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SUMMARY 
 

Modern embedded processors with dedicated address generation unit support 

memory accesses using indirect addressing mode with auto-increment and auto-

decrement. The auto-modify mode, if properly utilized, can save address arithmetic 

instructions, reduce static and dynamic footprint of the program and speed up the 

execution as well. 

[Liao 1995; 1996] categorized this problem as the simple offset assignment (SOA) 

problem and the general offset assignment (GOA) problem which involve storage layout 

of variables and assignment of address registers respectively. He proposed heuristic 

solutions to these problems based on graph-theoretic algorithms. Later work proposed 

improvements in the performance of Liao’s solution by undertaking other heuristics for 

offset assignment and also by undertaking program transformations which rearrange the 

sequence of accesses (called access sequence) to the memory locations. 

Since techniques based on devising efficient graph covering algorithms have 

limited impact given the density of the underlying access graph, this work proposes a 

new direction to explore the solution space for this problem. The work proposes a 

framework to simplify the access graph using coalescence-based offset assignment, post-

pre optimizations and using offset registers. Variables not interfering with other (not 

simultaneously live at any program point) can be coalesced into the same memory 

location. Coalescing allows simplifications of the access graph yielding better SOA 

solutions or can perhaps lead to such a small number of non-coalesceable memory 

locations that GOA solutions for them are optimal. Moreover, it can reduce the program 

footprint both statically and at runtime (for stack variables) in terms of data segment size. 
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Besides, variable coalescence is orthogonal to other heuristics proposed by early work. 

We have seamlessly incorporated our framework with an SOA solver. Our framework 

can work with any SOA solvers, making the scheme more flexible. Post-pre optimization 

considers how to do most effective code generation using both post-modify and pre-

modify modes to solve the challenge of utilizing this mode within basic blocks as well as 

across basic block boundaries. Making use of both addressing modes further reduces 

effective SOA/GOA cost and our post-pre optimization phase is optimal in selecting post 

or pre mode after variable offsets have been determined. 

Our experiments conducted on benchmark programs from MediaBench, MiBench 

and Spec2000Int showed improved code performance in terms of stack size, the number 

of address arithmetic instructions and execution cycles. We were able to obtain an 

average of 12.0% reduction in dynamic stack size in a compiler that reuses stack slots, so 

the actual savings could have been greater if the compiler were to not reuse stack slots. 

We base our comparisons against a base SOA algorithm, which is Liao’s SOA with 

Leupers and Marwedel’s tie-breaker. By using offset registers, we achieved a 36.5% 

reduction in address arithmetic instructions, compared to 2.77% for base SOA algorithm. 

For code size, we saved 2.27% compared to 0.32% for base SOA. For execution cycles, 

we saved 4.10% while base SOA saved 0.38%. 
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1. INTRODUCTION 
 

The rapid evolution in embedded processors and DSP architectures has raised 

new challenges for compilers to generate efficient and small footprint code for the ever-

increasing demands on user applications. Reducing the code size also reduces the amount 

of memory traffic for instruction fetching and data fetching, which can further speed up 

the program execution. 

Memory is often a scarce resource in embedded systems because of their small 

size. Therefore, we want to optimize code with respect to both code size and stack size, 

because both of them consume memory. 

Most modern embedded architectures have specialized address generation units 

(AGUs) to facilitate the memory address generation in different modes. The AGU 

normally provides auto-modify mode, i.e. simple Address Register (AR) operation 

(typically, plus or minus a small constant value) before or after the memory access 

operation, so that the address register operation is executed for free without dilating the 

clock cycle on the critical path. However, due to constraints on instruction size, 

traditional register-plus-offset addressing mode is either not supported (e.g. TMS320C25) 

or requires more instruction words (Motorola DSP56300). Therefore, transforming 

address arithmetic into auto-modify mode can help to generate compact and efficient 

code and speed up execution as well.  

Most modern DSP processors have at least 8 address registers. For example, each 

of the Motorola DSP56300 processor [Motorola 2000] and the Sony pDSP processor has 

8 address registers. StarCore's SC140 has 16 address registers [Motorola 2001]. Analog 

Devices' ADSP-21020 has 8 address registers (32 bit) for data memory and 8 address 
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registers for program memory (24 bit). Post-modify is supported for all these processors, 

and pre-modify is supported for some processors like DSP56300. The hardware support 

reflects the designers' expectation for heavy usage of these instructions; however the 

actual usage of them is still quite limited. In our experiments, we counted the number of 

instructions with auto-modify modes generated by GCC compiler retargeted for the 

Motorola DSP56300 processor. For most benchmark programs, less than 3% of the 

generated address instructions make use of the auto-modify mode before our 

optimizations. A recent study [Udayanarayanan 2001] also shows that on some embedded 

processors up to 55% of operations could potentially use address register operations to 

reduce cycle counts and code size. Therefore, significant opportunities exist for 

optimizing address register assignments. 

Bartley [1992] and Liao et al [1995; 1996] first modeled this problem as offset 

assignment (also known as storage assignment). They identified the problem as two 

classes: simple offset assignment (SOA) and general offset assignment (GOA). They 

modeled the problem as an access graph and the objective is to find the maximum weight 

path cover (MWPC) on the graph. Liao proved that finding the MWPC is NP-complete; 

therefore heuristics are used to solve both SOA and GOA. Later, Leupers and Marwedel 

[Leupers 1996] extended Liao's work by proposing a Tie-break heuristic for SOA and a 

variable partitioning strategy for GOA to reduce the SOA and GOA costs. Atri, 

Ramanujam and Kandemir [Atri 2000] further improved the heuristics by an algorithm 

called Incremental-Solve-SOA, which requires much more running time in solving the 

same graph problem. Sudarsanam et. al. [1997] studied the offset problem in the presence 

of an auto-modify feature that varies from -l to +l with k address registers. [Rao 1998; 
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Rao 1999] extended beyond offset assignment with memory access sequence reordering 

(or program reordering) through algebraic transformations on the expression trees. 

[Kandemir 2003] proposed a more aggressive access sequence reordering scheme with 

both intra-statement and inter-statement transformations. Program reordering can better 

utilize the auto-modify mode by rearranging not only the variables’ offsets but also the 

order of memory access instructions. An approach based on a genetic algorithm (GA) for 

SOA was presented in [Leupers 1998]. It uses a simulation of natural evolution process, 

which is relatively time-consuming. Finally, [Leupers 2003] did a comprehensive 

comparison among several existing algorithms (except program reordering) and proposed 

a combined algorithm based on Tie-break and incremental-Solve-SOA. He also found 

that the qualities of the solutions obtained are quite close among these algorithms. 

Another type of problem is known as the Array Reference Allocation (ARA), 

which optimizes the access to array variables using auto-modify mode [Araujo 1996; 

Gebotys 1997; Leupers 1998; Ottoni 2001]. 

In this work, we propose an optimization framework for compiler-managed code 

generation based on the auto-modify mode on embedded processors. Previous approaches 

to offset assignment optimization concerns dealing with graph-theoretic algorithms and 

algebraic transforms to find a good memory layout, but do not provide any stack size 

savings. We want to optimize stack memory and also simplify the solution by making use 

of other techniques. Our framework consists of two parts. First, we enhance the 

effectiveness of offset assignment with a new technique called variable coalescence. We 

start with identifying webs, and then we coalesce them aggressively into fewer memory 

locations. Our study shows that the access graph of the atomic variables is sparse, and 
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coalescence can effectively reorganize them to generate simpler access sequences with 

high-weighted path covers. Besides, aggressive coalescence can significantly reduce the 

static and dynamic memory space requirements of a program for SOA and GOA based 

optimizations. Variable coalescence can be combined with most previous approaches to 

further boost the performance. Second, to further reduce the AR modification instructions 

(written as “LDARs” for short), we add a post-pre optimization phase to decide whether 

post- or pre-modify mode should be used for each access. Our post-pre optimization 

phase can optimally select post or pre mode after variable offsets have been determined. 

We also propose additional optimization methods to consider SOA as an inter-basic-

block problem, and to scavenge the offset registers which can be used to save LDARs 

and execution cycles. 

 

1.1 Address Generation in DSP Processors 

Address generation hardware in DSP processors differs from that of standard 

processors [Leupers 1996]. Usually, several ARs are available, which can be updated in 

parallel to other machine operations, thereby introducing no code size or speed overhead. 

On the other hand, addressing may be quite restricted. In order to avoid long 

combinational delay, many DSPs do not permit indexing with an offset, but only post-

modification, i.e. additions or subtractions involving ARs take place only at the end of a 

machine cycle. Besides high code quality, retargetability is another primary goal in DSP 

code generation, due to the growing diversity of DSPs in form of application-specific 

designs (ASIPs). Therefore, we consider a generic AGU architecture, which reflects a 

subset of AGU capabilities of many contemporary DSPs. Our AGU model (Figure 1) is 

parameterized by the number K of ARs and the number N of Offset Registers (ORs). In 
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case of multiple memory banks we assume separate AGUs for each bank. Typical AGU 

configurations are K = 4; N = 4 (ADSP-210x), or K = 8; N = 1 (TMS320C2x). The ARs 

provide effective memory addresses, while ORs store integer modify values for AR 

updates. AR and OR files are indexed by designated pointers, which select the current 

AR and OR for each machine cycle. AR and OR pointer updates usually does not 

contribute to code size [Leupers 1996]. Figure 1 shows a generic AGU model taken from 

Leupers and Marwedel’s paper [Leupers 1996]. 

 

Figure 1. Generic AGU Model 

 

The AGU model permits execution of the following primitive AGU operations in 

each machine cycle: 1) Immediate AR load: The current AR is loaded with an immediate 

value supplied by the instruction word. 2) Immediate AR modify: An immediate value is 

added to or subtracted from the current AR. 3) Auto-increment/decrement: The constant 

1 is added to or subtracted from the current AR. 4) Immediate OR load: The current OR 

is loaded with an immediate value. 5) Auto-offset-modify: The contents of the current 

OR are added to or subtracted from the current AR. 
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1.2 The Offset Assignment Problem 

Compiler optimizations for auto-modify addressing modes can be classified into 

two types: single-AR and multiple-AR, depending on the number of available address 

registers. 

An AR modification instruction is written as “LDAR” for short. “LDAR” means 

“load address” and it means an instruction that sets an AR to a certain immediate address 

value. There are two other kinds of address arithmetic instruction, “ADAR” and “SBAR”. 

“ADAR” is an instruction that adds an immediate integer to an AR. “SBAR” is an 

instruction that subtracts an immediate integer to an AR. To simplify writing, we use 

“LDAR” to mean any one of the LDAR/ADAR/SBAR instructions. 

Traditionally, it is studied as the Offset Assignment Problem. Offset assignment is 

to assign offsets (memory layout) to variables so that the number of address arithmetic 

instructions can be minimized by using auto-modify modes of register indirect addressing 

instructions. Accordingly, Simple Offset Assignment (SOA) assumes single-AR, while 

General Offset Assignment (GOA) tackles multiple-AR. For example, Figure 4(a) shows 

the memory layout for 6 variables (address grows upwards) and generated code 

corresponding to Figure 3(a)—we assume one address register AR0, so it is an SOA 

problem. Here, we assume that variables on the right-hand-side of the equation must be 

loaded one-by-one from left to right, then, after the evaluation, the result is stored into the 

left-side variable. For the time being, all variables are stored in memory (in case they are 

not, the access graph will show the order of only those accesses corresponding to 

memory accesses, i.e. load/stores). For the first instruction c=a+b, after accessing b, i.e. 

ADD *(AR0)-, we use auto-decrement to point AR0 to the memory location of variable c, 
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thus saving one AR modification instruction. In principle, all ADARs and SBARs can be 

replaced by LDAR in usage. Therefore, the problem of maximizing the use of auto-

modify instructions is to find a good memory layout such that a maximum number of 

consecutively accessed variables are adjacently stored in memory. To apply the offset 

assignment optimization, we need to find out the access sequence first. An access 

sequence is defined as an ordered linear sequence of variable accesses [Liao 1995; Liao 

1996]. For example, in Figure 2, we show the access sequence below for the code 

segment. From the access sequence, we can build an access graph based on the access 

sequence (Figure 2). An access graph is a weighted undirected graph, on which each node 

is a variable, while the edge weight is the number of transitions in the access sequence 

between the two end nodes (variables). In other words, the edge weight represents the 

number of times the two nodes are accessed consecutively in the access sequence. 

 

 

 

 

 

 

Figure 2. Example of SOA and Access Graph 

 

After the access graph is constructed, our optimization objective is to find a 

maximum weight path cover (MWPC) [Liao 1995]. An MWPC is simply a path cover 

(PC) with maximum weight. Here, path cover is defined slightly differently from that in 

graph theory. The path cover here means an edge set such that 1) each node adjacent to 

C = A + B; 
E = 40; 
A += D + C; 
D *= C >> 3;  
C = D + A; 

C Code 

Access Sequence 
BAC E CDA CD ADC 

Original Stack Layout 
ABCDE 

New Stack Layout 
BADCE 

Original SOA cost = 7 New SOA cost = 2 

Access Graph 

MWPC in bold 

3 

2 

2 

1 

B 

A 

E 

C 
D 

2 
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any edge in the edge set can only have either one or two neighbors in the edge set; 2) no 

cycle can be constructed solely with edges in the edge set. Intuitively, the subgraph with 

only edges in the edge set must consist of one or more linear path(s) so that the variables 

can be laid out linearly in memory. Weights covered on the PC is proportional to the 

number of times auto-modify modes can be used to access the next variable in memory, 

while the sum of the weights of all edges not on the PC is proportional to the number of 

times LDARs should be inserted, and this sum is called the SOA cost ([Liao 1995] gives 

details on the SOA cost. Intuitively, for uncovered edges, LDARs must be inserted and 

the edge weights now represents how many times these instructions are executed). The 

thick lines in the access path in Figure 2 shows one of the PC and also an MWPC 

solution. The weight for the MWPC is 7 and the SOA cost is 2. Earlier approaches [Liao 

1995; Leupers 1996; Atri 2000] have shown that the MWPC problem is NP-complete and 

tried to find a good path cover with a weight close to the MWPC. 

For example, in Figure 2, the original SOA cost of 7 means that in the access 

sequence, we can count 7 times for which we go from one variable to another for which 

the variables are not placed right next to each other in the stack layout. For the sequence 

BACECDACDADC, the 7 breaks in the access sequence are: AC, CE, EC, DA, AC, DA 

and AD. Using the MWPC solution, we can get a new SOA cost of only 2. 

On the other hand, General Offset Assignment (GOA) is typically solved in two 

steps. During the first step, a heuristic algorithm assigns each variable to an address 

register, thus a variable assigned to an AR uses that AR only. Next, for all variables 

assigned to the same AR, the problem is solved as SOA. GOA cost is actually the sum of 

SOA costs associated with each address register. For GOA, the access sequence for 
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variables handled by one AR is derived from the all-variable access sequence but 

considering only the variables using that AR. For example, in Figure 3(a), if we have two 

address registers AR0 and AR1, and {a,b,c} is handled by AR0 and {d,e,f} is handled by 

AR1, then the access sequence for AR0 is abcacaaccb, the access sequence for AR1 is 

defddf. 

