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SUMMARY

The purpose of this work is to investigate methods by which the quantum states of

trapped ions may be better controlled and measured for the applications of quantum com-

puting, quantum simulation, and the generation of atomic frequency standards. We report

on two primary projects: first, we control the relative coupling strengths of carrier and

first-order motional sideband interactions of a trapped ion by placing it in a resonant opti-

cal standing wave. Our configuration uses the surface of a microfabricated chip trap as a

mirror, avoiding the technical challenges of in-vacuum optical cavities. Displacing the ion

along the standing wave, we show a periodic suppression of the carrier and sideband tran-

sitions, with the cycles for the two cases 180◦ out of phase with each other. This technique

allows for the suppression of off-resonant carrier excitations when addressing the motional

sidebands, and has applications in quantum computation and quantum simulation. Sec-

ond, we investigate methods proposed in Ref. [36] which may improve the performance of

trapped ion (or atom) frequency standards when the interrogating local oscillator is of lim-

ited quality. These methods could be applied to future generations of small-scale frequency

standards, which are in demand for applications such as local GPS networks and distributed

sensors. We propose a scheme for implementing these methods in a 40Ca+ based frequency

standard, and outline the technical requirements for doing so. Finally, we present prelimi-

nary results characterizing single-ion coherence times and ion “state destruction” events in

our system, and discuss how they will affect the realization of the proposed scheme.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

Within the last several decades it has become possible to control and measure the state of

various quantum systems with an increasing level of sophistication [1, 2]. In addition to

providing the experimental basis to test fundamental aspects of quantum theory [3], practi-

cal applications of these techniques have given rise to the concept of “quantum technology”

for uses such as sensing, metrology, microscopy, computation, simulation, information pro-

cessing, cryptography, electronics and photonics, frequency standard generation, etc [2,

4]. Trapped ion systems are one choice of system that can realize many of these appli-

cations. Although they are well researched and offer a good degree of state control and

measurement, there remain a variety of technical challenges and limitations which must be

accounted for when using trapped ions as a platform for such technologies. The purpose of

this work is to investigate methods by which the quantum state of trapped ions may be bet-

ter controlled and measured for the particular applications of quantum computing, quantum

simulation, and the generation of atomic frequency standards.

1.1 On motional state control for computation and simulation

The design of electromagnetic ion traps such as Penning or Paul traps leads to confining

potentials that are effectively harmonic. As we’ll see in the technical review provided in

Ch. 2, the internal electronic states of trapped ions become coupled with the motional

states when the ions interact with resonant light fields. This allows the motional states

to be coherently controlled, leading to a variety of important applications. For instance,

the coupling takes the form of an almost ideal Jaynes-Cummings interaction [5], allowing

trapped ion systems to function as a platform for a variety of cavity QED experiments [6, 7],

as well as enabling the analysis of various non-classical motional states (such as Fock and

2



squeezed states) [8, 9]. As another example, the ability to coherently control the motional

states forms the basis for two-qubit gates in ion trap quantum computation [10, 11, 12].

Control of the motional states is often achieved by interacting with the ion on its mo-

tional sidebands. These interactions are also used for cooling ions to the motional ground

state [13], measuring ion heating rates [14, 15], and identifying and cooling molecular ions

[16, 17, 18]. The speed at which these interactions can take place depends on the intensity

of the exciting radiation. Due to spectral broadening, off-resonant coupling to the primary

transition (evident either as motion independent population transfer or an AC Stark shift),

places a limit on the speed of the sideband interactions. Suppressing the primary transi-

tion, referred to also as the carrier, can remove this limit and, in particular, would allow for

improved two-qubit gate fidelities as the gate time becomes comparable or shorter than a

cycle of the harmonic motion [11, 19]. Suppression of the carrier also has applications in

quantum simulation. For instance, trapped ions have been proposed as a system for mod-

eling the expansion of the universe [20]. The simulation requires off-resonant excitation

of both the red and blue sidebands by a red-detuned exciting field, with no coupling to

the carrier. Because the blue sideband is both weaker and further from resonance than the

carrier transition, suppression of the carrier is important for such an experiment.

Replacing running wave optical beams with standing wave beams provides a method

to selectively suppress the carrier and reduce off-resonant excitations when addressing the

motional sidebands [21, 22]. In such a configuration, the coupling strengths of the car-

rier and sidebands acquire a periodic dependence on the atom’s spatial position within the

standing wave fringes [21, 23], with the cycles for the two cases 180◦ out of phase with

each other. This periodic dependence of the coupling strengths has been demonstrated in

cavity experiments with trapped ions [24, 25, 26, 27]. However, the use of cavities involves

technical challenges such as the alignment of optics in vacuum and the tendency for op-

tics and dielectric mirrors to become charged, complicating the integration of cavities with

microfabricated ion traps [28, 29].

3



In Ch. 4 of this work we demonstrate the same position dependence in a standing wave

field produced by a single mirror, which in this case is simply the surface of a planar ion

trap. This configuration has the advantage of being simpler to implement than an optical

cavity. In order to account for imperfect beam alignment, reflection losses, and similar

system limitations, we extend the calculations of Refs. [21, 23] to the case of non-normal

incidence laser beams and unequal couplings of the incident and reflected laser beams

with the ion. In doing so, we find a criterion for the out of phase carrier and sideband

coupling strengths that is set by the incident angle of the laser beam and the orientation of

the ion’s harmonic motion. Furthermore, by using the position dependence of the coupling

strengths within the standing wave fringes, we are able measure the ion’s relative position

as a function of applied electric field in order to map the trapping potentials. These results

are compared with those given by numerical models of the trap system.

1.2 On the improvement of atomic frequency standards

Atomic frequency standards (colloquially called atomic clocks) are the most accurate time

and frequency standards known, and serve as references for GPS satellites, sensors, tele-

vision broadcasts, and any other applications which require precision time keeping. These

devices use radiation from a local oscillator (LO) to excite atomic transitions, allowing the

LO to be stabilized to the transition resonance. The first such device to be built was com-

pleted in 1949 and was based on an ammonia absorption line at 24 GHz. Although it was

successful as a proof-of-concept, its performance (measured by fractional frequency offsets

∆f/f0 of 10−7 − 10−8) could not match the best quartz standards at the time (with offsets

around 2×10−8) [30, 31]. By the mid 1950s, however, cesium beam standards based on the

9.2 GHz hyperfine transition were demonstrating fractional offsets of approximately 10−9

[32], overtaking quartz oscillators. This marked the beginning of the atomic timekeeping

era. Modern cesium standards used to define the SI second have fractional offsets on the

order of 10−16 [33], whereas frequency standards based on optical transitions (i.e. refer-
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ence frequencies in the 1014 Hz range) have achieved stabilities of σy(τ) ∼ 10−17/
√
τ [34]

(σy being the Allan variance, which will be discussed in Ch. 5). Regardless of the choice

in reference frequency, devices on the bleeding edge of accuracy are limited to laboratory

use due to their size and sensitivity to environmental factors such as vibration and temper-

ature. These fixed-position standards are sufficient so long as the reference signal can be

distributed beyond the lab. Currently this is done via global GPS signals, but the fragile

nature of the GPS signal is a functional concern, particularly to the US armed forces. There

is a recognized need to miniaturize these frequency standard technologies and make them

sufficiently robust for field use in order to synchronize local GPS networks and distributed

sensors. This demand for frequency references with reduced size, weight, and operating

power has previously manifested in programs such as the DARPA IMPACT (BAA-08-32)

and STOIC (BAA-14-41) programs. Most recently, the DARPA Atomic Clocks with En-

hanced Stability (ACES) program (BAA-16-19) has sought an integrated clock in a pack-

age size of 50 cm3 or less, with an operating power of 250 mW or less, and a stability

σy(τ) < 10−11/
√
τ out to 105 s, matching the performance of a GPS locked reference or

rack mount beam standard.

Trapped ion clocks are a good candidate for meeting such demands due to the demon-

strated scalability of RF ion traps. For instance, in the QIS lab (where all of the work in

this thesis was performed) we use planar chip traps on the order of 1 cm2 that are designed

in-house and fabricated at Georgia Tech using CMOS techniques (e.g. [35]). However,

the clock’s performance depends both on the interrogation of the ions, which provides long

term stability, and on the absence of noise in the LO, which provides the short term stabil-

ity needed for interrogation. For references based on optical atomic transitions, the LO is

a laser and is typically stabilized to an optical cavity. These cavities are generally heavy

blocks of glass which provide rigidity against residual vibrational stress, and are otherwise

isolated from environmental vibrations. Small package devices will require smaller, less

stable cavities, resulting in much noisier LOs and diminished performance of the frequency

5



reference. Microwave transitions can alternatively be used as reference frequencies, but

such transitions (around 1010 Hz) are on the order of 104 times less sensitive to fractional

frequency shifts than optical transitions (around 1014 Hz). Maximizing the interrogation

time of the atomic ensemble becomes critical in microwave based references in order to

achieve maximum sensitivity. As in the optical case, the maximum interrogation time will

be set by the LO performance.

A proposal by Borregaard and Sørensen [36] describes how the performance of a trapped

ion (or atom) clock may be improved when otherwise limited by a noisy LO. Specifically,

their methods involve using multiple atomic ensembles in combination with adaptive mea-

surement techniques in the trapped ion/atom clock in order to increase the interrogation

time T of the LO. This in turn improves clock performance. In Ch. 5 of this work we

investigate applying these methods to a 40Ca+ based clock where the interrogating LO is a

729 nm laser (the same techniques will also be applicable to microwave based clocks). We

consider the merits and technical requirements of such a system, and present a scheme of

how it might be realized. Finally, with the goal of implementing this scheme, we report pre-

liminary experimental data with regards to single-ion coherence times and state destruction

during clock interrogations, and discuss how these technical barriers may be addressed.
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CHAPTER 2

ION TRAPPING WITH 40CA+

In this section we discuss the fundamental theory and principles of trapping and manip-

ulating 40Ca+ ions, which were used in all of the experiments described in this thesis.

First we will discuss the fundamental principles of radio frequency (RF) traps which lead

to approximately harmonic trapping potentials. We will then describe the characteristics

and spectroscopy the of 40Ca+ ion, the theory of laser-ion interactions, and other relevant

experimental details that pertain to the state manipulation and measurement of this ion.

2.1 Radio frequency trap principles and ion dynamics

A thorough review of ion trapping in radio frequency traps can be found in Refs. [37,

38, 39, 40]. Here we will review the essential principles, as well as the resulting ion

dynamics, that are relevant to our experiments. We assume that the ions will be trapped

by a quadrupolar potential that can, near its center, be decomposed into static (DC) and

sinusoidally varying (RF) components:

Φ(r, t) =
U

2
(αx x

2 + αy y
2 + αz z

2) +
VRF cos (ΩRF t)

2
(α′x x

2 + αy y
2 + αz z

2). (2.1)

In our configuration we use an RF drive frequency ≈ 50 MHz. The geometric factors αi

and α′i depend on the trap design and must satisfy the Laplace equation ∇2Φ = 0. In

a linear trap configuration, the RF potential provides dynamic radial confinement in two

radial dimensions while static potentials provide axial confinement in the third dimension.

Choosing z as our axial coordinate, we can use αx + αy = −αz, α′x = −α′y, and α′z = 0,

which satisfies the Laplace equation.
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The classical equation of motion for a particle with charge Q and mass m is

ü = −Q
m

∂Φ

∂u
= −Q

m
[Uαu + VRF cos (ΩRF t)α

′
u] u (2.2)

and can be transformed into the canonical form of the Mathieu equation

∂2u

∂ξ2
+ [au + 2qu cos (2ξ)] u = 0 (2.3)

by the substitutions

ξ =
1

2
ΩRF t, au =

4QUαu
mΩ2

RF

, qu =
2QVRF α

′
u

mΩ2
RF

. (2.4)

Therefore, in the linear trap configuration the equations of motion near the center/null of

the RF potential become

∂2x

∂ξ2
+ [ax + 2qx cos (2ξ)] x = 0

∂2y

∂ξ2
+ [ay + 2qy cos (2ξ)] y = 0

∂2x

∂ξ2
+ az z = 0 .

