
TOWARDS ELECTRONIC STRUCTURE
CALCULATIONS AT THE EXASCALE

A Thesis
Presented to

The Academic Faculty

by

Phanisri Pradeep Pratapa

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Civil and Environmental Engineering

Georgia Institute of Technology
August 2016

Copyright c© 2016 by Phanisri Pradeep Pratapa

TOWARDS ELECTRONIC STRUCTURE
CALCULATIONS AT THE EXASCALE

Approved by:

Professor Phanish Suryanarayana,
Advisor
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Professor Glaucio H. Paulino
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Professor Edmond Chow
School of Computational Science and
Engineering
Georgia Institute of Technology

Professor Arash Yavari
School of Civil and Environmental
Engineering
Georgia Institute of Technology

Dr. John E. Pask
Physics Division
Lawrence Livermore National Labora-
tory

Date Approved: 7 July 2016

ACKNOWLEDGEMENTS

I sincerely thank my advisor Prof. Phanish Suryanarayana, without whom I would

not have been able to contribute through my doctoral research. Prof. Suryanarayana,

had helped me overcome many obstacles in my work and provided directions that led

to fruitful results. I thank him for providing me an opportunity to pursue doctoral

research and patiently helping me learn advanced technical concepts during the course

of my PhD.

I gratefully acknowledge the funding grants from National Science Foundation and

Lawrence Livermore National Laboratory that supported my graduate study. I thank

Dr. John Pask, Prof. Edmond Chow, Prof. Glaucio Paulino and Prof. Arash Yavari

for serving on my thesis committee. Most of my work has been in collaboration with

Dr. Pask and his guidance and support to our research has been invaluable.

I thank all my friends here at Georgia Tech with whom I had spent many fun

filled and memorable weekends. I thank Prasanth Alapati, Bala Chandra Suri, Janani

Venugopalan, Lakshmi Priya Subramanian, Trilochan Rambhatla, Ajinkya Lokhande

and Qimen Xu (Jim). I thank Swarnava Ghosh, my labmate and friend, for being

helpful and co-operative.

I thank my parents for being supportive of my decision to pursue doctoral studies.

I also thank my sister Seshasree Harika, brother-in-law Kiran Vemu and my nephew

Asrithsai Pradyumna for spending quality time with me. I thank my parents-in-law

for the continuous encouragement, counselling and motivation they have provided

during my study. I thank Sriram Malladi for many friendly conversations and discus-

sions.

Finally, I would like to mention my wife Satya Sarvani, for always being there

iii

with me in the ups and downs of a PhD journey. Given that she has also been a

doctoral student during my PhD, the help and support I received from her is beyond

words.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . viii

LIST OF FIGURES . ix

SUMMARY . xi

I INTRODUCTION . 1

1.1 Motivation . 1

1.2 Organization of the thesis . 2

1.3 Density Functional Theory (DFT) 3

1.4 Bloch’s theorem . 6

1.5 Cubic scaling bottleneck . 7

II LINEAR SCALING DENSITY FUNCTIONAL THEORY 10

2.1 O(N) Density Functional Theory . 10

2.1.1 Density matrix formulation 10

2.1.2 Local formulation for the electrostatics 12

2.1.3 Energy and forces . 14

2.2 Spectral Quadrature . 16

2.3 DFT outline . 18

III ACCELERATION OF FIXED POINT ITERATIONS 20

3.1 Non-linear fixed point iterations . 20

3.2 Linear fixed point iterations . 22

3.3 Proposed methods . 23

3.4 Anderson extrapolation . 23

3.5 Restarted Pulay technique . 25

3.5.1 Results and Discussion . 27

3.6 Alternating Anderson technique . 38

3.6.1 Jacobi method . 38

v

3.6.2 Anderson-Jacobi method . 41

3.6.3 Alternating Anderson-Jacobi method 42

3.6.4 Results and discussion . 45

IV NUMERICAL IMPLEMENTATION 65

4.1 Preliminaries . 65

4.1.1 Domain, discretization and boundary conditions 66

4.1.2 Finite-differences . 66

4.1.3 Integrals and summations . 68

4.1.4 Nodal quantities . 69

4.1.5 Chebyshev interpolation . 70

4.2 Effective potential . 71

4.3 Potential mixing . 72

4.4 Electron density . 73

4.4.1 Matrix free approach . 74

4.5 Energy and forces . 76

4.5.1 Energy . 76

4.5.2 Forces . 79

4.6 Scalability and storage . 81

4.6.1 Computational complexity 81

4.6.2 Processor communications 84

4.6.3 Memory requirements . 85

V RESULTS AND EXAMPLES . 86

5.1 Validation through a model problem 86

5.2 Accuracy and convergence . 91

5.2.1 Lithium hydride . 91

5.2.2 Aluminum . 93

5.3 Efficiency at higher temperatures . 96

5.4 Parallel scaling studies . 99

vi

5.4.1 Strong scaling . 102

5.4.2 Weak scaling . 106

5.5 Comparison with diagonalization . 107

5.6 Molecular dynamics . 108

VI CONCLUSION . 111

6.1 Applications and Scope for future work 112

REFERENCES . 114

vii

LIST OF TABLES

1 Number of SCF iterations taken by the Pulay, s-Pulay and r-Pulay
methods. 37

2 Statistics of the number of SCF iterations required for convergence. . 38

3 Speed-up of AAJ and SRJ methods relative to WJ. 53

4 Nomenclature for the different linear systems arising from the dis-
cretization of the three-dimensional non-periodic and periodic Poisson
equations. 56

5 Computational time in seconds taken by the WJ, AJ, AAJ, and GM-
RES approaches. 58

6 Nomenclature for the different linear systems of equations arising from
periodic Helmholtz equation. 61

7 Time taken in seconds by AAJ and GMRES for linear systems from
Matrix Market. 64

8 Computational complexity of each of the components of the O(N)
Spectral Quadrature DFT method. 83

9 Strong scaling study of 2048 atoms Aluminum system using SQ method.104

10 Comparison of minimum wall time (in seconds) for SQ and ABINIT. 108

11 The average and standard deviation of the total energy, free energy
and kinetic energy at different steps of a 108 Al atom MD simulation. 110

viii

LIST OF FIGURES

1 Comparison of a linear scaling method and a diagonalization based code. 9

2 Outline of the DFT calculation to compute energy and forces using
Spectral Quadrature method. 19

3 Comparison of the convergence of the PJ, sPJ and rPJ methods. . . . 30

4 Comparison of the performance of the PJ and rPJ methods. 32

5 Progression of the error during the SCF iteration for the Pulay, s-Pulay
and r-Pulay methods. 35

6 The Alternating Anderson-Jacobi (AAJ) method. 44

7 Performance of AAJ for different choices of parameters. 48

8 Comparison of the convergence of the WJ, AJ, and AAJ methods. . . 50

9 Speed-up of AJ and AAJ methods relative to WJ. 51

10 Convergence of WJ, AJ, AAJ, and SRJ methods. 53

11 Performance of AJ, AAJ, and GMRES methods for non-periodic and
periodic Poisson equations. 57

12 Performance of AJ, AAJ, and GMRES methods as a function of the
quality of the initial guess. 59

13 Performance of AJ, AAJ, and GMRES methods for the three-dimensional
periodic Helmholtz equation. 62

14 Simulation domains and discretization used for Γ-point and infinite-cell
calculations. 67

15 Convergence of the Γ-point energy to the infinite-cell limit for a 1D
model problem. 87

16 Convergence of energy with respect to quadrature order npl and trun-
cation radius Rcut to the diagonalization result for a 1D model problem. 88

17 Comparison of the convergence of the Clenshaw-Curtis and Gauss SQ
methods to the diagonalization result for a 1D model problem. 90

18 Convergence of energy and forces with respect to quadrature order npl

and truncation radius Rcut to the diagonalization result for lithium
hydride. 92

19 Convergence of energy and forces with respect to mesh size to reference
planewave result for lithium hydride. 94

ix

20 Convergence of energy and forces with respect to quadrature order npl

and truncation radius Rcut to the diagonalization result for aluminum. 95

21 Convergence of energy and forces with respect to mesh size to reference
planewave result for aluminum. 97

22 Dependence of quadrature order npl on temperature T for errors of
∼0.0001 Ha/atom in energy and ∼0.0001 Ha/Bohr in forces. 98

23 Convergence of energy and forces with respect to localization radius
Rcut at various temperatures for Aluminum. 100

24 Parallel scaling study of the Spectral Quadrature O(N) DFT method. 105

x

SUMMARY

Development of new materials needs better understanding of the behavior of

materials at nanoscale which involves accurate simulation of atomic and electronic in-

teractions. Electronic structure is especially important when the atomic interactions

involve breaking or formation of chemical bonds. When such interactions are present,

first principles based ab-initio electronic structure calculations of atoms, which do

not involve any empirical potentials, would be a suitable choice to study the behav-

ior of materials at nanoscale. Such simulations involving many thousands of atoms

are intractable by current software (especially for metals) due to their cubic scaling

with respect to the system size. In this dissertation, the cubic scaling bottleneck is

overcome by developing a linear scaling method amenable to massive parallelization.

A linear scaling Density Functional Theory (DFT) framework has been developed

using Clenshaw-Curtis Spectral Quadrature (SQ) method and implemented on mas-

sively parallel computers to simulate the electronic structure of hundreds of thousands

of atoms. Finite difference representation has been employed in order to exploit the

locality of electronic interactions in real space, enable systematic convergence and

facilitate large-scale parallel implementation. In combination with linear scaling elec-

trostatics, the electron density, energy and atomic forces can be calculated with effort

that scales linearly with the number of atoms for both insulating and metallic sys-

tems. This method allows computation of the Γ-point and infinite-cell calculations

without resorting to Brillouin zone integration or large supercells.

The method is validated and systematic convergence of energy and forces to the

exact diagonalization result is demonstrated. Convergence with respect to mesh size

to established cubic scaling planewave results has also been shown. The efficiency

xi

and suitability of the method for high temperature calculations is also discussed.

Energy and forces for systems with many thousands of atoms have been computed.

The parallel scaling of the method to more than hundred thousand processors has

been studied. The extreme parallelizability demonstrated by the method promises

the potential to make use of the next generation exascale computer architectures for

scientific simulations. In the spirit of massive parallelizability and efficiency, new

extrapolation techniques have been developed to accelerate the convergence of fixed

point iterations. These techniques when applied to basic iterative methods give rise

to efficient solvers for linear systems of equations. Robust and efficient performance of

these methods is demonstrated in acceleration of the non-linear fixed point iteration

that is used to solve the electronic structure problem.

The SQ method enables simulation of very large systems of both metals and

insulators under a unified framework, at high temperatures. It also enables performing

ab-initio molecular dynamics simulations at high temperatures which is impractical

using cubic-scaling codes. This method also provides the basis on which an accurate

simulation of the mechanics of materials at nanoscale can be performed in multi-scale

modeling studies using coarse graining techniques.

xii

CHAPTER I

INTRODUCTION

1.1 Motivation

Modeling of materials and their mechanical behavior is crucial in characterizing and

designing new materials with exotic properties. Defects play a key role in determining

the macroscopic properties of solids [82]. Predictive modeling of materials requires

accurate depiction of defects which involves chemical interactions between atoms.

Although, atomistic modeling techniques that use empirical potentials exist [109, 87],

they do not accurately capture the electronic interactions during bond formation or

bond breaking. Hence first principles based ab-initio electronic structure calculations

of atoms, which do not involve any empirical potentials, would be a suitable choice to

study the behavior of materials at nanoscale. This entails simulating atomic systems

that has much more than thousands of atoms which is intractable by present day

electronic structure software available. The primary reason for this is that most of

the codes scale as O(N3) and/or are not massively parallelizable and can practically

simulate only a few hundreds to thousands of atoms. Here, N refers to the number of

atoms in the system. The goal of this work is to present anO(N) method for electronic

structure calculation and develop a parallel framework that can potentially be run

on exascale computing architectures which will enable the simulation of hundreds of

thousands of atoms. In this work we use Density Functional Theory [49, 54] which is

one of the most widely used ab-initio frameworks for electronic structure calculations.

1

1.2 Organization of the thesis

This dissertation is organized as follows. In this chapter (Ch. 1), we discuss the

background on Density Functional Theory (DFT) using orbital formulation, Bloch’s

theorem and the cubic scaling behavior of the formulation.

In Chapter 2, we discuss the linear scaling DFT and present the Clenshaw-Curtis

spectral quadrature approach to solve the problem. We present the expressions for

energy and forces and present an outline of the entire DFT problem to solve for the

electronic structure of atoms.

In Chapter 3, we present improved extrapolation techniques based on Ander-

son extrapolation which is an acceleration technique for fixed point iterations. We

show that these techniques give rise to efficient linear solvers when applied to Jacobi

iteration. Specifically, we develop the restarted Pulay Jacobi and the Alternating

Anderson Jacobi methods as solvers for linear system of equations.

In Chapter 4, we discuss the numerical and parallel implementation of the O(N)

DFT method. We derive expressions to compute electron density, energy and forces.

We also discuss the scalability of the implementation and memory requirements.

In Chapter 5, we first validate the method through a one-dimensional model prob-

lem and then demonstrate the accuracy and convergence of the method for Kohn-

Sham DFT calculations. We discuss the efficiency of this method for high temper-

ature calculations. We then demonstrate the strong and weak parallel scalability of

the method through large-scale simulations.

The literature review for various topics in this thesis is discussed in the respective

chapters. Finally, we summarize and conclude in in Chapter 6 with discussion on the

scope for future work.

2

1.3 Density Functional Theory (DFT)

Over the course of the past few decades, Density Functional Theory (DFT) of Ho-

henberg, Kohn, and Sham [49, 54] has been widely employed for understanding and

predicting a wide range of materials properties. Indeed, DFT calculations are based

on the first principles of quantum mechanics, which makes them free of any empirical

parameters. DFT involves computing the electron density of a system of atoms by

solving a fixed-point iteration called Self-Consistent Field (SCF) iteration [28, 63]. In

every iteration of SCF we also solve the Poisson’s equation to compute the electro-

static potential [76] from the electrons and the nuclei.

Consider an infinite periodic system of atoms in R3. Let the unit cell of the infinite

periodic system, denoted by Ω, contain N atoms with a total of NΩ valence electrons.

The infinite system is obtained by replicating the Ω domain of atoms over all of R3.

Let R = {R1,R2, . . . ,RN} denote the set of position vectors of all the nuclei with

charges {Z1, Z2, . . . , ZN} respectively. We igonore spin in the following expressions

for clarity. Assuming periodic boundary conditions on the orbitals ψi(x), the energy

of the system can be written as [75, 24, 34, 32]

E(Ψ, g,R) = −
Norb
∑

n=1

gn

∫

Ω

ψ∗
n(x)∇2ψn(x) dx+ Exc(ρ)

+EH(ρ) + Eext(ρ,R) + Ezz(R) +K(Ψ,R) , (1)

where Ψ = {ψ1, ψ2, . . ., ψNorb
} is the vector of orbitals, g = {g1, g2, . . . , gNorb

} is the

vector of orbital occupations, and the electron density

ρ(x) = 2

Norb
∑

n=1

gn|ψn(x)|2. (2)

Here, Norb is the maximum number of states or orbitals required by the system, which

is proportional to the number of atoms N . The first term in Eqn. 1 represents the

kinetic energy of the non-interacting electrons. The second term, Exc(ρ), denotes

the exchange-correlation energy. Variants of this term include the Local Density

3

Approximation (LDA) [54, 79] and the Generalized Gradient Approximation (GGA)

[61, 80]. The next three terms account for the electrostatics:

EH(ρ) =
1

2

∫

Ω

∫

R3

ρ(x)ρ(x′)

|x− x′| dx dx′ , (3)

Eext(ρ,R) =

∫

Ω

ρ(x)Vext(x,R) dx , (4)

Ezz(R) =
1

2

N
∑

I=1

∑

J 6=I

ZIZJ

|RI −RJ |
. (5)

EH(ρ) is known as the Hartree energy and is the classical electrostatic interaction en-

ergy of the electron density, Eext(ρ,R) is the electrostatic interaction energy between

the electron density and nuclear charges, and Ezz(R) is the repulsive energy between

the nuclei. Finally,

Vext(x,R) =
∑

J

V J
loc(x,RJ) , (6)

where V J
loc(x,RJ) denotes the local ionic component of the pseudopotential [83]. In

the above expressions, the summation index J runs over all the atoms in Ω as well as

their periodic images in R
3.

The last term in Eqn. 1 represents the contribution from the non-local components

of the pseudopotential. In this work, we are interested in incorporating the Troullier-

Martins pseudopotential [111] in the Kleinman-Bylander [53] form. In this case,

K(Ψ,R) = 2

Norb
∑

n=1

gn

N
∑

J=1

∑

lm

〈

∆V J
lm

〉

[GJ
n,lm]

2 , (7)

where

GJ
n,lm =

1

〈∆V J
lm〉

∫

R3

uJlm(x,RJ)∆V
J
l (x,RJ)ψn(x) dx , (8)

〈

∆V J
lm

〉

=

∫

R3

uJlm(x,RJ)∆V
J
l (x,RJ)u

J
lm(x,RJ) dx. (9)

In the above expressions

∆V J
l (x,RJ) = V J

l (x,RJ)− V J
loc(x,RJ). (10)

4

V J
l (x,RJ) is the ionic pseudopotential component corresponding to the azimuthal

quantum number l and uJlm(x,RJ) represents the pseudo-wavefunction for the valence

states of interest, all for a single atom. The superscript J is for the atom number and

the subscript m denotes the magnetic quantum number.

At finite temperature [69], the contribution to the free energy resulting from the

Fermi-Dirac distribution of fractional occupations of the orbitals is given by [75, 24]

S(g) = −2σ

Norb
∑

n=1

[gn log gn + (1− gn) log(1− gn)] , (11)

where the smearing σ = kBT , kB being the Boltzmann constant and T the temper-

ature. Finite values of smearing are typically utilized for metallic systems and when

performing finite temperature calculations.

Variational Problem: For a given position of the nuclei R, the electronic ground-

state energy of the system is obtained as the solution to the variational principle

[75, 24]

E0(R) = inf
Ψ,g

{E(Ψ, g,R)− S(g)} (12)

subject to the orthonormal constraint on the orbitals
∫

R3

ψ∗
i (x)ψj(x) dx = δij , i, j = 1, 2, . . . , Norb (13)

and the constraint on the total number of valence electrons

2

Norb
∑

n=1

gn = NΩ. (14)

Nonlinear eigenvalue problem: On taking the first variation in Eqn. 12, the

DFT problem for a fixed position of the nuclei takes the form [75, 66]

Hψn = λnψn , H = −1

2
∇2 + Veff(ρ,R) + Vnl(x,R) , n = 1, 2, . . .Norb

ρ(x) = 2

Norb
∑

n=1

gn|ψn(x)|2 , (15)

gn = g(λn, µ) =
1

1 + exp(λn−µ
σ

)
. (16)

5

The Fermi energy µ in the Fermi-Dirac distribution of Eqn. 16 is determined by

satisfying the constraint of the total number of electrons given by,

NΩ = 2

Norb
∑

n=1

gn.

Further, the effective potential

Veff(ρ,R) = Vxc(ρ) + VH(ρ) + Vext(x,R) , (17)

where

Vxc(ρ) =
δExc(ρ)

δρ
, (18)

VH(ρ) =

∫

R3

ρ(x′)

|x− x′|dx
′. (19)

The nonlocal part of the pseudopotential represents an angular momentum dependent

operator on the orbitals:

Vnl(x,R)ψn(x) =
N
∑

J=1

∑

lm

GJ
n,lmu

J
lm(x,RJ)∆V

J
l (x,RJ) (20)

Above, Vxc(ρ), VH(ρ) and Vext(x,R) are referred to as the exchange-correlation,

Hartree and external potentials respectively. This problem is typically solved by a

fixed point iteration with respect to the electron density, known as the self-consistent

field (SCF) method [66]. In each iteration of the SCF method, the electron density

is calculated by solving for the eigenfunctions ψn corresponding to the lowest Norb

eigenvalues λn, and then using Eqn. 2.

1.4 Bloch’s theorem

The orbital formulation of DFT in the above section corresponds to periodic boundary

conditions on the unit cell Ω which is called a Γ-point calculation. For sufficiently large

Ω (a few hundred to thousand atoms, depending on physical system), these boundary

conditions suffice to obtain the infinite-crystal result, corresponding to repetition

6

of Ω over all space. However, for less complex systems (e.g., elemental solids or

compounds) with fewer atoms in Ω, periodic boundary conditions are not sufficient.

In such cases, the standard approach is to employ Bloch boundary conditions [7],

ψnk(x+ L) = eik.Lψnk(x) (21)

where L is a Bravais lattice vector, k is the wave vector and x ∈ Ω. The desired

infinite-crystal (or infinite-cell) result can be obtained as an integral over the Brillouin

zone [66]. However, this requires a separate Kohn-Sham calculation for each Bloch

wavevector (k-point) in the integration, which can increase cost substantially. For

example, metallic systems with small Ω at high pressure can require thousands of

k-points to converge. The alternative in such a case would be a periodic calculation

on a cell containing thousands of atoms, which for standard diagonalization based

approaches would be prohibitive. Since the computational cost for such methods

increases cubically with the number of atoms but only linearly with the number of

k-points, computation on the small cell with integration over the Brillouin zone is

generally the less costly alternative. It can be noted that for Γ-point calculation,

k = 0 in Eqn. 21 and ψ(x) is periodic.

1.5 Cubic scaling bottleneck

The tremendous popularity of DFT stems from its high accuracy to cost ratio when

compared to other ab-initio theories. However, the solution of the required Kohn-

Sham equations — with Schrödinger type three-dimensional eigenproblem for the

orbitals — is still a formidable task. This has severely limited the range of physi-

cal systems accessible to such rigorous quantum mechanical investigation. In fact,

routine calculations are currently restricted to hundreds of atoms. The bottleneck in

nearly all DFT calculations is the solution of the eigenproblem for the orthonormal

eigenfunctions. Since the required number of eigenfunctions is proportional to the

number of atoms in the system N , the overall computational complexity for DFT

7

simulations is the highly restrictive O(N3) [66, 24]. The need for storage of all the

eigenfunctions means that the memory costs scale as O(N2). Furthermore, the need

for orthogonality among the eigenfunctions results in global communications between

the processors, thereby severely hindering parallel scalability. The need for high per-

formance computing is especially acute in the context of ab initio molecular dynamics

[67, 56], wherein the Kohn-Sham equations must be solved at each time step, thereby

requiring up to tens of thousands of force evaluations. In Fig. 1, we compare the

proposed linear scaling method in this work (which we call SQDFT) and a widely

used diagonalization based code called ABINIT [40]. The calculations correspond to

an Aluminum lattice with electronic smearing of 4 eV and the parameters have been

chosen to be just sufficient to give chemical accuracy in both the codes. The slope

of the line through the points corresponding to SQDFT is one and the slope of the

line corresponding to ABINIT is two. In the limit of larger systems, we expect that

diagonalization costs dominate and the scaling of ABINIT would be close to three.

We note that these results correspond to serial single core calculations and the high

prefactor associated with the scaling of SQDFT method can be efficiently mitigated

through its ability to scale to massively parallel clusters which makes it competitive

even for smaller sized systems. This is validated from the results in Section 5.5.

8

10
0

10
1

10
2

10
3

10
4

10
0

10
2

10
4

10
6

10
8

System size N

T
im

e
(C

P
U

se
co

n
d
s)

ABINIT
SQDFT

Figure 1: Comparison of a linear scaling method (SQDFT proposed in this work)
and a diagonalization based code (ABINIT). The runs were carried out on a single
processor.

9

CHAPTER II

LINEAR SCALING DENSITY FUNCTIONAL THEORY

To overcome the critical O(N3) scaling bottleneck, much work has been done in the

past two decades to develop solution strategies that scale linearly with the num-

ber of atoms, i.e., O(N) (see, e.g., [37, 13] and references therein). These methods

eliminate the computation of the Kohn-Sham orbitals, proceeding instead directly

from Hamiltonian to density and total energy without diagonalization. This can be

achieved through the density matrix (or density operator) formulation discussed in

the following section.

2.1 O(N) Density Functional Theory

Linear scaling behavior is required in the computation of each and every component

of the entire DFT calculation. Electron density and the electrostatics computations

are the key steps that need special treatment to enable linear scaling. These two are

discussed in the following two sub-sections. The first is addressed through the density

matrix formulation and the latter is addressed through a local re-formulation of the

electrostatics and by solving Poisson’s equation.

