
An Optimization Framework for Embedded Processors

with Auto-Modify Addressing Modes

A Dissertation

Presented to

The Academic Faculty

By

ChokSheak Lau

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Computer Science

Georgia Institute of Technology

December 2004

An Optimization Framework for Embedded Processors

with Auto-Modify Addressing Modes

Approved by:

Dr. Santosh Pande, Committee Chair

College of Computing, Georgia Tech

Dr. Hsien Hsin S. Lee, School of

Electrical and Computer Engineering,

Georgia Tech

Dr. Gang-Ryung Uh, Computer

Science, Boise State University

 Date Approved: November 2004

He has made everything beautiful in its own time; also He has put eternity in their heart,

yet so that man does not find out what God has done from the beginning to the end.

-- King Solomon, the son of King David, Ecclesiastes 3:11

This dissertation is dedicated to the one and only true God.

v

ACKNOWLEDGEMENTS

My greatest gratitude would be towards my professor, Dr. Santosh Pande, who

has directed my studies and work in compiler research the past two years. Without him, I

would not be where I am today. Special thanks to Xiaotong Zhuang, a fellow student,

who contributed greatly to part of the work presented.

Also thanks to the One who commanded that life should be lived without any

anxiety, bringing peace and rest to me who never had peace and rest. The same One who

created heaven and earth, light, the Sun and the Moon, all the planets, and all of life.

vi

TABLE OF CONTENTS

Acknowledgements ...v

Table of Contents ...vi

List of Tables..viii

List of Figures ..ix

Abbreviations ...xi

Summary...xii

1. Introduction..1

1.1 Address Generation in DSP Processors ...4

1.2 The Offset Assignment Problem..6

1.3 Motivating Examples ..11

1.3.1 Variable Coalescence..11

1.3.2 Post-pre Optimization ...14

1.3.3 Inter-basic-block Offset Assignment ...15

1.4 Offset Registers Optimization ...17

2. Overall Framework ..18

2.1 Outline ..18

2.2 Assumptions ...20

3. Coalescence-Based Offset Assignment ...22

3.1 Use of Alias Analysis..22

3.2 Variable Renaming, Webs and Variable Separation.....................................23

3.3 Interference Graph and Coalescence Graph ...24

3.4 Profitability of Variable Coalescence ..25

3.5 Problem Formulation ..26

3.5.1 Definitions..26

3.6 Coalescence-based Offset Assignment for Single-AR28

3.6.1 OpCost, a Heuristic Algorithm to Minimize Cost............................28

3.6.2 OpSize, a Heuristic Algorithm to Minimize Size.............................34

3.7 Coalescence-based Offset Assignment for Multiple-AR36

3.7.1 Coalescence Algorithm for Multiple-AR...36

3.7.2 OpSize Algorithm for Multiple-AR...38

4. Post-Pre Optimization ..41

4.1 Offset Distance ...41

4.2 Basic Block Splitting and Canonical Form ..43

4.2.1 Definition of Canonical Form and Canonical CFG..........................43

4.2.2 Solving the Canonical CFG with Branch And Bound......................47

4.2.3 Checking the Feasibility..48

vii

5. Further Optimizations...52

5.1 Inter-Basic-Block Offset Assignment ..52

5.1.1 Algorithm for Inter-Basic-Block Offset Assignment52

5.2 Offset Registers Optimization ...55

5.2.1 Characteristics of Offset Registers ..55

5.2.2 Algorithm for Offset Registers Optimization...................................56

6. Implementation Details ..58

6.1 Implementation Environment ..58

6.1.1 Register Set ..58

6.2 Implementation Details for SOA ...59

6.2.1 Reserving an Address Register..60

6.2.2 Identifying All Variables Suitable for Offset Assignment................61

6.2.3 Constructing Webs and Access Graph...62

6.2.4 Running SOA Algorithm on Access Graph62

6.2.5 Rearranging Stack Variables Physically ..62

6.2.6 Using the Reserved AR to Access these Variables63

6.2.7 Conclusion for SOA Implementation ..65

6.3 Implementation Details for Coalescing..66

6.3.1 Building the Interference Graph..66

6.3.2 Renumbering Coalesced Virtual Registers67

6.3.3 Rearranging Stack Variables Physically ..67

6.4 Implementation Details for Using Offset Registers......................................67

6.4.1 Example of Using an Offset Register ..68

6.4.2 Methodology for Using Offset Registers ...68

6.4.3 Recent Trends in Offset Registers ...69

6.5 Implementation Notes for Other Optimizations ...70

6.6 Conclusion for Implementation Details ...71

7. Performance Evaluations ..72

7.1 Measuring LDAR Counts..72

7.2 Benchmarks Description ...72

7.3 Results for Stack Size Reduction...74

7.4 Results for Single-AR ...75

7.4.1 Results for Single-AR LDAR Count ...75

7.4.2 Results for Single-AR Code Size ..76

7.4.3 Results for Single-AR Execution Cycles ...77

7.5 Results for Multiple-AR..78

7.6 Results for Overall Performance Comparison..79

7.7 Compilation Time ...81

7.8 Access Sequence Lengths..82

8. Related Work and Conclusion ..84

8.1 Related Work..84

8.2 Conclusion..85

References...87

viii

LIST OF TABLES

Table 1. Percentage of Optimal Solutions for Multiple-AR ..40

Table 2. Statistics for the Benchmarks ...73

Table 3. Compilation Time (in seconds) ..81

Table 4. Average and Longest Access Sequence Lengths...82

ix

LIST OF FIGURES

Figure 1. Generic AGU Model...5

Figure 2. Example of SOA and Access Graph..7

Figure 3. Motivating Example ...11

Figure 4. Assembly Code (a) Before, and (b) After Coalescence....................................12

Figure 5. Example for Post-pre Optimization (a) Original Code and Offsets (b) Without

Post-pre Optimization (c) With Post-pre Optimization ...15

Figure 6. Example of Access Graph being Modified ..16

Figure 7. Optimization Framework ..18

Figure 8. Illustration of Possible Multiple Aliasing ..22

Figure 9. Profitability of Variable Coalescence ..25

Figure 10. Profitability of Rule 3 Coalescence ...30

Figure 11. Cases to Calculate the Savings ..31

Figure 12. Coalescence Cases Based on Previous C-PC...31

Figure 13. Coalescence-based Offset Assignment for Single-AR33

Figure 14. SOA Cost Fluctuation Along with Iterations for Twolf Procedure ‘findcost’.34

Figure 15. Coalescence Algorithm for Multiple-AR...37

Figure 16. Example for Offset Distance ...42

Figure 17. Addressing Modes between Two Adjacent Memory Access Instructions43

Figure 18. Requirement for Offset Distance to Split only within a Basic Block..............45

Figure 19. Example for Canonical Form Transformation (a) Original Code (b) After Step

1 (c) After Step 2 ...46

Figure 20. Flow Graph for Solving the Canonical CFG..48

Figure 21. Illustrations for Feasibility Checking ..50

Figure 22. Algorithm for Inter-Basic-Block Offset Assignment53

x

Figure 23. Algorithm for Offset Registers Optimization...57

Figure 24. Illustration of Overlap Sets ...63

Figure 25. Stack Size Reduction ..74

Figure 26. Results for Single-AR LDAR Count ...76

Figure 27. Results for Single-AR Code Size ..77

Figure 28. Results for Single-AR Execution Cycles ...78

Figure 29. Results for Multiple-AR LDAR Count – 2 to 4 ARs79

Figure 30. Overall LDAR Comparison between BaseSOA and Full Optimizations80

xi

ABBREVIATIONS

AG Access Graph

AR Address Register

ARA Array Reference Allocation

AGU Address Generation Unit

BB Basic Block

CFG Control Flow Graph

CG Coalescence Graph

DAG Directed Acyclic Graph

DSP Digital Signal Processing

GCC GNU Compiler Collection

GNU GNU’s Not UNIX

GOA General Offset Assignment

IG Interference Graph

MWPC Maximum Weight Path Cover

LDAR Load Address instruction, or any AR modification instruction

PC Path Cover

SOA Simple Offset Assignment

xii

SUMMARY

Modern embedded processors with dedicated address generation unit support

memory accesses using indirect addressing mode with auto-increment and auto-

decrement. The auto-modify mode, if properly utilized, can save address arithmetic

instructions, reduce static and dynamic footprint of the program and speed up the

execution as well.

[Liao 1995; 1996] categorized this problem as the simple offset assignment (SOA)

problem and the general offset assignment (GOA) problem which involve storage layout

of variables and assignment of address registers respectively. He proposed heuristic

solutions to these problems based on graph-theoretic algorithms. Later work proposed

improvements in the performance of Liao’s solution by undertaking other heuristics for

offset assignment and also by undertaking program transformations which rearrange the

sequence of accesses (called access sequence) to the memory locations.

Since techniques based on devising efficient graph covering algorithms have

limited impact given the density of the underlying access graph, this work proposes a

new direction to explore the solution space for this problem. The work proposes a

framework to simplify the access graph using coalescence-based offset assignment, post-

pre optimizations and using offset registers. Variables not interfering with other (not

simultaneously live at any program point) can be coalesced into the same memory

location. Coalescing allows simplifications of the access graph yielding better SOA

solutions or can perhaps lead to such a small number of non-coalesceable memory

locations that GOA solutions for them are optimal. Moreover, it can reduce the program

footprint both statically and at runtime (for stack variables) in terms of data segment size.

xiii

Besides, variable coalescence is orthogonal to other heuristics proposed by early work.

We have seamlessly incorporated our framework with an SOA solver. Our framework

can work with any SOA solvers, making the scheme more flexible. Post-pre optimization

considers how to do most effective code generation using both post-modify and pre-

modify modes to solve the challenge of utilizing this mode within basic blocks as well as

across basic block boundaries. Making use of both addressing modes further reduces

effective SOA/GOA cost and our post-pre optimization phase is optimal in selecting post

or pre mode after variable offsets have been determined.

Our experiments conducted on benchmark programs from MediaBench, MiBench

and Spec2000Int showed improved code performance in terms of stack size, the number

of address arithmetic instructions and execution cycles. We were able to obtain an

average of 12.0% reduction in dynamic stack size in a compiler that reuses stack slots, so

the actual savings could have been greater if the compiler were to not reuse stack slots.

We base our comparisons against a base SOA algorithm, which is Liao’s SOA with

Leupers and Marwedel’s tie-breaker. By using offset registers, we achieved a 36.5%

reduction in address arithmetic instructions, compared to 2.77% for base SOA algorithm.

For code size, we saved 2.27% compared to 0.32% for base SOA. For execution cycles,

we saved 4.10% while base SOA saved 0.38%.

1

1. INTRODUCTION

The rapid evolution in embedded processors and DSP architectures has raised

new challenges for compilers to generate efficient and small footprint code for the ever-

increasing demands on user applications. Reducing the code size also reduces the amount

of memory traffic for instruction fetching and data fetching, which can further speed up

the program execution.

Memory is often a scarce resource in embedded systems because of their small

size. Therefore, we want to optimize code with respect to both code size and stack size,

because both of them consume memory.

Most modern embedded architectures have specialized address generation units

(AGUs) to facilitate the memory address generation in different modes. The AGU

normally provides auto-modify mode, i.e. simple Address Register (AR) operation

(typically, plus or minus a small constant value) before or after the memory access

operation, so that the address register operation is executed for free without dilating the

clock cycle on the critical path. However, due to constraints on instruction size,

traditional register-plus-offset addressing mode is either not supported (e.g. TMS320C25)

or requires more instruction words (Motorola DSP56300). Therefore, transforming

address arithmetic into auto-modify mode can help to generate compact and efficient

code and speed up execution as well.

Most modern DSP processors have at least 8 address registers. For example, each

of the Motorola DSP56300 processor [Motorola 2000] and the Sony pDSP processor has

8 address registers. StarCore's SC140 has 16 address registers [Motorola 2001]. Analog

Devices' ADSP-21020 has 8 address registers (32 bit) for data memory and 8 address

2

registers for program memory (24 bit). Post-modify is supported for all these processors,

and pre-modify is supported for some processors like DSP56300. The hardware support

reflects the designers' expectation for heavy usage of these instructions; however the

actual usage of them is still quite limited. In our experiments, we counted the number of

instructions with auto-modify modes generated by GCC compiler retargeted for the

Motorola DSP56300 processor. For most benchmark programs, less than 3% of the

generated address instructions make use of the auto-modify mode before our

optimizations. A recent study [Udayanarayanan 2001] also shows that on some embedded

processors up to 55% of operations could potentially use address register operations to

reduce cycle counts and code size. Therefore, significant opportunities exist for

optimizing address register assignments.

Bartley [1992] and Liao et al [1995; 1996] first modeled this problem as offset

assignment (also known as storage assignment). They identified the problem as two

classes: simple offset assignment (SOA) and general offset assignment (GOA). They

modeled the problem as an access graph and the objective is to find the maximum weight

path cover (MWPC) on the graph. Liao proved that finding the MWPC is NP-complete;

therefore heuristics are used to solve both SOA and GOA. Later, Leupers and Marwedel

[Leupers 1996] extended Liao's work by proposing a Tie-break heuristic for SOA and a

variable partitioning strategy for GOA to reduce the SOA and GOA costs. Atri,

Ramanujam and Kandemir [Atri 2000] further improved the heuristics by an algorithm

called Incremental-Solve-SOA, which requires much more running time in solving the

same graph problem. Sudarsanam et. al. [1997] studied the offset problem in the presence

of an auto-modify feature that varies from -l to +l with k address registers. [Rao 1998;

3

Rao 1999] extended beyond offset assignment with memory access sequence reordering

(or program reordering) through algebraic transformations on the expression trees.

[Kandemir 2003] proposed a more aggressive access sequence reordering scheme with

both intra-statement and inter-statement transformations. Program reordering can better

utilize the auto-modify mode by rearranging not only the variables’ offsets but also the

order of memory access instructions. An approach based on a genetic algorithm (GA) for

SOA was presented in [Leupers 1998]. It uses a simulation of natural evolution process,

which is relatively time-consuming. Finally, [Leupers 2003] did a comprehensive

comparison among several existing algorithms (except program reordering) and proposed

a combined algorithm based on Tie-break and incremental-Solve-SOA. He also found

that the qualities of the solutions obtained are quite close among these algorithms.

Another type of problem is known as the Array Reference Allocation (ARA),

which optimizes the access to array variables using auto-modify mode [Araujo 1996;

Gebotys 1997; Leupers 1998; Ottoni 2001].

In this work, we propose an optimization framework for compiler-managed code

generation based on the auto-modify mode on embedded processors. Previous approaches

to offset assignment optimization concerns dealing with graph-theoretic algorithms and

algebraic transforms to find a good memory layout, but do not provide any stack size

savings. We want to optimize stack memory and also simplify the solution by making use

of other techniques. Our framework consists of two parts. First, we enhance the

effectiveness of offset assignment with a new technique called variable coalescence. We

start with identifying webs, and then we coalesce them aggressively into fewer memory

locations. Our study shows that the access graph of the atomic variables is sparse, and

4

coalescence can effectively reorganize them to generate simpler access sequences with

high-weighted path covers. Besides, aggressive coalescence can significantly reduce the

static and dynamic memory space requirements of a program for SOA and GOA based

optimizations. Variable coalescence can be combined with most previous approaches to

further boost the performance. Second, to further reduce the AR modification instructions

(written as “LDARs” for short), we add a post-pre optimization phase to decide whether

post- or pre-modify mode should be used for each access. Our post-pre optimization

phase can optimally select post or pre mode after variable offsets have been determined.

We also propose additional optimization methods to consider SOA as an inter-basic-

block problem, and to scavenge the offset registers which can be used to save LDARs

and execution cycles.

1.1 Address Generation in DSP Processors

Address generation hardware in DSP processors differs from that of standard

processors [Leupers 1996]. Usually, several ARs are available, which can be updated in

parallel to other machine operations, thereby introducing no code size or speed overhead.

On the other hand, addressing may be quite restricted. In order to avoid long

combinational delay, many DSPs do not permit indexing with an offset, but only post-

modification, i.e. additions or subtractions involving ARs take place only at the end of a

machine cycle. Besides high code quality, retargetability is another primary goal in DSP

code generation, due to the growing diversity of DSPs in form of application-specific

designs (ASIPs). Therefore, we consider a generic AGU architecture, which reflects a

subset of AGU capabilities of many contemporary DSPs. Our AGU model (Figure 1) is

parameterized by the number K of ARs and the number N of Offset Registers (ORs). In

5

case of multiple memory banks we assume separate AGUs for each bank. Typical AGU

configurations are K = 4; N = 4 (ADSP-210x), or K = 8; N = 1 (TMS320C2x). The ARs

provide effective memory addresses, while ORs store integer modify values for AR

updates. AR and OR files are indexed by designated pointers, which select the current

AR and OR for each machine cycle. AR and OR pointer updates usually does not

contribute to code size [Leupers 1996]. Figure 1 shows a generic AGU model taken from

Leupers and Marwedel’s paper [Leupers 1996].