(2.5)

The axial motion (in the z direction) is harmonic and has frequency

ωz =

√
az
2

ΩRF . (2.6)

The radial motion in the xy plane is more complex and involves solutions to the Mathieu

equation which contain recursive coefficients. In the limit of |ax,y|, q2
x,y � 1, we can take
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the lowest order approximation of these solutions and obtain

x(t) ∝ cos
(
ωxt
)[

1− qx
2

cos(ΩRF t)
]

y(t) ∝ cos
(
ωyt
)[

1− qy
2

cos(ΩRF t)
] (2.7)

with radial frequencies ωx,y = 1
2

√
ax,y + 1

2
q2
x,y ΩRF . This oscillatory motion can be de-

composed into a secular component, with frequencies ωx,y � ΩRF , and a micromotion

component at the RF drive frequency ΩRF . The micromotion oscillations are fast and small

compared to the secular oscillations, since they are scaled by a factor of qx,y/2. Therefore,

if they are neglected then we can approximate the ion’s radial motion as harmonic with

the frequencies ωx,y. In this case we can treat the trapping potential as a harmonic pseu-

dopotential Φpp which is equivalent to the time-average of the RF field. Should the ion be

displaced from the RF null position, either deliberately or by stray electric fields in the trap-

ping region (which often arise due to potential differences on electrode surfaces, charging

of surfaces due to UV beams, etc), then the micromotion amplitude with increase propor-

tionally as the ion experiences a stronger RF drive. This can be compensated for by the

application of static fields which push the ion back to the RF null.

A thorough quantum mechanical description of ion motion in an RF trap can be found

in Ref. [38]. For our purposes, it will suffice to treat the ion(s) as being trapped in

common-form harmonic potentials described by the either the pseudopotential or axial

potential. The typical harmonic oscillator solutions |n〉 will describe the motion of ions

that are sufficiently laser-cooled. The spread of the zero-point wavefunction becomes√
〈0|ri|0〉 =

√
~/2mωi, implying that a 40Ca+ ion in the motional ground state will be

localized to within 10 nm when the secular frequency is on the order of (2π)× 1 MHz.
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Figure 2.1: Level diagram of 40Ca+ with relevant transitions shown (lifetimes in parenthe-
ses). Zeeman splitting is shown for the S1/2 and D5/2 levels and otherwise omitted. Data
from [23].

2.2 40Ca+ spectroscopy

The singly charged 40Ca+ ion is well-researched for many quantum computing and quan-

tum simulation applications [40, 39, 41, 12] and as a reference atom in optical atomic

clocks [42, 43]. Among its most appealing features is that all of the relevant transitions for

ionization, laser cooling, state preparation/detection, qubit operations, and frequency refer-

encing are accessible via solid state laser sources. The level diagram of relevant transitions

is shown in Fig. 2.1; the transition wavelengths and lifetimes are summarized in Table 2.1

[23]. A brief summary of their functions follows. Note that 40Ca+ has no nuclear spin, and

therefore mF = mJ for all transitions discussed.

S1/2 ↔ D5/2 (729 nm)

This is the primary qubit and reference transition used in 40Ca+ experiments. It is a

quadrupole transition, unlike the rest of those described here (which are dipole), thus it
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Table 2.1: Relevant transition wavelengths and lifetimes in 40Ca+ [23]

S1/2 ↔ P1/2 D3/2 ↔ P1/2 D5/2 ↔ P3/2 S1/2 ↔ P3/2

λ 396.847 866.214 854.209 393.366 nm
τ 7.7 94.3 101 7.4 ns

S1/2 ↔ D5/2

λ 729.147 nm
τ 1.045 s
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Figure 2.2: (a) Allowable transitions of the S1/2 ↔ D5/2 quadrupole transition when the
ion experiences a non-zero magnetic field. (b) Relative transition coupling strengths vs.
relative frequency splittings in an arbitrary magnetic field. The coupling strengths here are
dependent on respective Clebsch-Gordan factors. The total span of the frequency splittings
is ∼ 34 MHz in our experiment, arising from a 4.3 G magnetic field.

has a suitably long lifetime (∼1 s) for such purposes. Its ∼1 Hz natural linewidth also

allows for resolution of all the trap secular modes in its spectroscopy. This makes it ideal

for resolved sideband cooling, and for any quantum computing or simulation experiments

which rely on sideband operations. The secular sidebands in the 729 nm transition are also

used to measure the average number of quanta (n̄) in their respective modes when the ion

is in the Lamb-Dicke regime [14].

In the presence of a non-zero magnetic field, the electronic states in 40Ca+ will Zeeman-

split into angular momentum states; S1/2 and D5/2 become |S1/2,mJ〉 and |D5/2,mJ〉 (Fig.
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2.2 (a)). The splittings will be proportional to the applied magnetic field B [40]:

∆E = gJ µB mJB, (2.8)

where µB is the Bohr magneton and gJ is the Landé factor for each transition (gJ =

2, (6/5) for S1/2 and D5/2, respectively). There will subsequently be ten non-degenerate

|S1/2,mJ〉 ↔ |D5/2,mJ〉 transitions which satisfy the quadrupole selection rule |∆mJ | =

0, 1, 2 (Fig. 2.2 (b)). Their relative coupling strengths Ω depend on respective Clebsch-

Gordan factors; they can also be affected by the relative geometry between the magnetic

field and the exciting laser’s wavevector and polarization (this will be discussed in the next

section). In our experiment, a 4.3 G field is sufficient to separate these transitions across a

range of approximately 34 MHz.

S1/2 ↔ P1/2 (397 nm)

The S1/2 ↔ P1/2 transition at 397 nm is used for Doppler cooling, state preparation, and

state detection of the ion(s). These functions will be discussed in Secs. 2.5 and 2.6. We

detect fluorescence at this wavelength with a photo-multiplier tube (details in Ch. 3).

D3/2 ↔ P1/2 (866 nm)

Because the P1/2 level decays undesirably to the metastable D3/2 level approximately 6%

of the time [40], the D3/2 ↔ P1/2 transition is continuously driven/repumped by an 866

nm laser in order to avoid population shelving.

D5/2 ↔ P3/2 (854 nm)

Because the metastable D5/2 has a relatively long lifetime on the order of a second, the

D5/2 ↔ P3/2 transition is driven with an 854 nm laser in order to rapidly depopulate the

D5/2 state when desired. The short lifetime (∼ 7 ns) of the P3/2 state subsequently ensures

a rapid return to the S1/2 ground state.
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2.3 Laser-ion interactions

We will now discuss the fundamental principles of laser-ion interactions in the approxima-

tion of two-level systems. Our treatment follows those in Refs. [40, 38].

2.3.1 Basic interactions

For a harmonically trapped ion, interacting with a traveling wave laser tuned near to a

transition resonance, the corresponding Hamiltonian is

H = H0 +Hi

H0 =
p2

2m
+

1

2
mω2

i x
2 +

1

2
~ω0σz

Hi =
1

2
~Ω(σ+ + σ−)(ei(kx−νt+φ) + e−i(kx−νt+φ)),

(2.9)

where σz, σ+, σ− are the Pauli spin matricies, ωi is the motional frequency of the har-

monic potential, ω0 is the transition frequency, Ω is the transition coupling strength (or

Rabi frequency), ν is the laser frequency, and k is the laser wavenumber. In this treat-

ment we assume that the both the laser and harmonic oscillations are along the x-axis. The

generalization to more dimensions and/or incident angles in the laser is straightforward.

We can replace various terms in Eq. 2.9 with a and a†, the creation and annihilation

operators of the harmonic oscillator. Defining the Lamb-Dicke parameter

η = k

√
~

2mωi
(2.10)

we get kx = η(a+ a†), and obtain

H0 = ~ωi(a†a+
1

2
) +

1

2
~ω0σz

Hi =
1

2
~Ω(σ+ + σ−)[eiη(a+a†)e−iνteiφ + e−iη(a+a†)eiνte−iφ].

(2.11)

Transforming into the interaction picture HI = U †0HU0, where U0 = exp[−(i/~)H0t], and
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Figure 2.3: Sample spectroscopy data centered about the |S1/2,mJ = 1
2
〉 ↔ |D5/2,mJ =

1
2
〉 carrier transition. Axial and radial sidebands on this transition are labeled. The fre-

quency of the laser is being offset by an acousto-optic modulator (AOM).

discarding the rapidly oscillating terms exp[±i(ν + ω0)] (i.e. making the rotating wave

approximation), we end up with an interaction Hamiltonian of the form

HI =
1

2
~Ω
(
σ+ e

iη[a(t)+a†(t)] e−i∆t eiφ
)

+H.c., (2.12)

where ∆ = ν − ω0 and a(t) = ae−iωit. This describes coupling between the states |g, n〉

and |e, n′〉, where n is the vibrational quantum number and ~(ωe−ωg) = ~ω0. The pairing

of the electronic states |e〉 and |g〉 with the motional states |n〉 can also be thought of in the

classical sense: the ion, which is oscillating in the trap potential, experiences a frequency-

modulated laser in its rest frame which is modulated at the trap frequency. This is the

manifestation of secular sidebands in the ion’s excitation spectra. If the laser is tuned such

that ν − ω0 ≈ mωi, i.e. onto a sideband, then the transitions |g, n〉 ↔ |e, n + m〉 can be

driven. If ν − ω0 ≈ 0 then the transition |g, n〉 ↔ |e, n〉 will be made with no change

in quantum number. We refer to this as the carrier transition. Fig. 2.3 shows how these

features arise in the S1/2 ↔ D5/2 spectroscopy.
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2.3.2 Time evolution

The time evolution of the state ψ(t) = Σn( gn(t)|g, n〉+ en+m(t)|e, n+m〉 ) can be evalu-

ated with the Schrödinger equation i~∂tψ = Hψ, which yields a set of coupled differential

equations for gn(t) and en+m(t). The general solution can be solved analytically as a 2x2

transformation matrix of the initial state vector: gn(t)

en+m,n(t)

 = Tn

 gn(0)

en+m,n(0)

 , (2.13)

with

Tn =

e−i δt2 [ cos(fn,mt
2

) + i δ
fm,n

sin(fn,mt
2

)
]
−2ie−i(

δt
2
−π|m|

2
) Ωn+m,m

fn,m
sin(fn,mt

2
)

−2iei(
δt
2
−π|m|

2
) Ωn+m,m

fn,m
sin(fn,mt

2
) ei

δt
2

[
cos(fn,mt

2
)− i δ

fm,n
sin(fn,mt

2
)
]
 .

(2.14)

Here δ = (ν − ω0)−mωi is the laser detuning from the m’th sideband,

Ωn+m,n = Ω〈n+m|eiη[a(t)+a†(t)]|n〉 (2.15)

is the scaled coupling strength, and fn,m =
√
δ2 + Ω2

n+m,n is the detuned frequency.

We often consider the case with initial conditions gn(0) = 1 and en+m(0) = 0 in

Eq. 2.14, i.e. the ion prepared initially in its ground state. In this case, the excited state

population after a laser-ion interaction time t is

Pe,n+m(t) = |en+m(t)|2 =
Ω2
n+m,n

δ2 + Ω2
n+m,n

sin2
(1

2
Ωn+m,nt

)
. (2.16)

This result characterizes the typical Rabi flopping scenario for driven excitations in a two-

level system.
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2.3.3 Lamb-Dicke regime approximations

In the so called Lamb-Dicke regime, defined by η2(2n+ 1)� 1, we can Taylor expand the

exponential in Eq. 2.15:

eiη[a(t)+a†(t)] ≈ 1 + iη[a(t) + a†(t)] +O(η2). (2.17)

By making this approximation, we find (to lowest orders) explicit definitions of the cou-

pling strengths for the carrier

Ωcar = Ωn,n = Ω
[
1− η2

2
(1 + 2n)

]
, (2.18)

the 1st order red sideband

Ωrsb = Ωn−1,n = η
√
n Ω , (2.19)

and the 1st order blue sideband

Ωbsb = Ωn+1,n = η
√
n+ 1 Ω , (2.20)

which can be used in Eq. 2.16 for the respective excitations. In our configuration, η ≈ 0.07

for a (2π) × 1 MHz trap frequency. This puts values of n . 20 safely within the Lamb-

Dicke regime, which are routinely achievable with Doppler cooling techniques (see Sec.

2.5).

2.3.4 Coupling strengths

The analytical value of Ω depends on both the transition in question and the geometry of

the experimental setup. For the S1/2 ↔ D5/2 quadrupole transition, Hi = Q̂∆E(t) (i.e. the
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ion’s quadrupole moment is coupled to the gradient of the electric field), and Ω becomes

Ω =

∣∣∣∣eE0

2~
〈S1/2,mJ |(ε · r)(k · r)|D5/2,m

′
J〉
∣∣∣∣, (2.21)

which is dependent on both the mJ and m′J values in question (per Fig. 2.2 (b)) and the

relative geometry between the laser polarization ε, laser wavevector k, and the applied

magnetic field B [23, 40]. A full evaluation can be found in Ref. [40], but for our purposes

it will suffice to consider two special cases: 1) ε, k, and B are all mutually orthogonal, in

which case only the ∆m = ±2 transitions are coupled, and 2) k is at an angle φ = 45o to B

and ε is orthogonal to their plane, in which case ∆m = 0 transitions are strongly coupled,

∆m = ±2 transitions are weakly coupled, and ∆m = ±1 transitions are not coupled at all.