2.1.1 Density matrix formulation

We discuss the density matrix formulation for the Γ-point problem. Again, we con-

sider the periodic system of atoms in Ω (Sec. 1.3) with R denoting the set of position

vectors of all the nuclei. We ignore spin in the following expressions for clarity. Using

density operator, the system’s free energy can be expressed as [3]

F(D,R) = 2Tr

(

−1

2
∇2D

)

+ Exc(ρ) + 2Tr(VnlD) + Eel(ρ,R)− TS(D) , (22)

10

where Tr(.) denotes the trace, D is the density operator, Vnl is the nonlocal pseu-

dopotential operator [83], T is the electronic temperature, and the electron density is

given by

ρ(x) = 2D(x,x) . (23)

In Eqn. 22, the first term is the kinetic energy of the non-interacting electrons, the

second term is the exchange-correlation energy, the third term corresponds to the

nonlocal pseudopotential energy, and the fourth term is the energy due to the elec-

trostatic interactions between the electrons and the nuclei. The electronic entropy

contribution to the energy is given by the final term with

S(D) = −2kBTr (D logD + (I − D) log(I − D)) , (24)

where kB is the Boltzmann constant, and I is the identity operator. All of the

operators in the above equations are defined on H1(Ω) which is a space of functions

in L2(Ω) that have their first derivatives also in L2(Ω), with Ω subjected to periodic

boundary conditions.

We utilize the Local Density Approximation (LDA) [54] for the exchange-correlation

energy:

Exc(ρ) =

∫

R3

εxc(ρ(x))ρ(x) dx , (25)

where εxc(ρ) is the sum of the exchange and correlation energy per particle of a

uniform electron gas. Using the Kleinman-Bylander form [53] and braket notation,

the nonlocal pseudopotential operator acting on a function is expressed as:

Vnl ψ(x
′

) =
∑

J

VJ
nl ψ(x

′

) =
∑

J

∑

lm

γJl |χJ
lm〉 〈χJ

lm|ψ〉

=
∑

J

∑

lm

γJl χ
J
lm(x

′

)

∫

R3

χJ
lm(x)ψ(x) dx , (26)

where χJ
lm are the projection functions (local in real space) for the J th atom, with l

and m representing the azimuthal and magnetic quantum numbers, respectively. The

summation index J runs over all the N atoms in Ω for Γ-point calculation.

11

The ground-state density operator is the solution to the variational problem [3, 24],

for a given configuration of nuclei,

D∗ =
{

arg inf
D

F(D,R) s.t. 2Tr(D) = NΩ

}

. (27)

where NΩ is the number of electrons in Ω. The Euler-Lagrange equation for the above

problem is a nonlinear fixed-point problem:

D = g(H, µ, σ) =
(

1 + exp

(H− µI
σ

))−1

, (28)

where σ = kBT is the smearing, the Fermi energy µ is the Lagrange multiplier used

to enforce the constraint on number of electrons, I is the Identity operator and the

Hamiltonian

H = −1

2
∇2 + Vxc + VH + Vext + Vnl . (29)

In the above expression, Vxc = δExc/δρ is the exchange-correlation potential, VH and

Vext are the Hartree and external potential given by,

VH(x) =

∫

R3

ρ(x′)

|x− x′|dx
′ , (30)

Vext(x) =
∑

J

V J
loc(x,RJ) . (31)

where V J
loc(x,RJ) denotes the local ionic component of the pseudopotential due to

the ionic cores located at RJ . The summation index J runs over all of the atoms in

R3.

The resulting density matrix has exponential decay in real-space for insulators as

well as metallic systems at finite temperature [36, 10], a key property exploited by

O(N) electronic structure methods. The fixed-point problem of Eqn. 28 is solved

using a self-consistent field (SCF) iteration.

2.1.2 Local formulation for the electrostatics

The electrostatic contribution to the energy Eel in Eqn. 22 is the sum of EH , Eext

and Ezz (given by Eqns. 3, 4 and 5 respectively), involves integrals and summations

12

over all of R3 due to long-range interactions. Hence, their direct evaluation would be

infeasible. Typically the electrostatics computation is carried out by using Ewald’s

summation techniques [29] which involves comptuing Fast Fourier Transforms (FFT).

Although such techniques could compute electrostatics in a near linear scaling fashion,

they are limited by their parallel scalability due to global communications.

In this work, we are interested in computing the electrostatics using a real space

framework that scales as O(N) and is massively parallelizable. We introduce the

electrostatic potential φ(x,R) = VH + Vext as the solution to the Poisson’s equation

[77, 106]

− 1

4π
∇2φ(x,R) = ρ(x) + b(x,R) (32)

where b(x,R) =
∑

J bJ(x,RJ) denotes the total charge density of the nuclei, with

bJ(x,RJ) representing the regularized charge density of the J th nucleus i.e.

bJ(x,RJ) = − 1

4π
∇2V J

loc(x,RJ). (33)

Since V J
loc(x,RJ) replicates the Coulomb potential outside some small core cutoff

radius, bJ(x,RJ) are localized in space and therefore can be calculated in O(N)

time. Thereafter, the electrostatic energy may be rewritten as [105]

Eel(ρ,R) = EH + Eext + Ezz =

∫

Ω

(ρ(x) + b(x,R))φ(x,R) dx

−1

2

∑

J

∫

Ω

bJ (x,RJ)V
J
loc(x,RJ) dx+ Ec(R) .(34)

where φ satisfies Eqn. 32, the second term denotes the self energy of the nuclei and

Ec(R) is the correction [33, 89] to the repulsive energy Ezz which is explained below.

In above equations, the summation index J runs over all of the atoms in R3.

Energy correction Large-scale electronic structure calculations typically employ

the pseudopotential approximation. Even though this is the case, the repulsive energy

is calculated with the nuclei treated as point charges. This distinction is not made

13

by the formulation of electrostatics employed in this work, resulting in disagreement

with conventional methods if the nuclear charge densities overlap. The correction to

the repulsive energy which restores agreement can be expressed as [33, 89]

Ec(R) =
1

2

∫

Ω

(

b̃(x,R) + b(x,R)
)

Vc(x,R) dx+
1

2

∑

J

∫

Ω

bJ(x,RJ)V
J
loc(x,RJ) dx

−1

2

∑

J

∫

Ω

b̃J (x,RJ)ṼJ(x,RJ) dx , (35)

where Vc(x,R) is the solution of the Poisson equation

−1

4π
∇2Vc(x,R) = b̃(x,R)− b(x,R) (36)

subject to periodic boundary conditions. The potential Vc(x,R) so calculated is ac-

curate to within a constant, which can be determined by evaluating
∑

J(V
J
loc(x,RJ)−

ṼJ(x,RJ)) at any point in space. Here, the ‘reference’ charge density b̃(x,R) is the

superposition of non-overlapping spherically symmetric and compactly supported ‘ref-

erence’ charge densities b̃J (x,RJ) = − 1
4π
∇2ṼJ(x,RJ), i.e., b̃(x,R) =

∑

J b̃J (x,RJ).

For the results presented in this work, we have chosen the ‘reference’ potential Ṽ to

be that employed previously in the context of all-electron electrostatics [78].

2.1.3 Energy and forces

Once we solve the self-consistent problem in Eqn. 28 for D∗, the ground-state energy

and atomic forces can be computed [89]. The electronic ground-state free energy can

be written as

F0(R) = 2Tr(D∗H∗) + Exc(ρ
∗) +

1

2

∫

Ω

(b(x,R)− ρ∗(x))φ∗(x,R) dx

−
∫

Ω

Vxc(ρ
∗(x))ρ∗(x) dx− 1

2

∑

J

∫

Ω

bJ (x,RJ)V
J
loc(x,RJ) dx (37)

+Ec(R) + 2σTr (D∗ logD∗ + (I − D∗) log(I − D∗)) ,

where H∗ and φ∗ are as in Eqns. 29 and 32 with ρ = ρ∗. The superscript ‘*’ is used

to denote quantities at the electronic ground state. Thereafter, the force on the I th

14

nucleus may be obtained as

fI = −∂F0(R)

∂RI

=
∑

I′

∫

Ω

∇bI′(x,RI′)(φ
∗(x,R)− V I′

loc(x,RI′)) dx+ f cI − 2Tr

[

D∗ ∂Vnl

∂RI

]

,(38)

where the summation index I ′ runs over the I th atom and its periodic images. In

the above equation, f cI is the correction due to overlapping nuclear charge densities

(f cI ≡ 0 for no overlap) [33, 89], the expression for which is given by

f cI =
1

2

∑

I′

∫

Ω

[

∇b̃I′(x,RI′)
(

Vc(x,R)− ṼI′(x,RI′)
)

+∇bI′(x,RI′)
(

Vc(x,R) + V I′

loc(x,RI′)
)

+∇Vc,I′(x,RI′)
(

b̃(x,R) + b(x,R)
)

+bI′(x,RI′)∇V I′

loc(x,RI′)− b̃I′(x,RI′)∇ṼI′(x,RI′)

]

dx , (39)

where the summation index I ′ runs over the I th atom and its periodic images, and

∇Vc,I′(x,RI′) = ∇ṼI′(x,RI′)−∇V I′

loc(x,RI′). (40)

It is worth noting that the evaluation of the above energy (Eqn. 35) and force cor-

rections are O(N). The nonlocal pseudopotential component of the atomic force as

presented in Eqn. 38 is

fnlI = 2Tr

(

D∗∂Vnl

∂RI

)

. (41)

Expanding the density operator and nonlocal pseudopotential operator:

D∗ =
∑

k

g∗k |ψ∗
k〉 〈ψ∗

k| , (42)

Vnl =
∑

I

∑

lm

γIl |χI
lm〉 〈χI

lm| , (43)

the nonlocal pseudopotential force in Eqn. 41 can be written as

fnlI = 2Tr

(

∑

lm

∑

k

γIl g
∗
k

[

|∂χ
I
lm

∂RI

〉 〈χI
lm|ψ∗

k〉 〈ψ∗
k|+ |χI

lm〉 〈
∂χI

lm

∂RI

|ψ∗
k〉 〈ψ∗

k|
]

)

= 4

(

∑

lm

∑

k

γIl g
∗
k 〈χI

lm|ψ∗
k〉 〈ψ∗

k|
∂χI

lm

∂RI

〉
)

, (44)

15

where ψ∗
k are the ground-state orbitals, and g∗k are the ground-state occupations.

Rather than employ the above expression, we utilize a change of variables technique

[47] to rewrite it as

fnlI = 4

(

∑

lm

∑

k

γIl g
∗
k 〈χI

lm|ψ∗
k〉 〈∇ψ∗

k|χI
lm〉
)

= 4Tr
(

VI
nlD′) , (45)

where

D′ =
∑

k

g∗k |∇ψ∗
k〉 〈ψ∗

k| . (46)

We have found that the nonlocal pseudopotential force expression in Eqn. 45 results in

significantly more accurate forces from a numerical standpoint compared to Eqn. 44.

This is a consequence of the orbitals typically being smoother than the projectors.

2.2 Spectral Quadrature

Mature codes are now available implementing a number of the key linear scaling

ideas [101, 35, 100, 112, 74, 70, 12]. However, despite steady and substantial ad-

vances, significant challenges remain. Accuracy and stability of O(N) approaches

remain ongoing concerns due to the need for additional computational parameters,

subtleties in determining sufficient numbers and/or centers of localized orbitals, and

limitations of underlying basis sets, among others [13]. In real-space representations,

the calculation of accurate atomic forces, as required for structural relaxations and

molecular dynamics, has been a particular concern in O(N) as well as O(N3) scaling

methods [96, 11]. Perhaps most importantly, due to the assumption of a band gap

in the electronic structure, the application of existing methods to metallic systems

remains an open question [13]. Furthermore, due to the complex communications

patterns and load balance issues which arise, particularly in localized orbital formu-

lations, efficient large-scale parallelization poses a significant challenge.

The Spectral Quadrature (SQ) method has been recently proposed for the O(N)

solution of the Kohn-Sham equations [103]. In SQ, the required electronic density, en-

ergy, and atomic forces are expressed as integrals over projected densities of states and

16

related quantities. With the choice of Gauss quadrature for integration, the method

becomes equivalent to the classical recursion method [45, 46], while for Clenshaw-

Curtis quadrature, the Fermi operator expansion (FOE) [38, 39] in Chebyshev poly-

nomials is recovered. Since no assumption is made regarding the presence or absence

of a band gap in the electronic structure, the SQ approach is general and applicable

to metals and insulators alike. The computational cost of SQ is, however, inversely

proportional to temperature, whereby it has a larger prefactor for metallic systems at

lower temperature. Nevertheless, the amenability of SQ to large-scale parallel com-

putation (Sections 4.6, 5.4) stands to mitigate this cost. In this work, we focus on the

Clenshaw-Curtis variant of SQ since the atomic forces can be efficiently calculated

compared to Gauss SQ. Moreover, the need for orthogonalization in Gauss SQ can

limit performance when high orders of quadrature are required due to large spectral

widths of the Hamiltonian.

In this section, we explain the Clenshaw-Curtis SQ method [89] for the case of

infinite-cell calculation in order to convey the idea. In Chapter 4, the method will

be applied to both Γ-point as well as infinite-cell calculations. The objective is to

solve Eqn. 28 in an O(N) fashion. Based on the nearsightedness principle [90], the

electronic interactions only within a distance of say Rcut are sufficient to compute the

quantity of interest at a point in space. This enables development of O(N) electronic

structure methods, where the density matrix for the system over Ω has exponential

decay in real-space for both insulators and metals at finite temperature [36, 10]. So

to compute any quantity of interest at a given point x in Ω, it would suffice to use

operators defined on H1(Ωx) which is a space of functions in L2(Ωx) that have their

first derivatives also in L2(Ωx), where Ωx is a domain around point x ∈ Ω with its

boundary at a distance of Rcut from the point x and is subjected to zero Dirichlet

boundary conditions. In every iteration of SCF, the pointwise density operator Dx

17

for each x ∈ Ω is given by:

Dx = g(Hx, µ, σ) =

(

1 + exp

(Hx − µIx

σ

))−1

, (47)

where µ is calculated such that 2
∫

Ω
D(x,x) dx ≈ 2

∫

Ω
Dx(x,x) dx = NΩ. Here, the

subscript ([]x) indicates that the operators are defined on H1(Ωx), where Ωx (as

defined previously) is a localized domain around the point x ∈ Ω. The electron

density is given by ρ(x) ≈ 2Dx(x,x) for x ∈ Ω.

The pointwise density operator (Dx) is a function of the pointwise Hamiltonian

operatorHx. Solving for electron density involves evaluating the diagonal components

(x,x) of the pointwise density operator for all x ∈ Ω. This can be computed by

using Clenshaw-Curtis SQ method, where we expand any function of the pointwise

Hamiltonian, f(Hx), in the Chebyshev polynomial basis. We shift and scale the

pointwise Hamiltonian operator Hx to Ĥx = (Hx −χxIx)/ζx such that the spectrum

of Ĥx lies in [−1, 1]. Here, χx = (λmax
x + λmin

x)/2 and ζx = (λmax
x − λmin

x)/2, with

λmax
x and λmin

x denoting the maximum and minimum eigenvalues of Hx, respectively.

Now, the Chebyshev expansion of order npl for any function f : [−1, 1] → R can be

expressed as

f(Ĥx) =

npl
∑

j=0

fjTj(Ĥx) , (48)

where Tj denote the Chebyshev polynomials of degree j and the expansion coefficients

can be evaluated for given f(r) as

fj =
2

π

∫ 1

−1

f(r)Tj(r)√
1− r2

dr , j = 0, . . . , npl , (49)

with f0 further scaled by a factor of half.

2.3 DFT outline

The solution to the fixed-point problem (Eqn. 28) in DFT is obtained through a

self-consistent field (SCF) iteration. The outline of the SCF iteration which uses

18

the Spectral Quadrature method to compute electron density, is presented in Fig. 2.

In this procedure, we start off with an initial guess for the electron density of the

system in Ω, from which the electrostatic potential φ(x) can be computed by solving

Poisson’s equation (Eqn. 32). The effective potential Veff = Vxc(ρ) + φ(x) can then

be computed. This gives the updated information for the new Hamiltonian. Using

this, we find the updated electron density from Clenshaw-Curtis Spectral Quadrature

approach and the iteration repeats until convergence. Typically, the SCF convergence

is accelerated using some kind of extrapolation (also called mixing) scheme (Chapter

3). Once the fixed-point iteration converges, energy and forces on the atoms can be

evaluated.

Inputs: Atom coordinates, domain,

pseudopotentials, parameters, tolerances

Electron density ρ(x) Ionic charge density b(x)

Exchange-

correlation Vxc(ρ)

Electrostatic

potential φ(x)
(Poisson’s equation)

Effective potential

Veff = Vxc(ρ) + φ(x)
Non-local pseu-

dopotential Vnl

Acceleration of

fixed-point SCF

H = −
1

2
∇

2 + Veff + Vnl

Spectral Quadrature

Electron density ρ(x)

Energy Etotal

Forces (fx, fy, fz)

Veff

SCF

Veff

Figure 2: Outline of the DFT calculation to compute energy and forces using Spectral
Quadrature method.

19

CHAPTER III

ACCELERATION OF FIXED POINT ITERATIONS

In this chapter, we discuss some acceleration techniques for fixed-point iterations.

We propose two techniques — restarted Pulay and Alternating Anderson — which

have shown efficient performance to accelerate linear as well as non-linear fixed point

iterations. Specifically, we propose the restarted Pulay technique for SCF iteration

and develop the restarted Pulay Jacobi linear solver by applying this technique to the

Jacobi iteration used to solve linear system of equations. We propose the Alternating

Anderson Jacobi linear solver by applying the Alternating Anderson extrapolation

technique to the Jacobi iteration. We adopt the Periodic Pulay method proposed

by [8] for accelerating the SCF. Periodic Pulay method is obtained by applying Al-

ternating Anderson technique to the SCF iteration. We note that in the context of

acceleration of SCF iteration, we use the words ‘extrapolation’, ‘mixing’ and ‘accel-

eration’ interchangeably. In this chapter, we first present some context for non-linear

and linear fixed point iterations. Later, we discuss the extrapolation techniques and

validate and compare their performance through examples.

3.1 Non-linear fixed point iterations

A non-linear fixed-point problem can be expressed as

x = g(x) , (50)

where g : CN×1 → CN×1 represents the fixed-point mapping, with C denoting the set

of all complex numbers. Fixed-point iterations are regularly encountered in a variety

of scientific applications. Of particular interest in this work is the Self-Consistent

Field (SCF) method [64], a standard approach for determining the electronic ground

20

state in ab-initio calculations like Density Functional Theory (DFT) [49, 54]. Since the

computational time taken by electronic structure simulations is directly proportional

to the number of SCF iterations required for convergence, there is great incentive

in accelerating this process as far as possible [28]. Unfortunately, the rudimentary

under-relaxed fixed-point iteration — commonly referred to as linear or simple mixing

— typically converges extremely slowly, if at all. This is particularly true for large

metallic systems at relatively low values of electronic temperature [63].

In view of the above discussion, a number of approaches have been proposed to

accelerate the non-linear SCF fixed-point iteration. These include Pulay’s Direct

Inversion in the Iterative Subspace (DIIS) method [91] and its variants [14, 59], Broy-

den’s quasi-Newton technique [18, 9] and its variations [102, 113, 27, 65], the Relaxed

Constrained Algorithm (RCA) [19, 20], and a variety of preconditioning schemes

[63, 51, 48, 93, 5]. Among these, Pulay’s DIIS mixing scheme — based on the extrap-

olation method of Anderson [4] — has enjoyed considerable popularity and success

due to its relative simplicity and overall performance [58]. Notably, the efficacy of

Anderson’s extrapolation scheme is not restricted to the SCF method alone [55], but

also extends to a variety of other non-linear [30, 117, 33] and linear [4, 88] fixed-point

problems. From a mathematical perspective, Pulay’s technique can be considered

to be a multisecant type method [28] that represents a specific variant of Broyden’s

approach [27].

The DIIS method is occasionally found to stagnate when employed in self-consistent

electronic structure calculations, resulting in unacceptably slow or non-convergence.

In an effort to overcome this, Fang and Saad [28] proposed performing a restart

whenever the ratio between the current and previous iteration’s residual exceeds a

prespecified value. Additionally, some ab-initio codes provide the option of a peri-

odic restart within Pulay mixing [6, 57]. However, these restart techniques introduce

another parameter within the DIIS method, thereby adding further complexity to

21

the mixing scheme. In view of this, we are interested in a parameter-free restart

strategy that not only prevents SCF iterations from stagnating, but also improves

the efficiency and robustness of the DIIS method in general. To this end, we develop

a variant of restarted Pulay for accelerating the convergence of fixed-point iterations.

As an added bonus, the proposed approach is easily implementable within currently

existing electronic structure codes.

3.2 Linear fixed point iterations

In nearly all areas of computational physics, it is common to encounter linear systems

of equations of the form

Ax = b , (51)

A ∈ C
N×N , x ∈ C

N×1 and b ∈ C
N×1 ,

where C is the set of all complex numbers. For small systems, solution strategies

based on direct methods are typically the preferred choice. However, as the size of

the system increases, it becomes necessary to employ iterative approaches in order

to efficiently determine the solution. The basic fixed-point techniques that have

been developed for this purpose include the Richardson, Jacobi, Gauss-Seidel, and

Successive over-relaxation (SOR) methods [98]. However, these approaches suffer

from relatively large prefactors and poor scaling with system size. This makes them

unattractive for solving large systems of equations compared to Krylov subspace

approaches such as the conjugate gradient [99] and Generalized Minimal Residual

(GMRES) [97] methods.

In spite of the aforementioned limitations of basic fixed-point methods, the Jacobi

iteration stands out because of its tremendous simplicity and potential for massive

parallelization. This motivates the development of strategies that are able to sig-

nificantly accelerate the convergence of the Jacobi method, while maintaining its

underlying locality and simplicity to the maximum extent possible. Examples of

22

such approaches include the Chebyshev acceleration technique [98] and the recently

proposed Scheduled Relaxation Jacobi (SRJ) method [118]. However, Chebyshev ac-

celeration requires knowledge of the extremal eigenvalues of the matrix A. Further-

more, the SRJ method as currently formulated is restricted to linear systems arising

from second-order finite-difference discretization of elliptic equations. For such rea-

sons, Krylov subspace techniques remain yet the methods of choice for the solution

of large, sparse linear systems.

In this work, we explore the application of Anderson’s (Pulay’s DIIS) method to

accelerate Jacobi linear fixed point iteration. In the linear setting, the DIIS approach

bears remarkable similarity to the Generalized Minimal Residual (GMRES) method

[97, 95, 114, 85].

3.3 Proposed methods

In the subsequent sections, we first discuss the original Anderson extrapolation (also

called Pulay mixing) technique. We then, present the proposed restarted Pulay

method. We demonstrate its efficiency for linear systems as well as SCF iterations in

Section 3.5. Later, in Section 3.6, we present the Alternating Anderson Jacobi (AAJ)

method proposed for linear systems. We study the performance of AAJ extensively

as we choose to use it in the parallel O(N) DFT implementation due its massively

parallelizable nature. For the same reason, we use the Periodic Pulay method to

accelerate the SCF. Periodic Pulay method is not proposed as a part of this work and

is discussed elsewhere [8].

3.4 Anderson extrapolation

Perhaps the simplest attempt at a solution to Eqn. 50 is an iteration of the form

xk+1 = xk + βfk , (52)

23

where fk = (g(xk) − xk) designates the residual, and β ∈ C signifies the relaxation

parameter. In the context of electronic structure calculations, such an approach

is referred to as linear or simple mixing. Depending on the spectral properties of

the residual’s Jacobian, the above iteration can converge extremely slowly, if at all

[63]. The Anderson/Pulay method [4, 91] attempts to overcome this limitation by

generalizing Eqn. 52 to

xk+1 = x̄k + β f̄k , (53)

where x̄k and f̄k denote the normalized weighted averages of the previous (m + 1)

iterates and residuals, respectively. Specifically,

x̄k = xk −
m
∑

j=1

γj∆xk−m+j , (54)

f̄k = fk −
m
∑

j=1

γj∆fk−m+j , (55)

where ∆xk = (xk−xk−1), ∆fk = (fk−fk−1), and the scalars Γk =

[

γ1 γ2 . . . γm

]T

∈

Cm×1 are chosen so as to minimize the l2-norm of the residual, i.e.,

Γk = argmin
Γk

‖f̄k‖2 . (56)

It can be shown that the optimized Γk satisfy the relation [28]

(

FT
kFk

)

Γk = FT
k fk , (57)

where the residual history

Fk =

[

∆fk−m+1, ∆fk−m+2, . . . , ∆fk

]

∈ C
N×m . (58)

Thereafter, the update formula in Eqn. 53 takes the form

xk+1 = xk + βfk − (Xk + βFk)(F
T
kFk)

−1FT
k fk , (59)

where the iterate history

Xk =

[

∆xk−m+1, ∆xk−m+2, . . . , ∆xk

]

∈ C
N×m . (60)

24

In the above representations of Xk and Fk, a zero or negative subscript indicates a

null vector. Altogether, the parameters within Pulay’s approach are the relaxation

parameter β and the mixing history size (m+ 1).

