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SUMMARY 

CONTROLLED RELEASE OF GLP-1 FROM AFFINITY-BASED  

PROTEIN MICROSPHERES 

Peptide drugs possess high specificity and potency compared to small molecule drugs. 

However they are plagued by rapid clearance and degradation in vivo. Type 2 diabetes 

affects approximately 26-27 million American adults and is projected to increase to 300 

million globally by 2025. Glucagon-like peptide-1 (GLP-1), stimulates the glucose-

dependent secretion of insulin from pancreatic beta cells, and serves as the main peptide 

therapeutic treatment for Type 2 diabetes. BydureonTM is a commercially available 

formulation of GLP-1 peptide analog encapsulated in PLGA microspheres. The required 

dose for Bydureon is 14-28 times more than its soluble formulation due in part to the 

burst release from the PLGA microsphere. Thus controlling the release of the peptide 

drug is critical for delivery of therapeutically relevant doses and cost reduction. Affinity-

based systems are strategically poised to overcome this challenge; the hallmark transient 

interactions between protein or peptide components allow for sustained release, while 

avoiding the diffusion-driven burst release of most delivery particles. Varying the 

strength of affinity interactions, ligand concentration, and system geometry can control 

the release rates of peptide from affinity-based systems. Here we describe a strategy that 

uses two binding domains, the Src homology domain 3 (SH3) and the SH3 binding 

peptide. SH3 was fused to an elastin-like polypeptide (ELP), which exhibits inverse 

phase transition behavior. SH3 functionalized microspheres were prepared by phase 

transition of the ELP-SH3 fusion proteins and subsequent crosslinking. The therapeutic 



 xvii 

peptide, GLP-1, was modified with three different SH3 binding peptide to facilitate 

reversible binding to the microspheres and enable sustained release. SH3 binding 

peptides possessed a range of affinities ((KD=10-6 – 10-8 M) that allows for 

immobilization and subsequent diffusion over several days. Release rates of GLP-1 were 

strongly dependent on the SH3 binding peptide affinity, with the weaker binder releasing 

40% of its total cargo and the stronger binder releasing 20% over a 7-day period. 

Released GLP-1 stimulated significant increases in Beta cell number. Stimulation of 

insulin secretion by released GLP-1 was not significant. Use of established mathematical 

models qualitatively replicated affinity-dependent release trends. However, the model did 

not correlate well with the experimental release profiles. This can be attributed to the 

variation in apparent experimental diffusivity from estimated diffusivity, as well as 

estimation of kinetic parameters. Importantly, an affinity-dependent reduction in the burst 

release effect typically experienced by encapsulation systems was observed and 

microsphere preparation occurred under conditions favorable to retention of affinity 

domain function. These results suggest this system could be useful for sustained delivery 

of other types of therapeutic peptides modified with SH3 binding peptides. 
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CHAPTER 1.  

INTRODUCTION 

1.1 Affinity-Based Systems for Protein and Peptide Release 

Since the early 1980s, with the advent of the first recombinant protein drug humulin, an 

insulin therapeutic, both protein and peptide biologics have gained prominence. This 

biologics market, valued at $200 billion in 2013, is predicted to expand to over $350 

billion by 2019 1. Peptides and proteins are selective and potent, representing alternatives 

to traditional small molecule therapies that are plagued by tolerability and off-target 

effects. However, these therapeutics are not without its challenges2. The development of 

micro- and nano-scale delivery systems that protect peptide and proteins from 

degradation while controlling their release within the body has grown concurrently with 

the biologics market. The need to improve patient compliance through the administration 

of fewer therapeutic injections, reduce viscosity, and increase drug loading have also 

been driving forces behind the progression of therapeutic delivery technologies3. 

Platforms in which release is either dependent on polymer degradation or is diffusion-

controlled e.g. PLGA have been successful in controlling delivery over long time frames 

(days-weeks)4–6,  however rapid burst limit them to applications in which high dose 

effects are tolerable. In stimuli-responsive release, polymers such as poly(N-

isopropylacrylamide) (PNIPAm) undergo phase transitioning from low viscosity 

solutions to gels at temperatures above a lower critical solution temperature (LCST) 

making them attractive for in situ applications. Within this class are poly(N-

vinylcaprolactam) (PVCL), poly(ethylene glycol) (PEG), poly(ethylene oxide) (PEO), 



 2 

and poly(propylene oxide) (PPO). pH-sensitive swelling or reduction in LCST is 

imparted by incorporation of ionisable or H-bonding monomer units respectively. While 

the modularity of stimuli control make this class of polymers attractive for drug delivery 

applications, the rapid burst experienced when changing stimuli conditions means that 

more precision in monomer incorporation is required before fine control over release is 

achieved 7. Traditional encapsulation systems with biodegradable polymers used in the 

sustained release of small molecules, are not easily translatable to peptides and proteins8. 

Their formulation typically involves organic solvents and harsh conditions that may lead 

to the disruption of structure and thus loss of therapeutic function9. More favorable 

alternative delivery systems exploit the non-covalent or affinity interactions between 

protein domains, protein-peptide domains, or protein- pendant monomer domains on 

polymers.  

Affinity interactions abound in nature. The extracellular matrix (ECM) offers prominent 

examples of protein-protein interactions. The ECM exploits affinity binding of growth 

factors to heparin sulfate proteoglycan components to protectively bind and modulate 

bioavailability 10,11. Affinity-bound molecules are subsequently released by gradients 

driven by diffusion, proteolytic activity during matrix remodeling 12, and receptor 

endocytosis 13.  

ECM mimetic delivery focus on protein-peptide interactions to sequester and release 

growth factors through the incorporation of heparan sulfate biosimilar peptide, heparin, 

into delivery vehicles. Several drug delivery systems have utilized the binding 

interactions of heparan sulfate by developing heparinized hydrogels that slows the release 

of target molecules from the hydrogels. Tuned release of nerve growth factor (NGF) and 
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vascular endothelial growth factor (VEGF) from hydrogels for tissue repair has been 

accomplished through heparin-like binding interactions by Sakiyama-Elbert and 

colleagues 14–16. Kiick et al has driven assembly of hydrogels through protein and heparin 

mediate interaction 17.  

Protein-peptide interaction systems also incorporate other natural or synthetic affinity 

partners for slow release, encapsulation, and immobilization. Foo and colleagues 

designed mixing-induced two-component hydrogels or MITCHs using computationally-

derived molecular recognition partner domains that delivered VEGF-mimetic peptide 18. 

They controlled release through varying the affinity of the proline-rich peptide. Shoichet 

et al examined the use of natural Src homology 3 (SH3) domain interactions with two 

variable binding SH3 binding peptides (SBPs) to control the release of Fibroblast growth 

factor 2(FGF2) and Chondroitinase ABC (ChABC) proteins 19,20. Martino et al 

discovered that growth factors; Brain-derived neurotrophic factor (BDNF), Transforming 

growth factor β (TGFβ), Bone morphogenetic protein 4 (BMP-4), Insulin like growth 

factor binding protein 5 (IGFBP-5), Basic fibroblast growth factor (bFGF), and Placenta 

growth factor (PGF), had varying affinities for the heparin-binding domain of fibrinogen. 

Distinct release rates of each growth factor were observed when experiments were 

reproduced on a fibrin matrix 21. The above examples describe affinity interactions that 

were either natural or imparted to the protein through fusion with one of the affinity-

binding partners. Fusion constructs may suffer from a partial loss of protein function after 

modification with affinity domains; despite this, protein-peptide interaction systems 

remain a smart alternative as it reduces interactions between other endogenous proteins 

and affinity domains on delivery particles. Belair and colleagues recently examined the 
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reduction of affinity immobilized VEGF (high binding affinity) in the presence of serum 

due to competition for binding domains by endogenous proteins, however the reduction 

rate was markedly lesser in comparison to the rates for VEGF-scramble peptide 

interactions (low binding affinity) 22.  

 

Protein - polymer interactions are also common in delivery system design. Layer by layer 

(L-b-L) techniques, pioneered by Decher and colleagues 23, have allowed the directed 

assembly of therapeutic proteins with polymers through interactions between monomer 

domains. Interactions such as electrostatic, hydrophobic, hydrogen bonding, charge-

transfer, and co-ordinate chemistry are non-covalent methods employed in this bottom-up 

assembly of alternating protein and polymer layers 24. Lvov and colleagues demonstrated 

multilayered multicomponent protein assemblies through electrostatic adsorption with 

alternating charged polymers layers 25. Caruso et al showed that electrostatic interactions 

are important to the stepwise assembly of multilayers of biomolecules with polymers on 

microparticle surfaces 26. Other interactions such as the reducible disulfide interactions 

between proteins and polymers also successfully deliver protein therapeutics. For 

example, Ventura et al developed a delivery method that uses the reversible formation of 

disulfide bonds between exposed thiols on native protein surfaces and thiols 

functionalized on polymers. This led to self-assembly of the polymer forming a 

protective reversible shield around the Caspase protein that preserved protein function 27. 

Covalent coupling of proteins to polymers dominates affinity-based drug delivery, since 

modular control over polymer functionalization can be achieved by changing the ratio of 

individual components. Peattie et al investigated the effects of reducing heparin quantities 
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on release rates of growth factors through simple component ratio adjustment in the 

Hyaluronic acid (HA) copolymerization reaction28. On the other hand similar adjustments 

in purely protein-protein interacting systems may call for extensive re-optimatization of 

individual components.  

Affinity-based systems encompass aspects of all delivery strategies. In recent times, the 

range of affinities investigated and the tunability of release through variation in affinity, 

ligand density, and system geometry has deepened our ability to control affinity release 

systems. Mathematical modeling of release allows for additional examination of the 

contributions of system components on release rates. Sakiyama-Elbert et al illustrated the 

complex interaction of affinity release in tandem with enzymatic activity using 

mathematical models14. Belair et al modeled the effects of competitive interactions 

coupled with release22. Additionally, affinity-based delivery have progressed from the 

early heparin-based ECM mimetics to now include high affinity (KD = nM) DNA 

Aptamers for 6-day delivery of Platelet-derived growth factor-BB (PDGF-BB)29 from 

functionalized gels. The modularity of the affinity-based platforms has allowed for the 

delivery of both peptides and higher molecular weight growth factors. Binding matrices 

ranging from biopolymers fibrin and collagen to polymers such as PEG, PLGA, and 

HAMC have successfully delivered protein and peptide therapeutics. 

In a recent review, Shoichet et al suggested the use of affinity-based systems for the 

combinatorial delivery of multiple therapeutics in which each therapeutic needs to 

possess independent release profiles as a promising direction for this emergent 

technology 30. Mitragotri and colleagues also proposed the co-delivery of hyaluronidase 

to address problems associated with high drug viscosity at subcutaneous delivery sites 3. 
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This proposed system can be used to reduce therapeutic aggregation while controlling the 

sequential release of hyaluronidase for increased diffusion at the injection site.  

In this work we exploit the affinity interactions of known protein and peptide domains to 

develop a controlled release system for the sustained delivery of a peptide therapeutic. 

Our system, prepared from the self-assembly of affinity- binding partner domains into 

microspheres, immobilizes and subsequently releases functionalized therapeutic peptides. 

1.2 Motivation & Objectives 

With more than 140 peptide drugs in advanced clinical trials2, pharmaceutical 

research and development in peptide therapeutics is high. Peptide drugs possess increased 

specificity and efficacy in comparison to small molecule drugs, and interest in them 

persists despite the challenges of rapid clearance and proteolytic degradation9. To 

overcome these limitations peptide delivery systems must prolong release while 

protecting biological activity. Current peptide delivery systems are plagued with rapid 

burst release due to uncontrolled degradation of polymeric carriers, complex low-

scalability encapsulation processes and low loading efficiencies. Here we describe an 

affinity-mediated delivery system that allows for tunable release of Type 2 diabetes 

therapeutic peptide through the interactions of peptide-protein binding partner domains. 

A 2014 report from the Center For Disease Control and Prevention (CDC) estimates that 

29.1 million Americans have Type 2 diabetes with adults making up 90% of all 

diagnosed cases. $245 billion in medical treatment and lost wages has been attributed to 

Type 2 diabetes treatment 31. Glucagon-like peptide 1 (GLP-1) stimulates insulin 

secretion from pancreatic β-cells and is used for treatment of Type 2 diabetes 32. GLP-1 



 7 

experiences proteolytic degradation and a 2-minute half-life in vivo. Current GLP-1 

therapeutics on the market seeks to extend peptide half-life for immediate, once-daily, 

and once-weekly applications using several strategies. Strategies include; mutation of the 

amino acid sequence to evade proteolytic degradation (exenatide, lixisenatide), 

conjugation to larger molecules such as Human serum albumin (HSA) and 

Immunoglobulin G (IgG) (albiglutide, dulaglutide, liraglutide), as well as encapsulation 

within biodegradable polymeric microparticles (exenatide-LAR)33.  Exenatide-LAR 

(marketed as BydureonTM) is comprised of Exendin-4 encapsulated in PLGA 

microspheres with a 2mg/ml weekly administered dose, a dose of 14-28 fold more than is 

required from the soluble twice-daily formulation was needed for similar efficacy from 

the microspheres. This suggests that a burst release from the PLGA microsphere 

necessitated high dosing 34. More control over release is required to reduce microsphere 

dosage, cost, and injection frequency. In this thesis, I describe a strategy to prolong the 

release of active Glucagon-like peptide 1 (GLP-1) using Src homology 3 (SH3) domain 

protein microspheres that binds GLP-1 through affinity-mediated interactions when 

functionalized with SH3-binding peptides 35. The system, comprised solely of protein and 

peptide components, has controlled loading efficiency. Additionally, sequestration is 

independent of therapeutic peptide hydrophobicity. Through the fusion of the SH3 

domain with a self-assembling elastin-like polypeptide 36 we prepared ELP-SH3 

microspheres. GLP-1 modified with SH3-binding peptides of micromolar and nano-molar 

affinities (GLP-1-SBPs) facilitates tunable release from SH3 microspheres. The 

objectives of this work are preparation of ELP-SH3 microspheres for optimal stability 

and loading efficiency of GLP-1-SBP, and to examine the release profiles of each GLP-1-
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SBP from the same microspheres. We also seek to describe the release profile of multiple 

GLP-1-SBPs from the same microspheres. Finally, a comparison of a predictive model 

that uses measured kinetic parameters with the empirical release profiles will be 

performed. 

1.3 Thesis Overview  

Achievement of the abovementioned objectives is summarized in the chapters that 

follow. Chapter 2 describes the design and characterization of the protein and peptide 

domains used to develop the delivery system. Chapter 3 focuses on the preparation of 

protein microspheres, retention of function of protein domains after microsphere 

synthesis, loading efficiency, and quantification of in vitro release of peptides from 

prepared protein microspheres and particle surfaces. Additionally, the ability of the 

system to stimulate insulin secretion in mouse pancreatic cells in vitro is also described. 

Comparisons of experimental release profiles with those predicted by a mathematical 

model using measured kinetic parameters are also described in this chapter. Chapter 4 

examines the limitations of the current system and provides recommendations for future 

work, and outlook for potential market translation. Finally, Chapter 5, describes the 

second project in this thesis work that quantifies the role of fiber length in the 

inflammatory response of alveolar macrophages. This work seeks to provide an in vitro 

model for single-parameter contributions to fiber-induced pathogenicity. 
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CHAPTER 2.  

AFFINITY-BINDING PARTNER DOMAINS 

Affinity systems that exploit the binding interactions between protein-protein domains for 

controlling the release of therapeutics have gained prominence in recent times. To 

achieve sustained release of our target therapeutic, GLP-1, we have identified 

complementary binding domains, Src Homology 3 (SH3) domain and SH3-binding 

peptides (SBPs). These SBPs possess a range of binding affinities (10-6 – 10-8M) to the 

SH3 domain. Through functionalization with the SBP partner similar binding interactions 

can be imparted to GLP-1. The SH3 partner domain is then utilized in preparation of the 

delivery system on which GLP-1 is loaded and subsequently released. 

2.1 Src Homology 3 (SH3) Domain and SH3-binding peptides 

In the body signaling is typically facilitated by adaptor proteins that primarily serve as 

sites for protein-protein interaction. These adaptor proteins contain several protein 

interaction domains. One such domain is the Src homology 3 (SH3) domain, present in 

the Mona/Gads adaptor protein among other families of proteins including protein 

kinases 37,383940. The β-barrel shape that is characteristic of SH3 domains was identified 

by Harkiolaki and colleagues to be ubiquitous among adaptor proteins 35. The authors 

further demonstrated that the SH3-domain in Mona/Gads possesses high affinities to a 

short binding sequence on the SLP-76 signal transducer peptide, called the SH3-binding 

peptide. SH3-binding peptides are proline-rich and contain consensus motifs R-x-x-K 35 
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or R-x-x-P-x-x-P 41, where x signifies two guest residues between arginine (R), lysine (K) 

and proline (P) positions. These peptides were found to bind with varying affinities Kd < 

µM. The SH3-binding peptide forms a ‘clamp-like’ shape that cups the Mona/Gads barrel 

(Figure 2.1). Isothermal titration calorimetry experiments conducted by Harkiolaki and 

colleagues revealed that modification of residues adjacent to the R-x-x-K motif resulted 

in changes in the interaction affinities between the peptide and SH3 domain. 

     Affinity interactions between the SH3 domain and SH3-binding peptide have been 

replicated with high fidelity in the literature 20. SH3-binding peptides show similar 

hierarchy of binding affinities to the SH3 domain, though it has been presented in varied 

forms. We use these affinity-binding partners because the affinity interactions cover a 

wide range of affinities and thus can be adapted to our release system as well as for the 

consistency of affinity data from previous studies. 