We used the former configuration in the standing wave experiments (Ch. 4) and the latter

configuration otherwise.

In practice is often simplest to determine the coupling strengths empirically. For the

S1/2 ↔ D5/2 qubit/clock transition in 40Ca+, a ∼ 10 mW resonant laser focused to a ∼ 30

µm waist gives Ω ≈ 3 MHz in our system. This corresponds to a field strengthE0 ≈ 7×104

V/m at the beam center.

2.4 Thermal state distributions

In practice, a trapped ion does not typically exist in a single number state (or Fock state) |n〉,

but rather in a thermal distribution of number states defined by the probability distribution

Pn(n̄) =
n̄n

(n̄+ 1)n+1
(2.22)

where n̄ is the average number of quanta in the thermal state [38]. Therefore, we can gen-

eralize Eq. 2.16 by summing over all number states. The overall excited state population
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Figure 2.4: Simulated carrier (top row) and red/blue sideband (bottom row) Rabi flops for
(a) n̄ = 0.2 and (b) n̄ = 15, which are representative of our sideband cooled and Doppler
cooled ions, respectively. These curves are calculated from Eq. 2.23 and Eqs. 2.18 - 2.20,
with δ = 0. As n̄ increases, the population inversion on the carrier loses contrast.

Pe(t) of the ion becomes

Pe(t) =
∞∑
n=0

Pn(n̄) Pe,n+m(t)

=
∞∑
n=0

Pn(n̄)
Ω2
n+m,n

δ2 + Ω2
n+m,n

sin2
(1

2
Ωn+m,nt

) (2.23)

for a given thermal state characterized by n̄. Note that a low value of n̄ is necessary in

order to achieve the maximum possible contrast in the population transfer (see Fig. 2.4).

Our Doppler cooled ions have n̄ = 10 − 20 (depending on various trap factors), which is

generally sufficient for good contrast in a single excitation cycle; our sideband cooled ions

have n̄ ≈ 0.1 − 0.2, which is more than ideal. These cooling processes will be described
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in the next section. Fig. 2.4 shows how Eq. 2.23 evolves for the carrier and 1st order

sidebands over this range of n̄.

We measure n̄ by driving the 1st order red and blue sidebands for a fixed interaction

time t, and recording the ratio Rk = (P rsb
e /P bsb

e ). This ratio is independent of t, and for

thermal states is related to n̄ by [14]

n̄ =
Rk

1−Rk

. (2.24)

2.5 Laser cooling techniques

We use two different methods of laser cooling to reduce the secular kinetic energy of our

ions: Doppler cooling and resolved sideband cooling. We will summarize the basic prin-

ciples here. Cooling is necessary not only for reaching the Lamb-Dicke regime, but for

removing quanta that are continuously gained by the ion due to a variety of heating mecha-

nisms. These include noise in the trap electrodes or external circuitry, noise in the RF drive

signal, fluctuating patch potentials on the electrode surfaces, collisions with background

atoms, etc [14]. Ions that are not cooled will quickly gain enough energy to overcome the

trap potentials, and will be lost.

2.5.1 Doppler cooling

Our description of Doppler cooling follows Refs. [44, 38]. Doppler cooling is most eas-

ily modeled when considering the harmonic pseudopotential in one dimension, Vpp(x) =

1
2
mω2

xx
21. Assuming the ion’s motion to be classical, then its velocity is given by

v(t) = v0cos(ωxt). (2.25)

1Vpp = qΦpp.
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If we excite the ion to a state with an average lifetime τ that is much less than an oscillation

period, then the ion’s velocity is effectively constant throughout the cycle of absorption and

spontaneous emission. This allows the average radiation pressure exerted by the exciting

laser to be modeled as a continuous force dependent on the ion’s velocity.

In typical conditions, the average force can be linearized in v:

Fave ≈ F0(1 + κv), (2.26)

where F0 ∝ ~k, 2 and κ ∝ ∆ = ν−ω0, with ∆ being the laser detuning from resonance as

before. The average change in energy of the ion over many oscillation periods can therefore

be described as
dE

dt
= 〈Favev〉 = F0〈v〉+ F0κ〈v2〉 = F0κ〈v2〉, (2.27)

since 〈v(t)〉 = 0. Because κ ∝ ∆, (dE/dt) will be negative when ∆ < 0, and the ion will

subsequently be cooled. At the same time, there will be some amount of heating present

due to recoil from the emission cycles. Cooling will continue until equilibrium is reached

between these two processes, which places a limit on the degree of cooling achievable.

This limit is reached when the laser detuning is

∆ = −Γ

2

√
1 + 2(Ω/Γ)2 ≈ −Γ

2
, (2.28)

where Γ is the transition decay rate (or linewidth), Ω is the on-resonance coupling strength,

and Γ� Ω, generally. In practice the transition can be power-broadened beyond its natural

linewidth Γ by an intense enough laser, in which case it is sufficient to set ∆ to approxi-

mately the FWHM value.

In our system we use the 397 nm laser to Doppler cool on the S1/2 → P1/2 transition,

which has τ = 7.7 ns and a corresponding linewidth Γ ≈ 20 MHz. We red-detune the

2If the exciting laser is at an angle θ to the ion’s oscillation axis, then k is simply replaced by k cos(θ).
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laser by 10 MHz to achieve maximum cooling, which produces n̄ = 10 − 20 for a single

ion (depending on trap factors such as stray fields). Doppler cooling is performed continu-

ously when the ion is idle, simply by virtue of the laser being switched on. When cooling

immediately before, during, or after an experiment, we use pulses that are 100− 400 µs in

duration (depending on available beam power).

2.5.2 Sideband cooling

To cool the ion(s) beyond the Doppler limit we must use resolved sideband cooling tech-

niques. Detailed descriptions of these methods can be found in Refs. [38, 21, 45, 46].

Sideband cooling is performed on transitions where Γ � ωi, i.e. when the transition

linewidth is sufficiently narrow for the sidebands to be resolved. In this case, we can excite

the transition directly on a red sideband (i.e. |g, n〉 → |e, n + m〉 for m < 0) and subse-

quently reduce the vibrational quantum number. The 1st order red sideband (m = −1) is

generally used since it couples most strongly. Each successive excitation on the 1st order

red sideband removes an additional quanta, until the ion approaches its motional ground

state. At this point, the average number of motional quanta n̄ is approximately

n̄ ≈ Γ2

4ω2
i

, (2.29)

where η and η̃ are Lamb-Dicke factors associated with absorption and emission processes,

respectively. This is equivalent to the ion being in the ground state |0〉 with a probability

very close to 1.

When the red sideband transition is allowed to decay naturally via spontaneous emis-

sion, the cooling rate Rn depends on both the decay rate Γ and the red sideband coupling

strength Ωrsb = η
√
n Ω:

Rn = Γ
(η
√
n Ω)2

2(η
√
n Ω)2 + Γ2

. (2.30)

This can be very slow, given that Γ is often on the order of Hz, η � 1, and n is continu-
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ously decreasing. It is possible to speed up this process by coupling the excited state to an

auxiliary state with a much shorter lifetime. The effective decay rate Γ̃ becomes

Γ̃ =
Ω2
aux

(Γaux + Γ)2 + 4∆2
aux

Γaux (2.31)

and is adjustable via the coupling laser’s power and detuning ∆aux.

In our system we sideband cool on the 1st order red sideband of the S1/2 → D5/2

transition (Γ ≈ 1 Hz), which is excited by the appropriately tuned 729 nm laser. Beginning

with a Doppler cooled ion, we drive the S1/2 → D5/2 sideband on resonance for a time

period Tn = π/(η
√
nΩ), assuming n ≈ 15 intially. We then use 854 nm light to couple the

D5/2 state to the auxiliary P3/2 state, which subsequently decays back to the S1/2 ground

state on the order of nanoseconds. A 5− 10 µs pulse of 854 nm light at modest intensities

is sufficient to clear the D5/2 population. We repeat these steps 2 or 3 times since the

population inversion on the red sideband transition is never complete (see Fig. 2.4). The

entire process is then repeated with an updated value of Tn, until we achieve measured

values of n̄ = 0.1− 0.2.

2.6 State preparation and detection

During Doppler cooling, the spontaneous decay of the P3/2 state will populate the |S1/2,mJ =

1
2
〉 and |S1/2,mJ = −1

2
〉 states equally on average. Subsequently, any coherent excitation to

a |D5/2,mJ〉 state will achieve ≈ 50% population inversion at best. To selectively prepare

ion(s) in a single ground state Zeeman level, we pulse them with circularly polarized 397

nm light that is co-axial to the applied magnetic field. This couples only the |S1/2,mJ = 1
2
〉

or |S1/2,mJ = −1
2
〉 level to the P3/2 state, depending on whether the light is σ− or σ+ po-

larized, and will depopulate that particular state over many cycles. We can state prepare

eithermJ level to between 95-99 % population (limited by the polarization optics and exact

beam angle relative to B).
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Figure 2.5: Example histograms for a “dark” and “bright” ion, which are either non-
fluorescing or fluorescing, respectively, represented by the number of photons detected in
a given detection time. So long as the respective distributions are distinguishable, then the
number of photons detected during a detection event can be correlated to the ion’s state (i.e.
S1/2 or D5/2) at the time of measurement.

We also require a reliable method of measuring the ion’s final state, i.e. measuring

Pe(t) in Eq. 2.23, after performing coherent operations on the S1/2 → D5/2 transition.

Pulsing the ion with the 397 nm laser projects it into into either the S1/2 or D5/2 state, with

outcome probabilities 1 − Pe(t) and Pe(t) respectively. The ion will then either fluoresce

on the S1/2 ↔ P1/2 transition in the former outcome, or remain dark in the latter. This is

the so-called electron shelving method [40, 38]. As long as the fluorescing ion produces

enough photon counts on a detector to be distinguishable from dark/background (see Fig.

2.5), then this process can be repeated until a suitable histogram of measurement outcomes

is accumulated, providing a measured value of Pe(t).

2.7 Micromotion effects and compensation

All of the theory and experimental details discussed here assume the ion is located on the

RF null, and therefore neglect micromotion. If the ion is pushed off of the RF null by

stray electric fields, or otherwise, then there can be significant issues. In particular, the

linewidth of the 397 nm S1/2 ↔ P1/2 transition becomes broadened and “flattened” as the
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micromotion modulation increases, since Γ is on the order of ΩRF in this case. This ef-

fectively cripples Doppler cooling, and makes state detection impossible since there is no

longer a discernible resonance peak to distinguish a fluorescing ion from a dark one (i.e.

the histograms in Fig. 2.5 cannot be discerned). By tuning the 397 nm laser to the red

micromotion sideband (not the blue, since Doppler heating would occur when ∆ > 0) and

adjusting the ion’s position until fluorescence is minimized, we can compensate for micro-

motion in the plane of the laser. Other methods of detecting and minimizing minimization

exist, such as measuring average ion displacements as a function of trap potentials, or mon-

itoring the amplitude of resolved sidebands, or using parametric excitations [47, 48], but

for our purposes the method described is sufficient.

Even when we make these compensations, non-trivial micromotion could still be oc-

curring in the direction orthogonal to the plane of the laser. This can be problematic when

measuring spectroscopy on a transition where Γ � ΩRF , as there will exist micromotion

sidebands that are significantly removed in frequency relative to the transition’s linewidth

and the spread of its angular momentum states and secular sidebands. If the transition res-

onance frequencies are not already known, it can be easy to confuse a set of micromotion

sideband spectra with the carrier spectra–a fact we learned during the course of these ex-

periments. Deliberately displacing the ion from the RF null is a way to distinguish these

features–if the coupling strengths get stronger, then they are micromotion sidebands.
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CHAPTER 3

EXPERIMENTAL CONFIGURATION

3.1 The Gen IIc planar ion trap

For all of the work described in this thesis we have used GTRI Gen IIc surface electrode

linear ion trap (Fig. 3.1), which transforms the linear RF trap geometry into a planar one.

