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Abstract. In this paper we present computationally efficient imple-
mentation of the minimizing flow approach for optimal mass transport
(OMT) with applications to non-rigid 3D image registration. Our imple-
mentation solves the OMT problem via multi-resolution, multigrid, and
parallel methodologies on a consumer graphics processing unit (GPU).
Although computing the optimal map has shown to be computationally
expensive in the past, we show that our approach is almost two orders
magnitude faster than previous work and is capable of finding transport
maps with optimality measures (mean curl) previously unattainable by
other works (which directly influences the accuracy of registration). We
give results where the algorithm was used to compute non-rigid regis-
trations of 3D synthetic data as well as intra-patient pre-operative and
post-operative 3D brain MRI datasets.

1 Introduction

Image registration and morphing are amongst the most common image process-
ing problems. Registration is the process of establishing a common geometric
reference frame between two or more image data sets and is necessary in or-
der to compare or integrate image data obtained from different measurements.
A vast amount of literature exists on image registration techniques and we re-
fer the reader to [1, 2] for an overview of this field. In this paper, we approach
the registration task by treating it as an optimal mass transport problem. As
with other registration techniques, the computational burden associated with
this problem is high. We propose a multi-resolution approach for the solution of
this problem on the GPU to alleviate this difficulty.

The optimal mass transport problem was first formulated by a French math-
ematician Gasper Monge in 1781, and was given a modern formulation in the
work of Kantorovich [3] and, therefore, is now known as the Monge-Kantorovich
problem. The original problem concerned finding the optimal way to move a pile
of soil from one site to another in the sense of minimal transportation cost.
Hence, the Kantorovich-Wasserstein distance is also commonly referred to as
the Earth Mover’s Distance (EMD).
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Recently, Haker et al. [4, 5] have applied the optimal mass transport approach
to certain medical image registration problems. Rigorous mathematical details
for their algorithm are given by Angenent et al. [6]. Although there have been
a number of algorithms in the literature for computing an optimal mass trans-
port, the method by Haker et al. computes the optimal warp from a first order
partial differential equation, which is a computational improvement over earlier
proposed higher order methods and computationally complex discrete methods
based on linear programming. However, at large grid sizes and especially for 3D
registration the computational cost of even this method is significant.

Though computationally expensive, the OMT method has a number of dis-
tinguishing characteristics: (1) it is a parameter free method and no landmarks
need be specified, (2) it is symmetrical (the mapping from image A to image B
is the inverse of the mapping from B to A), (3) its solution is unique (no local
minima), (4) it can register images where brightness constancy is an invalid
assumption, and (5) OMT is specifically designed to take into account changes
in densities that result from changes in area or volume.

Contribution. In this paper we extend our previous work [7] and implement
the more general formulation of the OMT problem for 3D non-rigid registration
based on multi-resolution techniques and using the parallel architecture of the
GPU. Although multi-resolution methods have served as critical pieces of reg-
istration algorithms in the past, it had yet to be shown that the Optimal Mass
Transport problem could be solved in the same manner. Our experimental re-
sults show that this is indeed the case, a result which has implications for many
fields beyond imaging due to the ubiquitous nature of the OMT problem. We
also show that the PDE-based solution to the OMT problem is greatly enhanced
by our approach to such an extent that it becomes practical for use on large 3D
datasets both in terms of speed and accuracy. Overall, these results show that
OMT-based image registration is practical on medical imagery and, thus, mer-
its further investigation as an elastic registration technique without the need of
smoothness priors or brightness constancy assumptions.

2 Optimal Mass Transport for Registration

2.1 Formulation of the Problem

We will briefly provide an introduction to the modern formulation of the Monge-
Kantorovich problem. We assume we are given, a priori, two sub-domains Ω0 and
Ω1 of Rd with smooth boundaries, and a pair of positive density functions, μ0

and μ1 defined on Ω0 and Ω1 respectively. We assume that,∫
Ω0

μ0 =
∫
Ω1

μ1 (1)

This ensures that we have same total mass in both the domains. The functions
μ0 and μ1 in this formulation can be the same as the source and target images,
respectively, or a smooth version of them. They can also be scalar fields that are
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appropriate for the underlying physical model. We now consider diffeomorphisms
ũ from Ω0 to Ω1 which map one density to other in the sense that,