 

Figure 2-1  Crystal structure of the SH3 domain located at the C-terminal of 
Mona/Gads (SH3C--green β-strand) in complex with SH3-binding peptide 2 (orange 
strands). View looks down the length of the β- barrel of the SH3C structure 
(PyMOL rendered molecule from 1OEB RCSB protein data bank) 
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2.1.1 SH3 Fusion Protein ELP-SH3 

Elastin-like polypeptides (ELPs) are synthetic biopolymers derived from the naturally 

occurring structural protein tropoelastin. ELPs are mainly composed of repeating units of 

Val-Pro-Gly-x-Gly amino acid residues (V-P-G-x-G)n, where x denotes any guest amino 

acid except proline. The most common of these ELPs has the repeating units of (V-P-G-

V-G)n. The ELP expressed in this work is composed of [V-P-G-V-G]2 [V-P-G-F-G]1[V-

P-G-V-G]4[V-P-G-F-G]1[V-P-G-V-G]4[V-P-G-V-G]4[V-P-G-F-G]1[V-P-G-V-G]4[V-P-

G-F-G]1[V-P-G-V-G]2 repeating units. ELPs are able to undergo a reversible phase 

transition above a critical transition temperature, Tt. These transitions are characterized 

by increased hydrophobic interactions and aggregation between polypeptide units 42. The 

phase transition temperature of ELPs is influenced by several factors including the 

polypeptide concentration, salt concentration, guest residue composition, polypeptide 

chain length, and the terminal at which ligation of fusion partners occur. ELPs has been 

used in particle preparation in recent times; with particles ranging in sizes from nano- to 

micro scale through inverse phase transition434445. Dreher et al created spherical micelles 

by heating solutions of ELPs above their Tt46. Indeed, ELPs have been widely used in 

hydrogel scaffold formation and in the preparation of in situ gel formation due to its 

bioresponsive properties47,48. Exploitation of these factors allows for the presentation of 

the SH3 domain on nano- and micro- particles.  

2.1.2 Glucagon-like Peptide 1 (GLP-1) 

Glucagon-like peptide-1 (7-37), GLP-1, is a truncated form of proglucagon, known to be 

highly conserved in mammals. This proglucagon-derived peptide is secreted from L-cells 
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in the intestinal mucosae and pancreatic A-cells, and is also found in the central nervous 

system. GLP-1 functions as an incretin hormone, known to modulate insulin secretion 

after nutrient ingestion 32.  

GLP-1 binding to its G protein-coupled receptor on beta-cells leads to the activation of 

adenylate cyclase via the binding of conformationally-activated Gs alpha subunit. 

Adenylate cyclase then catalyzes the conversion of cyclic adenosine monophosphate, 

cAMP. A cascade of events in the cAMP pathway leads ultimately to the increases in 

insulin-containing granule size and mobilization followed by granule exocytosis. GLP-1 

is reported to stimulate beta-cell proliferation 49,50, differentiation from progenitor cells 51, 

and inhibit beta-cell apoptosis 52,53 

 

Figure 2-2 Cellular pathways of GLP-1 stimulation of insulin secretion. (Adapted 
from 32)Reproduced with copyright permission © 2016 The American Physiological Society 

GLP-1 stimulated insulin secretion through the six pathways highlighted in Figure 2-2. 

These include 1) Glucose assisted GLP-1 closing of ATP-sensitive K+ channels that 
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increases electrical activity initiating pathway 2) increasing influx of Ca2+ due to a 

slowing in Ca2+ inactivation 3) increased action potential via Kv-channel leading to Ca2+ 

influx 4) glucose assisted Ca2+ influx through cAMP-GEFII-dependent mechanisms. 5) 

Stimulation of mitochondrial ATP synthesis through Ca2+ mobilization from intracellular 

stores leading to KATP channel closure and 6) increased exocytosis of insulin granules 

pontentiated by high cAMP levels 

GLP-1 is believed to inhibit glucagon secretion though the mechanistic understanding of 

its inhibitory action is in its infancy. Glucagon, a glucoregulatory hormone essential in 

maintaining glucose homeostasis, catalyzes the release of stored glucose. Importantly, the 

inhibitory effect of GLP-1 on glucagon secretion occurs only at glucose levels equal to or 

exceeding fasting levels -- GLP-1 does not promote a state of hypoglycemia 54.  

 GLP-1, secreted by neurons in the brain, interacts with GLP-1 receptors in the 

hypothalamic and extra hypothalamic regions in the brain to suppress appetite 55,56. 

Administration of GLP-1 to the brain via intra cerebroventricular injection has proven to 

reduce food intake in rats in the absence of GLP-1 receptor antagonists 57,58. In morbidly 

obese patients secretion of GLP-1 is non-detectable 59. This correlates well with resultant 

insulin resistance from weight gain 60. 

Type 2 diabetes is characterized by insensitivity to glucose-induced insulin secretion. 

While this insensitivity is due to the loss in effect of another insulinotropic peptide, GIP 

[ref 18], it has been found that exogenous GLP-1 delivery to patients is restorative 61,62. 

However, GLP-1 activity is extremely short-lived with 1-2 minute in vivo rapid 

inactivation by the dipeptidyl peptidase IV enzyme, which cleaves off the N-terminal 
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histidine and alanine amino acids. This cleavage results in inactive GLP-1(9-37) 63 that 

potentially acts as a competitive antagonist of the GLP-1 receptor. Holst and colleagues 

estimates 64 that the active form constitutes less than 25% of all GLP-1 forms leaving the 

gut and 10-15% in systemic circulation. With a half-life of 4-5 minutes, the kidneys clear 

both active GLP-1 and its metabolite forms rapidly. Along with its non-hyperglycemia 

control of insulin secretion, GLP-1 serves to enhance beta-cell survival, inhibit glucagon 

secretion, reduce appetite along with food intake, and slow gastric emptying making it an 

ideal therapeutic target. Many GLP-1-based therapies are focused on circumventing its 

short half-life in vivo by proposing schemes for protease-resistance and the 

aforementioned extended release. Exendin 4 is protease resistant. It is derived from the 

venom of Heloderma suspectum lizard 65 and acts as a GLP-1 receptor agonist sharing 

similar potency to GLP-1. Exendin 4, commercially available as Byetta ™, has a half-life 

of ~30 minutes before renal clearance 66. This extended half-life is due to the DPPIV-

resistant substitution of amino acid Alanine (A) to Glycine (G) at the active N-terminal of 

the truncated peptide. This evasion of deactivation will be incorporated into the design of 

GLP-1 fusion peptide used in this work. 

2.1.3 SBP Fusion Peptide GLP-1-SBP 

Fusion of GLP-1 to SH3-binding peptides (SBPs) confers similar affinities to the 

therapeutic peptide. GLP-1 was mutated to resist DPPIV protease activity and reduce 

arginine-glycine protease cleavage at its C-terminal through the substitution of amino 

acid alanine at position 36 as shown in Figure 2-3 67 To reduce disruption of GLP-1 

secondary structure by SBPs, lysine/serine or glycine/serine repeat linkers incorporated in 
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the fusion peptide. Two strategies were employed to prepare GLP-1-SBP fusion peptides: 

recombinant expression, and peptide synthesis. 

 

Figure 2-3 Amino acid sequence of GLP-1 analogs (A) Original conserved GLP-1 
sequence. The arrow (↓) marks the typical site of DPPIV inactivation. (B) modified 
amino acid sequence of GLP-1:  amino acids (bold) are essential for GLP-1 binding; 
modified amino acids are underlined.  

2.2 Experimental Details 

2.2.1 ELP-SH3 Expression & Purification 

ELP-SH3 fusion protein, previously cloned into pQE60 vector (5.1kbp)68, was 

transformed in BL21 αF’Iq E.Coli cells (New England Biolabs) for expression. Cell 

cultures were grown at 37oC to an optical density of OD600nm 0.9 in 2X yeast extract and 

tryptone (YT) with 1:1000 of ampicillin antibiotic stock (200mg/ml) before induction of 

protein expression with 1mM Isopropyl β-D-1-thiogalactopyranoside (IPTG). ELP-SH3 

was expressed for 4 hours post-induction at 37oC. Cells were harvested by centrifugation 

at 5000 x g for 30 minutes. Cleared lysate containing the soluble fusion protein was 

collected after sonication on ice (pulse: 15s on, 30 s off, 15 minutes) after which ELP-

SH3 was Ni-NTA resin-purified according to the denaturing protocols provided by 

Qiagen (CA, USA). Purification products were analyzed by sodium dodecyl sulfate 

polyacrylamide gel electrophoresis (SDS-PAGE) and western blot using anti-HIS 

Antibody conjugated to Alexa Fluor 488 as probe. Pure ELP-SH3 samples were re-
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natured by dialysis in deionized water for 24 hours and concentrated by EMD Millipore 

centrifugal filter units (CA, USA). 

2.2.2 ELP-SH3 Characterization 

The concentration dependence of the inverse phase transitioning temperature or turbidity 

of ELP-SH3 was characterized using an Applied Photophysics Chirascan spectrometer 

(Leatherhead, UK) for concentrations (5, 10, 20, 30, 40, and 50µM in PBS) with 

temperature ramp rate at 1oC/min. The transition temperature, Tt, was determined after 

calculating the maximum first derivative of the optical density (absorbance 350nm).  The 

temperature-dependent phase transitioning was also investigated by dynamic light 

scattering using a Malven Zetasizer Nano ZS90 (PA, USA). 

2.2.3 GLP-1-SBP Design & Production 

GST-GLP-1-SBP2 was prepared by cloning GLP1-SBP2 insert into GST Tag containing 

vector pGEX-4t-2. Gene encoding for amino acid sequence, below was obtained from 

GenScript 

AAHG8EGTFTSDVSSYLEE22QAAKEFIAWLVKGA36GKSKSPAPSIDRSTKPPL. 

Following induction with 1mM IPTG (OD600nm = 0.8) and expression in E.Coli for 

2.5hrs, purification of Glutathione S-Transferase (GST) tagged GLP-1-SBP was 

performed natively using gluthatione sepharose resin according to manufacturer’s 

specifications with no modifications. Lyophilized thrombin (GE Lifesciences, PA, USA) 

reconstituted in deionized water to a concentration of 1 unit/µl, was used to cleave the 

GST solubility tag from the purified fusion GLP-1-SBP. 1-10 units of thrombin were 

recommended per mg of recombinant protein. Cleavage products were analyzed with 
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18% Acrylamide-Bis SDS-PAGE and ESI mass spectrometry (LTQ Orbitrap XL ETD, 

Thermo Scientific, USA). In addition to recombinant expression, GLP-1-SBPs were 

synthesized by Genscript (NJ, USA). Characterization of the GLP-1-SBP peptide 

secondary structure was analyzed by circular dichroism. 

2.2.4 Binding kinetics of SBP-SH3 by BioLayer Interferometry 

The binding interactions of SBP to SH3 were performed using the Octet RED96 Biolayer 

Interferometer (ForteBio, CA, USA). ELP-SH3 was conjugated to biotin using a thiol 

coupling reaction; biotin-maleimide (Sigma-Aldrich, MO, USA) was reacted with the N-

terminal cysteine on ELP-SH3. Streptavidin-coated biosensor tips were hydrated in assay 

buffer (PBS, 0.05% Tween 20, 0.01% BSA, pH 7.4) before assays. To optimize ligand-

loading density on the surface of the streptavidin-coated biosensor, dilutions of 

biotinylated ELP-SH3 were prepared for loading and assayed against a constant 

concentration of GLP-1-SBP analyte. Kinetic screening of GLP-1-SBP analyte dilutions 

were conducted following ligand-loading optimization experiments. Briefly, streptavidin 

biosensors were transferred to the instrument and dipped in assay buffer for 10 minutes to 

allow for hydration before loading ELP-SH3 ligand for 30 minutes. Biosensors were then 

dipped in assay buffer for 300s to remove any ELP-SH3 not bound specifically. To 

establish a baseline the biosensors were transferred to fresh assay buffer for 300s under 

constant agitation. GLP-1-SBP analyte association with SH3 was measured for a range of 

concentrations (0, 0.1*KD, 0.5*KD, 1*KD, 5*KD, 10*KD) for 300s, followed by 

dissociation measurements for 300s in assay buffer.  The assay was replicated three times 

after sensor regeneration (10mM Glycine, 0.1M NaCl, pH 3) and neutralization (PBS, pH 

7.4) steps. New biosensors were used for each type GLP-1-SBP analyte. A reference 
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biosensor containing no immobilized ligand was used to determine buffer effects and 

non-specific association of analyte. Figure 2-4 shows a schematic of the protocol steps 

detailed above.  Based on a monophasic analyte binding curve a classical 1:1 

biomolecular interaction model was chosen to fit the data.  

The association phase was described by an exponential function: 

𝑦 = 𝑅𝑚𝑎𝑥  
1

1+ 𝑘!
𝑘!   ∗ [𝐴𝑛𝑎𝑙𝑦𝑡𝑒]

  (1−   𝑒! !!∗ !"#$%&' !!! !) 

The dissociation phase was described by functions 

𝑦 =   𝑦!𝑒!!!(!!!!) 

𝑦! = 𝑅𝑚𝑎𝑥  
1

1+ 𝑘!
𝑘!   ∗ [𝐴𝑛𝑎𝑙𝑦𝑡𝑒]

  (1−   𝑒! !!∗ !"#$%&' !!! !)  

Association rate constants (ka), dissociation rate constants (kd) and equilibrium 

dissociation (KD) were obtained from the fitted data. 

 

Figure 2-4 Schematic of BLI kinetic assay  
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2.3 Results & Discussion 

Expression and denaturing purification of fusion protein ELP-SH3 was analyzed by SDS-

PAGE and western blot (Figure 2-5). ELP-SH3 yielded 18mg per liter of culture. ELP-

SH3 (20 kDa) ran slightly higher (~25kDa) in gels in both its monomeric and dimeric 

forms as confirmed by anti-6xHis antibody probe on western blot. Incomplete reduction 

of ELP-SH3 may have contributed to the dimers observed (~45 kDa) in the western blot.  

 

Figure 2-5 Representative images of ELP-SH3. Purification samples as analyzed 
by western blot (left panel) and coomassie blue stained SDS-PAGE (right panel). 
Lanes 1-4 are eluted samples of ELP-SH3 after denaturing purification. 

ELP-SH3 showed increased solubility in deionized water in comparison to phosphate 

buffer saline as is expected due to the phase transitioning properties of the ELP. The 

inverse phase transitioning properties of ELP-SH3 were characterized under several 

conditions including temperature, protein concentration, and salt in order to determine 

suitable future assay conditions (e.g. kinetic binding assays) and facilitate delivery 

system preparation. The phase transitioning behavior exhibited by ELP-SH3 in water 

varied with concentration (Figure 2-6) but was less rapid than that experienced by ELP-

SH3 in PBS. The transition temperature, Tt, for ELP-SH3 in water was calculated as 55oC 
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for the 50µM. This indicates that the transition temperature may be further depressed by 

increasing protein concentration > 50µM in water.  

 

Figure 2-6 The concentration dependence of the temperature profiles for 
turbidity of ELP-SH3 in water was weak. The transition temperature, Tt, was 
defined as the temperature at which the maximum dOD/dT occurred. Tt ranged 
from 60oC - 55oC for 10-50µM ELP-SH3 

The concentration dependence on phase transition temperature depression was more 

pronounced for ELP-SH3 in PBS (Figure 2-7B), with temperatures ranging from 60oC - 

30oC. ELP-SH3 samples in PBS were kept at 4oC before analysis to reduce possible 

precipitation. Precipitation was observed for 50µM ELP-SH3 in PBS even at 4oC, this 

precipitation might explain the similarity in transition temperature to 40µM ELP-SH3.  
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Figure 2-7 Concentration dependence of the temperature profiles for turbidity of 
ELP-SH3 in PBS. The transition temperature, Tt, was defined as the temperature at 
which the maximum dOD/dT occurred. (A) Turbidity curves of increasing 
concentrations of ELP-SH3, (B) calculated transition temperatures for varied 
protein concentrations. 

Dynamic light scattering measurements of 50µM ELP-SH3 in PBS as a function of 

temperature (Figure 2-8) confirms the formation of nanoparticles (~250nm) at low 

temperatures. Particle sizes reached it maximum of ~ 4µm at the onset of the phase 

transition. 
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Figure 2-8 Hydrodynamic diameter of ELP-SH3 as a function of temperature. 
Dynamic light scattering data was acquired for 50µM ELP-SH3 in PBS. 

GST-GLP-1-SBP2 was successfully expressed and purified by Glutathione sepharose as 

evidenced by SDS-PAGE and western blot with anti-GST antibody probe (Figure 2-9). 

Cleavage by thrombin (GE Healthcare), despite attempts at optimizing cleavage 

conditions such as concentration, temperature, bead immobilization and time was 

unsuccessful. Activity of thrombin enzyme was confirmed by the presence of cleavage 

product GST tag (Figure 2-10 - lane 3). Analysis of cleavage products by MALDI-TOF 

mass spectrometry revealed non-specific cleavage at the end of the GLP-1 sequence 

resulting in the effective cleaving off of the affinity peptide (Figure 2-11). Redesign of 

the linker between GLP-1 and SBP (DNA Sequence listed in APPENDIX I) by site 

directed mutagenesis resulted in similar cleavage results indicating non-specific cleavage.  
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Figure 2-9 Representative images of GST-GLP-1-SBP2 purification samples as 
analyzed by western blot (top) and coomassie blue stained SDS-PAGE (bottom). 
Bacterial cleared lysate (lane 1), glutathione sepharose column flow through (lane 
2), column washes (lanes 3-5), column elution (lanes 6-10). GST-GLP-1-SBP2 band 
observed at 31.5 kDa, upper bands in lanes 6-10 are possible degradation product 
from the GST terminus 

 

Figure 2-10 SDS-PAGE of GST-GLP-1-SBP2 post-treatment with thrombin 
(33kDa). Enzyme and cleavage products include: thrombin (lane 1), peptide from 
resin-immobilized GST-GLP-1-SBP2 cleavage (lane 2), GST tag (lane 3), thrombin 



 24 

and GST (lane 4), product from GST-GLP-1-SBP2 cleavage in solution (lane 5), and 
GST-GLP-1-SBP2 before cleavage (lane 6). 