The design, fabrication, and performance characteristics of this trap are described in detail

in Ref. [35]. The trap design is based on an asymmetric five-wire geometry [49]. A

pair of RF electrodes is combined with a split center DC electrode and segmented outer

DC electrodes in order to provide the confining RF and DC potentials. The widths and

placement of these electrodes have been chosen for a target ion height of 63 µm above

the surface, and so that the radial axes are rotated approximately 20o relative to surface

normal. The rotated axes allow for both radial secular modes to be Doppler cooled by

a single laser parallel to the trap surface. Said modes have non-degenerate frequencies

ωr1, ωr2 ≈ (2π) × 4 − 6 MHz, consistent with the values qi ≈ 0.15 and ai ≈ 0.01

which parameterize the trap. The exact frequencies vary based on factors such as stray

field gradients and (as will be relevant in Ch. 4) the ion’s position relative to the RF null.

The single axial secular mode has a frequency ωz ≈ (2π)× 1 MHz.

The DC segmented electrodes allow for axial transport of ions along the 1600 µm length

of the active trapping region (Fig. 3.1 (a)). This is done with computer modeled sets of

applied potentials on the electrodes which produce axial harmonic wells at regularly spaced

intervals of around µm throughout the active region. These are referred to as the trap wave-

forms. Interpolation between adjacent waveforms provides harmonic wells at any position

in the active region. Ion transport occurs by sequentially updating the electrodes in order

to produce a moving harmonic well. Multiple wells can be generated to simultaneously
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Figure 3.1: Figures from Ref. [35]. (a) Schematic view of the active trap region in the Gen
IIc. (b) Optical microscope image of the active region. (c) The fabricated trap is mounted
on a 100 pin CPGA for voltage control of the electrodes.

trap multiple ions, as well as to merge/separate them into/from a linear chain in a single

harmonic potential. Chains of 10 ions have previously been demonstrated in our trap [35].

In addition, the waveforms can generate static offset fields from the electrodes which shift

the ions’ radial position by up to 10 µm. This used primarily for the compensation of stray

electric fields which push the ion away from the RF null and increase micromotion, but can

also be utilized for experimental purposes as we will see in Ch. 4.

Ion capture occurs at the location of the backside loading slot, defined as position z = 0

µm on the trap axis. A flux of neutral atoms is ejected from a coil-heated sample of material

and passes through the slot. The neutral atoms are then ionized using a resonance enhanced

two-photon scheme [50], in which a resonant 423 nm laser interaction is followed by a 377

nm laser interaction, with the two lasers overlapping at the loading position. Harmonic

well depths of several eV are suitable for capturing ions from the flux.

26



Av
er
ag
e	
nu
m
.	q
ua
nt
a	
(	
n	
) slope = 0.68 ± 0.03

R2 = 0.99

Figure 3.2: Heating rate data for our trap: n̄ vs. “dark time” (during which the ion is not
actively cooled). The fitted slope gives the heating rate for our trap as ˙̄n ≈ 680 quanta/sec.
The heating rate was measured on the 1.3 MHz axial mode.

As mentioned in Sec. 2.5, heating of ions will occur due to electric field noise, fluctu-

ating patch potentials of electrodes, etc. All traps have an inherent heating rate ˙̄n which is

approximately linear in time near the ground state. By measuring n̄ as a function of time

without active cooling (“dark time”), we can determine the heating rate. In our trap we

measure ˙̄n ≈ 680 quanta/s on the 1.3 MHz axial mode (see Fig. 3.2). For comparison,

heating rates in similar traps are typically in the 102 − 103 quanta/s range [51, 52, 53, 15].

3.2 Trap enclosures and fluoresence detection

Fig. 3.3 shows an illustrated schematic of the trap enclosure and fluorescence detection

optics. The fabricated Gen IIc trap is mounted on a CPGA chip (Fig. 3.1 (c)) and enclosed

in stainless steel vacuum chamber held at ∼ 10−12 torr. The circular chamber has 7 optical

access windows positioned at 45◦ intervals about its center (more detail can be seen in Fig.

3.4). A large top-view window allows the trap surface to be continuously imaged by a CCD

camera. The optical pathway of this camera is optimized to provide a ∼ 500 × 500 µm2

viewing area when filtered to collect 397 nm light. Ion fluorescence at 397 nm occurs any
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Figure 3.3: Illustrated schematic of the trap’s vacuum enclosure and fluoresence detection
optics, in a (a) side-on and (b) top-down perspective. Description in text.

time the ion interacts with the 397 nm laser. For high speed and high fidelity state detection,

a portion of this light is directed onto a photomultiplier tube (PMT) which returns photon-

count measurements back to the experiment control software. The camera and PMT are

mounted together on a translation stage, allowing the entire length of the trap to be imaged.

The entire configuration is enclosed in a magnetic shielding box with a removable front

lid for access. Magnetometer measurements near the trap chamber record a factor of ∼ 5

reduction in ambient magnetic field noise when the lid is on and the trap chamber is fully

shielded. All of the experiments in this thesis were run with full shielding.

3.3 Laser hardware and trap-side configuration

All of the laser wavelengths used in these experiments were generated with commercially

available solid-state diodes and peripheral hardware. The 397, 423, 854, and 866 nm lasers

are frequency stabilized to a rubidium reference source via a low finesse (F ∼ 150− 200)

transfer cavity [54]. The 729 nm laser is frequency stabilized in an ultra-low expansion
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(ULE) glass cavity via the Pound-Drever-Hall method [55]. At the time of the experiments

discussed in Ch. 4, the ULE cavity being used had a finesse F ∼ 10, 000 and stabilized

the 729 nm linewidth to approximately 1-2 kHz. Since then it has been replaced by an

F ∼ 150, 000 ULE cavity which is capable of stable linewidths in the range of 10-100 Hz.

Frequency control of the 423 and 866 nm lasers is achieved by adjusting their stabi-

lization set point in the transfer cavity. These beams are generally set before experiments

and otherwise left static. For the 397, 729, and 854 nm beams we require dynamic control

over the frequency during experiments, as well as rapid on-off switching. Both of these

needs are met with Brimrose brand acousto-optical modulators (AOMs) which diffract and

frequency-shift the beams with oscillating crystals. By changing the RF frequencies which

drive the crystals we subsequently shift the diffracted laser frequencies, and by switch-

ing the RF drive signal on or off entirely with TTL electronics we obtain on-off control

of our diffracted beams as well. The AOMs have -3 dB bandwidths typically in the 100

MHz range, and offer fast ramp-up and ramp-down times of ∼ 10 ns for beam switching

purposes. The RF driving fields for the 397 and 729 nm beams are sourced from digital

signal generators (more on these in the next section), and are amplified, TTL-switched, and

otherwise modulated when necessary by Minicircuits components, primarily. The 397 nm

beams–one for Doppler cooling and state detection, and a second for state preparation–and

the 729 nm beam are in the double-pass configuration through their respective AOMs. The

854 nm beam is single-passed.

All of the appropriately conditioned light is brought to the trap chamber region via

fiber-optic cables. Fig. 3.4 shows the laser configuration entering the trap chamber. The

397 nm Doppler cooling and state detection light light is brought in at a 45◦ angle to the trap

axis in order cool all secular modes. The state preparation 397 nm beam passes through a

polarizer, a λ/2 waveplate, and λ/4 waveplate for circular polarization. The 729 nm beam

passes through two λ/2 waveplates and a polarizer for optimal linear polarization, and is

also incident at 45◦ to access all secular modes. Repump light at 854 and 866 nm is coaxial
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to the trap axis, and the 377 and 423 nm ionization beams are positioned at the loading slot.

A pair of Helmholtz coils driven by a stable current source produce the 4.3 G magnetic

field at the trap location. The current source is stable to within 10 µA.

3.4 Signal generation, voltage control, and control software

The RF signals which drive the AOMs for the 397 nm cooling and 729 nm beams are

generated by Analog Devices AD9910 direct digital synthesizer (DDS) cards, which syn-

chronized to a 1 GHz analog signal. These are controlled by a Xilinx XC6SLX45T-2 field

programmable gate array (FPGA) device which has a 500+ MHz clock speed. The FPGA

also controls the analog TTL signals for AOM switching, and accepts serial input signals

from the PMT which correspond to photons detected. The RF signals for the 397 nm state

preparation and 854 nm AOMs do not need to be updated quickly, and are therefore sourced

from simple USB based devices.

DC voltages on the trap electrodes are controlled via National Instruments digital-to-

analog converters which can be updated at rates of 10 kHz. They are low-pass filtered to

reduce higher frequency noise. The electrode voltages reach the trap chip via access pins

built into the vacuum chamber. The trap’s RF drive frequency is sourced from a Hewlett-

Packard analog signal generator and is amplified via a Minicircuits amplifier. The RF signal

enters the trap chamber through a helical resonator, which maximizes the drive voltage on

the trap surface while reducing noise [56]. Our trapping frequency ΩRF = 52.525 MHz is

set to the resonance of the resonator.

We use the Wavemetrics Igor software environment to control relevant hardware, run

experimental procedures, and collect data. Experiments are triggered by a 60 Hz pulse

sourced from the power mains in order to avoid sampling the AC magnetic field fluctua-

tions.
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Figure 3.4: Illustrated schematic of the laser and magnetic field generation configuration
at the trap chamber (trap not to scale). Fiber optic cables (black coils) bring appropriately
conditioned light to the trap. A pair of Helmholtz coils produces a 4.3 G magnetic field
in the x direction. The 729 nm beam and 397 nm Doppler cooling beam are brought in
at a 45◦ angle to the trap axis in order access/cool all secular modes. The 397 nm state
preparation beam is coaxial with the B field. Beams pass through appropriate polarization
optics when necessary.
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CHAPTER 4

STANDING WAVE GATE BEAMS FOR COUPLING STRENGTH MODULATION

In this chapter we will discuss experiments with standing wave laser fields and how the cou-

pling strengths of carrier and sideband transitions may be controlled in our configuration.

The results of this chapter were presented in Physical Review A [57].

4.1 Carrier and sideband coupling strengths in standing wave fields

Here we will follow Sec. 2.3 and derive carrier and 1st order sideband coupling strengths

for an ion interacting with two individual running-wave fields–one incident and one re-

flected from a nearby surface. Fig. 4.1 illustrates the basic geometry in this situation. The

incident and reflected beams k1 and k2 are each at an angle α with respect to the surface

normal, and |k1| = |k2| = k. The ion’s secular mode of interest oscillates with frequency ω

at an angle θ with respect to the surface normal. The ion’s mean height above the reflecting

surface is given by y. For simplicity we will assume that the incident beam and secular axis

are coplanar.

The ion’s motion in the xy plane is described with the position operators x̂′ = x̂ and

ŷ′ = y + ŷ. If q̂ is the position operator corresponding to the ion’s secular axis, then we

have

x̂′ = q̂ sin θ

ŷ′ = y + q̂ cos θ.
(4.1)
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Figure 4.1: Basic geometry of our standing wave configuration. An incident beam k1 at
angle α w.r.t. surface normal is reflected, producing a second beam k2. The ion oscillates
on a secular mode at angle θ w.r.t. the surface normal; its equilibrium height above the
surface is y.

The ion’s Hamiltonian per Eq. 2.9 will contain a term Ĥi for each beam:

Ĥ i,1 =
1

2
~Ω1(σ+ + σ−)(ei(k1 ·̂re−i(νt−φ) + e−i(k1 ·̂rei(νt−φ))

Ĥ i,2 =
1

2
~Ω2(σ+ + σ−)(ei(k2 ·̂re−i(νt−φ) + e−i(k2 ·̂rei(νt−φ))

Ĥ i = Ĥi,1 + Ĥi,2,

(4.2)

where Ω1 and Ω2 are the respective coupling strengths in each interaction. The different

coupling strengths arise from the differences in field strength between the two beams at the

ion’s position–this can be due to imperfect reflectivity from the surface, scattering of the

reflected beam from surface features, varying intensities in the Gaussian beam shapes, or

some combination thereof. The terms k1 · r̂ and k2 · r̂ in Hi can be expressed as

k1 · r̂ = k cosα(−ŷ′) + k sinα(x̂′)

=− ky cosα + [sin θ sinα− cos θ cosα]kq̂

k2 · r̂ = k cosα(ŷ′) + k sinα(x̂′)

= ky cosα + [sin θ sinα + cos θ cosα]kq̂.

(4.3)
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Transforming now into the interaction picture ĤI = Û0ĤÛ0 as before, and making the

substitutions in Eq. 4.3 as well as γ = (ky cosα) and q̂ =
√

~/(2mω)(â+ â†), we obtain

ĤI =
~
2
σ̂+e

−i(∆t−φ)

{
Ω1exp

[
− iγ + iη1(â(t) + â†(t))

]
+ Ω2exp

[
iγ + iη2(â(t) + â†(t))

]}
+ H.c.,

(4.4)

where η1 and η2 define respective Lamb-Dicke factors for each of the two beams:

η1 = k

√
~

2mw
[sin θ sinα− cos θ cosα]

η2 = k

√
~

2mw
[sin θ sinα + cos θ cosα].