Figure 1. Generic AGU Model

The AGU model permits execution of the following primitive AGU operations in

each machine cycle: 1) Immediate AR load: The current AR is loaded with an immediate

value supplied by the instruction word. 2) Immediate AR modify: An immediate value is

added to or subtracted from the current AR. 3) Auto-increment/decrement: The constant

1 is added to or subtracted from the current AR. 4) Immediate OR load: The current OR

is loaded with an immediate value. 5) Auto-offset-modify: The contents of the current

OR are added to or subtracted from the current AR.

6

1.2 The Offset Assignment Problem

Compiler optimizations for auto-modify addressing modes can be classified into

two types: single-AR and multiple-AR, depending on the number of available address

registers.

An AR modification instruction is written as “LDAR” for short. “LDAR” means

“load address” and it means an instruction that sets an AR to a certain immediate address

value. There are two other kinds of address arithmetic instruction, “ADAR” and “SBAR”.

“ADAR” is an instruction that adds an immediate integer to an AR. “SBAR” is an

instruction that subtracts an immediate integer to an AR. To simplify writing, we use

“LDAR” to mean any one of the LDAR/ADAR/SBAR instructions.

Traditionally, it is studied as the Offset Assignment Problem. Offset assignment is

to assign offsets (memory layout) to variables so that the number of address arithmetic

instructions can be minimized by using auto-modify modes of register indirect addressing

instructions. Accordingly, Simple Offset Assignment (SOA) assumes single-AR, while

General Offset Assignment (GOA) tackles multiple-AR. For example, Figure 4(a) shows

the memory layout for 6 variables (address grows upwards) and generated code

corresponding to Figure 3(a)—we assume one address register AR0, so it is an SOA

problem. Here, we assume that variables on the right-hand-side of the equation must be

loaded one-by-one from left to right, then, after the evaluation, the result is stored into the

left-side variable. For the time being, all variables are stored in memory (in case they are

not, the access graph will show the order of only those accesses corresponding to

memory accesses, i.e. load/stores). For the first instruction c=a+b, after accessing b, i.e.

ADD *(AR0)-, we use auto-decrement to point AR0 to the memory location of variable c,

7

thus saving one AR modification instruction. In principle, all ADARs and SBARs can be

replaced by LDAR in usage. Therefore, the problem of maximizing the use of auto-

modify instructions is to find a good memory layout such that a maximum number of

consecutively accessed variables are adjacently stored in memory. To apply the offset

assignment optimization, we need to find out the access sequence first. An access

sequence is defined as an ordered linear sequence of variable accesses [Liao 1995; Liao

1996]. For example, in Figure 2, we show the access sequence below for the code

segment. From the access sequence, we can build an access graph based on the access

sequence (Figure 2). An access graph is a weighted undirected graph, on which each node

is a variable, while the edge weight is the number of transitions in the access sequence

between the two end nodes (variables). In other words, the edge weight represents the

number of times the two nodes are accessed consecutively in the access sequence.

Figure 2. Example of SOA and Access Graph

After the access graph is constructed, our optimization objective is to find a

maximum weight path cover (MWPC) [Liao 1995]. An MWPC is simply a path cover

(PC) with maximum weight. Here, path cover is defined slightly differently from that in

graph theory. The path cover here means an edge set such that 1) each node adjacent to

C = A + B;
E = 40;
A += D + C;
D *= C >> 3;
C = D + A;

C Code

Access Sequence
BAC E CDA CD ADC

Original Stack Layout
ABCDE

New Stack Layout
BADCE

Original SOA cost = 7 New SOA cost = 2

Access Graph

MWPC in bold

3

2

2

1

B

A

E

C
D

2

8

any edge in the edge set can only have either one or two neighbors in the edge set; 2) no

cycle can be constructed solely with edges in the edge set. Intuitively, the subgraph with

only edges in the edge set must consist of one or more linear path(s) so that the variables

can be laid out linearly in memory. Weights covered on the PC is proportional to the

number of times auto-modify modes can be used to access the next variable in memory,

while the sum of the weights of all edges not on the PC is proportional to the number of

times LDARs should be inserted, and this sum is called the SOA cost ([Liao 1995] gives

details on the SOA cost. Intuitively, for uncovered edges, LDARs must be inserted and

the edge weights now represents how many times these instructions are executed). The

thick lines in the access path in Figure 2 shows one of the PC and also an MWPC

solution. The weight for the MWPC is 7 and the SOA cost is 2. Earlier approaches [Liao

1995; Leupers 1996; Atri 2000] have shown that the MWPC problem is NP-complete and

tried to find a good path cover with a weight close to the MWPC.

For example, in Figure 2, the original SOA cost of 7 means that in the access

sequence, we can count 7 times for which we go from one variable to another for which

the variables are not placed right next to each other in the stack layout. For the sequence

BACECDACDADC, the 7 breaks in the access sequence are: AC, CE, EC, DA, AC, DA

and AD. Using the MWPC solution, we can get a new SOA cost of only 2.

On the other hand, General Offset Assignment (GOA) is typically solved in two

steps. During the first step, a heuristic algorithm assigns each variable to an address

register, thus a variable assigned to an AR uses that AR only. Next, for all variables

assigned to the same AR, the problem is solved as SOA. GOA cost is actually the sum of

SOA costs associated with each address register. For GOA, the access sequence for

9

variables handled by one AR is derived from the all-variable access sequence but

considering only the variables using that AR. For example, in Figure 3(a), if we have two

address registers AR0 and AR1, and {a,b,c} is handled by AR0 and {d,e,f} is handled by

AR1, then the access sequence for AR0 is abcacaaccb, the access sequence for AR1 is

defddf.

In real programs with branches, the access sequence cannot be simply derived

from static code during compilation time, because the compiler has little knowledge

about the runtime execution trace. However, we can still construct the access graph in

other ways. Notice that, on the access graph, the edge weight between two variables

should indicate the frequency these two variables are accessed consecutively. In other

words, as adopted in our experiments, we can use profile information to get the execution

frequency for the path between two consecutive memory accesses to the variables. In

case profile information is not available, we can roughly estimate the execution

frequencies of the paths based on their loop depth [Muchnick 1997].

In addition to offset assignment, other approaches are possible to harness the

auto-modify modes or to improve the effecti`veness of offset assignment. [Rao 1998; Rao

1999] proposed program reordering. Program reordering reschedules instructions

according to the algebraic laws (like from a+b to b+a) so that a higher weight path cover

solution can be obtained during offset assignment and more variable accesses can be

covered with auto-modify mode.

In this work, we observe that the access graph is sparse in general, therefore

coalescing nodes on the access graph might lead to a better MWPC solution based on

offset assignment. After variable coalescence, the access graph can be much different,

10

inducing an improved solution even superior to the optimal MWPC that can be achieved

without variable coalescence. Furthermore, variable coalescence can be combined with

and improve all previously mentioned offset assignment approaches and it is applicable

to both SOA and GOA. Secondly, our post-pre optimization comes after offset

assignment and finds chances for both and post and pre addressing mode. In the next

section, we will show a few examples to illustrate these optimizations.

11

1.3 Motivating Examples

1.3.1 Variable Coalescence

In Figure 3, we give an example to illustrate how variable coalescence works and

how it can reduce the SOA and GOA cost.

(a) (b)

(1) c=a+b

(2) f =d+e

(3) a=a+c

(4) c=d+a

(5) b=d+f+c

abcdefacadacdfcb

a b

f c

e d

1

1
2

1

1

2

2

1

3

1

Weight 9

Cost 6 (1) c1=a1+b1

(2) f =d+e

(3) a2=a1+c1

(4) c2=d+a2

(5) b2=d+f+c2

(c)

a1b1c1defa1c1a2da2c2dfc2b2

a1 a2

b1

b2

c1 c2

f

d

e

2

1

1
1

1

1

1

1

1
1

1

1

1

1

Weight 8

Cost 7

(d)

(1) c1=a1+b1

(2) f =d+e

(3) a2=a1+c1

(4) X=d+a2

(5) X=d+f+X

X= (b2, c2)

(e)

a1 a2

b1

c1 X

f

d

e

2

1

1
1

1

1

1

1

1
1

1

1

1

(f)

Weight 9

Cost 6
(1) Y=a1+b1

(2) f =d+e

(3) Y=a1+Y

(4) X=d+Y

(5) X=d+f+X

X= (b2, c2)

Y= (c1, a2)

 (g)

a1 Y

b1

X

f

d

e

3

1

1
1

1

1

1

1

1

1

(h)

Weight 10

Cost 5

1

(1) Y=a1+b1

(2) Z =d+Z

(3) Y=a1+Y

(4) X=d+Y

(5) X=d+Z+X

X= (b2, c2)

Y= (c1, a2)

Z= (e,f)

(i)

a1 Y

b1

X

Z

d

3

1

2
1

1

1

1

1

(j)

Weight 11

Cost 4

1

(1) X=a1+b1

(2) Z =d+Z

(3) X=a1+X

(4) X=d+X

(5) X=d+Z+X

X= (b2, c2, c1, a2)

Z= (e,f)

 (k)

a1

b1

X

Z

d

1

2
1

1
1

4

(l)

Weight 12

Cost 3

1

(1) X=a1+X

(2) Z =d+Z

(3) X=a1+X

(4) X=d+X

(5) X=d+Z+X

X= (b2, c2, c1, a2 , b1)

Z= (e,f)

(m)

a1

Z

d

1

2

1

4

Weight 13

Cost 2

2

X

a1XXdZZa1XXdXXdZXX

(n)

Figure 3. Motivating Example

12

The code segment in Figure 3(a) (taken from [Rao 1999] with minor changes)

contains 5 instructions. We assume this code segment is the entire program itself. In real

programs, we need to do liveness analysis and variable renaming/coalescing.

The coalescence algorithm actually first separates variables into atomic units

called webs (explained in Chapter 3.2) [Muchnick 1997] through variable renaming. A

web is a du/ud chain closure of a variable and allows independent allocation of values in

memory.

 b

c

a

d

f

e

LDAR AR0&a ; a

LD *(AR0) ;

ADAR AR0, 2 ; b

ADD *(AR0-) ; c

ST *(AR0) ;

SBAR AR0, 2 ; d

LD *(AR0) ;

SBAR AR0, 2 ; e

ADD *(AR0+) ; f

ST *(AR0) ;

ADAR AR0, 2 ; a

LD *(AR0+) ; c

ADD *(AR0-) ; a

ST *(AR0-) ; d

LD *(AR0+) ; a

ADD *(AR0+) ; c

ST *(AR0) ;

SBAR AR0, 2 ; d

LD *(AR0-) ; f

ADD *(AR0) ;

ADAR AR0, 3 ; c

ADD *(AR0+) ; b

ST *(AR0) ;

LDAR AR0&a1 ; a1

LD *(AR0-) ; X

ADD *(AR0) ; X

ST *(AR0-) ; d

LD *(AR0-) ; Z

ADD *(AR0) ; Z

ST *(AR0) ;

ADAR AR0, 3 ; a1

LD *(AR0-) ; X

ADD *(AR0) ; X

ST *(AR0-) ; d

LD *(AR0+) ; X

ADD *(AR0) ; X

ST *(AR0-) ; d

LD *(AR0-) ; Z

ADD *(AR0) ;

ADAR AR0, 2 ; X

ADD *(AR0) ; X

ST *(AR0) ;

a1

X

d

Z

(a) (b)

*Note: variables on the right of semicolon is what AR0 points to after the instruction.

Figure 4. Assembly Code (a) Before, and (b) After Coalescence

Figure 3(c) shows how we separate each of variables a, b and c into two webs.

Intuitively, in instruction (3), defining variable a starts a new web. We thus rename the

variable a, then use that new name in later references. Similarly, b and c are renamed in

instructions (4) and (5). In this code segment, c1, which is live from instructions (1) to (3),

constitutes a closed web, c1 can be arbitrarily renamed regardless of other parts of the

program. Figure 3(c) and Figure 3(d) show the access sequence and access graph after

13

variable separation. The weight of the MWPC is 1 unit smaller than the one before

variable separation. In Figure 3(e) and Figure 3(f), we coalesce b2 with c2, i.e. we

combine these two variables into one variable, putting them into the same memory

location. Because the last use of c2 ends before the definition of b2, they can be safely

coalesced as one variable X. Their edges are coalesced accordingly as shown in Figure

3(f). After coalescing, the cost is reduced by one (notice when we coalesce two variables,

the weight of the edge between them is saved, since we do not need to modify the address

register when consecutively accessing the same memory location). From Figure 3(g) to

Figure 3(n), we coalesce 4 other nodes. The final MWPC weight is 13 (including edges

between nodes that were coalesced together) with an improvement of 44%. Also, the data

segment size is reduced from 6 variables to 4 variables (a 33% reduction). The final

variable layout and modified code are listed in Figure 4(b). After saving 4 ADAR/SBAR

instructions, we achieve a 17% code size reduction and 17% speedup (assuming all

instructions require the same number of cycles).

We now discuss the effect of coalescing on GOA. Suppose 2 address registers

AR0 and AR1 are available, for the code in Figure 3(m), we can simply assign two

variables to each of them, e.g. {X, a1} to AR0, {Z, d} to AR1. The access sequence for

{X, a1} as derived from the whole access sequence in Figure 3(m) is a1XXa1XXXXXX,

thus the access graph has only one edge with weight 3, which is on the MWPC. Similarly,

for {Z, d}, the solution is also optimal (SOA cost of 0). We will show in Chapter 3.7 that

coalescence can often generate an optimal solution for GOA.

Figure 3(b) already shows the optimal solution of MWPC for the case of no

coalescence, and therefore no heuristic can reduce the cost below 6 without variable

14

coalescence. For GOA, since variable coalescence already obtained the optimal solution,

no other algorithm can do any better.

This example shows that by separating and coalescing the variables, we get better

performance (fewer execution cycles) and code size. Using coalescing can often produce

a solution with a lower SOA cost than the best MWPC that could possibly be obtained

without coalescing. Also, coalescing gives a stack size savings which the other

algorithms cannot give.3

1.3.2 Post-pre Optimization

This example illustrates post-pre optimization. As mentioned previously, both

post- and pre-modify are supported for some embedded processors. However, current

research on offset assignment does not consider pre-modify modes altogether. In Figure

5(a), assume that after offset assignment, the four variables are laid out sequentially as

d,c,b,a (address grows upwards). Meanwhile, the four load instructions are distributed in

3 basic blocks. Based on the variable offsets, we can generate the final code as in Figure

5(b), where auto-address mode is only used once. 3 LDAR instructions have to be used to

set the address register AR0. However, in Figure 5(c), we give another solution with the

post-pre optimization. Although the two successors of variable c, i.e. a and b, have

different offsets, with both post- and pre-modifies, we can avoid any LDARs. After

accessing c, AR0 is post-incremented to point to variable b. On the path to BB2, AR0 is

pre-incremented before accessing variable a. In the meantime, the SBAR instruction in

BB3 can be avoided as well. AR0 is post-decremented and then pre-incremented before

accessing variable d, so SBAR AR0, 2 can be removed. Notice that, post-pre

15

optimization is done after variable offsets have been assigned by the offset assignment

algorithms.

BB 2 BB 3

BB 1 BB 1

BB 2
BB 3

BB 2 BB 3

 a

b

c

d

(a) (b)

LD a LD b

LD d

LD c

ADAR AR0, 1

LD *(AR0)

LD *(AR0)

SBAR AR0, 2

LD *(AR0)

LDAR AR0 &c

LD *(AR0+)

(c)

LD *(+AR0) LD *(AR0-)

LD *(-AR0)

LDAR AR0 &c

LD *(AR0+)

BB 1

Figure 5. Example for Post-pre Optimization (a) Original Code and Offsets (b) Without

Post-pre Optimization (c) With Post-pre Optimization

1.3.3 Inter-basic-block Offset Assignment

In a typical CFG, a basic block can have multiple predecessors and/or successor

basic blocks. Therefore, the access sequence does not terminate along basic block

boundaries. The problem of considering the continuation of access sequence even across

basic block boundaries is called inter-basic-block offset assignment. In the case when a

basic block P has a unique successor S, where S has a unique predecessor P, we can

merge two access sequences into one longer access sequence. However, the problem

becomes more complicated when an access sequence can take one of several different

paths. In such a case, we try to continue the access sequence along the path which could

possibly save an LDAR.

Figure 6 shows the case when the variables’ stack layout is (a, b, c) and variable a

can be followed by either b or c in a CFG split point. In the original access graph, we

have only two edges that we can pick from, either (a, b) or (a, c). Since edge (a, b) has a

greater weight, we pick it. However, note that the weight of edge (a, b) overlaps with the

weight of edge (a, c). This means that we can either count edge (a, b), or count edge (a, c),

16

but not both at the same time. Why is this so? This is because of the CFG split. The

topmost basic block, BB1, has two successors BB2 and BB3. The last memory access in

BB1 is variable a. The first memory access in BB2 is b, while the first memory access in

BB3 is c. Therefore, we have two different access sequences at the bottom of BB1. It

could be either a-b, or a-c, but not both.