In real programs with branches, the access sequence cannot be simply derived 

from static code during compilation time, because the compiler has little knowledge 

about the runtime execution trace. However, we can still construct the access graph in 

other ways. Notice that, on the access graph, the edge weight between two variables 

should indicate the frequency these two variables are accessed consecutively. In other 

words, as adopted in our experiments, we can use profile information to get the execution 

frequency for the path between two consecutive memory accesses to the variables. In 

case profile information is not available, we can roughly estimate the execution 

frequencies of the paths based on their loop depth [Muchnick 1997]. 

In addition to offset assignment, other approaches are possible to harness the 

auto-modify modes or to improve the effecti`veness of offset assignment. [Rao 1998; Rao 

1999] proposed program reordering. Program reordering reschedules instructions 

according to the algebraic laws (like from a+b to b+a) so that a higher weight path cover 

solution can be obtained during offset assignment and more variable accesses can be 

covered with auto-modify mode. 

In this work, we observe that the access graph is sparse in general, therefore 

coalescing nodes on the access graph might lead to a better MWPC solution based on 

offset assignment. After variable coalescence, the access graph can be much different, 
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inducing an improved solution even superior to the optimal MWPC that can be achieved 

without variable coalescence. Furthermore, variable coalescence can be combined with 

and improve all previously mentioned offset assignment approaches and it is applicable 

to both SOA and GOA. Secondly, our post-pre optimization comes after offset  

assignment and finds chances for both and post and pre addressing mode. In the next 

section, we will show a few examples to illustrate these optimizations. 
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1.3 Motivating Examples 

1.3.1 Variable Coalescence 

In Figure 3, we give an example to illustrate how variable coalescence works and 

how it can reduce the SOA and GOA cost. 

 

(a) (b) 

(1) c=a+b 
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(2) Z =d+Z 

(3) Y=a1+Y 

(4) X=d+Y 

(5) X=d+Z+X 

X= (b2, c2) 

Y= (c1, a2) 

Z=  (e,f) 

(i) 

a1 Y 

b1 

X 

Z 

d 

3 

1 

2 
1 

1 

1 

1 

1 

(j) 

Weight  11 

Cost      4 

1 

(1) X=a1+b1 

(2) Z =d+Z 

(3) X=a1+X 

(4) X=d+X 

(5) X=d+Z+X 

X= (b2, c2, c1, a2) 

Z=  (e,f) 

 (k) 

a1 

b1 

X 

Z 

d 

1 

2 
1 

1 
1 

4 

(l) 

Weight  12 

Cost      3 

1 

(1) X=a1+X 

(2) Z =d+Z 

(3) X=a1+X 

(4) X=d+X 

(5) X=d+Z+X 

X= (b2, c2, c1, a2 , b1) 

Z=  (e,f) 

 

(m) 

a1 

Z 

d 

1 

2 

1 

4 

Weight  13 

Cost      2 

2 

X 

a1XXdZZa1XXdXXdZXX 

(n)  

Figure 3. Motivating Example 
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The code segment in Figure 3(a) (taken from [Rao 1999] with minor changes) 

contains 5 instructions. We assume this code segment is the entire program itself. In real 

programs, we need to do liveness analysis and variable renaming/coalescing. 

The coalescence algorithm actually first separates variables into atomic units 

called webs (explained in Chapter 3.2) [Muchnick 1997] through variable renaming. A 

web is a du/ud chain closure of a variable and allows independent allocation of values in 

memory. 

 b 

c 

a 

d 

f 

e 

LDAR   AR0&a   ; a 

LD         *(AR0)   ;  

ADAR   AR0, 2    ; b 

ADD      *(AR0-)  ; c 

ST          *(AR0)   ;  

SBAR    AR0, 2    ; d 

LD         *(AR0)   ; 

SBAR    AR0, 2    ; e 

ADD     *(AR0+)  ; f 

ST          *(AR0)   ; 

ADAR   AR0, 2    ; a 

LD         *(AR0+)  ; c 

ADD      *(AR0-)  ; a 

ST          *(AR0-)  ; d 

LD         *(AR0+)  ; a 

ADD      *(AR0+)  ; c 

ST          *(AR0)   ; 

SBAR    AR0, 2    ; d 

LD         *(AR0-)  ; f 

ADD      *(AR0)   ;  

ADAR   AR0, 3    ; c 

ADD      *(AR0+) ; b 

ST          *(AR0)   ; 

LDAR   AR0&a1  ; a1 

LD         *(AR0-)  ; X 

ADD      *(AR0)   ; X 

ST          *(AR0-)  ; d 

LD         *(AR0-)  ; Z 

ADD      *(AR0)   ; Z 

ST          *(AR0)   ;  

ADAR   AR0, 3    ; a1 

LD         *(AR0-)  ; X 

ADD      *(AR0)   ; X 

ST          *(AR0-)  ; d 

LD         *(AR0+)  ; X 

ADD      *(AR0)    ; X 

ST          *(AR0-)  ; d 

LD         *(AR0-)  ; Z 

ADD      *(AR0)   ;  

ADAR   AR0, 2    ; X 

ADD      *(AR0)   ; X 

ST          *(AR0)   ;  

a1 

X 

d 

Z 

(a) (b) 

*Note: variables on the right of semicolon is what AR0 points to after the instruction.  

Figure 4. Assembly Code (a) Before, and (b) After Coalescence 

 

Figure 3(c) shows how we separate each of variables a, b and c into two webs. 

Intuitively, in instruction (3), defining variable a starts a new web. We thus rename the 

variable a, then use that new name in later references. Similarly, b and c are renamed in 

instructions (4) and (5). In this code segment, c1, which is live from instructions (1) to (3), 

constitutes a closed web, c1 can be arbitrarily renamed regardless of other parts of the 

program. Figure 3(c) and Figure 3(d) show the access sequence and access graph after 
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variable separation. The weight of the MWPC is 1 unit smaller than the one before 

variable separation. In Figure 3(e) and Figure 3(f), we coalesce b2 with c2, i.e. we 

combine these two variables into one variable, putting them into the same memory 

location. Because the last use of c2 ends before the definition of b2, they can be safely 

coalesced as one variable X. Their edges are coalesced accordingly as shown in Figure 

3(f). After coalescing, the cost is reduced by one (notice when we coalesce two variables, 

the weight of the edge between them is saved, since we do not need to modify the address 

register when consecutively accessing the same memory location). From Figure 3(g) to 

Figure 3(n), we coalesce 4 other nodes. The final MWPC weight is 13 (including edges 

between nodes that were coalesced together) with an improvement of 44%. Also, the data 

segment size is reduced from 6 variables to 4 variables (a 33% reduction). The final 

variable layout and modified code are listed in Figure 4(b). After saving 4 ADAR/SBAR 

instructions, we achieve a 17% code size reduction and 17% speedup (assuming all 

instructions require the same number of cycles). 

We now discuss the effect of coalescing on GOA. Suppose 2 address registers 

AR0 and AR1 are available, for the code in Figure 3(m), we can simply assign two 

variables to each of them, e.g. {X, a1} to AR0, {Z, d} to AR1. The access sequence for 

{X, a1} as derived from the whole access sequence in Figure 3(m) is a1XXa1XXXXXX, 

thus the access graph has only one edge with weight 3, which is on the MWPC. Similarly, 

for {Z, d}, the solution is also optimal (SOA cost of 0). We will show in Chapter 3.7 that 

coalescence can often generate an optimal solution for GOA. 

Figure 3(b) already shows the optimal solution of MWPC for the case of no 

coalescence, and therefore no heuristic can reduce the cost below 6 without variable 
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coalescence. For GOA, since variable coalescence already obtained the optimal solution, 

no other algorithm can do any better. 

This example shows that by separating and coalescing the variables, we get better 

performance (fewer execution cycles) and code size. Using coalescing can often produce 

a solution with a lower SOA cost than the best MWPC that could possibly be obtained 

without coalescing. Also, coalescing gives a stack size savings which the other 

algorithms cannot give.3 

 

1.3.2 Post-pre Optimization 

This example illustrates post-pre optimization. As mentioned previously, both 

post- and pre-modify are supported for some embedded processors. However, current 

research on offset assignment does not consider pre-modify modes altogether. In Figure 

5(a), assume that after offset assignment, the four variables are laid out sequentially as 

d,c,b,a (address grows upwards). Meanwhile, the four load instructions are distributed in 

3 basic blocks. Based on the variable offsets, we can generate the final code as in Figure 

5(b), where auto-address mode is only used once. 3 LDAR instructions have to be used to 

set the address register AR0. However, in Figure 5(c), we give another solution with the 

post-pre optimization. Although the two successors of variable c, i.e. a and b, have 

different offsets, with both post- and pre-modifies, we can avoid any LDARs. After 

accessing c, AR0 is post-incremented to point to variable b. On the path to BB2, AR0 is 

pre-incremented before accessing variable a. In the meantime, the SBAR instruction in 

BB3 can be avoided as well. AR0 is post-decremented and then pre-incremented before 

accessing variable d, so SBAR AR0, 2 can be removed. Notice that, post-pre 
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optimization is done after variable offsets have been assigned by the offset assignment 

algorithms. 

BB 2 BB 3 

BB 1 BB 1 

BB 2 
BB 3 

BB 2 BB 3 

 a 

b 

c 

d 

(a) (b) 

LD a LD b 

LD d 

LD c 

ADAR AR0, 1 

LD *(AR0) 

LD *(AR0) 

SBAR AR0, 2 

LD *(AR0) 

LDAR AR0 &c 

LD *(AR0+) 

(c) 

LD *(+AR0) LD *(AR0-) 

LD *(-AR0) 

LDAR AR0 &c 

LD *(AR0+) 

BB 1 

 

Figure 5. Example for Post-pre Optimization (a) Original Code and Offsets (b) Without 

Post-pre Optimization (c) With Post-pre Optimization 

 

1.3.3 Inter-basic-block Offset Assignment 

In a typical CFG, a basic block can have multiple predecessors and/or successor 

basic blocks. Therefore, the access sequence does not terminate along basic block 

boundaries. The problem of considering the continuation of access sequence even across 

basic block boundaries is called inter-basic-block offset assignment. In the case when a 

basic block P has a unique successor S, where S has a unique predecessor P, we can 

merge two access sequences into one longer access sequence. However, the problem 

becomes more complicated when an access sequence can take one of several different 

paths. In such a case, we try to continue the access sequence along the path which could 

possibly save an LDAR. 

Figure 6 shows the case when the variables’ stack layout is (a, b, c) and variable a 

can be followed by either b or c in a CFG split point. In the original access graph, we 

have only two edges that we can pick from, either (a, b) or (a, c). Since edge (a, b) has a 

greater weight, we pick it. However, note that the weight of edge (a, b) overlaps with the 

weight of edge (a, c). This means that we can either count edge (a, b), or count edge (a, c), 
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but not both at the same time. Why is this so? This is because of the CFG split. The 

topmost basic block, BB1, has two successors BB2 and BB3. The last memory access in 

BB1 is variable a. The first memory access in BB2 is b, while the first memory access in 

BB3 is c. Therefore, we have two different access sequences at the bottom of BB1. It 

could be either a-b, or a-c, but not both. 

Since we pick (a, b), edge (a, c) loses a weight of one. This is because we chose to 

realize the address of variable b at the bottom of BB1, which is the access sequence from 

BB1 continuing on to BB2. b has a different address from c, so if we realize the address 

of b, we cannot realize the address of c at the bottom of BB1. Therefore, BB3 needs an 

LDAR at the top of the basic block. If we had picked (a, c) instead, the weight of edge (a, 

b) would not be 3 anymore, but would become 2. Vice-versa, if we choose to go from 

BB1 to BB3, then that will break the access sequence from BB1 to BB2. 

 

picked edge 

BB 3 BB 2 

BB 1 
LDAR AR0 <- a 

MOVE AR1 <- (r0) 

LDAR AR0 <- b 
MOVE AR2 <- (r0) 

ADD AR2, r1 

MOVE (AR0) <- r2 

LDAR AR0 <- a 
MOVE AR1 <- (r0) 

ADD AR1, 1 

MOVE (AR0) <- r1 

LDAR AR0 <- b 
MOVE AR1 <- (AR0) 

ADD AR1, 1 

MOVE (AR0) <- AR1 

 

LDAR AR0 <- c 
MOVE AR1 <- (AR0) 

ADD AR1, 1 

MOVE (AR0) <- AR1 

 

1 

3 a 
b 

c 

Original Access Graph 

0 

3 a 
b 

c 

New Access Graph 

Partial Control Flow Graph 

 

Figure 6. Example of Access Graph being Modified 

 

Thus, the access graph changed as we picked edges during offset assignment. In 

this way, the access graph dynamically evolves during the process of selecting access 

graph edges and by so doing, we take into account access sequence across basic block 
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boundaries. In the case when we do not consider any inter-basic-block access sequences, 

we need one LDAR for each of variables b and c because they appear as the first 

load/store instruction in the basic block, which is the worst case possible. This worst case 

corresponds to the case of intra-basic-block offset assignment. In general, any intra-basic-

block offset assignment scheme always needs at least one LDAR at the top of each basic 

block in which at least one offset-assigned variable exists. 

 

1.4 Offset Registers Optimization 

Offset registers are the special set of registers in typical DSP processors that allow 

an offset to be applied to an address register without incurring any additional execution 

cycles. Therefore, when we want to access a particular memory location with a known 

offset from the current address register value, we can either modify the address register 

directly, or modify an offset register and use it with a base address register. The offset 

register is particularly useful when referring to stack memory because by modifying the 

offset register, we do not have to modify the stack pointer register. Also, unaliased stack 

variables always have a fixed, pre-known offset from the stack pointer, and hence we can 

reuse the same offset value to point to the same stack variable. 

Since DSP instructions only support a modification by one offset in auto-modify 

modes, offset registers can be used to reach those variables which are placed more than 

one offset location away in memory. This is especially useful when the offset register is 

pre-assigned a small fixed value, typically 2 or 3, and this makes it possible for us to save 

LDARs even when the access sequences are separated by fixed offsets that are not 

reached by using auto-increment or auto-decrement. 
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2. OVERALL FRAMEWORK 
 

2.1 Outline 

Figure 7 shows the overall framework for the optimizations with auto-modify 

mode. Figure 7(a) shows the optimization flowchart for single-AR and Figure 7(b) shows 

the one for multiple-AR. In both cases, two optimization objectives are considered during 

coalescence and offset assignment, leading to two kinds of algorithms. We propose two 

kinds of heuristics to minimize the SOA or GOA cost, which corresponds to address 

modification code (LDAR/ADAR/SBAR). Algorithm “OpCost” targets the incremental 

minimization of SOA or GOA cost, while algorithm “OpSize” aims to minimize the 

nodes on the access graph (or the runtime memory space these variables take) through 

aggressive coalescence. As a starting point, we need to build the access graph (AGs) and 

interference graphs (IGs). These two graphs are necessary to guide the coalescence and 

offset assignment process. 