(4.5)

The coupling strength for the |g, n〉 ↔ |e, n+m〉 transition becomes

Ωn+m,n = Ω1e
−iγ〈n+m|eiη1(â(t)+â†(t))|n〉

+ Ω2e
iγ〈n+m|eiη2(â(t)+â†(t))|n〉

(4.6)

Making the Lamb-Dicke regime approximation once again, we can now find definitions for

the carrier and sideband coupling strengths in the two-beam configuration:

Ωcar = Ω1e
−iγ
[
1− η2

1

2
(1 + 2n)

]
+ Ω2e

iγ

[
1− η2

2

2
(1 + 2n)

]
(4.7)

and

Ωrsb =
√
n
(
Ω1e

−iγη1 + Ω2e
iγη2

)
Ωbsb =

√
n+ 1

(
Ω1e

−iγη1 + Ω2e
iγη2

)
.

(4.8)

Interference between the e±iγ terms produces fringes in the coupling strengths as the

ion’s equilibrium position y changes. When cos θ cosα > sin θ sinα, η1 and η2 have op-
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posite sign, and the carrier and sideband fringes are 180o out of phase. The γ = ky cosα

term represents the optical phase of the standing wave field which results from the mixing

of beam components k1,y = −k cosα, k2,y = k cosα. When the ion’s position coincides

with a node of the standing wave, γ = lπ (with l an integer), and Ωcar is maximized while

Ωrsb and Ωbsb are minimized. On an antinode, γ = (l + 1/2)π, and the converse is true.

In between the nodes and antinodes there will be a mixture of both carrier and sideband

coupling. This node/antinode behavior refers to the case of a quadrupole transition; the

behavior will be reversed for a dipole transition.

Achieving complete suppression requires Ω1 = Ω2 and α = 0. If Ω1 6= Ω2, then

the field strengths E0 of the incident and reflected beams are unequal at the ion’s position,

leading to some amount of residual running-wave light in the y direction that will excite the

ion indifferently. If α 6= 0 then the same thing occurs, with the residual light propagating

parallel to the trap surface in this case. 1

4.2 Experimental realization

The Gen IIc trap has a patterned aluminum surface which reflects 729 nm light with an

86% reflectivity. We can therefore use the trap surface itself as the reflecting mirror for

a standing wave field. This has the advantage of requiring no additional optics, save for

those which steer the incident beam. As an added advantage, the ”mirror” in this scenario

will always remain a constant distance away from the ion, eliminating any concern of phase

fluctuations in the field arising from microscopic movements of the mirror. Using a dichroic

filter, we introduced a 729 nm beam into the optical path of the CCD camera and detection

PMT in our setup. Fig. 4.2 illustrates the configuration. Upon passing through the focusing

lens for the camera/PMT (Fig. 4.2 (b)), the beam is incident on the trap surface at an angle

α ≈ 20o. By steering the incident beam and viewing the reflected beam on its return path

we were able to minimize this angle to the best of our ability.
1It is possible to completely suppress just the sidebands in the α 6= 0 case, provided that the plane of the

incident/reflected beams is orthogonal to the plane of the ion’s oscillation axis, or alternatively if θ = 0.
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Figure 4.2: (a) Top-down and (b) side-on views of the 729 nm laser configuration in this
experiment. To achieve normal incidence of a 729 beam onto our trap surface, we use a
dichroic mirror to introduce the beam into the optical path of our camera and PMT (see
Sec. 3.3 and Fig. 3.3). By steering the incident beam and viewing the reflected beam’s
return path, we have minimized the incident angle depicted in (b) as much as possible.

We excited ions on the |S1/2,mJ = −1
2
〉 → |D5/2,mJ = −5

2
〉 carrier transition in this

experiment. Sideband excitations were performed on the radial mode with ν = 2π × 4.75

MHz (on the RF null) and θ = 13◦. Doppler cooling was done before every interaction,

whereas sideband cooling was withheld in order to preserve enough quanta for appreciable

sideband coupling strengths. To displace an ion’s equilibrium position along the standing

wave axis, we apply a static offset field Ey through suitable adjustments to the trap’s wave-

forms and potentials, as described in Sec. 3.1. The case Ey = 0 corresponds to the ion

being on the RF null. For Ey > 0 and Ey < 0, the ion is displaced along +y and −y,

respectively. The range of Ey values used in this experiment displaces the ion over a 10

µm range.

Displacing the ion from its equilibrium position on the RF null introduces micromotion,

which will affect the dynamics in several ways beyond the coupling strength fringing. First,

there will be an additional modulation to both the carrier and sideband coupling strengths

[47]. To account for this modulation, we multiply Eqs. 4.7 and 4.8 by the Bessel function
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Figure 4.3: Illustration of field vectors in a rotated quadrupole field. By displacing the
ion at an angle which is twice that of the quadrupole axis, it will encounter field vectors
that are only in the ±y direction (blue arrows). As such, horizontal micromotion will be
minimized.

J0(κ), where κ is the modulation parameter given by

κ = cos β
2

λΩRF

√
Vpp(x, y)

m
. (4.9)

Here λ = 729 nm, Vpp(x, y) is the RF pseudopotential, and β is the angle between the

micromotion direction and the standing wave axis. Second, the ion’s secular frequencies

change depending on its position within the RF field. We account for this simply by mea-

suring the sideband resonance at various displacements and parameterizing the results.

We can minimize micromotion in the x direction by applying a static field Ex, suitably

proportional to Ey, in order to displace the ion an angle which is twice that of the RF

quadrupole axis. Along this trajectory the ion will experience only vertical RF field vectors

(see Fig. 4.3). Restricting the micromotion to the y dimension is equivalent to choosing

β = 0 in Eq. 4.9.
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Figure 4.4: D5/2 populations vs. applied Ey field measured after (a) carrier and (b) red
sideband transitions. The sideband’s gate beam power is 9.5 dB greater than the carrier’s,
and the interaction time is fixed for both cases (13 µs). The overall envelope is generated
by the micromotion modulation J0(κ) (see text). (c) The carrier and sideband populations
oscillate 180o out of phase as the ion is transported through the standing wave fringes. The
solid lines represent a fit to the data using the model described in the text. The deviation
between the data and fit at Ey ≈ 0.05 kV/m may be due to scattering of the reflected light
from the trap surface.

4.3 Results

4.3.1 Coupling strength fringing and suppression

Figs. 4.4 (a) and (b) show D5/2 state populations measured after driving carrier or red

sideband transitions as a function of applied Ey field. The laser interaction time was fixed

for all excitations (13 µs), and the power was set 9.5 dB greater for the sideband interactions

in order to achieve an approximately equal population inversion. As can be seen in Fig.

4.4, we observe the predicted fringing due to the standing wave field’s phase, which are

superimposed with the J0(κ) envelope resulting from micromotion modulation. Per Eqs.

4.7 and 4.8, the maxima of the carrier fringes correspond to the ion positioned on nodes of

the standing wave, whereas the minima correspond to antinodes. The carrier and sideband

fringes are overlaid in Fig. 4.4 (c), demonstrating the 180◦ phase difference which occurs

when the condition cos θ cosα > sin θ sinα is met.
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Figure 4.5: D5/2 populations vs. relative laser beam power measured after (a) carrier
and (b) red sideband transitions. Interaction time is fixed for both cases (13 µs). The
populations were measured with the ion on either a node (blue circles, Ey = −0.08 kV/m)
or an adjacent anti-node (red triangles, Ey = −0.01 kV/m) near the RF null (J0(κ) ≈ 1).
An effective suppression of 8.4 dB for the carrier and 11 dB for the sideband is achieved.
The solid lines represent a simultaneous fit to the data using the model described in the
text. For reference, the results from Fig. 4.4 (a) and (b) were acquired at -13.5 dB and -4
dB, respectively.

In Fig. 4.5 we measured D5/2 populations after driving the carrier and red sideband

transitions as a function of applied laser power. The interaction time was once again fixed

(13 µs, as before). We performed this experiment with the ion on both a standing wave

node and antinode, using the results in Fig. 4.4 to select appropriate displacement fieldsEy.

Choosing a node and antinode close to the RF null minimized the micromotion modulation.

By measuring the separation between the node and antinode curves, we are able determine

the amount of carrier and sideband suppression achieved in our setup. For the carrier, the

suppression is equivalent to an 8.4 dB reduction in driving laser power. For the sideband,

and equivalent 11 dB reduction can be achieved.

4.3.2 Data fits

To produce the fits seen in Figs. 4.4 and 4.5, we use Eq. 2.23 to calculate Pe(t) in the case

of δ = 0:

Pe(t) =
∞∑
n=0

Pn(n̄) sin2

[
1

2
J0(κ) Ωcar/rsb(γ, n) t

]
, (4.10)
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where the coupling strengths are those from Eqs. 4.7 or 4.8, respectively. We parameterize

a simultaneous fit with

κ2 =
4∑
j=2

mjE
j
y (4.11)

for the micromotion parameter, and

y =
4∑
j=0

ajE
j
y (4.12)

for γ = ky cosα , with mj and aj the respective fit coefficients. These coefficients, along

with Ω1, Ω2, α, and n̄ form the complete set of parameters that defines the simultaneous

fits in Figs. 4.4 and 4.5. In particular, we have in this case |α| = 18o, Ω2/Ω1 = 0.52, and

n̄ = 18. The deviation between the data and the fit near Ey ≈ 0.05 kV/m in Fig. 4.4 (c)

may be due to interactions with light scattered from the trap surface. Otherwise, we see no

other significant deviations. The values of α and Ω2/Ω1 are consistent with the incomplete

suppression we measure for the carrier and sideband.

4.3.3 Comparison with numerical models

Using both the experimental and fitting data we have compared our results to those from a

numerical model of our trapping potentials. From the fringe data in Fig. 4.4 we can infer

the ion’s displacement y as a function of Ey (since fringe maxima corresponds to half a

wavelength). From κ2 we can determine the pseudopotential Vpp as a function of Ey as

well. Fig. 4.6 plots y(Ey) and Vpp(Ey) along with their respective predictions from the

model. We see good agreement between the respective data sets, providing a measure of

confidence in the model for future use. The model includes a 700 V/m uniform stray field

that was adjusted to match the observed RF null in Fig. 4.4. Also. the magnitude of the

RF potential in the model was adjusted to match the observed mode frequency at Ey = 0.

Otherwise, there are no other free parameters used in the model.
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Figure 4.6: Dependence of the pseudopotential Vpp and ion displacement y on the applied
field Ey, along with predictions from a numerical model of the trapping potentials. Devi-
ations from the model can be attributed non-uniformity of the stray fields in the trapping
region.

4.4 Discussion

As discussed in Sec. 4.1, the degree of carrier and sideband suppression achievable ulti-

mately depends on the quality of the standing wave field at the ion’s position, which, aside

from the incident angle α, is related to the ratio Ω2 /Ω1. The value Ω2/Ω1 = 0.52 in our

experiment suggests either spacial misalignments in the incident and reflected beams, scat-

tering of the reflected beam from the trap’s surface features, or some combination thereof.

The Gen IIc trap’s surface reflectivity places a limit on Ω2 /Ω1 =
√

0.86 = 0.93. Ap-

proaching this limit would allow for a carrier suppression equivalent to a 29 dB reduction

in laser power when n̄ ≈ 0 and |α| < 10◦. Further carrier suppression would require the

use of a different trap with a more reflective surface. For instance, we measure the reflec-

tivity from a gold coated trap like the one described Ref. [58] to be > 98%, which could

provide an equivalent carrier suppression of > 40 dB. Similar quality standing waves could

be generated by incorporating a metallic mirror adjacent to an ion trap–however, phase

fluctuations in the standing wave field could become an issue in such a configuration.

Suppression of the carrier implies that the driving laser’s power may be freely increased
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by an amount equivalent to the effective suppression, allowing for faster sideband interac-

tions with no increased chance of an off-resonant carrier excitation. For the 8.4 dB effective

carrier suppression we achieve, sideband interactions could be performed 2.5 times faster;

at the 29 dB suppression limit of our aluminum trap, 28 times faster; at the > 40 dB sup-

pression limit of a gold coated trap, > 100 times faster.
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CHAPTER 5

MULTI-ENSEMBLE ATOMIC CLOCKS WITH ADAPTIVE MEASUREMENTS

This chapter describes work done towards implementation of multiple atomic ensembles

and adaptive measurement techniques in an ion-based atomic clock. These methods were

proposed in a paper by J. Borregaard and A. S. Sørensen [36] as a way to improve clock

performance when the interrogating local oscillator (LO) is of limited quality. Implement-

ing these methods in a lab-scale system such as ours is a step towards realizing small-scale

frequency references with suitably high performance.