Since we pick (a, b), edge (a, c) loses a weight of one. This is because we chose to

realize the address of variable b at the bottom of BB1, which is the access sequence from

BB1 continuing on to BB2. b has a different address from c, so if we realize the address

of b, we cannot realize the address of c at the bottom of BB1. Therefore, BB3 needs an

LDAR at the top of the basic block. If we had picked (a, c) instead, the weight of edge (a,

b) would not be 3 anymore, but would become 2. Vice-versa, if we choose to go from

BB1 to BB3, then that will break the access sequence from BB1 to BB2.

picked edge

BB 3 BB 2

BB 1
LDAR AR0 <- a

MOVE AR1 <- (r0)

LDAR AR0 <- b
MOVE AR2 <- (r0)

ADD AR2, r1

MOVE (AR0) <- r2

LDAR AR0 <- a
MOVE AR1 <- (r0)

ADD AR1, 1

MOVE (AR0) <- r1

LDAR AR0 <- b
MOVE AR1 <- (AR0)

ADD AR1, 1

MOVE (AR0) <- AR1

LDAR AR0 <- c
MOVE AR1 <- (AR0)

ADD AR1, 1

MOVE (AR0) <- AR1

1

3 a
b

c

Original Access Graph

0

3 a
b

c

New Access Graph

Partial Control Flow Graph

Figure 6. Example of Access Graph being Modified

Thus, the access graph changed as we picked edges during offset assignment. In

this way, the access graph dynamically evolves during the process of selecting access

graph edges and by so doing, we take into account access sequence across basic block

17

boundaries. In the case when we do not consider any inter-basic-block access sequences,

we need one LDAR for each of variables b and c because they appear as the first

load/store instruction in the basic block, which is the worst case possible. This worst case

corresponds to the case of intra-basic-block offset assignment. In general, any intra-basic-

block offset assignment scheme always needs at least one LDAR at the top of each basic

block in which at least one offset-assigned variable exists.

1.4 Offset Registers Optimization

Offset registers are the special set of registers in typical DSP processors that allow

an offset to be applied to an address register without incurring any additional execution

cycles. Therefore, when we want to access a particular memory location with a known

offset from the current address register value, we can either modify the address register

directly, or modify an offset register and use it with a base address register. The offset

register is particularly useful when referring to stack memory because by modifying the

offset register, we do not have to modify the stack pointer register. Also, unaliased stack

variables always have a fixed, pre-known offset from the stack pointer, and hence we can

reuse the same offset value to point to the same stack variable.

Since DSP instructions only support a modification by one offset in auto-modify

modes, offset registers can be used to reach those variables which are placed more than

one offset location away in memory. This is especially useful when the offset register is

pre-assigned a small fixed value, typically 2 or 3, and this makes it possible for us to save

LDARs even when the access sequences are separated by fixed offsets that are not

reached by using auto-increment or auto-decrement.

18

2. OVERALL FRAMEWORK

2.1 Outline

Figure 7 shows the overall framework for the optimizations with auto-modify

mode. Figure 7(a) shows the optimization flowchart for single-AR and Figure 7(b) shows

the one for multiple-AR. In both cases, two optimization objectives are considered during

coalescence and offset assignment, leading to two kinds of algorithms. We propose two

kinds of heuristics to minimize the SOA or GOA cost, which corresponds to address

modification code (LDAR/ADAR/SBAR). Algorithm “OpCost” targets the incremental

minimization of SOA or GOA cost, while algorithm “OpSize” aims to minimize the

nodes on the access graph (or the runtime memory space these variables take) through

aggressive coalescence. As a starting point, we need to build the access graph (AGs) and

interference graphs (IGs). These two graphs are necessary to guide the coalescence and

offset assignment process.

Figure 7. Optimization Framework

Single - AR

Build Access Graph and
Interference Graph

SOA Solver

Variable Coalescence

Post-pre optimization

Build Access Graph and
Interference Graph

Minimal Graph Coloring

Co nstruct AR Groups via
Variable Coalescence

Pre - iteration Coalescence

Offset registers

optimization

Minimal Graph Coloring

OpCost
 Op Size

Multiple - AR

SOA Solver

Post-pre optimization

Construct AR Groups via
Variable Coalescence

Run SOA Solver on
Each AR Group

 Run SOA Solver on
Each AR Group

OpCost
 Op Size

(a) (b)

-

Coalescence

based Offset

Assignment

Offset registers

optimization

19

In Figure 7(a), both OpCost and OpSize invoke an SOA solver, which could be

any one of the previous offset assignment algorithms without variable coalescence. The

SOA solver only assigns offsets for given variables and attempts to minimize the SOA

cost. For the OpCost algorithm, a heuristic approach is chosen to iterate over MWPC

searching and variable coalescence after the pre-iteration coalescence is done (explained

in Chapter 3.6). In each iteration, the heuristic algorithm finds 2 nodes to coalesce if

possible. Then, the two nodes are coalesced and the access graph and interference graph

are changed accordingly. The solution with the least cost ever achieved is saved and used

as the final solution. On the other hand, OpSize simply coalesces the nodes maximally

through a graph coloring algorithm, then runs the SOA solver to obtain a solution.

In Figure 7(b), with multiple ARs, the algorithm classifies variables into several

AR groups, so each group can be assigned to one AR and solved with a single-AR

algorithm. The OpCost algorithm constructs AR groups together with variable

coalescence, then runs the SOA solver afterwards on each AR group. In contrast, the

OpSize algorithm aggressively coalesces the nodes by minimally coloring the IG, since

the minimal number of nodes can lead to optimal solutions in many cases. In case the

optimal solution cannot be given out after graph coloring, we apply the coalescence

algorithm as in OpCost.

After variable coalescence and offset assignment, we optionally perform post-pre

optimization if both post- and pre-modify modes are supported. This is a cheap operation

and the algorithm does not take much more time to run than SOA itself. Finally we use

the offset registers as far as we can to cover the rest of the remaining breaks in access

sequences so that we can further save LDARs.

20

Clearly, our framework incorporates more optimizations than solely assigning

offsets for variables. Coalescence-based offset assignment is the phase in which we

perform variable coalescence together with offset assignment. We will discuss this in

detail in Chapter 3. We will make use of an SOA solver from early “offset assignment

only” approaches. Post-pre optimization will be discussed in Chapter 4.

2.2 Assumptions

Most of the basic assumptions are followed from previous work [Bartley 1992;

Liao 1995; Liao 1996; Rao 1998; Rao 1999; Leupers 1996]. We list some specific ones

as follows:

1) This work only considers auto-modify addressing with stride 1, which means the

address register can only be increased or decreased by 1 in each instruction that has the

auto-modification. Auto-modify with stride 1 only is the most widely supported auto-

modify mode on state-of-the-art embedded architectures.

2) Not all address register operations can be converted into auto-modify mode

addressing. For instance, some address registers can point to multiple variables

depending on the direction of the control flow or due to multiple aliasing; thus, we cannot

bind it to one single variable since it would be unsafe to optimize it as auto-increment or

auto-decrement for a given layout. Thus, in a multiple alias case, one has to use explicit

address register modification (like LDAR, ADAR, SBAR in Figure 4) operations.

3) In addition, array index based optimizations have been an active area of

research and there are techniques to analyze array-indexed memory accesses, esp. in

loops [Ottoni 2001; Araujo 1996; Gebotys 1997; Leupers 1998; Zhang 2003]. However,

such research work is entirely different from offset assignment optimizations for scalar

21

variables in terms of the problem formulation and approaches. Currently, we consider it

beyond the scope of this article.

22

3. COALESCENCE-BASED OFFSET ASSIGNMENT

3.1 Use of Alias Analysis

The framework starts with performing a simple alias analysis [Aho 1986] to

determine the variables that might be referenced via pointers. For a given variable P,

where P is a pointer, we can determine what P points to if P is locally assigned across all

reaching paths in the CFG of the function before P is first used. Consider the CFG in

Figure 8. P is a pointer to an integer, and A and B are two local variables. The CFG then

splits into two possible paths, with one path into BB 2 setting P to the address of A, and

the other path into BB 3 setting P to the address of B. Therefore, in BB 4. we know that P

can point to either A or B, and no other locations. We also know that A and B do not

have the same stack memory address. Therefore, P is multiply-aliased.

BB 4

BB 2 BB 3

BB 1

p = &a; p = &b;

int a = 10;

int b = 20;

*p += 100;

Figure 8. Illustration of Possible Multiple Aliasing

Another case is when a pointer P is first used before its definition in the function,

or P is assigned a value which came through as a function argument value or from some

external unknown value. In these cases, we cannot determine an alias for P. But we do

not treat any unknown aliases as possibly pointing to any local stack variable. Rather, we

know that an unknown alias value can never point to a local stack variable, and hence, we

ignore such aliases in our optimizations.

23

We consider using an address pointed to by a pointer only when we can determine

a unique target alias for it. Otherwise, we simply cannot optimize for it because we will

have to use an load the AR with a value that cannot be known at compile time, and is

only known at runtime. In Figure 8, P may point to either A or B. We cannot save any

LDARs here because we have to load the AR with the address of either A or B at runtime,

and speculating that P will point to A only or B only does not help to save any LDARs.

We still have to use at least one LDAR to cover for the memory access in BB 4.

3.2 Variable Renaming, Webs and Variable Separation

In order to separate memory references, which can be independently considered

for allocation, we rename variables and construct webs (as in Figure 3(c) and Figure 3(d)).

A web [Muchnick 1997] or live range is defined as the maximal union of du-chains. Each

web builds a separate variable after renaming, i.e. one must bind all the definitions and

uses within a web to a single memory location. In this manner, we are able to achieve

effective value separation at different program points. Value separation is extremely

important as the compiler normally generates lots of temporaries that are reused

repeatedly. Decoupling these variables that are disjoint in terms of values through re-

naming gives us more freedom to coalesce them in a proper way to maximize the profit

of offset assignment optimizations.

Our results show that over 80% local variables in the backend that can make use

of the auto-modify instructions are recycled temporaries and the data segment size for

them can increase after web identification. However, coalescing phase which follows

greatly reduces the data segment size and brings about an overall size reduction when

compared to the original data segment size.

24

To avoid interfering with a good register allocator and other optimizations before

register allocation, our optimizing pass comes after register allocation, when all virtual

registers that will be on the stack are identified. Also, for user-defined variables and

temporaries, webs are built to achieve value separation.

3.3 Interference Graph and Coalescence Graph

After values separation, our coalescence algorithm needs to determine which

variables are coalesceable.

An interference graph (IG) is built to represent the overlapping of the live ranges

between different variables. The IG is defined as a graph where each node is a live range

and an edge between a pair of nodes means that at a certain program point, the two nodes

are simultaneously live, so they cannot be coalesced. It is perhaps most-used in register

allocation.

A coalescence graph (CG) is a graph in which two nodes can be coalesced if and

only if there is an edge between them. The CG is simply the complementary graph of the

IG, which means, any two nodes connected by an edge on the IG will not be connected

by an edge on the CG, and same vice-versa. In actual implementation, we only use the IG.

In our 10 benchmark programs, the IGs after value separation are sparse. Intra-

procedurally, the average degree for each node is 8.17 on the IG and 210 for the CG. The

strong connectivity on the CG means live ranges have plenty of chances to be coalesced

with one another. The high average degree on the CG and the low average degree for the

IG are probably due to the large amount of temporaries generated by the compiler. These

temporaries are initially generated as virtual registers and then spilled. Most of the

temporaries are defined once and used only a few times within the same basic block.

25

3.4 Profitability of Variable Coalescence

The high connectivity of nodes on CG grants us ample freedom to make good

coalescing decisions to simplify the access graph (AG) considerably. Simplifying access

sequence through judicious choice of coalescing is a non-trivial problem. Coalescence

must be performed so that the resulting MWPC solution is improved. A key observation

is that increasing edge weights through coalescence does not always lead to a better

MWPC solution. In other words, coalescence may worsen the solution for offset

assignment if not properly conducted. Coalescence seems to impact graph topology more

than the edge weights as far as MWPC is concerned. This is due to the fact that in a final

MWPC solution, there can be at most two incident edges on each node and thus,

attempting to increase edge weights does not seem to impact the MWPC as much as

reduction in node degrees which is a function of graph topology more than edge weights.

h

a

g

f

d

b

c

e

dg

(a)

2

2

1

6

3

4

2

4

h

a

f

b

c

e

(c)

3

2

1

6

3

1

10

2 2

(b)

a

g

f

d

b

e

2

1

6

3

5

4

4

2

ch

Figure 9. Profitability of Variable Coalescence

Figure 9(a) shows the original access graph and the current status of MWPC, i.e.,

a-b-c-d-e-g-h and f with total weight 21. If the coalescence graph permits the coalescing

of nodes c and h, we can coalesce the two nodes and get an MWPC (a-b-ch-d-e-g and f)

in Figure 9(b), the weight is 20. After coalescence, the MWPC is worse. The reason is

because node c already has 4 neighbors. Adding more neighbors from h is not going to be

26

profitable. In contrast, in Figure 9(c), we coalesce node d and g. The MWPC is a-b-c-dg-

e-f and h with a total weight of 22. This example shows that coalescence cannot be done

arbitrarily without consideration of the topology of the IG and the AG.

3.5 Problem Formulation

The objective of offset assignment based on variable coalescence is to find both

the coalescence scheme and the MWPC on the coalesced graph. We start with a few

definitions and lemmas for variable coalescence.

3.5.1 Definitions

Coalesced Node (C-Node): A C-node is a set of live ranges (webs) in the AG or the IG

that are coalesced. Nodes within the same C-node cannot interfere with each other on the

IG. Before any coalescing is done, each live range is a C-node by itself.

Coalesced Edge (C-Edge): The C-edge is an edge set defined for a pair of C-nodes. A

C-edge <c1,c2> between two C-nodes c1 and c2 on graph G is a set defined as:

{<n1,n2> | n1 ∈ c1, n2 ∈ c2, <n1,n2> is an edge on G}

C-edges apply to either the AG or the IG. A C-edge exists only when this set is not empty.

C-AG (Coalesced Access Graph): The C-AG is the access graph after node coalescence,

which is composed of all C-nodes and C-edges.

C-IG (Coalesced Interference Graph): The C-IG is the interference graph after node

coalescence, which is composed of all C-nodes and C-edges. A C-edge between two C-

nodes means the two C-nodes has interfering live ranges, therefore cannot be coalesced.

Coalesced Path Cover (C-PC): On a C-AG, a C-PC consists of a sequence of C-nodes

c1, c2,…ck, where <ci,ci+1> is a C-edge between C-node ci and ci+1. The C-PC covers all

27

C-nodes exactly once, contains no cycles, and no C-node has a degree larger than two in

the C-PC.

Weight of a C-Edge: The weight of a C-edge is the sum of all edge weights in the C-

edge. C-edges with weight zero are C-edges that do not exist.

Weight of a C-Node: The weight of a C-node is the sum of all edge weights between any

two nodes contained in this C-node.

Weight of a C-PC: The weight of a C-PC is the sum of weights of all the C-nodes and C-

edges along the path.

C-MWPC (Coalesced Maximum Weight Path Cover): The C-MWPC is the C-PC with

the maximum weight for all possible C-PCs on the C-AG. This maximum weight does

not necessarily produce a unique path cover.

The algorithm starts with the original, uncoalesced AG, where each node is

labeled as a C-node and by using the IG, the algorithm updates the C-nodes in both

graphs through coalescing leading to the C-AG and the C-IG which keeps on changing

dynamically as we coalesce more and more C-nodes. We first show that finding the best

MWPC for a coalesced graph (called C-MWPC) is a hard problem. Next we attempt two

heuristic solutions.

LEMMA 1: The C-MWPC problem is NP-complete.

Proof: C-MWPC can be easily reduced to the MWPC problem assuming a coalescence

graph without any edge or a fully connected interference graph. Therefore, each C-node

is an un-coalesced live range after value separation and C-PC is equivalent to PC. A fully

28

connected interference graph is possible, when all live ranges interfere with each other.

Thus, the C-MWPC problem is NP-complete because the MWPC problem is NP-

complete [Liao 1995; 1996]. �

LEMMA 2: The solution to the C-MWPC problem is no worse than the solution to MWPC.

Proof: Any solution to the MWPC is also a solution to the C-MWPC. But some solutions

to the C-MWPC may not apply to the MWPC (if any coalescing were made). �

3.6 Coalescence-based Offset Assignment for Single-AR

Since the C-MWPC problem is NP-complete, heuristic algorithms must be

applied to seek solutions in a reasonable amount of time. As mentioned in Chapter 2.1,

two types of heuristics can be introduced to achieve different objectives: either to reduce

the cost on the access graph (using OpCost) or to get a smaller memory footprint (using

OpSize).