 

Figure 2-11 GST-GLP-1-SBP2 products are analyzed by MALDI mass 
spectrometry after treatment with thrombin (GE Lifesciences). Cleavage products 
show non-specific action of thrombin enzyme. Peaks (1) SKSPAPSIDRSTKPPL, (2) 
GAGKSKSPAPSIDRSTKPPL, and (3) 
AAHGEGTFTSDVSSYLEEQAAKEFIAWLVKGA. 

Alternatively, GLP-1-SBPs were synthesized by Genscript (NJ, USA). The alpha-helical 

structure (222nm) present in GLP-1 analog Exendin-4 was confirmed in GLP-1-SBPs. 

Alpha-helical peak at 208nm were offset by the presence of SBP which has a strong 

characteristic peak at 200nm (Figure 2-12). 
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Figure 2-12 Circular dichroism spectra of GLP-1-SBP peptides and SBP at 16µM 
and ~0.4 µM in water respectively. Alpha-helical characteristic peak at 222nm is 
evident for GLP-1-SBPs but absent in SBP2 

Kinetic parameters of SBP and SH3 binding interactions were measured using BioLayer 

Interferometry (ForteBio). Analysis required optimization of ligand binding to sensor tip 

before kinetic assay. 

The optimal density of immobilized biotinylated ELP-SH3 ligand was determined after 

performing loading and analyte association with varied concentrations of ligand. Ligand 

concentration resulting in significant but not saturated loading signal with a slow initial 

loading rate and a high analyte association was chosen as the optimal loading density. 

The ELP-SH3 biotinylated ligand tended to form nanoparticles at high concentration in 

the assay buffer or upon contact with the sensor surface. Functionalization with PEG4-

Biotin decreased aggregation. Optimization of assay buffer and loading conditions were 

essential for proper ligand loading. Fitting of GLP-1-SBP13 analyte association and 

dissociation curves for serial dilution of analyte resulted in a good fit for the 1:1 
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interaction model. Fitted kinetic parameters could be obtained only for the GLP-1-SBP13 

analyte due to equipment malfunction. However, BLI analysis of GLP-1-SBP13 binding 

had an affinity value of KD of 1.66 x 10-7 (M) which is of similar magnitude to previous 

data for FN-SBP13 (KD 4.59 x 10-7 (M)) obtained by SPR analysis. This suggests that the 

fusion of GLP-1 peptide to the SBPs do not adversely affect affinity binding. 
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CHAPTER 3.  

CONTROLLED RELEASE OF GLP-1 FROM  

AFFINITY-BASED PROTEIN MICROSPHERES 

3.1 Background 

Glucagon-like peptide-1, GLP-1, along with analog Exendin-4 is one of the major 

peptide-based treatments for Type 2 diabetes. GLP-1 stimulates the secretion of insulin 

and pancreatic beta cell proliferation 32,49. However, GLP-1 suffers from inactivation by 

DPPIV enzyme in vivo and like most peptide undergoes rapid clearance. To overcome 

these challenges GLP-1 has been conjugated to large molecules, undergone sequence 

mutation, or encapsulated in polymeric microparticles 33,69–71.  

Roughly one-tenth of the US population has been diagnosed with diabetes or pre-

diabetes (early onset insulin resistance), with 90% of those cases associated with Type 2 

diabetes 31. Long-lasting formulations that increase patient compliance while maintaining 

therapeutically relevant doses are attractive alternatives to once-daily injections. 

Bydureon (AstraZeneca), consisting of Exendin-4 encapsulated within polymeric 

particles is the only microsphere formulation currently on thes market with a once-

weekly administration. Several research studies are focused on particle-based release 

systems for both subcutaneous and oral delivery of GLP-1. Amiram et al proposed a 

promising cleavage-dependent release of GLP-1 from an injectable biopolymer depot 67, 

while Kim and colleagues sought to increase patient compliance by fabrication of 

exendin-4-loaded chitosan particles for oral delivery thereby avoiding the subcutaneous 
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route 72. Combinatorial use of PEGylated exendin-4 and encapsulation within PLGA 

microspheres were investigated by Lim and colleagues to allay the effects of peptide-

destabilizing acylation reactions, and to increase circulation time of peptide upon release, 

while taking advantage of the degradation-dependent release of the PLGA encapsulation 

system 73. Common to these approaches is the attempt to maintain glycemic control 

through sustained bioavailability of the peptide therapeutic. However, enzyme-mediated 

release systems are limited by enzyme diffusion to substrate site, while peptide activity 

may be compromised by harsh conditions in the gut during oral delivery. Approaches 

similar to Lim et al using degradation- and particle-based systems have been exhaustively 

investigated. However, the tendency for diffusive over degradative release 8 and the poor 

adaptation to hydrophilic proteins and peptides 4 respectively, make such systems 

undesirable for controlled peptide release 74. Other systems employ harsh incompatible 

organic solvents for fabrication denature or destabilize structure leading to loss of 

therapeutic activity.  

In Chapter 1 several affinity-based studies employing complementary binding pairs 

to reduce non-specific binding and to control release have been described. An illustrative 

example of the use of affinity binding pairs to reduce non-specific interactions is 

presented by Belair and colleagues. They reported that serum-enhanced release rates of 

VEGF from VEGF binding microspheres was much slower for the VEGF binding peptide 

over the low affinity scramble peptide control22. Another prominent contributor in this 

emerging class of delivery systems is the Shoichet group. They have developed delivery 

systems using SH3 fusion proteins of both chondroitinase ABC and growth factor bFGF 

to showing release over periods of 7 and 10 days respectively with binding affinities of 



 29 

10-5 – 10-7M 19,20. Herein we use affinity-dependent release of GLP-1 from protein 

microspheres that preserves function through mild preparation conditions and minimizes 

non-specific interaction while sustaining release. Our system seeks to reduce the 

frequency of injections by sustaining therapeutically relevant peptide release profiles and 

to decrease the burst-release effects experienced by encapsulation systems. To achieve 

this, we exploit the associative and dissociative interactions between protein domains for 

specific immobilization and release, respectively. These domains are the Src Homology 

domain 3 (SH3), and its partner SH3 binding peptide (SBP). To develop our delivery 

system; SH3 was expressed as a fusion protein with elastin-like polypeptide (ELP-SH3) 

which facilitates microsphere preparation while the SBP was synthesized with GLP-1 as 

the 45 aa peptide GLP-1-SBP. Interactions between the microsphere-immobilized SH3 

and GLP-1-SBP allow for reversible binding that impedes the release of GLP-1 fusion 

peptide. SBPs; SBP2, SBP13, SBP24, possessing a wide range of affinities (Kd from 10-

8M (high), 10-7M (mid), 10-6M (low)) allows for the tuning of the GLP-1 release rates 

from the microspheres. Here we show that functionality of the SH3 domain survived the 

gentle microsphere fabrication process. We demonstrate the 7- day release of active GLP-

1-SBPs as evaluated by GLP-1 ELISA and cell number increase in vitro.  Mouse 

pancreatic insulinoma βTC-6 cells, known to proliferate in the presence of GLP-1 

receptor agonist, assessed the activity of GLP-1-SBPs release from microspheres in vitro. 

GLP-1-SBPs modulation of insulin secretion was also evaluated. To facilitate estimation 

of peptide affinity effects on release rate from microspheres a mathematical model, 

developed previously by Saiyama-Elbert et al, describing the release of peptides from 

hydrogels was employed 15,75. The model comprised of a system of equations; a reaction-
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diffusion equation for the diffusing species along with mass balances on immobilized 

species, characterized the influence of affinity strength on the release rates of GLP-1-SBP 

from SH3 microspheres.  

3.2 Experimental Details 

3.2.1 Peptides 

Exendin-4 and GLP-1 were purchased from SigmaAldrich. GLP-1-SBP peptides were 

synthesized by Genscript (NJ, USA). The sequences of the peptides are shown in 

Appendix I. 

 

3.2.2 Cell Culture 

βTC-6 mouse pancreatic insulinoma cells, were grown in DMEM media (ATCC 30-

2002) supplemented with 15% heat inactivated fetal bovine serum and 100 U/ml 

penicillin/Streptomycin. 

3.2.3 Stability of GLP-1-SBP 

Stability of GLP-1-SBPs was qualified by the preservation of the alpha-helical secondary 

structure at 208, and 222nm using circular dicroism (APL Chirascan). The quantity of 

active GLP-1 was measured by active GLP-1 ELISA that recognizes only the intact N-

termini of GLP-1 peptides. 

3.2.4 ELP-SH3 Immobilization on polysterene microparticles 
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ELP-SH3 protein cloned previously with a cysteine residue at its N-terminus allowed for 

thiol conjugation to microparticle. ELP-SH3 was covalently coupled to the microparticle 

surface in the following coupling steps. Carboxyl-functionalized polysytrene 

microparticles 3 microns in nominal diameter (2.6 wt%) were purchased from 

Polysciences Inc (PA, USA). 382ul of particle suspension was removed from a well-

shaken stock solution and centrifuged at 2500 x g for 2.5 minutes. Particles were then 

activated by twice repeated suspension in 0.1mM MES buffer (pH 5.2).  The activated 

carboxyl groups were then reacted with 50mM of Ethyl-3-(3- 

dimethylaminopropyl)carbodiimide (EDC), which forms an unstable O-acylisourea 

intermediate, and 16.7mM sulfo-NHS transforming the intermediate to the more stable 

sulfo-NHS ester intermediate for 15 minutes under constant shaking at room temperature. 

The particles were then twice washed with 1xPBS (pH 7.4) to remove unreacted reagents. 

Reaction with 33.2mM of 2-(2-pyridyldithio) ethyleneamine (PDEA) in 0.1M acetate 

buffer (pH 4.2) for 15 minutes under constant shaking at room temperature. Following 

the reaction particles were thrice washed with distilled water. The thiol-terminated ELP-

SH3 was reduced in 5mM TCEP solution for 30 minutes then desalted using PD 

Desalting columns from GE Healthcare (NJ, USA) in preparation for the coupling 

reaction. 1mg/ml of ELP-SH3 was added to the PDEA activated microparticles and 

reacted for 2-4hrs under constant shaking at room temperature. The molar quantities of 

the reagents used were based on Polyscience’s reported molar range of the carboxyl-

functionalization. EDC/NHS/PDEA were used in a 3:1:2 molar ratio to the -COOH 

groups on the microparticles. 



 32 

 

3.2.5 Elastin-like polypeptide microsphere formulations 

50 µM of ELP-SH3 in deionized water (18.2 MΩ-cm) was sonicated at 25oC for 10 

minutes. NaCl was added to a final concentration of 0.3M with continued sonication for 

10 minutes. Amine-reactive cross-linker DTSSP was added to a final concentration of 

0.75mM under continuous sonication for 30 minutes. Unreacted cross-linker was 

removed by twice-repeated centrifugation at 500 x g for 5 minutes and suspension in 

1xPBS. Microsphere formulations in which variation of either crosslinker concentration 

(0.75mM to 6mM), salt concentration (60mM to 300mM), or loading conditions 

(temperature and salt concentration) were investigated for optimization of microsphere 

stability and loading capacity. Characterization of the SH3 microspheres hydrodynamic 

radii, Rh, was performed using dynamic light scattering Zetasizer Nano ZS90 (Malvern 

Instrument) before storage at 4oC. Microsphere samples were twice- washed in deionized 

water then dried on silicon wafers overnight at room temperature in preparation for 

imaging by scanning electron microscopy (S.E.M).  SH3 microsphere morphologies were 

characterized by S.E.M operated at 5kV accelerating voltage and 3mm working distance. 

 

3.2.6 Analysis of SH3 microsphere loading with GLP-1-SBP 

Specificity of GLP-1-SBP loading was determined by fluorescence detection. Loaded 

microspheres were incubated with mouse anti-GLP-1 primary antibodies for 1 hour 

before washing and subsequent incubation with fluorescently-labeled anti-mouse 

secondary antibody. Flow cytometry detected fluorescent GLP-1-SBP bound to 
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microspheres; their mean fluorescence compared to that of unloaded microspheres with 

and without antibody probes.  

To facilitate direct fluorescent detection, GLP-1-SBPs were conjugated to TAMRA dye. 

Briefly, 20mM TAMRA-NHS (ex/em 546/579) ester in DMSO was reacted with GLP-1-

SBP in 50mM phosphate at pH 6.5 for preferential labeling of the α-amino group while 

lysine amines (ε-amino group) remain protonated. Unreacted TAMRA dye was separated 

from the conjugation mixture by dialysis for 48 hours with intermittent buffer exchange. 

To determine whether the binding capacity of the various microsphere formulations were 

affected by either cross-linking density or loading conditions, the prepared formulations 

were incubated with TAMRA-labeled GLP-1-SBP before detection by flow cytometry. 

Confocal microscopy was employed for additional verification of binding. Confocal 

microscopy (Carl Zeiss LSM 510B) images of fluorescently-labeled GLP-1-SBP loaded 

microspheres were obtained using a 63X oil immersion objective at TAMRA laser 

excitation wavelengths. Loaded samples were diluted with 50% glycerol/PBS solution 

immediately before imaging. 

The binding capacity of the most stable microsphere formulation was determine using 

fluorescent plate reader (BioTek). Briefly, 1 mg/ml of microspheres were loaded with 

varying concentrations of TAMRA-labeled GLP-1-SBPs for 1 hour followed by 

centrifugation for 5 minutes at 500 x g. Supernatant fluorescence was measured by plate 

reader and peptide quantity determine by comparison to serial dilution curves of the 

loading solution. The quantity GLP-1-SBP captured by microspheres was calculated by 

subtraction of original loading amount from amount remaining in supernatant.  
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3.2.7 Bioactivity of GLP1-SBP: Beta-Cell Counting Assay 

βTC-6 cells were seeded in 24-well plates at a density of 20 x104 cells/well in complete 

media comprised of penicillin/streptomycin, 16.7mM glucose DMEM (ATCC 30-2002), 

and 15% Heat Inactivated FBS. Cells were treated with 10nM peptide agonists at 2-day 

intervals after seeding for 6-10 days in DMEM Media with 5.5mM glucose and 2% heat 

inactivated fetal bovine serum (serum-starved conditions). After aspiration of cell media, 

cells were treated with 0.05% Trypsin, 0.53mM EDTA for 15 minutes at 37C followed 

by addition of cold PBS before storage on ice (4C) in preparation for counting by flow 

cytometry.  Increase in cell number was assayed as described above for GLP-1-SBPs 

released from microspheres using transwell inserts in 24-well plates as shown in the 

schematic in Figure 3-1. 

 

Figure 3-1 Schematic of GLP-1-SBP release from microspheres. Microspheres 
were loaded with GLP-1-1SBPs (A-B), empty (C) or soluble GLP-1 agonist. Cell 
media was replaced 2-day intervals. 
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3.2.8 Bioactivity of GLP1-SBP: Insulin Secretion 

βTC-6 cells were seeded at 150,000 cells/ 1.9cm2 in a 24-well plate were washed in 

glucose-free Krebs-Ringer Bicarbonate buffer (115mM NaCl, 24 mM NaHCO3, 5mM 

KCl, 1mM MgCl2, 2.5 mM CaCl2, and 25mM HEPES, 1 mg/ml Bovine Serum Albumin, 

pH 7.4) then incubated in glucose-free krebs-ringer bicarbonate buffer 37oC, 5% CO2 for 

1 hour prior to treatment 76,77. Cells were then treated with Krebs/HEPES buffer 

containing 0, 3, and 16.7mM glucose with either GLP-1-SBP2 or GLP-1 for 2 hours at 

37oC 5% CO2. Cell supernatants were collected and the secreted insulin quantified by 

insulin ELISA kit (Crystal Chem, IL). 

 

3.2.9 Induction of insulin secretion by loaded microspheres 

βTC-6 cells were cultured in 24-well plates to 70% confluence in 16.7mM glucose 

DMEM (ATCC 30-2002), and 15% Heat Inactivated FBS.  Cells were washed glucose-

free Krebs/Hepes buffer for 1 hour prior to incubation in Krebs/HEPES buffer containing 

3mM Glucose for 24 hours. GLP-1-SBP loaded microspheres were incubated with plated 

Beta-TC-6 cells using a transwell 24-well insert. Microspheres were placed in 0.4 micron 

pores transwell insert (Corning, NY, USA). 10 μl of cell supernatant wad removed after 

2, 4, and 12 hours. Insulin secretion in cell supernatants was quantified by ELISA 

(Crystal Chem). 
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3.2.10 GLP-1-SBP Release from microspheres 

SH3 microspheres were incubated with 0.5mg /ml GLP-1-SBPs overnight in 1.5ml Low 

protein binding microcentrifuge tubes (Eppendorf) to allow for equilibrium binding. 

Microspheres were twice washed -- centrifuged at 500 x g for 5 minutes followed by 

suspension in 1x PBS and placed in transwells inserts in 24-well plates containing 

1xPBS. Supernatants were collected at varying time points and equal volumes of 1xPBS 

were replaced at each time point. GLP-1 ELISA quantified peptide concentration in 

supernatants (EMD Millipore). 

 

3.2.11 Competitive binding experiment 

SH3 microspheres were incubated with TAMRA-labeled GLP-1-SBPs for 4 hours at 4C. 

Varying concentrations of soluble ELP-SH3 were then added to the incubated samples. 

After dosing, the samples were incubated for an additional 4 hours at 4C. Microsphere 

fluorescence was then measured by flow cytometry. 

 

3.2.12 Normalization of Release Data 

Fractional release curves were obtained through normalization to the total quantity of 

peptide detected. At the end of release period, ELISA determined the quantity of peptide 

remaining on microspheres. Total peptide detected was calculated as the sum of the 
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quantity from cumulative release and the quantity remaining on microspheres after the 

release period. 