We will first discuss the basic principles of atomic frequency standards and how they

are characterized. We will then review the aforementioned multi-ensemble and adaptive

measurement methods proposed in Ref. [36]. From there we will discuss the merits of

implementing these methods in a 40Ca+ based clock, and present a scheme for doing so

(which is ultimately beyond the scope of this thesis). Finally, we will show preliminary re-

sults towards realizing this scheme, and discuss what steps should be taken next to continue

this work.

5.1 Characterization of frequency standards

An ideal frequency standard is a measurable periodic signal with a stable reference fre-

quency f0. Any signal generated by a real world device will inherently be subject to noise

in both the measurement process and in the frequency of the oscillator [42], resulting in an

instantaneous signal frequency f(t) which can waiver from f0. Such a noisy signal can be

written as 1

A(t) = A0 sin (2πf0t+ φ(t)) (5.1)

1We ignore amplitude noise here.
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where φ(t) represents fluctuations in the signal’s phase away from the nominal phase 2πf0t.

Instantaneous frequency drifts in a reference oscillator are generally described by the frac-

tional frequency offset y(t), which is proportional to φ̇(t) [59]:

y(t) =
f(t)− f0

f0

=
1

2πf0

φ̇(t) . (5.2)

This implies that the average fractional frequency offset over some interval τ is

ȳ =
1

τ

∫ t+τ

t

y(t) dt =
1

2πf0τ
(φ(t+ τ)− φ(t)) . (5.3)

In this way, phase noise and frequency noise in the oscillator are directly related when we

are considering the performance of a frequency standard. Measuring one gives us informa-

tion about the other.

In the frequency domain, the frequency stability of a reference oscillator is generally

characterized by a power spectral density (PSD) function Sy(f) of the function y(t) (for

frequencies f ≥ 0). This function is typically modeled by a power law series which repre-

sents five specific noise types in the oscillator [60, 59]:

Sy(f) = h−2f
−2 + h−1f

−1 + h0f
0 + h1f

1 + h2f
2 (5.4)

where h−2f
−2 represents random-walk frequency noise, h−1f

−1 represents flicker (aka

pink) frequency noise, h0f
0 represents white frequency noise, h1f

1 represents flicker/pink

phase noise, and h2f
2 represents white phase noise. Fig. 5.1 plots how Sy(f) manifests for

the different types of noise described.

In the time domain, the frequency stability of a reference oscillator is generally derived

from a set of successive measurements ȳk over a common interval length T , where each ȳk

value is treated as a random variable. In this case, the standard metric for characterizing the

time domain frequency stability of an oscillator is the two-sample Allan variance, defined
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Figure 5.1: Frequency noise power spectral density characteristics of a reference oscillator
when modeled with power law series.

as [60, 61]

σ2
y(τ) =

1

2

〈
(ȳk+1 − ȳk)2

〉
. (5.5)

The Allan variance assumes the simplest case of there being no (or negligible) dead time

between measurements. It is worth noting that the Allan variance is a sample variance–

it is estimated from a finite number two-sample variance values 1
2
(yk+1 − yk)2 which are

averaged to obtain σ2
y(T ).

Atomic frequency standards use the energy splittings between the internal states of an

atom, which are proportional to a frequency by Planck’s constant, as a stable frequency

reference. A reference atom, or ensemble of atoms, is interrogated by a local oscillator

(LO) tuned near to the resonance frequency. The resulting signal from the resonant inter-

action can be measured and used to produce an error signal, which adjusts the noisy LO’s

frequency to best match the atomic frequency. This occurs periodically in intervals of Tc,

such that the LO frequency remains matched to the reference frequency as best as can be

accomplished over many intervals.

A common measurement scheme used to interrogate the atomic ensemble and produce
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the error signal is the Ramsey method [62, 63], which will be described in the next sec-

tion. When using the Ramsey method, the standard quantum limit for the Allan variance

becomes

σy(τ) =
√
σ2
y(τ) =

1

2πf0

√
NTτ

, (5.6)

where N is the number of independent atoms in the ensemble and τ is the long-term aver-

aging time [64]. Beyond the choice of reference frequency f0, the quantum limit in Eq. 5.6

is dependent on N , as well as the interrogation time T . Together these factors determine

the limit of achievable performance in an atomic clock.

5.2 Ramsey interrogations in atomic clocks

Fig. 5.2 illustrates a Ramsey interrogation/measurement sequence in the Bloch sphere

representation, which is a convenient visual representation of the 2-dimensional complex

Hilbert space defining the time evolution in Eq. 2.13. The measurement works as follows:

First, the atomic ensemble to be interrogated is prepared in the ground state |g〉 = ( 1
0 ).

The atoms are then excited by the LO radiation at time t, for a duration Tπ/2 such that

ΩTπ/2 = π/2 (where Ω is the coupling strength, as usual). We refer to these as π/2 pulses.

The first pulse defines the phase between the LO and the atoms and leaves them in the state

ψ1 = 1√
2
( 1
−i ), corresponding to a 90◦ rotation about the y-axis of the Bloch sphere2. The

atoms are then allowed to free-evolve for the interrogation period T � Tπ/2. Any phase

difference ∆φ which accumulates between the noisy LO and the atoms during this time

leaves them in the state ψ2 =
(

1 0
0 e−i∆φ

)
ψ1. Finally, at time t + T the ensemble is given a

second π/2 pulse, this time with a π/2 phase shift in the LO relative to the first pulse. This

corresponds to a 90◦ rotation about the x-axis of the Bloch sphere. A state detection is now

made on the ensemble, giving Pe(t+ T ) = Ne/N where Ne is number of atoms projected

into excited state |e〉 = ( 0
1 ).

If ∆φ = 0 after the interrogation, then ψ1 will have been recovered after the second

2The axes are arbitrary until the phase between the LO and the atoms is defined by the first pulse.
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Figure 5.2: Ramsey measurement sequence illustrated in the Bloch sphere representation,
which represents the 2-dimension complex Hilbert space in Eq. 2.13. (a) First, the initial
atomic ensemble state (red arrow) is prepared in the ground state |g〉, corresponding to
the z-axis of the Bloch sphere. (b) Second, the state is rotated 90◦ about the y-axis by
a π/2 pulse from the LO. (c) Third, the state free-evolves for the interrogation time T ,
accumulating phase ∆φ from the noise in the LO. (d) Finally, the state is rotated 90◦ about
the x-axis by a second π/2 pulse, and Pe is measured. Measurement projects the state onto
the z-axis and carries an imprint of ∆φ which can be used to produce the error signal for
the clock.
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Figure 5.3: Two examples of Ramsey measurement data. (a) Ramsey measurements with
varying interrogation times between the two π/2 pulses. In this example, the second pulse
was not shifted in phase relative to the first–this merely shifts the phase of the resulting data.
The oscillations seen are due to the frequency detuning between the 729 nm laser and the
ion (about 4 kHz in this instance). (b) Measurements made with no wait time between the
two pulses, but with a varying phase in the second pulse. The purpose of the comparison is
to demonstrate how a frequency difference between the LO and ion accumulates over time
as a phase difference between the first and second pulses.

π/2 pulse, and Pe(t+T ) = 0.5 (assuming perfect measurement). If ∆φ 6= 0 then the accu-

mulated phase will be imprinted on the resulting measurement of Pe(t + T ). The purpose

of phase-shifting the second π/2 pulse is simply to maximize measurement sensitivity for

small ∆φ. From ∆φ = φ(t + T ) − φ(t) we may infer ȳ for the interrogation interval, as

per Eq. 5.3, and produce the error signal. Any error or noise in the measurement process

will also be imprinted on the LO–the probabilistic nature of the state measurement, for in-

stance, leads to the 1/
√
N dependence in the quantum limit (Eq. 5.6). Stochastic sources

of error/noise will be averaged down over many cycles of the clock.

The measurement outcomes of a Ramsey sequence will take a sin2 profile in ∆φ; Fig.
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5.3 shows how this manifests in actual ion measurements. For clock operation, we are

restricted to making measurements within the invertible region |∆φ| ≤ π/2. Beyond this

range, the periodicity of the sinusoidal signal will result in degenerate measurements of

ȳ, leading to significant over or under-corrections in the LO frequency that will degrade

performance.

5.3 Improved LO stability with multiple atomic ensembles and adaptive measure-

ments

5.3.1 Clocks with multiple atomic ensembles

The performance of an atomic clock is bound by the quantum limit in Eq. 5.6. Because the

reference frequency f0 is fixed in a given clock, its best possible performance is dependent

on the number of atoms N and the interrogation time T . The number of atoms which can

be practically implemented is usually limited by systematic factors. For instance, there

may be electric field gradients over the spatial extent of large a ensemble cloud, or portions

of the cloud which extend beyond the null of the RF trapping field. Uniformly addressing

a large cloud with a gaussian optical beam can also be challenging. The interrogation

time is limited by the necessity of measuring within the invertible region |∆φ| ≤ π/2. A

noisier LO will accumulate phase more rapidly than a less noisy one, and will therefore

have a more limited interrogation time. As such, the quality of the LO limits the long-term

stability of a clock.

A proposal by Borregaard and Sørensen [36] describes novel methods by which in-

terrogation times may be improved. First, they show that by locking the LO to several

atomic ensembles instead of one, an improvement in stability (i.e. a decrease in σy(τ)

in Eq. 5.6) can be achieved which is proportional to N−(m/2), where m is the number

of ensembles containing N atoms each. Fig. 5.4 illustrates how this method works. In

essence, a single ensemble has a limited interrogation time T1,max due to the need to keep

∆φ within the invertible region. If a second ensemble is interrogated simultaneously with
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Figure 5.4: Illustration of locking the LO using multiple ensembles (m = 3, in this case).
The first ensemble is interrogated for a time T1 during the interrogation of the second and
third ensembles. T1 is sufficiently limited to keep the measurement within the invertible
region |∆φ| ≤ π/2. Feedback from the first ensemble stabilizes the LO such that the
second ensemble can be interrogated for T2 > T1. Feedback from the second ensemble
further stabilizes the LO allows for T3 > T2, and so on. This method improves the stability
of the clock by N−(m/2), where m is the number of ensembles containing N atoms each.

T2 > T1,max, and the feedback from the first ensemble is used to correct the LO at some

time T1,max < t < T2, then the T2 interrogation of the second ensemble will not exceed

the invertible region (within some limit T2,max). The resulting correction from the sec-

ond ensemble will provide a greater LO stabilization than would be achieved with regular

measurement techniques. Adding subsequent ensembles to this feedback chain increases

the resulting LO stability. For m ensembles of N ions each, the stability of the clock is,

expressly,

σy(τ) =
1

2πf0

√
τ

1

(Nγ T1,max)(m/2)

√
γ (β1/β)(m−1) (5.7)

where γ is a parameter characterizing the LO noise, and β1 and β are constants dependent

on the noise spectrum of the uncorrected and corrected LO, respectively [36]. Note that

when m = 1, Eq. 5.6 is recovered.
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In Eq. 5.7 we see that the clock stability is still limited by the maximum interroga-

tion time of a single ensemble T1,max, as well as the number of atoms per ensemble N .

Simulations show that γT1,max = 0.1 is a limit above which improvement in the clock

stability begins to be lost [36]. For this upper value of T1,max, “break even” improvement

is achievable for as few as N = 20 atoms per ensemble in this protocol. Any fewer, and

the resulting quantum projection noise from the first measurement injects too much noise

into the second, such that the improvement becomes less than what would be achieved by

simply having a single ensemble of mN atoms. For Nmin = 20, a factor of ∼
√

2(m−1)

improvement in stability is predicted.

5.3.2 Adaptive measurement techniques in clock interrogations

-1.0

-0.5

0.0

0.5

1.0

0 3π / 2 3π

Cos[x]

-1.0

-0.5

0.0

0.5

1.0

0 3π / 2 3π

Cos[x]

Cos[x-(π/2)]

(a) (b)

Figure 5.5: (a) Two points (circle, square) on a sinusoidal phase (blue curve) that are
indistinguishable when measured. This limits the effective measurement range to ±π/2 at
maximum, hence the invertible region restriction in Ramsey measurements. (b) The same
two points measured with a phase shift of π/2 (red curve). The addition of this phase
shifted measurement distinguishes the two points and extends the measurement range to
±π. This is also called a quadrature measurement.