3.6.1 OpCost, a Heuristic Algorithm to Minimize Cost

Our first heuristic algorithm, OpCost, is separated into 2 parts. First, a set of pre-

iteration coalescence rules are applied to capture cases that are definitely profitable. Then,

in an iterative loop, coalescing is done incrementally. In each iteration, two C-nodes are

selected for coalescing and the base SOA solver (we use Liao’s SOA algorithm [Liao

1995; 1996] with the tie-break rule [Leupers 1996]) is run repeatedly, until no more

coalescing is possible. Finally, the minimal SOA cost is returned together with a node to

C-node mapping and the memory layout assignment. We call this base SOA solver

“BaseSOA” for short.

29

Pre-Iteration Coalescence Rules

The pre-iteration rules are applied before we do iterative coalescing. Applying

these rules will not worsen the SOA cost in all cases. All these rules are with respect to

the access graph (AG). Note that we can coalesce a pair of C-nodes only if the C-nodes

do not have an interference edge between them.

RULE 1: Coalesce all degree-0 C-nodes with any other C-node. Doing so will not affect

the SOA cost.

RULE 2: Coalesce all degree-1 C-nodes with its neighbor. If its C-edge is already on the

C-PC, the SOA cost is not affected, otherwise we reduce the SOA cost by the weight of

this C-edge.

RULE 3: Coalesce all degree-2 C-nodes with the neighbor having a higher weight C-edge

connected to it.

Rule 3 is explained in Figure 10. For C-nodes A, P, and Q, suppose the C-edge

<A,P> is heavier than the C-edge <A,Q>. According to Rule 3, we should coalesce A

with P. Assume there is a C-PC solution without coalescing A with P. Figure 10(a) to

Figure 10(d) show 4 cases of that C-PC for C-edge <A,P> and <A,Q>. In Figure 10(a),

none of the 2 C-edges is a part of C-PC, so the coalescence will reduce the cost of the

SOA solution by Weight(<A,P>). In Figure 10(b), <A,P> is already on the C-PC and the

cost remains unchanged. Similarly, when only <A,Q> is on the C-PC (Figure 6.c), we

improve the SOA solution by Weight(<A,P>). And, if both of them are on the C-PC

(Figure 10(d)), the cost is unchanged. Therefore, in each case, coalescing A with P can

only improve (or cause no change to) the total weight of the C-PC before A and P are

coalesced but will never worsen the solution.

30

(a)

A

P Q

A

P Q

A

P Q

A

P Q

AP Q AP Q AP Q AP Q

(b) (c) (d)

Figure 10. Profitability of Rule 3 Coalescence

Saving Due To Coalescence

After applying pre-iteration rules, we start to iterate. In each step of the iteration,

we pick two C-nodes with maximum calculated saving and coalesce them. The basic idea

is to use the current C-PC offset assignment to estimate savings if the 2 C-nodes were

coalesced. For example, Figure 11(a) shows a C-AG with 8 nodes. The thick line is the

current C-PC of the C-AG. If we coalesce d with g, C-edge <h,d> will now be on the C-

PC, and C-edges <c,d> and <d,e> will be eliminated. C-edge <g,d> is also saved after d

is merged with g. So, the total saving is W(h,d)+W(g,d)-W(d,e)-W(d,c) = 1, where

W(<i,j>) is the weight of a C-edge <i,j>. In other words, the SOA cost is reduced by 1 if

we coalesce d with g. In Figure 11, we illustrate 3 different cases to coalesce J with I.

Figure 11(a) is a general case.

We save:

• The weight of the C-edge between I and J.

• The weight of all C-edges from I’s neighbors (on the path cover) to J, i.e. C-edges

<C,J> and <P,J> if they exist.

We lose:

• The weight of all C-edges from J’s neighbors (on the C-PC) to J, i.e. C-edges <D,J>

and <Q,J> if they exist.

31

h

a

g

f

d

b

c

e

dg

(a)

2

2

2

1

2

3

4

2

4

h

a

f

b

c

e

(b)

5

2

2

1

6

3

3

2

2 2

Figure 11. Cases to Calculate the Savings

Figure 12(b) is a special case where if I and J are already neighbors on the C-PC,

then the weights of both C-edges <I,Q> and <J,P> are saved. In Figure 12(c), I and J have

a common neighbor C. Then, the weight of the C-edge <C,J> is not a loss.

I J

P Q

C

I J

P Q

I,J

P Q

P Q

C

I,J

(a)

I J

P Q

C D

P Q

C D

I,J

(b)

(c)

Figure 12. Coalescence Cases Based on Previous C-PC

Tie-Break for the Same Savings

If two or more pairs of C-nodes have the same coalescence savings, we apply a

tie-break rule. This tie-break rule is similar to the one used in [Leupers 1996] to select

32

edges with the same weight during the construction of path covers. In our case, for each

coalescence candidate {c1, c2}, the tie-break weight T is calculated as:

T = Σ weight (all C-edges joined to c1 and/or c2)

A smaller T has higher priority, as explained in [Leupers 1996]. T reflects the

graph density, and we want a smaller graph density because that would more likely bring

about a better MWPC solution. C-edge <c1,c2> (if it exists) is only counted once. In our

benchmarks, this rule breaks all ties and improves the results slightly.

The Coalescence Algorithm

The whole coalescence algorithm is shown in Figure 13.

Coalesce_OA_Single_AR takes a C-AG and a C-IG as input (here, the original AG and

IG are passed to this function), and returns the minimal SOA cost and a node to C-node

mapping. From the node mapping, we can easily generate the final C-AG, C-IG and C-

PC solution.

Coalesce_OA_Single_AR contains two while loops. The first while loop tries to

coalesce C-node pairs that are neighbors on the C-AG, until the largest calculated saving

is zero, or when no more C-nodes pairs can be coalesced. The second while loop then

exploits all remaining coalesceable C-node pairs, until no coalesceable C-node pairs can

be found. Our coalescence framework works aggressively to reduce the number of C-

nodes. Function Soa_Cost runs BaseSOA to find the SOA cost for the current C-AG.

Notice that, the second loop coalesces even when the calculated saving is not positive.

This is because our savings calculation is only a heuristic formula. After re-running the

SOA solver, we may get a different C-PC, which may have an even lower SOA cost.

33

 Input: C-AG, C-IG
Output:

 a. The minimal soa cost.

 b. A node map from original node to its C-node.

1. Coalesce_OA_Single_AR(C-AG, C-IG) {

2. Apply_Pre_Iteration_Rules();

3. min_soa_cost = Soa_Cost (C-AG);

4. min_node_map = a one to one map

5. do{

6. find two C-nodes satify: a.Do not interfere

 b.Connected on C-AG

 c.With max_saving

7. if(max_saving>0){

8. coalesce C-nodes, update C-AG,C-IG

9. if(Soa_Cost(C-AG)< min_soa_cost)

 record as min_soa_cost, min_node_map.

10. }

11. } while(max_saving>0)

12. while(there are C-nodes we can coalesce){

13. find two C-nodes satisfy: a.Do not interfere

 b.With max_saving

14. coalesce C-nodes, update C-AG,C-IG,

15. if(Soa_Cost(C-AG)< min_soa_cost)

16. record as min_soa_cost, min_node_map.

17. }

18. return min_soa_cost, min_node_map;

19. }

Figure 13. Coalescence-based Offset Assignment for Single-AR

The reason we have two separate while loops is that usually, a lower node degree

density gives a lower SOA cost; thus, coalescing neighboring C-node pairs will less

likely increase the node degree density. In this manner, we try to drive coalescence via a

limited graph topology property i.e. the node degree; more complicated solutions are

possible but may not yield much benefit due to the complexity of the problem.

SOA Cost Fluctuation During Algorithm Execution

To illustrate how SOA cost fluctuates during the two while loops, we show the

SOA cost vs. iteration steps in Figure 14. Data in the figure are collected from one of the

procedures called “findcost” in benchmark Twolf. In our experience, the SOA cost

progression is very random and fluctuates greatly. This figure only gives its trend roughly.

34

It takes 90 coalescences for procedure ‘findcost’ to finish the two while loops. The thick

vertical line at iteration 31 marks the end of the first whole loop and the start of the

second while loop. ‘findcost’ has a starting SOA cost of 144, and a minimum SOA cost

of 115 achieved at iteration 44. Therefore, the minimum SOA cost is achieved during the

early part of the second while loop, which is commonly observed in most procedures.

115

120

125

130

135

140

145

150

155

160

0 10 20 30 40 50 60 70 80 90 100

S
O

A
 c

o
s

t

1st while loop 2nd while loop

Figure 14. SOA Cost Fluctuation Along with Iterations for Twolf Procedure ‘findcost’

Note that the final SOA cost achieved might not be the lowest SOA cost ever

achieved by the algorithm. If we want to place emphasis on optimizing for code size

rather than stack size, we can remember the information for the case when the lowest

SOA cost was ever achieved, and then revert to that solution at the end of all coalescing.

3.6.2 OpSize, a Heuristic Algorithm to Minimize Size

The second heuristic algorithm attempts to minimize the number of C-nodes so

the program will have a small memory footprint at runtime. The heuristic consists of two

distinct phases. The first phase is minimal coloring of the IG. Nodes with the same color

35

are coalesced on both the AG and the IG. The following lemma says minimal coloring of

the IG is equivalent to achieving minimal number of C-nodes after coalescence.

LEMMA 3: The minimal number of C-nodes after node coalescence is equal to the

minimal number of colors required to color the IG. Furthermore, a coloring scheme of

the IG is equivalent to a legal C-node formation.

Proof: A coloring scheme of the IG can be directly applied to a C-node formation by

assigning nodes with the same color in the IG to the same C-node. The number of C-

nodes is the number of colors for the IG. Similarly, a C-node formation can be directed to

a coloring scheme by coloring the nodes in the same C-node with the same color and

nodes in different C-nodes with different colors. Since nodes in the same C-node do not

interfere with each other, i.e. no edge exists between them on the IG. Therefore, the two

problems are equivalent and minimal coloring is the same as minimal number of C-nodes

we can get. �

We use a simple coloring algorithm similar to the one used for the Chaitin style

register allocation [Chaitin 1981; Chaitin 1982]. When removing nodes from the IG and

pushing them onto the coloring stack, we always remove the one with lowest degree first.

Since coloring is performed on the IG, nodes with the same color are guaranteed to be

coalesceable. After the coloring phases, an SOA solver (no coalescence) is applied on the

resulting C-AG and C-IG to assign offsets for coalesced nodes.

Aggressive coalescing might possibly lead to higher SOA costs. However, our

experiments show the OpSize heuristic still performs better than the baseline SOA solver

36

without variable coalescence. Compared with OpCost, OpSize is less effective in

lowering the SOA cost but achieves greater stack size reduction.

3.7 Coalescence-based Offset Assignment for Multiple-AR

The Multiple-AR model allows more than one AR to utilize the auto-modify

mode. With the trend in embedded processor design to increase the number of ARs,

multiple-AR model is playing a more and more important role in optimizing compilers to

generate efficient code. In Motorola DSP56300, the AR is the general purpose register,

and one of the 8 ARs is used as stack pointer. The other 7 ARs can be allocated for other

purposes to hold variables. If one could solve the problem of address register assignment

with fewer registers, the remaining address registers can be used for other purposes.

Generally, previous work on offset assignment for Multiple-AR (or GOA) [Liao

1995; Leupers 1996] all attempts to separate variables into several group, so that each

group can be served with one AR. Here, we define AR Group as a group of variables that

are allocated to one AR. With variable coalescence, our algorithm not only needs to

partition variables into AR Groups, but also should coalesce them properly.

As Single-AR, Multiple-AR can be optimized towards two objectives. Both

OpCost and OpSize require a heuristic algorithm to coalesce and partition variables into

AR Groups, however as shown in 4.b, OpSize has an additional phase to minimally color

the IG. We will discuss these phases in the following sections.

3.7.1 Coalescence Algorithm for Multiple-AR

Figure 15 shows the algorithm called Coalesce_OA_Multiple_AR. This algorithm

is invoked by both OpCost and OpSize. The only difference is, for OpSize, a graph

37

coloring algorithm first coalesces nodes on the graphs aggressively, and then

Coalesce_OA_Multiple_AR works afterwards if an optimal solution cannot be obtained

immediately.

 Input: AG, IG, K—number of ARs
Output:

 a. The minimal GOA cost.

 b. A mapping from node to its C-node.

 c. A mapping from C-node to AR number.

V: node set, contains all nodes initially

G1,G2,…Gk: AR Groups, i.e. a set of C-nodes

1. Coalesce_OA_Multiple_AR(AG, IG, K) {

2. G1=G2=..=Gk=Φ;

3. //add each node to an AR Group

4. while(V is not empty){

5. mini_set=Φ; min_cost=MAX_INT;

6. //build mini_set

7. foreach node v in V{

8. cost=minimal add-on cost to put in one of

9. the Gi by running Coalese_OA_Single_AR on Gi.

10. if(cost == min_cost){

11. add (v,i) to mini_set;

12. }else if(cost<min_cost){

13. mini_set={(v,i)}; min_cost=cost;

14. }

15. }

16. //tiebreak

17. foreach pair (v,i) in mini_set{

18. w1(v)=sum(weight<u,v> on AG) u � G1�G2..�Gk-Gi

19. w2(v)=number of v’s neighbors on the IG

20. }

21. keep only pairs with maximal w1 in mini_set(tie break on w1)

22. if(|mini_set|>1)

23. keep only pairs with smallest w2 in mini_set(tie break on w2)

24. if(|mini_set|>1)

25. still have tie, pick one randomly.

26.

27. for selected pair(v,i) add v to Gi

28. remove v from AG and IG

29. }

30. run Coalese_OA_Single_AR on all Gi

31. return 1)the GOA cost as the sum of all SOA costs

32. 2)mapping from node�C-node, C-node�AR number
33. }

Figure 15. Coalescence Algorithm for Multiple-AR

Initially, the algorithms stores all nodes in set V and all AR Groups G1,G2…Gk

are empty. In the while loop from line 4 to line 29, during each iteration, one node in V is

assigned to an AR Group. The while loop has two main parts. The first part builds up the

mini_set. It attempts to put each node to each AR Group and calculate the extra cost that

38

will be incurred by calling Coalesce_OA_Single_AR (Figure 13) on that AR Group. We

should find a (v, i) pair so that assigning node v to AR Group Gi incurs minimal add-on

cost, however it may happen that several pairs have the same minimal add-on cost. If so,

there will be multiple entries in mini_set and the second part picks one entry through a 3-

step tie-break scheme.

The tie-break scheme we use shares some features with the tie-break GOA

algorithm in [Leupers 1996]. We calculate two values for tie-break. Value w1 is

calculated for each entry in mini_set. If v is selected for Gi, we sum all the edges on the

AG from v to a node that is in G1∩G2.. ∩Gk - Gi. Since, the edge from v to any node in

AR Groups other than Gi are eliminated as we illustrated in the motivation example, we

prefer a larger w1. If this still cannot break all ties, we try another value w2. w2 is

calculated for each node v as the number of neighbors that are still on the IG. Larger w2

means more interference with the nodes that have not been added to one of the ARs. We

prefer a smaller w2, which means more nodes on the IG later can be coalesced with v. If

both tie-breaks fail, we just randomly pick one from the remaining entries in mini_set.

Our experiments show this rarely happens. Finally, the algorithm calls

Coalesce_OA_Single_AR (Figure 13) for each AR Group. It returns a node to C-node

mapping and a C-node to AR Group number mapping.

3.7.2 OpSize Algorithm for Multiple-AR

Since aggressive variable coalescence can greatly reduce the number of C-nodes

on the graph, with multiple ARs, in many cases, we can actually get the optimal solution.

The following lemmas specify when the optimal solution can be achieved.

39

LEMMA 4: If there are only two C-nodes on the C-AG, then the SOA cost is optimal.

Proof: Since there is only one C-edge on the C-AG, so this C-edge must be on the C-

MWPC. Hence, the SOA cost is 0. �

LEMMA 5: If there are K address registers available for use and the number of C-nodes

is no more than 2K, we can get the optimal solution, i.e. GOA cost=0 by assigning no

more than two C-nodes to each address register.

Proof: Following the Lemma, the SOA problem for each address register is optimal—

zero SOA cost. The GOA cost is equal to the sum of the SOA cost for all address

registers, so the GOA cost is also 0. Therefore, the solution is optimal. �

As we know, the IG constrains the nodes from being coalesced (AG affects the

cost but can be disregarded when minimizing the C-node number). From Lemma 3 and

Lemma 5, we have the following corollary.

COROLLARY 1: If we can color an IG with 2K colors, then there is an optimal

solution, i.e. GOA cost=0 with K address registers.