 

3.2.13  Mathematical Model 

                                                                 (1) 

                      (2) 

                                                                 (3) 

                                                           (4) 

Equation (1) describes the binding interaction between the components of the affinity-

based system78,6. The SH3 domain is modeled as immobilized or microsphere-bound, 

while GLP-1-SBP, denoted here as SBP, is modeled as the diffusing species. SH3-SBP 

describes the microsphere-bound complex. The model assumes that both SH3-SBP and 

SH3 are non-diffusible species, while SBP is diffusible. Mass balances for each species 

within the affinity-based system resulted in the derivation of one partial differential 

equation describing the reaction-diffusion of SBP species in spherical co-ordinates 

(equation 2) and two ordinary differential equations (equations 3-4). Kinetic constants, kf 

and kr, describe the forward and reverse rates of SH3/SBP interactions. D denotes the 
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diffusion coefficient of SBPs. The model assumes perfect “sink” -- Dirichlet condition at 

the outermost boundary and a Neumann condition at the innermost boundary  

Assuming all reactants are at equilibrium provides the initial conditions for the model, 

these conditions are represented by equations (5) through (7) 

                                                          (5)

       (6)

       (7) 

For all r @ t=0    where i= SBP, SH3, SH3-SBP 

Equations (8) and (9) describe the boundary conditions of the model 

For t > 0 @ r=R                (8) 

For t > 0 @ r= 0    = 0       (9) 

The system of equations was solved using MATLAB solver PDEPE that involves the 

numerical discretization of the coupled PDE-ODE equations. MATLAB source code 

(Appendix II) 
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i= 2, 13, or 24  *Diffusivity of GLP-1-SBP was estimated from the diffusivity of a 12mer heparin-binding 

peptide in mucus 75,79. kf,i and kr,i  are estimated for GLP-1-SBPs from the values for Fibronectin-SBPs 

obtained by Surface Plasmon Resonance. 

3.2.14 Data Analysis 

Studies were performed in triplicate and reported as the mean +/- standard deviation. 

Statistical significance was determined by student’s t-test, with a p-value of less than 0.05 

being considered statistically significant.  
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3.3 Results and Discussion 

Proteolytic inactivation and reduced bioavailability are main challenges facing peptide 

therapeutics. We report the release of GLP-1-SBPs from an affinity-based protein 

microsphere that effectively seeks to reduce decrease degradation through protease-

resistant peptide design and sustain release. Affinity-based microspheres ensure that 

active peptides are available in tunable quantities for efficacy of treatment while reducing 

quantity of injections required. This system negates not only the need for the high 

molecular weight peptide fusion formulation with polymers and biopolymers that can 

sterically hinder receptor binding and potentially reduce efficacy 80,81 but also reduces 

potential polymer-related peptide denaturation and adsorption 82 by controlling how the 

peptide interacts with the microsphere, namely through specific binding and release.  

3.3.1 Microsphere Fabrication and Characterization 

To facilitate affinity-based immobilization and release of fusion affinity binding partners, 

ELP-SH3 and GLP-1-SBP2 were prepared. The elastin-like polypeptide imparted inverse 

phase transitioning properties to the ELP-SH3 fusion protein. Its increased hydrophobic 

interaction in response to increased salt and protein concentration allowed for the 

biocompatible preparation of ELP-SH3 microspheres. During this inverse phase 

transition it is expected that SH3 domain will not be denatured. ELP fusion protein, 

thioredoxin–ELP underwent inverse transition cycling (ITC) with retention function, 

indeed ITC is proposed by Chilkoti and colleagues as a tandem protein purification 

method 8384. This is attributed to the presence of water (~60%) 36 in sufficient amounts to 

keep the guest domains hydrated and in its natural conformation in the aggregated phase. 
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Stability of SH3 microspheres was achieved via amine cross-linking following 

microsphere formation preventing the dissolution to soluble ELP-SH3 at storage 

temperatures lower than the transition temperature. Salt concentration played a 

significant role in particle stability -- low salt formulations (60mM-150mM) tended to 

aggregate over time despite the stabilizing effect of cross-linking. S.E.M images 

confirmed DLS diameters (Figure 3-2). Increasing concentration of ELP-SH3 in the 

absence of salt let to nanosphere formations. Particle size increased as a function of both 

protein and salt concentrations. Particle size increased to 5 microns on average in 0.3M 

salt and 50μM	   ELP-‐SH3	   concentrations.	   SH3 microsphere preparation with varying 

quantities of cross linker did not affect the loading of GLP-1-SBP fusion peptides. GLP-

1-SBP binding occurred throughout the microspheres evidenced by confocal microscopy 

imaging of the loaded microspheres (Figure 3-3) and was not limited to surface binding 

only. Examination of loading via flow cytometry across various microsphere 

formulations confirmed that cross-linking density, salt concentration, or loading 

temperature had no effect on GLP-1-SBP binding (Figure 3-4). Anti-GLP-1 antibody 

probing of loaded microspheres confirmed the presence of GLP-1-SBP on the 

microsphere surface (Figure 3-5). An anti-GLP-1 antibody that is specific to the active N-

termini of GLP-1 probe was employed. Fluorescence remained relatively similar across 

all microsphere formulations suggesting that the SH3 domain function was preserved and 

competitive binding experiments (Figure 3-6) confirmed binding specificity. A fractional 

loading of 30-40% was achieved for both low and high cross-linker concentration (Figure 

3-7). The positive shift in fluorescence indicates that GLP-1-SBP immobilized on SH3 

microspheres retained its structure suggesting specific binding interaction. Additionally, 
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specificity of binding was analyzed by competitive binding. The loss of GLP-1-SBP 

binding to microsphere in the presence of soluble SH3 competitor demonstrated the 

specificity and reversibility of interactions between the SH3 and SBP binding partners. 

 

Figure 3-2 Scanning electron microscope images of 50µM ELP-SH3 particles 
cross-linked with amine reactive DTSSP. Nanospheres were prepared with 50µM 
ELP-SH3 in the absence of salt (scale 500nm). Microspheres were prepared with 
50µM ELP-SH3 and 300mM salt (scale 5µm). 

  

Figure 3-3 Confocal Laser Scanning Microscopy (CLSM) image of TAMRA-
labeled GLP-1-SBP loaded ELP-SH3 microspheres. Microspheres were prepared 
with 150mM Salt and 6mM DTSSP crosslinking Representative image of 
microspheres loaded in conditions below their transition temperature, T < Tt (left) 
and above T > Tt (right) 
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Figure 3-4 Loading capacity of SH3 microsphere formulations analyzed by 
fluorescence intensity. Formulations were incubated with equal amounts of 
TAMRA-labeled GLP-1-SBP. Microsphere fluorescence, analyzed by flow 
cytometry 12-hours post incubation showed no significant increases in fluorescence 
among loaded microspheres. 
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Figure 3-5 GLP-1-SBP binding to SH3 microsphere. 1mg/ml of SH3 
microspheres were incubated for 4 hours with 0.100 mg/ml GLP-1-SBP. Qualitative 
analysis of GLP-1-SBP immobilization on microspheres using anti-GLP-1 and Alexa 
fluor 633 anti-mouse secondary antibody showed an increase in mean fluorescence 
in comparison to the microspheres without GLP-1-SBP. 
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Figure 3-6 Competitive binding assay. GLP-1-SBP loaded microspheres were 
incubated in varying concentrations of free SH3. As the concentration of free SH3 
increased, the amount of GLP-1-SBP immobilized on microspheres decreased 
leading to a reduction in fluorescence 

 

Figure 3-7 Quantification of GLP-1-SBP binding to varied SH3 microsphere 
formulations. 1mg/ml of SH3 microspheres were incubated for 12 hours with 0.150 
mg/ml TAMRA-labeled GLP-1-SBP. Formulations prepared with 0.3M NaCl and 
stabilized with either low or high concentrations of DTSSP cross-linker showed 
similar loading capacities of 30-40% of the loading solution, while other 
formulations varied in stability and/or binding capacity. Error bars represent 
standard deviation across three separate experiments 
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Figure 3-8 GLP-1-SBP binding characterization. Fractional loading of low and 
high cross-linker microsphere formulations varied significantly at short times, <2 
hours, but were similar at long times >=12 hours. 

3.3.2 βTC-6 Cell Activity Assay 

GLP-1 is reported to induce proliferation of βTC-6 cells 49. Increase in ßTC-6 cell 

number was dependent on GLP-1-SBP concentration under serum starved conditions, 

resulting in a 1.4 fold increase in the number of cells in comparison to the no treatment 

control (Figure 3-9) and with similar cell numbers to the Exendin-4 (GLP-1 analog) 

positive control treatment (Figure 3-10) . GLP-1-SBPs exhibited similar activity before 

immobilization and after microsphere release suggesting that there were no adverse 
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denaturing interactions between the microsphere and fusion peptide (Figure 25). 

 

Figure 3-9 Cell-based GLP1-SBP activity assay. Treatment with increasing 
concentrations of GLP1-SBP significantly increased the number of ßTC-6 cells in 
comparison to the non-treatment control under serum-starved conditions; (left) 2% 
heat inactivated FBS, (right) 4% heat inactivated FBS. *P<0.05 

 

Figure 3-10 ßTC-6 cell number increased in response to incubation with soluble 
GLP-1-SBPs. Cells were treated every 2 days with soluble GLP-1-SBPs, GLP-
1(Control), and Exendin-4 (Control) under starved conditions (2% heat inactivated 
FBS) until harvesting on day 7. Stimulation with GLP-1-SBPs and Exendin-4 led to 
significant increases in cell number at all concentrations. While significant increases 
in cell number were observed only for high concentrations of GLP-1 (100nM) 
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Figure 3-11 ßTC-6 cell number increased in response to incubation with GLP1-
SBP loaded microspheres in transwell insert. GLP-1-SBPs released from 
microspheres retained activity; significant increase in cell number when compared 
to the no treatment (empty) microspheres was observed. 

3.3.3 Insulin Secretion Activity 

Baggio et al reported that chronic activation of GLP-1 receptors do not result in 

hypoglycemia due to the loss of insulinotropic effects of GLP-1 at low glucose 

concentrations in vivo 85. This finding mirrored the glucose-dependent secretion of insulin 

after incubation of GLP-1 agonist with ßTC-6 cells. Insulin secretion increased with 

increasing glucose concentration (0, 3, and 16 mM), however maximal secretion was 

observed at 3mM glucose under co-stimulation by GLP-1. In the absence of glucose, 

Exendin-4 had no stimulatory effect on insulin secretion but showed significant secretion 

in the presence of 3mM glucose (Figures 3-11,-12). Repeated experiments with soluble 

GLP-1 analogs showed insensitivity to increasing stimulant concentration in 3mM 

glucose; there was no significant difference between basal and stimulated cases (Figures 

3-13,-14). Cell-cell contact influences insulin secretion -- non-contacting beta-cells lose 
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glucose sensitivity while simultaneously increasing basal level insulin secretion 86. 

Changes in cell number from plated to actual seeding at time of assay may account for 

the similarity between basal and stimulated cases in experimental repetitions. Similar 

results in insulin secretion were obtained for the microsphere-mediated GLP-1-SBP 

release (Figure 3-15) with possible common cause since the seeding density, which is a 

function of cell-cell contact 87. Optimization of cell density in relation to maximal 

difference in insulin secretion compared to basal rates is important for experimental 

consistency for ßTC-6 cells. Additionally, exposure time of cells to soluble stimulant did 

not yield any significant change in insulin secretion which lends credence to a loss of cell 

sensitivity over low release quantities from loaded microspheres (Figure 3-16).  

 

Figure 3-12 Optimization of insulin secretion by varying glucose concentration. 
Insulin secretion in ßTC-6 cells increased with glucose concentration in comparison 
to the basal insulin secretion at 0mM glucose. Maximal secretion was achieved with 
combined stimulation of 3mM glucose and 100nM GLP1-SBP2. 
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Figure 3-13 Glucose-dependent secretion of insulin. Exendin-4 treatment in the 
presence and absence of glucose with ßTC-6 cells. Exendin-4 treated cells stimulated 
significant quantities of insulin only in the presence of 3mM glucose. P<0.05 

 

Figure 3-14 Insulin secretion in response to GLP-1 in 3mM glucose. GLP-1-SBPs 
induced increased insulin secretion compared to the 3mM glucose-only control in 
ßTC-6 cells. Treatment with GLP-1 (positive control) did not induce significant 
secretion. 
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Figure 3-15 Insulin secretion assay.  Repeated insulin secretion experiment with 
GLP-1 analog, Exendin-4, showed no significant increase in insulin in comparison to 
basal rates buffer. GLP-1-SBPs and Exendin-4 were incubated at low (10nM) and 
high (100nM) concentrations in 3mM glucose. 

 

Figure 3-16 Insulin secretion activity of GLP-1-SBPs released from loaded 
microspheres. Released GLP-1-SBPs induced no significant insulin secretion after 2-
hour incubation with ßTC-6 cells. Positive control Exendin-4 treatment resulted in a 



 52 

non-significant increase in insulin secretion in comparison to the empty microsphere 
control. 

 

Figure 3-17 Time-dependence on insulin secretion. Soluble Exendin-4 and GLP-1-
SBP2 showed no significant increase in insulin secretion with increasing time. 

3.3.4 GLP-1-SBP Release 

Preliminary release profiles examined the role of surface immobilization of SH3 in 

comparison to the effective functional area of SH3 microspheres (loading throughout 

microsphere as confirmed by confocal microscopy). Results showed comparable rapid 

release of GLP-1-SBP from both SH3 conjugated polystyrene particles and SH3 

microspheres. These results suggested that diffusion through the SH3 microsphere was as 

rapid as surface released peptide. SH3 microsphere size remained unchanged post-release 

negating any dissolution contributions to the rapid release observed. Total peptide 

loading of the GLP-1-only control to SH3 microspheres confirmed minimal contributions 

from non-specific binding interactions, with a total loading of GLP-1 that was two orders 
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of magnitude lower than either GLP-1-SBP loading to SH3 microspheres or polystyrene 

particles.  

 

 

Figure 3-18 Preliminary release of GLP-1-SBP2 from microspheres. (A) 
Cumulative release from SH3 microspheres incubated with 5 mg/ml GLP-1-SBP2 
resulted in rapid burst in a 24-hour period. (B) Release profile for GLP-1-SBP2 
release from SH3 conjugated polystyrene surface. (C) Non-specific control, GLP-1, 
was released from SH3 microsphere at a slower rate than either specific-binding 
samples. The cumulative release was represented as a fraction of the total quantity 
loaded on microspheres/particles. Total GLP-1 loading was two orders of magnitude 
lower than GLP-1-SBP samples 

  

Vulic et al describes a time scale of release typical of affinity-based systems in equation 

(10). 
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      (10) 

Where L is the diffusion path length, D is the diffusivity of the peptide, KD is the affinity 

between the peptide and binding ligand 88.  The term, (1+ Cligand/KD), impedes pure 

diffusion-driven release (L2/D). Thus, peptide concentration is independent of release 

rates. In atypical systems in which Cpeptide >> Cligand diffusion-driven release governs 

initially since the attenuating term becomes (1 + Cligand/Cpeptide). It follows then that the 

rapid release experienced by both GLP-1-SBP specific binding systems may be 

attributable to high initial concentrations of the GLP-1-SBP peptide (Cpeptide 

=20*Cligand). In subsequent release experiments, peptide concentrations in 2X molar 

excess of ligand concentration were used for loading, favoring affinity-driven release.  
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Figure 3-19 Release profile of GLP-1-SBPs delivered from SH3 microspheres. SH3-
binding peptides attenuated the release of GLP-1 such that stronger binding peptide 
(SBP2) released at a slower rate than the weaker binder (SBP13). p < 0.05 for all 
groups, except between GLP-1-SBP2 and GLP-1-SBP13 at t = 4h. Weakest binding 
GLP-1-SBP24 showed an anomalous release profile.  

Release rates were fastest for GLP-1-SBP13 (weaker binder), followed by GLP-1-SBP2 

(strong binder), and were statistically significant (p<0.05) for all time points after 4 

hours. This suggests that tunable release can be achieved through the variation of binding 

peptides. GLP-1-SBP24 (weakest binder) showed anomalous release; with release profile 

closer to that of the strong binder instead of the expected faster release than GLP-1-

SBP13. This anomaly may be attributed to increased interaction of SBP24 with the 

elastin-like polypeptides present in the microspheres. Elastin-like polypeptides are known 
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to under phase transitions from randomly coiled conformations to ordered polyproline 

alpha-helical structures above a lower critical solution temperature 89,90. SH3 binding 

peptide, SBP24, unlike SBP2 or SBP13, possesses repeat polyprolines. These 

polyprolines can form (PPII) alpha helical structures that interact with similar structures 

present on the ordered ELPs of the microspheres. 
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Figure 3-20 Mathematical model correlation to experimental release for GLP-1-
SBP3 (top) and GLP-1-SBP2 (bottom).  

The mathematical model described the influence of SH3 binding peptide affinity on the 

release of GLP-1-SBPs from the ELP-SH3 microspheres. Partial differential equations 

describing the reaction-diffusion kinetics of the diffusible species and mass balances of 
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all system species (equations 2-4) comprised the model. The model does not correlate 

well with experimental release (Figure 20), which is attributed to overestimation of 

model parameters. The model recapitulates the release trends. The estimated diffusivity 

coefficient and kinetic parameters used in the model contributed to the differences 

observed between the model and experimental data. Calculation of the apparent 

diffusivity (the slope of the cumulative release versus root time, Figure 21) showed 

discrepancy in the estimated diffusivity and the apparent experimental diffusivity. 