μ0 = |Dũ|μ1 ◦ ũ (2)

which we call the mass preservation (MP) property, and write ũ ∈ MP . Equa-
tion (2) is called the Jacobian equation. Here, |Dũ| denotes the determinant
of the Jacobian map Dũ, and ◦ denotes composition of functions. It basically
implies that if a small region in Ω0 is mapped to a larger region in Ω1, then
there must be a corresponding decrease in density in order for the mass to be
preserved. There may be many such mappings, and we want to pick an optimal
one in some sense. Accordingly, we define the squared L2 Monge-Kantorovich
distance as following:

d22(μ0, μ1) = infũ∈MP

∫
Ω0

‖ ũ(x) − x ‖2 μ0(x)dx (3)

The optimal MP map is a map which minimizes this integral while satisfying
the constraint given by Equation (2). The Monge-Kantorovich functional, Equa-
tion (3), is seen to place a penalty on the distance the map ũ moves each bit of
material, weighted by the material’s mass. A fundamental theoretical result [8,
9], is that there is a unique optimal ũ ∈MP transporting μ0 to μ1, and that ũ
is characterized as the gradient of a convex function ω, i.e., ũ = ∇ω. This theory
translates into a practical advantage, since it means that there are no non-global
minima to stall our solution process.

2.2 Computing the Transport Map

We will describe here only the algorithm for finding the optimal mapping ũ.
The details of this method can be found in [4]. The basic idea for finding the
optimal warping function is first to find an initial MP mapping u0 and update it
iteratively to decrease an energy functional. When the pseudo time t goes to ∞,
the optimal u will be found, which is ũ. Basically there are two steps. The first
step in this algorithm is to find an initial mass preserving mapping. This can
be done for general domains using the method of Moser [10] or the algorithm
proposed in [4]. The later method can simply be interpreted as the solution
of a one-dimensional Monge-Kantorovich problem in the x-direction followed
by the solution of a family of one-dimensional Monge-Kantorovich problems in
y-direction and finally solve a family of 2D Monge-Kantorovich problems in
the z-direction. The second step is to adjust the initial mapping found above
iteratively using gradient descent in order to minimize the functional defined in
Equation (3), while constraining u so that it continues to satisfy Equation (2).
This process iteratively removes the curl from the initial mapping u and, thereby,
finds the polar factorization of u. For details on this technique, please refer to
[4]. The overall algorithm is summarized graphically in Figure 1. This same
algorithm can be used to compute transport map in arbitrary dimensions the
only difference being that in R2 the problem is a bit simpler where you solve
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Fig. 1. Optimal Mass Transport Algorithm

the Laplace equation with Dirichlet boundary conditions as compared to solving
a Poisson equation with Neumann boundary conditions in higher dimensions.
These computations are done in our implementation using Multigrid methods.

3 Implementation

3.1 Multi-resolution Warping

Performing image registration using a multi-resolution approach is widely used
to improve speed, accuracy, and robustness. The basic idea is that registration
is first performed at a coarse scale. The spatial mapping determined at the
coarse level is then used to initialize registration at the next finer level. This
process is repeated until it reaches the finest scale. This coarse-to-fine strategy
greatly improves the registration success rate and also increases robustness by
eliminating local optima at coarse scales [11]. Our coarse to fine hierarchy is
comprised of three levels (Figure 2).

In our experiments, we found that the coarse-to-fine strategy converges at
least twice as fast as the single-resolution solution. Additionally, we found that
the coarse to fine method converges to solutions with accuracy (low error metric:
mean curl) unattainable by single-resolution methods.
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Fig. 2. A Multi-Resolution Registration Scheme. We employ a coarse to fine
hierarchy three levels deep with which we solve for an optimal mapping from source
to destination data. This method has shown to speed convergence and realize more
accurate solutions.

3.2 3D Multigrid Laplacian Inversion

We inverted the Laplacian (a key component of the OMT algorithm) using a 3D
multigrid solver. The multigrid idea is very fundamental, it takes advantage of
the smoothing properties of the classical iteration methods at high frequencies
(Jacobi, Gauss Siedel, SOR etc) and the error smoothing at low frequencies by
restriction to coarse grids. The essential multigrid principle is to approximate
the smooth (low frequency) part of the error on coarser grids. The non-smooth
or rough part is reduced with a small number of iterations with a basic iterative
method on the fine grid.