 

Figure 7. Optimization Framework 

Single - AR 
    

Build Access Graph and  
Interference Graph 

  

SOA Solver 
  

Variable Coalescence 
  

Post-pre optimization 

Build Access Graph and  
Interference Graph 

  

Minimal Graph Coloring 
  

Co nstruct AR Groups via  
Variable Coalescence 

  

Pre - iteration Coalescence 
  

Offset registers 

optimization 

Minimal Graph Coloring 
  

OpCost 
  Op Size 

  

Multiple - AR 
  

SOA Solver 
  

Post-pre optimization 

Construct AR Groups via  
Variable Coalescence 

  

Run SOA Solver on  
Each AR  Group 

  Run SOA Solver on  
Each AR Group 

  

OpCost 
  Op Size 

  

(a) (b) 

- 

  

Coalescence 

based Offset 

Assignment 
 

Offset registers 

optimization 
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In Figure 7(a), both OpCost and OpSize invoke an SOA solver, which could be 

any one of the previous offset assignment algorithms without variable coalescence. The 

SOA solver only assigns offsets for given variables and attempts to minimize the SOA 

cost. For the OpCost algorithm, a heuristic approach is chosen to iterate over MWPC 

searching and variable coalescence after the pre-iteration coalescence is done (explained 

in Chapter 3.6). In each iteration, the heuristic algorithm finds 2 nodes to coalesce if 

possible. Then, the two nodes are coalesced and the access graph and interference graph 

are changed accordingly. The solution with the least cost ever achieved is saved and used 

as the final solution. On the other hand, OpSize simply coalesces the nodes maximally 

through a graph coloring algorithm, then runs the SOA solver to obtain a solution. 

In Figure 7(b), with multiple ARs, the algorithm classifies variables into several 

AR groups, so each group can be assigned to one AR and solved with a single-AR 

algorithm. The OpCost algorithm constructs AR groups together with variable 

coalescence, then runs the SOA solver afterwards on each AR group. In contrast, the 

OpSize algorithm aggressively coalesces the nodes by minimally coloring the IG, since 

the minimal number of nodes can lead to optimal solutions in many cases. In case the 

optimal solution cannot be given out after graph coloring, we apply the coalescence 

algorithm as in OpCost. 

After variable coalescence and offset assignment, we optionally perform post-pre 

optimization if both post- and pre-modify modes are supported. This is a cheap operation 

and the algorithm does not take much more time to run than SOA itself. Finally we use 

the offset registers as far as we can to cover the rest of the remaining breaks in access 

sequences so that we can further save LDARs. 
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Clearly, our framework incorporates more optimizations than solely assigning 

offsets for variables. Coalescence-based offset assignment is the phase in which we 

perform variable coalescence together with offset assignment. We will discuss this in 

detail in Chapter 3. We will make use of an SOA solver from early “offset assignment 

only” approaches. Post-pre optimization will be discussed in Chapter 4. 

 

2.2 Assumptions 

Most of the basic assumptions are followed from previous work [Bartley 1992; 

Liao 1995; Liao 1996; Rao 1998; Rao 1999; Leupers 1996]. We list some specific ones 

as follows: 

1) This work only considers auto-modify addressing with stride 1, which means the 

address register can only be increased or decreased by 1 in each instruction that has the 

auto-modification. Auto-modify with stride 1 only is the most widely supported auto-

modify mode on state-of-the-art embedded architectures. 

2) Not all address register operations can be converted into auto-modify mode 

addressing. For instance, some address registers can point to multiple variables 

depending on the direction of the control flow or due to multiple aliasing; thus, we cannot 

bind it to one single variable since it would be unsafe to optimize it as auto-increment or 

auto-decrement for a given layout. Thus, in a multiple alias case, one has to use explicit 

address register modification (like LDAR, ADAR, SBAR in Figure 4) operations. 

3) In addition, array index based optimizations have been an active area of 

research and there are techniques to analyze array-indexed memory accesses, esp. in 

loops [Ottoni 2001; Araujo 1996; Gebotys 1997; Leupers 1998; Zhang 2003]. However, 

such research work is entirely different from offset assignment optimizations for scalar 
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variables in terms of the problem formulation and approaches. Currently, we consider it 

beyond the scope of this article. 
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3. COALESCENCE-BASED OFFSET ASSIGNMENT 
 

3.1 Use of Alias Analysis 

The framework starts with performing a simple alias analysis [Aho 1986] to 

determine the variables that might be referenced via pointers. For a given variable P, 

where P is a pointer, we can determine what P points to if P is locally assigned across all 

reaching paths in the CFG of the function before P is first used. Consider the CFG in 

Figure 8. P is a pointer to an integer, and A and B are two local variables. The CFG then 

splits into two possible paths, with one path into BB 2 setting P to the address of A, and 

the other path into BB 3 setting P to the address of B. Therefore, in BB 4. we know that P 

can point to either A or B, and no other locations. We also know that A and B do not 

have the same stack memory address. Therefore, P is multiply-aliased. 

 

BB 4 

BB 2 BB 3 

BB 1 

p = &a; p = &b; 

int a = 10; 

int b = 20; 

*p += 100; 

 

Figure 8. Illustration of Possible Multiple Aliasing 

 

Another case is when a pointer P is first used before its definition in the function, 

or P is assigned a value which came through as a function argument value or from some 

external unknown value. In these cases, we cannot determine an alias for P. But we do 

not treat any unknown aliases as possibly pointing to any local stack variable. Rather, we 

know that an unknown alias value can never point to a local stack variable, and hence, we 

ignore such aliases in our optimizations. 
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We consider using an address pointed to by a pointer only when we can determine 

a unique target alias for it. Otherwise, we simply cannot optimize for it because we will 

have to use an load the AR with a value that cannot be known at compile time, and is 

only known at runtime. In Figure 8, P may point to either A or B. We cannot save any 

LDARs here because we have to load the AR with the address of either A or B at runtime, 

and speculating that P will point to A only or B only does not help to save any LDARs. 

We still have to use at least one LDAR to cover for the memory access in BB 4. 

 

3.2 Variable Renaming, Webs and Variable Separation 

In order to separate memory references, which can be independently considered 

for allocation, we rename variables and construct webs (as in Figure 3(c) and Figure 3(d)). 

A web [Muchnick 1997] or live range is defined as the maximal union of du-chains. Each 

web builds a separate variable after renaming, i.e. one must bind all the definitions and 

uses within a web to a single memory location. In this manner, we are able to achieve 

effective value separation at different program points. Value separation is extremely 

important as the compiler normally generates lots of temporaries that are reused 

repeatedly. Decoupling these variables that are disjoint in terms of values through re-

naming gives us more freedom to coalesce them in a proper way to maximize the profit 

of offset assignment optimizations.  

Our results show that over 80% local variables in the backend that can make use 

of the auto-modify instructions are recycled temporaries and the data segment size for 

them can increase after web identification. However, coalescing phase which follows 

greatly reduces the data segment size and brings about an overall size reduction when 

compared to the original data segment size. 
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To avoid interfering with a good register allocator and other optimizations before 

register allocation, our optimizing pass comes after register allocation, when all virtual 

registers that will be on the stack are identified. Also, for user-defined variables and 

temporaries, webs are built to achieve value separation. 

 

3.3 Interference Graph and Coalescence Graph 

After values separation, our coalescence algorithm needs to determine which 

variables are coalesceable. 

An interference graph (IG) is built to represent the overlapping of the live ranges 

between different variables. The IG is defined as a graph where each node is a live range 

and an edge between a pair of nodes means that at a certain program point, the two nodes 

are simultaneously live, so they cannot be coalesced. It is perhaps most-used in register 

allocation. 

A coalescence graph (CG) is a graph in which two nodes can be coalesced if and 

only if there is an edge between them. The CG is simply the complementary graph of the 

IG, which means, any two nodes connected by an edge on the IG will not be connected 

by an edge on the CG, and same vice-versa. In actual implementation, we only use the IG. 

In our 10 benchmark programs, the IGs after value separation are sparse. Intra-

procedurally, the average degree for each node is 8.17 on the IG and 210 for the CG. The 

strong connectivity on the CG means live ranges have plenty of chances to be coalesced 

with one another. The high average degree on the CG and the low average degree for the 

IG are probably due to the large amount of temporaries generated by the compiler. These 

temporaries are initially generated as virtual registers and then spilled. Most of the 

temporaries are defined once and used only a few times within the same basic block. 
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3.4 Profitability of Variable Coalescence 

The high connectivity of nodes on CG grants us ample freedom to make good 

coalescing decisions to simplify the access graph (AG) considerably. Simplifying access 

sequence through judicious choice of coalescing is a non-trivial problem. Coalescence 

must be performed so that the resulting MWPC solution is improved.  A key observation 

is that increasing edge weights through coalescence does not always lead to a better 

MWPC solution. In other words, coalescence may worsen the solution for offset 

assignment if not properly conducted. Coalescence seems to impact graph topology more 

than the edge weights as far as MWPC is concerned. This is due to the fact that in a final 

MWPC solution, there can be at most two incident edges on each node and thus, 

attempting to increase edge weights does not seem to impact the MWPC as much as 

reduction in node degrees which is a function of graph topology more than edge weights. 
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Figure 9. Profitability of Variable Coalescence 

 

Figure 9(a) shows the original access graph and the current status of MWPC, i.e., 

a-b-c-d-e-g-h and f with total weight 21. If the coalescence graph permits the coalescing 

of nodes c and h, we can coalesce the two nodes and get an MWPC (a-b-ch-d-e-g and f) 

in Figure 9(b), the weight is 20. After coalescence, the MWPC is worse. The reason is 

because node c already has 4 neighbors. Adding more neighbors from h is not going to be 
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profitable. In contrast, in Figure 9(c), we coalesce node d and g. The MWPC is a-b-c-dg-

e-f and h with a total weight of 22. This example shows that coalescence cannot be done 

arbitrarily without consideration of the topology of the IG and the AG. 

 

3.5 Problem Formulation 

The objective of offset assignment based on variable coalescence is to find both 

the coalescence scheme and the MWPC on the coalesced graph. We start with a few 

definitions and lemmas for variable coalescence. 

 

3.5.1 Definitions 

Coalesced Node (C-Node): A C-node is a set of live ranges (webs) in the AG or the IG 

that are coalesced. Nodes within the same C-node cannot interfere with each other on the 

IG. Before any coalescing is done, each live range is a C-node by itself. 

Coalesced Edge (C-Edge):  The C-edge is an edge set defined for a pair of C-nodes. A 

C-edge <c1,c2> between two C-nodes c1 and c2 on graph G is a set defined as: 

{<n1,n2> | n1 ∈ c1, n2 ∈ c2, <n1,n2> is an edge on G} 

C-edges apply to either the AG or the IG. A C-edge exists only when this set is not empty. 

C-AG (Coalesced Access Graph):  The C-AG is the access graph after node coalescence, 

which is composed of all C-nodes and C-edges. 

C-IG (Coalesced Interference Graph):  The C-IG is the interference graph after node 

coalescence, which is composed of all C-nodes and C-edges. A C-edge between two C-

nodes means the two C-nodes has interfering live ranges, therefore cannot be coalesced. 

Coalesced Path Cover (C-PC):  On a C-AG, a C-PC consists of a sequence of C-nodes 

c1, c2,…ck, where <ci,ci+1> is a C-edge between C-node ci and ci+1. The C-PC covers all           
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C-nodes exactly once, contains no cycles, and no C-node has a degree larger than two in 

the C-PC. 

Weight of a C-Edge:  The weight of a C-edge is the sum of all edge weights in the C-

edge. C-edges with weight zero are C-edges that do not exist. 

Weight of a C-Node: The weight of a C-node is the sum of all edge weights between any 

two nodes contained in this C-node. 

Weight of a C-PC: The weight of a C-PC is the sum of weights of all the C-nodes and C-

edges along the path. 

C-MWPC (Coalesced Maximum Weight Path Cover): The C-MWPC is the C-PC with 

the maximum weight for all possible C-PCs on the C-AG. This maximum weight does 

not necessarily produce a unique path cover. 

 

The algorithm starts with the original, uncoalesced AG, where each node is 

labeled as a C-node and by using the IG, the algorithm updates the C-nodes in both 

graphs through coalescing leading to the C-AG and the C-IG which keeps on changing 

dynamically as we coalesce more and more C-nodes. We first show that finding the best 

MWPC for a coalesced graph (called C-MWPC) is a hard problem. Next we attempt two 

heuristic solutions. 

 

LEMMA 1: The C-MWPC problem is NP-complete. 

Proof: C-MWPC can be easily reduced to the MWPC problem assuming a coalescence 

graph without any edge or a fully connected interference graph. Therefore, each C-node 

is an un-coalesced live range after value separation and C-PC is equivalent to PC. A fully 
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connected interference graph is possible, when all live ranges interfere with each other. 

Thus, the C-MWPC problem is NP-complete because the MWPC problem is NP-

complete [Liao 1995; 1996]. � 

 

LEMMA 2: The solution to the C-MWPC problem is no worse than the solution to MWPC. 

Proof: Any solution to the MWPC is also a solution to the C-MWPC. But some solutions 

to the C-MWPC may not apply to the MWPC (if any coalescing were made). � 

 

3.6 Coalescence-based Offset Assignment for Single-AR 

Since the C-MWPC problem is NP-complete, heuristic algorithms must be 

applied to seek solutions in a reasonable amount of time. As mentioned in Chapter 2.1, 

two types of heuristics can be introduced to achieve different objectives: either to reduce 

the cost on the access graph (using OpCost) or to get a smaller memory footprint (using 

OpSize). 

 

3.6.1 OpCost, a Heuristic Algorithm to Minimize Cost 

Our first heuristic algorithm, OpCost, is separated into 2 parts. First, a set of pre-

iteration coalescence rules are applied to capture cases that are definitely profitable. Then, 

in an iterative loop, coalescing is done incrementally. In each iteration, two C-nodes are 

selected for coalescing and the base SOA solver (we use Liao’s SOA algorithm [Liao 

1995; 1996] with the tie-break rule [Leupers 1996]) is run repeatedly, until no more 

coalescing is possible. Finally, the minimal SOA cost is returned together with a node to 

C-node mapping and the memory layout assignment. We call this base SOA solver 

“BaseSOA” for short. 
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Pre-Iteration Coalescence Rules 

The pre-iteration rules are applied before we do iterative coalescing. Applying 

these rules will not worsen the SOA cost in all cases. All these rules are with respect to 

the access graph (AG). Note that we can coalesce a pair of C-nodes only if the C-nodes 

do not have an interference edge between them. 

RULE 1: Coalesce all degree-0 C-nodes with any other C-node. Doing so will not affect 

the SOA cost. 

RULE 2: Coalesce all degree-1 C-nodes with its neighbor. If its C-edge is already on the 

C-PC, the SOA cost is not affected, otherwise we reduce the SOA cost by the weight of 

this C-edge. 

RULE 3: Coalesce all degree-2 C-nodes with the neighbor having a higher weight C-edge 

connected to it. 