3.5 Restarted Pulay technique

The DIIS method described above utilizes the previous (m+ 1) iterates for extrapo-

lation after the starting (m + 1) iterations. Interestingly, while studying the perfor-

mance of Anderson’s extrapolation in the linear setting [88], we have discovered that

introducing a specific type of periodic restart within the DIIS method significantly

improves its performance [86]. In Algorithm 1, we outline the resulting restarted

Pulay mixing variant, which we refer to as the r-Pulay method. In this technique,

all but the last columns of Xk and Fk are cleared every (m + 1) iterations. This

relatively subtle modification not only significantly improves the overall efficiency of

Pulay’s DIIS method, but also makes it noticeably more robust, as demonstrated by

the examples that are discussed later. It is worth noting that since the restart fre-

quency coincides with the mixing history size, r-Pulay does not have any parameters

apart from those already existing in Pulay mixing.

25

Algorithm 1: Restarted Pulay (r-Pulay) method

Input: x0, β, m, tol, X0 = [] and F0 = []

repeatk = 0, 1, 2 . . .

fk = g(xk)− xk

if k > 0 then

if k/(m+ 1) ∈ N then

Xk = [∆xk], Fk = [∆fk]

else

Xk =

[

Xk−1, ∆xk

]

, Fk =

[

Fk−1, ∆fk

]

xk+1 = xk + βfk − (Xk + βFk)(F
T
kFk)

−1FT
k fk

else

xk+1 = xk + βfk

until ‖fk‖ < tol;

Output: xk

In addition to this work, there have been a few previous efforts directed at in-

corporating restarts within the Pulay mixing scheme. Specifically, Fang and Saad

[28] proposed setting Xk = [] and Fk = [] whenever ‖fk‖ < rp‖fk+1‖, rp being the

restart parameter. Additionally, some ab-initio codes like SIESTA [6] and PARSEC

[57] provide the option of restarting the DIIS method at periodic intervals so as to

overcome stagnating SCF iterations. In particular, the restart in SIESTA involves set-

ting Xk = [] and Fk = [], and performing a linear mixing update in the subsequent

iteration. However, unlike r-Pulay, the aforementioned restart strategies introduce

an additional parameter into the DIIS method. Moreover, they do not retain the

latest columns of Xk and Fk, a feature found to have a significant impact on the

performance.

26

3.5.1 Results and Discussion

We now verify the efficacy and accuracy of the proposed r-Pulay mixing scheme

through selected examples. In sub-section 3.5.1.1, we test r-Pulay’s ability to accel-

erate the classical Jacobi fixed-point iteration for the solution of large, sparse linear

systems of equations arising in electronic structure simulations. Next, in sub-section

3.5.1.2, we study the effectiveness of r-Pulay in speeding-up the Self Consistent Field

(SCF) method for Density Functional Theory (DFT) calculations. We perform all

computations on a workstation with the following configuration: Intel Xeon Proces-

sor E3-1220 v3 (Quad Core, 3.10GHz Turbo, 8MB), 16GB (2x8GB) 1600MHz DDR3

ECC UDIMM.

3.5.1.1 Linear systems of equations: Accelerating the Jacobi iteration

Consider the following non-periodic Poisson and complex-valued periodic Helmholtz

equations arising in real-space DFT [77, 106, 104, 78] and orbital-free DFT [71, 107,

33] simulations:

Ex1: − 1

4π
∇2V (r) = ρ(r) + b(r) in Ω,

{

V (r) = 0, r ∈ ∂Ω , (61)

Ex2: − 1

4π
∇2V (r) +QV (r) = P ρα(r) in Ω,

V (r) = V (r+ Lêi), r ∈ ∂Ω ,

êi · ∇V (r) = êi · ∇V (r+ Lêi),

r ∈ ∂Ω ,

(62)

where Ω ∈ R3 is a cubical domain of side L with boundary ∂Ω and unit vectors êi

aligned along the edges. The fields ρ(r) and b(r) denote the electron and nuclear

charge densities respectively, obtained by the superposition of the corresponding iso-

lated atom quantities [107, 105]. The constants α = 5
6
+

√
5
6
, P = 0.0296 + i 0.0217

and Q = −0.1284− i 0.1269.

We discretize the aforementioned partial differential equations using sixth-order

27

accurate finite-differences. Specifically, we employ a mesh-size of h = 0.5 Bohr for the

Poisson problem, with ρ(r) and b(r) corresponding to the Si5H12, Si17H36, Si35H36,

Si87H76, Si275H172 and Si525H276 clusters. For the Helmholtz problem, we utilize

nd = 45, 60, 75, 90, 120, and 140 finite-difference nodes in each direction, with ρ(r)

corresponding to a system consisting of a vacancy in 3×3×3 unit cells of Aluminum

with lattice constant of 7.65 Bohr. The resulting linear systems of equations can be

compactly written as

Ax = b ; A ∈ C
N×N ,x ∈ C

N×1 and b ∈ C
N×1 , (63)

whereA is a sparse matrix that is symmetric positive-definite for the Poisson problem,

and complex-symmetric for the Helmholtz problem. We solve these linear systems in

the framework of the classical Jacobi iteration [98] (see sub-section 3.6.1), wherein

the fixed-point mapping

g(x) = D−1(b−Rx) , (64)

withD andR containing the diagonal and off-diagonal components ofA, respectively.

We pick a vector of all ones as the starting guess x0, and set tol = 1 × 10−8 as the

tolerance for convergence of the relative residual defined as

rk =
‖Axk − b‖

‖b‖ =
‖fk‖

‖D−1b‖ . (65)

In the ensuing discussion, we shall refer to the Pulay accelerated Jacobi iteration as the

Pulay-Jacobi (PJ) approach, the SIESTA restarted version with restarts performed

at the (k + 1)/(m + 2) ∈ N iterations as sPJ, and the r-Pulay variant as the rPJ

method.

First, we compare the reduction of the relative residual for the PJ, sPJ and rPJ

methods in Fig. 3. We select Ex1a (Si5H12 with h = 0.5 Bohr), and Ex2e (vacancy

in 3 × 3 × 3 unit cells of Aluminum with nd = 120) as representative examples. We

choose the parameters {β,m} = {0.5, 3}, which we have found to be close to optimal

28

for PJ in the context of the systems considered here. We observe that rPJ demon-

strates significantly faster convergence than PJ, even though the chosen parameters

are optimal for PJ and not rPJ. Additionally, rPJ is able to achieve extremely high

accuracies while maintaining an elevated rate of convergence throughout the itera-

tion. Indeed, rPJ’s performance can be further enhanced with more judicious choice

of parameters. We also note that sPJ demonstrates much slower convergence than the

other two methods, which is a representative result for the linear systems considered

here. In view of this, we will focus on the relative performance of PJ and rPJ for the

remainder of this subsection.

29

0 200 400 600 800 1000 1200 1400
10

−12

10
−9

10
−6

10
−3

10
0

10
3

Iterations

R
el
a
ti
v
e
re
si
d
u
a
l
(r
)

PJ

sPJ

rPJ

(a) Ex1a

0 200 400 600 800 1000 1200 1400
10

−12

10
−9

10
−6

10
−3

10
0

10
3

Iterations

R
el
a
ti
v
e
re
si
d
u
a
l
(r
)

PJ

sPJ

rPJ

(b) Ex2e

Figure 3: Comparison of the convergence of the PJ, sPJ and rPJ methods. Ex1a

signifies the Poisson equation for a Si5H12 cluster with h = 0.5 Bohr. Ex2e denotes

the Helmholtz equation for a vacancy in 3×3×3 unit cells of Aluminum with nd = 120.

30

Next, in Fig. 4, we compare the computational time taken by the PJ and

rPJ methods for all the aforedescribed linear systems of equations. Specifically, we

present the mean (µ) and standard deviation (σ) of the time taken for the parameters

{β,m} = {0.5, 2 to 8}. We observe that PJ’s mean and standard deviation are notice-

ably larger than those of rPJ. In fact, for the biggest system in Ex1, PJ has larger µ

and σ by factors exceeding 15 and 396, respectively. For the biggest system in Ex2,

the corresponding ratios are close to 3 and 8, respectively. Remarkably, even though

the Jacobi iteration is highly inefficient compared to Krylov subspace methods [98],

rPJ is faster than the Generalized Minimal Residual Method (GMRES) [97] with a

restart of 30 by factors exceeding 12 and 3 for the largest systems in Ex1 and Ex2,

respectively. This highlights the potential of rPJ as an efficient linear solver, particu-

larly for large, sparse systems of equations. Overall, we conclude that rPJ represents

an accelerated and significantly more robust version of PJ. Moreover, we expect that

the proposed restart strategy will also be effective in the case of non-linear fixed-point

problems, particularly as the iteration proceeds towards convergence.

31

0 0.5 1 1.5 2 2.5 3

x 10
6

0

400

800

1200

1600

2000

System size (N)

T
im

e
ta

ke
n

(s
ec

)

PJ (µ)
PJ (σ)
rPJ (µ)
rPJ (σ)

(a) Ex1

0 0.5 1 1.5 2 2.5 3

x 10
6

0

100

200

300

400

System size (N)

T
im

e
ta

ke
n

(s
ec

)

PJ (µ)
PJ (σ)
rPJ (µ)
rPJ (σ)

(b) Ex2

Figure 4: Comparison of the performance of the PJ and rPJ methods. The mean

and standard deviation are denoted by µ and σ, respectively. The linear systems of

equations have been obtained from the discretization of the non-periodic Poisson and

complex-valued periodic Helmholtz equations.

32

3.5.1.2 Density Functional Theory (DFT): Accelerating the Self Consistent Field
(SCF) method

In this section, we study the efficacy of r-Pulay mixing in accelerating the convergence

of the SCF method for DFT calculations. The SCF approach — one of the most

commonly employed techniques for determining the electronic ground state in first

principles calculations [55] — represents a non-linear fixed-point iteration with respect

to either the electron density or the effective potential. The corresponding fixed-point

mapping g(x) comprises of the electron density calculation given a Hamiltonian and

effective potential evaluation given the electron density [64, 63]. Here, we perform all

simulations in the framework provided by the quantum chemistry software SIESTA

[101, 6]. Additionally, we denote the SIESTA variant of restarted Pulay with restarts

performed at the (k + 1)/(m+ 2) ∈ N iterations as the s-Pulay method.

In order to ensure that the results presented here are easily reproducible, we

consider examples that are available as test cases within the SIESTA distribution.

Specifically, we focus on the following systems: (i) sic-slab: 78 atom silicon carbide

surface saturated by Hydrogen. (ii) ptcda: 2 molecules of 3, 4, 9, 10 perylenetetracar-

boxylic dianhydride, consisting of 76 atoms. (iii) fe clust noncollinear : 3 atom iron

cluster with noncollinear spin. (iv) batio3 : 5 atom single unit cell of barium titanate.

(v) carbon nanoscroll : 140 atom carbon nanoscroll saturated with Hydrogen. (vi)

si001 : 10 atom (001) Silicon surface saturated with Hydrogen. (vii) si111-spinpol :

22 atom (111) Silicon surface saturated with Hydrogen. In all of these examples, the

only modifications made to the input files are enabling of spin polarized calculations,

varying the Pulay mixing history, and using SIESTA’s default tolerances for conver-

gence of the SCF method. The motivation for including spin is that typically larger

number of iterations are required for achieving convergence, which makes acceleration

of the SCF process even more desirable.

We start by comparing the convergence of the Pulay, s-Pulay and r-Pulay methods

33

during the SCF iteration. Selecting sic-slab and ptcda as representative examples, we

plot the error as a function of iteration number in Fig. 5. Here, error denotes the

maximum difference (in magnitude) between the density matrix of two consecutive

SCF iterations. We have employed mixing history of 5 (m = 4) for both sic-slab and

ptcda. We observe that both r-Pulay and s-Pulay converge faster than Pulay for the

sic-slab system. In fact, r-Pulay and s-Pulay demonstrate similar performance up to

an error of around 10−4, after which s-Pulay experiences a noticeable reduction in the

convergence rate. The trends are similar for ptcda, with s-Pulay’s drop in convergence

rate so dramatic that it requires larger number of iterations than even Pulay to reduce

the error to 10−5. Altogether, r-Pulay is found to be the most efficient, and is able to

achieve practical SCF tolerances in nearly half the iterations needed by Pulay mixing.

This is consistent with previous results obtained in the linear setting for the Jacobi

fixed-point iteration.

34

0 10 20 30 40 50 60 70 80 90 100 110
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

E
rr
o
r

Pulay

s−Pulay

r−Pulay

(a) sic-slab

0 10 20 30 40 50 60 70 80 90
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iterations

E
rr
o
r

Pulay

s−Pulay

r−Pulay

(b) ptcda

Figure 5: Progression of the error during the SCF iteration for the Pulay, s-Pulay and

r-Pulay methods. Error denotes the maximum difference (in magnitude) between the

density matrix of two consecutive SCF iterations.

35

Next, we compare the performance of the Pulay, s-Pulay and r-Pulay methods for

the seven aforementioned electronic structure problems. Specifically, we determine

the number of SCF iterations required to achieve the SIESTA default tolerances of

1 × 10−4 in the density matrix and 1 × 10−4 eV in the energy for m = 2, 3 and 4.

Recall that (m + 1) denotes the number of iterates used for extrapolation. The

results so obtained are presented in Table 1. We observe that both r-Pulay and

s-Pulay are significantly more efficient and robust versions of the Pulay method,

with r-Pulay demonstrating the best performance overall. In particular, r-Pulay is

relatively insensitive to the amount of mixing history, whereas large variations can

be seen in the performance of the DIIS method. Furthermore, the proposed restart

is able to speed-up Pulay mixing by up to factors exceeding 3. In fact, even for

the optimal choice of 2 ≤ m ≤ 4 within the Pulay method, r-Pulay demonstrates

superior performance by up to factors nearing two. Intriguingly, s-Pulay consistently

demonstrates superior performance to Pulay even though the opposite trend was

observed in the linear setting.

Finally, we study the statistics of the number of SCF iterations required for con-

vergence when 2 ≤ m ≤ 8. In Table 2, we present the mean (µ) and standard

deviation (σ) for the Pulay, s-Pulay and r-Pulay methods. We observe that r-Pulay

demonstrates the best performance among the three approaches. Specifically, r-Pulay

possesses the smallest values of mean and standard deviation, further highlighting its

efficiency and robustness. It is worth emphasizing that even though we have focused

on spin polarized calculations, the above inferences are applicable to systems where

spin is neglected. Consider for example, the systems sic-slab and ptcda. In the case

of sic-slab, {µ, σ} = {100, 43} , {60, 14} and{47, 3} for the Pulay, s-Pulay and r-Pulay

methods, respectively. For ptcda, the corresponding numbers are {50, 28}, {30, 8}

and {26, 2}, respectively. It is clear that our previous conclusions are still valid.

As part of this work, we have performed a variety of simulations — including

36

Table 1: Number of SCF iterations taken by the Pulay, s-Pulay and r-Pulay methods
to achieve the default SIESTA convergence tolerances of 1×10−4 in the density matrix
and 1× 10−4 eV in the energy. Number of iterates that have been utilized for mixing
is (m+ 1).

System
m = 2

Pulay s-Pulay r-Pulay

sic-slab 104 59 52
ptcda 93 40 30

fe clust noncollinear 145 79 88
batio3 146 47 39

carbon nanoscroll 39 22 21
si001 29 24 21

si111-spinpol 41 27 21
m = 3

sic-slab 119 59 46
ptcda 53 34 38

fe clust noncollinear 93 98 61
batio3 137 38 38

carbon nanoscroll 34 20 21
si001 26 24 22

si111-spinpol 27 24 24
m = 4

sic-slab 101 63 59
ptcda 59 46 28

fe clust noncollinear 187 160 71
batio3 61 35 34

carbon nanoscroll 35 23 23
si001 21 22 19

si111-spinpol 21 24 20

a number of systems not presented here — to establish the relative performance of

Pulay, s-Pulay and r-Pulay. In all of these examples, we have found r-Pulay to be sig-

nificantly more efficient and robust compared to Pulay. Occasionally, we have noticed

the performance of s-Pulay to be slightly better than r-Pulay. As an example, for the

nanotube-c-5-0 (20 atom C(5,0) nanotube) system, {µ, σ} = {21, 2} and{24, 6} for

the s-Pulay and r-Pulay methods, respectively. Such results have been observed when

Pulay itself requires relatively few iterations for convergence. However, for systems

37

Table 2: Statistics of the number of SCF iterations required for convergence when m
takes values in the range of 2 to 8. The mean and standard deviation are denoted by
µ and σ, respectively. The default SIESTA convergence tolerances of 1× 10−4 in the
density matrix and 1× 10−4 eV in the energy have been employed.

System
Pulay s-Pulay r-Pulay
µ σ µ σ µ σ

sic-slab 87 21 69 13 56 6
ptcda 49 22 46 9 32 4

fe clust noncollinear 198 108 124 34 78 25
batio3 75 48 42 11 37 3

carbon nanoscroll 30 6 22 2 21 1
si001 23 4 22 2 20 1

si111-spinpol 25 8 23 3 21 2

where convergence of the SCF is challenging, we have found that r-Pulay outper-

forms s-Pulay. Overall, we conclude that r-Pulay is a viable and attractive method

for accelerating the SCF iteration in electronic structure calculations.

3.6 Alternating Anderson technique

In this work, we treat the Jacobi method as a fixed-point iteration and employ Ander-

son’s extrapolation to accelerate its convergence. However, rather than applying the

extrapolation in every step, we employ it at periodic intervals within the Jacobi iter-

ation. We refer to this approach as the Alternating Anderson Jacobi (AAJ) method.

We verify the accuracy, efficiency, and generality of AAJ in a range of test cases,

including nonsymmetric, 3D Poisson, and complex-valued Helmholtz problems. In

particular, we demonstrate that AAJ is able to accelerate the classical Jacobi method

by factors exceeding 10, 000, and substantially outperform GMRES in the process.

3.6.1 Jacobi method

Consider the linear system of equations described by Eqn. 63. The matrix A can be

split as

A = D+R , (66)

38

where all the off-diagonal components of the matrix D ∈ C
N×N and the diagonal

components of R ∈ CN×N are identically zero. Using this decomposition, Eqn. 63

can be rewritten as the fixed-point problem

x = g(x) , (67)

where the mapping

g(x) = D−1(b−Rx) . (68)

In this setting, the residual can be defined to be

f(x) = g(x)− x . (69)

Further, the error

e(x) = x− x∗ , (70)

where x∗ denotes the solution of the linear system in Eqn. 63. This Jacobi-type

reformulation is predicated on the assumption that there are no zeros on the diagonal

of D, and therefore by extension the diagonal of A.

The Jacobi method [98, 92] proposes to solve the fixed-point problem in Eqn. 67

using an iteration of the form

xk+1 = g(xk) , (71)

where the subscript k is used to represent the iteration number. In this approach, the

relationship between the error/residual in any two consecutive iterates can be shown

to be

e(xk+1) =
(

I−D−1A
)

e(xk) , f(xk+1) =
(

I−D−1A
)

f(xk) . (72)

It follows that the Jacobi method is effective at nullifying the error/residual com-

ponents corresponding to eigenvalues of (I − D−1A) whose magnitudes are close to

zero, and relatively ineffective at nullifying components corresponding to eigenvalues

with magnitudes near but less than unity. In particular, convergence of the Jacobi

39

iteration requires

‖I−D−1A‖ < 1 , (73)

where ‖.‖ refers to the 2-norm. Such a constraint limits the applicability of the Jacobi

method, which motivates suitable modification of the underlying iteration.

The Weighted Jacobi (WJ) method [98, 92] represents a generalization of the

aforedescribed Jacobi technique, wherein the fixed-point iteration in Eqn. 71 takes

the form

xk+1 = (1− ω)xk + ωg(xk) . (74)

In terms of the residual, the above equation reduces to

xk+1 = xk + ωf(xk) . (75)

The scalar ω ∈ C is referred to as the relaxation parameter, with the specific choice

of ω = 1 yielding the standard Jacobi iteration. Analogous to the Jacobi method, the

progression of error/residual in the WJ iteration can be expressed as

e(xk+1) =
(

I− ωD−1A
)

e(xk) , f(xk+1) =
(

I− ωD−1A
)

f(xk) . (76)

It follows that the WJ approach is efficient for error/residual components correspond-

ing to eigenvalues of (I − ωD−1A) whose magnitudes are near zero, while relatively

inefficient at reducing components corresponding to eigenvalues with magnitudes close

to but less than one. Furthermore, convergence of the WJ method requires

‖I− ωD−1A‖ < 1 . (77)

Overall, when D−1A has eigenvalues with positive real part, an appropriately small

relaxation parameter ω can be chosen to enable convergence when the standard Jacobi

method diverges. However, doing so negatively impacts the performance of the WJ

method in neutralizing error/residual components corresponding to small-magnitude

eigenvalues of D−1A. A detailed description and analysis of the classical Jacobi

method and its weighted counterpart can be found in standard texts [98, 92, 41, 115].

40

3.6.2 Anderson-Jacobi method

Anderson demonstrated in his original work [4] that the proposed extrapolation

technique can be employed to significantly improve the performance of the Jacobi

method, among others. In spite of this, such an approach for solving linear sys-

tems of equations—which we shall refer to as the Anderson-Jacobi (AJ) method—

has received little attention subsequently. In this work, we demonstrate that AJ is

an efficient method for solving large systems of equations. In fact, as shown in sub-

section 3.6.4, it is able to consistently outperform GMRES for all the cases considered

here.

In the AJ method, the fixed-point iteration in Eqn. 75 is generalized to

xk+1 = x̄k + βf(x̄k) , (78)

where x̄k denotes the weighted average of the previous iterates and β ∈ C is a pa-

rameter. Specifically,

x̄k = xk −
m
∑

j=1

γj (xk−m+j − xk−m+j−1) , (79)

where m + 1 is the number of iterates used for extrapolation. The update formula

then becomes

xk+1 = xk + βf(xk)− (Xk + βFk)(F
T
kFk)

−1FT
k f(xk) . (80)

The aforedescribed AJ approach can also be interpreted as a multi-secant type

method [28, 65]. In this context, the AJ iteration generalizes Eqn. 75 to take the

form

xk+1 = xk +Ckf(xk) . (81)

The matrix Ck ∈ CN×N is set to the solution of the constrained minimization [28, 63]

min
Ck

‖Ck + βI‖

s.t. CkFk = Xk , (82)

41

where I ∈ R
N×N is the identity matrix, with R denoting the set of all real numbers.

The solution to this variational problem is

Ck = βI− (Xk + βFk)(F
T
kFk)

−1FT
k . (83)

On substituting this expression for Ck into Eqn. 81, the AJ fixed-point iteration

in Eqn. 80 is recovered. It is worth noting that the constraint in Eqn. 82 can be

expressed as

(CkD
−1A)Xk = Xk , (84)

from which it can be inferred that Ck is designed to approximate A−1D in Anderson’s

extrapolation.

In the AJ method, the relation between the error/residual at consecutive iterations

can be written as

e(xk+1) =
(

I−CkD
−1A

)

e(xk) , f(xk+1) =
(

I−CkD
−1A

)

f(xk) . (85)

From these equations, it can be deduced that the AJ update is a contraction provided

‖I−CkD
−1A‖ < 1 . (86)

Furthermore, the fixed-point iteration will converge faster when Ck is able to better

approximate A−1D. As a result, the AJ method significantly accelerates the con-

vergence of the basic Jacobi iteration, as verified in sub-section 3.6.4. Overall, the

AJ method can be viewed as a generalization of the Weighted Jacobi (WJ) method,

since it replaces the constant matrix ωI with a dynamically updated matrix Ck.

Furthermore, AJ reduces to WJ on setting β = ω and m = 0.

3.6.3 Alternating Anderson-Jacobi method

The weighted Jacobi method typically suffers from slow convergence due to its inabil-

ity to efficiently reduce the ‘low frequency’ components of the error/residual. Here

42

and henceforth, ‘low frequency’ and ‘high frequency’ error/residual components de-

note those corresponding to the eigenvalues of (I− ωD−1A) with magnitude close to

unity and zero, respectively. In this work, we aim to develop an accelerated variant

of the Jacobi method, while seeking to retain its tremendous simplicity, locality, and

potential for scalability on massively parallel architectures. We shall refer to this

generalization, which incorporates both Weighted Jacobi (WJ) and Anderson-Jacobi

(AJ) updates, as the Alternating Anderson-Jacobi (AAJ) method [88].

