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SUMMARY 
 
 

Unreinforced masonry (URM) construction, which has been widely used in the 

United States, presents a large threat to life safety and regional economic development 

because of its poor seismic resistance. In this research, the nonlinear seismic properties of 

URM structures were investigated via a quasi-static test of a full-scale two-story URM 

building and associated analytical and numerical studies. 

 The tests of the 24ft. by 24ft. in plan 22ft. high URM building revealed that the 

damage was characterized by (1) the formation of large discrete cracks in the masonry 

walls and (2) the rocking and sliding of URM piers. Both of these results were consistent 

with the predictions based on individual component properties obtained in previous 

research. However, the tests also revealed significant global behavior phenomena, 

including flange effects, overturning moment effects, and the formation of different 

effective piers in a perforated wall. This global behavior greatly affected the response of 

the URM building tested. 

 In order to understand the nonlinear behavior of the test structure, a series of 

analytical studies were conducted. First, at the material level, a mechanical key model 

was proposed to describe the failure of URM assemblages under a biaxial state of stress. 

Second, at the component level, an effective pier model was developed to illustrate the 

mixed failure modes of a URM pier and its nonlinear force-deformation relationship. 

Third, at the structure level, a nonlinear pushover model was built using the mechanical 

models at the material and component levels to describe the nonlinear properties of a 

URM building. This nonlinear pushover model and a three-dimensional finite element 
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model were employed to analyze the test structure. Both gave results in good agreement 

with the test data. Improvements to current provisions for the evaluation of existing 

masonry structures were proposed.  
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CHAPTER 1 

INTRODUCTION 

 

 

1.1. NEED FOR RESEARCH 

 Existing unreinforced masonry (URM) buildings have been long recognized for 

their seismic hazard. Previous major earthquakes have shown that the damage and 

collapse of URM construction is one of the primary failure modes for building systems 

(Bruneau 1994a, 1994b, 1995). In the United States, URM structures had been widely 

used as residential, commercial and essential facilities buildings until the 1933 Long 

Beach earthquake revealed their seismic vulnerability (Bruneau 1994a).  Following that 

event, URM construction was outlawed in all public buildings in California and some 

other West Coast states. However, a large number of old URM buildings are still being 

used in California and other Western states, and URM structures have continued to be 

constructed in other regions which were considered as non-seismic areas until very 

recently.  These seismically deficient buildings present a threat to life safety. Research to 

develop effective and economic seismic hazard mitigation methods for these URM 

buildings is urgently needed.  

 The seismic hazard of old URM structures stems from their many unique 

structural characteristics. First, at the material level, URM is a composite material 

composed of masonry units and mortar with a certain bond scheme (most old URM 

buildings in America were constructed in standard American bond, i.e., with a header 

course every sixth course). In addition, no reinforcement is added to enhance its 
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performance. As a result, URM is a brittle, anisotropic material. Moreover, weak mortar 

was typically used in most old URM construction. The elastic modulus and strength of 

the mortar are lower than those of masonry units, and there is normally a weak interface 

between the masonry unit and the mortar. This type of masonry is usually called strong 

unit-weak mortar masonry. Its material properties are controlled by the interface between 

masonry units and mortar. Second, the composite characteristics and the weak interface 

of URM material contribute to the distinctive behavior of URM at the component level. 

At this level, four typical failure modes, rocking, sliding, diagonal cracking and toe 

crushing dominate the nonlinear in-plane behavior of URM piers. Third, at the structure 

level, URM buildings exhibit high stiffness and low lateral strength. They also typically 

incorporate flexible floor and roof diaphragms made of wood or steel joists, and these 

flexible floor and roof diaphragms can lead to distinctive structural behavior in URM 

buildings, including lack of coupling and torsion.  

  In response to the seismic vulnerability of URM structures, a large amount of 

experimental and analytical research has been conducted on the behavior of URM 

structures in areas of high seismicity.  In the United States, the research became 

particularly intensive after the 1933 Long Beach earthquake and the 1971 San Fernando 

earthquake, both of which reemphasized the vulnerability of the URM structures.  After 

the latter earthquake, a mitigation methodology known as the ABK method was 

developed specifically for URM structures (ABK 1984). This methodology has been 

widely used since the early 1980s to reduce seismic hazard in existing URM buildings, 

and has been adopted with minor modification by several standards and prestandards, 

such as ATC-14 (ATC, 1987), ATC-22 (ATC, 1989), and FEMA (FEMA 1992a,b, ATC 
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1997a,b, 1999a,b, 2000). Numerous experimental and analytical investigations on URM 

structures have also been conducted in Europe, especially in Yugoslavia and Italy as a 

consequence of the 1964 Skopje and 1976 Friuli earthquakes. The research results from 

Europe, together with those obtained in United States provide reasonable guidelines for 

the seismic assessment and rehabilitation of URM buildings in areas of high seismicity.  

