298	71
,18				296	70
1			0.95	2 7 5	65 64
.72				270	64
			1.14	262	62
1.43				255	60
L.89				243	58
3.31	8.81			234	56
	9•95	•	3.01	224	53
1	A (10.94	•	221	52
1.44	11.60	. 0	4.79	515-511	50
		13.98		206	49
.00		- ((-	6.75	200-198	47
	14.80	16.61	0	196-195	46
.46	17.63		8.97	187-186	44
		19.97		182	43
1.38				175	42
	21.56			173	41
1			11.25	170	40
1.92		22.60	0	165-164	39
	د		12.58	160	39 38 36 35
Į		· · · · · · ·	14.14	154	36
•		23.52		148	35
ł		23.97		131	31
			22.63	125	30
		24.60	24.19	106-104	25
		25.14 25.61	24.66	90	sī
		25.61	or -(90 74 72 61 56 45 44	18 37 15
			25-36	72	17
			25.99	61	15
		26.66		56	13
		27.26		45	11
			27.17		10
		29.07		33	8

Table X

Film pressure-area data for resin acid fraction spread on dilute hydrochloric acid. pH 1.5, temperature 24°C.

Film pressure, Compression	dynes per cm. Decompression	Film area, cm.	Area per $gram \times 10^{-5}$, cm. ²
3.33		468	71
3.68		456	69
4.50		440	67
5.33		421	64
6.66		399	60
	0	390	59
7.77		385	58
	0.22	375	57
9.89		355	54
	0.54	351	53
11.35	0.79	334-333	50
	1.43	31 7	48
13.16	_	312	47
	2.85	297	45
15.12	3.55	283	43
_ •	4.56	269	41
15.47		268	40
0	6.31	246	37
15.98	7.32	233-232	35
16.23	0	220	33
16.23	8.75	214-210	32
16.64	9.99	201-198	30
16.74		186	28
	11.98	170	26
17.53	12.84	157-147	24
17.91	13.41	147-143	22
18.35	14.33	131	20
19.05	14.90	114-113	17
19.97	15.56 16.48	99-97 86	15
20.86	10.40	82	13
20.00 21.81			12
21.01	ן <i>יד</i> די <i>ד</i>	72 68	11
22.48	17.37 18.16	63-58	10
23.36	10.10	55	7
24.95		44	7
25.74	22 .7 9	35	9 8 7 5
·/·/·	26.(7	<i></i>	2

1

· ~ .

Table XT

Film pressure-area data for unsaponifiable fraction spread on dilute hydrochloric acid. pH 2, temperature 21°C.

Film pressure,	dyn es per cm.	Film agea,	Area per
Compression	Decompression	cm. ²	$gram \ge 10^{-7}, cm.^2$
0		410	68
0.89		392	65
1.30		372	62
1.71		361	60
	0	307	51
7.39		302	
	0.41	288	50 48
11.54	0.95	271	45
	1.90	262	44
13.79		25 7	43
	2.76	252	42
15.22		246	41
	4.12	243	40
16.20	5.71	2 37- 233	39
17.66	8.18	225-221	37
	10.78	210	35 34
19.84		205	34
_	13.57	200	33
22.73	15.72	189-184	31
	18.26	179	30
24.66		174	29
29.23		157	26

and a strategy of

·· .

Table XTT

Film pressure-area data for whole pitch spread on distilled water. pH 6.3, temperature 21.5°C.

Film pressure, Compression	, dynes per cm. Decompression	Film area, cm. ²	Area per gram x 10^{-5} , cm. ²
0		474	77
0		448	73
0		422	69
0		397	65
0		371	61
0.44		346	56
1.01		326	53
1.39		310	51
	0	307	50
2.00		297	48
	1.7	288	47
2.30		280	46
1. 1.1.	1.20	269	44
4.44		265	43
5.93	1.97	252	41
7 07	3.39	237	39
7.07	F 00	236	38
8.18	5.20	221	36
9.35 10.49	6.78 8.24	204-202	33
11.57		187-184	30
12.68	9.51	172-169	28
13.63		155 142	25
	12.05	142 134	23 22
14.55	12.07	128	22
214//	13.41	122	20
15.60		115	19
16,48	14.61	105	17
	16.41	92	15
17.72		87	14
18.61	17.88	76-72	12
19.94	19.18	63-61	10
21.02	*	52	
	20.26	51	9 8
22.35		41	7

Table XIII

.