In Fig. 6, we outline the algorithm of the proposed AAJ method. We have used

x0 to represent the initial guess, r to denote the normalized l2 norm of the residual,

and ǫ to signify the tolerance specified for convergence. In the AAJ approach, the

fixed-point iteration takes the form

xk+1 = xk +Bkf(xk) , (87)

where the matrix

Bk =

ωI if (k + 1)/p 6∈ N ,

βI− (Xk + βFk)(F
T
kFk)

−1FT
k if (k + 1)/p ∈ N .

(88)

In this setting, the relationship between the error/residual at consecutive iterations

can be written as

e(xk+1) =
(

I−BkD
−1A

)

e(xk) , f(xk+1) =
(

I−BkD
−1A

)

f(xk) . (89)

It follows that the AAJ update is a contraction provided

‖I−BkD
−1A‖ < 1 . (90)

Overall, AAJ represents a generalization of the WJ method wherein the WJ update

in Eqn. 75 is replaced with an AJ update described by Eqn. 80 every pth iteration.

It can also be viewed as a generalization of the AJ method in which Ck = ωI if

(k + 1)/p 6∈ N. Indeed, the AJ method is recovered for p = 1 and the WJ method is

recovered in the limit p→ ∞.

43

Input

A, b, x0

ω, β, m, p, ǫ.

(k+1)
p

∈ N?

Weighted Jacobi

xk+1 = xk + ωf(xk)

Anderson Extrapolation

Γk = argminΓk
‖f(x̄k)‖

2

x̄k = xk − XkΓk

xk+1 = x̄k + βf(x̄k)

rk+1 < ǫ?

Output

x
∗ = xk+1

k = 0

No Yes

No k = k + 1

Yes

Figure 6: The Alternating Anderson-Jacobi (AAJ) method.

In this work, we have employed Anderson’s extrapolation to accelerate the con-

vergence of the Jacobi method. Indeed, we expect such an approach to be effective in

the context of other stationary iterative methods, e.g., Richardson iteration, Gauss-

Seidel, and Successive Over Relaxation (SOR). Notably, when the proposed approach

is developed in the context of the Richardson iteration, the resulting technique—which

we shall refer to as the Alternating Anderson-Richardson (AAR) method—represents

a generalization of the approach proposed by Khabaza [52]. In particular, the AAR

method will reduce to Khabaza’s approach on setting ω = 1, β = 0, and p = m+ 1,

with the coefficients Γk calculated only when the reduction in the residual is smaller

than a specified threshold. Most significantly for parallel computing, the AAJ method

is more amenable to efficient massively parallel implementation [108] than AJ, due to

the reduction in global communication associated with the evaluation of Γk in every

44

AJ update.

3.6.4 Results and discussion

In this section, we validate the accuracy and effectiveness of the proposed Alternating

Anderson-Jacobi (AAJ) approach in a series of test cases, including nonsymmetric,

Poisson, and complex-valued Helmholtz problems. Using finite differences, we dis-

cretize the partial differential equations in a domain Ω having boundary ∂Ω with

outward unit normal n. We denote the mesh-size by h and the number of nodes in

each direction by nd. For the resulting linear systems of equations, we employ the

following nomenclature for presenting results and ensuing discussion. We denote each

partial differential equation and its associated boundary conditions by ‘Problem #’,

where ‘#’ represents a number. Next, we associate with every linear system a four

character label, in which we abbreviate ‘Problem #’ in the first two characters as

‘P#’. We set the third character as either ‘a’ or ‘b’, where ‘a’ denotes a collection

of ‘P#’ systems having the same Ω with varying h, whereas ‘b’ denotes same h with

varying Ω. We append a number as the fourth character to indicate the value of nd,

with values in ascending order. For example, if nd = n1, n2, andn3 (n1 < n2 < n3)

are used for discretization, fourth characters of ‘1’, ‘2’, and ‘3’ signify systems with

nd = n1, n2, andn3, respectively.

We compare the performance of the AAJ method with the Weighted Jacobi (WJ),

Anderson-Jacobi (AJ), and Scheduled Relaxation Jacobi (SRJ) [118] fixed-point ap-

proaches. In the AJ and AAJ iterations, we employ the Moore-Penrose pseudoinverse

[25] for the calculation of (FT
kFk)

−1 since FT
kFk can become ill-conditioned as the iter-

ation proceeds, for large m in particular. We also compare with the Krylov subspace

method GMRES [97], whose efficiency can be significantly enhanced with sophisti-

cated preconditioning schemes such as multigrid [44]. However, such schemes increase

the cost per iteration, and pose significant challenges for large-scale parallelization

45

[118]. The aim of the present work is to retain as far as possible the simplicity

and computational locality of the classical Jacobi method while substantially accel-

erating it without need of such advanced preconditioning, thus providing a method

well-suited to large-scale parallel implementation. Hence, for the present purposes,

we shall compare to GMRES with simple Jacobi preconditioning, using the same in-

verse diagonal as in the Jacobi iteration. It is worth noting however that, given the

relation of Anderson and GMRES iterations [95], if more sophisticated precondition-

ers are available, they may be expected to benefit AJ and AAJ iterations as well as

GMRES.

We perform all calculations using MATLAB [43] on a workstation with the fol-

lowing configuration: Intel Xeon Processor E3-1220 v3 (Quad Core, 3.10GHz Turbo,

8MB), 16GB (2x8GB) 1600MHz DDR3 ECC UDIMM.

3.6.4.1 Model problem: Laplace equation

The Laplace equation is among the most well studied partial differential equations,

making it an excellent test case. We generate the corresponding linear systems using

second-order finite-differences. Since the matrix D−1A is independent of the mesh-

size h, we only consider systems resulting from varying h with fixed domain Ω. In

the Weighted Jacobi (WJ) method, we utilize the optimal relaxation parameter [98]

of ω = ω∗ = 2/(λ1 + λN) = 1, where λ1 and λN are the minimum and maximum

eigenvalues of D−1A. In situations where ω∗ results in a non-convergent iteration due

to finite precision, we reduce ω∗ by 0.01. In the Anderson-Jacobi (AJ) approach, we

choose {β,m} = {0.2, 10}, which we have found to be efficient after an initial traversal

of the two-dimensional parameter space. Since b = 0 for the Laplace equation, it is

not possible to use the relative residual for the stopping criterion. Instead, we define

the normalized residual in this case as

rk+1 =
‖f(xk)‖
‖f(x0)‖

, (91)

46

and set ǫ = 1 × 10−8 as the tolerance for convergence. We employ the same random

starting guess while studying the relative performance of different approaches.

One-dimensional Laplace equation We first consider the one-dimensional Laplace

equation with zero Dirichlet and Neumann boundary conditions:

Problem 1: −Vxx(x) = 0 in Ω , V (x) = 0 on ∂Ω , (92)

Problem 2: −Vxx(x) = 0 in Ω , Vx(x) = 0 on ∂Ω , (93)

where Ω = (0, L). We choose a domain of size L = 100, and discretize it using nd =

101, 301, 1001, 3001 and 10, 001 finite-difference nodes. The matricesA resulting from

the discretization of Problems 1 and 2 are positive-definite and positive-semidefinite

respectively. Further, their respective solutions are x∗ = 0 and x∗ = c, where c is

any constant vector.

The parameters within the AAJ method are {ω, β,m, p}, where ω and β are the

relaxation parameters in the WJ and AJ updates respectively, m + 1 is the number

of iterates in the Anderson extrapolation history, and p is the frequency of the AJ

update. We choose ‘P1a1’, ‘P1a3’, ‘P2a2’, and ‘P2a4’ as representative systems to

perform a parametric study. After a preliminary traversal of the four-dimensional

space of parameters, we have found {ω, β,m, p} = {0.2, 0.2, 10, 6} to be an efficient

set. In Fig. 7, we present the normalized computational time taken when three of these

parameters are fixed and the fourth one is varied. We observe that the performance

of AAJ is relatively insensitive to the choice of ω and β. We find m ∼ 10 to be

optimal, with a steep increase in time for smaller values. We also notice a drastic

reduction in performance for p > 10, with p ∼ 6 being optimal. We have made similar

observations for the Poisson and Helmholtz equations, with AAJ again relatively

insensitive to the choice of parameters. Overall, we find {ω, β,m, p} = {0.2, 0.2, 10, 6}

to perform appreciably, with solution times of 0.02, 0.10, 0.03, and 0.30 seconds for

‘P1a1’, ‘P1a3’, ‘P2a2’, and ‘P2a4’ systems, respectively. We shall employ this set of

47

parameters within AAJ for the Laplace, Poisson, and Helmholtz equations.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.2

0.4

0.6

0.8

1

ω

N
o
rm

a
li
ze
d
ti
m
e

P1a1

P1a3

P2a2

P2a4

(a) {β,m, p} = {0.2, 10, 6}

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

β

N
o
rm

a
li
ze
d
ti
m
e

P1a1

P1a3

P2a2

P2a4

(b) {ω,m, p} = {0.2, 10, 6}

0 10 20 30 40 50
0.2

0.4

0.6

0.8

1

m

N
o
rm

a
li
ze
d
ti
m
e

P1a1

P1a3

P2a2

P2a4

(c) {ω, β, p} = {0.2, 0.2, 6}

0 4 8 12 16
0

0.2

0.4

0.6

0.8

1

p

N
o
rm

a
li
ze
d
ti
m
e

P1a1

P1a3

P2a2

P2a4

(d) {ω, β,m} = {0.2, 0.2, 10}

Figure 7: Performance of AAJ for different choices of parameters. The computational

times within any curve are normalized with respect to the maximum value in that

curve. The linear systems are obtained from the discretization of the one-dimensional

Laplace equation with zero Dirichlet and Neumann boundary conditions.

Next, we compare in Fig. 8 the progression of the relative residual during the

WJ, AJ, and AAJ fixed-point iterations. We observe that the AAJ method converges

extremely rapidly, while maintaining a relatively high rate of convergence throughout

the iteration. In fact, AAJ is able to reduce the normalized residual to 1×10−8 in 107

48

and 72 times fewer iterations compared to WJ for the systems ‘P1a1’ and ‘P2a1’, re-

spectively. Remarkably, the AAJ technique also requires fewer iterations to achieve a

specified tolerance compared to the AJ method. This suggests that iterates produced

by WJ updates are better suited for Anderson extrapolation than those produced by

AJ updates. In practice, we find that the WJ iterations effectively reduce ‘higher-

frequency’ components of the error while Anderson extrapolations effectively reduce

‘lower-frequency’ components, yielding a combined method effective at reducing both.

Finally, we present in Fig. 9 the speed-ups of the AJ and AAJ methods relative

to WJ as a function of system size. It is clear that both AJ and AAJ are able to

significantly accelerate the convergence of the WJ method. In fact, AAJ is able to

achieve staggering speed-ups in excess of 19, 000 and 100 for the largest systems in

the Dirichlet and Neumann problems, respectively. At the same time, AAJ is able

to accelerate AJ by up to an order of magnitude. Notably, the trends in the plots

indicate that even larger speed-ups of AJ and AAJ over WJ are expected as nd is

increased. Overall, we conclude that AAJ is not only able to tremendously accelerate

the WJ method, but also able to noticeably outperform AJ as well.

49

0 200 400 600 800
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

N
o
rm

a
li
ze
d
re
si
d
u
a
l
(r
)

WJ

AJ

AAJ

(a) P1a1

0 200 400 600
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

N
o
rm

a
li
ze
d
re
si
d
u
a
l
(r
)

WJ

AJ

AAJ

(b) P2a1

Figure 8: Comparison of the convergence of the WJ, AJ, and AAJ methods. The

linear systems are obtained from the discretization of the one-dimensional Laplace

equation with zero Dirichlet and Neumann boundary conditions.

50

10
2

10
3

10
4

10
0

10
1

10
2

10
3

10
4

10
5

System size (N)

S
p
ee
d
-u
p

P1a (AAJ)

P1a (AJ)

(a) Problem 1

10
2

10
3

10
4

10
0

10
1

10
2

10
3

System size (N)

S
p
ee
d
-u
p

P2a (AAJ)

P2a (AJ)

(b) Problem 2

Figure 9: Speed-up of AJ and AAJ methods relative to WJ. The linear systems are

obtained from the discretization of the one-dimensional Laplace equation with zero

Dirichlet and Neumann boundary conditions.

51

Two-dimensional Laplace equation The WJ method presented in Section 3.6.1

employs a constant relaxation parameter ω. However, this condition can be relaxed

to accelerate the WJ method, as demonstrated by the recently developed Scheduled

Relaxation Jacobi (SRJ) method [118]. In order to facilitate comparison with SRJ,

we consider the two-dimensional Laplace equation with zero Neumann boundary con-

ditions:

Problem 3: − Vxx(x, y)− Vyy(x, y) = 0 in Ω ,
∂V (x, y)

∂n
= 0 on ∂Ω , (94)

where Ω ∈ R2 is a square with side L. Specifically, we choose L = 100 and nd =

32, 64, 128, and 256 finite-difference nodes in each direction. The resulting systems

are symmetric positive-semidefinite with solution x∗ = c.

In Fig. 10, we compare the residual as a function of iteration number for the WJ,

AJ, AAJ, and SRJ methods. On one hand, SRJ demonstrates significantly larger

asymptotic convergence rates compared to WJ. Therefore, in situations where high

accuracies are desired, the SRJ method may be expected to significantly outperform

the WJ method. On the other hand, WJ quickly reduces the initial residual com-

pared to SRJ, which follows from its ability to rapidly nullify the ‘high frequency’

components of the error/residual. We find both AJ and AAJ methods require fewer

iterations than SRJ, with AAJ demonstrating the most rapid convergence of all.

52

0 1000 2000 3000 4000 5000 6000
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iterations

N
o
rm

a
li
ze
d
re
si
d
u
a
l
(r
)

WJ

SRJ

AJ

AAJ

Figure 10: Convergence of WJ, AJ, AAJ, and SRJ methods for the ‘P3a4’ system.

The linear systems are obtained from discretization of the two-dimensional Laplace

equation with zero Neumann boundary conditions.

In Table 3, we compare the ability of the AAJ and SRJ methods to accelerate

the WJ method. We observe that AAJ demonstrates larger speed-ups compared to

SRJ. Most notably, the performance of AAJ relative to SRJ improves with size of the

system.

Table 3: Speed-up of AAJ and SRJ methods relative to WJ. The linear systems

are obtained by discretization of the two-dimensional Laplace equation with zero

Neumann boundary conditions.

P3a1 P3a2 P3a3 P3a4

AAJ 4.0 14.3 44.1 61.0

SRJ 5.0 10.8 21.1 26.3

53

3.6.4.2 Electronic structure calculations: Poisson and Helmholtz equations

We now focus on linear systems arising from the discretization of partial differential

equations arising in electronic structure calculations. Specifically, we consider the

Poisson and complex-valued Helmholtz equations discretized using sixth-order finite

differences. As for the Laplace problems, we employ the optimal relaxation parameter

ω∗ for WJ, {β,m} = {0.2, 10} for AJ, and {ω, β,m, p} = {0.2, 0.2, 10, 6} for AAJ.

When comparing with the Krylov subspace method GMRES (restarted every 30 it-

erations), we calculate the relative residual within the WJ, AJ, and AAJ methods

using the relation

rk+1 =
‖Axk − b‖

‖b‖ =
‖D−1Axk −D−1b‖

‖D−1b‖ =
‖f(xk)‖
‖D−1b‖ . (95)

Above, the second equality follows from the use of the finite-difference approximation

with a uniform mesh, whereby the diagonal elements of A (and therefore D) have the

same value. Another implication of this property is that the performance of GMRES

for the systems D−1Ax = D−1b and Ax = b is identical for the discretized problems

considered in this section. Unless specified otherwise, we utilize a vector of all ones

as the starting guess x0 and ǫ = 1× 10−8 as the tolerance for convergence.

Poisson equation We now consider the three-dimensional non-periodic and peri-

odic Poisson equations arising in real-space Density Functional Theory (DFT) [77,

54

106, 104, 78] and orbital-free Density Functional Theory (OF-DFT) [33, 107] simula-

tions:

Problem 4: − 1

4π
∇2V (r) = ρ(r) + b(r) in Ω,

{

V (r) = 0 on ∂Ω , (96)

Problem 5: − 1

4π
∇2V (r) = ρ(r) + b(r) in Ω,

V (r) = V (r+ Lêi) on ∂Ω ,

êi · ∇V (r) = êi · ∇V (r+ Lêi)

on ∂Ω .

(97)

Above, Ω ∈ R
3 is a cubic domain of side L and êi are the unit vectors aligned with the

edges of Ω (same as that in sub-section 3.5.1.1). The fields ρ(r) and b(r) denote the

electron density and nuclear density, respectively. ρ(r) is calculated by superimpos-

ing isolated-atom electron densities. Similarly, b(r) is evaluated by superimposing the

charge densities calculated from the highest occupied angular momentum component

of the Troullier-Martins pseudopotential [111] using the finite-difference approxima-

tion [105, 107]. In Table 4, we present the nomenclature and details for the various

systems of equations corresponding to the aforementioned problems.

55

Table 4: Nomenclature for the different linear systems arising from the discretization

of the three-dimensional non-periodic and periodic Poisson equations. ‘P4a’ corre-

sponds to a Si5H12 cluster with varying h, whereas ‘P4b1’, ‘P4b2’, ‘P4b3’, ‘P4b4’,

and ‘P4b5’ correspond to Si5H12, Si17H36, Si87H76, Si275H172, and Si525H276 clus-

ters, respectively. ‘P5a’ denotes varying h for a single diamond cubic unit cell of

Silicon, whereas ‘P5b1’, ‘P5b2’, ‘P5b3’, ‘P5b4’, and ‘P5b5’ correspond to 2, 3, 4, 5,

and 6 diamond cubic unit cells of Silicon in each direction with a vacancy. The lattice

constant of diamond cubic Silicon is chosen to be 10.26 Bohr.

Discretization Nodes in each direction (nd)

parameters 30 45 60 75 90

L = 28.50 Bohr P4a1 P4a2 P4a3 P4a4 P4a5

h = 0.98 Bohr P4b1 P4b2 P4b3 P4b4 P4b5

L = 10.26 Bohr P5a1 P5a2 P5a3 P5a4 P5a5

h = 0.68 Bohr P5b1 P5b2 P5b3 P5b4 P5b5

In Fig. 11, we compare the performance of the AJ, AAJ, and GMRES methods

by plotting the time taken as a function of system size. We observe that both AAJ

and AJ are able to outperform GMRES, with AAJ comfortably demonstrating the

best timings. In particular, AAJ exhibits close to linear scaling with system size,

making it an attractive technique for solving large systems of equations. Notably,

AAJ achieves a speed-up of nearly an order of magnitude over GMRES for systems

of size N = 729, 000, with the speed-up increasing as the system gets larger. This is

indeed verified by the results in Table 5. Significantly, for the ‘P4b7’ system, AAJ is

faster than GMRES and WJ by factors in excess of 20 and 100, respectively.

56

0 2.5 5 7.5

x 10
5

0

30

60

90

120

150

180

210

System size (N)

T
im

e
ta
k
en

(s
ec
)

P4a (GMRES)

P4a (AJ)

P4a (AAJ)

P4b (GMRES)

P4b (AJ)

P4b (AAJ)

(a) Problem 4

0 2.5 5 7.5

x 10
5

0

10

20

30

40

50

60

70

80

System size (N)

T
im

e
ta
k
en

(s
ec
)

P5a (GMRES)

P5a (AJ)

P5a (AAJ)

P5b (GMRES)

P5b (AJ)

P5b (AAJ)

(b) Problem 5

Figure 11: Performance of AJ, AAJ, and GMRES methods for linear systems obtained

from the discretization of the three-dimensional non-periodic and periodic Poisson

equations.

57

Table 5: Computational time in seconds taken by the WJ, AJ, AAJ, and GMRES

approaches. ‘P4b6’ and ‘P4b7’ correspond to the Si525H276 cluster whereas ‘P5b6’

and ‘P5b7’ correspond to 6 diamond cubic unit cells of Silicon in each direction with

a vacancy. In the label, the last characters of 6 and 7 correspond to nd = 120 and

nd = 150, respectively. The linear systems are obtained from the discretization of the

three-dimensional non-periodic and periodic Poisson equations.

Method
Problem 4 Problem 5

P4b6 P4b7 P5b6 P5b7

WJ 3275.10 10030.40 1342.02 4157.14

AJ 331.63 766.45 87.61 227.52

AAJ 39.60 97.67 34.18 85.03

GMRES 682.93 2038.26 311.09 908.75

Next, we study the influence of the quality of the initial guess on the performance

of AAJ, for which we choose ‘P4a3’ as the representative example. Using an in-

house code, we perform DFT calculations using the Anderson mixing accelerated

SCF method, wherein Eqn. 96 is solved once every SCF iteration. As the iteration

progresses towards convergence, the quality of the guess improves by virtue of using

the previous step’s solution. In Fig. 12, we compare the performance of the AAJ

method with the AJ and GMRES techniques for different initial relative residuals.

Specifically, we plot in Fig. 12a the time taken for the relative residual to reach

ǫ = 1 × 10−8. We also plot in Fig. 12b the time taken to reduce the relative residual

by a factor of 1× 10−2. We find that AAJ significantly outperforms AJ and GMRES

irrespective of the quality of the initial guess. In particular, the performance of AAJ

is relatively independent of the nature of the initial guess.

58

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

2

4

6

8

10

12

14

Initial relative residual

T
im

e
ta
k
en

(s
ec
)

GMRES

AJ

AAJ

(a) Convergence to a tolerance of ǫ = 1× 10−8.

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

0

1

2

3

4

Initial relative residual

T
im

e
ta
k
en

(s
ec
)

GMRES

AJ

AAJ

(b) Initial relative residual reduction by a factor of 0.01.

Figure 12: Performance of AJ, AAJ, and GMRES methods as a function of the quality

of the initial guess. The linear system under consideration is ‘P4a3’, obtained by the

discretization of the three-dimensional non-periodic Poisson equation.

59

Interestingly, the time taken by GMRES and AJ to reduce the relative residual

by two orders of magnitude increases as the initial guess gets closer to the converged

solution. Based on these observations, we can surmise that the efficiency of AAJ can

be partly attributed to its enhanced performance as the relative residual becomes

smaller during the linear solve.

Helmholtz equation Next, we consider the Helmholtz equation arising in periodic

real-space OFDFT calculations [23, 33]:

Problem 6:− 1

4π
∇2V (r)+QV (r) = P ρα(r) in Ω,

V (r) = V (r+ Lêi) on ∂Ω ,

êi · ∇V (r) = êi · ∇V (r+ Lêi)

on ∂Ω ,

(98)

where Ω ∈ R3 is a cubic domain of side L. The constants α = 5
6
+

√
5
6
, P =

0.0296+ i 0.0217, and Q = −0.1284− i 0.1269. The resulting matrices A are complex-

symmetric non-Hermitian. As before, the electron density ρ(r) is evaluated by super-

imposing isolated-atom electron densities. In Table 6, we present the nomenclature

for the resulting systems of equations.

60

Table 6: Nomenclature for the different linear systems of equations arising from the

discretization of the three-dimensional periodic Helmholtz equation. ‘P6a’ denotes

a single face centered cubic (FCC) unit cell of Aluminum with varying h, whereas

‘P6b1’, ‘P6b2’, ‘P6b3’, ‘P6b4’, and ‘P6b5’ correspond to 2, 3, 4, 5, and 6 FCC unit

cells of Aluminum in each direction, with a vacancy. The lattice constant of FCC

Aluminum is chosen to be 7.65 Bohr.

Discretization Nodes in each direction (nd)

parameters 30 45 60 75 90

L = 7.65 Bohr P6a1 P6a2 P6a3 P6a4 P6a5

h = 0.51 Bohr P6b1 P6b2 P6b3 P6b4 P6b5

In Fig. 13, we compare the performance of the AJ, AAJ, and GMRES methods

for the aforedescribed linear systems of equations. It is clear that AJ and AAJ are

again able to outperform GMRES, with AAJ demonstrating the best performance.

Furthermore, AAJ is able to achieve close to linear scaling with system size, and

therefore its performance relative to AJ and GMRES increases for larger systems. In

particular, AAJ demonstrates nearly an order of magnitude speed-up over GMRES for

the ‘P6a5’ system. It is worth noting that unlike GMRES and AJ, which show large

differences in solution times for fixed-domain and fixed-mesh cases, AAJ has nearly

identical performance. Overall, we conclude that AAJ represents a highly efficient

method compared to Krylov subspace methods like GMRES, even for complex non-

Hermitian linear systems of equations.