Apparent diffusivity was lower for the stronger binding SBP2 than for the weaker 

binding SBP13 suggesting that release rates were due to interactions between the affinity 

domains and not only slower diffusion of peptides through microspheres91. 

!!
!!

  =   𝑘𝑡!/!                                  (11) 
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Figure 3-21 Release profiles of GLP-1-SBP2 and GLP-1-SBP13 were fit to a short 
time approximation (equation 11). The slopes are proportional to apparent 
diffusivity of the peptides through the microspheres. 

 

 

3.4 Conclusion 

In conclusion, exploiting SH3-SBP binding interactions is expected to provide a versatile 

platform for specific and controlled release of GLP-1. The use of self-assembling 

building blocks such as elastin-like polypeptides leads to bottom-up control of delivery 

system structure under conditions favorable to the retention of binding function. 

Therapeutic peptide fusion with SBP preserved activity while still allowing for release. A 

20-40% release over a 7-day period suggests that this system can be used to effectively 

deliver GLP-1 therapeutic. Release profiles were dependent on the strength of SBP 
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affinity, with the weaker binding SBP13 releasing significantly faster than the stronger 

binding SBP2. Mathematical model results qualitatively predicted the trend of release for 

both GLP-1-SBP13 and -SBP2. Low quantitative correlation of model prediction to 

actual release profiles was attributed to the estimated diffusivity coefficient and the 

estimation of kinetic parameters based on larger molecular weight fusion SBPs. Control 

of system parameters such as ligand concentration, peptide concentration, and affinity 

could lead to a wider range of affinity-based release. 
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CHAPTER 4.  

OUTLOOK AND FUTURE RECOMMENDATIONS 

The affinity-based system developed by utilizing properties of affinity binding strength 

and self-assembly provides a modular approach to therapeutic peptide delivery. A diverse 

range of therapeutics have been successfully delivered using such affinity binding 

domains including growth factors VEGF, bFGF, NGF 14,92,93, and large globular proteins 

such as chABC 19.  Immobilization achieved without modification of the therapeutic, in 

the former examples, and through modification of therapeutics with an affinity-binding 

domain in the latter examples. Functionalization of the therapeutic with affinity domains 

offers more control over specificity of binding interaction, serving as the main driving 

force behind the SH3/SBP domain selection. Molecular control over particle fabrication, 

biocompatible fabrication conditions, and ease of assembly are the advantages of the 

elastin-like polypeptide building block selected. Preparation of ELP-SH3 components via 

expression in E. Coli and Inverse Thermal Cycling purification 83 could provide 

scalability at low cost. 

To maximize SH3/SBP platform versatility, considerations of (1) affinity partner 

selection (2) ease of preparation of functionalized therapeutic (3) ELP-SH3 delivery 

system design (4) optimization of activity assay and (5) biomaterial interactions should 

be addressed. 

1. Affinity Partner Selection 
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One of the potential pitfalls to therapeutic modification is the loss of structural stability 

and subsequent reduction in activity. Functionalization of therapeutic peptide with SBP 

affinity domain has resulted in successful preservation of structure, as attested by GLP-1-

SBP and fibronectin-SBP 68. However, this is not universal and SBPs also have the 

potential to destabilize dimeric growth factors. Preparation of SBP functionalized bone 

morphogenetic protein 4 (BMP4) resulted in the destabilization of intermolecular bonds 

resulting in irreversible aggregation. The use of very long (>12 aa) linker regions or the 

use of hydrophilic polymer linkers may mitigate the effects, though the latter may affect 

scalability. It is posited that SBP24 amino acid sequence allowed for increased 

interaction with the ELP-SH3 protein microspheres. SBP sequences can thus be exploited 

to further decrease release.  Shoichet et al have successfully modified globular proteins 

with the larger SH3 affinity partner 20; such modifications would necessitate optimization 

of a new ELP-SBP microsphere fabrication and affect release profiles.  

2. Preparation of Functionalized Therapeutic Peptide 

Bacterial expression of peptides is typically accomplished by fusion to high molecular 

weight solubility tags such as GST 94,95 to reduce peptide degradation during expression 

and facilitate purification. Enzymatic cleavage of solubility tags from peptides can 

potentially result in non-specific cleavage within the desired peptide thereby reducing 

function. Non-specific cleavage in the case of GST-GLP-1-SBP resulted in the loss of the 

SBP functionalization. Alternative preparation of peptides by chemical synthesis can 

become prohibitively expensive. Multiple repeating units of GLP-1 can be used to 

increase peptide molecular weight thus negating the need for enzymatic cleavage as well 

as increased secondary structure stability. AlbiglutideTM (GlaxoSmithKline) incorporates 
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multiple units of GLP-1 to alleviate structure instability from albumin fusion. Since the 

active domain is located on the N-terminal of the GLP-1 peptide, all other tandem repeats 

act as linker domains. The GLP-1 sequence used here has been modified to evade DPPIV 

protease degradation (Chapter 2 of thesis), however, future design of linker regions and 

fusion partners should examine cleavage by other proteases and test for peptide stability 

to DPPIV over the course of release67. Kinetic parameter measurements of GLP-1, GLP-

1-SBPs, and GLP-1-Scramble will increase mathematical model accuracy. The sensitivity 

of peptide quantification methods should also be considered. Current quantification 

methods that measure pg/ml-ng/ml released peptide are limited (e.g. ELISA, Mass 

Spectrometry with labeled peptide). Common also is the use of reverse phase high-

pressure liquid chromatography (RP-HPLC), though the lower limit for reliable 

quantification at 215nm should be considered. Doping with radiolabeled peptide may 

increase the sensitivity of detection 96 even in complex release media or buffers. 

3. Elastin-like Polypeptides Alternative Systems to Increase GLP-1 Loading 

Gilroy and colleagues have extensively reviewed strategies for extending the circulation 

of GLP-1 analogs in a recent review 97. Amino acid mutations, in an attempt to reduce 

protease degradation experienced by native GLP-1 (highlighted in Chapter 2), have been 

employed with TaspoglutideTM (Ispen/Roche), ExenatideTM or ByettaTM (Amylin/Eli 

Lilly), and LixisenatideTM(Sanofi). Strategies to increase the molecular weight through 

conjugations to fusion partners have also met with success. Albiglutide, multiple repeats 

of GLP-1 in tandem with human serum albumin (GlaxoSmithKline) increases circulation 

time. Liraglutide and Semaglutide (Novo Nordisk) through functionalization with 

palmitic acid moieties on the c-termini of GLP-1 allows for non-covalent and reversible 
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binding to serum albumin thereby prolonging circulation times. Dulaglutide (Eli Lilly) 

fuses GLP-1 monomers to Fc regions of immunoglobin G to extend half-life in vivo. 

Finally, GLP-1 analog fusions to polymers such as Polyethylene glycol, XTEN, and 

elastin-like polypeptides to increase circulation times are currently in the pre-clinical trial 

phase. While these strategies have met with some success in increasing circulation time, 

controlled release which aids in the delivery of quantities within relevant therapeutic 

thresholds and reduces toxicity is not achieved. These formulations therefore can only be 

modulated through injection frequency.  

Bydureon, exenatide encapsulated within 20 - 60 µm PLGA microspheres, is one 

formulation that attempts to control the release of GLP-1 analog (Amylin) and remains 

the only FDA approved microsphere formulation to date. However, these microspheres 

are loaded with 14-28 times the required peptide quantity to account for losses during 

burst release and adsorption/denaturation with the polymer matrix. Polymeric 

microsphere encapsulation has been extensively used to control the release of therapeutic 

proteins, peptides, and small molecules, achieving release from weeks to months through 

optimization of polymer ratios. The challenge of reducing burst release effects continues 

to push innovation in such systems, and is the driving force behind the use of affinity-

based systems in which such burst release are controlled (Chapter 1). 

Specifically, for the encapsulation of GLP-1 analogs, formulations outlined in Table 2 

were investigated. 

Components Preparation Loading  Release Period Ref: 
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1.PLGA 

microspheres 

33.4-45.7 µm. 

Metal 

cation-

stabilization 

of GLP-1; 

S/O/O 

extraction  

90% loading efficiency 

(1.8 mg) total loading 

per mg microspheres 

(RP-HPLC measured) 

w/zinc Complexation: 3% burst 

release (6hrs) & additional 23% 

of total loading over 28 days. 

w/o zinc: 37% burst release 

(6hrs)  additional 25% total dose 

over 28 days 

Yin et al98  

2.ABA-type 

triblock 

copolymer 

PLGA-PEG-

PLGA (ReGel) 

Zinc-

complexed 

GLP-1 

formulated 

in ReGel 

10 mg total loading (via 

RP-HPLC) 

w/zinc Complexation: no 

initial burst 90% release over 

14 days. w/o zinc 

Complexation: 60% burst 

release (24hr) additional 20% 

(3 days) 

Choi et al99 

3.Porous silicon 

stabilized by 

thermal 

oxidation 185-

250 m2/g 

GLP-1 45% w/w: 0.82mg/1mg 

microspheres (thermo 

gravimetric analysis, 

RP-HPLC) 

40% burst release (1 hr) 

additional 60% in 1 day 

Huotari et 

al100 

4. 10 µm PLGA 

microspheres 

 

PEG-Ex4 PEG-Ex4 in PLGA, Ex4 

in PLGA 

PEG-Ex4: 10.8% burst release 

with additional 80% over 18 

days. Ex4: 43.8% in 3 days 

Lim et al73 

The ELP-SH3/ GLP-SBP affinity-based systems showed a reduction in the burst release 

of GLP-1-SBP with a 20-40% release of 50 µg total loading over 7 days. This reduction 

in burst release between SBPs was dependent on strength of affinity. 40% of GLP-1-

SBP13 was released in the first 3 days with an additional 5% of release over the 
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remaining 4 days. 20% of GLP-1-SBP2 was released in the first 4 days with an additional 

5% being release up to 7 days.  Current twice-daily doses of Byetta deliver 5-10 µg per 

dose. In order to achieve similar therapeutic levels the affinity-based system has to be 

optimized.  

Therapeutic release in affinity-based systems can be achieved through modulation of 

several parameters including affinity (KD), system geometry, and ligand concentration28. 

Chapter 3 details the effects of varying SH3-binding peptide affinities. Increasing the size 

of the ELP-SH3 microspheres may increase their loading capacity, decrease potential 

phagocytosis, and extend release. However increased particle size may lead to more 

painful injections with larger gauge needles34. Elastin-like polypeptides have been used 

been used as scaffolds in tissue engineering, hydrogels, particles, and micelles for drug 

delivery48,101. Na and colleagues created 200µm porous microparticles with ELPs using 

the water oil w/o emulsion method43. Varying protein concentration, salt concentration, 

and fabrication methods can increase ELP-SH3 particle size. 50μM ELP-SH3 produces 

3μm particles, increasing protein concentration from 100µM to 400µM at 300mM salt 

increased average particle diameters from 3µm to 5µm (Figure below).  



 67 

 

 

In situ gel formation to form ELP depots have also been investigated67,102, though 

modification to the repeat units of the ELP to optimize transition behavior at body 

temperature is required. In situ formation will minimize painful injections due to large 

(>20µm) particle size. However, the tight control of storage and handling temperatures of 

the injectable system is required to avoid premature aggregation, and may be a 

considerable downside to this approach. Incorporation of pendant moieties within 

polymer hydrogels is another well-established way to present affinity-domains and may 

serve as another way to control SH3 ligand concentration, which affects loading and 

release. For example, heparin and/or heparin binding peptides have been covalently 

incorporated into Fibrin, PEG, Chitosan, and PLGA polymer delivery systems to 

facilitate release15,103–105. 

4. Optimizing Activity Assays 

a. Cell line Selection 
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ßTC-6, MIN-6, and INS-1 are cell lines that are physiologically relevant beta-cell 

models. These cell lines secret insulin in response to physiological ranges of glucose 

stimulation87,106–108. In this work the ßTC-6 cells showed high basal levels of insulin 

secretion upon stimulation. However, treatment with GLP-1 analogs did not produce 

significant insulin secretion levels above basal levels. GLP-1 analog stimulation of ßTC-6 

cell typically results in a significant 2-3 fold increase in insulin secretion109. Optimization 

of cell density, stimulation time, glucose treatment protocol or change of cell line may 

serve to increase GLP-1 induced insulin secretion significantly above basal levels. 

b.  cAMP Detection Assay 

GLP-1 analogs are known to both stimulate insulin secretion and increase cAMP levels 

(Thesis Chapter 2)32,110. cAMP production should be measured after dose-dependent 

stimulation by GLP-1-SBPs with controls; GLP-1-Scramble SBP, DPPIV resistant GLP-

1, native GLP-1, ELP-SH3, and SH3 binding peptides. 

c. EdU Incorporation into Beta cells 

5. Stimulation of ßTC-6 cells showed significant but modest increases in cell 

number. GLP-1 analogs stimulate cell proliferation. Beta-cell proliferation can be 

measured via incorporation of the alkyne-containing thymidine analog EdU (5-

ethynyl-2´-deoxyuridine) into DNA and detection by fluorescent azide through a 

Cu(I)-catalyzed [3+2] cycloaddition reaction 111.Biomaterial In vivo Interaction 

Biomaterial properties play a crucial role in foreign body responses112, microsphere size 

has also been found to influence foreign body responses113. In vivo response to loaded 

ELP-SH3 microspheres and microsphere components must be taken into account since 
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foreign body responses can influence particle degradation and bioavailability of released 

peptides. To determine the in vivo response to microspheres, ELP-SH3 microspheres and 

controls can be injected subcutaneously on the backs of mice. Microsphere implants and 

surrounding tissue can be explanted and fixed for histochemistry analysis. While Elastin-

like polypeptides are derived from ECM components and do not elicit immune responses, 

the immunogenicity of delivery systems prepared from ELPs in combination with other 

components must be determined114. Measurement of antibodies against microsphere 

components in plasma can determine the immunogenicity of the delivery system.  

Plasma concentration of GLP-1-SBP released from ELP-SH3 microspheres at different 

time intervals is required to determine efficacy in vivo73. To determine the extent to 

which GLP-1-SBP loaded microspheres can reduce glucose levels over a long period, in 

vivo monitoring of glucose levels and intraperitoneal glucose tolerance test (IPGTT) in 

diabetic mouse models is necessary 67. Endotoxin levels in microsphere components must 

be determined before in vitro and in vivo studies.Immobilization of varied SBPs in 

combination within SH3 microspheres is expected to modulate the release, allowing for 

specific immobilization and controlled co-delivery of therapeutic peptides.  
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CHAPTER 5.  

QUANTITATIVE ANALYSIS OF THE ROLE OF FIBER 

LENGTH ON PHAGOCYTOSIS AND INFLAMMATORY 

RESPONSE BY ALVEOLAR MACROPHAGES 

5.1 Summary 

In the lung, macrophages attempt to engulf inhaled high aspect ratio pathogenic 

materials, secreting inflammatory molecules in the process. The inability of macrophages 

to remove these materials leads to chronic inflammation and disease. How the 

biophysical and biochemical mechanisms of these effects are influenced by fiber length 

remains undetermined.  This study evaluates the role of fiber length on phagocytosis and 

molecular inflammatory responses to non-cytotoxic fibers, enabling development of 

quantitative length-based models. Murine alveolar macrophages were exposed to long 

and short populations of JM-100 glass fibers, produced by successive sedimentation and 

repeated crushing, respectively. Interactions between fibers and macrophages were 

observed using time-lapse video microscopy, and quantified by flow cytometry. 

Inflammatory biomolecules (TNF-α, IL-1 α, COX-2, PGE2) were measured.  Uptake of 

short fibers occurred more readily than for long, but long fibers were more potent 

stimulators of inflammatory molecules. Stimulation resulted in dose-dependent secretion 

of inflammatory biomolecules but no cytotoxicity or strong ROS production. Linear 

cytokine dose-response curves evaluated with length-dependent potency models, using 

measured fiber length distributions, resulted in identification of critical fiber lengths that 

cause frustrated phagocytosis and increased inflammatory biomolecule production. Short 
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fibers played a minor role in the inflammatory response compared to long fibers. The 

critical lengths at which frustrated phagocytosis occurs can be quantified by fitting dose-

response curves to fiber distribution data. 

5.2 Introduction 

Phagocytosis by macrophages is critical in the degradation and clearance of pathogenic 

materials in the body 115. High aspect ratio materials such as asbestos fibers or carbon 

nanotubes can be cleared by phagocytosis or persist and induce frustrated phagocytic 

interactions leading to chronic inflammation, oxidative stress, direct cell injury, and 

chromosomal abnormalities 116–119. This evasion can lead to diseases such as fibrosis, 

asbestosis, lung cancer, mesothelioma for asbestos-like materials, and carbon nanotubes 

have recently been shown to induce asbestos-like chronic inflammation. In this work we 

define frustrated phagocytosis as the failure to engulf after attaching, spreading and 

manipulation of fibers by macrophages. The extent to which high aspect ratio materials 

evade clearance is strongly length-dependent, both in vivo and in vitro 120–131. However, 

there is no consensus about a critical length beyond which materials persist, as these 

studies are confounded by other material physicochemical properties such as diameter 

and surface chemistry, or by cell type and location within the body.  

For asbestos specifically, comparative study of length-based contributions between 

different types remains challenging since they possess different physicochemical 

properties and lead to varied disease endpoints and health outcomes, ranging from 

cancerous lesions to genotoxicity 132–135. In vivo study of the role of fiber length on 

disease endpoints is further complicated by other length-dependent processes, which can 
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obscure any correlation of residual fibers with the disease endpoint. In situ fiber breakage 

reduces the population of long fibers and increases the population of short fibers 136. In 

situ dissolution reduces fiber diameter, which may then lead to additional breakage 137,138. 

Phagocytosis removes shorter fibers, changing the length distribution over time. 