ł

. •

Film pressure-area data for fatty acid fraction spread on distilled water. pH 6.5, temperature 21.5°C.

Fompression	ilm pressure, dyne Decompression	s per cm. Recompression	Re-decompression	Film area, Cm. ²	Area per gram x 10 ⁻⁵ , cm.
.82 .08 .49				422 406 387	100 96 92 88
.81 .60	0			3 7 0 352	88 83
	0.57	0.63		335-333	79
.71		1.27		330 333	78 76
.53		⊥•< {		323 315	75 74
	1.17	1.81		312	74 73
.20		T.OT		310 302	7 3 7 2
	1.90	- 1		301	71
.50	2.47	2.47 3.55	0	29 7 288-285	70 68 65 64 63 62 61
	3.46)•))	0.44	275	65
.93		F 10		271	64
	4.25	5.10		266 264	62
.51			1.39	259 - 25 7	61
	5.36	6.40	0.07	353	60
0.97	6.18		2.03	148 246-243	58 58
	- • • • • •	7.77		242	59 58 57 56
2.33	7 00		2.92	236-234	56
	7.29	9.51		233 229	55 54
4.17	8.40		4.34	225-223	53 52
		11.41	5 70	218	52
6.74	10.81	13.82	5.39	212 209-205	50 49 4 7
1	12.36		6.88	198	47
19.56		15.85	8.24	196-195 189	46
2.06		18.48	0.24	183-182	45 43
			9.32	177	42
		20.45 23.01		174 164	41
		24.38		152	39 36 32 30 28
			21.75	13 7	32
		25.07 25.36		127 116	<u>30</u>
		25.36		TTO	20

~```

٠.

Table XIV

Film pressure-area data for resin acid fraction spread on distilled water. pH 6.5, temperature $21.5^{\circ}C$.

ompression	Film pressure, dyna Decompression	es per cm. Recompression	Re-decompression	Film area, cm. ²	Area per gram x 10 ⁻⁵ , cm. ²
$ \begin{array}{c} .48\\.82\\.17\\.65\\.03\\.76\\.36\\.12\\.39\\.44\\.73\\.56\\.67\\.0.90\\1.86\\3.16\\.67\\.0.90\\1.86\\.61\\.86\\.8.86\\.8.86\\.8.86\\.8.86\\.8.86\\.8.86\end{array} $	0 0.48 1.46 2.25 3.71 5.33 $\cdot 6.66$ 8.15 9.83 11.98 14.90 17.12	0.48 1.27 2.35 3.90 5.14 6.28 8.21 9.76 10.78 12.11 13.57 15.25 16.90 18.39 19;05 19.97 21.24 22.22 23.33 24.76 25.36	$0 \\ 0.2 \\ 1.74 \\ 2.73 \\ 4.18 \\ 5.20 \\ 6.63 \\ 9.12 \\ 9.16 \\ 11.10 \\ 13.19 \\ 15.41 \\ 17.97 \\ 19.81 \\ 19.81 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 499\\ 474\\ 448\\ 422\\ 397\\ 372\\ 360\\ 346\\ 332\\ 320\\ 396\\ 283\\ 262\\ 246-242\\ 234-230\\ 223\\ 219\\ 211-210\\ 207-206\\ 198-197\\ 195-189\\ 186-183\\ 177\\ 174-173\\ 165-163\\ 161-159\\ 186-183\\ 177\\ 174-173\\ 165-163\\ 161-159\\ 154-150\\ 143\\ 140-138\\ 132-129\\ 125\\ 120-118\\ 114-110\\ 101-100\\ 92-91\\ 79-77\\ 68-67\\ 59-58\\ 50\\ 42\end{array}$	75 72 68 4 60 5 5 4 2 5 8 4 4 5 3 0 7 5 4 3 7 5 4 3 7 2 1 0 9 8 7 6 5 4 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

·* ? •

· · · .