Notice that, Corollary 1 is only a sufficient condition. Even when the color

number is greater than 2K, we may still get an optimal solution by first aggressively

coalescing the nodes followed by the coalescence algorithm (the

Coalesce_OA_Multiple_AR algorithm in Figure 15) on the resulting C-AG and C-IG.

40

Like Single-AR, we use a simple coloring algorithm similar to the one used for Chaitin

style register allocation.

To quantify the number of times we can get optimal solutions with certain number

of address registers, we did experiments on 10 benchmark programs. All data pertains to

local variables. We count the number of procedures that can be optimally solved in cases

of 1) after IG coloring, and 2) after both coloring and Coalesce_OA_Multiple_AR. This

count gives the final number of optimal solutions. As mentioned earlier, Corollary 1 only

gives a sufficient condition, i.e. even if an AG has more than two nodes, its SOA cost can

still be zero, or the GOA cost can still be zero if the IG is not 2K-colorable. So, the final

number of optimal solutions could be larger than the one obtained from IG coloring.

Table 1. Percentage of Optimal Solutions for Multiple-AR

#AR Epic Gsm G721 Mpeg2d Mpeg2e Bzip2 Gzip Mcf Twolf Vpr Average

2 (color) 84.9 85.56 76.92 82.68 63 52.38 85.15 80 62.94 65.83 73.94

2 (final) 86.8 90 96.15 90.55 77.23 87.18 90.1 93.33 79.19 82.01 87.25

3 (color) 90.57 93.33 96.15 91.34 81 87.2 90.1 93.34 76.1 85.25 88.44

3 (final) 94.34 97.78 100 94.49 88.12 92.31 96.04 100 89.85 94.24 94.72

Table 1 shows the percentage of optimal solutions for different number of address

registers. Rows 2 and 4 are the percentage of optimal solutions given by the number of

colors. For instance, for Epic, with 2 ARs, 84.9% procedures can generate optimal

solutions after coloring. In other words, 84.9% procedures’ IG can be colored by 4 colors.

But with 3 ARs, 90.57% of the procedures are 6-colorable. Row 3 and 5 are the final

number of optimal solutions. The percentage of optimal procedures is increased.

On average, 87.25% of the procedures can finally get optimal solutions with 2

ARs, while 94.72% procedures can finally get optimal solutions with 3 ARs. This means

our solution is very close to the optimum.

41

4. POST-PRE OPTIMIZATION

Post-pre optimization determines whether post- or pre-modify mode should be

used for each memory access instruction (in this chapter, we implicitly restrict “memory

access instructions” to those accessing the variables on the access graph) so as to

minimize the number of LDARs. This optimization comes after offsets are assigned to

variables. According to the offsets, we find out the offset difference between adjacent

memory accesses. Given that attempting all possibilities of post-pre mode and AR

modification insertion can make the problem intractable, our algorithm greatly reduces

the complexity via two techniques. Firstly, we split basic blocks at certain points without

losing the optimality of the problem. Basic Block Splitting leads to smaller optimization

units that can be independently optimized, therefore the problem complexity is

significantly lowered. Secondly, we undertake a branch and bound algorithm to narrow

down the search space.

4.1 Offset Distance

For each memory access instruction, we can mark the offset of each variable

being accessed. “Offset Distance” is the offset difference between two adjacent memory

access instructions. In Figure 16, we show the variable offsets, selected code segment

with only memory accesses, offsets and offset distances. It is easy to observe, if the offset

distance is 1, either the first memory access instruction can post-modify the AR or the

second memory access instruction can pre-modify the AR before its memory access.

42

f

e

d

c

b

a

Variable Offset
Offset

Distance

(1) LD a 0

(2) ST b 1

(3) LD c 2

(4) ST c 2

(5) LD e 4

(6) LD f 5

(7) ST c 2

(8) LD b 1

1

1

0
2

1

3

1

Offset Code

Figure 16. Example for Offset Distance

The addressing mode decision of one memory access instruction can affect its

neighbors in certain circumstances. For example, if the 1
st
 instruction LD a in Figure 16

does not perform post-modify, i.e. post-increment, the 2
nd

 instruction ST b must do pre-

increment to avoid an extra LDAR. However, sometimes the decision on one memory

access instruction does not depend on its neighbor(s). For instance, the 3
rd

 and 4
th

instructions access the same variable c, therefore no post-modify is needed for the 3
rd

instruction and no pre-modify is needed for the 4
th

 instruction. On the other hand, the 3
rd

instruction might use pre-modify depending on the other neighbor, but this is independent

of the addressing mode of the 4
th

 instruction. Similarly, the 4
th

 instruction might use post-

modify, but it is irrelevant to the addressing mode of the 3
rd

 instruction. As another

example, the offset distance between the 6
th

 instruction and the 7
th

 instruction is 3, which

means an LDAR is not avoidable to modify the AR between these two instructions. After

the LDAR is inserted, the addressing mode of instruction 6 becomes independent of that

of instruction 7 due to the same reason as for instructions 3 and 4. In short, we can

summarize the addressing mode relationship between two neighboring instructions as in

Figure 17. Up till now, we have only considered addressing modes for instructions inside

43

one basic block. It becomes more complicated to establish the relationship of addressing

modes at the boundary of basic blocks, like the example in Figure 5, when one basic

block has multiple predecessors and successors, we will discuss such constraints later.

Offset

Distance

1st Instr. 2nd Instr

0 no+ no

Post no 1

no Pre

2 Post Pre

>2* no no

+
This means neither post nor pre mode is required.

*
An AR modification instruction is required.

Figure 17. Addressing Modes between Two Adjacent Memory Access Instructions

4.2 Basic Block Splitting and Canonical Form

Following the identification of offset distance, in this section, we will talk about

how to split basic blocks and transform the CFG to Canonical Form as defined below.

4.2.1 Definition of Canonical Form and Canonical CFG

If a CFG has offset distance equal to 0, 1 or 2 inside all the basic blocks, it is in

canonical form. The CFG is called Canonical CFG.

Canonical form facilitates the formulation of post-pre optimization. Based on the

table in Figure 17, we can easily transform a CFG to its canonical form through basic

block splitting. Each part of the canonical CFG after basic block splitting is called a “sub-

CFG”. Furthermore, basic block splitting can greatly reduce the problem complexity

because we consider each sub-CFG as a single unit of optimization. However, we must

guarantee that basic block splitting transforms the CFG without affecting the optimal

44

solution for post-pre optimization. Our basic block splitting technique involves two steps;

the following lemma says we can split between two memory accesses with offset distance

0 or greater than 2. After this step, all basic blocks only have offset distance 1 or 2. In the

second step, we will further get rid of offset distance 2.

LEMMA 6: Inside one basic block, if two consecutive memory access instructions have

offset distance >2 (in this case, one AR modification is unavoidable), the basic block can

be split between these two instructions. After splitting, the split point becomes the

boundary of the two new basic blocks. Such splitting does not affect the optimal solution

to the post-pre optimization. When the two consecutive memory access instructions are

within the same basic block and the offset distance is 0, then we can split as well.

Proof: Notice that, after splitting, the 1
st
 instruction becomes the last memory access

instruction in its basic block and the basic block has no successor, therefore no post-

modify is necessary. Likewise, the 2
nd

 instruction becomes the first memory access

instruction in that basic block and the basic block has no predecessor, therefore no pre-

modify is needed for it. In the first case, i.e. the offset distance is greater than 2, one and

only one LDAR must be inserted in the optimal solution, and no post-modify is needed

for the 1
st
 instruction, since the LDAR is sufficient to set the AR to point to the next

offset. Also, no pre-modify is necessary for the 2
nd

 instruction. This is also enforced on

the CFG after splitting. In the second case, assume the offset distance is 0 between the

two instructions, the optimal solution should not require post-modify for the 1
st

instruction, nor should the pre-modify for the 2
nd

 instruction be needed. But the

restraining condition is that these two memory access instructions must be on the same

45

basic block. This is because when we have a CFG split or join, the AR offset after

execution of the first instruction might be needed for another instruction on a different

CFG path. By restraining the two instructions to the same basic block, such a case will

not occur, and the 1
st
 instruction will always be followed by the 2

nd
 instruction in

execution order. Thus, after CFG splitting, the optimal solution for the new CFG should

be one less than the original optimal. �

Consider an example given in Figure 18 which illustrates two different CFGs,

each having an instance of offset 0. Figure 18(a) is called a “CFG join” because the

control flow for two basic blocks go into the same basic block, thus “joining” paths. On

the contrary, Figure 18(b) is called a “CFG split”. In Figure 18(a), instruction 1 goes to

instruction 3 with offset 0. Hence, instruction 1 does not need an LDAR to point to

instruction 3. However, we cannot split the CFG between these two points because

instruction 3 may be reached from instruction 2, and if we use a pre-increment mode for

instruction 3 and no auto-modification for instruction 1, we produce an incorrect solution.

The same principle holds for Figure 18(b). We cannot split the CFG because we have to

consider the basic block boundaries carefully.

[1] [0]
[1] [0]

1) offset 4 2) offset 5

3) offset 4 5) offset 4 6) offset 5

4) offset 4

(a) (b)

Figure 18. Requirement for Offset Distance to Split only within a Basic Block

Based on Lemma 6, after step 1, all basic blocks only have offset distances 0, 1 or

2. In the second step, we simply split basic blocks between two memory accesses with

46

offset distance 2. In contrast to the first step, after splitting at offset distance 2, the two

new basic blocks become predecessor and successor. Figure 19 shows an example with

three basic blocks. After step 1, in Figure 19(b), BB1 and BB3 are split, and after step 2--

Figure 19(c), BB2 is split into two basic blocks at the point with offset distance 2. The

two new basic blocks in Figure 19(c) are still connected and become predecessor and

successor. Notice that the offset distance between two basic blocks are not considered

during basic block splitting, but will be considered when we start to solve the canonical

CFG.

memory access instruction

1

3

1

1

1

1

2

1

1

0

1

1

1

1

1

1

2

1

1

1

1

1

2

1

1

1

1

1

1

basic block

1 3 1 3 1 3

(a) (b) (c)

BB 1 BB 2

BB 3

Figure 19. Example for Canonical Form Transformation (a) Original Code (b) After Step

1 (c) After Step 2

After splitting, the resulting CFG is likely to be disconnected and contain many

small, connected components that can be separately optimized, reducing the problem

complexity. We can split basic blocks, then solve it optimally. To get the solution for the

original CFG, basic blocks are reconnected at the split points and one LDAR is added at

each point with offset distance greater than 2. For the example in Figure 19(c), the CFG

is in canonical form and it now splits into 3 connected components. After solving the

47

canonical CFG optimally, we need to add the cost by one LDAR, since the splitting in

BB1 is at offset distance 3, therefore we should make up for that LDAR.

4.2.2 Solving the Canonical CFG with Branch And Bound

To find an optimal solution to the canonical CFG, we take a branch and bound

algorithm, which prunes the solution space significantly and identifies the optimal within

a short compilation time. This is done by considering each connected component of the

canonical CFG as a standalone block. Recall that a component is determined by the fact

that we might need LDARs at all its boundaries. Within the component itself, the process

of determining which auto-modify mode to use, if needed, is very straightforward and is

only a matter of traversing down the basic block. Therefore, our concern is to determine

whether we are able to save any LDARs along any boundaries of the connected

components.

For a connected component on the canonical CFG with M basic blocks, the search

space is 2
2M

, i.e. we can specify 2M 0-1 integer variables such that each variable

indicates whether a particular AR modification instruction should be inserted. These

variables are defined as follows.

Bi : Can be 0 or 1, indicates if an AR modification instruction should be inserted at the

beginning of basic block i.

Ei : Can be 0 or 1, indicates if an AR modification instruction should be inserted at the

end of basic block i.

48

The algorithm flow graph is shown in Figure 20. The search space SP is

initialized to contain all of the 22M 2M-bit vectors. Every time, one element spe is

selected from SP and checked if it gives a feasible solution. The details about how to

check the feasibility will be discussed later. If spe is not a feasible solution, another

element is picked from SP and checked. Otherwise, the feasible solution can be used to

prune the solution space, i.e. all unchecked vectors with cost no less than spe can be

removed from SP. Here the cost of a vector in SP is the number of bit 1’s in the vector,

because each bit 1 means an AR modification instruction is inserted at a particular

location. Finally, the solution with minimal cost is output.

 Initialize search space SP:
SP={(B1,E1,B2,E2,…BM,EM)| Bi, Ei � {0,1} }
M: number of basic blocks

Is spe a feasible
solution ?

Y
*

N

Pick and remove one
element spe from SP

Prune SP, remove
elements with cost
� spe.

SP is empty?

N

Y

Output the solution
with minimal cost

Figure 20. Flow Graph for Solving the Canonical CFG

4.2.3 Checking the Feasibility

To check the feasibility of a solution vector spe, we need to verify if all memory

access instructions are satisfied, which means the AR should contain the required address

value before reaching a memory access instruction. It either points to the variable being

49

accessed or can be pre-incremented or pre-decremented to point to that variable. First we

give three definitions.

EOi : An integer value, which is the ending offset of basic block i. This is the value in the

AR when execution leaves the end of a basic block.

BVOi : An integer value, which is the variable offset of the first memory access

instruction in basic block i.

EVOi : An integer value, which is the variable offset of the last memory access

instruction in basic block i.

Notice that, a solution vector specifies all Bi and Ei (i ∈ {1,…M}) values. Also,

BVOi and EVOi (i ∈ {1,…M}) are constants for a canonical CFG. The feasibility

checking involves finding out if the EO values can be obtained with respect to the

following restrictions.

RESTRICTION 1. If Bi=0, for basic block i’s predecessors p1, p2…pk, we have

EOp1=EOp2= EOpk=BOi, where BOi ∈ { BVOi-1, BVOi , BVOi+1}.

RESTRICTION 2. If Ei=0, EOi ∈ { EVOi-1, EVOi, EVOi+1}.

RESTRICTION 3. If Bi=Ei=0, |EOi -EVOi|+|BOi-BVOi|≤1 (here BOi is defined in

Restriction 1 when Bi=0).

Restriction 1 is true, since all predecessors should come to basic block i with the

same value in the AR if the AR is not changed at the beginning of basic block i, i.e. Bi=0.

50

Also, the position pointed to by the AR should be at most 1 slot away from the first

memory access instruction’s offset, i.e. BVOi so pre-modify can handle it. In this case, we

define BOi as the value in AR. Restriction 2 is simply correct, when no AR modification

is performed at the end of basic block i, the value in AR when leaving the basic block

should be one of {EVOi-1, EVOi, EVOi+1}. Finally, Restriction 3 says either the first

memory access instruction does pre-modify or the last memory access instruction does

post-modify or none of them, but not both. This restriction is illustrated in Figure 21(a). If

the first memory access needs pre-modify, the last memory access must be inhibited from

post-modify to avoid an extra AR modification instruction. Similarly, if the last memory

access does post-modify, then the first one cannot use a pre-modify addressing mode.

memory access instruction Post or pre modification

AR modification instruction
instruction BB 1

BB 4 BB 5

(b) (a)

BB 2 BB 3

BB 6 BB 7

EVO1=6

EVO2=4

EVO3=3

BVO4=8

BVO5=7

BVO6=2

BVO7=7

E1=0

E2=1

E3=0

B4=0

B5=0

B6=1

B7=0

6

8 7

4

2

3

7

Figure 21. Illustrations for Feasibility Checking

As an example, Figure 21(b) shows one of the connected components on a

canonical CFG with 7 basic blocks. We list all needed BVO and EVO values on the right

(also marked on the CFG). We need to check, as specified by the spe vector, if the

insertion scheme, i.e. to insert at the end of BB2 and the start of BB6 leads to a feasible

solution. In our algorithm, we first group EO values that are equal based on Restriction 1.

51

Notice that we can build a transitive closure through the predecessor/successor

relationship. In the example, by Restriction 1, EO1=BO4 and EO1=EO2=BO5.

Transitively, EO1=EO2=BO4=BO5. Meanwhile, B6=1, therefore Restriction 1 cannot be

applied to BO6, the two edges coming into BB6 can be removed. In other words, the AR

modification instruction at the beginning of BB6 blocks both EO2 and EO3. Upon this

point, {EO1, EO2, BO4, BO5 } form a group and {EO3, BO7 } form another group, which

means variables in the same group are equal. Next, we check the value range for each

group. With Restriction 1, 7≤BO4≤9, 6≤BO5≤8. With Restriction 2, 5≤EO1≤7. Thus, this

group can take value 7, which is the intersection of the three ranges. Similarly, the second

group has two value ranges, i.e. 6≤BO7≤8, 2≤EO3≤4. However, these two ranges have no

overlapping. Eventually, our feasibility checking concludes that this insertion scheme is

infeasible.