Translocation reduces the fiber population at the deposition site and, together with all 

clearance mechanisms, may have an efficiency that depends on fiber length 139. It is thus 

difficult to associate unambiguously fibers recovered in pathology with those that have 

induced disease. In in vitro experiments, after an induction time, macrophages will 

successfully engulf short fibers, and we lose the information of whether the short-

fiber/cell interaction differs from the long-fiber/cell interaction. Therefore, we need to 

monitor cell-fiber interactions on short timescales following initial contact. An in vitro 

model that quantitatively captures all length-based contributions to the cellular response 

is critical to understanding pathogenic mechanisms. 

A challenge in studying the effect of fiber properties in biological systems is the 

difficulty in obtaining fiber samples with well-controlled physical properties. The Baron 

dielectrophoretic classifier enabled earlier studies with length-separated glass fibers 

129,130, while the use of JM-100 model glass fibers decouples fiber length from surface 

chemistry. Blake et al. 129 and Ye et al. 130 revealed a length-dependent cytotoxicity and 

induction of inflammatory cytokines after exposure of alveolar macrophages to glass 

fibers of varied lengths in vitro. However, while the Baron classifier can prepare short 

fibers with a narrow distribution of lengths, the long fibers are inherently broad in their 

length distribution. Without characterization of long fiber length distributions, it is not 

possible to attribute a critical fiber length to the cellular responses reported. 
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Here we present a quantitative assessment of phagocytic and inflammatory responses of 

MH-S murine alveolar macrophages to long and short populations of JM-100 glass fibers 

with well-characterized fiber distributions. Parameterization of the length distributions 

enabled the development of models that propose critical lengths for varied phagocytic 

interactions between fibers and cells. These length-dependent interactions were captured 

by time-lapse microscopy and flow cytometry. Production of inflammatory biomolecules, 

tumor necrosis factor α (TNF-α), Interleukin-1 α (IL-1 α), cyclooxygenase-2 (COX-2), 

and prostaglandin E2 (PGE2), was quantified after macrophage exposure to short and 

long glass fiber populations. These pathological hallmarks are evidence of macrophage 

activation and fiber-induced inflammatory signaling 131. We used the dose-response 

curves of the directly-stimulated cytokines (TNF-α, IL-1 α) to identify critical fiber 

lengths that increase inflammatory biomolecule production in macrophages during 

frustrated phagocytosis of long fibers. 

5.3 Experimental Details 

5.3.1 Fiber sample preparation  

Fibers were prepared from a Pall glass fiber depth filter sheet, type AE binder free (Pall 

Life Sciences, Ann Arbor, MI, available as SKC no. 225-7-07, SKC Inc., Eighty Four, 

PA). This media consisted of entangled uncoated borosilicate glass fibers (of nominal 

diameters 0.1 µm < d < 10 µm), designed to retain 1-µm particles on liquid filtration. 

Batches of 24 sheets were cut out to fit into a 1¼” die cavity and crushed with a lab press 

for 60 seconds. Short fibers were obtained by crushing at 10 tons and re-crushed at 15 

tons, while long fibers were crushed at 2 tons. Each batch yields ~ 1.3 g of fiber 140. 
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Individual fibers were liberated from the residual fibrous mat after crushing through 

suspension in 500 ml of DI water and sonication (Fisher Scientific Sonic Dismembrator 

Model 500 with ½” horn), at 50% amplitude (i.e. tip amplitude ~ 76 µm), for 30 minutes 

(1 second on, 1 second off). This procedure was followed to prepare the stock suspension 

of short fibers (no sedimentation step). The long fiber samples were allowed to 

gravitationally settle for 20 minutes, with the resulting supernatant decanted. The 

sediment was re-suspended in 500 ml and sonicated as described above. This sonication, 

settling, decanting, re-suspension procedure was iterated 10 times; the 10th sediment 

constituted the long fiber sample. All samples were prepared for diameter measurement 

by vacuum filtering 1 mL of a 1000:1 dilution through a 0.8 𝜇m nitrocellulose filter 

(Millipore AAWP 02500); deposition is nominally ~ 1 𝜇g/cm2.  

 

5.3.2 Fiber length measurement 

All fiber samples were subjected to a final filtration through a 35 µm mesh to separate 

entangled fibers before length measurement and exposure to macrophages. Fibers were 

imaged (see Time-Lapse Video Microscopy section) on an incubation stage of an Axio 

Observer Z1 inverted light microscope (Carl Zeiss Microscopy, LLC, Thornwood, NY) 

and observed using differential interference contrast at 100X magnification. This imaging 

differs from the typical phase contrast microscopy analysis of fibers collected on acetone 

cleared MCE filters 141,142. 

The length of the fibers was measured, using the line tool from Motic Images Plus 2.0 

ML (Motic Group, Richmond, BC, Canada); faint fibers were identified with the aid of 



 75 

the magnification tool at 200% magnification. Only fibers entirely contained within the 

field of view were included for length measurement; this restriction actually biases the 

measured length distribution against the longer fibers, but since the dimensions of the 

field of view (220 µm x 170 µm) are quite large compared to almost all of the measured 

fibers, this distortion was neglected (Turkevich, unpublished). At this magnification, 1 

µm represents the image resolution limit. 

 

5.3.3 Fiber diameter measurement 

Fibers were imaged with scanning electron microscopy (SEM) to analyze fiber diameter. 

The nitrocellulose filters were mounted on 25 mm planchettes or stubs, using colloidal 

graphite adhesive, and were sputter coated with gold, to prevent charging by the electron 

beam. The samples were analyzed using a Hitachi S3000N scanning electron microscope. 

Secondary electron images were obtained at an accelerating voltage of 25 keV. Images 

were taken at 800X and 4000X. The length and diameter of the fibers were again 

measured using the line tool from Motic Images Plus 2.0 ML. At 800X, fiber diameter 

quantitation was not possible below 0.25 µm; at 4000X, fiber diameter quantitation was 

not possible below 0.15 µm.  

 

5.3.4 Fiber count 

Serial dilutions of suspended fibers were counted using a haemocytometer mounted on a 

light microscope at 40X magnification; fiber counts were accepted when the difference in 
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count among serial dilutions was less than 5%. Short fiber counts were verified by an 

Accuri C6 flow cytometer (Becton Dickinson). Dose-response experiments were reported 

as a function of optically detected (40X mag) fibers/cell. 

 

5.3.5 Fiber labeling with fluorescent probe 

Approximately 1.5 mg of glass fibers were suspended in 1 mL of 1 M KOH by sonication 

(pulse mode; 4 sec on, 2 sec off; 30% amplitude; 2 min total process time) and incubated 

for one hour. Fibers were washed with 1 mL deionized water (18.3MΩ.cm@ 25oC) 

followed by a wash with 1 mL ethanol. Washes consisted of centrifuging the fibers at 125 

x g for 5 min, 2400 x g for 10 min, and 21,000 x g for 1 min. To maximize fiber retention 

while minimizing breakage of fibers, the fiber pellet was retained after each 

centrifugation step and only the supernatant was centrifuged in the next step. Fibers were 

dried in an oven at 37°C for 1.5 hours. Fibers were then incubated for 2 min in a solution 

of 1 mL toluene and 33 µL 3- mercaptopropyl trimethoxysilane, washed with excess 

toluene to remove unconjugated silane, and suspended in 1 mL of 20 mM N-

[Tris(hydroxymethyl)methyl]-2-aminoethanesulfonic (TES) sodium salt buffer solution. 

15 µl of 20 mM of 5-iodoacetamidofluorescein (5-IAF) in dimethyl formamide (DMF) 

was added. The reaction was allowed to proceed in the dark for 2 hours at 4oC under 

constant stirring. Fibers were washed twice in deionized water by centrifugation at 125 x 

g for 5 min, 2400 x g for 10 min, and 21,000 x g for 1 min to remove unreacted reagents 

before exposure to cells. 
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5.3.6 Alveolar Macrophages 

Immortalized MH-S murine alveolar macrophages (ATCC-CRL2019) were used as 

model macrophages. They were cultured in RPMI media supplemented with 10% fetal 

bovine serum, 1% penicillin-streptomycin, and 50 µM beta-mercaptoethanol at 37oC in a 

humidified atmosphere containing 5% CO2. MH-S macrophages possess increased 

homogeneity of response in comparison to their highly heterogeneous primary 

macrophage counterparts. The cytokine response is known to differ among primary 

macrophage cell type. Immortalized cells are less responsive to cytotoxic stimuli and are 

thus ideal as model macrophages for dose-response testing of stimuli that are typically 

cytotoxic at high doses. 

 

5.3.7 Time-lapse video microscopy 

Macrophages, 3.2 x 104 cells/cm2 in culture media, were seeded in a glass bottom dish 

and placed in an incubation stage on an Axio Observer.Z1 inverted microscope (Carl 

Zeiss, Inc.) and observed using differential interference contrast at 100X magnification. 

Cells were allowed to attach for 1 hour before short or long fibers were added to the 

center of the dish. Images of fiber-cell interactions were captured every 2 min by a Zeiss 

AxioCam camera for 24 hours. Images were collected and compiled into videos using 

AxioVision software and manually analyzed for cell-fiber interactions. Successful 

phagocytic internalization was characterized by membrane ruffling at the site of 

attachment, blurring the crisp boundary of the membrane, and subsequent reforming of 

the membrane boundary after internalization. In addition, a fiber was only classified as 
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internalized if it remained within the cell membrane boundary for the remaining 

observation period. Fibers with incomplete internalization and/or attachment were seen to 

cross the cell membrane of mobile cells. 

 

5.3.8 Quantification of fiber internalization and attachment 

Macrophages were plated at 5.3 x 104 cell/cm2 in a 48-well plate and incubated for 24 

hours. Cell culture media was replaced with identical media containing fibers at 

concentrations of 5, 10, and 20 fibers/cell for 24 hours. Cells were harvested by scraping, 

centrifuged at 125 x g for 5 minutes followed by suspension in 200 µl PBS. Fiber 

internalization and attachment events were distinguished by the use of trypan blue, which 

quenches fluorescence of externally bound fibers but not internalized fibers. Half of each 

cell sample was mixed with equal volumes of either PBS (unquenched) or trypan blue 

(quenched), and filtered with 35 µm mesh. Cell fluorescence was measured with an 

Accuri C6 flow cytometer. The cell populations were gated to exclude free fibers not 

associated with cells. Cells were identified as associated with fibers if their fluorescence 

was greater than cell autofluorescence measured in the absence of fibers for both the 

trypan blue quenched and PBS unquenched conditions.  

 

5.3.9 Inflammatory Biomolecule and Cytotoxicity Measurements 

Macrophages were seeded in 6-well plates (5.3x104 cells/ cm2) for COX-2 and PGE2 

measurements, and in 96-well plates (1.6x105 cells/ cm2) for TNF-α and IL-1 α 
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measurements, for 24 hours. Cell culture media was replaced with identical media 

containing fibers at concentrations of 5-15 long fibers/cell and 10-150 short fibers/cell. 

Bacterial lipopolysaccharide (1 µg/mL LPS) was used as an inflammatory stimuli 

positive control. After 24 hours of cell-fiber incubation, supernatants were harvested for 

TNF-𝛼 , IL-1𝛼 , and PGE2 and interrogated by ELISA following R&D Systems 

(Minneapolis, MN) instructions. Supernatants were also used to determine cytotoxicity 

by detection of lactate dehydrogenase (LDH) with a colorimetric assay based on the 

reduction of pyruvate from Thermo Scientific (Waltham, MA). Cell lysates were 

collected and used for COX-2 ELISA (R&D Systems) following the manufacturer’s 

instructions. All cell fiber conditions were repeated in triplicate, and results were 

validated with three separate preparations of short and long fibers.  

 

5.3.10 Reactive Oxygen Species (ROS) Production 

Macrophages were seeded in 48-well plates (5.3 x 104 cell/cm2) for 24 hours prior to 

pretreatment with 10 µM dose of the non-fluorescent, membrane-permeable dye 6-

carboxy-2',7'-dichlorodihydrofluorescein-diacetate(carboxy-H2DCFDA, 

ThermoScientific, Grand Island, NY) at 37°C for 20 min. Esterases in the cells convert 

carboxy-H2DCFDA to the charged form to increase intracellular retention. Cells were 

then washed with PBS before treatment with short and long fibers for 24-hours as 

detailed in the inflammatory biomolecule and cytotoxicity section above. Carboxy-

H2DCFDA is chemically reduced by intracellular reactive oxygen species (ROS) to 



 80 

become fluorescent. Cell fluorescence was detected using a fluorescent plate reader 

(Biotek, Winooski, VT) 

 

5.3.11 Statistical analysis 

Data are presented as mean ± standard deviation of the mean of representative 

experiments. Group means were compared using Student t test or one-way analysis of 

variance. P<0.05 was considered statistically significant. 

 

5.3.12 Length-derived parameters and model fitting 

In our fitting of these models, the length distribution of the fibers is represented by log-

normal distribution,  

𝑓 ln 𝐿 = (2𝜋𝜎!)!
!
!       ∗   exp

− ln 𝐿 − 𝜇 !

2𝜎! ,                               (1) 

with parameters; 

Short fibers: 𝜇 = 1.946 = ln 7.0   𝑎𝑛𝑑  𝜎 = 0.971 

Long fibers: 𝜇 = 3.671 = ln 39.3   𝑎𝑛𝑑  𝜎 = 0.739 

Similar determinations could have been made directly using the length histograms; 

however, the shot noise inherent in the finite binning of the histograms introduces 

additional interpolation uncertainty.  
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Since the fiber populations differ only in their length distributions, for the case of direct 

stimulation, the ratio of the slopes of the dose-response curves depend on a potency 

function, p(L), averaged over the length distribution: <p(L)>. In each of the three models, 

the function p(L) is defined and <p(L)> is calculated. 

Model 1 - Length cut-off, Lc 

Model assumption - Fibers shorter than Lc elicited no cytokine response, while all fibers 

longer than Lc contributed equally to the cytokine response. The potency function 𝑝(𝐿) is 

given by: 

𝑝 𝐿 =    0, 𝐿 < 𝐿!
𝑝!, 𝐿 > 𝐿!

                                                                                                            (2)                        

The model attributes fiber potency to the number of fibers not internalized by 

macrophages, generating an average potency  

< 𝑝 >  =   𝑝!     1  –   𝑐𝑢𝑚 𝐿! ,                                                                            (3) 

where 𝑐𝑢𝑚(𝐿) is the cumulant of the fiber length distribution. For a log-normal fiber 

distribution (1), the average potency (3) becomes. 

< 𝑝 >  =   
𝑝!
𝜎 𝑒𝑟𝑓𝑐

𝑙𝑛 𝐿! −   𝜇
2𝜎

                                                           (4) 

where erfc(x) is the complementary error function. 

Model 2 - Power-law Potency 

Model assumption - Fiber potency varies as a power law of the length, weighting very 

long fibers as more ‘problematic’ for macrophages. 
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  𝑝 𝐿 ~  𝐿!                                                                                                                                                                     (5)  

For a log-normal length distribution (1), the average potency becomes 

  < 𝐿! >  =   𝑒𝑥𝑝 𝛼𝜇  +   𝛼! !
!

!
                                                                                        (6) 

Model 3—Power-law Potency with a Cut-off 

Model assumption - Fibers shorter than a cut-off, Lc, do not elicit a cytokine response 

from macrophages, while fibers longer than this cut-off elicited a response that scales as a 

power of the length. 

  𝑝 𝐿 =   
0, 𝐿 < 𝐿!

𝑝!𝐿! , 𝐿 > 𝐿!
                                                                                                                    (7) 

In this model, those fibers that are internalized by macrophages do not contribute to the 

cytokine response, and, of the non-internalized fibers, the longer ones are more potent. 

For a log-normal distribution (1), the average potency becomes 

 

< 𝑝 >  =   
𝑝!
𝜎 ∗     𝑒𝑥𝑝 𝛼𝜇  +

𝛼!𝜎!

2 ∗   𝑒𝑟𝑓𝑐
𝑙𝑛 𝐿! –   𝜇 − 𝛼𝜎!

2𝜎
                              (8) 

where, again, erfc(x) is the complementary error function. 

 

5.4 Results 

5.4.1 Fiber length and diameter distribution  
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Subsequent to their separation into “short” and “long” populations by high pressure 

crushing, and low pressure crushing followed by repeated sedimentation, respectively, 

the diameter and length of fiber samples were measured. Figure 1 shows the length 

distributions of the two populations. The fiber length distributions were confirmed to be 

log-normal (Figure 5.1 inset) where mean length, µ, was 7.0 µm and 39.3 µm for short 

and long fibers, respectively. Electron micrographs of typical short and long fibers are 

shown in Figure 5.2. Fiber diameter is centered around d ~ 0.8 µm and is uncorrelated 

with fiber length (Figure 5.3).  

 

Figure 5-1 Fiber length distribution. Representative histograms of the length 
distributions of (a) short and (b) long fibers. Both populations exhibit a log-normal 
distribution for fiber lengths (inset). 
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Figure 5-2 . Morphology of fiber and fiber length distribution. Top panels: 
Typical short and long fibers, as measured by light microscopy.  Bottom panels: 
Statistics of the measured length showed (a) a long tail on the linear scale, and (b) a 
normal distribution on the logarithmic scale, characteristic of a log-normal 
distribution of fiber lengths 
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Figure 5-3 Fiber diameter distribution. Fiber diameters as measured by scanning 
electron microscope 4000 X. Fiber distribution on a (a) linear scale and (b) 
logarithmic scale. 

5.4.2 Fiber-cell interactions 

The immortalized murine MH-S alveolar macrophage cell line was used as a 

model to examine the role of glass fiber length in uptake, cytotoxicity, and inflammatory 

response. Real-time images of fiber-cell interactions were captured using time-lapse 

microscopy. A total of twenty-five fiber-cell interaction events, in which fibers either 

attached to or were internalized by macrophages, were recorded. Figure 4 provides 

snapshots showing representative interactions -- internalization of a short fiber and 

frustrated phagocytosis of a long fiber. Cell membrane ruffling can be seen at the site of 

attachment to the short fiber with subsequent blurring of the crisp boundary of the 

membrane. A membrane boundary reformed after the fiber is completely engulfed by the 

cell with the fiber remaining in the same focal plan and relative position within the cell . 