Table XVI

Film pressure-area data for whole pitch spread on sodium hydroxide substrate. pH 11.3, 24.5°C.

Compression	Film pressure, Decompression	dynes per cm. Recompression	Re-decompression	Film area, cm. ²	Area per gram x 10 ⁻⁵ , cm. ²
0				448	73 69 65 61
0.29				422	69
0.29				39 7	65
0.29				371	61
0.29				346	56
0.79 1.62				314	51
2.31				2 9 8	49
3.23				288 2 76	47
3.96			0	266-262	45
5.33			0.54	253-251	43 41
·· / 1			1.93	241-237	39
6.34 7.93			2.92	227-225	37
8.97			4.09	214	35
9.70				201	33
1			5.55	198	. 32
+ }			7.07	188	31
11.10				184	30
			7.93	177	29
12.20			9.19	168-165	27
			10.21	157	26
13.28				156	25
14.14			11.57	145-142	24
15.15 16.48			12.14	133	22
17.75			12.90	119-118	19
19.02	د		13.98 15.28	106-105 97-96	17 16
20.19			16.80	87	14
21.56			18.48	78	13
	19.46		10.10	76	12
23.43		20.61	20.45	69-68	11
25.17		22.63		61-60	10
27.01	25.55	24.54	23.08	58-52	
28.53		_	25.74	50-48	8
		27.67		45	9 8 7 6
29.80		30.43		38-36	6

· . · .

Table XVII

Film pressure-area data for fatty acid fraction spread on sodium hydroxide substrate pH 10.0, temperature 23.5 °C.

Compression	Film pressure, dy Decompression	nes per cm. Recompression	Re-decompression	Film area, Cm.2	Area per 10^{-5} , cm. ²
1.30				440	104
1.70				406	96
1.17				329	78
1.17				317	75
1.17				289	69 63
1.17				2 66	63
1.17				242	57
1.17				224	53 47
1.17				-198	47
1.17				184	44
1. ~~				148	35
1.52				128	30
	1.01			104	25
3.23				100	24
	1.01	1.01		97 - 96	23 21
	-		0.79	90	21
9.41	1.65	1.65		86-84	20
	4.50	4.09	1.78	73 -7 0	17
13.41	8.24	10.11	5.42	60-58	<u>1</u> 4
19.27	14.80	16.96	12.14	47-45	11
24.22				40	9 8
27.58		•	25.04	33	
		28.09		31	7

Table XVIII

• •

Film pressure-area data for resin acid fraction spread on sodium hydroxide substrate pH 11.0, temperature 25°C.

	Film pressure, dynes per cm.			Film area,	Area per _
Compression	Necompression	Recompression	Re-decompression	cm. ²	$gram \ge 10^{-5}$, $cm.^2$
1.08				410	62
1.08				397	60
1.14				348	58 48
1.14				319	48
1.14				280	42
1.33				255	42 38 36 31 28
1.46				238	36
1.71				207	31
1.97				188	28
2.25				175	26
2.95	1.11	1 70		160-156	24
3.93	1 70	1.30	0.82	146-143	22
- E EO	1.39			140	21
5.52		2.03	0.98	132 128	20 19
17.93	2.16	2.05	0.90	118	18
(2.10	3.49	1.49	114-113	17
9.92	3.80	J J	1.49	108-106	16
).00	5.55		102	15
12.84			3,96	95-93	14
		9.54	3.96 6.53	88-86	13
16.86		* *		78	12
	11.32	13.44	9.99	74-73	11
19.81	د			68	10
23.78	17.66	15.85	17.28	63-58	9
	23.62	23.84		52-50	8
8.59	·		24.73	46-45	9 8 7 6 5
	30.59	29.39		40-38	6
31.07		31.98		36-32	5

語に、語ない日本の言語に入る。

Table XIX

<u>.</u>

Film pressure-area data for unsaponifiable fraction spread on sodium hydroxide substrate. pH 11.0, temperature 25°C.