61

0 2.5 5 7.5

x 10
5

0

50

100

150

200

250

300

350

System size (N)

T
im

e
ta
k
en

(s
ec
)

P6a (GMRES)

P6a (AJ)

P6a (AAJ)

P6b (GMRES)

P6b (AJ)

P6b (AAJ)

Figure 13: Performance of AJ, AAJ, and GMRES methods for the linear systems ob-

tained from the discretization of the three-dimensional periodic Helmholtz equation.

The superior performance of AJ/AAJ compared to GMRES merits further consid-

eration. Notably, when Anderson’s extrapolation with complete history (m = ∞) is

applied to the Richardson iteration, it is equivalent to GMRES without restart in ex-

act arithmetic [95]. This is because GMRES and Anderson’s method utilize the same

Krylov subspace—albeit with a different parametrization—within which the residual

is minimized. In numerical computations, non-restarted Jacobi preconditioned GM-

RES is expected to perform favorably compared to complete-history AJ/AAJ since

linear dependency within the Krylov subspace is prevented through orthogonaliza-

tion. However, restarted GMRES is almost always employed in practice to reduce

orthogonalization and storage costs. Similarly, finite mixing histories are essential

to the performance of AJ/AAJ. A significant difference between the GMRES restart

and the finite-history AJ/AAJ used in practice is that the restart in GMRES starts

the approach afresh, while the AJ/AAJ methods retain a constant mixing history

size. Leveraging more such history information at each iteration may contribute to

62

the superior performance of AJ/AAJ over GMRES in practice. A more complete

understanding of why AJ is able to outperform GMRES and why AAJ is able to

outperform AJ is a worthy subject of further research.

3.6.4.3 Matrix Market: Nonsymmetric matrices

Finally, we demonstrate the generality of AAJ by considering nonsymmetric linear

systems obtained via finite-element discretizations. Specifically, we consider the FI-

DAPM series of matrices in the Matrix Market1 repository. In Table 7, we present the

computational time taken by AAJ and GMRES for three of these systems. Within

AAJ, we choose two values of the relaxation parameter β = ω, while retaining

{m, p} = {10, 6} as in all the previous examples. We compare the results so ob-

tained with GMRES for two choices of restarts: 30 and 750 iterations. In order to

ensure a fair comparison, we use Jacobi preconditioning with GMRES, i.e., we solve

the system D−1Ax = D−1b, using the same D−1 as in the Jacobi iteration. The

tolerance for the relative residual is set to ǫ = 1×10−8 and a vector of all ones is used

as the starting guess x0. We observe that AAJ is able to outperform GMRES for

these nonsymmetric finite-element matrices and choice of parameters. Overall, while

applicable to nonsymmetric systems with a variety of spectra, we find that AAJ is

generally less efficient for systems wherein the smallest real part of the eigenvalues

of D−1A are negative, as may be expected given its Jacobi aspect. As an example,

for the ‘utm300’ system in the TOKAMAK collection, GMRES with restart of 150 is

factor of 1.2 faster than AAJ with {ω, β,m, p} = {0.3, 0.3, 150, 6}.

1http://math.nist.gov/MatrixMarket/

63

Table 7: Time taken in seconds by AAJ and GMRES for linear systems from Matrix

Market. In the table, ‘-’ indicates that convergence was not achieved within 1000 sec.

Matrix N AAJ GMRES for D−1Ax = D−1b

β = 0.3 β = 0.4 restart = 30 restart = 750

fidap008 3096 315.05 152.72 - 877.14

fidap029 2870 0.009 0.007 0.014 0.014

fidapm37 9152 91.76 26.40 - 233.89

64

CHAPTER IV

NUMERICAL IMPLEMENTATION

In this chapter, we discuss the numerical implementation of the Clenshaw-Curtis

Spectral Quadrature (SQ) method to solve the DFT equations in density matrix for-

mulation. We do so in the context of the finite-difference representation, a commonly

used discretization scheme in electronic structure calculations [1, 21]. We employ the

Self-Consistent Field (SCF) iteration, wherein the electron density is iterated to the

ground state (fixed point), after which total energy and atomic forces are computed.

In this setting, we express all quantities of interest as bilinear forms, or sums over

bilinear forms, and then approximate them using Clenshaw-Curtis quadrature rules.

4.1 Preliminaries

In view of the nearsightedness principle [90], we define the region of influence of any

point in space as the cube of side 2Rcut centered at that point. We choose a cube rather

than a sphere for simplicity and efficiency within the finite-difference discretization.

The parameter Rcut corresponds to the truncation radius of the density matrix, the

distance beyond which electronic interactions can be ignored. Indeed, the magnitude

of the electronic interactions decreases exponentially with distance for insulators as

well as metallic systems at finite temperature. We exploit this decay to perform O(N)

Γ-point (periodic) calculations as well as infinite-cell (infinite-crystal) calculations.

In this implementation, we assume the unit cell Ω to be cubical. We discretize the

domain using a three dimensional finite-difference grid with uniform mesh size h in

all directions. Let nproc be the total number of processors among which the computa-

tional load is distributed. In this work, we have distributed the finite-difference nodes

equally amoing all processors. Each processor P is responsible for the computation

65

of quantities of interest at the set of finite-difference nodes, denoted by KΩP
, in the

processor-domain ΩP associated with that processor. We denote the set of all the

finite-difference nodes in Ω by KΩ.

4.1.1 Domain, discretization and boundary conditions

We distinguish between Γ-point and infinite-cell calculations in the choice of domain

and prescribed boundary conditions. For Γ-point calculations, we impose periodic

boundary conditions on Ω, as shown in Fig. 14a. For infinite-cell calculations, we pe-

riodically extend Ω to Ω′ and impose zero Dirichlet boundary conditions on Ω′ for the

Hamiltonian, as shown in Fig. 14b. However, we retain periodic boundary conditions

on Ω for the Poisson problem. The size of Ω′ is chosen such that it encompasses the

region of influence of all finite-difference nodes in Ω. So, the boundary of Ω′ is at a

distance of Rcut from that of Ω. In this setting, we denote the discrete Hamiltonian,

nonlocal pseudopotential matrix due to the I th atom, and gradient by H ∈ RNd×Nd,

VI
nl ∈ RNd×Nd, and ∇̃h ≡ (∇xh ∈ RNd×Nd,∇yh ∈ RNd×Nd,∇zh ∈ RNd×Nd), respec-

tively. Here, Nd denotes the number of finite-difference nodes used to discretize Ω

and Ω′ in Γ-point and infinite-cell calculations, respectively, and h represents the

finite-difference mesh size.

4.1.2 Finite-differences

We consider cubical domains Ω and Ω′, whose edge lengths are denoted using the

common notation L. We employ a uniform finite-difference grid with spacing h such

that L = ndh, where nd is the number of grid points in each direction. We index the

grid points by (i, j, k), where i, j, k = 1, 2, . . . , nd. We approximate the Laplacian of

a function f(x) at the grid point (i, j, k) using high-order finite-differences [62]

∇2
hf
∣

∣

(i,j,k) ≈
no
∑

q=0

wq

(

f (i+q,j,k) + f (i−q,j,k) + f (i,j+q,k)

+f (i,j−q,k) + f (i,j,k+q) + f (i,j,k−q)

)

, (99)

66

Ω

(a) Γ-point calculation

Ω’

Ω

(b) Infinite-cell calculation

Figure 14: Simulation domains and discretization used for Γ-point and infinite-cell
calculations. Finite-difference nodes are represented by circles, with the shaded part
defining the region of influence for the finite-difference node represented by the star.
Periodic and zero Dirichlet boundary conditions are prescribed on Ω and Ω′, respec-
tively.

67

where f (i,j,k) represents the value of the function f(x) at the grid point (i, j, k). The

weights are of the form [68, 50, 107]

w0 = − 1

h2

no
∑

r=1

1

r2
,

wq =
2(−1)q+1

h2q2
(no!)

2

(no − q)!(no + q)!
, q = 1, 2, . . . , no. (100)

Similarly, we approximate the gradient ∇̃h ≡ (∇xh,∇yh,∇zh) as

∇xhf
∣

∣

(i,j,k)
=

no
∑

q=1

w̃q

(

f (i+q,j,k) − f (i−q,j,k)
)

,

∇yhf
∣

∣

(i,j,k)
=

no
∑

q=1

w̃q

(

f (i,j+q,k) − f (i,j−q,k)
)

, (101)

∇zhf
∣

∣

(i,j,k)
=

no
∑

q=1

w̃q

(

f (i,j,k+q) − f (i,j,k−q)
)

,

where the weights [68, 50, 107]

w̃q =
(−1)q+1

hq

(no!)
2

(no − q)!(no + q)!
, q = 1, 2, . . . , no. (102)

These finite-difference expressions for the Laplacian and gradient represent 2no-order

accurate approximations, i.e., error O(h2no).

4.1.3 Integrals and summations

While performing spatial integrations, we assume that the function f(x) is constant

in a cube of side h around each grid point. For example,

∫

Ω

f(x) dx ≈ h3
nd
∑

i,j,k

f (i,j,k) = h3
∑

p∈KΩ

f(xp) = h3
nproc
∑

P=1

∑

p∈KΩP

fp. (103)

where the value of the function f at a point xp ∈ Ω is represented as fp. For periodic

integrands, this is equivalent to a trapezoidal rule. Using this rule, we approximate

the nonlocal pseudopotential operator in Γ-point calculations as

Vnlf
∣

∣

(i,j,k)
=
∑

I

VI
nlf
∣

∣

(i,j,k) ≈ h3
∑

I

∑

lm

nd
∑

p,q,r

γIl χ
I(i,j,k)
lm χ

I(p,q,r)
lm f (p,q,r) , (104)

68

where the summation index I runs over all atoms in Ω. Analogously, for infinite-cell

calculations

V∞
nl f
∣

∣

(i,j,k)
=
∑

J

VJ
nlf
∣

∣

(i,j,k) ≈ h3
∑

J

∑

lm

nd
∑

p,q,r

γJl χ
J(i,j,k)
lm χ

J(p,q,r)
lm f (p,q,r) . (105)

where the summation index J runs over all atoms in Ω as well as their periodic im-

ages. Since the projectors of each atom are localized in real-space, the nonlocal pseu-

dopotential matrix can be created in O(N) fashion. We enforce periodic boundary

conditions on Ω by employing the following strategy. In the finite-difference repre-

sentations of the Laplacian, gradient, and the nonlocal pseudopotential as presented

in Eqns. 99, 101 and 104 respectively, we map any index that does not correspond to

a node in the finite-difference grid in Ω to its periodic image within Ω. Similarly, we

enforce zero Dirichlet boundary conditions on Ω′ by setting f (i,j,k) = 0 for any index

that does not correspond to a node in the finite-difference grid.

We generate the initial electron density for the Self-Consistent Field (SCF) itera-

tion by superposing isolated-atom electron densities. We do so by visiting only atoms

whose isolated-atom electron densities have nonzero overlap with Ω. Similarly, we

calculate the charge density of the nuclei using the relations

b(i,j,k) =
∑

J

b
(i,j,k)
J , b

(i,j,k)
J = − 1

4π
∇2VJ

∣

∣

(i,j,k)
, (106)

where the summation reduces in practice to all atoms whose charge density has

nonzero overlap with Ω. The localized nature of the above operations ensures that

the evaluation of b(i,j,k) for all grid points scales as O(N).

4.1.4 Nodal quantities

KΩ denotes the collection of finite-difference nodes used to discretize Ω. The nodal

Hamiltonian Hp ∈ R
Ns×Ns of any node p ∈ KΩ is defined as the restriction of the

Hamiltonian to its region of influence:

Hp = PTHP , (107)

69

where the matrix

P =
[

vp1 ,vp2, . . . ,vpNs

]

∈ R
Nd×Ns . (108)

Above, {vq}Nd

q=1 denotes the standard basis of RNd, and {p1, p2, . . . , pNs
} are the finite

difference nodes that lie within the region of influence of the p ∈ KΩ node. Similarly,

the nodal nonlocal pseudopotential matrix due to the J th atom VJ
nl,p ∈ RNs×Ns, and

the nodal gradient ∇̃h,p ≡ (∇xh,p ∈ RNs×Ns,∇yh,p ∈ RNs×Ns ,∇zh,p ∈ RNs×Ns) are

defined as

VJ
nl,p = PTVJ

nlP , (109)

∇̃h,p = PT ∇̃hP . (110)

Analogously, wp ∈ RNs×1 represents the restriction of the basis vector vp to the region

of influence of the p ∈ KΩ node, i.e.,

wp = PTvp . (111)

4.1.5 Chebyshev interpolation

In the Clenshaw-Curtis SQ method, functions of the nodal Hamiltonian are approxi-

mated in the Chebyshev polynomial basis. Specifically, the Chebyshev expansion of

order npl for any function f : [−1, 1] → R is of the form

f(Ĥp) =

npl
∑

j=0

fjTj(Ĥp) , (112)

where Tj denote the Chebyshev polynomials of degree j, and

Ĥp = (Hp − χpI)/ζp , (113)

is the scaled and shifted nodal Hamiltonian whose spectrum lies in the interval [−1, 1].

Here, I ∈ RNs×Ns denotes the identity matrix, χp = (λmax
p + λmin

p)/2 and ζp =

(λmax
p −λmin

p)/2, with λmax
p and λmin

p denoting the maximum and minimum eigenvalues

70

of Hp, respectively. The expansion coefficients in Eqn. 112 can be evaluated using

the relation

fj =
2

π

∫ 1

−1

f(r)Tj(r)√
1− r2

dr , j = 0, . . . , npl , (114)

where f0 is further scaled by a factor of half. The column of Tj(Ĥp) corresponding

to the p ∈ KΩ node, represented by tjp ∈ RNs×1, can be determined using the three

term recurrence relation for Chebyshev polynomials:

tj+1
p = 2Ĥpt

j
p − tj−1

p ,

t1p = Ĥpwp , t
0
p = wp , (115)

with

ρjp = wT
p t

j
p (116)

denoting the corresponding diagonal element. In the large scale parallel implemen-

tation, we use the relations between Chebyshev components, to compute them in an

efficient manner. The expense is reduced by a factor of two when we use the relation

2Tm(r)Tn(r) = Tm+n(r) + Tm−n(r), where m > n are integers.

4.2 Effective potential

The effective potential at any grid point p ∈ KΩ, given by Veff(xp) = Vxc,p + φp, is

the sum of the exchange-correlation potential which depends only on the electron

density at that point (Vxc,p = Vxc(ρp)) and the electrostatic potential which is ob-

tained by solving the discretized Poisson’s equation. In every iteration of the SCF

method, we solve the discretized Poisson’s equation (Eqn. 32) subject to periodic

boundary conditions on Ω using the Alternating Anderson Jacobi (AAJ) method

[88] (Section 3.6). Since the solution so obtained is unique only up to an arbitrary

constant, we enforce the condition φ(1,1,1) = 0 for definiteness. In every subsequent

Poisson equation encountered, we use the previous solution as starting guess. We

note that sophisticated preconditioners such as multigrid [44] must be employed for

71

the Poisson equation in order to achieve O(N) scaling in practice. However, since

the Poisson solve constitutes a small fraction of the total computation in our current

serial implementation, such preconditioning schemes have not been employed in the

present work. AAJ has shown efficient performance and is better suited for massive

parallelization as it has a favorable prefactor and scaling (Section 3.6) and minimal

global communication among processors [108]. We note that communication between

neighboring processors is required to share the information on effective potential as

discussed in sub-section 4.6.2.

4.3 Potential mixing

Non-linear as well as linear fixed-point iterations can be accelerated using mixing tech-

niques (Chapter 3) such as Anderson’s extrapolation [4], restarted-Pulay mixing [86]

or periodic-Pulay mixing [8]. Pulay mixing [91] is one of the most widely used accel-

eration techniques for SCF iterations. Both restarted-Pulay as well as periodic-Pulay

techniques have shown robust and efficient performance compared to the standard

Anderson/Pulay mixing technique. In this work, we employ the periodic-Pulay mix-

ing to accelerate the SCF iteration. Periodic-Pulay mixing is similar in spirit to the

AAJ linear solver technique and hence is amenable to massive parallel calculations.

In this work, we perform potential mixing where the iterates that are used come up

with an improved update are the discretized effective potential functions evaluated

in each SCF iteration. In periodic-Pulay mixing, a simple mixing update depending

only on the previous two iterates is performed in every SCF iteration and the update

is periodically obtained using Anderson extrapolation scheme as a weighted sum of

the previous iterates that minimizes the 2-norm of the residual of the fixed-point

problem.

72

4.4 Electron density

The electron density (Eqn. 23) needs to be evaluated in each iteration of the SCF

method. In order to achieve this in O(N) fashion, we first utilize the exponential

decay in the density matrix to express the electron density at the p ∈ KΩ finite-

difference node as

ρp =
2

h3
vT
p g(H, µ, σ)vp ≈

2

h3
wT

p g(Hp, µ, σ)wp =
2

h3
wT

p g(Ĥp, µ̂p, σ̂p)wp , (117)

where σ̂p = σ/ζp denotes the scaled smearing, and µ̂p = (µ − χp)/ζp denotes the

scaled and shifted Fermi energy. Next, we approximate the Fermi-Dirac function in

a Chebyshev polynomial basis to arrive at

ρp ≈
2

h3
wT

p

(npl
∑

j=0

cjp(µ)Tj(Ĥp)

)

wp =
2

h3
wT

p

(npl
∑

j=0

cjp(µ)t
j
p

)

=
2

h3

npl
∑

j=0

cjp(µ)ρ
j
p , (118)

where ρjp are determined using Eqns. 115 and 116. The electron density at the p ∈ KΩ

node can therefore be expressed as

ρp =
2

h3

npl
∑

j=0

cjpρ
j
p , (119)

where the expansion coefficients cjp correspond to the Fermi energy µ that results in

the correct number of total electrons, i.e.,

h3
∑

p∈KΩ

ρp = 2

nproc
∑

P=1

∑

p∈KΩP

npl
∑

j=0

cjp(µ)ρ
j
p = NΩ . (120)

The above equation can be iteratively solved for µ using a root-finding algorithm

such as Newton’s [72] or Brent’s method [15]. During this process, the coefficients cjp

are computed using Eqn. 114 by setting f(r) = g(r, µ̂p, σ̂p). The above expressions

are applicable to both Γ-point and infinite-cell calculations, with the nodal quantities

appropriately defined as described in Subsection 4.1.4.

We note the significant differences in the density calculation in Clenshaw-Curtis

SQ and classical Chebyshev polynomial FOE. In the FOE approach, the complete

73

density matrix is computed, whereas only its diagonal is computed in SQ. This can

be seen in Eqn. 118, where the vectors wp are moved inside the summation to form

the scalars ρjp. Indeed, such a procedure involves the calculation of the local vectors tjp

using the recursive relation Eqn. 115. However, the truncated columns of the density

matrix, which correspond to the local vectors
∑npl

j=0 c
j
pt

j
p, are not computed in the SQ

method. Furthermore, since the scalars ρjp can be stored, the SQ approach allows for

efficient determination of the Fermi energy µ, without recomputation or storage of the

Chebyshev matrices, as typically done in FOE. Finally, the key operations in SQ are

local matrix-vector multiplications, compared to global matrix-matrix multiplications

in FOE. The evaluation of the free energy in SQ proceeds along similar lines and

does not involve the calculation of the density matrix, as further described in the

next section. In our parallel implementation we do not form even the local matrices,

instead, we compute the action of the nodal matrix on the vector, for any given vector.

This way, all the operations are local and matrix free. The matrix free approach is

discussed below.

4.4.1 Matrix free approach

At each finite difference node p of processor P , we need to find the scaling parameters

that can scale the nodal Hamiltonian matrix corresponding to that node such that its

spectrum is in [−1, 1]. These parameters can be computed using Lanczos algorithm

[60]. The nodal Hamiltonian matrix Hp corresponds to the nodes in a sub-domain

around the pth finite difference node and is given by,

Hp = −1

2
(∇2)p +Veff,p +Vnl,p. (121)

Each of the matrices (bold font) in the above equation are of size Ns ×Ns.

From Eqns. 113 and 115, we have,

tj+1
p =

2

ζp
Hpt

j
p −

2χp

ζp
tjp − tj−1

p (122)

74

Both Lanczos algorithm as well as computing ρjp require only the product of Hp

with a vector and hence can be carried out without explicitly forming the matrix in

Eqn. 121. The elements of diagonal matrix Veff,p are computed as described in section

4.2. The −1
2
(∇2)p matrix times a vector is computed by applying the finite difference

stencil weights (Eqn. 99) at each node in the sub-domain with appropriate boundary

conditions. For any given vector tpj of size Ns×1, the matrix vector product Hp t
p
j can

be evaluated from the products, −1
2
(∇2)p t

p
j , Veff,p t

p
j and Vnl,p t

p
j . In the following

algorithms, we discuss computation of the Chebyshev coefficients ρjp, Fermi energy µ

and the electron density in a matrix free way.

Algorithm 2: NODAL NONLOCAL TIMES VEC(tjp)

Nodal Nonlocal matrix times a given vector tjp in a matrix free way.

Input: tjp

Computing Vnl,p t
j
p :

AP
rc is the set of all atoms within a distance of rc +Rcut distance from ΩP .

for J ∈ AP
rc do

For each atom, find the start (ns) and end (ne) nodes (in local indexing) of
the intersection region within rc distance from the sub-domain around node p.

for i ∈ {ns . . . ne} do
Find distance r[i] from each node to the atom J .

for l = 0 to lmax do

for m = −l to l do
v = 0

for i ∈ {ns . . . ne} do

v[i] = v[i] + χJ
lm[i]t

j
p[i]

for i ∈ {ns . . . ne} do

td[i] = td[i] + χJ
lm[i]v[i]

Note: The set of atoms AP
rc and the nonlocal projectors χJ

lm are pre-computed
and need not be re-calculated in every SCF iteration.

Output: td

75

Algorithm 3: NODAL HAMILTONIAN TIMES VEC(tjp)

Nodal Hamiltonian times a given vector tjp in a matrix free way.

Input: tjp

Computing −1
2
(∇2)p tjp :

for i = 1. . .Ns do

for q = 0. . . 2no do

Find q̃ as the index of the node corresponding to q.

td[i] = td[i]− 1
2
sqt

j
p[q̃] (where, sq are the finite difference weights.)

Computing Veff,p t
j
p :

for i = 1. . .Ns do

td[i] = td[i] +Veff,p[i] t
j
p[i]

Computing Vnl,p t
j
p :

td = td+ NODAL NONLOCAL TIMES VEC(tjp)

Output: td

Algorithm 6 which is executed by all the processors, provides a summary of the

computation of the electron density using the algorithms described. In the algorithms,

ΩP denotes the computational domain associated with the processor P .

4.5 Energy and forces

4.5.1 Energy

The free energy (Eqn. 37) can be evaluated once the electronic ground-state is deter-

mined. Since the density matrix is not computed within the SQ method, the band

structure energy and electronic entropy cannot be directly evaluated. In view of this,

we develop expressions for the calculation of these quantities, as described below.

76

Algorithm 4: CHEBYSHEV COMPONENTS

Compute Chebyshev components ρjp.

Input: χp, ζp for all p ∈ KΩP
.

for p ∈ KΩP
do

t1 = wp, t2 = (1
ζp
NODAL HAMILTONIAN TIMES VEC(wp)) −χp

ζp
wp

ρ0p = 1
ρ1p = wT

p t2

for j = 2 . . . npl do

t3 = (2
ζp
NODAL HAMILTONIAN TIMES VEC(t2)) −2χp

ζp
t2 − t1

t1 = t2
t2 = t3
ρjp = wT

p t3

Output: ρjp for all p ∈ KΩP

Algorithm 5: FERMI ENERGY

Compute Fermi energy µ using a root finding algorithm.

Input: ρjp, χp, ζp for all p ∈ KΩP
.

STEP 1: Start with an initial guess for µ.
STEP 2: Compute Chebyshev coefficients cjp at each node p.
STEP 3: Evaluate the residual of Eqn. 120 using MPI Allreduce.
STEP 4: Update µ using a root finding algorithm.
STEP 5: Repeat steps 2 to 4 until convergence.

Output: µ

Band structure energy Utilizing the same procedure and approximations as in

the case of the electron density, the band structure energy takes the form

Eband = 2
∑

p∈KΩ

vT
p (H∗g(H∗, µ, σ))vp ≈ 2

∑

p∈KΩ

wT
p

(

H∗
pg(H

∗
p, µ, σ)

)

wp

= 2
∑

p∈KΩ

wT
p

[

(χp + ζpĤ
∗
p)g(Ĥ

∗
p, µ̂p, σ̂p)

]

wp

≈ 2
∑

p∈KΩ

wT
p

[

χp

npl
∑

j=0

cjpTj(Ĥ
∗
p) + ζp

npl
∑

j=0

djpTj(Ĥ
∗
p)

]

wp (123)

= 2

nproc
∑

P=1

∑

p∈KΩP

npl
∑

j=0

(χpc
j
p + ζpd

j
p)ρ

j∗
p ,

77

Algorithm 6: ELECTRON DENSITY

Electron density ρ using Spectral Quadrature method.