To improve performance even further, the authors introduce an “adaptive” measurement

technique [65]. In this method, Ramsey measurements of an ensemble are initiated as

normal (a single π/2 pulse on all atoms), but completed sequentially on subsets of the

ensemble rather that on all atoms simultaneously. After a subset measurement, during

which the remainder of the ensemble is still being interrogated, an intermittent adjustment
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can be made to the phase of the LO (not the frequency) before measuring the next subset.

The subsequent measurement’s outcome is therefore correlated to the first in a way which

extends the invertible region beyond ±π/2 to ±π, assuming that the measurements occur

on a timescale� Tmax. In principle this is similar to making a quadrature measurement, in

which sampling a sinusoidal signal at both 0 and π/2 phase offsets gives more information

(Fig. 5.5 (b)). The adaptive measurement method, however, involves a Bayesian analysis

after each subset measurement in order to predict the LO phase shift which will maximize

the sensitivity of the following measurement.

The net result is to increase the invertible region of the error signal, and consequently

increase T1,max, for the ensemble as a whole. Specifically, the limit of γT1,max is relaxed

from 0.1 to (up to) 0.3. Subsequently, Eq. 5.7 predicts Nmin = 4 (7) when using this

protocol in the case of white (1/f ) LO noise.

5.4 Implementation in a 40Ca+ optical clock

Our primary long-term goal in this project is to improve LO performance in a trapped

ion clock by implementing multi-ensemble and adaptive measurement techniques. We be-

lieve that such a clock will be an excellent candidate for the basis of small-scale, portable

frequency references. Decreased LO quality is one of the primary technical hurdles in

building a high performance small-scale device, particularly one based on an optical ref-

erence frequency as lasers are usually stabilized to large, heavy glass cavities. A clock

based on our 40Ca+ system already has several advantages when considering adaptations

to small-scale device: First, choosing the suitably narrow S1/2 ↔ D5/2 transition as the

reference means that the interrogating LO will be the 729 nm laser, which is in the optical

frequency range (f0 ∼ 1014 Hz). The 1/f0 dependence in Eq. 5.6 gives optical clocks3 a

natural advantage in stability over microwave frequency clocks such as caesium standards,

which have f0 ∼ 109 − 1010 Hz. Despite there being probeable atomic transitions with

3A good overview of optical clocks is provided in Ref. [34].
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substantially greater frequencies than those in the optical range, such as Mössbauer tran-

sitions on the order of 1019 Hz [34], LOs in the optical range meet the requirements of

1) being producible with a sufficiently narrow linewidth, due to the development of lasers

and cavity-based stabilization [66, 67, 68, 69, 70, 71, 72, 73] and 2) having countable

cycles, due to the development of optical frequency combs [74, 75, 76, 77, 78, 79, 80, 81].

A particular advantage to using 40Ca+ is that many other ion species only have suitable

optical transitions in the UV range, which are not as easily producible. Second, planar ion

traps like the one used in this work already have demonstrated scalability (the Gen IIc for

instance is already on the order of 1 cm2). Third, although fewer atoms will participate in

the clock measurement than in thermal vapor or optical lattice based devices, a clock based

on trapped/cooled ions have longer coherence times (see next section) and will therefore

allow longer interrogation times, increasing the overall sensitivity per atom/ion.

For realizing a multi-ensemble clock, we must be able to load and confine multiple

ions. This is already within the capabilities of our Gen IIc trap, which has previously

demonstrated a single linear chain of 10 ions [35]. A similar GTRI planar trap in our lab

has recently loaded 35 ions in a single linear chain, so there is room yet for improvement in

our system. The ability to separate chains into multiple ensembles or subsets of ensembles

is inherent to the design of our traps and is used for deterministic loading and to perform

quantum gates [82].

For performing adaptive measurements, we must be able to interrogate and measure

individual ions or subsets in an ensemble. There are several options available to us in our

system, each with different merits. First, our use of an optical frequency LO and state-

detection beam makes single-ion addressing possible, since focused beam waists can be

realized that are several times less than the typical ion spacing in a linear chain (∼ 3-7 µm).

Precision beam-steering can be technically challenging to implement, however. An alter-

native to single-ion addressing involves separating a subset of ions from a larger chain and

transporting them to a location where they can be independently interrogated/measured.
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This requires that transport operation be performed within the timescale of both the overall

interrogation time and the state coherence time of the ions. Finally, arbitrary state rotations

can also be achieved by dynamically transporting an ion through a static, steady-state beam

[83, 84]. Because high-speed beam pulsing typically requires the use of AOMs and their

peripheral hardware, this so-called transport method of state control is advantageous in

that it does not require this additional hardware overhead. However, achieving the precise

transport necessary for this method can be technically challenging.

5.5 Research goals

Fig. 5.6 shows a potential scheme for how a 2-ensemble clock with adaptive measure-

ments could be realized in our 40Ca+ system. This scheme uses ion/subset transport for

interrogating/measuring multiple ensembles. Successful implementation will have several

key technical requirements: first, we must show that ion coherence times in our system are

not prohibitively short, both for single ions and for ensembles. Decoherence refers to the

degradation of an ion’s superposition state over time, due to coupling of the Hamiltonian

to the external environment [85, 86, 87]. Because Ramsey interrogations occur while ions

are in a superposition state of the reference transition, decoherence will limit achievable

interrogation times. Although we have previously measured single-ion coherence times

of ∼ 1-1.5 ms in our system, which is generally sufficient for basic clock operation, the

scheme in Fig. 5.6 includes transport operations which must be performed on a similar

timescale. The current stabilization cavity for the 729 nm laser should allow for 10-100 ms

coherence times if all other factors are accounted for. Second, we must characterize and

minimize “state destruction” events which occur when Ramsey superposition states expe-

rience unwanted interactions with the 397 nm laser. This can happen when scattered (or

edge-of-beam) light from a state detection event reaches an ion in the middle of a Ramsey

interrogation elsewhere (see Fig. 5.6 (d), for instance).

Beyond these primary requirements, realization of our proposed scheme will include
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Figure 5.6: A possible scheme for a 2-ensemble clock in our system. (a) Ensembles 1
and 2 are initialized and cooled. (b) Ensemble 2 receives the first π/2 pulse of a Ramsey
measurement. (c) Ensemble 2 is transported away and begins its interrogation period; En-
semble 1 is transported in, receives its first π/2 pulse, and free-evolves for T1 ≤ T1,max. (d)
Ensemble 2 continues to free-evolve; Ensemble 1 receives its second π/2 pulse, followed
by a state detection and update to the LO frequency. (e) Ensemble 1 is transported back
to its beginning point; Ensemble 2 completes its interrogation period T2 ≤ T2,max and is
transported back to its start point. A final π/2 pulse and state detection occurs, and the
LO is updated again. The entire cycle now repeats. Adding adaptive measurements simply
involves intermittent steps after (c) to divide the ensembles into appropriate subsets.
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several key milestones: 1) characterizing systematic factors in our system which could

cause frequency shifts in a clock (magnetic field noise, for instance), 2) configuring the

our system to function as a simple frequency reference for the 729 nm laser, 3) configuring

the system to load, merge, and separate multi-ion ensembles, 4) demonstrating coherent

transport of whole ensembles, and 5) performing rapid phase updates to the 729 nm LO

during adaptive measurements. Once we have successfully implemented this scheme with

a pulsed interrogation beam, we can consider implementing the transport method for ion

interrogations instead.

5.6 Preliminary results

In this section we will discuss and show results from preliminary efforts towards realiz-

ing a 2-ensemble clock with adaptive measurements in our system. Our focus has been

primarily to characterize the key technical aspects of ion decoherence, transport, and state

destruction.

5.6.1 Coherence times of a single ion

To measure the coherence time of a single sideband cooled ion (n̄ ≈ 0.2), we perform 2

separate π/2 pulses on the S1/2 → D5/2 transition, varying the wait time between them,

and measure Pe after the second pulse. The second pulse has the same relative phase as the

first, such that Pe(2Tπ/2) ≈ 1 when no wait time is applied. The measured Pe values will

take a sin2 profile as they oscillate at twice the detuning frequency between the ion and the

laser (just as in a clock interrogation). Decoherence will manifest as an exponential decay

in the amplitude of the oscillations over time [85, 86, 87]. The characteristic coherence

time τ ∗2 is given by

Pe,max(τ
∗
2 ) =

1

2

(
1 +

1

e

)
≈ 0.68 (5.8)
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Figure 5.7: D5/2 populations measured after 2 separate π/2 pulses, with a varying wait
time between them. Both pulses have the same relative phase set by the laser. (a) The
population measurements oscillate at twice the detuning frequency between the ion and the
729 nm laser (about 4 kHz here). (b) The same data over a broader time scale. The overall
amplitude of these oscillations decays in time due to decoherence of the ion’s superposition
state. The coherence time τ ∗2 is defined as the point when the envelope amplitude decays to
≈ 0.68 (blue line).

Fig. 5.7 shows a coherence time τ ∗2 ≈ 3.4 ms measured on the |S1/2,mJ = 1/2〉 →

|D5/2,mJ = 1/2〉 transition in our system. In the absence of other systemic factors, we

would expect to see coherence times of τ ∗2 ∼ 10 − 100 set by the limit of the cavity-

stabilized 729 nm linewidth of 10-100 Hz. We believe that we are limited here by either

non-ideal gain settings and/or noise in the PID feedback loop [55] of the cavity lock, or by

phase-noise modulations introduced to the laser in a 25 m fiber optic cable, due to back-

ground mechanical/thermal stressors on the fiber [88] (or some combination of the two

effects). Our belief is based on 1) observed minute-to-minute sensitivity of the coherence

time to the quality of the cavity locking feedback signal, 2) observing significant sensi-

tivity in the polarization of fiber-transmitted light when the fibers are squeezed or bent,
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arising from phase shifts of the light in the medium, and 3) achieving transition linewidths

of several hundred Hz at best, consistent with a coherence time of several milliseconds

and indicative of either imperfect cavity locking or spectral broadening along the optical

pathway.
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Figure 5.8: D5/2 populations measured after a single inverting pulse, followed by a varying
wait time. At wait times on the scale of the coherence time τ ∗2 ≈ 3.4ms, no significant
decay in population is observed, indicating that the steady-state 866 nm laser is not causing
unwanted off-resonant transitions on the 854 nm D5/2 → P3/2 transition.

We can rule out certain other potential limiting factors in our coherence time: first, we

have repeated the measurement on the |S1/2,mJ = 1/2〉 → |D5/2,mJ = 5/2〉 transition,

which is 5 times as magnetically sensitive. We did this both with and without 60 Hz trigger-

ing of the experiments. In each case, there was no measurable difference on the coherence

time, indicating that magnetic field noise effects are relatively negligible. Second, we have

repeated the measurement both with and without a 1.5 ms delay added before the first π/2

pulse. The pre-delay allows the ion undergo additional heating, on the order of that which

would occur in a typical coherence time experiment. In each case, again, there was no

measurable difference on the coherence time, indicating that the decay of the superposi-

tion state is not due to thermal state dephasing arising from excessive heating. Third, we

have tested whether the 866 nm laser, which is continuously steady-state, was potentially
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causing off-resonant excitations on the 854 nm D5/2 → P3/2 transition. We did this by

inverting the population to Pe ≈ 1 in a single pulse and then measuring after a varying wait

time (Fig. 5.8). No decay in population over time was observed, indicating that potential

off-resonant excitations are negligible if not non-existent.

5.6.2 Transport heating

As described in Ch. 3, ion transport in our system is done through incremental updates to

the trap’s DC electrodes in order to move a harmonic well along the trap axis from point

A to B. The granularity of this process will affect an ion’s motional state if the transport is

done in too few steps. Because our system updates electrode voltages at a rate of 10 kHz,

a transport operation performed in n steps will take n × 0.1 ms to complete. To transport

an ion within the measured coherence time of ≈ 3 ms, we will therefore have to limit the

number of steps to n < 30. For a transport distance of several hundred µm or greater, this

imparts a significant amount of motion to an ion in our current configuration. Beginning

with n̄ ≈ 0.2 sideband cooled ions, we attempted to transport ions over such distances in

15-20 steps, and measure n̄ afterwards per Eq. 2.24. However, we observed population

inversions on the red sidebands begin exceed those on the blue sidebands, indicating ions

that were no longer in a thermal state described by Eq. 2.22 and therefore rendering Eq.

2.24 invalid. By comparison, adiabatic transports with approximately 1 step per several µm

of travel exhibit no heating beyond that of the trap’s inherent heating rate.