	Film pressure, dyn	es per cm.		Film area,	Area per _
pression	Decompression	Recompression	Re-decompression	cm. ²	$gram \ge 10^{-5}$, cm. ²
				461	77
0				430	71
0				410	68
8				387	64
34				371	62
;O				358	60
50 55				346	57
)1				332	55
-7		,		317	53 50 48
·7 6				302	50
6				289	48
27				274	46
.27			0	261	43
67			0.25	246-244	41
23 88	-		1.65	233	39
88	13.06		3.52	219-218	39 36 35 34 33
		14.46	5.86	212-211	35
. 30	13.76	17.76	-	207-202	34
.79	15.82		9.38	201-196	33
		20.03	12.05	193	32
-73	17.91	21.87		187-186	31
			14.90	183	30
.12	19.97	24.47	-	174	29 28
			18.20	169	28
		28.85		164	27
. 92	25.99	· ·	22.63	159-156	26
.71		34.2		152-150	25
		34.87		145	24

Table XY

Film pressure-area data for whole pitch spread on a distilled water substrate containing 5 x 10 M aluminum ion. pH 4.1, temperature 24°C.

Film pressure, Compression	dynes per cm. Decompression	Film area, cm. ²	Area per gram x 10^{-5} , cm. ²
0 0.16 0.16 1.24		448 422 384 366	73 69 63 60
2.16 3.33	0	352-348 338	57 55
4.56 5.74	0.51 1.17 1.74	332 321-317 307-305	54 52 50
6.85 8.12	2.38 3.14	293 289 2 76-27 5	48 47 45
8.91	3.90 4.76	264 261 250-248	44 43 41
9.51 11.16	5.58	2 37 22 9	39 37
11.70 12.43	6.94 7.80	218 206 205	35 34 33
13.03 13.63	8.53	193 192 182	32 [.] 31 30
14.23 15.18	10.27	169 166 156	28. 2 7 25
16.26	11.32	148 142	24 [.] 23
17.47 18.45	12.08 12.90	136 129 119-118	22 21 19
19.53 20.54	14.90	105 99 95	17 16 15
21.56 22.67 23.30	15.75 17.47	84-83 70-69 60	14 11 10
24.12	19.65 21.59	54 51 45	9 8 7 6 5
25 .99 26 . 28	CT•)}	37 32	- 6 5

Ξ

1 1

Table XXI

<u>.</u>

Film pressure-area data for fatty acid fraction spread on distilled water substrate containing 5 x 10⁻⁴M aluminum ion. pH 4.1 temperature 24^oC.

ompression	Film pressure, dyn Decompression	nes per cm. Recompression	Re-decompression	Film area, cm. ²	Area per gram x 10 ⁻⁵ , cm. ²
) } }				435 39 7 352	103 94 83
).76 :.19	0	0.73	0	306 289 284-283	72 69 67 66
5 •9 9	1.08	0.15		278 274	66 65 64
.71	2.03	2 .79	0.38	2 71-269 266 262	64 63 62
	3.65	4.25	1.52	259 - 25 7 253	61 60
'. 96	5.42	6.72	2.47	250 2 46-2 44 241	59 58 57
.0.6 2		9.83	4.18	2 36 230	57 56 55 54
L4.90	7.80	12.90	5.71	229 225 218	54 53 52
	11.57		7.77	2 16 212	51. 50
t8.54 }3.24	14.23	16 .01	9.70 11.89	205 202 195 - 193	49 48 46
-		20.73	13.66	192 184	45 44
27.58		26.82	16.55	182 1 77 1 7 2	43 42 41
		27.42	19.27	166 161	39 38
		28.05 25.99		157 150	37 35

December 6, 1956
 Project 1857
 page 48

. .

Table XVII

Film pressure-area data for resin acid fraction spread on a distilled water substrate containing 5 x 10 $\frac{4}{M}$ aluminum ion. pH 4.1 temperature 24 C.