The cell interacting with the long fiber can be seen to attach with a pseudopod-like 

projection, pull the fiber toward it, and spread along a small region of the fiber. It is 

evident that the cell can exhibit significant force on the fiber as it flips the fiber vertically 
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180°. The scenario in which the macrophage is ‘speared’ on the fiber was never observed, 

nor was any cell blebbing upon fiber-cell interactions. Internalization events were fewer 

for long fibers in comparison to short; 25% of cell binding events with short fibers 

resulted in phagocytic internalization, while only 12% of long fiber binding events were 

internalization events. Only frustrated phagocytosis was observed to occur for fibers 

greater than 16 µm. 

 

Figure 5-4 Time-lapse video microscopy frames of macrophage-fiber binding 
events. (A) A short fiber being internalized by a macrophage. (B) A macrophage 
attaching to and pulling a long fiber toward itself without internalization. Scale bar: 
20 µm, Time: 0-3 hrs 

For high throughput quantification of fiber-cell, fibers were covalently conjugated 

with fluorescent probe IAF (5-Iodoacetamidofluorescein) for detection by flow 

cytometry. Cell fluorescence was measured in the absence or presence of extracellular 

fluorescence quenching agent trypan blue to measure the combination of attached and 

internalized fibers or only internalized fibers, respectively. This measurement counts 

relative populations of cells but does not yield information on, the number of fibers 

associated with a cell. Therefore, internalization refers to the complete phagocytosis of at 

least one labeled fiber, and attachment refers to attachment of at least one labeled fiber. 
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The cells exhibited a dose-dependent increase in total short fiber interactions, but the 

relative fraction of cells with internalized fibers compared to attached was independent of 

concentration (Figure 5.5). Flow cytometry was not feasible for long fibers due to the 

similarity in lengths of the long fibers and the core diameter of the flow cytometer 

fluidics components. However, quantification of long fiber-cell interactions at 24 hours 

post-incubation by optical observation at 40X magnification revealed a similar 

independence of internalization with increased long fiber dose (Figure 5.6). 

 

 

Figure 5-5 Fiber-cell interactions with increasing short fiber dosage. Fiber-cell 
interactions quantified by flow cytometry reveal a dose-dependent increase in all 
interactions for short fibers. The relative percentage of cells with internalized 
interactions compared to total interactions was relatively unchanged for all fiber 
doses, with 36.4%, 35.7%, and 34.9% for short fiber doses 5, 10, and 20 
respectively. A total of 10,000 cells were counted including cells with no associated 
fibers. 
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Figure 5-6 Fiber-cell interactions with increasing long fiber dosage. Fiber-cell 
interactions were quantified by optical observation (40X magnification) at 24 hours 
post-incubation. Internalized interactions compared to total interactions were 
relatively unchanged for all fiber doses, with 21%, 24%, and 20% for long fiber 
doses 5, 7.5, and 10 respectively. A total of 700 fiber/cell were counted 

5.4.3 Fiber Cytotoxicity 

Macrophages were exposed to short and long fibers for 24 hours, and released cytosolic 

lactate dehydrogenase (LDH) was measured from culture supernatants as a measure of 

cytotoxicity. The fiber-exposed macrophages exhibited no detectable LDH cytotoxicity, 

i.e. the normalized optical absorption fell below the limit of detection range (LOD = 12.5 

+/- 3.5%) of the media blanks. Fiber concentrations ranging from 0 – 15 long fibers/cell, 

and 0 – 150 short fibers/cell exhibited no cytotoxicity (Figure 5.7).  
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Figure 5-7 Cytotoxicity of macrophages exposed to short and long fibers. The 
percentage cytotoxicity was measured as the quantity of LDH released from fiber-
damaged cells relative to a lysed cell control. Normal cell turnover is shown as 0 
fibers /cell and by dashed line (---). On average fiber cytotoxicity was not significant 
for both short and long fiber populations as compared to the media blank with the 
exception of the maximum long fiber dose, 15 long fibers/cell. *p<0.05 

 

5.4.4 Fiber induced ROS activity 

Cell permeating fluorescent probes such as DCDHF has been used to measure 

intracellular ROS activity in fiber-stimulated macrophages 143,144. DCDHF is used to 

measure the cumulative ROS 145 response after 24 hrs of fiber stimulation to 

macrophages. Activity of the DCDHF probe was confirmed by LPS stimulation of 

macrophages (Figure 5.8). Cumulative intracellular reactive oxygen species (ROS) 

production in response to either long or short fibers is weak. Individual experiments all 

exhibited ROS signals below the LOD. Attempts to pool the data, using, as a standard, 
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the ROS signal generated from cells stimulated by LPS (at 1 µg/mL) resulted in low R2 

values indicative of minimal statistical correlation due to this standard signal variance. 

The pooled data suggest: i) ROS production in response to the glass fibers is detectable, 

and ii) increased ROS production following exposure to long (vs. short) fibers. However, 

the ROS signals are all weak, and the above suggestions were not statistically significant 

(Figure 5.9). Detailed statistical analysis of the ROS measurements were completed by 

Dr. Turkevich (NIOSH) 

 

 

Figure 5-8 ROS production by macrophages stimulated with lipopolysaccharide 
(LPS). Lipopolysaccharide (LPS), used as a positive control, showed pronounced 
increase in ROS production after 24-hour stimulation in comparison to the media-
treated control cells 
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Figure 5-9 ROS production by macrophages stimulated with fibers. Low levels of 
ROS were observed for long and short fiber stimulated macrophages. ROS 
experiments were repeated seven times; Graphs (A) & (B) are representative of the 
variations in ROS observed. 

5.4.5 Fiber induced inflammatory molecule production 

Four inflammatory-related molecules were measured by ELISA following 24 hours of 

exposure to fibers. TNF-α cytokine secretion exhibited a linear dose-response on a per 

fiber basis (Figure 5.10). The signal is strong (much larger than the LOD = 16 pg/mL and 

LOQ = 44 pg/mL).  Long fibers produced greater inflammatory biomolecule secretion 

than short fibers. The ratio of the TNF-α dose response slopes of long to short fibers was 

mL/mS = 11.1, with a 95% confidence interval of 9.1 < mL/mS < 13.3. 

 

Cytokine IL-1α was secreted in very low quantities, but above the limit of detection 

(LOD = 1.4 pg/mL, LOQ =6.5 pg/mL). Again, both long and short fibers exhibited linear 

dose responses (Figure 5.11). The ratio of long and short fibers slopes of the IL-1α dose-

response curves mL/mS = 11.3, with a 95% confidence interval of 8.1 < mL/mS < 15.7.  
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Figure 5-10 TNF-α dose-response curves. TNF-α secretion showed a linear dose 
response for short and long glass fibers. Data shown was collected for three (3) 
independent experiments. 

 

Figure 5-11 IL-1α dose-response curves. IL-1α secretion showed a linear dose 
response for short and long fibers. Data shown was collected from three (3) 
independent experiments. 
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Cyclooxygenase-2 (COX-2) production by fiber-treated macrophages depended inversely 

on fiber dose (Figure 5.12). The variation of the fiber-stimulated COX-2 production is 

complicated by the fact that it depends both directly on the stimulating fibers but also 

indirectly on the cytokine TNF-α, whose production is also stimulated by the fibers 146. 

We noted that COX-2 production varies inversely with TNF-α expression (Figure 5.13).  

 

Figure 5-12 COX-2 Enzyme Production. COX-2 production decreased with 
increasing fiber dose -short fiber stimulation resulted in significantly high 
expression of COX-2 while long fibers were generally comparable to no fiber 
stimulation. 
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Figure 5-13 COX-2 varies inversely with TNF-α. COX-2 production decreased 
with respect to fiber length and dosage. COX-2 production varied inversely TNF-α 
secretion. COX-2 molecule is known to modulate (down-regulate) TNF-α secretion 
via an NF-kB dependent pathway 

 

Prostaglandin E2 (PGE2) is a secreted downstream metabolite of the COX enzymatic 

pathway. PGE2 secretion was greater for long fibers than short fibers (Figure 5.14). The 

measured signal from PGE2 secretion was low, but there was a weak observed linear 

dose-response for long fibers. PGE2 production for short fibers was neither statistically 

significant, i.e. most signals were below the limit of detection (LOD = 55 pg/mL), nor 

dose-dependent. 
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Figure 5-14 Prostaglandin E2, PGE2, production 24 hours post-incubation. Short 
fiber response was independent of fiber concentration. Long fibers showed weak 
dose dependence in comparison to 0 fibers/cell control. 

 

5.5 Discussion 

This work uses model glass fibers with measured length distributions and model alveolar 

macrophages to assess fiber length effects on phagocytosis and associated inflammatory 

biomolecule production, and to develop the quantitative model described below. The use 

of glass fibers eliminates contributions of surface chemistry and diameter from those of 

fiber length. Macrophages are highly heterogeneous cells, and immortalized mouse MH-

S alveolar macrophages were chosen as model macrophages because of their increased 

homogeneity in response to particles of various shapes and sizes 147,148. Although 

cytokine response varies across macrophage source, macrophage dose-response is 

investigated here, and analysis of the change in response is used to build our models. 
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While cytotoxicity by glass fibers is less pronounced for immortalized cell lines 130 than 

for primary cell line 121,129, the trends of cytokine response for short and long fibers are 

the same. Moreover, MH-S macrophages have been shown to function similarly to 

primary cells for phagocytic interactions and IL-1α cytokine response 149,150.  

Stanton performed an exhaustive study across various asbestos types and hypothesized 

that asbestos fiber dimension and durability, rather than other physicochemical 

properties, were responsible for fiber-related biological effects in vivo 124. The latency of 

asbestos-associated pulmonary diseases, as well as the established link between chronic 

inflammation and cancer 134,135, supports this theory of chronic inflammation resulting 

from biopersistence as the prevailing cause of disease pathology 120,151–154. In vivo and in 

vitro studies examining the role of fiber length on biopersistence also support this theory. 

Goodglick et al. showed that both short and long asbestos fibers were cytotoxic in vitro, 

while short fibers were cytotoxic when clearance was prevented in vivo122. In threshold 

length studies using silver nanowires Schinwald and colleagues identified in vivo 

threshold lengths of L >4 µm, and 11-14 µm for fiber-induced pleura 123 and pulmonary 

155 inflammation respectively. McDonald and colleagues described long fibers (>10 µm) 

as having the greater pathogenic risk than short fibers (<6 µm) in vivo 156. However, 

direct comparison among different forms of asbestos remains challenging due to fiber 

heterogeneity. Comparative length dependent studies, using actual asbestos fibers, have 

neither been able to characterize fibers within narrow length-classified size ranges, nor 

separate other confounding fiber parameters such as diameter, chemistry, and surface 

properties. Indeed, recent studies of asbestos-like high aspect ratio nanomaterials, of 

which carbon nanotubes are a subset, have shown that these fibers elicit an inflammatory 
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response due also to surface chemistry-related reactivity and thus are unable to isolate 

length-based contributions from the biological effects. This highlighted the need for 

model materials in which pathogenic parameters can be isolated and accurately 

characterized in order to determine single-parameter contributions to disease endpoints. 

To this end, in vitro studies using glass fibers identified length dependence to the 

inflammatory response and speculated that increased inflammatory response was due to 

frustrated phagocytosis of longer fibers. Blake et al. observed a length-dependent 

cytotoxicity and production of reactive oxygen species after exposure of alveolar 

macrophages to glass fibers of varied lengths 129. Ye et al. showed that long fibers (17 

µm) were significantly more potent than short fibers (7 µm) in inducing inflammatory 

NF-kB activation and TNF-α production 130. Zeidler-Erdely et al. also found that glass 

fiber > 17 microns were cytotoxic to human primary macrophages 121. Here we are able 

to quantify phagocytic interactions and corresponding molecular responses from 

accurately characterized glass fibers to develop a model that can be used to evaluate the 

isolated contributions of fiber length to macrophage interactions.  

Real-time imaging of interactions between macrophages and fibers revealed 

internalization, attachment and frustrated phagocytosis outcomes within short and long 

samples, suggesting weighted contributions of these processes to the overall 

inflammatory response. We saw that the fraction of internalized long fibers was less than 

that of short fibers, with long fibers undergoing frustrated phagocytosis due to the 

inability of the cell to effectively phagocytize fibers. No spearing or damage to the cell 

membrane was observed.  Since, there is ample microscopy evidence for such processes 

in the literature 120,125, they are either rare, dependent on macrophage type, fiber diameter 
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and type 157 or occurs on time-scales longer than the 24 hours of our time-lapse 

experiments. Our observation of macrophage biochemical response to fibers on the short 

timescale implicates a mechanism other than spearing responsible for increased 

inflammatory response. Comparison of the average contact surface areas, which scales 

with fiber length at constant diameter, of long and short internalized fibers, revealed no 

relationship between quantities of fibers internalized and their average fiber lengths. 

Thus, internalization does not scale solely with average fiber length, suggesting that other 

more complex length models are possible. The quantity of internalized short fibers was 

limited only by fiber concentration, as flow cytometry data showed increased 

internalization with increased short fiber concentration.  

Similar to the cytotoxic findings of Ye et al. with immortalized peritoneal macrophages 

130, we found no relationship between fiber length and cytotoxicity. Neither increases in 

attachment nor internalization had adverse cytotoxic effects. Likewise, cumulative 

intracellular ROS production by fiber-stimulated macrophages is weak, with, perhaps, an 

enhancement in ROS production by macrophages stimulated by the long fibers 

(Supplementary Figure S7). Reactive oxygen species (ROS) are a complex array of 

highly reactive molecules including H2O2, HOCl, *OH, *O, and superoxide anion 

compounds. In phagocytes oxidative stress responses at the plasma membrane in 

response to extracellular pathogenic material 158, and metal ions 116,159 can lead to the 

generation of extracellular ROS compounds. Generation of ROS by NADPH oxidase also 

occurs in intracellular compartments such as phagosomal membranes and mitochondria. 

In fiber induced diseases ROS plays a pivotal role through fiber-mediated respiratory 

bursts 160, and frustrated phagocytosis 161. ROS also plays a role both in cell signaling 162, 
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activation of cytokine transcription 163, and oxidative stress-mediated cytotoxicity 164. 

Increasing levels of intracellular ROS is indicative of cell toxicity 165. The low 

intracellular ROS produced by glass fiber stimulation is expected, given the observed 

lack of cytotoxicity. The low level of ROS produced did not permit significant length-

based conclusion, as demonstrated by Brown et al in the study of morphological 

dependence on phagocytosis of carbon nanotubes 166.  

Cytokines TNF-α and IL-1α are secreted in response to inflammatory stimuli. TNF-α has 

been identified as a critical mediator of fiber-related pathogenicity 130, while pro-

inflammatory cytokine IL-1α works in concert with TNF-α and is induced following NF-

κB activation 167. IL-1α secretion has also been reported upon exposure to carbon 

nanotubes168,169. Additionally, IL-1α, along with IL-1β, is indicative of inflammasome 

activation 170,171. Studies have shown that the inflammasome is activated upon stimulation 

by asbestos fibers, carbon nanotubes, and nanoparticles 161,172,173 with reports of dose-

dependent secretion of IL-1α 172,174. Similar to Palomaki and colleagues, glass-fiber 

stimulation of IL-1α secretion was both dose- and length-dependent172. 

NF-κB has been shown to a have a length-dependent activation by glass fibers 130. 

Comparison of the slopes of the dose-response curves for TNF-α and IL-1α showed a 

greater response to long fibers than to short fibers (Figures 5, 6). TNF-α cytokine 

secretion did not scale with the average fiber length. We would expect that the ratio of 

the slopes of short and long cytokine response curves to be the same as the ratio of the 

short and long average fiber lengths (7 µm /39.3 µm) if cytokine secretion scaled only 

with fiber length. Additionally, short fibers produced a weaker inflammatory response 
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per fiber. By extension, complete phagocytosis of fibers has minimal contribution to the 

inflammatory response. This agrees with contributions of ‘frustrated’ phagocytic 

interaction or incomplete internalization of longer fibers to the inflammatory condition 

175.   

We assessed the ability of the fibers to stimulate pathogenic markers,  cycolooxygenase-2 

(COX-2) and its downstream metabolite, prostaglandin E2 (PGE2). COX-2 is known to 

modulate carcinogenesis. It is induced by oxidative stress and inflammatory cytokine 

secretion, which are key mechanisms of asbestos fiber responses in cells 176. Fiber-treated 

macrophages demonstrated an inverse relationship between TNF-α and COX-2 at 24 

hours post-incubation (Supplementary Figure S6). Literature supports that this 

modulatory action may be NF-κB dependent. Not only is NF-κB known to up-regulate 

COX-2, but COX-2 activity in turn affects NF-κB 177,178. Past studies of inflammatory 

regulation reveal a temporally destabilizing effect of TNF-α on COX-2 mRNA 146. Our 

COX-2 results supports this proposed feedback action of COX-2, since at short time 

scales production of PGE2 is weak but shows concomitant increases with TNF-α.   

We have attempted to rationalize the cytokine data, which demonstrates the increased 

relative potency of long over short fibers with three simple models— that may be treated 

as a phenomenological parameterization of the data. These models were fitted only to 

TNF- α and IL-1 α, since they are directly stimulated by the fibers; by contrast, COX-2 

and PGE2 depend both directly on the stimulating fiber and also indirectly, through the 

cytokines generated by the macrophages responding to fibers. The two fiber populations 

differed only in their distribution of lengths, not diameters or chemistry. Thus the ratio of 
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the slopes of the dose-response curves can only depend on some potency function, 𝑝(𝐿), 

averaged over the length distribution: < 𝑝(𝐿) >. 