5.6.3 State destruction characterization

State destruction occurs when an ion experiences an unwanted interaction with resonant

397 nm light during the middle of a Ramsey interrogation. To characterize state destruction,

we must first understand how the resulting state measurement will have been affected. After

the first π/2 pulse but before the second, the ion has an effectively equal chance of being

projected into the D5/2 or S1/2 states by the 397 nm light. When projected into D5/2, the
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Figure 5.9: (a,b,c) Simulated Ramsey measurements with a varying phase on the second
π/2 pulse, and with state destruction probabilities of (a) 0.2, (b) 0.5, and (c) 0.9 (light blue
curves). The sdp = 0 case is also plotted in each instance (orange curves). Each point
represents the average of 100 measurement sequences (or, equivalently, 1 measurement
sequence on 100 atoms). (d) The ratios of the sdp 6= 0 maxima to the sdp = 0 maxima are
effectively linear in sdp.

.

second π/2 pulse of the Ramsey sequence will leave the ion back in the superposition state

such that Pe = 0.5 on average upon measurement. This particular outcome occurs 50%

of the time on average. When projected into S1/2, the ion will subsequently be excited on

the S1/2 → P1/2 transition and then decay, with equal probability, to either the |S1/2,mJ =

−1/2〉 or |S1/2,mJ = 1/2〉 ground states. Because the 729 nm LO will be tuned to excite

only one of these states, the second π/2 pulse will either 1) also lead to Pe = 0.5 upon

measurement (on average), or 2) leave the ion in the ground state, such that Pe = 0. Each

of these respective outcomes occurs 25% of the time on average.

Therefore, in the event of an unwanted interaction with 397 nm light, which we refer
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to as a state destruction event, the measurement outcome of the Ramsey sequence will be

(on average) either Pe = 0 or Pe = 0.5, with probabilities 1/4 and 3/4, respectively. With

this knowledge, state destruction can be numerically modeled as a probabilistic event. We

consider a Ramsey measurement sequence with two resonant π/2 pulses, in which the sec-

ond pulse has a varying relative phase from 0 to 2π (as in the measurement in Fig. 5.3

(b)). When no state destruction occurs, the measurement outcomes are probabilistic, with

the excited state probability Pe taking a sin2 profile as a function of the varying phase.

When state destruction does occur, the measurement outcome will be 0 or 0.5 with prob-

abilities 1/4 and 3/4, respectively. We introduce a state destruction probability parameter

sdp which determines the likelihood of a state destruction event taking place. Fig. 5.9

(a,b,c) shows that by varying sdp from 0 to 1 in the simulation and averaging over a suit-

able number of measurements, the sin2 output of the Ramsey sequence gradually decays

in amplitude. Each point in the data represents the average of 100 measurement sequences

(or, equivalently, 1 measurement sequence on 100 atoms).

The maxima of these sinusoids relative to the sdp = 0 case are unique. In Fig. 5.9 (d)

we measure this ratio for 0 ≤ sdp ≤ 1 in increments of 0.1, and find a linear relationship.

By parameterizing this relationship, we can perform these same Ramsey sequences in our

experiment and quantify state destruction. Specifically, we pulse the 397 nm beam at vary-

ing distances from an ion that is between π/2 pulses in the sequence described above, then

repeat the exact same sequence with no pulse (hence sdp = 0 in the no-pulse instance).

Fig. 5.10 shows these results. The pulse duration was 200 µs, which is equivalent to that

of a state detection pulse in our system. The total interrogation time was just long enough

to allow for the pulse to occur, minimizing decoherence. The 729 nm beam remained at a

fixed position throughout (z = 1000 on the trap axis).

We estimate the focused 397 nm beam waist to be 40-60 µm at the trap axis. We see in

Fig. 5.10 that state destruction is significant within±150 µm of the ion position, either due

to significant nearby scatter from the trap surface or due to interactions with the edge of the
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Figure 5.10: Measured state destruction probabilities in our trap vs. distance of the 397
nm beam from the ion’s position (z = 1000).

beam profile. Beyond this range sdp varies as the light scatters from the different regions

of the trap, but for the most part is non-trivial throughout the range of measurement.

5.7 Discussion

In order to continue making progress towards a multi-ensemble clock with adaptive mea-

surements, we will need to address these technical limitations discovered thus far. First, we

will need to improve on the current single ion coherence time of ≈ 3 ms in order to allow

for suitably adiabatic transport operations. Improvements to the laser’s cavity stabilization

can be made through precise calibrations of the PID loop’s gain settings, as well as from

performing a systematic analysis of any noise which may exist in the feedback signal. Pre-

vious experiments in our lab have not required coherence times longer than what we have

measured, so it likely that improvements can be made to the cavity lock which were previ-

ously unnecessary. Output linewidths approaching 10 Hz should be possible in this cavity,

given its finesse. Phase-noise modulation of the laser due to stress on the optical fiber(s)

can be reduced by implementing a method demonstrated in Ref. [88], in which a portion
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of the transmitted light is reflected back through the fiber and measured against the input

light, allowing the phase difference to be monitored and continuously corrected during ex-

periments. Using this method, the authors reduce the linewidth of 532 nm light transmitted

through a 25 m optical fiber from 1.2 kHz to 16 Hz, with only a marginal reduction in car-

rier power. Assuming no other contributing factors, a similar reduction in linewidth in our

system would achieve 50-100 ms coherence times, which should be suitable for adiabatic

transport during clock cycles.

Beyond extending the single-ion coherence time, we will need to measure the coherence

times for multi-ion ensembles and ensure that they are also suitable for transport. Upgrad-

ing the system’s digital-to-analog converters would also increase the electrode update rate

of 10 kHz and allow for faster transport operations. In Ref. [89], converters with an update

rate of 50 MHz were used to diabatically transport single ions and separate two-ion chains

on timescales of 10-50 µs, with overall heating < 2-3 quanta.

In order to address and reduce state destruction in our system, there are several im-

provements which can be made easily and immediately. The first would be to reduce the

focused waist of the 397 nm detection beam, which will reduce light scatter. A waist of

10-15 µm is easily achievable for this wavelength with appropriate optics, and would still

allow for simultaneous addressing of 4-6 ions in an ensemble. The second would be to bet-

ter isolate the PMT from ambient room light, which will increase detection efficiencies and

allow us to use shorter detection pulses, further reducing the chances of state destruction

events. Detection efficiencies of 99.99% have been demonstrated for both single 40Ca+

ions and ensembles of 4 [90, 91]. Once these improvements are made, the experiment in

Fig. 5.10 can be repeated in the updated configuration, with greater spatial resolution and

with varying placements of the 729 nm beam. Thorough knowledge of the state destruction

probabilities which occur for the different beam placements will allow us to choose the best

ensemble and beam positions in Fig. 5.6.
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CHAPTER 6

CONCLUSION AND FUTURE OUTLOOK

6.1 On motional state control via standing wave beams

In Ch. 4, we have shown how the coupling strengths of carrier and first order sideband

transitions in a trapped ion may be selectively controlled by displacing the ion within a

resonant standing wave field. Using the surface of our Gen IIc ion trap as a mirror, we

produced a standing wave field at the ion position by reflecting a 729 nm laser off the

trap surface, thus avoiding the challenges of in-vacuum optical cavities. As predicted, the

carrier and sideband coupling strengths demonstrate a periodic dependence on the ion’s

position within the standing wave fringes, with the cycles of the two cases 180◦ out of

phase with each other. Despite having an imperfect standing wave due to an 18◦ angle in

the incident beam and a limited reflectivity from the aluminum trap surface, we were able to

achieve equivalent carrier and sideband suppressions of 8.4 dB and 11 dB, respectively. We

calculate that a 29 dB equivalent carrier suppression is possible in our configuration with

improved beam alignment, whereas in a gold coated trap this figure could be increased to

> 40 dB. Recently, we have become aware of a planar ion trap fabricated directly on top

of a highly reflective (HR) UV mirror for the specific purpose of achieving a configuration

similar to ours [92]. Although the authors do not provide a number, it is reasonable to

speculate that such an optimized material could be even more reflective than the gold trap,

and could achieve even greater coupling strength suppressions.

Based on our results, we believe that our standing wave configuration is a viable alter-

native to in-vacuum cavities, and can be advantageous for various experiments in quantum

computation and simulation. There are several potential applications of which we are al-

ready aware: first, suppression of the carrier allows the driving laser’s power to be freely
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increased by an equivalent amount, allowing for faster sideband interactions with no in-

creased chance of an off-resonant carrier excitation. Such increased speeds could be par-

ticularly beneficial in ion trap quantum computations, as they can increase the fidelity of

two-qubit gate operations. For the 8.4 dB effective carrier suppression we achieve, side-

band interactions could be performed 2.5 times faster; at the 29 dB suppression limit of

our aluminum trap, 28 times faster; at the > 40 dB suppression limit of a gold coated trap,

> 100 times faster. Second, a 29 dB equivalent carrier suppression factor achievable in

our current configuration would reach the regime in which simulating the expansion of the

universe with trapped ions becomes experimentally feasible. Per Ref. [20], suppressing the

carrier allows for the excitation of detectors due to the creation of cosmic photons. When

the beam has more running wave character, the simulation is dominated by excitation of

detectors with photon creation or destruction. Third, standing wave configurations such as

the one described here have also been considered for quantum phase transition experiments

[93].

6.2 On the implementation of multiple ensembles and adaptive measurements in

atomic clocks

In Ch. 5, we have discussed the merits of multiple ensembles and adaptive measurement

techniques in atomic clocks, per a proposal by Borregaard and Sørensen [36], and have

put forth a scheme for implementing these methods in a 40Ca+ based clock. If successful,

these methods would allow for improved clock performance when the local oscillator (LO)

is of limited quality, as will inevitably be the case in a small-scale device. Realizing these

methods in a laboratory scale experiment would be the first step towards adapting them

for small-scale frequency standards, which are in high demand for applications such as

GPS and local network synchronization. As we have discussed, we believe that 40Ca+

based clocks haave unique advantages which make them a good candidate for small-scale

integrated devices.
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In preliminary work towards realizing this proposed clock scheme, we have measured

a single-ion coherence time of τ ∗2 ≈ 3.4 ms in our system. Our scheme includes several

ion transport operations which must be performed adiabatically, and the update rate of our

trap electrodes limits these steps to durations of several ms at the least. As such, this co-

herence time is prohibitively short for our needs. However, our results suggest that the

coherence time is limited by the linewidth of the 729 nm laser at the ion, due to either

noise/imperfections in the cavity stabilization feedback loop, or to phase noise modulation

occurring in fiber optic cables. Both of these issues are surmountable. Our high finesse

cavity should be capable of 10-100 Hz linewidths with appropriate feedback settings, and

phase noise modulations in optical fibers can be substantially reduced using a proven tech-

nique [88]. Eliminating these issues should provide coherence times of 50-100 ms. This

would be our first priority in moving forward with this project. In addition, it would be

worthwhile to consider upgrading the system electronics to support faster electrode update

rates. Transport and ion separation operations with marginal heating (< 2-3 quanta) have

been demonstrated on timescales of 10-50 µs when using an update rate of 50 MHz [89].

We have also made preliminary characterizations/measurements of ion state destruction

events in our system by using numerical simulations to parameterize experiment data. We

find that non-trivial chances of state destruction occur when the 397 nm detection beam is

pulsed in a variety of trap locations that are beyond the immediate vicinity of an ion under-

going interrogation. Because our proposed clock scheme includes detection events which

occur separately while other ensembles are being interrogated, reducing state destruction

would also be a top priority in the future of this project. Improvements could be imme-

diately made by reducing the focused waist of the 397 nm beam to 10-15 µm, a simple

matter of optics, and increasing the isolation of the PMT from ambient room light in order

to improve detection efficiencies. Once these are done, more thorough measurements of

state destruction should be made in order to determine how best to minimize its effects in

our clock scheme. Furthermore, although we would wish to take steps to minimize state
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destruction, it is entirely likely that it cannot be eliminated entirely. Further work on this

project would include numerical simulations to quantify how state destruction would limit

clock performance. Such efforts have already been started by other members of our group

working in parallel on a yitterbium based clock.

Based on these preliminary results, we remain confident that a 2-ensemble clock with

adaptive measurements can be realized in our 40Ca+ system. With N ≥ 4 (7) ions per

ensemble, Eq. 5.7 predicts improved performance over a single ensemble of 2 × N ions

for white (1/f ) LO noise. This prediction assumes that γT1,max = 0.3 as a result of the

adaptive measurements. Even if the implementation is not perfect and γT1,max < 0.3, or if

the measured performance is otherwise less than predicted due to unanticipated reasons, N

can be increased accordingly to compensate for performance shortcomings.
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