 

Rule 3 is explained in Figure 10. For C-nodes A, P, and Q, suppose the C-edge 

<A,P> is heavier than the C-edge <A,Q>. According to Rule 3, we should coalesce A 

with P. Assume there is a C-PC solution without coalescing A with P. Figure 10(a) to 

Figure 10(d) show 4 cases of that C-PC for C-edge <A,P> and <A,Q>. In Figure 10(a), 

none of the 2 C-edges is a part of  C-PC, so the coalescence will reduce the cost of the 

SOA solution by Weight(<A,P>). In Figure 10(b), <A,P> is already on the C-PC and the 

cost remains unchanged. Similarly, when only <A,Q> is on the C-PC (Figure 6.c), we 

improve the SOA solution by Weight(<A,P>). And, if both of them are on the C-PC 

(Figure 10(d)), the cost is unchanged. Therefore, in each case, coalescing A with P can 

only improve (or cause no change to) the total weight of the C-PC before A and P are 

coalesced but will never worsen the solution. 
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Figure 10. Profitability of Rule 3 Coalescence 

 

Saving Due To Coalescence 

After applying pre-iteration rules, we start to iterate. In each step of the iteration, 

we pick two C-nodes with maximum calculated saving and coalesce them. The basic idea 

is to use the current C-PC offset assignment to estimate savings if the 2 C-nodes were 

coalesced. For example, Figure 11(a) shows a C-AG with 8 nodes. The thick line is the 

current C-PC of the C-AG. If we coalesce d with g, C-edge <h,d> will now be on the C-

PC, and C-edges <c,d> and <d,e> will be eliminated. C-edge <g,d> is also saved after d 

is merged with g. So, the total saving is W(h,d)+W(g,d)-W(d,e)-W(d,c) = 1, where 

W(<i,j>) is the weight of a C-edge <i,j>. In other words, the SOA cost is reduced by 1 if 

we coalesce d with g. In Figure 11, we illustrate 3 different cases to coalesce J with I. 

Figure 11(a) is a general case. 

We save: 

• The weight of the C-edge between I and J. 

• The weight of all C-edges from I’s neighbors (on the path cover) to J, i.e. C-edges 

<C,J> and <P,J> if they exist. 

We lose: 

• The weight of all C-edges from J’s neighbors (on the C-PC) to J, i.e. C-edges <D,J> 

and <Q,J> if they exist. 
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Figure 11. Cases to Calculate the Savings 

 

Figure 12(b) is a special case where if I and J are already neighbors on the C-PC, 

then the weights of both C-edges <I,Q> and <J,P> are saved. In Figure 12(c), I and J have 

a common neighbor C. Then, the weight of the C-edge <C,J> is not a loss. 
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Figure 12. Coalescence Cases Based on Previous C-PC 

 

Tie-Break for the Same Savings 

If two or more pairs of C-nodes have the same coalescence savings, we apply a 

tie-break rule. This tie-break rule is similar to the one used in [Leupers 1996] to select 
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edges with the same weight during the construction of path covers. In our case, for each 

coalescence candidate {c1, c2}, the tie-break weight T is calculated as: 

T = Σ weight (all C-edges joined to c1 and/or c2) 

A smaller T has higher priority, as explained in [Leupers 1996]. T reflects the 

graph density, and we want a smaller graph density because that would more likely bring 

about a better MWPC solution. C-edge <c1,c2> (if it exists) is only counted once. In our 

benchmarks, this rule breaks all ties and improves the results slightly. 

 

The Coalescence Algorithm 

The whole coalescence algorithm is shown in Figure 13. 

Coalesce_OA_Single_AR takes a C-AG and a C-IG as input (here, the original AG and 

IG are passed to this function), and returns the minimal SOA cost and a node to C-node 

mapping. From the node mapping, we can easily generate the final C-AG, C-IG and C-

PC solution. 

Coalesce_OA_Single_AR contains two while loops. The first while loop tries to 

coalesce C-node pairs that are neighbors on the C-AG, until the largest calculated saving 

is zero, or when no more C-nodes pairs can be coalesced. The second while loop then 

exploits all remaining coalesceable C-node pairs, until no coalesceable C-node pairs can 

be found. Our coalescence framework works aggressively to reduce the number of C-

nodes. Function Soa_Cost runs BaseSOA to find the SOA cost for the current C-AG. 

Notice that, the second loop coalesces even when the calculated saving is not positive. 

This is because our savings calculation is only a heuristic formula. After re-running the 

SOA solver, we may get a different C-PC, which may have an even lower SOA cost. 
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 Input: C-AG, C-IG 
Output:  

  a. The minimal soa cost. 

  b. A node map from original node to its C-node. 

 

1. Coalesce_OA_Single_AR(C-AG, C-IG) { 

2.   Apply_Pre_Iteration_Rules(); 

3.   min_soa_cost = Soa_Cost (C-AG); 

4.   min_node_map = a one to one map 

5.   do{ 

6.     find two C-nodes satify: a.Do not interfere 

                                 b.Connected on C-AG 

                                 c.With max_saving 

7.     if(max_saving>0){ 

8.       coalesce C-nodes, update C-AG,C-IG  

9.       if(Soa_Cost(C-AG)< min_soa_cost) 

    record as min_soa_cost, min_node_map. 

10.     } 

11.   } while(max_saving>0) 

 

12.   while(there are C-nodes we can coalesce){ 

13.     find two C-nodes satisfy: a.Do not interfere  

                                  b.With max_saving 

14.     coalesce C-nodes, update C-AG,C-IG,  

15.     if(Soa_Cost(C-AG)< min_soa_cost) 

16.       record as min_soa_cost, min_node_map. 

17.   } 

18.   return min_soa_cost, min_node_map; 

19. } 
 

Figure 13. Coalescence-based Offset Assignment for Single-AR 

 

The reason we have two separate while loops is that usually, a lower node degree 

density gives a lower SOA cost; thus, coalescing neighboring C-node pairs will less 

likely increase the node degree density. In this manner, we try to drive coalescence via a 

limited graph topology property i.e. the node degree; more complicated solutions are 

possible but may not yield much benefit due to the complexity of the problem. 

 

SOA Cost Fluctuation During Algorithm Execution 

To illustrate how SOA cost fluctuates during the two while loops, we show the 

SOA cost vs. iteration steps in Figure 14. Data in the figure are collected from one of the 

procedures called “findcost” in benchmark Twolf. In our experience, the SOA cost 

progression is very random and fluctuates greatly. This figure only gives its trend roughly. 
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It takes 90 coalescences for procedure ‘findcost’ to finish the two while loops. The thick 

vertical line at iteration 31 marks the end of the first whole loop and the start of the 

second while loop. ‘findcost’ has a starting SOA cost of 144, and a minimum SOA cost 

of 115 achieved at iteration 44. Therefore, the minimum SOA cost is achieved during the 

early part of the second while loop, which is commonly observed in most procedures. 
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Figure 14. SOA Cost Fluctuation Along with Iterations for Twolf Procedure ‘findcost’ 

 

Note that the final SOA cost achieved might not be the lowest SOA cost ever 

achieved by the algorithm. If we want to place emphasis on optimizing for code size 

rather than stack size, we can remember the information for the case when the lowest 

SOA cost was ever achieved, and then revert to that solution at the end of all coalescing. 

 

3.6.2 OpSize, a Heuristic Algorithm to Minimize Size 

The second heuristic algorithm attempts to minimize the number of C-nodes so 

the program will have a small memory footprint at runtime. The heuristic consists of two 

distinct phases. The first phase is minimal coloring of the IG. Nodes with the same color 



 

35 

are coalesced on both the AG and the IG. The following lemma says minimal coloring of 

the IG is equivalent to achieving minimal number of C-nodes after coalescence. 

 

LEMMA 3: The minimal number of C-nodes after node coalescence is equal to the 

minimal number of colors required to color the IG. Furthermore, a coloring scheme of 

the IG is equivalent to a legal C-node formation. 

Proof: A coloring scheme of the IG can be directly applied to a C-node formation by 

assigning nodes with the same color in the IG to the same C-node. The number of C-

nodes is the number of colors for the IG. Similarly, a C-node formation can be directed to 

a coloring scheme by coloring the nodes in the same C-node with the same color and 

nodes in different C-nodes with different colors. Since nodes in the same C-node do not 

interfere with each other, i.e. no edge exists between them on the IG. Therefore, the two 

problems are equivalent and minimal coloring is the same as minimal number of C-nodes 

we can get. � 

 

We use a simple coloring algorithm similar to the one used for the Chaitin style 

register allocation [Chaitin 1981; Chaitin 1982]. When removing nodes from the IG and 

pushing them onto the coloring stack, we always remove the one with lowest degree first. 

Since coloring is performed on the IG, nodes with the same color are guaranteed to be 

coalesceable. After the coloring phases, an SOA solver (no coalescence) is applied on the 

resulting C-AG and C-IG to assign offsets for coalesced nodes.  

Aggressive coalescing might possibly lead to higher SOA costs. However, our 

experiments show the OpSize heuristic still performs better than the baseline SOA solver 
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without variable coalescence. Compared with OpCost, OpSize is less effective in 

lowering the SOA cost but achieves greater stack size reduction. 

 

3.7 Coalescence-based Offset Assignment for Multiple-AR 

The Multiple-AR model allows more than one AR to utilize the auto-modify 

mode. With the trend in embedded processor design to increase the number of ARs, 

multiple-AR model is playing a more and more important role in optimizing compilers to 

generate efficient code. In Motorola DSP56300, the AR is the general purpose register, 

and one of the 8 ARs is used as stack pointer. The other 7 ARs can be allocated for other 

purposes to hold variables. If one could solve the problem of address register assignment 

with fewer registers, the remaining address registers can be used for other purposes. 

Generally, previous work on offset assignment for Multiple-AR (or GOA) [Liao 

1995; Leupers 1996] all attempts to separate variables into several group, so that each 

group can be served with one AR. Here, we define AR Group as a group of variables that 

are allocated to one AR. With variable coalescence, our algorithm not only needs to 

partition variables into AR Groups, but also should coalesce them properly. 

As Single-AR, Multiple-AR can be optimized towards two objectives. Both 

OpCost and OpSize require a heuristic algorithm to coalesce and partition variables into 

AR Groups, however as shown in 4.b, OpSize has an additional phase to minimally color 

the IG. We will discuss these phases in the following sections. 

 

3.7.1 Coalescence Algorithm for Multiple-AR 

Figure 15 shows the algorithm called Coalesce_OA_Multiple_AR. This algorithm 

is invoked by both OpCost and OpSize. The only difference is, for OpSize, a graph 
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coloring algorithm first coalesces nodes on the graphs aggressively, and then 

Coalesce_OA_Multiple_AR works afterwards if an optimal solution cannot be obtained 

immediately. 

 Input: AG, IG, K—number of ARs 
Output:  

  a. The minimal GOA cost. 

  b. A mapping from node to its C-node. 

  c. A mapping from C-node to AR number. 

 

V: node set, contains all nodes initially 

G1,G2,…Gk: AR Groups, i.e. a set of C-nodes 

 

1. Coalesce_OA_Multiple_AR(AG, IG, K) { 

2.   G1=G2=..=Gk=Φ;  

   

3.   //add each node to an AR Group 

4.   while(V is not empty){ 

5.     mini_set=Φ; min_cost=MAX_INT; 

     

6.     //build mini_set 

7.     foreach node v in V{ 

8.       cost=minimal add-on cost to put in one of  

9.            the Gi by running Coalese_OA_Single_AR on Gi. 

10.       if(cost == min_cost){ 

11.         add (v,i) to mini_set; 

12.       }else if(cost<min_cost){ 

13.          mini_set={(v,i)}; min_cost=cost; 

14.       } 

15.     } 

 

16.     //tiebreak 

17.     foreach pair (v,i) in mini_set{ 

18.       w1(v)=sum(weight<u,v> on AG) u � G1�G2..�Gk-Gi       

19.       w2(v)=number of v’s neighbors on the IG 

20.     } 

21.     keep only pairs with maximal w1 in mini_set(tie break on w1) 

22.     if(|mini_set|>1) 

23.       keep only pairs with smallest w2 in mini_set(tie break on w2)   

24.     if(|mini_set|>1) 

25.       still have tie, pick one randomly.       

26.  

27.     for selected pair(v,i) add v to Gi 

28.     remove v from AG and IG 

29.   } 

30.   run Coalese_OA_Single_AR on all Gi 

31.   return 1)the GOA cost as the sum of all SOA costs 

32.          2)mapping from node�C-node, C-node�AR number          
33. }  

Figure 15. Coalescence Algorithm for Multiple-AR 

 

Initially, the algorithms stores all nodes in set V and all AR Groups G1,G2…Gk 

are empty. In the while loop from line 4 to line 29, during each iteration, one node in V is 

assigned to an AR Group. The while loop has two main parts. The first part builds up the 

mini_set. It attempts to put each node to each AR Group and calculate the extra cost that 
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will be incurred by calling Coalesce_OA_Single_AR (Figure 13) on that AR Group. We 

should find a (v, i) pair so that assigning node v to AR Group Gi incurs minimal add-on 

cost, however it may happen that several pairs have the same minimal add-on cost. If so, 

there will be multiple entries in mini_set and the second part picks one entry through a 3-

step tie-break scheme. 

The tie-break scheme we use shares some features with the tie-break GOA 

algorithm in [Leupers 1996]. We calculate two values for tie-break. Value w1 is 

calculated for each entry in mini_set. If v is selected for Gi, we sum all the edges on the 

AG from v to a node that is in G1∩G2.. ∩Gk - Gi. Since, the edge from v to any node in 

AR Groups other than Gi are eliminated as we illustrated in the motivation example, we 

prefer a larger w1. If this still cannot break all ties, we try another value w2. w2 is 

calculated for each node v as the number of neighbors that are still on the IG. Larger w2 

means more interference with the nodes that have not been added to one of the ARs. We 

prefer a smaller w2, which means more nodes on the IG later can be coalesced with v. If 

both tie-breaks fail, we just randomly pick one from the remaining entries in mini_set. 

Our experiments show this rarely happens. Finally, the algorithm calls 

Coalesce_OA_Single_AR (Figure 13) for each AR Group. It returns a node to C-node 

mapping and a C-node to AR Group number mapping. 

 

3.7.2 OpSize Algorithm for Multiple-AR 

Since aggressive variable coalescence can greatly reduce the number of C-nodes 

on the graph, with multiple ARs, in many cases, we can actually get the optimal solution. 

The following lemmas specify when the optimal solution can be achieved. 
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LEMMA 4: If there are only two C-nodes on the C-AG, then the SOA cost is optimal. 

Proof: Since there is only one C-edge on the C-AG, so this C-edge must be on the C-

MWPC. Hence, the SOA cost is 0. � 

 

LEMMA 5: If there are K address registers available for use and the number of C-nodes 

is no more than 2K, we can get the optimal solution, i.e. GOA cost=0 by assigning no 

more than two C-nodes to each address register. 

Proof: Following the Lemma, the SOA problem for each address register is optimal—

zero SOA cost. The GOA cost is equal to the sum of the SOA cost for all address 

registers, so the GOA cost is also 0. Therefore, the solution is optimal. � 

 

As we know, the IG constrains the nodes from being coalesced (AG affects the 

cost but can be disregarded when minimizing the C-node number). From Lemma 3 and 

Lemma 5, we have the following corollary. 

 

COROLLARY 1: If we can color an IG with 2K colors, then there is an optimal 

solution, i.e. GOA cost=0 with K address registers. 

 

Notice that, Corollary 1 is only a sufficient condition. Even when the color 

number is greater than 2K, we may still get an optimal solution by first aggressively 

coalescing the nodes followed by the coalescence algorithm (the 

Coalesce_OA_Multiple_AR algorithm in Figure 15) on the resulting C-AG and C-IG. 
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Like Single-AR, we use a simple coloring algorithm similar to the one used for Chaitin 

style register allocation. 