52

5. FURTHER OPTIMIZATIONS

5.1 Inter-Basic-Block Offset Assignment

We can consider the basic block as the basic unit of offset assignment because a

basic block gives a static access sequence that does not depend on execution. In existing

literature, offset assignment is usually considered only on the basic block level. Very

little, if any, was mentioned about a realistic offset assignment for an entire control flow

graph (CFG).

It is useful to consider the entire CFG when determining offset assignments and

addressing modes. This is because the stack variables must have the same stack location

throughout the entire CFG, among each of the different basic blocks. When we consider

offset assignment only within basic blocks, we cannot capture the actual effect of offset

assignment in the CFG. Also, the basic block boundaries denote a joining of access

sequences, and they should be considered as well. The consequence of not considering

offset assignments across basic blocks is that every basic block that contains a stack

memory access will need at least one LDAR, for the first instruction that accesses the

stack. So we need to consider offset assignment at the CFG level.

5.1.1 Algorithm for Inter-Basic-Block Offset Assignment

The input to the algorithm is the CFG, and we need to identify those instructions

that access stack locations. Let N be the number of stack locations accessed in the CFG.

Then we have N choose 2 (N * (N-1) / 2) pairs altogether. We need to know how many

pairs there are because we need to allocate an array for storing the SOA cost of not

53

putting each pair of slots adjacent in memory. Figure 22 gives the pseudocode for this

algorithm.

 1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

function InterBlockOffsetAssign (cfg)

 N = number of stack locations in cfg;

 if (N <= 2) return;

 G = null graph;

 Remove all basic blocks without any loads/stores to form

 the opaque CFG;

 do {

 for (a, b) = each pair of stack locations

 {count(a,b) = 0;}

 for bb = each bb in opaque cfg {

 F = first stack location accessed in bb;

 if (F is not in G or F has less than 2 neighbors in G)

 for pred = each predecessor of bb {

 L = last stack location accessed in pred;

 if (L is not in G or has less than 2 neighbors in G)

 count(F,L) = count(F,L) + 1;

 }

 for (a, b) = each pair of consecutive stack locations in bb

 if (both a and b are each not in G

 or have less than 2 neighbors in G)

 count(a,b) = count(a,b) + 1;

 }// for each bb

 (a, b) = pair with highest count(a,b);

 if (count(a,b) == 0) break;

 if (a is not in G) {add a to G; N--;}

 if (b is not in G) {add b to G; N--;}

 increment weight of edge (a, b) in G;

 } while (N > 0);

 form offset assignment from G;

end function

Figure 22. Algorithm for Inter-Basic-Block Offset Assignment

We first build the opaque CFG, which is the CFG with only basic blocks that that

contain at least one stack access instruction. In offset assignment, there is nothing we

need to do with basic blocks that do not have any stack accesses. We call such basic

blocks “transparent basic blocks”. Then we enter an iteration until we are done. We

traverse through the CFG once in each iteration. For each pair of stack locations, we

count the number of consecutive accesses between them on the CFG. In basic block joins

54

or splits, we count all possible access sequences. For example, if variable A can be

followed by any one of variables B, C and D, we count one for each of (A, B), (A, C) and

(A, D). Then at the end of the iteration, we take the pair with the largest count, and

increase the number of neighbors of the stack locations in the pair by one. Each stack

location cannot have more than two neighbors. And the graph represented by the

neighbors information cannot contain a cycle.

For each basic block, we only cycle through the predecessors but not the

successors because they represent the same set of information. By cycling through either

one of them, we can cover all CFG edges. If we cycle through both of them, we will

double-count all stack accesses that are closest to each basic block boundary.

InterBlockOffsetAssign works on the same basic principle as Liao’s original SOA

algorithm. In that algorithm, Liao builds the access graph, then collects all the edges of

that access graph and sorts them in descending order of weight. InterBlockOffsetAssign

is different in that it does not collect all the edges and their weights in advance because

that information changes dynamically during the algorithm execution. Both

InterBlockOffsetAssign and Liao’s SOA algorithm are greedy. More recent algorithms

such as Incremental-Solve-SOA gives slightly better results than Liao’s SOA algorithm.

However, in practice, Liao’s algorithm is fast and gives a solution close to the optimal

solution, and Incremental-Solve-SOA requires more execution time while improving the

results only slightly. Therefore, InterBlockOffsetAssign also gives a solution close to the

optimal solution while requiring little execution time.

Our algorithm uses a graph G to store temporary data. In practice, we only need a

special simplified graph, which consists of the number of neighbors of a particular node,

55

and the first and second neighbor of a node, if any exists. This is effectively a cycle-free

graph that requires each node to have two or less neighbors. This is the same kind of

graph data structure that we used for Liao’s SOA algorithm. Towards the end of this

work, we evaluate the performance of InterBlockOffsetAssign.

5.2 Offset Registers Optimization

5.2.1 Characteristics of Offset Registers

There are two different modes of using offset registers. The first mode is to apply

an offset without changing the address register. The second mode is to access the address

stored in the address register and then do a post-modify by the value in the offset register.

In the Motorola DSP56300 processor, we can either use the first mode or the second

mode, but not do both at the same time. In the first mode, if we have an instruction

“MOVE (R0+N0), R1”, we set the value of address register R1 to that value stored in the

memory location R0+N0, but R0 does not change. In the second mode, if we have an

instruction “MOVE (R0)+N0, R1”, we set the value of register R1 to that value stored in

the memory location R0, and then set R0 to R0+N0 after the instruction executes. The

first mode uses a modified address, while the second mode modifies the address register.

The DSP56300 processor does not permit both operations to be performed in the same

instruction.

There are three main differences between an address register and an offset register:

1) We cannot address a memory location directly using an offset register. An offset

register must always be used together with an address register within a load or store

instruction.

56

2) An address register can usually be used as a general register but an offset register

cannot be used for anything else except for specifying address offsets.

3) Auto-modify mode cannot be used to modify the value of offset registers, nor can

it be used in the same instruction as an offset register.

Given the characteristics of offset registers, we concluded that the way to use

them is to pre-load them with a certain known value, and then use that value together

with address registers later. This becomes useful when in an access sequence, we are

trying to access two stack locations placed over one word apart, but we cannot use the

auto-modify modes to save an LDAR. If the offset register has a value that happens to

coincide with this particular difference in offset, then we can use the offset register to

save the LDAR. Therefore, our strategy is to pre-load one or more offset registers with

certain fixed, known constant values, and use them throughout the CFG. We do not

simply pre-load the offset register with any small arbitrary value. Rather, we select the

few offset values which can be used the most number of times within the function, based

on the results of offset assignment.

In the Motorola DSP56300 GCC, there are eight offset registers N0 to N7. Some

offset registers were never used by the compiler because the compiler does not

implement this optimization of using offset registers. This means that offset registers

were designed with the goal of providing this class of optimizations by explicitly using

them in a carefully-crafted manner.

5.2.2 Algorithm for Offset Registers Optimization

Figure 23 shows the pseudocode for the algorithm for using offset registers. This

optimization assumes that the program is entirely self-contained, so that a global

57

optimization can be used. This is the same condition for the case when we are doing

global register allocation. The reason for doing this in an inter-procedural basis is so that

we can save on the caller and callee save instructions for saving and restoring the offset

registers across function boundaries. In practice, caller and callee save instructions are

more expensive than LDARs, and so we always use LDARs instead of caller and callee

save instructions.

 1

2

3

4

5

6

7

8

9

10

function UseOffsetRegisters ()

 N <- number of offset registers available for use;

 given the layout assignment, count the number of times each

 offset was required in order to save an LDAR;

 choose the first N most-used offsets, choose any if tie;

 in the function prologue of main(), assign these values to

 the N offset registers;

 modify the code to use these offset values in place of an

 LDAR whenever possible;

end function

Figure 23. Algorithm for Offset Registers Optimization

In order to produce the best results possible, we do offset register usage globally

for an entire self-contained program. As in global register allocation, UseOffsetRegisters

requires the intermediate code of all functions in the program to be available before it can

be used. One should note that the offset may very well be negative when we are trying to

go from a higher memory location to a lower one. The more offset registers we have, the

more LDARs we will be able to save. Later in this work, we discuss on the issues

concerning the implementation of such a scheme and how realistic it is in more recent

DSP processors.

58

6. IMPLEMENTATION DETAILS

This chapter describes the nitty-gritty details of getting the offset assignment

optimizations to work on the target architecture, and the problems encountered. The

lessons presented here could be useful to anyone who desires to implement these

optimizations on a real compiler.

6.1 Implementation Environment

Our environment is the Motorola DSP56300 processor toolset including a cycle-

accurate simulator --sim56300, and a retargeted GNU C compiler [Stallman 2002], which

comes with standard header and library files. Our optimization is implemented at the

RTL level — GCC’s IR, after the “reload pass” of GCC, and before the assembly is

produced, so that we can capture all the temporaries and spill code generated by the

compiler.

6.1.1 Register Set

DSP56300 has a word size of 24 bits. In the Data ALU, it has two 56-bit

accumulator registers, A and B, and two 48-bit input registers, X and Y. In the Address

ALU, it has eight 24-bit address registers, R0 to R7, eight 24-bit address offset registers,

N0 to N7, and eight 24-bit address modifier registers M0 to M7. The address registers are

also used as general-purpose registers. R6 is reserved as the stack pointer. N0 to N7 are

used as code generator temporaries. M0 to M7 are unused. R2 is used as a temporary

register to store the function address in a function call.

59

Among the eight address registers available on Motorola DSP56300, we can

reserve up to four ARs for use in our optimizations. These registers are R3, R0, R4 and

R5. The other registers may be used by the compiler even when they are marked as fixed

registers in GCC. This is because of some irregular assumptions that they use in the code

generator, which does not follow the standard semantics used by the GCC code generator.

6.2 Implementation Details for SOA

We begin by discussing SOA because it is the most fundamental and earliest

optimization available for the auto-modify addressing modes. We have already seen that

SOA is simply the problem of finding a stack layout for variables local to a function. The

first question is: in which phase of the compiler should we perform this optimization?

Due to the fact that SOA requires register allocation to be completed, and before

assembly code to be generated, it has to be placed between register allocation and code

generation. In GCC, this phase is call “reloading”. What does “reloading” mean? We

know that after register allocation, we might have spills, which go into the stack

automatically. We are assuming a coloring-based register allocator similar to Briggs’

allocator, but not exactly, as implemented in GCC. “Reloading” can be classified into

either an “input reload” or an “output reload”. “Input reload” means reloading the values

stored in memory into physical registers. “Output reload” means reloading the values of

physical registers back into memory. The reloading phase ensures that spilled variables

are loaded correctly into registers for execution, and stored back into memory if

necessary. For our purposes, SOA comes right in the middle of the reload phase in GCC.

Specifically, it is done after all spills and stack variables have been determined without

any further changes, and before any real, physical stack offset is given to the virtual

60

registers. Virtual registers placed in stack are represented as a register number in the RTL,

but with a corresponding non-null value in “reg_equiv_mem[REGNO]”, which gives the

pseudo stack offset. This pseudo stack offset is then adjusted by a constant integer value

to give the actual, physical stack offset.

To perform SOA with no coalescing, we follow these steps:

1) At compiler initialization, reserve one AR for use in SOA.

2) Identify all variables suitable for offset assignment.

3) Construct webs.

4) Build access graph.

5) Run SOA algorithm on access graph.

6) Rearrange stack variables physically.

7) Use the reserved AR to access these variables.

6.2.1 Reserving an Address Register

In Step 1, we need to reserve one address register so that the register allocator will

not allocate that register to any variable. Furthermore, we need to make sure that the final

code generator will not use that register also. The first problem is that some registers

cannot be reserved. The Motorola GCC compiler will use these registers even when you

reserve it. The way to reserve an address register is by setting the

“fixed_regs[REGNO]_=_1;”, so that the register allocator will not use it. Then we still

need to set “regs_ever_live[REGNO]_=_1” to make sure that the code generator does not

use it. We found that only four of the eight ARs, R3, R0, R4 and R5, can be reserved

properly, such that if reserved, these ARs will never appear in the generated code unless

we write code to use them.

61

6.2.2 Identifying All Variables Suitable for Offset Assignment

In Step 2, we find out which variables can actually be used for offset assignment.

There are six conditions that a pseudo-variable (exact same thing as virtual register) must

satisfy in order for it to be suitable for offset assignment:

1) The variable must reside in stack in order to be used. This is obvious because we

are trying to arrange the stack layout.

2) The variable must not have any escaping uses. We only used “reload-generated”

stack variables because these variables are generated by the compiler and will never have

an escaping use.

3) The variable must not be an array variable, which may occupy more than one

word in memory. Arrays are not considered as part of the target of SOA optimization.

4) The variable must not be a parameter passed to called functions. We cannot

rearrange such variables because they must always appear in the given order.

5) The variable must occupy exactly one word in size. The DSP56300 processor

only supports auto-modify for an offset distance of one word. Whenever we have multi-

word variables, we can use the offset registers to try to save LDARs.

6) The variable must not overlap with any other variables in the stack. Whenever we

have an overlap, it means either that the variable itself is multi-worded, or that the

variable is a portion of a multi-worded variable. Such variables cannot be used because

they must be placed together with all the other variables that they overlap with.

These conditions are very specific to the compiler we used, but the general idea

should apply that all variables that may violate the correct semantics of offset assignment

cannot be used.

62

6.2.3 Constructing Webs and Access Graph

Constructing webs is a matter of performing liveness analysis, and then breaking

up live ranges into atomic units. Constructing the access graph is a matter of running

through the access sequence of each basic block in the CFG. Both of these are actually

theoretical constructions and did not give any implementation problems.

6.2.4 Running SOA Algorithm on Access Graph

The SOA algorithm is a purely graph-theoretical algorithm that does not require

any code modification during execution. So far, all the data that we gathered in the

previous phases are for the sake of running the SOA algorithm. Therefore, the data

structures were also designed for use in the SOA algorithm. In order to support

coalescing, we had to assume that every node is a coalesced node in order for the same

SOA algorithm to work both with and without coalescing information.

6.2.5 Rearranging Stack Variables Physically

The SOA algorithm produces the layout, which is the solution that we want. In

order to actually use this layout, we need to rearrange all affected stack variables. Earlier

we mentioned “overlapping variables”. For all variables that overlap one another, we say

they belong to the same “overlap set”. Consider Figure 24 which shows the stack offsets

of six variables, A to F. Variables A, B and C are in the same overlap set, because the

overlap one another. Similarly, variables D, E and F are in the same overlap set. All

variables in the same overlap have to be arranged in stack in the same sequence as they

are in the overlap set. The point to note is that although A and B do not overlap each

other, they are still considered as overlapping because C overlaps both of them.

63

A

C

B

D

E

F

Overlap Set 1

A

B

C

Overlap Set 2

D

E

F

1 2 3 4 5 6 7

Figure 24. Illustration of Overlap Sets

When making the rearrangements, we must also take arrays into account. Arrays

occupy a certain number of bytes in stack, and this space must be maintained even when

arrays are moved to a different stack offset.

It was quite a hassle trying to get this part right. When we were trying to modify

the RTL (register transfer language), we cannot modify the “CONST_INT” RTX

(register transfer expression) directly because they might be shared among more than one

RTX. The discovery of the overlap sets and excluding them all from the offset

assignment consideration was also a painful process.

6.2.6 Using the Reserved AR to Access these Variables

The final part of the SOA optimization is to actually use the reserved AR to

account for all the loads and stores of all variables in consideration. As given in [Liao

1995; 1996], we only do it on an intra-basic-block level. We start by running down the

basic block and keeping track of the last memory load/store instruction, if any, the current

base AR on which the offset is based, and the current offset stored in the AR. For

example, if we are trying to use R3 for an address R6+10, then R6 is the base AR for R3

and 10 is the current offset of R3. Hence, if we encounter an “R6+10” expression down

the basic block, we can simply replace it with “R3”. If we see “R6+11”, we use a post-

64

increment for the last load/store, and then replace “R6+11” with R3. If we see “R6+9”,

we use a post-decrement for the last load/store, and then replace “R6+9” with R3. In this

way, we use R3 for all loads and stores of all variables in consideration.

This step is achieved by traversing through the entire RTL and modifying it.

Whenever we see a variable load/store instruction that is considered under offset

assignment, we will use one of the reserved ARs to realize the address of the load/store.

Modifying the RTL automatically affects the final generated code.

In our case, since we are considering stack variables only, the base AR is always

the stack pointer R6.

There are three possible causes of problems here. Assume we are using R3:

1) Whenever the base register is written to with a non-constant value, we mark the

current value of R3 as unknown.

2) Whenever the base register is modified by an auto-modify addressing mode, the

current offset of R3 must be modified in the opposite direction. For example, if we get

“MOVE (R6)+”, which means “R6 <- R6 + 1”, and the current base register of R3 is R6

and the current offset of R3 is 10, then we decrement the current offset of R3, so that it

becomes 9.