Input: Veff,p for all p ∈ KΩP
.

STEP 1: Communicate Veff,p at nodes outside ΩP using MPI Ineighbor alltoallv.
STEP 2: Compute scaling parameters χp and ζp using Lanczos.
STEP 3: Compute ρjp using CHEBYSHEV COMPONENTS.
STEP 4: Compute FERMI ENERGY (needs MPI Allreduce) and update cjp.
STEP 5: Compute ρp using Eqn. 119.

Output: ρp for all p ∈ KΩP

where djp are the coefficients of the Chebyshev expansion obtained by setting f(r) =

rg(r, µ̂p, σ̂p) in Eqn. 114.

Electronic entropy The electronic entropy can similarly be written as

S = 2kB
∑

p∈KΩ

vT
p [g(H∗, µ, σ) log g(H∗, µ, σ)

+ (I− g(H∗, µ, σ)) log (I− g(H∗, µ, σ))]vp

≈ 2kB
∑

p∈KΩ

wT
p

[

g(Ĥ∗
p, µ̂p, σ̂p) log g(Ĥ

∗
p, µ̂p, σ̂p)

+
(

I− g(Ĥ∗
p, µ̂p, σ̂p)

)

log
(

I− g(Ĥ∗
p, µ̂p, σ̂p)

)]

wp

≈ 2kB
∑

p∈KΩ

wT
p

[

npl
∑

j=0

ejpTj(Ĥ
∗
p)

]

wp (124)

= 2kB

nproc
∑

P=1

∑

p∈KΩP

npl
∑

j=0

ejpρ
j∗
p ,

where ejp are calculated using Eqn. 114 by setting

f(r) = g(r, µ̂p, σ̂p) log g(r, µ̂p, σ̂p) + (1− g(r, µ̂p, σ̂p)) log(1− g(r, µ̂p, σ̂p)).

78

Free Energy Using the band structure energy in Eqn. 123, and the electronic

entropy in Eqn. 124, the free energy in Eqn. 37 can be written as

F0(R) = h3
nproc
∑

P=1

∑

p∈KΩP

(

2

h3

npl
∑

j=0

(χpc
j
p + ζpd

j
p)ρ

j∗
p + εxc(ρ

∗
p)ρ

∗
p +

1

2
(bp − ρ∗p)φ

∗
p

−Vxc(ρ∗p)ρ∗p +
1

2
(b̃p + bp)Vc,p −

1

2

∑

J

b̃J,pṼJ,p +
2σ

h3

npl
∑

j=0

ejpρ
j∗
p

)

, (125)

where the integrals have been approximated using the trapezoidal rule (Eqn. 103).

The subscript p is used to denote the value of the quantity at or corresponding

to that finite-difference node. As before, the summation index J runs over all the

atoms in Ω and their periodic replicas. The free energy expression in Eqn. 125 is

applicable to both Γ-point and infinite cell calculations, with the nodal quantities

defined appropriately as described in sub-section 4.1.4.

4.5.2 Forces

The atomic forces (Eqn. 38) — required for structural relaxations and molecular

dynamics — need to be calculated once the electronic ground-state is determined.

They consist of local and nonlocal components, whose expressions we present below.

Local component The local component of the atomic force takes the form

f lI = h3
∑

I′

∑

p∈KΩ

(

∇̃hbI′
∣

∣

p
(φ∗

p − V I′

loc,p) +
1

2
∇̃hb̃I′

∣

∣

p

(

Vc,p − ṼI′,p

)

+
1

2
∇̃hbI′

∣

∣

p

(

Vc,p + V I′

loc,p

)

+
1

2
∇̃hVc,I′

∣

∣

p

(

b̃p + bp

)

+
1

2
bI′,p∇̃hV

I′

loc,p

∣

∣

p

−1

2
b̃I′,p∇̃hṼI′

∣

∣

p

)

, (126)

where the integrals have been approximated using the trapezoidal rule (Eqn. 103).

Again, the summation index I ′ runs over the I th atom and all its periodic images.

79

Nonlocal component The nonlocal component of the force — as formulated in

sub-section 2.1.3 — for a Γ-point calculation can be written as (see Eqn. 45)

fnlI = 4
∑

p∈KΩ

vT
p

(

VI
nl∇̃hg(H

∗, µ, σ)
)

vp . (127)

After approximating the above expression in terms of the local density matrix and

expanding in Chebyshev polynomials, we arrive at

fnlI ≈ 4
∑

p∈KΩ

wT
p

(

VI
nl,p∇̃h,pg(Ĥ

∗
p, µ̂p, σ̂p)

)

wp ≈ 4
∑

p∈KΩ

npl
∑

j=0

cjpw
T
p V

I
nl,p∇̃h,pt

j∗
p . (128)

An alternative approach for determining the nonlocal component of the force involves

individually evaluating the required diagonal- and off-diagonal components of the

local density matrix using SQ. However, such a strategy is computationally expensive

due to the large number of density matrix components required. This is overcome in

Clenshaw-Curtis SQ using the observation that required diagonal- and off-diagonal

density matrix components can be written in terms of tj∗p , which are available during

the recursive iteration in Eqn. 115. However, in Gauss SQ, the required components

of the density matrix need to be individually computed, which makes calculation of

the atomic forces considerably more expensive.

Total force Using the local component of the force in Eqn. 126, and the nonlocal

component of the force in Eqn. 128, the atomic force in Eqn. 38 can be written as

fI = h3
nproc
∑

P=1

∑

p∈KΩP

∑

I′

(

∇̃hbI′
∣

∣

p
(φ∗

p − V I′

loc,p) +
1

2
∇̃hb̃I′

∣

∣

p

(

Vc,p − ṼI′,p

)

+
1

2
∇̃hbI′

∣

∣

p

(

Vc,p + V I′

loc,p

)

+
1

2
∇̃hVc,I′

∣

∣

p

(

b̃p + bp

)

+
1

2
bI′,p∇̃hV

I′

loc,p

∣

∣

p
(129)

−1

2
b̃I′,p∇̃hṼI′

∣

∣

p

)

− 4
∑

p∈KΩ

npl
∑

j=0

cjpw
T
p V

I
nl,p∇̃h,pt

j∗
p .

For an infinite-cell calculation, while the local component of the force remains the

same, the nonlocal component differs because of the different boundary conditions

imposed on the nonlocal pseudopotential in Γ-point and infinite-cell calculations, as

80

can be seen from Eqns. 104 and 105 (and the discussion below them). Adopting the

same procedure as for the nonlocal Γ-point force, we arrive at the following expression

for total atomic force in infinite-cell calculations:

f∞I = h3
nproc
∑

P=1

∑

p∈KΩP

∑

I′

(

∇̃hbI′
∣

∣

p
(φ∗

p − V I′

loc,p) +
1

2
∇̃hb̃I′

∣

∣

p

(

Vc,p − ṼI′,p

)

+
1

2
∇̃hbI′

∣

∣

p

(

Vc,p + V I′

loc,p

)

+
1

2
∇̃hVc,I′

∣

∣

p

(

b̃p + bp

)

+
1

2
bI′,p∇̃hV

I′

loc,p

∣

∣

p
(130)

−1

2
b̃I′,p∇̃hṼI′

∣

∣

p
− 4

h3

npl
∑

j=0

cjpw
T
pV

I′

nl,p∇̃h,pt
j∗
p

)

.

In deriving the nonlocal component of the force in the above equation, since tj∗p is

not available for p /∈ KΩ, it has been periodically mapped back to the corresponding

tj∗p for p ∈ KΩ.

4.6 Scalability and storage

In this section we discuss the linear scaling aspects, parallel scalibility and mem-

ory requirements of the matrix-free numerical implementation. We first disucss the

computational complexity in terms of the number of operations and show that each

component of the entire method scales linearly with system size. We then describe

the processor communications that are involved in the method and how they dictate

the parallel scalability. We also discuss the storage requirements and how well suited

the method is for minimum memory implementations.

4.6.1 Computational complexity

Let us define the following variables. The number of SCF iterations is nscf , the

number of iterations in Lanczos algorithm is nlancz, the number of iterations in the root

finding algorithm for Fermi energy calculation is nfermi and the number of iterations

for Poisson solver (AAJ) is npoiss. Ns is the number of grid points in a cube of side

2Rcut which is the localization region. Nrb and Nrc are the number of grid points in

a cube of side 2rb and 2rc respectively. rc is the pseudopotential cut-off distance and

81

rb is the cut-off distance required for accurate computation of ionic charge density

b(x). Nw be the number of weights in the Laplacian stencil dependent on the order of

finite difference approximation. N is the number of atoms in Ω. The average number

of grid points per atom is given by c1. Let the average number of atoms whose

pseudopotential cut-off is within a distance of rb from any grid point be denoted by

c2 and that within a distance of Rcut be denoted by c3. Computing bJ(xp,RJ) at node

p takes c4 operations. We note that nfermi, Ns, Nrb , Nrc , Nw, c1, c2, c3 and c4 are all

constant for a given system and a given accuracy, even as the system size increases.

The number of iterations in Lanczos algorithm, nlancz, do not change significantly

with system size. The SCF iterations do increase with the size of the system (espe-

cially for metals) [37]. Hence, preconditioned techniques have to be explored such

that nscf will be independent of the size of the atomistic system [63]. In the cur-

rent work, since we are interested in the high temperature regime, the acceleration

techniques like Periodic Pulay would be suffcient to provide a favorable scaling with

system size. The number of iterations in the linear solver npoiss would also be inde-

pendent of system size when a multigrid preconditioner is used [17]. In Table 8, we

present the scaling of each of the component of the O(N) DFT method. The second

column of the table (“Operations”) gives the approximate expression for the total

number of dominant computational operations performed in that part of the calcula-

tion. ma and pa are the parameters of the AAJ solver, where ma is the history size

and pa is the frequency at which Anderson update is performed. lm is the maximum

angular momemtum component of any atom in the system. The operations required

for computation of exchange-correlation potential and energy (which are also O(N))

are not included in the table for the sake of simplicity.

82

Table 8: Computational complexity of each of the components of the O(N) Spectral

Quadrature DFT method. In the table, O(Nmv) = O(NsNw)+ c3O(l2mmin (Nrc , Ns))

is the scaling of the number of operations in evaluating the nodal matrix times vector

in a matrix-free way.

Component Operations

b(x) calculation (c1c2c4(O(Nrb) +O(NwN
2/3
rb)))N

Veff calculation (c1npoiss(nscf + 1)(O(Nw) +O(m2
a/pa) +O(ma/pa)))N

Potential mixing (c1nscf(O(m2
a/pa) +O(ma/pa)))N

ρ(x) calculation (c1nscf((nlancz + npl)O(Nmv) + nfermiO(n2
pl)))N

Energy c1(O(n2
pl) + c2O(Nrb))N

Forces (c1(nplO(Nmv) + c2c4(O(Nrb) +O(NwN
2/3
rb))))N

It can be seen that all the components of the method scale linearly with the num-

ber of atoms N . Among all the components, the electron density ρ(x) calculation

has a very high prefactor. The significant cost in electron density calculation using

the SQ method arises from the prefactor c1nplO(Nmv)(≈ c1nplO(Ns)) which indicates

computation of many nodal matrix times vector products depending on the quadra-

ture order npl. Nmv is the number of significant operations involved in computing

the matrix vector product in a matrix free way and is proportional to the size of

the localization region Ns which is independent of the size of the system. On each

processor, the above prefactor is given by NprocnplO(Ns), where, Nproc is the number

of grid points per processor. So, on a large number of processors, when Nproc is very

small, the cost of calculating electron density can be comparable to other components

depending on npl and Ns. Although evaluating Chebyshev coefficients in the electron

density calculation can be achieved in O(npl log npl) [16] effort, in this work we have

employed the discrete orthogonality of the Chebyshev polynomials to compute the

coefficients (which scales as O(n2
pl)), as we target high temperature applications that

83

require a very low order of quadrature (i.e. reduced prefactor).

4.6.2 Processor communications

An important feature of the matrix-free implementation of the O(N) DFT method

is its massive parallelizability that could enable us to overcome the high prefactor of

the method. In this sub-section we shall discuss the communications required among

processors in this method and how they affect the parallel scaling of the code.

Local communication Majority of the communication involving neighboring pro-

cessors comes from two parts of the method – residual calculation in the AAJ Poisson

solver and communication of effective potential information at the nearby nodes of

each processor. In the former case, residual calculation in each iteration of the solver

requires computation of Laplacian of φ at each grid point in a processor using the

finite difference stencil and this requires values of φ at points that belong to the

neighboring processors. In the latter case, the nodal Hamiltonian matrix times vec-

tor product in sub-section 4.4.1 for some point p ∈ KΩP
requires the values of Veff,p[i]

at points i which lie inside the localization region Ωp (cube of size 2Rcut around p)

but outside the processor domain ΩP . In both the cases, each processor is required

to communicate only with a few neighboring processors and hence does not hinder

the parallel scalability of the system. We use separate communicator topologies for

both the cases. We use MPI Ineighbor alltoallv [42] that has has been developed for

extreme scalability of the local communications among all the processors. However,

it should be noted that any sort of communication might effect the strong scaling

beyond a certain number of processors.

Global communication Scaling the code to many hundreds of thousands of pro-

cessors would not be practical if the global communications are significant. Global

communication among processors is typically required for computing dot products of

84

vectors and summation over all grid points in Ω using MPI Allreduce operations. In

the O(N) DFT method, global communications are required in computing the 2-norm

of the residuals, to check for convergence in SCF iteration as well as in AAJ itera-

tions. They are also required to compute dot products for Anderson updates in SCF

mixing and AAJ solvers. Additionally, MPI Allreduce communication is required

in every iteration of finding Fermi energy using Eqn. 120 and in computing energy

from Eqn. 125 and force from Eqn. 129 or 130 . The total number of MPI Allreduce

operations in one Molecular Dynamics time step using the O(N) DFT method is

approximately (nscf + 1)
npoiss

pa
+ nscf +

nscf

pa
+ nfermi + 2. This is a small number of

global communications that take very less time compared to that of the computations

which is evident from the parallel scaling results in Section 5.4.

4.6.3 Memory requirements

In this matrix-free implementation of the method, there is no need for storage of

any dense or sparse matrices. We store the arrays for b(x), φ(x), Veff(x), ρ(x), atom

positions within some distance of ΩP and their non-local projectors etc., distributed

across all the processors. Every processor stores all the atom positions in Ω and their

forces. Also, every processor P , stores the Chebyshev coefficients (cjp), components

(ρjp) and scaling factors for all p ∈ KΩP
and for j ∈ {0 to npl}. So the storage in

each processor scales as O((c+npl)Nproc), where Nproc is the number of grid points in

the processor domain ΩP and c is some constant to account for all the other arrays

distributed across processors. Hence, memory requirement also scales linearly with

system size. For simulations involving high prefactor (c << npl), one can compute

Fermi energy (Eqn. 120) without the need to even store the Chebyshev coefficients

and components. In such a case, the trade-off would be to perform more computations

to evaluate them in every iteration of Fermi energy calculation.

85

CHAPTER V

RESULTS AND EXAMPLES

In this section, we verify the convergence of the Clenshaw-Curtis Spectral Quadrature

(SQ) method for canonical insulating and metallic systems. Specifically, we demon-

strate convergence with respect to quadrature order and truncation radius to the

diagonalization result. We also show convergence with respect to mesh size to estab-

lished O(N3) scaling planewave results. To allow rigorous assessment of convergence,

we first consider a model one-dimensional problem in Section 5.1. We then consider

full, three-dimensional Kohn-Sham calculations in Section 5.2. In Section 5.3, we

study the efficiency of SQ for performing high temperature calculations and discuss

the parallel scaling studies in Section 5.4. We also compare computational timings

with a diagonalization based code and show some preliminary results for ab-initio

molecular dynamics simulation.

5.1 Validation through a model problem

We begin with a one-dimensional model problem wherein atoms interact with the

effective potential [31]

Veff (x,R) = −
∑

J

α
√

2πβ2
exp

(

−(x− RJ)
2

2β2

)

. (131)

We choose the parameters (α, β) = (10, 0.6), and consider an infinite chain of atoms

with unit lattice constant. In addition, we employ a twelfth order finite-difference

discretization with a mesh-size of h = 0.1, and a smearing of σ = 1. In Fig. 15,

we show the convergence of the Γ-point energy (obtained via diagonalization) to the

infinite-cell result as the number of unit cells (containing one atom each) in Ω is

86

0 5 10 15 20 25 30
10

−15

10
−12

10
−9

10
−6

10
−3

10
0

No. of unit cells

D
iff
er
en

ce

Figure 15: Convergence of the Γ-point energy to the infinite-cell limit for a 1D model
problem. The energy corresponding to a 40 unit-cell system has been used as refer-
ence.

increased. We see that the energy has converged to within ∼ 10−12 of the infinite-

unit-cell limit for Ω containing 25 unit cells. In order to validate the SQ method, we

therefore choose 2-atom and 25-atom cells for the infinite-cell and Γ-point calculations,

respectively. The converged energies for each case should then differ by no more than

∼ 10−12.

The two parameters introduced by the Clenshaw-Curtis SQ method are the or-

der of the quadrature npl and the truncation radius Rcut. In Fig. 16, we show the

convergence with respect to these two parameters for both Γ-point and infinite-cell

calculations. Specifically, we plot the error in energy—defined with respect to the

result obtained by diagonalization—versus npl and Rcut in Figs. 16a and 16b, respec-

tively. Since the cell Ω in the Γ-point calculations has been chosen sufficiently large

to reduce finite-size effects to ∼ 10−12, the Γ-point and infinite-cell results should be

essentially indistinguishable, as we see in Fig. 16. We observe that SQ demonstrates

87

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

npl

E
rr
o
r

Infinite−cell

Γ−point

γ = 0.071

(a) Convergence with npl

0 2 4 6 8 10

10
−8

10
−6

10
−4

10
−2

10
0

Rcut

E
rr
o
r

Infinite−cell

Γ−point

(b) Convergence with Rcut

Figure 16: Convergence of energy with respect to quadrature order npl and truncation
radius Rcut to the diagonalization result for a 1D model problem. 2-atom and 25-
atom unit cells have been employed for the infinite-cell and Γ-point calculations,
respectively. The theoretically predicted convergence rate [103] is denoted by γ.

88

exponential convergence with respect to npl, with the obtained rate in excellent agree-

ment with theoretical predictions [103]. Moreover, there is exponential convergence

with respect to Rcut, again in agreement with theory [10].

Apart from the Clenshaw-Curtis SQ method developed in the present work, the

other notable variant of SQ is based on Gauss quadrature [103]. For the 1D model

problem, in Figs. 17a and 17b, we compare the convergence of the two approaches with

respect to npl and Rcut, respectively. These results correspond to Γ-point (convergence

with npl) and infinite-cell (convergence with Rcut) calculations for 25-atom and 2-

atom unit cells, respectively. We observe that the asymptotic convergence rate of

Gauss SQ is twice that of Clenshaw-Curtis SQ, and both are in good agreement with

theoretical predictions [103]. Notably, the initial convergence rate of Clenshaw-Curtis

SQ is twice its asymptotic value, a phenomenon which has been discussed in detail

elsewhere [110]. The convergence of both methods with respect to Rcut is identical,

as dictated by the decay of the density matrix.

In Clenshaw-Curtis SQ, the key computations occurring for every finite-difference

node are the npl local matrix-vector multiplications, and evaluation of the npl Cheby-

shev expansion coefficients. In practical DFT calculations, the relatively large nodal

Hamiltonians result in the matrix-vector products being the dominant computational

cost. Similarly, the dominant cost in Gauss SQ corresponds to the npl local matrix-

vector multiplications during the Lanczos iteration, with the tridiagonal matrix or-

thogonalization constituting a relatively small fraction of the total expense. It is

evident from Fig. 17a that the quadrature order required by Gauss SQ is typically

smaller than for Clenshaw-Curtis SQ. However, since both approaches display similar

convergence behavior in the initial stages, the quadrature orders required for achiev-

ing chemical accuracies do not differ significantly. In this work, we have preferred the

Clenshaw-Curtis variant of SQ since the nonlocal component of the atomic forces can

be evaluated straightforwardly and efficiently (sub-section 4.5.2), whereas the path to

89

0 50 100 150 200
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

npl

E
rr
o
r

Clenshaw−Curtis

Gauss

γ = 0.071

γ = 0.142

(a) Convergence with npl

0 2 4 6 8 10

10
−8

10
−6

10
−4

10
−2

10
0

Rcut

E
rr
o
r

Clenshaw−Curtis

Gauss

(b) Convergence with Rcut

Figure 17: Comparison of the convergence of the Clenshaw-Curtis and Gauss SQ
methods to the diagonalization result for a 1D model problem. 2-atom and 25-atom
unit cells have been employed for the infinite-cell (convergence with Rcut) and Γ-
point (convergence with npl) calculations, respectively. The theoretically predicted
convergence rate [103] is denoted by γ.

90

such is unclear for Gauss SQ. In addition, the evaluation of the Chebyshev coefficients

in Clenshaw-Curtis SQ scales as O(npl lognpl) [16], whereas orthogonalization of the

tridiagonal matrix in Gauss SQ scales as O(n2
pl) [26].

5.2 Accuracy and convergence

We consider two systems for the Kohn-Sham calculations: (i) lithium hydride, a

prototypical insulator, and (ii) aluminum, a prototypical metal. In all simulations,

we use norm-conserving Troullier-Martins pseudopotentials [111], and the Perdew-

Wang parametrization [81] of the correlation energy calculated by Ceperley-Alder

[22]. Additionally, we utilize a smearing of 0.5 eV and 4 eV for the Γ-point and

infinite-cell calculations, respectively. Finally, we employ a twelfth order accurate

finite-difference discretization, unless otherwise specified.

5.2.1 Lithium hydride

We consider an 8-atom unit cell of lithium hydride at the equilibrium lattice con-

stant of 7.37 Bohr. We displace the lithium atom at the corner of the unit cell,

which corresponds to the origin of the chosen coordinate system, to [0.57 0.43 0.37]

Bohr. For lithium’s nonlocal pseudopotential, we designate the s channel as local,

and utilize cutoff radii of 2.43 Bohr for both the s and p channels. For hydrogen’s

pseudopotential, we use a cutoff radius of 1.4 Bohr. We perform both Γ-point and

infinite-cell calculations with h = 0.57 Bohr, and present the results so obtained in

Fig. 18. Specifically, we plot the convergence of SQ energy and forces with respect to

quadrature order npl and truncation radius Rcut for Γ-point and infinite-cell calcula-

tions in Figs. 18a and 18b, respectively. The errors are defined relative to the results

obtained by diagonalization. As in the case of the one-dimensional model problem,

we obtain exponential convergence with respect to both parameters. These results

indicate that the theoretical predictions made in the linear setting [103, 10] are also

applicable to the nonlinear Kohn-Sham problem. We note that neither energies nor

91

100 200 300 400 500

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

npl

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(a) Γ-point calculation

2 4 6 8 10
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Rcut

E
rr

o
r

Energy (Ha/atom)
Forces (Ha/Bohr)

(b) Infinite-cell calculation

Figure 18: Convergence of energy and forces with respect to quadrature order npl and
truncation radius Rcut to the diagonalization result for lithium hydride. The error
in energy denotes the magnitude of the difference, and error in forces represents the
maximum difference in any component.

92

forces are variational with respect to Rcut, and so errors can in general be positive,

negative, or zero. This can be seen, for example, in the non-monotonic convergence

of the energy error in Fig. 18b.

Next, we verify the accuracy of SQ by comparing the calculated energies and forces

to those computed by the ABINIT planewave code [40]. In ABINIT, we employ a

planewave cutoff of 50 Ha, and a 6 × 6 × 6 Monkhorst-Pack grid for Brillouin zone

integration. These parameters result in energies and forces converged to within 10−6

Ha/atom and 10−6 Ha/Bohr, respectively. In SQ, wherever it is not possible to utilize

twelfth order finite-differences, we employ the largest order feasible. Additionally, we

utilize {npl, Rcut} = {550, 3.69Bohr} and {npl, Rcut} = {160, 8.50Bohr} for the Γ-

point and infinite-cell calculations, respectively. These values are sufficient to put

the associated errors well below the mesh errors of interest. We note that a larger

value of npl is required for the Γ-point calculation because of the lower value of

smearing/temperature. As shown in Fig. 19, both energies and forces in SQ converge

rapidly and systematically, with chemical accuracy easily obtained. Notably, we see

that energies and forces converge at comparable rates, without need of additional

measures such as double-grid [73] or high-order integration [11] techniques. Hence,

accurate forces are easily obtained, as required for structural relaxation and molecular

dynamics simulations.