To quantify the number of times we can get optimal solutions with certain number 

of address registers, we did experiments on 10 benchmark programs. All data pertains to 

local variables. We count the number of procedures that can be optimally solved in cases 

of 1) after IG coloring, and 2) after both coloring and Coalesce_OA_Multiple_AR. This 

count gives the final number of optimal solutions. As mentioned earlier, Corollary 1 only 

gives a sufficient condition, i.e. even if an AG has more than two nodes, its SOA cost can 

still be zero, or the GOA cost can still be zero if the IG is not 2K-colorable. So, the final 

number of optimal solutions could be larger than the one obtained from IG coloring. 

Table 1. Percentage of Optimal Solutions for Multiple-AR 

#AR Epic Gsm G721 Mpeg2d Mpeg2e Bzip2 Gzip Mcf Twolf Vpr Average 

2 (color) 84.9 85.56 76.92 82.68 63 52.38 85.15 80 62.94 65.83 73.94 

2 (final) 86.8 90 96.15 90.55 77.23 87.18 90.1 93.33 79.19 82.01 87.25 

3 (color) 90.57 93.33 96.15 91.34 81 87.2 90.1 93.34 76.1 85.25 88.44 

3 (final) 94.34 97.78 100 94.49 88.12 92.31 96.04 100 89.85 94.24 94.72  
 

Table 1 shows the percentage of optimal solutions for different number of address 

registers. Rows 2 and 4 are the percentage of optimal solutions given by the number of 

colors. For instance, for Epic, with 2 ARs, 84.9% procedures can generate optimal 

solutions after coloring. In other words, 84.9% procedures’ IG can be colored by 4 colors. 

But with 3 ARs, 90.57% of the procedures are 6-colorable. Row 3 and 5 are the final 

number of optimal solutions. The percentage of optimal procedures is increased. 

On average, 87.25% of the procedures can finally get optimal solutions with 2 

ARs, while 94.72% procedures can finally get optimal solutions with 3 ARs. This means 

our solution is very close to the optimum. 
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4. POST-PRE OPTIMIZATION 
 

Post-pre optimization determines whether post- or pre-modify mode should be 

used for each memory access instruction (in this chapter, we implicitly restrict “memory 

access instructions” to those accessing the variables on the access graph) so as to 

minimize the number of LDARs. This optimization comes after offsets are assigned to 

variables. According to the offsets, we find out the offset difference between adjacent 

memory accesses. Given that attempting all possibilities of post-pre mode and AR 

modification insertion can make the problem intractable, our algorithm greatly reduces 

the complexity via two techniques. Firstly, we split basic blocks at certain points without 

losing the optimality of the problem. Basic Block Splitting leads to smaller optimization 

units that can be independently optimized, therefore the problem complexity is 

significantly lowered. Secondly, we undertake a branch and bound algorithm to narrow 

down the search space. 

 

4.1 Offset Distance 

For each memory access instruction, we can mark the offset of each variable 

being accessed. “Offset Distance” is the offset difference between two adjacent memory 

access instructions. In Figure 16, we show the variable offsets, selected code segment 

with only memory accesses, offsets and offset distances. It is easy to observe, if the offset 

distance is 1, either the first memory access instruction can post-modify the AR or the 

second memory access instruction can pre-modify the AR before its memory access. 
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Figure 16. Example for Offset Distance 

 

The addressing mode decision of one memory access instruction can affect its 

neighbors in certain circumstances. For example, if the 1
st
 instruction LD a in Figure 16 

does not perform post-modify, i.e. post-increment, the 2
nd

 instruction ST b must do pre-

increment to avoid an extra LDAR. However, sometimes the decision on one memory 

access instruction does not depend on its neighbor(s). For instance, the 3
rd

 and 4
th

 

instructions access the same variable c, therefore no post-modify is needed for the 3
rd

 

instruction and no pre-modify is needed for the 4
th

 instruction. On the other hand, the 3
rd

 

instruction might use pre-modify depending on the other neighbor, but this is independent 

of the addressing mode of the 4
th

 instruction. Similarly, the 4
th

 instruction might use post-

modify, but it is irrelevant to the addressing mode of the 3
rd

 instruction. As another 

example, the offset distance between the 6
th

 instruction and the 7
th

 instruction is 3, which 

means an LDAR is not avoidable to modify the AR between these two instructions. After 

the LDAR is inserted, the addressing mode of instruction 6 becomes independent of that 

of instruction 7 due to the same reason as for instructions 3 and 4. In short, we can 

summarize the addressing mode relationship between two neighboring instructions as in 

Figure 17. Up till now, we have only considered addressing modes for instructions inside 
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one basic block. It becomes more complicated to establish the relationship of addressing 

modes at the boundary of basic blocks, like the example in Figure 5, when one basic 

block has multiple predecessors and successors, we will discuss such constraints later. 

 

Offset 

Distance 

1st Instr. 2nd Instr 

0 no+ no 

Post no 1 

no Pre 

2 Post Pre 

>2* no no 
 

+
This means neither post nor pre mode is required. 

*
An AR modification instruction is required. 

 

Figure 17. Addressing Modes between Two Adjacent Memory Access Instructions 

 

4.2 Basic Block Splitting and Canonical Form 

Following the identification of offset distance, in this section, we will talk about 

how to split basic blocks and transform the CFG to Canonical Form as defined below.  

 

4.2.1 Definition of Canonical Form and Canonical CFG 

If a CFG has offset distance equal to 0, 1 or 2 inside all the basic blocks, it is in 

canonical form. The CFG is called Canonical CFG. 

Canonical form facilitates the formulation of post-pre optimization. Based on the 

table in Figure 17, we can easily transform a CFG to its canonical form through basic 

block splitting. Each part of the canonical CFG after basic block splitting is called a “sub-

CFG”. Furthermore, basic block splitting can greatly reduce the problem complexity 

because we consider each sub-CFG as a single unit of optimization. However, we must 

guarantee that basic block splitting transforms the CFG without affecting the optimal 
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solution for post-pre optimization. Our basic block splitting technique involves two steps; 

the following lemma says we can split between two memory accesses with offset distance 

0 or greater than 2. After this step, all basic blocks only have offset distance 1 or 2. In the 

second step, we will further get rid of offset distance 2. 

 

LEMMA 6: Inside one basic block, if two consecutive memory access instructions have 

offset distance >2 (in this case, one AR modification is unavoidable), the basic block can 

be split between these two instructions. After splitting, the split point becomes the 

boundary of the two new basic blocks. Such splitting does not affect the optimal solution 

to the post-pre optimization. When the two consecutive memory access instructions are 

within the same basic block and the offset distance is 0, then we can split as well. 

Proof: Notice that, after splitting, the 1
st
 instruction becomes the last memory access 

instruction in its basic block and the basic block has no successor, therefore no post-

modify is necessary. Likewise, the 2
nd

 instruction becomes the first memory access 

instruction in that basic block and the basic block has no predecessor, therefore no pre- 

modify is needed for it. In the first case, i.e. the offset distance is greater than 2, one and 

only one LDAR must be inserted in the optimal solution, and no post-modify is needed 

for the 1
st
 instruction, since the LDAR is sufficient to set the AR to point to the next 

offset. Also, no pre-modify is necessary for the 2
nd

 instruction. This is also enforced on 

the CFG after splitting. In the second case, assume the offset distance is 0 between the 

two instructions, the optimal solution should not require post-modify for the 1
st
 

instruction, nor should the pre-modify for the 2
nd

 instruction be needed. But the 

restraining condition is that these two memory access instructions must be on the same 
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basic block. This is because when we have a CFG split or join, the AR offset after 

execution of the first instruction might be needed for another instruction on a different 

CFG path. By restraining the two instructions to the same basic block, such a case will 

not occur, and the 1
st
 instruction will always be followed by the 2

nd
 instruction in 

execution order. Thus, after CFG splitting, the optimal solution for the new CFG should 

be one less than the original optimal. � 

Consider an example given in Figure 18 which illustrates two different CFGs, 

each having an instance of offset 0. Figure 18(a) is called a “CFG join” because the 

control flow for two basic blocks go into the same basic block, thus “joining” paths. On 

the contrary, Figure 18(b) is called a “CFG split”. In Figure 18(a), instruction 1 goes to 

instruction 3 with offset 0. Hence, instruction 1 does not need an LDAR to point to 

instruction 3. However, we cannot split the CFG between these two points because 

instruction 3 may be reached from instruction 2, and if we use a pre-increment mode for 

instruction 3 and no auto-modification for instruction 1, we produce an incorrect solution. 

The same principle holds for Figure 18(b). We cannot split the CFG because we have to 

consider the basic block boundaries carefully. 

 

[1] [0] 
[1] [0] 

1) offset 4 2) offset 5 

3) offset 4 5) offset 4 6) offset 5 

4) offset 4 

(a) (b) 

 

Figure 18. Requirement for Offset Distance to Split only within a Basic Block 

 

Based on Lemma 6, after step 1, all basic blocks only have offset distances 0, 1 or 

2. In the second step, we simply split basic blocks between two memory accesses with 
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offset distance 2. In contrast to the first step, after splitting at offset distance 2, the two 

new basic blocks become predecessor and successor. Figure 19 shows an example with 

three basic blocks. After step 1, in Figure 19(b), BB1 and BB3 are split, and after step 2-- 

Figure 19(c), BB2 is split into two basic blocks at the point with offset distance 2. The 

two new basic blocks in Figure 19(c) are still connected and become predecessor and 

successor. Notice that the offset distance between two basic blocks are not considered 

during basic block splitting, but will be considered when we start to solve the canonical 

CFG. 

memory access instruction 

1 

3 

1 

1 

1 

1 

2 

1 

1 

0 

1 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

2 

1 

1 

1 

1 

1 

1 

basic block 

1 3 1 3 1 3  

(a) (b) (c) 

BB 1 BB 2 

BB 3 

 

Figure 19. Example for Canonical Form Transformation (a) Original Code (b) After Step 

1 (c) After Step 2 

 

After splitting, the resulting CFG is likely to be disconnected and contain many 

small, connected components that can be separately optimized, reducing the problem 

complexity. We can split basic blocks, then solve it optimally. To get the solution for the 

original CFG, basic blocks are reconnected at the split points and one LDAR is added at 

each point with offset distance greater than 2. For the example in Figure 19(c), the CFG 

is in canonical form and it now splits into 3 connected components. After solving the 
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canonical CFG optimally, we need to add the cost by one LDAR, since the splitting in 

BB1 is at offset distance 3, therefore we should make up for that LDAR. 

 

4.2.2 Solving the Canonical CFG with Branch And Bound 

To find an optimal solution to the canonical CFG, we take a branch and bound 

algorithm, which prunes the solution space significantly and identifies the optimal within 

a short compilation time. This is done by considering each connected component of the 

canonical CFG as a standalone block. Recall that a component is determined by the fact 

that we might need LDARs at all its boundaries. Within the component itself, the process 

of determining which auto-modify mode to use, if needed, is very straightforward and is 

only a matter of traversing down the basic block. Therefore, our concern is to determine 

whether we are able to save any LDARs along any boundaries of the connected 

components. 

For a connected component on the canonical CFG with M basic blocks, the search 

space is 2
2M

, i.e. we can specify 2M 0-1 integer variables such that each variable 

indicates whether a particular AR modification instruction should be inserted. These 

variables are defined as follows. 

 

Bi : Can be 0 or 1, indicates if an AR modification instruction should be inserted at the 

beginning of basic block i. 

Ei : Can be 0 or 1, indicates if an AR modification instruction should be inserted at the 

end of basic block i. 
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The algorithm flow graph is shown in Figure 20. The search space SP is 

initialized to contain all of the 22M 2M-bit vectors. Every time, one element spe is 

selected from SP and checked if it gives a feasible solution. The details about how to 

check the feasibility will be discussed later. If spe is not a feasible solution, another 

element is picked from SP and checked. Otherwise, the feasible solution can be used to 

prune the solution space, i.e. all unchecked vectors with cost no less than spe can be 

removed from SP. Here the cost of a vector in SP is the number of bit 1’s in the vector, 

because each bit 1 means an AR modification instruction is inserted at a particular 

location. Finally, the solution with minimal cost is output. 

 Initialize search space SP: 
SP={(B1,E1,B2,E2,…BM,EM)| Bi, Ei � {0,1} }  
M: number of basic blocks 

Is spe a feasible 
solution ? 

Y 
* 

N 

Pick and remove one 
element spe from SP 

Prune SP, remove 
elements with cost 
� spe. 

SP is empty? 

N 

Y 

Output the solution 
with minimal cost 

 

Figure 20. Flow Graph for Solving the Canonical CFG 

 

4.2.3 Checking the Feasibility 

To check the feasibility of a solution vector spe, we need to verify if all memory 

access instructions are satisfied, which means the AR should contain the required address 

value before reaching a memory access instruction. It either points to the variable being 
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accessed or can be pre-incremented or pre-decremented to point to that variable. First we 

give three definitions. 

 

EOi : An integer value, which is the ending offset of basic block i. This is the value in the 

AR when execution leaves the end of a basic block. 

BVOi : An integer value, which is the variable offset of the first memory access 

instruction in basic block i. 

EVOi : An integer value, which is the variable offset of the last memory access 

instruction in basic block i. 

 

Notice that, a solution vector specifies all Bi and Ei (i ∈ {1,…M}) values. Also, 

BVOi and EVOi (i ∈ {1,…M}) are constants for a canonical CFG. The feasibility 

checking involves finding out if the EO values can be obtained with respect to the 

following restrictions. 

 

RESTRICTION 1. If Bi=0, for basic block i’s predecessors p1, p2…pk, we have 

EOp1=EOp2= EOpk=BOi, where BOi ∈ { BVOi-1, BVOi , BVOi+1}. 

RESTRICTION 2. If Ei=0, EOi ∈ { EVOi-1, EVOi, EVOi+1}. 

RESTRICTION 3. If Bi=Ei=0, |EOi -EVOi|+|BOi-BVOi|≤1  (here BOi is defined in 

Restriction 1 when Bi=0). 

 

Restriction 1 is true, since all predecessors should come to basic block i with the 

same value in the AR if the AR is not changed at the beginning of basic block i, i.e. Bi=0. 
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Also, the position pointed to by the AR should be at most 1 slot away from the first 

memory access instruction’s offset, i.e. BVOi so pre-modify can handle it. In this case, we 

define BOi as the value in AR. Restriction 2 is simply correct, when no AR modification 

is performed at the end of basic block i, the value in AR when leaving the basic block 

should be one of {EVOi-1, EVOi, EVOi+1}. Finally, Restriction 3 says either the first 

memory access instruction does pre-modify or the last memory access instruction does 

post-modify or none of them, but not both. This restriction is illustrated in Figure 21(a). If 

the first memory access needs pre-modify, the last memory access must be inhibited from 

post-modify to avoid an extra AR modification instruction. Similarly, if the last memory 

access does post-modify, then the first one cannot use a pre-modify addressing mode. 

memory access instruction Post or pre modification 

AR modification instruction 
instruction  BB 1 

BB 4 BB 5 

(b) (a) 

BB 2 BB 3 

BB 6 BB 7 

EVO1=6 

EVO2=4 

EVO3=3 

BVO4=8 

BVO5=7 

BVO6=2 

BVO7=7 

 

E1=0 

E2=1 

E3=0 

B4=0 

B5=0 

B6=1 

B7=0 

6 

8 7 

4 

2 

3 

7 

 

Figure 21. Illustrations for Feasibility Checking 

 

As an example, Figure 21(b) shows one of the connected components on a 

canonical CFG with 7 basic blocks. We list all needed BVO and EVO values on the right 

(also marked on the CFG). We need to check, as specified by the spe vector, if the 

insertion scheme, i.e. to insert at the end of BB2 and the start of BB6 leads to a feasible 

solution. In our algorithm, we first group EO values that are equal based on Restriction 1. 
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Notice that we can build a transitive closure through the predecessor/successor 

relationship. In the example, by Restriction 1, EO1=BO4 and EO1=EO2=BO5. 