3) Whenever we come across a function call when traversing down a basic block, we

mark the current value of R3 as unknown. It does not matter whether R3 is a caller or

callee save because we already know that caller/callee save code is more expensive than

LDARs. This is because a caller/callee save requires at least two instructions, while an

LDAR is only one instruction.

65

Note that this is perhaps the simplest possible scheme of using address registers

for offset-assigned variables. The advanced version of this scheme is the post-pre

optimization, which requires an elaborate analysis at the CFG level.

6.2.7 Conclusion for SOA Implementation

As like most other compiler optimizations, everything has to be perfectly correct

in order for the optimization to work correctly. We cannot miss out any one of the

mentioned details. If we miss out any one little detail, the whole thing will not work

correctly and the compiler will not generate correct code.

One should find that the above-described seven steps are simple enough to

understand and implement, because SOA is the simplest implementation among all the

different optimization techniques discussed in this work. The rest of the techniques are

built upon the work of SOA, and involves several more considerations and major steps.

The lesson is that we have to understand the important points about the bulk of

the compiler code that we did not write, if we were to actually write extensions to the

compiler. If we start writing code and making modifications without knowing the

compiler well enough, then we might run into subtle problems later. These problems

could be fundamental in that we might have to rewrite a large chunk of code later because

the base methodology was faulty (which really happened in our case). Also, we found

that writing code that deals with the CFG usually gives much fewer problems than

writing code that deals with the code generator because the code generator is inherently

far more complex.

66

6.3 Implementation Details for Coalescing

Coalescing is really implemented as an additional step to SOA. In OpCost SOA,

the coalescing and SOA are performed simultaneously. In OpSize SOA, the coalescing is

performed before SOA, and then the coalesced access graph is fed to the standard SOA

algorithm as input. Therefore, the standard SOA algorithm we use should always

consider the nodes as “coalesced nodes” (as mentioned before). This means that we need

a coalescence mapping of old to new variables, which is simply an array of integers

because each variable is represented as an integer.

The steps to perform SOA with coalescing are very similar to those in SOA,

except for the ones marked with an asterisk:

1) At compiler initialization, reserve one AR for use in SOA.

2) Identify all variables suitable for offset assignment.

3) Construct webs.

4) Build interference graph. *

5) Build access graph.

6) Run OpCost or OpSize SOA algorithm on access graph and interference graph.

7) Renumber coalesced virtual registers. *

8) Rearrange stack variables physically. *

9) Use the reserved AR to access these variables.

6.3.1 Building the Interference Graph

In Liao’s SOA, the interference graph is not necessary at all. However, for

coalescing, clearly we have to construct the interference graph so that we know which

nodes we cannot coalesce. Building the interference graph in GCC is not difficult because

67

it was already done in “flow.c”, and we just have to use a slightly modified version of the

liveness analysis code it already has.

6.3.2 Renumbering Coalesced Virtual Registers

To model the coalescing, we map all the coalesced virtual register numbers into

the C-node virtual register number in the RTL. The C-node virtual register number is

always the number of an already existing virtual register. By doing so, we automatically

make them into the same variable, thus coalescing them.

6.3.3 Rearranging Stack Variables Physically

This step is essentially the same as prescribed for SOA, except that now we have

to possibly put several variables into the same stack location. Coalescing is done in the

renumbering step right before this step. Whenever we perform any coalescing, we reduce

the stack size needed. Therefore, the only additional step is to decrease the stack size

accordingly, which is only a matter of subtracting the value of an integer “frame_offset”

in our case.

6.4 Implementation Details for Using Offset Registers

Offset registers are designed mainly to provide for addressing-based

optimizations, and hence they proved really useful in what we are doing. Our compiler

uses N0 to N7 as “code generator temporaries” only [Motorola 2000]. Specifically, this

means that these registers are used to store an immediate offset value that goes beyond

the range of -64 to 63, because address registers, when modified by a constant immediate

value, can only be modified by this range. Address registers cannot be modified by using

68

accumulator registers A and B, nor by x-memory and y-memory input/output registers X

and Y. Therefore, the way to modify an address register by a large offset value is to

assign a register’s value or an immediate constant value to an offset register, and then

modify the address register by the value in the offset register.

6.4.1 Example of Using an Offset Register

For example, say we want to add an address register R3 by 500. In DSP56300,

this requires two instructions. First, we do “MOVE #500, N3”, which is to set the value

of N3 to 500. Then we do “MOVE_(R3)+N3”, which is to post-add R3 by the value of

N3, effectively increasing R3 by 500. N3, used as a code generator temporary, is not live

before and after these two instructions. In immediate representation (RTL), these two

instructions are represented as “SET R3 ← R3 + 500”.

In this way, we can see that the code generator does not need to use all eight

offset registers, since each time the offset register is used, it is only live in two

instructions. In fact, the code generator uses only one offset register, N6. Since any offset

register can be used with any address register, N6 is more or less an arbitrary choice,

mainly because R6 was set aside for a special purpose, so was N6. Thus, we have seven

offset registers available for use.

6.4.2 Methodology for Using Offset Registers

We already explained that caller and callee save instructions are more expensive

than using LDARs themselves, so we will consider that we will not save the value of any

offset registers across function boundaries. In a static context of a whole executable

program being compiled, we assign offset registers globally, initializing their values at

69

the start of function “main” and then using these same values throughout the entire

program.

GCC does not support the framework of global optimizations particularly well

because it compiles one function at a time, from the parsing of the source code to the

emission of assembly code before proceeding to the next function. Any function that is

marked “inline” will be saved and used for inlining when they are encountered, but the

memory for storing all other functions will not be retained after their compilation is

completed. We need the information from all the functions to determine the best offset

register values to use. Therefore, we can save all the RTL generated (by not freeing

memory) and then emit the code only after we obtained all the functions. However, doing

so will require some kind of substantial change to the compiler. Instead, we perform the

offset register optimizations in two passes. In the first pass, we keep track of the number

of LDARs that we can save by having each offset register having a particular constant

integer value. Then between the first and second passes, we can choose the seven offset

values that can save us the most number of LDARs, and then assign these values to the

offset registers in the “main” function prologue. In the second pass, we simply use these

offset registers with these known constant values to save LDARs.

In a real compiler, we can save all intermediate code and do global optimization

last. But in this experimental environment, we are only concerned with the effects of the

optimization, and hence we chose the simpler implementation which also works fine.

6.4.3 Recent Trends in Offset Registers

We understand that the DSP56300 compiler might be peculiar in that it does not

use seven offset registers, which is really a waste of available hardware resources. This is

70

because the compiler does not contain such an optimization as the one we are proposing

in this work. One should expect that in other DSP compilers, there could be a different

number of offset registers and they could be reserved for different uses.

The StarCore architecture is a successor of the Motorola DSP series of processors

that features VLES (variable-length execution set) execution. StarCore has only four

offset registers, while having 16 ARs. Recall that DSP56300 has eight offset registers and

eight address registers. Therefore, we can easily see that Motorola processor designers

feel that ARs are in more demand than offset registers, and we do not need as many offset

registers as ARs. We expect the trend in newer DSP processors to be towards having

more address registers than offset registers. Therefore, optimizations using offset

registers will prove to be a very different problem in more modern DSP processors. We

also expect that the savings that we obtained in DSP56300 due to using offset registers

could be much larger than that in other architectures.

6.5 Implementation Notes for Other Optimizations

In the previous sections, we did not discuss anything about the implementation

details for Post-pre optimization, Inter-basic-block offset assignment, and GOA. This is

because each of these optimizations are just slight variants of the already-discussed

optimizations. For Post-pre optimization, the only additional step we have is to determine

the auto-modify addressing mode to use for each load/store of each offset-assigned

variable. For Inter-basic-block offset assignment, we only need to run a different graph-

theoretic SOA algorithm, except that this algorithm requires the CFG as input. For GOA,

instead of running the SOA directly, we first run them through the GOA set partitioning

algorithm. Therefore, in terms of the implementation intricacies, there is not much we can

71

discuss except for the data structures used, and that is not worthy of discussion in here.

Our focus on all these discussions has been on generating correct code and dealing with

compiler issues, because those issues are much harder to figure out.

6.6 Conclusion for Implementation Details

The main bulk of the work has been in resolving issues that has to do with the

compiler. When implementing our own proposed algorithms, they are relatively fast to

complete because we derive every detailed step of it from scratch. But when dealing with

the compiler, we face many thousands of lines of code that we did not write, and hence

we do not know for sure that we can add code on top of it that runs correctly.

Thus, most of the time is spent in fixing up the compiler issues, and only a little

portion of the time has been spent in actually implementing our own algorithms. In all, it

has been a difficult task just to get the compiled programs to execute correctly with the

optimizations.

72

7. PERFORMANCE EVALUATIONS

7.1 Measuring LDAR Counts

Existing work uses the metric of “SOA cost” to measure the effectiveness of

layout assignment algorithms. In this work, we consider SOA cost as a purely theoretical

number that does not predict the LDAR count accurately. Since our optimization

objective is to minimize the number of LDARs, the LDAR count becomes a natural

metric to use in order for us to know how well our algorithm performed. In our

experimental evaluations, we only consider the LDAR count, but not the SOA cost. The

LDAR count is a realistic measure of the effectiveness of a layout assignment algorithm.

We do encourage any future work in this area of research to present results in LDAR

counts instead of SOA cost because a theoretically good solution might not map to a

realistically good solution.

7.2 Benchmarks Description

A total of 9 benchmarks were used for evaluation. Among them, 4 are from

Mediabench, 4 are from MiBench and 1 from Spec2000Int. These benchmarks represent

a combination of real DSP-related applications, such as adpcm and g721d, and also

practical utility programs such as bzip2 and strsrch. All benchmarks are run up to 2

million cycles. Limiting the execution time is necessary because large benchmarks may

take an unreasonable amount of time to finish execution (months). Many benchmarks

could not be included in our experimental runs because they run inherently complex

algorithms that could not finish in a reasonable amount of time. However, they can be

73

successfully compiled. We use access graphs built using profile information for all results,

i.e. access graphs are based on information gathered in test runs.

Table 2 shows some properties for the benchmarks. The second column is the

code size in bytes. The third column shows the BaseSOA (as mentioned in Chapter 3.6.1,

we use the Tie-break SOA algorithm [Leupers 1996]). We will compare our approaches

with it. Notice that, since we are not able to optimize the library code, all statistics in

Table 2 are for user code only. Our optimization does not affect the assembly code data

section size, and hence we only list the text section size. The LDAR count corresponds to

using one AR without any layout assignment optimization. The rightmost column is the

initial stack slot count before coalescence.

Table 2. Statistics for the Benchmarks

 test suite .text size LDARs # slots

adpcm mediabench 6413 46 12

bmath mibench 11486 28 12

bzip2 spec2000 25512 1521 530

crc32 mibench 6003 30 10

epic mediabench 23569 1297 304

g721d mediabench 10469 397 198

mpeg2d mediabench 34732 1741 735

patricia mibench 12400 181 49

strsrch mibench 7530 132 40

average 15346 597 210

In the following sections, we present the results for stack size, LDAR count, code

size, and execution cycle count for some combinations of optimizations applied. Due to

the high number of combinations we can have with the different algorithms we proposed,

and also the varying number of ARs for each result set, we can only selectively include

certain result sets, but not all of them.

74

7.3 Results for Stack Size Reduction

We first look at how coalescence-based offset assignment performs when only

one AR is considered. Two optimizations i.e. either OpCost or OpSize are compared

together with the original and baseline Tie-break SOA algorithm.

Figure 25 shows the stack size reduction. BaseSOA does not change the stack size,

because no coalescence is engaged. The average stack size reduction is 11.5% and 12.0%

for OpCost and OpSize respectively. GCC generates a large number of temporaries, and

these temporaries have short live ranges, therefore their stack slots can be easily

coalesced with other variables. OpSize is more powerful in reducing the stack size. As

mentioned earlier, the OpSize algorithm first attempts to coalesce the stack slots as much

as possible, then invoke the SOA solver, leading to a smaller footprint on the stack than

OpCost. However the difference is not very significant between OpCost and OpSize,

showing that coalescence also contributes heavily in cutting down the SOA cost.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ad
pc

m

bm
at

h

bz
ip
2

cr
c3

2
ep

ic

g7
21

d

m
pe

g2d

pa
tri
ci
a

st
rs
rc
h

Av
er

ag
e

N
o

rm
a
li
z
e
d

 F
ra

m
e
 S

iz
e

BaseSOA OpCost OpSize

Figure 25. Stack Size Reduction

75

In this work, stack size savings is achieved by using coalescence only. The other

optimizations do not yield any stack size savings. Hence, figures in stack size reduction is

presented only once here. Note that all offset-assignment-irrelevant stack memory such as

arrays cannot be reduced, but are counted with the total stack size figures shown here.

7.4 Results for Single-AR

In SOA, we only use one address register for all memory accesses of offset-

assigned variables. We look at how the optimizations affect the LDAR count, code size

and execution cycles.

7.4.1 Results for Single-AR LDAR Count

In Figure 26, all LDAR counts are normalized to the original ones. The LDAR

count for BaseSOA is usually smaller than that for the unoptimized code for all

benchmarks, however coalescence-based approaches do not improve that by much. This

is mainly because BaseSOA achieves a solution close to the optimal solution, and it is not

easy to go beyond this near-optimal solution even with coalescing or Inter-Block SOA.

Actually we had expected some savings here, but as we mentioned earlier, the savings in

SOA cost does not reflect the savings in LDARs accurately.

On average, BaseSOA and InterBlock SOA reduces the LDAR count by 2.77%,

while OpCost and OpSize both achieve 2.75% reduction.

Applying post-pre optimization with BaseSOA reduces the LDAR count by

15.24%. This high number shows that the often-neglected pre-increment and pre-

decrement addressing modes, when fully utilized, can potentially bring about large

savings. Note that our target environment, DSP56300, only supports pre-decrement, and

76

does not support pre-increment. If we do have pre-increment as well, the savings should

increase by a little.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ad
pc

m

bm
at

h

bz
ip
2

cr
c3

2
ep

ic

g7
21d

m
pe

g2
d

pa
tri

ci
a

st
rs

rc
h

av
er

age

N
o

rm
a

li
z
e

d
 L

D
A

R
 C

o
u

n
t

No SOA BaseSOA OpCost OpSize InterBlock Post-pre OffsetRegs

Figure 26. Results for Single-AR LDAR Count

When we use the offset registers globally with BaseSOA, we reduce the LDAR

count by 19.5% over layout-unoptimized code. We should not be too optimistic about

this figure because we noted earlier that the current trend is to build in less offset registers

because their potential had never been fully realized.

7.4.2 Results for Single-AR Code Size

Figure 27 shows the effects of SOA on code size. The code size reductions are

0.32% for BaseSOA, 0.33% for OpCost, 0.33% for OpSize, 0.32% for InterBlock, 1.80%

for post-pre and 2.27% for using offset registers. Code size savings is generally small.

77

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1.01

adpcm bmath bzip2 crc32 epic g721d mpeg2d patricia strsrch

N
o
rm

a
li
z
e
d
 C

o
d
e
 S

iz
e

.text size BaseSOA OpCost OpSize InterBlock Post-pre OffsetRegs

Figure 27. Results for Single-AR Code Size

7.4.3 Results for Single-AR Execution Cycles

In Figure 28, percentage numbers are pictured for the benchmarks. Reductions are

0.38% for the first four SOA algorithms, 3.30% for post-pre, and 4.10% for using offset

registers. We can thus see that having a good layout arrangement is not adequate for

improving the execution speed. We need to bring in other forms of optimizations in order

to achieve some kind of savings.

Benchmarks bzip2 and epic get higher speedup because less library code are

involved. All library code comes in pre-compiled form and did not go through our

optimizations. Moreover, memory access instructions make up about 1/3 of the

instructions in the generated code. If we had used a register-scarce architecture in our

tests, there would be more spills, thus creating more memory access instructions. Thus, if

more memory instructions can be handled by our algorithm, we will probably gain a

78

bigger cycle reduction. Therefore, our algorithms can be more effective on register-scarce

architectures or memory intensive applications.

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1.02

ad
pc

m

bm
at

h

bz
ip
2

cr
c3

2
ep

ic

g7
21

d

m
pe

g2d

pa
tri

ci
a

st
rs
rc

h

av
er

a
ge

N
o

rm
a
li
z
e
d

 E
x
e
c
u

ti
o

n
 C

y
c
le

s

No SOA BaseSOA OpCost OpSize InterBlock Post-pre OffsetRegs

Figure 28. Results for Single-AR Execution Cycles

7.5 Results for Multiple-AR

With multiple-AR, we expect better performance results, however investing more

ARs is actually not always rewarding, because the optimization space will reach a plateau

once we use a certain number of ARs. Here, we vary the number of ARs to look at the

sensitivity towards several performance metrics. Notice that, the total number of address

registers is fixed. Therefore if more address registers are reserved for auto-modify modes,

less address registers will be available for other purposes like heap accesses.