 However, although a large amount of research has been conducted to understand 

URM behavior, the knowledge obtained from previous research is difficult to synthesize. 

In experimental research, this is due primarily to the lack of uniformity in test protocols 

and difficulties associated with testing stiff brittle systems. In analytical research, this is 

due primarily to the difficulties in tracking cracking in a heterogeneous medium, 

numerical stability associated with contact problems and stiff system behavior, and the 

large models needed to track the behavior properly.  These problems have their origin, 

again, on our inability to properly model the problem at the three required scales: 

material, component, and structure levels.  

 At the material level, although many tests have been conducted on the shear 

strength of URM, the shear behavior of URM is still unclear because it is a quite complex 

cracking problem at the interface between masonry units and mortar.  In addition, there is 

still no conclusive knowledge about the relationship among several critical strength 

parameters: the bed-joint tensile strength, the diagonal tensile strength, the initial bed 

joint shear strength, and the shear friction factor along the cracked bed joint surface. The 

lack of this knowledge does not permit a complete understanding of the nonlinear 

behavior of URM. A similar problem exists at the component level. For instance, even 

though numerous experiments have been conducted on the strength and the failure modes 
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of individual masonry piers under in-plane loads, and several formulas have been 

proposed for the strength of a URM pier corresponding to certain failure mode based on 

these experimental research results (see FEMA 273/356 (ATC 1997, 2000)), no 

comprehensive theory is available to explain the interactions of different failure modes 

and the corresponding load-displacement relationship of a single URM pier. The lack of 

such theory makes it difficult to extrapolate the knowledge obtained from piers with a 

given configuration to other piers with different configurations, and from the isolated 

piers to the piers existing in a perforated wall. At the structure level, the problem is more 

daunting. Due to the large demands on the experimental facilities and funding, tests of 

entire URM structures, especially of full-scale URM structures, are seldom conducted. As 

a result, little knowledge is available on the structural behavior of URM buildings at the 

3D structural level. These issues include the governing mechanisms for a perforated wall, 

the effects of flexible diaphragms on the performance of the entire URM building, the 

coupling effects between perpendicular walls, and the building torsion.  

 Another important problem is the special aspects of seismic hazard for URM 

buildings in Mid-America. Until recently, most of the research on URM buildings has 

been conducted in the areas of high seismicity. However, the URM problem in Mid-

America has its own peculiar aspects.  First, the design of most URM structures in Mid-

America did not consider seismic loads.  Most of these URM structures are stiff, massive 

buildings that are well suited to resist wind loads.  Their mass and lack of ductility, 

however, make them highly vulnerable to ground motions.  What is worse, because 

seismic hazard was not a consideration, numerous critical structures, including fire 

stations, police offices, and emergency response centers were built as URM structures 
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(Figure 1.1).  These structures present a critical threat to adequate response and recovery 

efforts after a major earthquake.  Second, the tectonic characteristics of Mid-America are 

likely to produce ground motions with significantly different attenuation and frequency 

content characteristics than those in the Western US.  Thus, much of what has been 

learned through non-linear dynamic analysis of URM subjected to Western ground 

motions (1940 El Centro, for example) needs to be verified for the ground motions 

expected in Mid-America.   Finally, it is not clear whether the methodologies developed 

and employed for retrofit of URMs in the Western US are applicable, both from the 

economic and technical points of view, in Mid-America.  This is due primarily to the 

long return periods of strong earthquakes in this region, which make most retrofits 

economically unviable except for historic or critical structures.  All these aspects point to 

the need of special research on URM buildings in Mid-America area. 

 In order to develop strength evaluation and rehabilitation strategies for URM 

buildings in the Mid-America area, a group of research projects sponsored by the Mid-

America Earthquake (MAE) Center were conducted at several universities in the 1996-

2001 period.  Those projects investigated URM structures from many different aspects, 

including the characterization of the URM building inventory in Mid-America (SE-11), 

in-plane strength and retrofit tests on URM piers (ST-6) and their analyses (ST-4), URM 

out-of-plane wall test (ST-10) and their analyses (ST-9), and testing on flexible wood 

diaphragm tests (ST-8) and their analyses (ST-5). As a capstone of those projects, a full-

scale quasi-static experiment of a two-story URM structure was conducted at Georgia 

                                                 

1 The project numbers shown in parenthesis are those used by the MAE Center.  A brief description of 

these projects, in the form of so-called quad charts, is given in Appendix A. 
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Tech (ST-11). Meanwhile, a parallel reduced-scale shaking table test was conducted at 

the US Construction Engineering Research Laboratory (CERL) (ST-22).   