Transitively, EO1=EO2=BO4=BO5. Meanwhile, B6=1, therefore Restriction 1 cannot be 

applied to BO6, the two edges coming into BB6 can be removed. In other words, the AR 

modification instruction at the beginning of BB6 blocks both EO2 and EO3. Upon this 

point, {EO1, EO2, BO4, BO5 } form a group and {EO3, BO7 } form another group, which 

means variables in the same group are equal. Next, we check the value range for each 

group. With Restriction 1, 7≤BO4≤9, 6≤BO5≤8. With Restriction 2, 5≤EO1≤7. Thus, this 

group can take value 7, which is the intersection of the three ranges. Similarly, the second 

group has two value ranges, i.e. 6≤BO7≤8, 2≤EO3≤4. However, these two ranges have no 

overlapping. Eventually, our feasibility checking concludes that this insertion scheme is 

infeasible. 
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5. FURTHER OPTIMIZATIONS 
 

5.1 Inter-Basic-Block Offset Assignment 

We can consider the basic block as the basic unit of offset assignment because a 

basic block gives a static access sequence that does not depend on execution. In existing 

literature, offset assignment is usually considered only on the basic block level. Very 

little, if any, was mentioned about a realistic offset assignment for an entire control flow 

graph (CFG). 

It is useful to consider the entire CFG when determining offset assignments and 

addressing modes. This is because the stack variables must have the same stack location 

throughout the entire CFG, among each of the different basic blocks. When we consider 

offset assignment only within basic blocks, we cannot capture the actual effect of offset 

assignment in the CFG. Also, the basic block boundaries denote a joining of access 

sequences, and they should be considered as well. The consequence of not considering 

offset assignments across basic blocks is that every basic block that contains a stack 

memory access will need at least one LDAR, for the first instruction that accesses the 

stack. So we need to consider offset assignment at the CFG level. 

 

5.1.1 Algorithm for Inter-Basic-Block Offset Assignment 

The input to the algorithm is the CFG, and we need to identify those instructions 

that access stack locations. Let N be the number of stack locations accessed in the CFG. 

Then we have N choose 2 (N * (N-1) / 2) pairs altogether. We need to know how many 

pairs there are because we need to allocate an array for storing the SOA cost of not 
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putting each pair of slots adjacent in memory. Figure 22 gives the pseudocode for this 

algorithm. 

 1 
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function InterBlockOffsetAssign (cfg) 

  N = number of stack locations in cfg; 

  if (N <= 2) return; 

  G = null graph; 

 

  Remove all basic blocks without any loads/stores to form 

    the opaque CFG; 

 

  do { 

    for (a, b) = each pair of stack locations 

      {count(a,b) = 0;} 

 

    for bb = each bb in opaque cfg { 

      F = first stack location accessed in bb; 

      if (F is not in G or F has less than 2 neighbors in G) 

        for pred = each predecessor of bb { 

          L = last stack location accessed in pred; 

          if (L is not in G or has less than 2 neighbors in G) 

            count(F,L) = count(F,L) + 1; 

        } 

 

      for (a, b) = each pair of consecutive stack locations in bb 

        if (both a and b are each not in G 

            or have less than 2 neighbors in G) 

          count(a,b) = count(a,b) + 1; 

    }// for each bb 

 

    (a, b) = pair with highest count(a,b); 

    if (count(a,b) == 0) break; 

 

    if (a is not in G) {add a to G; N--;} 

    if (b is not in G) {add b to G; N--;} 

    increment weight of edge (a, b) in G; 

  } while (N > 0); 

 

  form offset assignment from G; 

end function 

 
 

Figure 22. Algorithm for Inter-Basic-Block Offset Assignment 

 

We first build the opaque CFG, which is the CFG with only basic blocks that that 

contain at least one stack access instruction. In offset assignment, there is nothing we 

need to do with basic blocks that do not have any stack accesses. We call such basic 

blocks “transparent basic blocks”. Then we enter an iteration until we are done. We 

traverse through the CFG once in each iteration. For each pair of stack locations, we 

count the number of consecutive accesses between them on the CFG. In basic block joins 
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or splits, we count all possible access sequences. For example, if variable A can be 

followed by any one of variables B, C and D, we count one for each of (A, B), (A, C) and 

(A, D). Then at the end of the iteration, we take the pair with the largest count, and 

increase the number of neighbors of the stack locations in the pair by one. Each stack 

location cannot have more than two neighbors. And the graph represented by the 

neighbors information cannot contain a cycle.  

For each basic block, we only cycle through the predecessors but not the 

successors because they represent the same set of information. By cycling through either 

one of them, we can cover all CFG edges. If we cycle through both of them, we will 

double-count all stack accesses that are closest to each basic block boundary. 

InterBlockOffsetAssign works on the same basic principle as Liao’s original SOA 

algorithm. In that algorithm, Liao builds the access graph, then collects all the edges of 

that access graph and sorts them in descending order of weight. InterBlockOffsetAssign 

is different in that it does not collect all the edges and their weights in advance because 

that information changes dynamically during the algorithm execution. Both 

InterBlockOffsetAssign and Liao’s SOA algorithm are greedy. More recent algorithms 

such as Incremental-Solve-SOA gives slightly better results than Liao’s SOA algorithm. 

However, in practice, Liao’s algorithm is fast and gives a solution close to the optimal 

solution, and Incremental-Solve-SOA requires more execution time while improving the 

results only slightly. Therefore, InterBlockOffsetAssign also gives a solution close to the 

optimal solution while requiring little execution time. 

Our algorithm uses a graph G to store temporary data. In practice, we only need a 

special simplified graph, which consists of the number of neighbors of a particular node, 
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and the first and second neighbor of a node, if any exists. This is effectively a cycle-free 

graph that requires each node to have two or less neighbors. This is the same kind of 

graph data structure that we used for Liao’s SOA algorithm. Towards the end of this 

work, we evaluate the performance of InterBlockOffsetAssign. 

 

5.2 Offset Registers Optimization 

 

5.2.1 Characteristics of Offset Registers 

There are two different modes of using offset registers. The first mode is to apply 

an offset without changing the address register. The second mode is to access the address 

stored in the address register and then do a post-modify by the value in the offset register. 

In the Motorola DSP56300 processor, we can either use the first mode or the second 

mode, but not do both at the same time. In the first mode, if we have an instruction 

“MOVE  (R0+N0), R1”, we set the value of address register R1 to that value stored in the 

memory location R0+N0, but R0 does not change. In the second mode, if we have an 

instruction “MOVE (R0)+N0, R1”, we set the value of register R1 to that value stored in 

the memory location R0, and then set R0 to R0+N0 after the instruction executes. The 

first mode uses a modified address, while the second mode modifies the address register. 

The DSP56300 processor does not permit both operations to be performed in the same 

instruction. 

There are three main differences between an address register and an offset register: 

1) We cannot address a memory location directly using an offset register. An offset 

register must always be used together with an address register within a load or store 

instruction. 
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2) An address register can usually be used as a general register but an offset register 

cannot be used for anything else except for specifying address offsets. 

3) Auto-modify mode cannot be used to modify the value of offset registers, nor can 

it be used in the same instruction as an offset register. 

Given the characteristics of offset registers, we concluded that the way to use 

them is to pre-load them with a certain known value, and then use that value together 

with address registers later. This becomes useful when in an access sequence, we are 

trying to access two stack locations placed over one word apart, but we cannot use the 

auto-modify modes to save an LDAR. If the offset register has a value that happens to 

coincide with this particular difference in offset, then we can use the offset register to 

save the LDAR. Therefore, our strategy is to pre-load one or more offset registers with 

certain fixed, known constant values, and use them throughout the CFG. We do not 

simply pre-load the offset register with any small arbitrary value. Rather, we select the 

few offset values which can be used the most number of times within the function, based 

on the results of offset assignment. 

In the Motorola DSP56300 GCC, there are eight offset registers N0 to N7. Some 

offset registers were never used by the compiler because the compiler does not 

implement this optimization of using offset registers. This means that offset registers 

were designed with the goal of providing this class of optimizations by explicitly using 

them in a carefully-crafted manner. 

 

5.2.2 Algorithm for Offset Registers Optimization 

Figure 23 shows the pseudocode for the algorithm for using offset registers. This 

optimization assumes that the program is entirely self-contained, so that a global 
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optimization can be used. This is the same condition for the case when we are doing 

global register allocation. The reason for doing this in an inter-procedural basis is so that 

we can save on the caller and callee save instructions for saving and restoring the offset 

registers across function boundaries. In practice, caller and callee save instructions are 

more expensive than LDARs, and so we always use LDARs instead of caller and callee 

save instructions.  

 1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

function UseOffsetRegisters () 

  N <- number of offset registers available for use; 

  given the layout assignment, count the number of times each 

    offset was required in order to save an LDAR; 

  choose the first N most-used offsets, choose any if tie; 

  in the function prologue of main(), assign these values to 

    the N offset registers; 

  modify the code to use these offset values in place of an 

    LDAR whenever possible; 

end function 

 
 

Figure 23. Algorithm for Offset Registers Optimization 

 

In order to produce the best results possible, we do offset register usage globally 

for an entire self-contained program. As in global register allocation, UseOffsetRegisters 

requires the intermediate code of all functions in the program to be available before it can 

be used. One should note that the offset may very well be negative when we are trying to 

go from a higher memory location to a lower one. The more offset registers we have, the 

more LDARs we will be able to save. Later in this work, we discuss on the issues 

concerning the implementation of such a scheme and how realistic it is in more recent 

DSP processors. 

 

 



 

58 

6. IMPLEMENTATION DETAILS 
 

This chapter describes the nitty-gritty details of getting the offset assignment 

optimizations to work on the target architecture, and the problems encountered. The 

lessons presented here could be useful to anyone who desires to implement these 

optimizations on a real compiler. 

 

6.1   Implementation Environment 

Our environment is the Motorola DSP56300 processor toolset including a cycle-

accurate simulator --sim56300, and a retargeted GNU C compiler [Stallman 2002], which 

comes with standard header and library files. Our optimization is implemented at the 

RTL level — GCC’s IR, after the “reload pass” of GCC, and before the assembly is 

produced, so that we can capture all the temporaries and spill code generated by the 

compiler. 

 

6.1.1 Register Set 

DSP56300 has a word size of 24 bits. In the Data ALU, it has two 56-bit 

accumulator registers, A and B, and two 48-bit input registers, X and Y. In the Address 

ALU, it has eight 24-bit address registers, R0 to R7, eight 24-bit address offset registers, 

N0 to N7, and eight 24-bit address modifier registers M0 to M7. The address registers are 

also used as general-purpose registers. R6 is reserved as the stack pointer. N0 to N7 are 

used as code generator temporaries. M0 to M7 are unused. R2 is used as a temporary 

register to store the function address in a function call. 
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Among the eight address registers available on Motorola DSP56300, we can 

reserve up to four ARs for use in our optimizations. These registers are R3, R0, R4 and 

R5. The other registers may be used by the compiler even when they are marked as fixed 

registers in GCC. This is because of some irregular assumptions that they use in the code 

generator, which does not follow the standard semantics used by the GCC code generator. 

 

6.2  Implementation Details for SOA 

We begin by discussing SOA because it is the most fundamental and earliest 

optimization available for the auto-modify addressing modes. We have already seen that 

SOA is simply the problem of finding a stack layout for variables local to a function. The 

first question is: in which phase of the compiler should we perform this optimization? 

Due to the fact that SOA requires register allocation to be completed, and before 

assembly code to be generated, it has to be placed between register allocation and code 

generation. In GCC, this phase is call “reloading”. What does “reloading” mean? We 

know that after register allocation, we might have spills, which go into the stack 

automatically. We are assuming a coloring-based register allocator similar to Briggs’ 

allocator, but not exactly, as implemented in GCC. “Reloading” can be classified into 

either an “input reload” or an “output reload”. “Input reload” means reloading the values 

stored in memory into physical registers. “Output reload” means reloading the values of 

physical registers back into memory. The reloading phase ensures that spilled variables 

are loaded correctly into registers for execution, and stored back into memory if 

necessary. For our purposes, SOA comes right in the middle of the reload phase in GCC. 

Specifically, it is done after all spills and stack variables have been determined without 

any further changes, and before any real, physical stack offset is given to the virtual 
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registers. Virtual registers placed in stack are represented as a register number in the RTL, 

but with a corresponding non-null value in “reg_equiv_mem[REGNO]”, which gives the 

pseudo stack offset. This pseudo stack offset is then adjusted by a constant integer value 

to give the actual, physical stack offset. 

To perform SOA with no coalescing, we follow these steps: 

1) At compiler initialization, reserve one AR for use in SOA. 

2) Identify all variables suitable for offset assignment. 

3) Construct webs. 

4) Build access graph. 

5) Run SOA algorithm on access graph. 

6) Rearrange stack variables physically. 

7) Use the reserved AR to access these variables. 

 

6.2.1 Reserving an Address Register 

In Step 1, we need to reserve one address register so that the register allocator will 

not allocate that register to any variable. Furthermore, we need to make sure that the final 

code generator will not use that register also. The first problem is that some registers 

cannot be reserved. The Motorola GCC compiler will use these registers even when you 

reserve it. The way to reserve an address register is by setting the 

“fixed_regs[REGNO]_=_1;”, so that the register allocator will not use it. Then we still 

need to set “regs_ever_live[REGNO]_=_1” to make sure that the code generator does not 

use it. We found that only four of the eight ARs, R3, R0, R4 and R5, can be reserved 

properly, such that if reserved, these ARs will never appear in the generated code unless 

we write code to use them. 
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6.2.2 Identifying All Variables Suitable for Offset Assignment 

In Step 2, we find out which variables can actually be used for offset assignment. 

There are six conditions that a pseudo-variable (exact same thing as virtual register) must 

satisfy in order for it to be suitable for offset assignment: 

1) The variable must reside in stack in order to be used. This is obvious because we 

are trying to arrange the stack layout. 

2) The variable must not have any escaping uses. We only used “reload-generated” 

stack variables because these variables are generated by the compiler and will never have 

an escaping use. 

3) The variable must not be an array variable, which may occupy more than one 

word in memory. Arrays are not considered as part of the target of SOA optimization. 

4) The variable must not be a parameter passed to called functions. We cannot 

rearrange such variables because they must always appear in the given order. 

5) The variable must occupy exactly one word in size. The DSP56300 processor 

only supports auto-modify for an offset distance of one word. Whenever we have multi-

word variables, we can use the offset registers to try to save LDARs. 