The basic components of multigrid algorithm are discretization, intergrid
transfer operators (interpolation & restriction), relaxation scheme and the iter-
ative cycling structure. We used an explicit finite difference scheme for approxi-
mating the 3D Poisson equation. This approach uses a 19-point formula on the
uniform cubic grid. Relaxation was performed using a parallelizable four-color
Gauss-Seidel relaxation scheme. This increases robustness and efficiency and is
especially suited for the implementation on the GPU. We used tri-linear interpo-
lation operator for transferring coarse grid correction to fine grids. The residual
restriction operator for projecting residual from the fine to coarse grids is the
full-weighting scheme. A multigrid V(2,2)-cycle algorithm was used to iterate for
solution (Residual max norm ≈ 10−5). Interested readers are referred to [12–14]
for details on implementation of the multigrid methods.

3.3 GPU Implementation

An advantage of our solution to the OMT problem is that it is particularly suited
for implementation on parallel computing architectures. Over the past few years,
it has been shown that graphics processing units (GPUs; now standard in most
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Fig. 3. The GPU realizes an increasing advantage in solving the OMT problem over
the CPU as grid size increases up to 1283 sized grids. Past this point, there is still a
large advantage, but a sharp drop is due to memory bandwidth limitations.

consumer-level computers), which are naturally massively parallel, are well suited
for these types of parallelizable problems [15, 16].

Taking advantage of these two facts, we implemented our OMT multigrid
algorithm on the GPU. The GPU can be considered a massively parallel co-
processor and dedicated memory interfacing to the CPU over a standard bus.
Modern GPUs are comprised of up to 128 symmetric processors running up to
speeds of 1.35Ghz. Their advantage over the CPU in this sense is that while the
CPU can execute only one or two threads of computation at a time, the GPU can
execute over two orders of magnitude more. Thus, instead of sequentially com-
puting updates on data grids one element at a time, the GPU computes updates
on entire grids on each render pass, significantly improving performance (Fig-
ure 3). For instance, on a modest Dual Xeon 1.6Ghz machine with an nVidia
GeForce 8800 GX GPU (3DMark score of 7200), improvements in speed over
our CPU OMT implementation reached 4826 percent on a 1283 volume data.
Presently available GPUs only allow single precision computations, however, this
did not affect the stability of the OMT algorithm.

4 Results

We illustrate our registration method using two examples. In the first case, we
register a synthetically generated 3D sphere to a deformed (dented) counterpart
(Figure 4). In the second case, two 3D brain MRI datasets were registered. The
first data set was pre-operative and while the second data set was acquired
during surgery and craniotomy and opening of the dura (Figure 5,6). Both were
resampled to 2563 voxels and preprocessed to remove the skull.

In both cases, mean curl of the transport map was reduced to approximately
10−3 indicating convergence. However, our coarse-to-fine multigrid implementa-
tion on the GPU solves for the optimal transport maps in practical computation
times. For instance, registration of the first data (size 1283) set required 800
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Fig. 4. Synthetic Imagery Results. A sphere is mapped to its deformed counterpart.
In the bottom row, the left figure shows the optimal mass transport mapping as a
deformation grid overlaid on the destination data. And the right figure shows the
magnitude of deformation. Data size 1283)

iterations of the solver (most at the coarsest scale) requiring less than a minute
of computation time. In the second case, (size 2563) 3600 iterations of the solver
were run, requiring less than 15 minutes of computation time.

5 Conclusions

In this paper, we presented a computationally efficient method for 3D image
registration based on the classical problem of optimal mass transportation. Many
times, global registration methods similar to that presented here are computation
intensive making them impractical. However, we have shown that the optimal
mass transport is, in fact, a viable solution for elastic registration by achieving
low run times on commonly sized 3D datasets on standard desktop computing
platforms.
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Fig. 5. Brain Sag Registration. The top four figures show the registration results
on an axial slice and the bottom four show results for a saggital slice from the 3D
volume. The deformation due to the brain sag after carniotomy and openning of the
dura is clearly visible in both the deformation grid and the magnitude of deformation
plots. The gravity vector is parallel to the horizontal axis. A rigid shift can also be
noticed due to slight displacement of the head during surgery.
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Fig. 6. Brain Sag Registration(3D View). The brain sag is visible in the anterior
portion of the brain. (Data size 2563).
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