In the first model, a simple length cut-off, Lc, is posited so that fibers shorter than Lc 

elicit no cytokine response, and that all fibers longer than Lc contribute equally to the 

cytokine response; the potency function 𝑝(𝐿) is given by: 

𝑝 𝐿 =    0, 𝐿 < 𝐿!
𝑝!, 𝐿 > 𝐿!

                                                                                                        (2) 

Using the fitted parameters for short and long fiber distributions, we obtain Lc = 27.0 µm, 

with a 95% confidence interval 22.9 µm < Lc < 31.4 µm for TNF- α, and Lc = 27.4 µm, 

with a 95% confidence interval 20.8 µm < Lc < 36.0 µm from the IL-1α response. It is 

remarkable that these two cytokines, TNF-α and IL-1α, yield similar relative potencies of 

the long and short fibers. Furthermore, the cut-off length is quite reasonable when 

compared to the size of macrophages. Typical rodent alveolar macrophages are ~13 µm 

in suspension 179. However, plated macrophages spread to larger diameters, 20.7 +/- 8.8 

µm in this work, and are the appropriate comparison since all experiments were 

performed on plated cells. 

In the second model, long fibers are modeled as being more potent than short through a 

power law: 

𝑝 𝐿 ~𝐿!                                                                                                                                                    (5) 

 There is no cut-off length in this model. Using the fitted parameters for short and 

long fiber distributions we obtain 𝛼 = 1.75, with a 95% confidence interval 1.56 <   𝛼 <
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1.93 for TNF- α, and 𝛼 = 1.76, with a 95% confidence interval 1.46 <   𝛼 < 2.11 from 

the IL-1α response. Most physical quantities relevant to fiber -cell interactions, such as 

average fiber length, average volume, mass, average surface area, all scale as <L> 

(i.e. α = 1) and thus α > 1 is unreasonable. Our results thus argue for either a stronger 

length variation of potency (stronger than a power law, or for an additional reduced 

potency of the short fibers e.g. through a length cut-off, Lc). 

In a third two-parameter model, fibers longer than a cut-off, Lc, elicit a response, scaling 

as a power of the length, that is, longer non-internalized fibers, are weighted more; the 

appropriate potency function is 

𝑝 𝐿 =   
0, 𝐿 < 𝐿!

𝑝!𝐿! , 𝐿 > 𝐿!
                                                 (7) 

If we force α = 1, we obtain Lc = 12.1 µm, with a 95% confidence interval 7.7 µm < Lc < 

16.3 µm for TNF- α, and Lc = 12.5 𝜇m, with a 95% confidence interval 4.9 𝜇m < Lc < 

20.6 𝜇m from the IL-1α response. Again, the cut-off lengths determined by these 

independent cytokine measurements are very similar.  

With a cut-off, if there is no additional length dependence of the potency (α= 0), we 

obtain Lc ~ 27 µm, comparable to the macrophage size. If, with a cut-off, the potency of 

the non-phagocytosed fibers depends on the standard physical parameters (α = 1), we 

obtain Lc ~ 12 µm, shorter than the macrophage size, but not unreasonable. Frustrated 

phagocytosis was observed by time-lapse microscopy for length, L > 16µm, which is 

consistent with the cut-offs obtained from the first and third models; we have no 
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independent criteria to prefer the first model over the third model. We note that, α = 1.75 

from a simple power law potency (second model) seems unreasonable.  

Schinwald and colleagues reported a critical length range of 5 µm for onset of frustrated 

phagocytosis in a primary alveolar in vitro migration assay 155. However, considering the 

contribution of fiber length distribution, and in vitro assay type we cautiously report that 

the authors’ threshold length is within the range of our third model predictions. 

Schinwald et al proposes that mechanical obstruction of long bulky fibers may have led 

to decreasing mobility with increasing fiber length. We have also observed that multiple 

cells will simultaneously attempt to engulf the same longer fiber which may lead to low 

cell mobility, as seen by Schinwald et al. Given our frequency of fiber length, with 40% 

of short glass fibers and 95% of our long fibers being greater than the silver nanowire 

lengths examined a migration assay would not have been feasible for direct comparison 

of threshold lengths. 

Our models suggest that fiber-cell interaction differs above and below a critical fiber 

length; fibers with lengths L < Lc contribute minimally to inflammatory biomolecule 

production, while the majority of biomolecule production is due to frustrated 

phagocytosis of fibers of length L>Lc. Lc should be viewed as a statistical parameter, as 

variations in macrophage cell and fiber-cell orientation will influence the outcome of 

individual fiber-cell interactions. The output of the length-based models may change with 

fiber and cell type. The degree, to which this occurs, along with in vivo validation of in 

vitro findings, will be the focus of our future work. By establishing glass fiber length-

based models as a control, the question of the extent to which length potentiates the 
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adverse effects of other physicochemical parameters of asbestos fibers can be answered. 

Importantly, independent of the detailed modeling, these studies have shown that, even 

for very short induction times (~ 24 hours), there is significant length dependence to the 

response of macrophage cells phagocytic interactions with fibers. 

5.6 Conclusion 

Our results show that the single physical parameter of length plays an important role in 

fiber-induced macrophage inflammatory responses. Pro-inflammatory cytokines, TNF-α 

and IL-1α, were shown to increase in both a dose and length dependent manner. Short 

fibers were more readily internalized and played a minor role in inflammatory 

biomolecule production compared to long fibers on a per-fiber basis. The MH-S cell line 

showed no dose toxicity allowing us to reproducibly evaluate dose-response up to two 

orders of magnitude. Importantly, for our stimulating material, characterization revealed 

no correlation between fiber diameter distribution and length distribution, so we are able 

to isolate the effect of fiber length on the macrophage response. This distinguishes our 

study from previous work on length dependence of frustrated phagocytosis and 

inflammatory responses. Here we show a universal dose-response approach to 

determining critical length and present two possible models that describes phagocytic 

interactions: a critical length based model in which the potency of longer fibers are 

equally weighted, and a two-parameter power law and potency model in which the 

weighting is skewed toward longer fibers. Each model produces reasonable critical 

lengths for frustrated phagocytosis: 27 µm and 12 µm. 
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5.7 Future Work 

These fiber-cell interactions differed above and below modeled critical fiber lengths 

suggesting that length should be treated as a statistical parameter where variations in fiber 

type and cell type may influence the output of the length-based models. Future studies 

will seek to determine the extent to which fiber length potentiates the effects of other 

physicochemical parameters such as surface composition by comparing length-based 

results of various asbestos types to our single-parameter glass fiber model. This will 

involve the identification of asbestos or mineral fiber types that can be reproducibly 

length-separated without adversely affecting other physicochemical properties. Fibers can 

be selected across varied groups and/or mineral series: actinolite, anthophyllite, 

chrysotile, crocidolite, tremolite, and wrightwood actinolite. Interactions of asbestos 

fibers both ‘unseparated or separated’ with mouse alveolar macrophage cells can provide 

initial screening of fiber-cell interactions that lead to frustrated phagocytosis and which 

contribute to cell death in short times (< 24hours). Observations of fiber-cell interactions 

with primary alveolar macrophage cells that are more physiologically relevant can be 

investigated. Cytokine responses (TNF-α, IL-1ß, IL-1α) as well as intra- and extra-

cellular ROS generation, and cell metabolism assays can be performed across asbestos 

groups. 
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APPENDIX I. 

 PROTEIN AND PEPTIDE SEQUENCES 

  Sequences 

ELP DNA Sequence 

TGTGGGGTGCCGGGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTTCGGTG

TCCCGGGCGTAGGTGTTCCGGGTGTCGGGGTGCCGGGTGTGGGCGTTCCGGG

CGTGGGTGTACCGGGCTTCGGTGTCCCGGGCGTAGGTGTTCCGGGTGTCGGG

GTGCCGGGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTTCGGTGTCCCGG

GCGTAGGTGTTCCGGGTGTCGGGGTGCCGGGTGTGGGCGTTCCGGGCGTGGG

TGTACCGGGCTTCGGTGTCCCGGGCGTAGGTGTTCCGGGTGTCGGGGTGCCG

GGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTTCGGTGTCCCGGGCGTAG

GTGTTCCGGGTGTCGGGA 

 

ELP Amino Acid Sequence 

MKGSCGVPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGV

PGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPG

VGVPGVGVPGVGVPGFGVPGVGVPGVG 
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ELP-SH3 DNA Sequence 

GATCCTGTGGGGTGCCGGGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTT

CGGTGTCCCGGGCGTAGGTGTTCCGGGTGTCGGGGTGCCGGGTGTGGGCGTT

CCGGGCGTGGGTGTACCGGGCTTCGGTGTCCCGGGCGTAGGTGTTCCGGGTG

TCGGGGTGCCGGGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTTCGGTGT

CCCGGGCGTAGGTGTTCCGGGTGTCGGGGTGCCGGGTGTGGGCGTTCCGGGC

GTGGGTGTACCGGGCTTCGGTGTCCCGGGCGTAGGTGTTCCGGGTGTCGGGG

TGCCGGGTGTGGGCGTTCCGGGCGTGGGTGTACCGGGCTTCGGTGTCCCGGG

CGTAGGTGTTCCGGGTGTCGGGAAGCTTCGCGATTGGGGTGGTAGCCCTAGG

GGAGTGCGTTGGGCCAGGGCACTGTATGACTTTGAGGCTCTGGAAGAGGACG

AGCTGGGATTCCGAAGCGGAGAAGTGGTTGAAGTCCTGGACAGCTCCAACCC

ATCTTGGTGGACCGGCCGTCTGCACAACAAACTGGGTCTCTTCCCTGCCAACT

ATGTGGCCCCCATGATGCGAAGATCTCATCACCATCACCATCAC 

 

ELP-SH3 Amino Acid Sequence 

MKGSCGVPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGV

PGVGVPGVGVPGVGVPGFGVPGVGVPGVGVPGVGVPGVGVPGFGVPGVGVPG

VGVPGVGVPGVGVPGFGVPGVGVPGVGKLRDWGGSPRGVRWARALYDFEALE

EDELGFRSGEVVEVLDSSNPSWWTGRLHNKLGLFPANYVAPMMRRSHHHHHH 
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GST-GLP1-SBP2 Amino Acid Sequence 

MSPILGYWKIKGLVQPTRLLLEYLEEKYEEHLYERDEGDKWRNKKFELGLEFPN

LPYYIDGDVKLTQSMAIIRYIADKHNMLGGCPKERAEISMLEGAVLDIRYGVSRI

AYSKDFETLKVDFLSKLPEMLKMFEDRLCHKTYLNGDHVTHPDFMLYDALD 

VVLYMDPMCLDAFPKLVCFKKRIEAIPQIDKYLKSSKYIAWPLQGWQATFGGGD

HPPKSDLVPRGSHGEGTFTSDVSSYLEEQAAKEFIAWLVKGAGKSPAPSIDRSTK

PPL 

 

GLP-1-SBP2 DNA Sequence 

GCAGCGCACGGTGAAGGCACCTTTACGAGCGATGTGAGCTCGTATCTGGAAG

AGCAGGCAGCGAAAGAATTTATCGCGTGGCTGGTGAAAGGTGCGGGCAAGC

TTCCTATGAAAAGCAAAAGCCCGGCGCCGAGCATTGACCGTAGCACCAAACC

GCCACTG 

 

Table 1: Comparison of Amino Acid Sequences of GLP-1-SBPs 

Agonist         |  Amino Acid Sequence 

GLP-1           |  7HAEGTFTSDVSSYLEGQAAKEFIAWLVKGRG37 

Exendin-4     |   HGEGTFTSDLSKQMEEEAVRLFIEWLKNGGPSSGAPPPS 

GLP-1-SBP2|  HG8EGTFTSDVSSYLEE22QAAKEFIAWLVKGA36GKSPAPSIDRSTKPPL 
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GLP-1-SBP13      |  HG8EGTFTSDVSSYLEE22QAAKEFIAWLVKGA36GKSPAPSIARSTKPPL 

GLP-1-SBP24      |  HG8EGTFTSDVSSYLEE22QAAKEFIAWLVKGA36GKSSNTPPPRPPKPSH  

 

Potential Scramble fusion peptide based on the scrambling of binding sequence R-xx-K 

GLP-1-Scramble  |  HG8EGTFTSDVSSYLEE22QAAKEFIAWLVKGA36GKSPAPSISAKTPPRL 
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APPENDIX II. 

MATHEMATICAL MODEL 

Pdex_release.m 
 
function pdex_release 
%PDEXTP  Mathematical Model for GLP-1-SBP Release 
%   
%   The PDEs & ODEs are 
%      The Reaction-Diffusion Eqn 
%      D(u1)/Dt = Di*D^2(u1)/Dx^2 + F 
% 
%   ODEs 
%      D(u2)/Dt = F  
%      D(u3)/Dt = -F 
% 
%      where; 
%      F(y) = kr*u(3)-kf*u(1)*u(2) 
% 
%   In the form expected by PDEPE solver,  
% cn(x; t; u; ux)unt = x^-m d/dx (x^m bn(x; t; u; ux))+sn(x; t; u; ux) 
%   the equations are: 
%   |1|         |u1|      | Di*D(u1)/Dx |        | F | 
%   |1| .*  D_  |u2| = D_ | 0.0*D(u2)/Dx |  +    | F | 
%   |1|     Dt  |u3|   Dx | 0.0*D(u3)/Dx |       |-F | 
% 
%   ---         ---       ------------------    --------------- 
%    c           u          f(x,t,u,Du/Dx)       s(x,t,u,Du/Dx) 
% 
%   The initial condition is u1(x,0) = u1eq , u2(x,0) = u2eq and  
u3(x,0) = u3eq for 0 <= x <= 1. 
%   
%   The left boundary condition is D(u1)/Dx = 0, u2(0,t) = 0, 
u3(0,t)=0.  The  
%   condition on the partial derivative of u1 has to be written in 
terms of the flux.  In the form expected by PDEPE, the left bc is 
% 
%      |0 |       |1|     | 0.00905*D(u1)/Dx |        |0| 
%      |u2|   +   |1| .*  | 0.0*D(u2)/Dx |      =     |0|  
%      |u3|       |1|     | 0.0*D(u3)/Dx |            |0|  
% 
%      ---        ---     ------------------          --- 
%    p(0,t,u)    q(0,t)     f(0,t,u,Du/Dx)             0 
% 
%   The right boundary condition is u1(1,t) = 0, D(u1)/Dx = J(u1): 
% 
%      |u1|        |0|     | 0.00905*D(u1)/Dx |         |0| 
%      |u2|   +    |1| .*  | 0.0*D(u2)/Dx   |       =   |0|  
%      |u3|        |1|     | 0.0*D(u3)/Dx   |           |0|  
% 
%      -------    -----    ------------------           --- 
%      p(1,t,u)   q(1,t)     f(1,t,u,Du/Dx)              0 
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% 
% Subfunctions  
%PDEX_releasePDE, PDEX_releaseIC, & PDEX_releaseBC define the system 
%  
  
  
m = 2; %spherical 
x = [0 0.005 0.01 0.05 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.99 
0.995 1]; %mesh for a model 1 micron sphere 
t = [0 0.005 0.01 0.05 0.1 0.5 1 1.5 2]; %time 
  
sol = pdepe(m,@pdex_releasepde,@pdex_releaseic,@pdex_releasebc,x,t); 
u1 = sol(:,:,1);%u(1)SBP 
u2 = sol(:,:,2);%u(2)SH3 
u3 = sol(:,:,3);%u(3)SBP-SH3 
  
 figure; 
plot(t,u1); 
xlabel('Time'); 
ylabel('Concentration'); 
  
  
% ------------------------------------------------------------------ 
  
   
function [c,f,s] = pdex_releasepde(x,t,u,DuDx) 
c = [1; 1;1];                                   
f = [Di;0;0] .* DuDx;      % Input Di, diffusivity   [=]micron^2/day  
F = kr*u(3)-kf*u(1)*u(2);  % Values for koff [=]1/day & kon [=]1/M*day 
s = [F; F;-F];                                 
  
% ------------------------------------------------------------------- 
  
function u0 = pdex_releaseic(x) 
u0 = [SBPeq; SH3eq;SBP-SH3eq];   % Input([=]Molar)equilibrium 
quantities                        
  
% ------------------------------------------------------------------- 
  
function [pl,ql,pr,qr] = pdex_releasebc(xl,ul,xr,ur,t) 
pl = [0; ul(2);ul(3)];                               
ql = [1; 1;1];                           
pr = [ur(1); ur(2);ur(3)];                            
qr = [1; 0;1];                                   
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nonlinear.m 
 
%Coupled non-linear algebraic equations for equilibrium values 
% kf*CSBPeq*CSH3eq = kr*CSBP-SH3eq (5) 
% CSBPtot = CSBPeq + CSBP-SH3eq    (6) 
% CSH3tot = CSH3eq + CSBP-SH3eq    (7) 
% requires user input x0 = [...] initial guesses for x(1),x(2), and 
x(3) 
% Equilibrium concentration output used in PDEPE model for solution 
% to coupled PDE-ODE system 
% 
%____________________________________________________________ 
function F= nonlinear(x) 
SBPtot= 103*10^(-6) %Molar quantity of total SBP incubated 
SH3tot= 50*10^(-6) %Molar quantity of total SH3 domains in 1mg/ml 
spheres 
%x(1)= equilibrium quantity of GLP-1-SBP 
%x(2)= equilibrium quantity of SH3 
%x(3)= equilibrium quantity of complex 
% kf Association constant e.g. SBP2[=] 1/Ms 
% kr Dissociation constant e.g. SBP2[=] 1/s 
F= kf*x(1)*x(2)-kr*x(3); 
SBPtot-x(1)-x(3); 
SH3tot-x(2)-x(3)]; 
end 
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