6) The variable must not overlap with any other variables in the stack. Whenever we 

have an overlap, it means either that the variable itself is multi-worded, or that the 

variable is a portion of a multi-worded variable. Such variables cannot be used because 

they must be placed together with all the other variables that they overlap with. 

These conditions are very specific to the compiler we used, but the general idea 

should apply that all variables that may violate the correct semantics of offset assignment 

cannot be used. 
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6.2.3 Constructing Webs and Access Graph 

Constructing webs is a matter of performing liveness analysis, and then breaking 

up live ranges into atomic units. Constructing the access graph is a matter of running 

through  the access sequence of each basic block in the CFG. Both of these are actually 

theoretical constructions and did not give any implementation problems. 

 

6.2.4 Running SOA Algorithm on Access Graph 

The SOA algorithm is a purely graph-theoretical algorithm that does not require 

any code modification during execution. So far, all the data that we gathered in the 

previous phases are for the sake of running the SOA algorithm. Therefore, the data 

structures were also designed for use in the SOA algorithm. In order to support 

coalescing, we had to assume that every node is a coalesced node in order for the same 

SOA algorithm to work both with and without coalescing information. 

 

6.2.5 Rearranging Stack Variables Physically 

The SOA algorithm produces the layout, which is the solution that we want. In 

order to actually use this layout, we need to rearrange all affected stack variables. Earlier 

we mentioned “overlapping variables”. For all variables that overlap one another, we say 

they belong to the same “overlap set”. Consider Figure 24 which shows the stack offsets 

of six variables, A to F. Variables A, B and C are in the same overlap set, because the 

overlap one another. Similarly, variables D, E and F are in the same overlap set. All 

variables in the same overlap have to be arranged in stack in the same sequence as they 

are in the overlap set. The point to note is that although A and B do not overlap each 

other, they are still considered as overlapping because C overlaps both of them. 
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Figure 24. Illustration of Overlap Sets 

 

When making the rearrangements, we must also take arrays into account. Arrays 

occupy a certain number of bytes in stack, and this space must be maintained even when 

arrays are moved to a different stack offset. 

It was quite a hassle trying to get this part right. When we were trying to modify 

the RTL (register transfer language), we cannot modify the “CONST_INT” RTX 

(register transfer expression) directly because they might be shared among more than one 

RTX. The discovery of the overlap sets and excluding them all from the offset 

assignment consideration was also a painful process. 

 

6.2.6 Using the Reserved AR to Access these Variables 

The final part of the SOA optimization is to actually use the reserved AR to 

account for all the loads and stores of all variables in consideration. As given in [Liao 

1995; 1996], we only do it on an intra-basic-block level. We start by running down the 

basic block and keeping track of the last memory load/store instruction, if any, the current 

base AR on which the offset is based, and the current offset stored in the AR. For 

example, if we are trying to use R3 for an address R6+10, then R6 is the base AR for R3 

and 10 is the current offset of R3. Hence, if we encounter an “R6+10” expression down 

the basic block, we can simply replace it with “R3”. If we see “R6+11”, we use a post-
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increment for the last load/store, and then replace “R6+11” with R3. If we see “R6+9”, 

we use a post-decrement for the last load/store, and then replace “R6+9” with R3. In this 

way, we use R3 for all loads and stores of all variables in consideration. 

This step is achieved by traversing through the entire RTL and modifying it. 

Whenever we see a variable load/store instruction that is considered under offset 

assignment, we will use one of the reserved ARs to realize the address of the load/store. 

Modifying the RTL automatically affects the final generated code. 

In our case, since we are considering stack variables only, the base AR is always 

the stack pointer R6. 

There are three possible causes of problems here. Assume we are using R3: 

1) Whenever the base register is written to with a non-constant value, we mark the 

current value of R3 as unknown. 

2) Whenever the base register is modified by an auto-modify addressing mode, the 

current offset of R3 must be modified in the opposite direction. For example, if we get 

“MOVE (R6)+”, which means “R6 <- R6 + 1”, and the current base register of R3 is R6 

and the current offset of R3 is 10, then we decrement the current offset of R3, so that it 

becomes 9. 

3) Whenever we come across a function call when traversing down a basic block, we 

mark the current value of R3 as unknown. It does not matter whether R3 is a caller or 

callee save because we already know that caller/callee save code is more expensive than 

LDARs. This is because a caller/callee save requires at least two instructions, while an 

LDAR is only one instruction. 
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Note that this is perhaps the simplest possible scheme of using address registers 

for offset-assigned variables. The advanced version of this scheme is the post-pre 

optimization, which requires an elaborate analysis at the CFG level. 

 

6.2.7 Conclusion for SOA Implementation 

As like most other compiler optimizations, everything has to be perfectly correct 

in order for the optimization to work correctly. We cannot miss out any one of the 

mentioned details. If we miss out any one little detail, the whole thing will not work 

correctly and the compiler will not generate correct code. 

One should find that the above-described seven steps are simple enough to 

understand and implement, because SOA is the simplest implementation among all the 

different optimization techniques discussed in this work. The rest of the techniques are 

built upon the work of SOA, and involves several more considerations and major steps. 

The lesson is that we have to understand the important points about the bulk of 

the compiler code that we did not write, if we were to actually write extensions to the 

compiler. If we start writing code and making modifications without knowing the 

compiler well enough, then we might run into subtle problems later. These problems 

could be fundamental in that we might have to rewrite a large chunk of code later because 

the base methodology was faulty (which really happened in our case). Also, we found 

that writing code that deals with the CFG usually gives much fewer problems than 

writing code that deals with the code generator because the code generator is inherently 

far more complex. 

 



 

66 

6.3  Implementation Details for Coalescing 

Coalescing is really implemented as an additional step to SOA. In OpCost SOA, 

the coalescing and SOA are performed simultaneously. In OpSize SOA, the coalescing is 

performed before SOA, and then the coalesced access graph is fed to the standard SOA 

algorithm as input. Therefore, the standard SOA algorithm we use should always 

consider the nodes as “coalesced nodes” (as mentioned before). This means that we need 

a coalescence mapping of old to new variables, which is simply an array of integers 

because each variable is represented as an integer. 

The steps to perform SOA with coalescing are very similar to those in SOA, 

except for the ones marked with an asterisk: 

1) At compiler initialization, reserve one AR for use in SOA. 

2) Identify all variables suitable for offset assignment. 

3) Construct webs. 

4) Build interference graph. * 

5) Build access graph. 

6) Run OpCost or OpSize SOA algorithm on access graph and interference graph. 

7) Renumber coalesced virtual registers. * 

8) Rearrange stack variables physically. * 

9) Use the reserved AR to access these variables. 

 

6.3.1 Building the Interference Graph 

In Liao’s SOA, the interference graph is not necessary at all. However, for 

coalescing, clearly we have to construct the interference graph so that we know which 

nodes we cannot coalesce. Building the interference graph in GCC is not difficult because 
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it was already done in “flow.c”, and we just have to use a slightly modified version of the 

liveness analysis code it already has. 

 

6.3.2 Renumbering Coalesced Virtual Registers 

To model the coalescing, we map all the coalesced virtual register numbers into 

the C-node virtual register number in the RTL. The C-node virtual register number is 

always the number of an already existing virtual register. By doing so, we automatically 

make them into the same variable, thus coalescing them. 

 

6.3.3 Rearranging Stack Variables Physically 

This step is essentially the same as prescribed for SOA, except that now we have 

to possibly put several variables into the same stack location. Coalescing is done in the 

renumbering step right before this step. Whenever we perform any coalescing, we reduce 

the stack size needed. Therefore, the only additional step is to decrease the stack size 

accordingly, which is only a matter of subtracting the value of an integer “frame_offset” 

in our case. 

 

6.4  Implementation Details for Using Offset Registers 

Offset registers are designed mainly to provide for addressing-based 

optimizations, and hence they proved really useful in what we are doing. Our compiler 

uses N0 to N7 as “code generator temporaries” only [Motorola 2000]. Specifically, this 

means that these registers are used to store an immediate offset value that goes beyond 

the range of -64 to 63, because address registers, when modified by a constant immediate 

value, can only be modified by this range. Address registers cannot be modified by using 
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accumulator registers A and B, nor by x-memory and y-memory input/output registers X 

and Y. Therefore, the way to modify an address register by a large offset value is to 

assign a register’s value or an immediate constant value to an offset register, and then 

modify the address register by the value in the offset register. 

 

6.4.1 Example of Using an Offset Register 

For example, say we want to add an address register R3 by 500. In DSP56300, 

this requires two instructions. First, we do “MOVE #500, N3”, which is to set the value 

of N3 to 500. Then we do “MOVE_(R3)+N3”, which is to post-add R3 by the value of 

N3, effectively increasing R3 by 500. N3, used as a code generator temporary, is not live 

before and after these two instructions. In immediate representation (RTL), these two 

instructions are represented as “SET R3 ← R3 + 500”. 

In this way, we can see that the code generator does not need to use all eight 

offset registers, since each time the offset register is used, it is only live in two 

instructions. In fact, the code generator uses only one offset register, N6. Since any offset 

register can be used with any address register, N6 is more or less an arbitrary choice, 

mainly because R6 was set aside for a special purpose, so was N6. Thus, we have seven 

offset registers available for use. 

 

6.4.2 Methodology for Using Offset Registers 

We already explained that caller and callee save instructions are more expensive 

than using LDARs themselves, so we will consider that we will not save the value of any 

offset registers across function boundaries. In a static context of a whole executable 

program being compiled, we assign offset registers globally, initializing their values at 
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the start of function “main” and then using these same values throughout the entire 

program. 

GCC does not support the framework of global optimizations particularly well 

because it compiles one function at a time, from the parsing of the source code to the 

emission of assembly code before proceeding to the next function. Any function that is 

marked “inline” will be saved and used for inlining when they are encountered, but the 

memory for storing all other functions will not be retained after their compilation is 

completed. We need the information from all the functions to determine the best offset 

register values to use. Therefore, we can save all the RTL generated (by not freeing 

memory) and then emit the code only after we obtained all the functions. However, doing 

so will require some kind of substantial change to the compiler. Instead, we perform the 

offset register optimizations in two passes. In the first pass, we keep track of the number 

of LDARs that we can save by having each offset register having a particular constant 

integer value. Then between the first and second passes, we can choose the seven offset 

values that can save us the most number of LDARs, and then assign these values to the 

offset registers in the “main” function prologue. In the second pass, we simply use these 

offset registers with these known constant values to save LDARs. 

In a real compiler, we can save all intermediate code and do global optimization 

last. But in this experimental environment, we are only concerned with the effects of the 

optimization, and hence we chose the simpler implementation which also works fine. 

 

6.4.3 Recent Trends in Offset Registers 

We understand that the DSP56300 compiler might be peculiar in that it does not 

use seven offset registers, which is really a waste of available hardware resources. This is 
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because the compiler does not contain such an optimization as the one we are proposing 

in this work. One should expect that in other DSP compilers, there could be a different 

number of offset registers and they could be reserved for different uses. 

The StarCore architecture is a successor of the Motorola DSP series of processors 

that features VLES (variable-length execution set) execution. StarCore has only four 

offset registers, while having 16 ARs. Recall that DSP56300 has eight offset registers and 

eight address registers. Therefore, we can easily see that Motorola processor designers 

feel that ARs are in more demand than offset registers, and we do not need as many offset 

registers as ARs. We expect the trend in newer DSP processors to be towards having 

more address registers than offset registers. Therefore, optimizations using offset 

registers will prove to be a very different problem in more modern DSP processors. We 

also expect that the savings that we obtained in DSP56300 due to using offset registers 

could be much larger than that in other architectures. 

 

6.5  Implementation Notes for Other Optimizations 

In the previous sections, we did not discuss anything about the implementation 

details for Post-pre optimization, Inter-basic-block offset assignment, and GOA. This is 

because each of these optimizations are just slight variants of the already-discussed 

optimizations. For Post-pre optimization, the only additional step we have is to determine 

the auto-modify addressing mode to use for each load/store of each offset-assigned 

variable. For Inter-basic-block offset assignment, we only need to run a different graph-

theoretic SOA algorithm, except that this algorithm requires the CFG as input. For GOA, 

instead of running the SOA directly, we first run them through the GOA set partitioning 

algorithm. Therefore, in terms of the implementation intricacies, there is not much we can 
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discuss except for the data structures used, and that is not worthy of discussion in here. 

Our focus on all these discussions has been on generating correct code and dealing with 

compiler issues, because those issues are much harder to figure out. 

 

6.6  Conclusion for Implementation Details 

The main bulk of the work has been in resolving issues that has to do with the 

compiler. When implementing our own proposed algorithms, they are relatively fast to 

complete because we derive every detailed step of it from scratch. But when dealing with 

the compiler, we face many thousands of lines of code that we did not write, and hence 

we do not know for sure that we can add code on top of it that runs correctly. 

Thus, most of the time is spent in fixing up the compiler issues, and only a little 

portion of the time has been spent in actually implementing our own algorithms. In all, it 

has been a difficult task just to get the compiled programs to execute correctly with the 

optimizations. 
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7. PERFORMANCE EVALUATIONS 
 

7.1  Measuring LDAR Counts 

Existing work uses the metric of “SOA cost” to measure the effectiveness of 

layout assignment algorithms. In this work, we consider SOA cost as a purely theoretical 

number that does not predict the LDAR count accurately. Since our optimization 

objective is to minimize the number of LDARs, the LDAR count becomes a natural 

metric to use in order for us to know how well our algorithm performed. In our 

experimental evaluations, we only consider the LDAR count, but not the SOA cost. The 

LDAR count is a realistic measure of the effectiveness of a layout assignment algorithm. 

We do encourage any future work in this area of research to present results in LDAR 

counts instead of SOA cost because a theoretically good solution might not map to a 

realistically good solution. 

 

7.2   Benchmarks Description 

A total of 9 benchmarks were used for evaluation. Among them, 4 are from 

Mediabench, 4 are from MiBench and 1 from Spec2000Int. These benchmarks represent 

a combination of real DSP-related applications, such as adpcm and g721d, and also 

practical utility programs such as bzip2 and strsrch. All benchmarks are run up to 2 

million cycles. Limiting the execution time is necessary because large benchmarks may 

take an unreasonable amount of time to finish execution (months). Many benchmarks 

could not be included in our experimental runs because they run inherently complex 

algorithms that could not finish in a reasonable amount of time. However, they can be 
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successfully compiled. We use access graphs built using profile information for all results, 

i.e. access graphs are based on information gathered in test runs. 

Table 2 shows some properties for the benchmarks. The second column is the 

code size in bytes. The third column shows the BaseSOA (as mentioned in Chapter 3.6.1, 

we use the Tie-break SOA algorithm [Leupers 1996]). We will compare our approaches 

with it. Notice that, since we are not able to optimize the library code, all statistics in 

Table 2 are for user code only. Our optimization does not affect the assembly code data 

section size, and hence we only list the text section size. The LDAR count corresponds to 

using one AR without any layout assignment optimization. The rightmost column is the 

initial stack slot count before coalescence. 