5.2.2 Aluminum

We now consider a 4-atom face-centered cubic (FCC) unit cell of aluminum at the

equilibrium lattice constant of 7.78 Bohr. We move the atom located at [3.89 3.89

0.00] Bohr to [3.74 3.49 0.37] Bohr, with the corner atom again coinciding with the

origin. We utilize a nonlocal pseudopotential having cutoff radius of 2.58 Bohr for

both the s and p channels, with the p channel chosen as local. In Fig. 20, we show

93

0.40.50.60.70.80.911.1
10

−5

10
−4

10
−3

10
−2

10
−1

Mesh size (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(a) Γ-point calculation

0.40.50.60.70.80.911.1
10

−5

10
−4

10
−3

10
−2

10
−1

Mesh size (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(b) Infinite-cell calculation

Figure 19: Convergence of energy and forces with respect to mesh size to reference
planewave result for lithium hydride. The error in energy denotes the magnitude of the
difference, and error in forces represents the maximum difference in any component.

94

100 200 300 400 500

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

npl

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(a) Γ-point calculation

2 4 6 8 10 12
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Rcut

E
rr

o
r

Energy (Ha/atom)
Forces (Ha/Bohr)

(b) Infinite-cell calculation

Figure 20: Convergence of energy and forces with respect to quadrature order npl

and truncation radius Rcut to the diagonalization result for aluminum. The error in
energy denotes the magnitude of the difference, and error in forces represents the
maximum difference in any component.

95

the convergence of energy and forces with respect to quadrature order npl for Γ-

point calculations, and truncation radius Rcut for infinite-cell calculations. We choose

h = 0.65 Bohr for the calculations and define all errors with respect to diagonalization.

For this prototypical metallic system, we obtain exponential convergence with respect

to both parameters, just as for the insulating lithium hydride system.

Finally, we compare the results obtained by SQ and ABINIT for the aforedescribed

aluminum system. In ABINIT, we utilize a planewave cutoff of 30 Ha, and a 6×6×6

Monkhorst-Pack grid for Brillouin zone integration. The energies and forces so com-

puted are converged to within 10−6 Ha/atom and 10−6 Ha/Bohr, respectively. In

SQ, whenever nd is too small to utilize twelfth order finite-differences, we again em-

ploy the largest order possible. Additionally, we utilize {npl, Rcut} = {600, 3.89Bohr}

and {npl, Rcut} = {120, 10.00Bohr} for the Γ-point and infinite-cell calculations, re-

spectively. It is clear from the results presented in Fig. 21 that similar to the case

of lithium hydride, both energies and forces converge rapidly, and at similar rates.

Overall, we see that SQ is able to obtain chemical accuracy in both energies and

forces, straightforwardly and systematically, in both insulating and metallic systems.

5.3 Efficiency at higher temperatures

The computational cost of conventional diagonalization-based DFT calculations grows

rapidly with increasing temperature due to a larger number of previously unoccu-

pied states becoming partially occupied. Since most diagonalization algorithms scale

quadratically with the number of states to be computed, high temperature calcu-

lations can quickly become intractable [116]. However, in the Clenshaw-Curtis SQ

method, the overall cost decreases with increasing temperature. This is due to the

enhanced decay of the density matrix, which translates to smaller values of the trun-

cation radius Rcut. Furthermore, a lower-order quadrature rule suffices due to the

increased smoothness of the Fermi-Dirac function, resulting in additional savings. In

96

0.60.811.21.41.6
10

−5

10
−4

10
−3

10
−2

10
−1

Mesh size (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(a) Γ-point calculation

0.60.811.21.41.6
10

−5

10
−4

10
−3

10
−2

10
−1

Mesh size (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(b) Infinite-cell calculation

Figure 21: Convergence of energy and forces with respect to mesh size to reference
planewave result for aluminum. The error in energy denotes the magnitude of the
difference, and error in forces represents the maximum difference in any component.

97

0 1 2 3 4 5 6 7 8 9

x 10
4

0

50

100

150

200

250

300

350

T (Kelvin)

n
p
l

γ = 0.010

γ = 0.029

γ = 0.118
γ = 0.221

Figure 22: Dependence of quadrature order npl on temperature T for errors of∼0.0001
Ha/atom in energy and ∼0.0001 Ha/Bohr in forces. The theoretically predicted
convergence rate [103] is denoted by γ.

order to quantify this reduction in quadrature order, we consider the Γ-point calcula-

tion for the aluminum system described in sub-section 5.2.2 at different temperatures,

and determine the order of quadrature required to attain convergence of ∼ 0.0001

Ha/atom in the energy and ∼ 0.0001 Ha/Bohr in atomic forces. We present the

results so obtained in Fig. 22, along with theoretically predicted convergence rates γ

[103]. We observe that there is indeed a rapid decrease in the order of quadrature, and

thus computational cost, required to obtain the specified accuracies as temperature

increases. Moreover, the quadrature order required is consistent with the predicted

convergence rate γ [103], which increases with temperature.

Since the required order of quadrature in SQ varies inversely with the temperature

for a given spectral width [103], it can be inferred from Fig. 22 that quadrature orders

of a few thousand are required for calculations near room temperature. Therefore,

the SQ approach possesses a relatively large prefactor for such temperatures and/or

Hamiltonians with large spectral width. However, the particular suitability of SQ for

98

large-scale parallel computation, as discussed below, stands to mitigate this. There-

fore, it may be expected that calculations at room temperature will be feasible using

Clenshaw-Curtis SQ when sufficient processors are available. One helpful degree of

freedom to exploit in practice is the use of larger occupation smearing than σ = 0.001

Ha (T ∼ 315 K) as an approximation. The typical practice in metallic calculations

of employing a smearing of σ ∼ 0.01 Ha (T ∼ 3150 K), for example, could yield sub-

stantial efficiency gains, while retaining energies and forces to high accuracy relative

to σ = 0.001 Ha values.

In order to study the dependence of the truncation radius (Rcut) with the tem-

perature, we consider the infinite-cell calculation of the aluminum system. Since, the

localization depends on the decay of density matrix, we expect that the truncation

radius required for a particular level of accuracy to reduce with increasing tempera-

ture. In Fig. 23, we plot the convergence of energy and forces with respect to Rcut at

various temperatures (smearings). The error is computed with respect to a converged

value with respect to Rcut at each of the temperatures. The Rcut required for an

accuracy of 0.0001 Ha/atom or Ha/Bohr is about 32 Bohr at T = 2368 K, 16 Bohr

at T = 12630 K and 10 Bohr at T = 31577 K, demonstrating a decreasing trend with

temperature.

5.4 Parallel scaling studies

The parallel simulations have been performed on the Lawrence Livermore National

Laboratory’s computational resources vulcan1 and sierra2.

Vulcan3 is an IBM Blue Gene/Q system with PPC A2 CPUs, BlueGene torus high-

speed interconnect, 1.6 GHz CPU speed, 42.6 GB/s peak CPU memory bandwidth

and 5033 TFLOP/s peak performance. It has 24576 compute nodes with 16 cores

1http://computation.llnl.gov/computers/vulcan
2https://computing.llnl.gov/?set=resources&page=OCF resources#sierra
3https://computing.llnl.gov/?set=resources&page=OCF resources#vulcan

99

0 4 8 12 16 20 24 28 32
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rcut (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(a) T = 2368 K

0 4 8 12 16 20 24 28 32
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rcut (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(b) T = 12630 K

0 4 8 12 16 20 24 28 32
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

Rcut (Bohr)

E
rr
o
r

Energy (Ha/atom)

Forces (Ha/Bohr)

(c) T = 31577 K

Figure 23: Convergence of energy and forces with respect to localization radius Rcut

at various temperatures for Aluminum.

100

each, with a total of 393216 compute cores.

Sierra has Intel Xeon EP X5660 CPUs, InfiniBand QDR (QLogic) high-speed

interconnect, 2.8 GHz CPU speed, 32 GB/s peak CPU memory bandwidth and 261.3

TFLOP/s peak performance. It has nodes with 12 cores each and a total of 23328

cores.

Conventional O(N3) scaling diagonalization-based electronic structure methods

involve the computation of large numbers of orthonormal eigenvectors, which re-

quires communication between each processor holding all or a part of an eigenvector

and every other processor holding all or a part of other eigenvectors. This extensive

communication severely limits parallel scalability. O(N) electronic structure methods

compute required densities, energies, and forces, proceeding directly from Hamilto-

nian to required outputs without diagonalization. The key computational workload

in standard O(N) electronic structure methods such as Fermi operator expansion

(FOE) [38, 39] instead comes in the form of repeated large sparse matrix-matrix mul-

tiplies involving the Hamiltonian. However, with each multiply, the sparsity pattern

changes, necessitating truncation to retain only desired nonzeros. Moreover, nonlocal

communications and indirect addressing are required to map nonzeros of correspond-

ing rows and columns to one another, making such operations difficult to parallelize

at large scale.

Being integral based, however, the SQ electronic structure method admits a nat-

ural decomposition in real-space, eliminating the need for large sparse matrix-matrix

operations entirely. To exploit this, we have represented the electronic densities and

potentials on a uniform finite-difference grid in real-space. Moreover, we have ex-

ploited the locality of the density matrix to replace large global sparse matrix-matrix

operations by small local sparse matrix-vector operations (computed in a matrix free

way), with all calculations strictly confined to localization regions around each grid

101

point. In so doing, the key computational operations are reduced to local finite-

difference stencil operations, global vector sums, and dot products. Storage and

memory access can be minimized by forming local matrices on the fly, simultaneously

at each grid point, and can be reduced further still by computing only the action of

matrices on required vectors, rather than computing the matrices themselves. These

latter possibilities arise naturally in the SQ formulation, allowing flops to be traded

for decreased storage, access, and/or communication, as best suits the architecture

at hand. By reducing all key computational kernels to local stencil and vector oper-

ations, the SQ method is well suited to large-scale parallel implementation.

In this Section, we look at the strong and weak scaling of the FCC Aluminum

system with 4 eV smearing. The equilibrium lattice constant is 7.78 Bohr. The four

atoms in the unit cell are located at [0.00 0.00 0.00] Bohr, [0.00 3.89 3.89] Bohr, [3.89

0.00 3.89] Bohr and [3.74 3.49 0.37] Bohr. In all the scaling simulations, we discretize

the domain with a mesh size of 0.778 Bohr and choose the SQ paramters npl = 28 and

Rcut = 6 Bohr, which are all sufficient to give an accuracy of below 0.001 in energy

(Ha/atom) and forces (Ha/Bohr). We only consider the infinite-cell calculations in

all the subsequent simulations. The parallel code has been written using MPI and C.

5.4.1 Strong scaling

In strong scaling, we are interested in looking at the efficiency of speeding up the

calculations (i.e. reducing the wall time) as the number of processors allocated for

the problem are increased. Strong scaling determines how fast a given problem can be

solved using the maximum number of resources. With more number of processors, the

number of grid points per processor reduces and hence the amount of computation

to be carried out by any processor also reduces. If a calculation involves minimal

communication time compared to that of computations, then the efficieny of reducing

the wall time proportional to the increase in number of processors is very high. This

102

efficiency would be affected by both local and global communications.

For the strong scaling study, we choose a 2048 atoms system obtained by repli-

cating the unit cell 8 times in each direction. In typical calculations, solving the SCF

is the dominant cost and hence scaling of a single SCF iteration would determine

the scaling of the overall calculation. In Fig. 24a, we present the strong scaling of

the method by plotting the wall time taken by a single SCF iteration. The system

under consideration has 803 = 512000 grid points. As we go from 64 processors to

8000 processors, the number of grid points per processor changes from 203 to 43 re-

spectively. On the vulcan cluster, we go until there are 23 grid points per processor.

The calculation shows a very good strong scaling with about 98% efficiency (on both

vulcan and sierra) at the lowest point in the plot. This shows the near perfect strong

scaling behavior of the method and can be attributed to the local nature of the spec-

tral quadrature method which takes most of the time in a single SCF iteration. If we

include the total SCF and force calculation time, the efficiency is about 93% on sierra

and 60% on vulcan at the lowest points in the plot. At 64000 processors on vulcan,

the reduced efficiency is mainly due to the loss of strong scaling in force calculation

as the number of grid points in each direction in the processor has become much

smaller than the finite difference stencil width (see Table 9). Notice that in Table 9,

the time taken by SCF decreases by about 7 times from 8000 to 64000 processors (8

fold increase) but the time taken by forces decreases by only about 3 times.

103

Table 9: Wall times (in seconds) for the strong scaling study of 2048 atoms Aluminum

system using SQ method on vulcan cluster. The timings for SCF, forces and the

timings for a single SCF iteration are presented in the above table.

nproc SCF Forces One SCF iteration

125 4734 1228 788

512 1143 298 190

1000 597 161 98

4096 143 42 24

8000 73 25 12

64000 10.7 8.7 1.6

104

10
2

10
3

10
4

10
5

10
0

10
1

10
2

10
3

No. of cores

W
a
ll
ti
m
e
(s
ec
)

vulcan

sierra

(a) Strong scaling

10
1

10
2

10
3

10
4

10
5

10
2

10
3

10
4

10
5

10
6

10
7

No. of atoms

C
P
U

ti
m
e
(s
ec
)

vulcan

sierra

(b) Weak scaling

Figure 24: Parallel scaling study of the Spectral QuadratureO(N) DFT method. The

computational times in the plots indicate the time taken by a single SCF iteration.

(a) The efficiency at the lowest point in strong scaling is about 98%. (b) The slopes

of linear fits for vulcan and sierra in weak scaling are 1.037 and 1.000 respectively.

105

5.4.2 Weak scaling

In weak scaling, we are interested in determining the ability of the method to solve

larger problems with the same amount of computational effort per the allocated re-

source. Given a problem that can be solved on a particular number of processors

within a specified time, weak scaling determines how big a problem can be solved

in almost the same time utilizing proportionally larger number of resources. Since

we use a scalable routine (see sub-section 4.6.2) for local communications, the weak

scaling would only be hindered by global communications that increase proportion-

ally with number of processors. So, if the computations are much more significant

than global communications (which is typically the case, unless we are at the limits

of strong scaling for a large problem), we expect that the weak scaling has the same

behavior as the overall computational scaling of the method (i.e. O(N)).

For the weak scaling study, we choose 8 processors to solve the 4 atom unit cell

where 53 grid points are allocated to each processor. Larger systems are obtained by

replicating this unit cell and the associated number of processors in order to maintain

the number of grid points per processor at a constant value of 53. This choice of

grid points per processor corresponds to a strong scaling efficiency of 98% and 91%

on vulcan and sierra respectively for the total SCF and force calculation. On the

sierra cluster, we start from 32 atoms on 64 processors and go until 6912 atoms on

13824 processors. On the vulcan cluster, we start from 108 atoms on 216 processors

and go until 62500 atoms on 125000 processors. Fig. 24b shows the weak scaling of

the method with CPU time plotted as the size of the system increases. CPU time

is the total time taken by all the processors which is given by the product of wall

time and the number of processors. The scaling laws (based on the time for single

SCF iteration) on vulcan and sierra are computed to be O(N1.037) and O(N1.000)

respectively. If the scaling laws are calculated based on the total time for SCF and

forces then we get, O(N1.035) and O(N1.014) on vulcan and sierra respectively. As

106

expected, this is in agreement with the O(N) scaling of the method.

5.5 Comparison with diagonalization

In this section, we compare the performance of SQ method with respect to a diag-

onalization based code ABINIT [40] at high temperature for the Aluminum system

used in previous section. We employ a smearing of 4 eV which corresponds to an elec-

tronic temperature of 46418.02 K. In Table 10, we compare the computational time

taken by the SQ method and ABINIT for two different system sizes. The convergence

parameters and mesh sizes (for both SQ and ABINIT) chosen are just sufficient to

give the chemical accuracy of 0.001 Ha/atom in energy and 0.001 Ha/Bohr in forces.

Specifically, we choose a mesh size of 0.778 Bohr in SQ and a planewave cut-off of

8 Ha in ABINIT. Large size systems have been obtained by replicating the 4-atom

unit cell in the three directions. The 108 atoms system needs about 1400 states and

the 500 atom system needs about 5000 states in ABINIT simulations. The number

of processors for both SQ and ABINIT have been chosen to give minimum wall time,

restricting the computational resources to 1024 processors. SQ method implemented

in parallel shows about one and two orders of magnitude speedup over ABINIT for the

108 and 500 atoms systems respectively. It can be noted that the speedup is higher

for the larger system. We also note that the SQ wall times will be even lower if more

processors are used. The simulations are performed on the computing nodes with the

following configuration: Altus 1804i Server - 4P Interlagos Node, Quad AMD Opteron

6276, 16C, 2.3 GHz, 128GB, DDR3-1333 ECC, 80GB SSD, MLC, 2.5” HCA, Mel-

lanox ConnectX 2, 1-port QSFP, QDR, memfree, CentOS, Version 5, and connected

through InfiniBand cable.

107

Table 10: Comparison of minimum wall time (in seconds) for SQ and ABINIT. The

numbers in the parentheses indicate the number of processors for which we obtained

minimum wall time for the respective systems. N is the number of atoms in the

system.

N SQ ABINIT

108 28 (1000) 401 (360)

500 51 (1000) 9736 (600)

5.6 Molecular dynamics

In Molecular Dynamics (MD), one is interested in propagating the system in discrete

time steps and finding out any properties of interest through time averaging. In

Ab-Initio Molecular Dynamics (AIMD) or Quantum Molecular Dynamics (QMD),

the interactions between the atoms are computed from first principles. We employ

Born-Oppenheimer Molecular Dynamics, where the nuclear motion is decoupled from

the electronic structure problem [67]. We solve for the electron density and potential

using the SQDFT method for a fixed position of the nuclei. The nuclear positions

are then updated based on the forces calculated from DFT. Below, we discuss some

preliminary results for an AIMD simulation.

We perform NVE (also called microcanonical ensemble) simulation where the to-

tal energy of the system remains constant with time. The atomic positions are up-

dated using the Leapfrog method which gives a second order approximation in time

discretization [94]. The atoms that move outside the simulation domain Ω are period-

ically mapped back inside. All the atoms are assigned an initial velocity with uniform

magnitude (and random direction) based on the initial temperature of 46418.02 Kelvin

(corresponding to a smearing of 4 eV). The initial accelerations are set to zero. We

choose an MD time step of 0.1 femto seconds (fs) and average over a maximum of

108

500 MD steps. The total energy (TE) of the system at any time step is given by the

sum of free energy (FE) and kinetic energy (KE). The time step has been chosen such

that it keeps the discretization error within some tolerance that conserves the total

energy. Since the total energy is to be conserved, the change in FE of the system as

the atoms move around is converted to KE (related to the velocities of the atoms)

which changes the instantaneous temperature of the system. We use a charge extrap-

olation algorithm to provide a good guess for the electron density in each MD step

for faster convergence of the SCF [2].

In Table 11, we present the average and standard deviations of the energies at

a few intermediate MD steps for the 108 atom Aluminum system discretized with

0.778 Bohr mesh. This mesh gives an error of less than 0.001 in energy (Ha/atom)

and forces (Ha/Bohr). Moreover, the forces are consistent with energy to about 0.001

Ha/atom, which is required for the conservation of energy. The average of the sum

of forces on an atom is within the 0.0001 Ha/Bohr and this conserves the linear

momentum of the system. Consequently, the average of sum of velocities of an atom

at any step is also below 0.0001 Bohr/fs. The averages are computed from across

all the atoms in Ω. We can observe from Table 11 that the KE of the system has

reduced gradually while the FE has increased. This has caused a reduction in the

temperature of the system. The SQ parameters Rcut and npl are chosen such that

they give sufficient accuracy even when the temperature of the system has dropped.

109

Table 11: The average and standard deviation of the total energy (TE), free energy

(FE) and kinetic energy (KE) at different steps of a 108 Al atom NVE MD simulation.

The energy units are in Ha/atom.

Total Energy Free Energy Kinetic Energy

Time step Average Std. dev. Average Std. dev. Average Std. dev.

100 −2.2384 0.0007 −2.4389 0.0160 0.2005 0.0157

200 −2.2383 0.0006 −2.4017 0.0403 0.1634 0.0401

300 −2.2383 0.0005 −2.3900 0.0368 0.1517 0.0367

400 −2.2383 0.0004 −2.3858 0.0327 0.1475 0.0327

500 −2.2383 0.0004 −2.3840 0.0295 0.1457 0.0294

110

CHAPTER VI

CONCLUSION

This work is motivated by a need to simulate large systems of atoms based on first

principles to model materials at nanoscale. Current codes that can simulate metals

scale cubically with number of atoms in the system and hence cannot tackle very

large systems with many hundreds or thousands of atoms. In this work, we used

the density matrix formulation of Density Functional Theory (DFT) to develop a lin-

ear scaling method based on Spectral Quadrature technique. We have presented the

Clenshaw-Curtis Spectral Quadrature (SQ) method for performing real-space O(N)

Density Functional Theory (DFT) calculations. In this approach, all quantities of

interest are expressed as bilinear forms, or sums over bilinear forms, which are then

approximated by spatially localized Clenshaw-Curtis quadrature rules. In conjunc-

tion with the local reformulation of the electrostatics, the proposed approach enables

the O(N) evaluation of the electronic density, energy, and atomic forces. In addi-

tion, the method permits infinite-cell calculations without recourse to Brillouin zone

integration or large supercells.

We also discuss acceleration techniques for fixed-point iterations, which are a key

component of DFT simulations. We propose new techniques to accelerate the SCF

which is a non-linear fixed point iteration in DFT. We also apply those techniques to

linear fixed point iteration obtained from Jacobi iteration to develop efficient solvers

for linear systems of equations. For all the proposed methods we discuss and demon-

strate their performance through examples. In the DFT simulations, we chose the

Alternating Anderson technique as the Poisson solver and for acceleration of SCF due

its amenability to massive parallelization.

111

We discuss the parallel numerical implementation of the SQ method where we

have employed a high-order finite difference representation in order to exploit the

locality of electronic interactions in real-space, enable systematic convergence, and

facilitate large-scale parallel implementation. In this representation, we have devel-

oped expressions for the electronic density, total energy, and atomic forces which can

be evaluated in O(N) operations. The SQ energies and forces were shown to converge

systematically with respect to quadrature order and truncation radius to the exact

diagonalization result, for 1D model as well as full 3D Kohn-Sham calculations of

insulating and metallic systems. Moreover, convergence to established O(N3) scal-

ing planewave results was obtained with increasing mesh. In both cases, chemical

accuracy was readily attained. The efficiency of the approach for high temperature

calculations was also shown, demonstrating decreasing cost with increasing tempera-

ture. The parallel scalability of the SQ method was demonstrated through strong and

weak scaling simulations on upto more than hundred thousand processors involving

tens of thousands of atoms. Comparison of the computational time with respect to

a diagonalization based code at high temperature was presented that shows a two

orders of magnitude speed-up of the SQ method over diagonalization for a 500 atom

system. Overall, we conclude that the proposed method scales linearly, demonstrates

the ability to simulate large systems of atoms and scale to a large number of proces-

sors.

6.1 Applications and Scope for future work

The SQ method is better suited for high temperature ab-initio molecular dynamics

(AIMD) simulations [116]. The wall times taken by SQ in Section 5.5 indicate that it

is capable of performing AIMD simulations for a few thousands of time steps involving

few hundreds of atoms. Moreover, the perfect parallel scalability of SQ suggests that

AIMD of even larger atomic systems with thousands of atoms is possible if sufficient

112

computational resources are available. On the other hand, diagonalization based

codes are much slower and involve orthogonalization of many thousands of states and

hence are not suitable for AIMD simulations at high temperature.

Another potential application for the SQ method is the study of mechanics of

defects through multi-scale modeling and coarse graining techniques [84]. Since SQ is

real space based and can perform infinite-cell calculations without recourse to k-point

integration, different boundary conditions that are required to model defects can be

easily incorporated into the simulation. Moreover, since the method is linear scaling

and massively parallelizable, it is possible to simulate very large atomistic systems

of the order of thousands of atoms that might be required to study the energetics of

defects.

The development of the SQ method and the parallel code have been carried out

under the Exascale Co-Design Center for Materials in Extreme Environments (Ex-

MatEx) at Lawrence Livermore National Laboratory (LLNL). We hope that further

developments in the code will simultaneously help in developing next generation exas-

cale architectures as well as in improving the performance of the code and the range of

atomic systems accessible for simulations. The current supercomputers on which we

tested the code have a peak performance on the order of petaflops i.e. 1015 FLOP/s.

In the futuristic exascale systems, the performance is expected to cross 1018 FLOP/s.