mpression	Film pressure, dy Decompression	nes per cm. Recompression	Re-decompression	Film area, cm. ²	Area per gram x 10^{-5} , cm. ²
59				443	67
55				429	65
59 55 38 18				412	62
18				399	60
	0.70		0	393-388	59 [.]
61	1.33			385-383	59 58
2 9	1.81	3.42	-	374-369	56
.84			1.08	365-362	55 54
		5.48		357	54
.84	3.14		2.03	352-351	53
		7.29		346	52
- 30	4.62		3.27	339 - 338	51.
	-	9.73	_	332	50 49 48
1.61	5.96	11.92	4.91	328-321	49.
	7.13	•	. .	320	48
		13.85	6.47	314-311	47 46 45 44
).03	9.22			306	46
			8.81	301	45
+.22				291	44
) 70	11.82	11	11.22	285-284	43
3.37	12.68	17.66	20.70	278-275	42
		00.00	12.39	274	41
7 17	14.20	22.22	17 67	262	40
3.13			13.63	261-260	39 79
	16.67	25.87	15.98	253-250	20 7 1 7
5.06		30.62		242	39 38 37 36 35 33
2.00	21.62	ZZ 77		239	20 75
	21.02	33•73 37•34	08 75	230)) 77
		21•24	28.75	217	22

Table XXIII

Film pressure-area data for unsaponifiable fraction spread on distilled water substrate containing 5 x 10⁻⁴M aluminum ion. pH 4.2 temperature 21.5°C.

÷

Compression	Film pressure, dyn Decompression	es per cm. Recompression	Re-decompression	Film area, cm. ²	Area per gram x ₂ 10 ⁻⁵ cm. ²
0.76				431	72
1.17				411	72 68
1.78		•		39 9	66
2.47			-	387	64
3.52	0.29			374-371	62
	0.60	0.63		369-365	61
4.50	1.11	1.59		357-355	
5.58	2.47	3.01		344-340	59 57
6.75	·	4.72		332	55
	3.55			328	55 54
7.96	4.98	6.50	0.29	320-317	53
9.29	-	r	0.67	310-308	53 51
10.65	6.82	8.72	·	303-298	50
	8.15	·	1.81	297-296	50 . 49
12.33	-	11.00	2.85	289-287	48
1	11.06		,	282	47
13.76		13.63	3.49	278-275	46
	13.25		4.56	271-269	45
14.71	2			268	44
15.50		14.65	5.83	261-257	43 41
		16.04	7.70	250-246	41
		17.09		241	40
			9.83	236	
•		18.70		229	38
	د		12.30	223	37
		20.00	-	216	36
1			13.50	211	35
T		21.05		206	39 38 37 36 35 34
		22.63	15.06	198-196	33
		24.69	17.28	188-184	31
			21.14	174	33 31 29 28
		26.85		172	28
4					

Table XXIV

Film pressure-area data for whole pitch spread on tap water containing 8 x 10⁻⁶<u>M</u> calgon. pH 8.1, temperature 25[°]C.

Film pressure,	, dyn es per cm.	Film area,	Area per	
Compression	Decompression	cm. ²	$gram \ge 10^{-5}$,	ст. ²
0		461	75	
0		435	71	
0		410	67	
0.41		371	61	
0.67		355	58	
1.20		339	55 57	
2.03 2.60	0	326 314-310	53 51	
3.65	0	2 9 8	49	
4.69		285	47	
	0.79	284	46	
	2.85	256	42	
9.03		250	41	
	4.88	233	38	
9.89		224	37	
10 91	7.20	218	35 71	
10.81	8.72	2 11 200	34 33	
11.57	0.12	198	32	
	9.51	189	31 ²	
12.74		186	30	
13.85		172	28	
	11.98	164	27	
15.06	12.93	156-154	25	
16.14 16.99	14.17	143-140	23	
18.32		133 120	22	
19.88	17.59	106-105	20 17	
21.49	19.34	95 - 90	15	
22.92		84	īí	
	21.68	77	13	
24.88	23 .39	70-65	11	
27.26		58	9 8	
00.10	26.18	51	8	
29.48		45	7	
30.50		36	0	

Project 1857 page 51

Table XXV

Film pressure-area data for fatty acid fraction spread on tap water containing 8 x 10⁻⁶ M calgon pH 8.7, temperature 24.5⁶C.