Table 2. Statistics for the Benchmarks 

 test suite .text size LDARs # slots 

adpcm mediabench 6413 46 12 

bmath mibench 11486 28 12 

bzip2 spec2000 25512 1521 530 

crc32 mibench 6003 30 10 

epic mediabench 23569 1297 304 

g721d mediabench 10469 397 198 

mpeg2d mediabench 34732 1741 735 

patricia mibench 12400 181 49 

strsrch mibench 7530 132 40 

average  15346 597 210  
 

In the following sections, we present the results for stack size, LDAR count, code 

size, and execution cycle count for some combinations of optimizations applied. Due to 

the high number of combinations we can have with the different algorithms we proposed,  

and also the varying number of ARs for each result set, we can only selectively include 

certain result sets, but not all of them. 
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7.3  Results for Stack Size Reduction 

We first look at how coalescence-based offset assignment performs when only 

one AR is considered. Two optimizations i.e. either OpCost or OpSize are compared 

together with the original and baseline Tie-break SOA algorithm. 

Figure 25 shows the stack size reduction. BaseSOA does not change the stack size, 

because no coalescence is engaged. The average stack size reduction is 11.5% and 12.0% 

for OpCost and OpSize respectively. GCC generates a large number of temporaries, and 

these temporaries have short live ranges, therefore their stack slots can be easily 

coalesced with other variables. OpSize is more powerful in reducing the stack size.  As 

mentioned earlier, the OpSize algorithm first attempts to coalesce the stack slots as much 

as possible, then invoke the SOA solver, leading to a smaller footprint on the stack than 

OpCost. However the difference is not very significant between OpCost and OpSize, 

showing that coalescence also contributes heavily in cutting down the SOA cost. 
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Figure 25. Stack Size Reduction 
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In this work, stack size savings is achieved by using coalescence only. The other 

optimizations do not yield any stack size savings. Hence, figures in stack size reduction is 

presented only once here. Note that all offset-assignment-irrelevant stack memory such as 

arrays cannot be reduced, but are counted with the total stack size figures shown here. 

 

7.4  Results for Single-AR 

In SOA, we only use one address register for all memory accesses of offset-

assigned variables. We look at how the optimizations affect the LDAR count, code size 

and execution cycles. 

 

7.4.1 Results for Single-AR LDAR Count 

In Figure 26, all LDAR counts are normalized to the original ones. The LDAR 

count for BaseSOA is usually smaller than that for the unoptimized code for all 

benchmarks, however coalescence-based approaches do not improve that by much. This 

is mainly because BaseSOA achieves a solution close to the optimal solution, and it is not 

easy to go beyond this near-optimal solution even with coalescing or Inter-Block SOA. 

Actually we had expected some savings here, but as we mentioned earlier, the savings in 

SOA cost does not reflect the savings in LDARs accurately. 

On average, BaseSOA and InterBlock SOA reduces the LDAR count by 2.77%, 

while OpCost and OpSize both achieve 2.75% reduction. 

Applying post-pre optimization with BaseSOA reduces the LDAR count by 

15.24%. This high number shows that the often-neglected pre-increment and pre-

decrement addressing modes, when fully utilized, can potentially bring about large 

savings. Note that our target environment, DSP56300, only supports pre-decrement, and 
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does not support pre-increment. If we do have pre-increment as well, the savings should 

increase by a little. 
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Figure 26. Results for Single-AR LDAR Count 

 

When we use the offset registers globally with BaseSOA, we reduce the LDAR 

count by 19.5% over layout-unoptimized code. We should not be too optimistic about 

this figure because we noted earlier that the current trend is to build in less offset registers 

because their potential had never been fully realized. 

 

7.4.2 Results for Single-AR Code Size 

Figure 27 shows the effects of SOA on code size. The code size reductions are 

0.32% for BaseSOA, 0.33% for OpCost, 0.33% for OpSize, 0.32% for InterBlock, 1.80% 

for post-pre and 2.27% for using offset registers. Code size savings is generally small. 
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Figure 27. Results for Single-AR Code Size 

 

7.4.3 Results for Single-AR Execution Cycles 

In Figure 28, percentage numbers are pictured for the benchmarks. Reductions are 

0.38% for the first four SOA algorithms, 3.30% for post-pre, and 4.10% for using offset 

registers. We can thus see that having a good layout arrangement is not adequate for 

improving the execution speed. We need to bring in other forms of optimizations in order 

to achieve some kind of savings. 

Benchmarks bzip2 and epic get higher speedup because less library code are 

involved. All library code comes in pre-compiled form and did not go through our 

optimizations. Moreover, memory access instructions make up about 1/3 of the 

instructions in the generated code. If we had used a register-scarce architecture in our 

tests, there would be more spills, thus creating more memory access instructions. Thus, if 

more memory instructions can be handled by our algorithm, we will probably gain a 
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bigger cycle reduction. Therefore, our algorithms can be more effective on register-scarce 

architectures or memory intensive applications. 
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Figure 28. Results for Single-AR Execution Cycles 

 

7.5  Results for Multiple-AR 

With multiple-AR, we expect better performance results, however investing more 

ARs is actually not always rewarding, because the optimization space will reach a plateau 

once we use a certain number of ARs. Here, we vary the number of ARs to look at the 

sensitivity towards several performance metrics. Notice that, the total number of address 

registers is fixed. Therefore if more address registers are reserved for auto-modify modes, 

less address registers will be available for other purposes like heap accesses. 

In Figure 29, we compare the GOA cost along two dimensions. We vary the 

number of address registers from 2 to 4 and use the three algorithms BaseSOA, OpCost 

and OpSize. Therefore we show 9 bars for each benchmark. For each benchmark, values 
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are normalized to the first bar, i.e. 2-AR base-GOA. The leftmost three bars correspond 

to 2AR, the center three to 3AR, and the rightmost three to 4AR. In most cases, we 

observe lower cost when we use more ARs. 
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Figure 29. Results for Multiple-AR LDAR Count – 2 to 4 ARs 

 

Code size and execution cycles are not shown here because they bear a close 

correspondence to LDAR count. The LDAR count enables us to calculate the generated 

code size. Also, because we know how many LDARs we saved, we can roughly estimate 

how much speed-up we can obtain in the generated program. 

 

7.6  Results for Overall Performance Comparison 

Here, we evaluate the overall performance, including coalescence-based offset 

assignment together with post-pre optimization and using offset registers. 
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In order to obtain the strongest optimization combo from the techniques of this 

work, we perform the following optimizations in sequence: 

1) OpCost SOA 

2) Post-pre optimization 

3) Use offset registers 

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ad
pc

m

bm
at

h

bz
ip
2

cr
c3

2
ep

ic

g7
21

d

m
pe

g2d

pa
tri

ci
a

st
rs

rc
h

av
er

age

N
o

rm
a
li
z
e
d

 L
D

A
R

 C
o

u
n

t

No SOA BaseSOA FullyOptimize

 

Figure 30. Overall LDAR Comparison between BaseSOA and Full Optimizations 

 

On average, we obtain 2.77% LDAR reduction with BaseSOA, and 36.5% LDAR 

reduction with full optimizations turned on. This is quite a significant number. We would 

suspect that implementing these same optimizations on other architectures would yield a 

lesser percentage reduction because some DSP processors do not have any pre-modify 

addressing modes, and some DSP processors have less offset registers. 
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7.7  Compilation Time 

Table 3 shows the compilation time of each optimization stage on a 1GHz 

Pentium III machine. Here, only Twolf and VPR are listed, because the other benchmarks 

usually finish compilation within a small amount of time (less than 2 seconds). Both 

Twolf and VPR could not be used as our primary benchmarks because they cannot finish 

execution on the simulator within any reasonable amount of time. However, due to their 

huge size, they are perfect for use in measuring compilation time. 

Table 3. Compilation Time (in seconds) 

1 AR 2 AR 3 AR Bench-
mark 

Orig. 

Base OpCost OpSize Base OpCost OpSize Base OpCost OpSize 

PostPre 
+ Offset 

twolf 7.6 8.0 98.6 15 226 132.6 18.6 237 130.6 18.6 3.7 

vpr 3.5 3.52 4.0 3.58 13.5 6.2 4.3 15.5 6.8 4.2 0.9  
 

Column “Orig.” shows the compilation time for the original code, while the 

rightmost column stands for the time on post-pre optimization with using offset registers. 

We only give the number for single-AR, since this number only varies slightly across 

different configurations. The columns in the middle are grouped according to the number 

of ARs. For each group, we show the compilation time with BaseSOA, OpCost and 

OpSize. For single-AR, BaseSOA is fastest, while for multiple-AR, it takes a long time to 

finish. In general, OpSize is much faster than OpCost, because the OpSize algorithms 

first do a minimal graph coloring to aggressively coalesce nodes on the graph without 

considering the SOA/GOA cost. Stack-based graph coloring [Briggs 1989] finishes 

execution quickly. After this step, the resulting access graph and interference graph are 

much smaller. Hence later steps for OpSize, although they are quite similar to OpCost, 

can be executed in a shorter time period due to reduced problem size. Besides, for 
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Simple-AR the OpCost algorithm involves a loop that calls the SOA solver multiple 

times, causing longer compilation time. Finally, after analyzing the compilation process 

for Twolf, which is most time-consuming among all benchmarks, we found that actually 

the majority of the compilation time is spent on several extraordinarily big procedures, 

because OpCost has time complexity O(N
4
), where N is the number of offset-assignment-

relevant variables. Thus, in a typical program with smaller functions, compilation time 

will be very fast. 

 

7.8  Access Sequence Lengths 

In an attempt to explain the reasons behind the performance figures we obtained, 

one of the factors we dug into was the access sequence length. Existing literature on 

offset assignment optimizations tend to use some long pseudo access sequence of 10 or 

more memory accesses as illustrations. By running the optimization algorithm on those 

access sequences, one can often obtain pretty satisfactory results. Here, we would like to 

present some numbers of the access sequence lengths in Table 4. 

Table 4. Average and Longest Access Sequence Lengths 

Benchmark Average Length Longest Length 

adpcm 1.23 3 

bmath 1.39 3 

bzip2 1.88 13 

crc32 1.21 2 

epic 2.18 23 

g721d 1.82 19 

mpeg2d 2.08 110 

patricia 1.40 5 

strsrch 1.54 7 

average 1.64 20.56  
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As Table 4 shows, surprisingly, mpeg2d (“d” means decoder) has a longest access 

sequence length of 110 consecutive memory accesses of offset-assignment-relevant 

variables. In the big picture, we see that the average access sequence of each program is 

only 1.64. This means that many access sequences consist of only one memory access, 

and cannot be optimized for no matter what kind of layout assignment we have. We have 

to use an LDAR to realize that one address needed. 

The main reason for such short access sequences is that access sequences are 

always broken by function calls and function boundaries. We already explained earlier 

that caller and callee save instructions are more expensive than LDARs, both in terms of 

code size and execution cycles. Therefore, whenever we come across a function call, we 

have to break the access sequence. We do not have a clear-cut solution for lengthening 

the access sequences while making the code better. mpeg2d having a long access 

sequence implies that it has a very long stretch of code that contains no function calls, 

which as we can see is a very unusual way to write programs. 

With this information in hand, we are able to explain the limitation of the 

effectiveness of our varying SOA algorithms, OpCost, OpSize and InterBlock SOA. 

Having short access sequences is the primary reason why most of the offset assignment 

algorithms produce roughly the same results even though they are theoretically different. 

We cannot expect that an entirely theoretical solution will always yield a practically 

feasible solution. Sometimes it might not do so. In this case, we learnt our lesson through 

experimentation. We hope that this information can serve to provide an insight to the 

reader regarding offset-assignment-based optimizations. 
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8. RELATED WORK AND CONCLUSION 
 

8.1 Related Work 

Clearly, our framework incorporates some of the earlier work such as Tie-break 

SOA [Leupers 1996]. Also, The SOA solver used in the framework can be replaced with 

any existing SOA algorithms proposed in literature, such as the incremental SOA 

[Atri_2000], genetic algorithm [Leupers 1998] and those combined ones in 

[Leupers_2003]. As [Leupers 2003] pointed out, the performance difference is not very 

significant among existing SOA solvers and there are trade-offs between compilation 

time and the amount of SOA cost reduction, therefore our framework nicely separates out 

the SOA solver for users’ own choosing and makes it very flexible to incorporate new 

and better SOA solvers in the future. For GOA, all existing approaches are actually quite 

fundamental. Also, due to the large percentage of optimal solutions obtained in this work, 

we can reasonably claim we are very close to the limit of this problem, leaving little 

space for further improvements. 

We notice an independent research work on coalescence-based SOA [Ottoni 2003] 

came slightly later than our conference publication [Zhuang 2003]. In their paper, the 

coalescence algorithm is more ad hoc in terms of the selection of node pairs to coalesce 

and the simplified iteration stage. Actually, similar approaches have been attempted 

during our early experiments. Due to the fluctuation of the solution quality, we later 

include the iteration stage that can keep track of the best result during the coalescence 

process. Moreover, in an effort to reduce the regression of the intermediate solution, we 

decide to gradually improve it upon the previous C-PC. As an extended version, this 
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work talks more about GOA and newly includes the post-pre optimization, which has not 

been addressed by any of the previous work. 

 

8.2 Conclusion 

This work proposes a framework for better utilizing the auto-modify modes on 

embedded processors. Our optimization framework includes two enhancements to 

existing work, i.e. coalescence-based offset assignment and post-pre optimization. We 

have shown the advantages of coalescence over previous approaches to capture more 

opportunities to reduce both stack size and SOA/GOA cost. By incorporating seamlessly 

with an SOA solver, our framework can work with any SOA solvers, make it more 

flexible.  

This work represents a shift in approaches that solve offset assignment problem; 

the ongoing research is focused on developing new heuristics for solving MWPC and 

program reordering which has diminishing returns due to the high density of access 

graphs and hardness of the problem in graph-theoretic space. This work demonstrates the 

capability of variable coalescence and post-pre optimization to break the performance 

bottleneck.  

Our results show that the LDAR count can be reduced by up to 19.5% (offset 

registers) for Single-AR, which is much more than the LDAR reduction for a baseline 

solver with Tie-break SOA. On the other hand, coalescence-based approach can also 

shrink the stack size by a reasonable amount. As observed from the OpSize heuristic, the 

stack size reduction mounts to 12.0%. This percentage would be larger in a compiler that 

does not already reuse stack slots. For Multiple-AR, we pointed out that having too many 

address registers might not improve the code, because the access sequence is bounded by 
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function calls, which happen very frequently. Allocating more for auto-modify modes 

deprives the processor of registers for other purposes. Compared with the baseline GOA 

algorithm, variable coalescence is equally effective for Multiple-AR. 

We evaluate add-on optimization stages after coalescence-based offset assignment 

and observe up to 36.5% LDAR reduction with both post-pre optimization and offset 

registers enabled. The amount of cost reduction is quite stable as indicated by our 

experiments with combination to the either the baseline SOA or OpCost algorithm. In 

short, performing variable coalescence and other optimizations after offset assignment 

like the post-pre optimization gives new opportunity to exploit auto-modify mode on a 

wide variety of DSP processors, dramatically improves the solution space of this 

important problem and achieves significant enhancements as demonstrated in our results. 

We hope that our discussion on using LDAR counts instead of SOA cost have 

been refreshing, and our finding on the typical average access sequence length of 1.64 

shines some light on the true nature of offset assignment optimizations. 
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