The current performance of the code is observed to be on the order of 1013 ∼ 1014

FLOP/s. So, further optimizations and development at the machine level to improve

the efficiency of the code are required to attain the maximum performance that can

be offered by the processor architecture. Since the method scales linearly and has a

very good parallel scaling behavior upto petascale level (due to minimal global com-

munications), we expect that the code will scale from petascale to exascale level. We

then hope that the DFT calculations using parallel SQ method can be a potential

application that can make use of the exascale architectures very efficiently.

113

REFERENCES

[1] Alemany, M., Jain, M., Kronik, L., and Chelikowsky, J. R., “Real-
space pseudopotential method for computing the electronic properties of peri-
odic systems,” Physical Review B, vol. 69, no. 7, p. 075101, 2004.

[2] Alfè, D., “Ab initio molecular dynamics, a simple algorithm for charge ex-
trapolation,” Computer Physics Communications, vol. 118, no. 1, pp. 31–33,
1999.

[3] Anantharaman, A. and Cancès, E., “Existence of minimizers for kohn–
sham models in quantum chemistry,” Annales de l’Institut Henri Poincare (C)
Non Linear Analysis, vol. 26, no. 6, pp. 2425–2455, 2009.

[4] Anderson, D. G., “Iterative procedures for nonlinear integral equations,”
Journal of the Association for Computing Machinery, vol. 12, pp. 547–560,
Oct. 1965.

[5] Anglade, P.-M. and Gonze, X., “Preconditioning of self-consistent-field
cycles in density-functional theory: The extrapolar method,” Physical Review
B, vol. 78, no. 4, p. 045126, 2008.

[6] Artacho, E., Anglada, E., Diéguez, O., Gale, J. D., Garćıa, A.,
Junquera, J., Martin, R. M., Ordejón, P., Pruneda, J. M., Sánchez-
Portal, D., and others, “The SIESTA method; developments and applica-
bility,” Journal of Physics: Condensed Matter, vol. 20, no. 6, p. 064208, 2008.

[7] Ashcroft, N. W. and Mermin, N. D., “Solid state phys,” Saunders,
Philadelphia, vol. 293, 1976.

[8] Banerjee, A. S., Suryanarayana, P., and Pask, J. E., “Periodic pulay
method for robust and efficient convergence acceleration of self-consistent field
iterations,” Chemical Physics Letters, vol. 647, pp. 31 – 35, 2016.

[9] Bendt, P. and Zunger, A., “New approach for solving the density-functional
self-consistent-field problem,” Physical Review B, vol. 26, no. 6, p. 3114, 1982.

[10] Benzi, M., Boito, P., and Razouk, N., “Decay properties of spectral pro-
jectors with applications to electronic structure,” SIAM Review, vol. 55, no. 1,
pp. 3–64, 2013.

[11] Bobbitt, N. S., Schofield, G., Lena, C., and Chelikowsky, J. R.,
“High order forces and nonlocal operators in a Kohn-Sham Hamiltonian,” Phys.
Chem. Chem. Phys., 2015. DOI: 10.1039/c5cp02561c.

114

[12] Bock, N., Challacombe, M., Gan, C. K., Henkelman, G., Nemeth,

K., Niklasson, A. M. N., Odell, A., Schwegler, E., Tymczak, C. J.,
and Weber, V., “FreeON,” 2014. Los Alamos National Laboratory (LA-CC
01-2; LA-CC-04-086), Copyright University of California.

[13] Bowler, D. R. and Miyazaki, T., “O(N) methods in electronic structure
calculations,” Reports on Progress in Physics, vol. 75, no. 3, p. 036503, 2012.

[14] Bowler, D. andGillan, M., “An efficient and robust technique for achieving
self consistency in electronic structure calculations,” Chemical Physics Letters,
vol. 325, no. 4, pp. 473–476, 2000.

[15] Brent, R. P., “An algorithm with guaranteed convergence for finding a zero
of a function,” The Computer Journal, vol. 14, no. 4, pp. 422–425, 1971.

[16] Briggs, W. L. and others, The DFT: an owners’ manual for the discrete
Fourier transform. Siam, 1995.

[17] Briggs, W. L., McCormick, S. F., and others, A multigrid tutorial. Siam,
2000.

[18] Broyden, C. G., “A class of methods for solving nonlinear simultaneous equa-
tions,” Mathematics of computation, pp. 577–593, 1965.

[19] Cancès, E. and Le Bris, C., “Can we outperform the DIIS approach for elec-
tronic structure calculations?,” International Journal of Quantum Chemistry,
vol. 79, no. 2, pp. 82–90, 2000.

[20] Cancès, E. and Le Bris, C., “On the convergence of SCF algorithms for
the Hartree-Fock equations,” ESAIM: Mathematical Modelling and Numerical
Analysis, vol. 34, no. 04, pp. 749–774, 2000.

[21] Castro, A., Appel, H., Oliveira, M., Rozzi, C. A., Andrade, X.,
Lorenzen, F., Marques, M. A. L., Gross, E. K. U., and Rubio, A.,
“OCTOPUS: a tool for the application of time-dependent density functional
theory,” Physica Status Solidi B-Basic Solid State Physics, vol. 243, no. 11,
pp. 2465–2488, 2006.

[22] Ceperley, D. M. and Alder, B. J., “Ground state of the electron gas by a
stochastic method,” Phys. Rev. Lett., vol. 45, pp. 566–569, Aug 1980.

[23] Choly, N. and Kaxiras, E., “Kinetic energy density functionals for non-
periodic systems,” Solid State Communications, vol. 121, no. 5, pp. 281 – 286,
2002.

[24] Ciarlet, P., Lions, J., and Le Bris, C., Handbook of Numerical Analysis :
Special Volume: Computational Chemistry (Vol X). North-Holland, 2003.

115

[25] Courrieu, P., “Fast computation of Moore-Penrose inverse matrices,” arXiv
preprint arXiv:0804.4809, 2008.

[26] Dhillon, I. S., A New O n2 Algorithm for the Symmetric Tridiagonal Eigen-
value Eigenvector Problem. PhD thesis, University of California, Berkeley, 1997.

[27] Eyert, V., “A comparative study on methods for convergence acceleration of
iterative vector sequences,” Journal of Computational Physics, vol. 124, no. 2,
pp. 271–285, 1996.

[28] Fang, H.-r. and Saad, Y., “Two classes of multisecant methods for nonlin-
ear acceleration,” Numerical Linear Algebra with Applications, vol. 16, no. 3,
pp. 197–221, 2009.

[29] Frenkel, D. and Smit, B., Understanding molecular simulation: from algo-
rithms to applications, vol. 1. Academic press, 2001.

[30] Ganine, V., Hills, N., and Lapworth, B., “Nonlinear acceleration of cou-
pled fluid–structure transient thermal problems by Anderson mixing,” Inter-
national Journal for Numerical Methods in Fluids, vol. 71, no. 8, pp. 939–959,
2013.

[31] Garcia-Cervera, C. J., Lu, J., Xuan, Y., and E, W., “Linear-scaling
subspace-iteration algorithm with optimally localized nonorthogonal wave func-
tions for Kohn-Sham density functional theory,” Physical Review B (Condensed
Matter and Materials Physics), vol. 79, no. 11, p. 115110, 2009.

[32] Ghosh, S. and Suryanarayana, P., “SPARC: Accurate and efficient finite-
difference formulation and parallel implementation of Density Functional The-
ory. Part II: Periodic systems,” ArXiv e-prints, Mar. 2016.

[33] Ghosh, S. and Suryanarayana, P., “Higher-order finite-difference formula-
tion of periodic Orbital-free Density Functional Theory,” Journal of Computa-
tional Physics, vol. 307, pp. 634–652, 2016.

[34] Ghosh, S. and Suryanarayana, P., “SPARC: Accurate and efficient finite-
difference formulation and parallel implementation of Density Functional The-
ory. Part I: Isolated clusters,” arXiv preprint arXiv:1603.04334, 2016.

[35] Gillan, M. J., Bowler, D. R., Torralba, A. S., and Miyazaki, T.,
“Order-N first-principles calculations with the CONQUEST code,” Comput.
Phys. Commun., vol. 177, pp. 14–18, JUL 2007.

[36] Goedecker, S., “Decay properties of the finite-temperature density matrix
in metals,” Physical Review B, vol. 58, no. 7, p. 3501, 1998.

[37] Goedecker, S., “Linear scaling electronic structure methods,” Rev. Mod.
Phys., vol. 71, pp. 1085–1123, Jul 1999.

116

[38] Goedecker, S. and Colombo, L., “Efficient linear scaling algorithm for
tight-binding molecular dynamics,” Physical Review Letters, vol. 73, no. 1,
p. 122, 1994.

[39] Goedecker, S. and Teter, M., “Tight-binding electronic-structure calcula-
tions and tight-binding molecular dynamics with localized orbitals,” Physical
Review B, vol. 51, no. 15, p. 9455, 1995.

[40] Gonze, X., Beuken, J. M., Caracas, R., Detraux, F., Fuchs, M., Rig-

nanese, G. M., Sindic, L., Verstraete, M., Zerah, G., Jollet, F.,
Torrent, M., Roy, A., Mikami, M., Ghosez, P., Raty, J. Y., and Al-

lan, D. C., “First-principles computation of material properties: the ABINIT
software project,” Computational Materials Science, vol. 25, pp. 478–492(15),
2002.

[41] Greenbaum, A., Iterative methods for solving linear systems, vol. 17. Siam,
1997.

[42] Gropp, W., Hoefler, T., Thakur, R., and Lusk, E., Using Advanced
MPI: Modern Features of the Message-Passing Interface. MIT Press, 2014.

[43] Guide, M. U., “The mathworks,” Inc., Natick, MA, vol. 5, 1998.

[44] Hackbusch, W., Multi-grid methods and applications, vol. 4. Springer Science
& Business Media, 2013.

[45] Haydock, R., Heine, V., and Kelly, M., “Electronic-structure based on
local atomic environment for tight-binding bands,” J Phys C Solid State, vol. 5,
pp. 2845–&, Jan 1972.

[46] Haydock, R., Heine, V., and Kelly, M., “Electronic-structure based on
local atomic environment for tight-binding bands: Ii,” J Phys C Solid State,
vol. 8, pp. 2591–2605, Jan 1975.

[47] Hirose, K., Ono, T., Fujimoto, Y., and Tsukamoto, S., First-principles
calculations in real-space formalism: electronic configurations and transport
properties of nanostructures. World Scientific, 2005.

[48] Ho, K.-M., Ihm, J., and Joannopoulos, J., “Dielectric matrix scheme for
fast convergence in self-consistent electronic-structure calculations,” Physical
Review B, vol. 25, no. 6, p. 4260, 1982.

[49] Hohenberg, P. and Kohn, W., “Inhomogeneous electron gas,” Physical Re-
view, vol. 136, no. 3B, pp. B864–B871, 1964.

[50] Jordan, D. and Mazziotti, D., “Spectral differences in real-space elec-
tronic structure calculations,” The Journal of Chemical Physics, vol. 120, no. 2,
pp. 574–578, 2003.

117

[51] Kerker, G., “Efficient iteration scheme for self-consistent pseudopotential
calculations,” Physical Review B, vol. 23, no. 6, p. 3082, 1981.

[52] Khabaza, I., “An iterative least-square method suitable for solving large
sparse matrices,” The Computer Journal, vol. 6, no. 2, pp. 202–206, 1963.

[53] Kleinman, L. and Bylander, D., “Efficacious form for model pseudopoten-
tials,” Physical Review Letters, vol. 48, no. 20, p. 1425, 1982.

[54] Kohn, W. and Sham, L. J., “Self-consistent equations including exchange
and correlation effects,” Physical Review, vol. 140, no. 4A, pp. A1133–A1138,
1965.

[55] Kresse, G. and Furthmüller, J., “Efficient iterative schemes for ab ini-
tio total-energy calculations using a plane-wave basis set,” Physical Review B,
vol. 54, no. 16, p. 11169, 1996.

[56] Kresse, G. andHafner, J., “Ab initio molecular dynamics for liquid metals,”
Physical Review B, vol. 47, no. 1, p. 558, 1993.

[57] Kronik, L., Makmal, A., Tiago, M. L., Alemany, M., Jain, M.,
Huang, X., Saad, Y., and Chelikowsky, J. R., “PARSEC–the pseu-
dopotential algorithm for real-space electronic structure calculations: recent
advances and novel applications to nano-structures,” physica status solidi (b),
vol. 243, no. 5, pp. 1063–1079, 2006.

[58] Kudin, K. N. and Scuseria, G. E., “Converging self-consistent field equa-
tions in quantum chemistry–recent achievements and remaining challenges,”
ESAIM: Mathematical Modelling and Numerical Analysis, vol. 41, no. 02,
pp. 281–296, 2007.

[59] Kudin, K. N., Scuseria, G. E., and Cances, E., “A black-box self-
consistent field convergence algorithm: One step closer,” The Journal of Chem-
ical Physics, vol. 116, no. 19, pp. 8255–8261, 2002.

[60] Lanczos, C., An iteration method for the solution of the eigenvalue problem of
linear differential and integral operators. United States Governm. Press Office
Los Angeles, CA, 1950.

[61] Langreth, D. C. andMehl, M. J., “Beyond the local-density approximation
in calculations of ground-state electronic properties,” Physical Review B, vol. 28,
no. 4, pp. 1809–1834, 1983.

[62] LeVeque, R., Finite Difference Methods for Ordinary and Partial Differential
Equations: Steady-state and Time-Dependent Problems. SIAM, 2007.

[63] Lin, L. and Yang, C., “Elliptic preconditioner for accelerating the self-
consistent field iteration in kohn–sham density functional theory,” SIAM Jour-
nal on Scientific Computing, vol. 35, no. 5, pp. S277–S298, 2013.

118

[64] Lions, J.-L. and Ciarlet, P. G., Handbook of Numerical Analysis: Compu-
tational chemistry, vol. 10. Gulf Professional Publishing, 2003.

[65] Marks, L. and Luke, D., “Robust mixing for ab initio quantum mechanical
calculations,” Physical Review B, vol. 78, no. 7, p. 075114, 2008.

[66] Martin, R., Electronic Structure: Basic theory and practical methods. Cam-
bridge University Press, 2004.

[67] Marx, D. and Hutter, J., Ab initio molecular dynamics: basic theory and
advanced methods. Cambridge University Press, 2009.

[68] Mazziotti, D. A., “Spectral difference methods for solving differential equa-
tions,” Chemical Physics Letters, vol. 299, no. 5, pp. 473–480, 1999.

[69] Mermin, N. D., “Thermal properties of the inhomogeneous electron gas,”
Physical Review, vol. 137, no. 5A, p. A1441, 1965.

[70] Mohr, S., Ratcliff, L. E., Boulanger, P., Genovese, L., Caliste, D.,
Deutsch, T., and Goedecker, S., “Daubechies wavelets for linear scaling
density functional theory,” J. Chem. Phys., vol. 140, MAY 28 2014.

[71] Motamarri, P., Iyer, M., Knap, J., and Gavini, V., “Higher-order adap-
tive finite-element methods for orbital-free density functional theory,” Journal
of Computational Physics, vol. 231, no. 20, pp. 6596 – 6621, 2012.

[72] Niklasson, A. M., Steneteg, P., and Bock, N., “Extended Lagrangian
free energy molecular dynamics,” The Journal of Chemical Physics, vol. 135,
no. 16, p. 164111, 2011.

[73] Ono, T. and Hirose, K., “Timesaving double-grid method for real-space
electronic-structure calculations,” Phys. Rev. Lett., vol. 82, no. 25, pp. 5016–
5019, 1999.

[74] Osei-Kuffuor, D. and Fattebert, J.-L., “Accurate and Scalable O(N) Al-
gorithm for First-Principles Molecular-Dynamics Computations on Large Par-
allel Computers,” Phys. Rev. Lett., vol. 112, JAN 28 2014.

[75] Parr, R. and Yang, W., Density-functional theory of atoms and molecules.
Oxford University Press, 1989.

[76] Pask, J. E., Klein, B. M., Fong, C. Y., and Sterne, P. A., “Real-space
local polynomial basis for solid-state electronic-structure calculations: A finite-
element approach,” Physical Review B, vol. 59, no. 19, pp. 12352–12358, 1999.

[77] Pask, J. E. and Sterne, P. A., “Real-space formulation of the electrostatic
potential and total energy of solids,” Phys. Rev. B, vol. 71, p. 113101, Mar
2005.

119

[78] Pask, J. E., Sukumar, N., and Mousavi, S. E., “Linear scaling solution of
the all-electron coulomb problem in solids,” International Journal for Multiscale
Computational Engineering, vol. 10, no. 1, pp. 83–99, 2012.

[79] Perdew, J. P. and Zunger, A., “Self-interaction correction to density-
functional approximations for many-electron systems,” Phys. Rev. B, vol. 23,
pp. 5048–5079, May 1981.

[80] Perdew, J. P., Chevary, J. A., Vosko, S. H., Jackson, K. A., Peder-
son, M. R., Singh, D. J., and Fiolhais, C., “Atoms, molecules, solids, and
surfaces: Applications of the generalized gradient approximation for exchange
and correlation,” Physical Review B, vol. 46, no. 11, pp. 6671–6687, 1992.

[81] Perdew, J. P. and Wang, Y., “Accurate and simple analytic representa-
tion of the electron-gas correlation energy,” Physical Review B, vol. 45, no. 23,
p. 13244, 1992.

[82] Phillips, R., Crystals, defects and microstructure: modeling across scales.
Cambridge University Press, 2001.

[83] Pickett, W. E., “Pseudopotential methods in condensed matter applica-
tions,” Computer Physics Reports, vol. 9, no. 3, pp. 115–197, 1989.

[84] Ponga, M., Bhattacharya, K., and Ortiz, M., “A Sublinear-Scaling Ap-
proach to Density-Functional-Theory Analysis of Crystal Defects,” Journal of
the Mechanics and Physics of Solids, 2016.

[85] Potra, F. A. and Engler, H., “A characterization of the behavior of the
Anderson acceleration on linear problems,” Linear Algebra and its Applications,
vol. 438, no. 3, pp. 1002–1011, 2013.

[86] Pratapa, P. P. and Suryanarayana, P., “Restarted Pulay mixing for effi-
cient and robust acceleration of fixed-point iterations,” Chemical Physics Let-
ters, vol. 635, pp. 69 – 74, 2015.

[87] Pratapa, P. P. and Suryanarayana, P., “On numerically predicting the
onset and mode of instability in atomistic systems,” Mechanics Research Com-
munications, 2016.

[88] Pratapa, P. P., Suryanarayana, P., and Pask, J. E., “Anderson acceler-
ation of the Jacobi iterative method: An efficient alternative to Krylov methods
for large, sparse linear systems,” Journal of Computational Physics, vol. 306,
pp. 43–54, 2016.

[89] Pratapa, P. P., Suryanarayana, P., and Pask, J. E., “Spectral Quadra-
ture method for accurate electronic structure calculations of metals and insula-
tors,” Computer Physics Communications, vol. 200, pp. 96 – 107, 2016.

120

[90] Prodan, E. and Kohn, W., “Nearsightedness of electronic matter,” Pro-
ceedings of the National Academy of Sciences of the United States of America,
vol. 102, no. 33, pp. 11635–11638, 2005.

[91] Pulay, P., “Convergence acceleration of iterative sequences. The case of SCF
iteration,” Chemical Physics Letters, vol. 73, no. 2, pp. 393–398, 1980.

[92] Quarteroni, A., Sacco, R., and Saleri, F., Numerical mathematics,
vol. 37. Springer, 2007.

[93] Raczkowski, D., Canning, A., and Wang, L., “Thomas-Fermi charge mix-
ing for obtaining self-consistency in density functional calculations,” Physical
Review B, vol. 64, no. 12, p. 121101, 2001.

[94] Rapaport, D. C., The art of molecular dynamics simulation. Cambridge
university press, 2004.

[95] Rohwedder, T. and Schneider, R., “An analysis for the DIIS accelera-
tion method used in quantum chemistry calculations,” Journal of mathematical
chemistry, vol. 49, no. 9, pp. 1889–1914, 2011.

[96] Ruiz-Serrano, A., Hine, N. D. M., and Skylaris, C.-K., “Pulay forces
from localized orbitals optimized in situ using a psinc basis set,” J. Chem.
Phys., vol. 136, JUN 21 2012.

[97] Saad, Y. and Schultz, M. H., “GMRES: A generalized minimal residual
algorithm for solving nonsymmetric linear systems,” SIAM Journal on scientific
and statistical computing, vol. 7, no. 3, pp. 856–869, 1986.

[98] Saad, Y., Iterative Methods for Sparse Linear System (2nd ed). SIAM, 2003.

[99] Shewchuk, J. R., “An introduction to the conjugate gradient method without
the agonizing pain,” 1994.

[100] Skylaris, C.-K., Haynes, P. D., Mostofi, A. A., and Payne, M. C.,
“Introducing ONETEP: Linear-scaling density functional simulations on par-
allel computers,” The Journal of Chemical Physics, vol. 122, no. 8, p. 084119,
2005.

[101] Soler, J. M., Artacho, E., Gale, J. D., Garćıa, A., Junquera, J.,
Ordejón, P., and Sánchez-Portal, D., “The SIESTA method for ab initio
order-N materials simulation,” Journal of Physics: Condensed Matter, vol. 14,
no. 11, p. 2745, 2002.

[102] Srivastava, G., “Broyden’s method for self-consistent field convergence ac-
celeration,” Journal of Physics A: Mathematical and General, vol. 17, no. 6,
p. L317, 1984.

121

[103] Suryanarayana, P., “On spectral quadrature for linear-scaling Density Func-
tional Theory,” Chemical Physics Letters, vol. 584, pp. 182–187, 2013.

[104] Suryanarayana, P., Bhattacharya, K., and Ortiz, M., “A mesh-free
convex approximation scheme for Kohn-Sham density functional theory,” Jour-
nal of Computational Physics, vol. 230, no. 13, pp. 5226 – 5238, 2011.

[105] Suryanarayana, P., Bhattacharya, K., andOrtiz, M., “Coarse-graining
Kohn-Sham Density Functional Theory,” Journal of the Mechanics and Physics
of Solids, vol. 61, no. 1, pp. 38 – 60, 2013.

[106] Suryanarayana, P., Gavini, V., Blesgen, T., Bhattacharya, K., and
Ortiz, M., “Non-periodic finite-element formulation of Kohn-Sham density
functional theory,” Journal of the Mechanics and Physics of Solids, vol. 58,
no. 2, pp. 256 – 280, 2010.

[107] Suryanarayana, P. and Phanish, D., “Augmented Lagrangian formulation
of orbital-free density functional theory,” Journal of Computational Physics,
vol. 275, pp. 524 – 538, 2014.

[108] Suryanarayana, P., Pratapa, P. P., and Pask, J. E., “Alternating
Anderson-Richardson method: An efficient alternative to preconditioned Krylov
methods for large, sparse linear systems,” arXiv preprint arXiv:1606.08740,
2016.

[109] Tadmor, E. B. and Miller, R. E., Modeling materials: continuum, atom-
istic and multiscale techniques. Cambridge University Press, 2011.

[110] Trefethen, L. N., “Is Gauss quadrature better than Clenshaw-Curtis?,”
SIAM review, vol. 50, no. 1, pp. 67–87, 2008.

[111] Troullier, N. and Martins, J. L., “Efficient pseudopotentials for plane-
wave calculations,” Physical Review B, vol. 43, no. 3, p. 1993, 1991.

[112] Tsuchida, E., “Augmented orbital minimization method for linear scaling
electronic structure calculations,” J. Phys. Soc. Jpn., vol. 76, MAR 2007.

[113] Vanderbilt, D. and Louie, S. G., “Total energies of diamond (111) surface
reconstructions by a linear combination of atomic orbitals method,” Physical
Review B, vol. 30, no. 10, p. 6118, 1984.

[114] Walker, H. F. and Ni, P., “Anderson acceleration for fixed-point iterations,”
SIAM Journal on Numerical Analysis, vol. 49, no. 4, pp. 1715–1735, 2011.

[115] Weinan, E., Principles of multiscale modeling. Cambridge University Press,
2011.

122

[116] White, T., Richardson, S., Crowley, B., Pattison, L., Harris, J.,
and Gregori, G., “Orbital-free density-functional theory simulations of the
dynamic structure factor of warm dense aluminum,” Physical Review Letters,
vol. 111, no. 17, p. 175002, 2013.

[117] Willert, J., Taitano, W. T., and Knoll, D., “Leveraging Anderson Ac-
celeration for improved convergence of iterative solutions to transport systems,”
Journal of Computational Physics, vol. 273, pp. 278–286, 2014.

[118] Yang, X. I. and Mittal, R., “Acceleration of the Jacobi iterative method
by factors exceeding 100 using scheduled relaxation,” Journal of Computational
Physics, vol. 274, pp. 695 – 708, 2014.

123