In Figure 29, we compare the GOA cost along two dimensions. We vary the

number of address registers from 2 to 4 and use the three algorithms BaseSOA, OpCost

and OpSize. Therefore we show 9 bars for each benchmark. For each benchmark, values

79

are normalized to the first bar, i.e. 2-AR base-GOA. The leftmost three bars correspond

to 2AR, the center three to 3AR, and the rightmost three to 4AR. In most cases, we

observe lower cost when we use more ARs.

0.00

0.20

0.40

0.60

0.80

1.00

1.20

adpcm bmath bzip2 crc32 epic g721d mpeg2d patricia strsrch average

N
o
rm

a
li
z
e
d
 L

D
A

R
 C

o
u
n
t

BaseSOA-2 OpCost-2 OpSize-2 BaseSOA-3 OpCost-3 OpSize-3

BaseSOA-4 OpCost-4 OpSize-4

Figure 29. Results for Multiple-AR LDAR Count – 2 to 4 ARs

Code size and execution cycles are not shown here because they bear a close

correspondence to LDAR count. The LDAR count enables us to calculate the generated

code size. Also, because we know how many LDARs we saved, we can roughly estimate

how much speed-up we can obtain in the generated program.

7.6 Results for Overall Performance Comparison

Here, we evaluate the overall performance, including coalescence-based offset

assignment together with post-pre optimization and using offset registers.

80

In order to obtain the strongest optimization combo from the techniques of this

work, we perform the following optimizations in sequence:

1) OpCost SOA

2) Post-pre optimization

3) Use offset registers

0.00

0.20

0.40

0.60

0.80

1.00

1.20

ad
pc

m

bm
at

h

bz
ip
2

cr
c3

2
ep

ic

g7
21

d

m
pe

g2d

pa
tri

ci
a

st
rs

rc
h

av
er

age

N
o

rm
a
li
z
e
d

 L
D

A
R

 C
o

u
n

t

No SOA BaseSOA FullyOptimize

Figure 30. Overall LDAR Comparison between BaseSOA and Full Optimizations

On average, we obtain 2.77% LDAR reduction with BaseSOA, and 36.5% LDAR

reduction with full optimizations turned on. This is quite a significant number. We would

suspect that implementing these same optimizations on other architectures would yield a

lesser percentage reduction because some DSP processors do not have any pre-modify

addressing modes, and some DSP processors have less offset registers.

81

7.7 Compilation Time

Table 3 shows the compilation time of each optimization stage on a 1GHz

Pentium III machine. Here, only Twolf and VPR are listed, because the other benchmarks

usually finish compilation within a small amount of time (less than 2 seconds). Both

Twolf and VPR could not be used as our primary benchmarks because they cannot finish

execution on the simulator within any reasonable amount of time. However, due to their

huge size, they are perfect for use in measuring compilation time.

Table 3. Compilation Time (in seconds)

1 AR 2 AR 3 AR Bench-
mark

Orig.

Base OpCost OpSize Base OpCost OpSize Base OpCost OpSize

PostPre
+ Offset

twolf 7.6 8.0 98.6 15 226 132.6 18.6 237 130.6 18.6 3.7

vpr 3.5 3.52 4.0 3.58 13.5 6.2 4.3 15.5 6.8 4.2 0.9

Column “Orig.” shows the compilation time for the original code, while the

rightmost column stands for the time on post-pre optimization with using offset registers.

We only give the number for single-AR, since this number only varies slightly across

different configurations. The columns in the middle are grouped according to the number

of ARs. For each group, we show the compilation time with BaseSOA, OpCost and

OpSize. For single-AR, BaseSOA is fastest, while for multiple-AR, it takes a long time to

finish. In general, OpSize is much faster than OpCost, because the OpSize algorithms

first do a minimal graph coloring to aggressively coalesce nodes on the graph without

considering the SOA/GOA cost. Stack-based graph coloring [Briggs 1989] finishes

execution quickly. After this step, the resulting access graph and interference graph are

much smaller. Hence later steps for OpSize, although they are quite similar to OpCost,

can be executed in a shorter time period due to reduced problem size. Besides, for

82

Simple-AR the OpCost algorithm involves a loop that calls the SOA solver multiple

times, causing longer compilation time. Finally, after analyzing the compilation process

for Twolf, which is most time-consuming among all benchmarks, we found that actually

the majority of the compilation time is spent on several extraordinarily big procedures,

because OpCost has time complexity O(N
4
), where N is the number of offset-assignment-

relevant variables. Thus, in a typical program with smaller functions, compilation time

will be very fast.

7.8 Access Sequence Lengths

In an attempt to explain the reasons behind the performance figures we obtained,

one of the factors we dug into was the access sequence length. Existing literature on

offset assignment optimizations tend to use some long pseudo access sequence of 10 or

more memory accesses as illustrations. By running the optimization algorithm on those

access sequences, one can often obtain pretty satisfactory results. Here, we would like to

present some numbers of the access sequence lengths in Table 4.

Table 4. Average and Longest Access Sequence Lengths

Benchmark Average Length Longest Length

adpcm 1.23 3

bmath 1.39 3

bzip2 1.88 13

crc32 1.21 2

epic 2.18 23

g721d 1.82 19

mpeg2d 2.08 110

patricia 1.40 5

strsrch 1.54 7

average 1.64 20.56

83

As Table 4 shows, surprisingly, mpeg2d (“d” means decoder) has a longest access

sequence length of 110 consecutive memory accesses of offset-assignment-relevant

variables. In the big picture, we see that the average access sequence of each program is

only 1.64. This means that many access sequences consist of only one memory access,

and cannot be optimized for no matter what kind of layout assignment we have. We have

to use an LDAR to realize that one address needed.

The main reason for such short access sequences is that access sequences are

always broken by function calls and function boundaries. We already explained earlier

that caller and callee save instructions are more expensive than LDARs, both in terms of

code size and execution cycles. Therefore, whenever we come across a function call, we

have to break the access sequence. We do not have a clear-cut solution for lengthening

the access sequences while making the code better. mpeg2d having a long access

sequence implies that it has a very long stretch of code that contains no function calls,

which as we can see is a very unusual way to write programs.

With this information in hand, we are able to explain the limitation of the

effectiveness of our varying SOA algorithms, OpCost, OpSize and InterBlock SOA.

Having short access sequences is the primary reason why most of the offset assignment

algorithms produce roughly the same results even though they are theoretically different.

We cannot expect that an entirely theoretical solution will always yield a practically

feasible solution. Sometimes it might not do so. In this case, we learnt our lesson through

experimentation. We hope that this information can serve to provide an insight to the

reader regarding offset-assignment-based optimizations.

84

8. RELATED WORK AND CONCLUSION

8.1 Related Work

Clearly, our framework incorporates some of the earlier work such as Tie-break

SOA [Leupers 1996]. Also, The SOA solver used in the framework can be replaced with

any existing SOA algorithms proposed in literature, such as the incremental SOA

[Atri_2000], genetic algorithm [Leupers 1998] and those combined ones in

[Leupers_2003]. As [Leupers 2003] pointed out, the performance difference is not very

significant among existing SOA solvers and there are trade-offs between compilation

time and the amount of SOA cost reduction, therefore our framework nicely separates out

the SOA solver for users’ own choosing and makes it very flexible to incorporate new

and better SOA solvers in the future. For GOA, all existing approaches are actually quite

fundamental. Also, due to the large percentage of optimal solutions obtained in this work,

we can reasonably claim we are very close to the limit of this problem, leaving little

space for further improvements.

We notice an independent research work on coalescence-based SOA [Ottoni 2003]

came slightly later than our conference publication [Zhuang 2003]. In their paper, the

coalescence algorithm is more ad hoc in terms of the selection of node pairs to coalesce

and the simplified iteration stage. Actually, similar approaches have been attempted

during our early experiments. Due to the fluctuation of the solution quality, we later

include the iteration stage that can keep track of the best result during the coalescence

process. Moreover, in an effort to reduce the regression of the intermediate solution, we

decide to gradually improve it upon the previous C-PC. As an extended version, this

85

work talks more about GOA and newly includes the post-pre optimization, which has not

been addressed by any of the previous work.

8.2 Conclusion

This work proposes a framework for better utilizing the auto-modify modes on

embedded processors. Our optimization framework includes two enhancements to

existing work, i.e. coalescence-based offset assignment and post-pre optimization. We

have shown the advantages of coalescence over previous approaches to capture more

opportunities to reduce both stack size and SOA/GOA cost. By incorporating seamlessly

with an SOA solver, our framework can work with any SOA solvers, make it more

flexible.

This work represents a shift in approaches that solve offset assignment problem;

the ongoing research is focused on developing new heuristics for solving MWPC and

program reordering which has diminishing returns due to the high density of access

graphs and hardness of the problem in graph-theoretic space. This work demonstrates the

capability of variable coalescence and post-pre optimization to break the performance

bottleneck.

Our results show that the LDAR count can be reduced by up to 19.5% (offset

registers) for Single-AR, which is much more than the LDAR reduction for a baseline

solver with Tie-break SOA. On the other hand, coalescence-based approach can also

shrink the stack size by a reasonable amount. As observed from the OpSize heuristic, the

stack size reduction mounts to 12.0%. This percentage would be larger in a compiler that

does not already reuse stack slots. For Multiple-AR, we pointed out that having too many

address registers might not improve the code, because the access sequence is bounded by

86

function calls, which happen very frequently. Allocating more for auto-modify modes

deprives the processor of registers for other purposes. Compared with the baseline GOA

algorithm, variable coalescence is equally effective for Multiple-AR.

We evaluate add-on optimization stages after coalescence-based offset assignment

and observe up to 36.5% LDAR reduction with both post-pre optimization and offset

registers enabled. The amount of cost reduction is quite stable as indicated by our

experiments with combination to the either the baseline SOA or OpCost algorithm. In

short, performing variable coalescence and other optimizations after offset assignment

like the post-pre optimization gives new opportunity to exploit auto-modify mode on a

wide variety of DSP processors, dramatically improves the solution space of this

important problem and achieves significant enhancements as demonstrated in our results.

We hope that our discussion on using LDAR counts instead of SOA cost have

been refreshing, and our finding on the typical average access sequence length of 1.64

shines some light on the true nature of offset assignment optimizations.

87

REFERENCES

Aho, A. V., Sethi, R. and Ullman, J. D. 1986. Compilers: Principles, Techniques and

Tools. Addison-Wesley, Reading, Mass.

Araujo, G., Sudarsanam, A. and Malik, S. 1996. Instruction set design and optimizations

for address computation in DSP processors. In Proceedings of the 9th International

Symposium on Systems Synthesis, IEEE, 31–37.

Araujo, G., Ottoni, G. and Cintra, M. Global Array Reference Allocation. ACM

TODAES, April 2002.

Atri, S. 1999. Improved code optimization techniques for embedded processors.

Master’s thesis, Department of Electrical and Computer Engineering, Louisiana

State University.

Atri, S., Ramanujam, J. and Kandemir, M. 2000. Improving variable placement for

embedded processors. In Proceedings of the Languages and Compilers for High-

Performance Computing.

Bartley, D. H. 1992. Optimizing stack frame accesses for processors with restricted

addressing modes. Software – Practice and Experience, 22, 2 (Feb.), 101–110.

Bowman, R. L., Ratliff, E. J., and Whalley, D. B. Decreasing Process Memory

Requirements by Overlapping Program Portions. In Proceedings of the Hawaii

International Conference on System Sciences, Jan 1998, vol 7, pg 115-124.

Briggs, P., Cooper, K., Kennedy, K. and Torczon, L. Coloring heuristics for register

allocation. In Proc. of the ACM SIGPLAN 1989 on Conference on Programming

Language Design and Implementation. pp. 275-284. July 1989. (PLDI)

Chaitin, G.J., Auslander, M.A., Chandra, A.K., Cocke, J., Hopkins, M. E. and Markstein,

P.W., 1981. Register allocation via coloring, Computer Languages Vol.6, No.1,

pp.47-57.

Chaitin, G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings

of the SIGPLAN 1982 Symposium on Compiler Construction.

Ganssle, J. G. 1992. The Art of Programming Embedded Systems. Academic Press Inc.,

Reading, San Diego, CA.

Gebotys, C. 1997. DSP address optimization using a minimum cost circulation technique.

In Proceedings of the International Conf. on Computer-Aided Design (ICCAD),

IEEE, 100–103.

88

Kandemir, M., Irwin, M. J., Chen, G. and Ramanujam, J. 2003. Address Register

Assignment for Reducing Code Size. In Proceedings of the Twelfth International

Conference on Compiler Construction (CC'03).

Lee, C., Potkonjak, M. and Mangione-Smith, W. H. 1997. Mediabench: A Tool for

Evaluating and Synthesizing Multimedia and Communications Systems. In

Proceedings of the International Symposium on Microarchitecture.

Leupers, R., Basu, A. and Marwedel, P. 1998. Optimized array index computation in

DSP programs. In Proceedings of the ASP-DAC (Feb.), IEEE.

Leupers, R. and Marwedel, P. 1996. Algorithms for address assignment in DSP code

generation. In Proceedings of the International Conf. on Computer Aided Design

(ICCAD), 109–112.

Leupers, R. and David, F. 1998. A Uniform Optimization Technique for Offset

Assignment Problems, In Proceedings Int’l System Synthesis Symposium (ISSS).

Leupers, R. 2003. Offset Assignment Showdown: Evaluation of DSP Address Code

Optimization Algorithms. In Proceedings of the Twelfth International Conference

on Compiler Construction (CC'03).

Leupers, R. and Araujo, G. Address Code Optimization. http://www.address-code-

optimization.org/

Liao, S. Y., Devadas, S., Keutzer, K., Tjiang, S. and Wang, A. 1995. Storage assignment

to decrease code size. In Proceedings of the ACM SIGPLAN Conf. on Program.

Lang. Design and Implementation (PLDI), 186–195.

Liao, S. Y., Devadas, S., Keutzer, K., Tjiang, S. and Wang, A. 1996. Storage assignment

to decrease code size. ACM Trans. on Program. Language and. Systems. 18, 3

(May), 235–253.

Motorola Inc. Motorola DSP56300 Family Manual, Revision 3.0, Nov. 2000.

Motorola Inc. SC140 DSP Core Reference Manual, Revision 3.0, Nov. 2001.

Motorola Inc. Motorola DSP56300 Family Optimizing C Compiler User’s Manual.

Motorola Inc., User’s Manual.

Muchnick, S. S. 1997. Advanced Compiler Design and Implementation. Morgan

Kaufman, Reading, San Francisco, CA.

Naveen S. and Sanjiv Kumar, G. Optimal Stack Slot Assignment in GCC. GCC

Developers Summit, Ottawa, May 2003.

89

Ottoni, D., Ottoni, G., Araujo, G. and Leupers, R. 2003. Improving Offset Assignment

through Simultaneous Variable Coalescing. In Proceeding of the International

Workshop on Software and Compilers for Embedded Systems (SCOPES).

Ottoni, G., Rigo, S., Araujo, G., Rajagopalan, S. and Malik, S. 2001. Optimal live range

merge for address register allocation in embedded programs. In Proceeding of the

International Conf. on Compiler Construction (CC).

Rao, A. 1998. Compiler optimizations for storage assignment on embedded DSPs. M. S.

Thesis, Dept. of ECECS, Univ. of Cincinnati.

Rao, A. and Pande, S. 1999. Storage assignment optimizations to generate compact and

efficient code on embedded DSPs. In Proceedings of the ACM SIGPLAN Conf. on

Program. Lang. Design and Implementation (PLDI), 128–138.

Stallman, R. 2002. Using the GNU Compiler Collection. Free Software Foundation,

User’s Manual, Boston, Mass.

Stallman, R. 2002. GNU Compiler Collection Internals. Free Software Foundation,

Reference Manual, Boston, Mass.

Sudarsanam, A., Liao, S. and Devadas, S. 1997. Analysis and evaluation of address

arithmetic capabilities in custom DSP architectures. In Proceedings of the

ACM/IEEE Design Automation Conference (DAC), 287–292.

Sudarsanam, A., Malik, S., Tjiang, S. and Liao, S. 1997. Optimization of embedded DSP

programs using post-pass data-flow analysis. In Proceedings of the 1997

International Conf. on Acoustics, Speech, and Signal Processing (ICCAD).

Udayanarayanan, S. and Chakrabarti, C. 2001. Address code generation for digital

signal processors. In Proceedings of the 38th Design Automation Conf. (DAC).

Zhang, Y. and Yang, J., 2003. Procedural level address offset assignment of DSP

applications with loops. In Proceedings of the Int’l Conference on Parallel

Processing. (ICPP).

Zhuang, X., Lau, C. and Pande, S. 2003. Storage assignment optimizations through

variable coalescence for embedded processors. In Proceedings of the ACM

SIGPLAN Conference on Languages, Compilers, and Tools for Embedded Systems.

(LCTES). San Diego, CA. June 2003. pp. 220-231.