' Compression	Film pressure, dyn Decompression	es per cm. Recompression	Re-decompression	Film area, cm. ²	Area per _5 gram x ₂ 10 , cm. ²
0 0.57 0.95 1.43 2.38 3.01				461 422 407 372 338 317 301	109 100 96 88 80 75 71
3.77 4.79 5.52	0	0.70		294 287 274-273	70 68 65
7.29	0.63	1.11		262 259 253	62 61 60
8.62	1.24 2.06	1.87 2.85		247 238-234 233	
10.24 11.54	2.92	4.22	0	225-224 221-218 212	53 52 50
13.35	4.09	5.99	0.54	207-205 202 200	59 56 55 53 50 49 40 54 43 40 40 54 43 40
15.15	5.29	8.12	1.52	195 189 187	46 45 44
18.04	6.72	10.52	2.47	182 177 17 ¹ 4	41
	8.56 10.97	12.68	3.71	169 164-163 160	40 39 38 37 36
21.52 24.50	13.16	15.56	5.07	156 152-151 148	57 36 35
27.20	15.18	18.64	6.37	143-142 140-138 132	34 33 31
	17.75	22.67	9.83 12.11	128-127 124 116	35 34 33 31 30 29 28 27 25 24
		27.14 29.42	13.79	113 105 101	27 25 24
		31.10	17.91 23.24	95 87 84	22 21 20
		31.10		64	15

Table XXVI

Film pressure-area data for resin acid fraction spread on tap water containing 8 x 10⁻⁶M calgon. pH 7.4, temperature 25°C.

Compression	Film pressure, dy Decompression	nes per cm. Recompression	Re-decompression	Film area, cm.	Area per gram x 10 ⁻⁵ , cm. ²
0.79				443	67
0.79				421	64
0.79				320 201	48 44
1.08				294 282	
1.49				265	43
1.90 2.60				248	-+0 z8
2.00 3.14				238	36
3 . 90				223	34
4.50	0			210-209	40 38 36 34 32
1.90	0,29	0.79		198-196	30
5.86				193	2 9
6.66	0.73			186-183	2 9 28
		1.39		182	27
7.96	1.20		0	174-172	26
	1.90	2.60		168-164	25
	- 1	4.18		159	24
9.76	3.14	5	0.51	154-151	23
). or	5.29		149 142-141	22
11.29	4.91 6.59	7 00	1.68	142-141 136-132	21 20
13.00 14.77	8.31	7.99	T .00	123	20 19
1 ++ • ()	0.1	10.37	4.72	122-120	19 18
16.58	10.71	13.28	T • 12	1 <u>5</u> 3-110	17
18.61		1).20	7.13	108-104	īć
20.48	13.38	16.48		100-97	15
22.57	17.91	20.92	13.28	88-83	13
24.98				78	12
		24.09	16.80	76-73	11
	22.25	26.85	19.65	65-64	10
28.24				61	2
29.67		29.48		51-50	9 8 7 6 5
31.70	26.06	71 70	23.78	49-47	i (
32.27		31.70 33.60		42 36-35	0 . E
JC • C 1		33.00		50-55	2

Table XXVII

Film pressure-area data for unsaponifiable fraction spread on tap water containing 8 x 10⁻⁶M calgon pH 8.1, temperature 25°C.

No. 2

Compression	Film pressure, fynd Decompression	es per cm. Recompression	Re-decompression	Film area, cm. ²	Area per $gram \times 10^{-5}$, $cm.^2$
0 0.32 0.38 1.55				474 448 422 388	79 74 70 64
; 2 .1 6 3.04	0			3 74 360 352	62 60 58
4.31		0.54 1.46		342 -3 40 329	57
5.45	0.82 1.43	2.54		326-325 315	54 52
8.24 1 9.76	2.19	3.90 5.96	0	303 294	50 49
11.57	3•77 5•33 6 .97	9.51	1.39	291 279 273-269	55 54 52 50 49 48 46 45 44 43
13.50 15.12	8.94	11.54	2.31	268 260-259	44 43
17.59	10.81	13.44 15.98	4.15	250-246 241-239	41 40
19.46	14.80	18.13	6.34	237 230-229 221	39 38 37
20.45	18.77	19.59 20.83	8.21	218 210-209	39 38 37 36 35 34
	د	23.62 25.87	10.59 13.85	206 192 182	34 32 30
		30.81	16.29	173 166	32 30 29 28

-4

Antonio Manual Contractor

* Reality