 

 

 

Figure 1.1. Charleston fire station 
 

 

1.2. OBJECTIVES AND SCOPE OF RESEARCH 

 The research presented in this dissertation is based on the full-scale experiment of 

the project ST-11. This research centers on the seismic behavior of low-rise URM 

structures in the Mid-America area. These URM structures are made of strong unit-weak 

mortar masonry materials and flexible wood floor and roof diaphragms. This research is 

aimed at systemically investigating the nonlinear seismic behavior of these URM 

structures at the material level, the component level, and the structure level.  The seismic 

behavior of URM structures is investigated via full-scale, quasi-static testing of a two-
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story URM building, associated material tests, and advanced nonlinear numerical 

analyses. 

  

1.3. OUTLINE OF THE RESEARCH 

 The dissertation is organized into 14 chapters, reflecting the major thrusts of this 

research. 

 Chapter 2 gives a brief literature review of previous research on URM structures. 

The review covers three different levels: the material level, the component level, and the 

structure level. The main focus of the review is on the previous experimental research on 

URM structures. 

 In order to fully understand the critical characteristics of URM materials, the 

results of an extensive investigation in the governing behavior of strong unit-weak mortar 

masonry is reported in Chapter 3. A micro-model, labeled the mechanical key model, is 

developed in this chapter to illustrate the failure modes and maximum strengths of 

masonry bed joints under different combinations of normal stress and shear stress. This 

model is then expanded to explain the failure mechanism for the entire strong unit-weak 

mortar masonry assemblage.  

 Based on the knowledge obtained at the material level, a macro-model, termed the 

effective pier model, is developed in Chapter 4 to describe the nonlinear properties of 

individual URM in-plane piers. The model addresses the mixed failure modes, and it can 

be used to predict both the maximum strength and the deformation capacity. This model 

is compared with the ultimate strength equations given by FEMA 356 and previous 

experimental results.   
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 Most of previous research on URM in-plane pier, including what has been done in 

Chapter 4 is applicable only to rectangular cross-section in-plane piers. However, many 

of the in-plane piers in a URM building are connected to adjacent transverse walls. The 

adjacent transverse walls may significantly affect the behavior of the in-plane piers, 

leading to so-called flange effects. In order to consider the flange effects, the effective 

pier model proposed in Chapter 4 is modified in Chapter 5. A simple method also is 

proposed to calculate the effective flange width.  

 Chapters 6 through 9 discuss the quasi-static test of a full-scale two-story URM 

building, which is the center of the dissertation. Specifically, Chapter 6 introduces the 

design of this test, which includes the test objectives, the design of the test building 

(termed ST-11 building), the associated material tests, the construction procedure, and the 

loading sequence. Chapter 7 introduces the initial testing which was aimed at 

investigating the interaction between flexible diaphragms and masonry walls by laterally 

loading the roof diaphragm. Some specific characteristics of the test building, such as the 

stiffness values of the masonry walls and diaphragm, as well as the behavior of the 

connections between wall and diaphragm, also were measured in these initial tests. 

Following the initial low-force level tests, two more series of tests were conducted to 

investigate the nonlinear properties of the test structure. The results of the first set of 

tests, which focused on the nonlinear properties of the test structure parallel to Walls 1 

and 2, are presented in Chapter 8. The second set of tests, which focused on the nonlinear 

properties of the test structure parallel to Walls A and B, are discussed in Chapter 9.  

Some unique features of the test structure discovered in the experimental research, such 
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as the contribution of the flange effects and the overturning moment effects, are also 

discussed in the two chapters. 

 Chapters 10 through 12 present a series of analytical studies for the test building. 

These studies were aimed at fully understanding the behavior of the test building and 

developing robust analytical tools for the nonlinear response of URM structures. 

Specifically, a set of preliminary analyses, including a 3D finite element (FE) elastic 

model, a simplified dynamic conceptual model, the FEMA 356 pre-standard procedure, 

and a simple rigid body analysis, are utilized in Chapter 10 to evaluate both the elastic 

properties and the nonlinear responses of the test structure. These preliminary analyses 

provided directions for more complex nonlinear analyses. The latter include a nonlinear 

2D FE analysis and a nonlinear 3D FE analysis as presented in Chapter 11, and a 

simplified pushover analysis method as presented in Chapter 12.  

 As an application of this research, the proposed changes to the FEMA 356 pre-

standard procedure, based on the experimental, theoretical and numerical investigations, 

are discussed in Chapter 13. The conclusions of the research are summarized in Chapter 

14.  
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CHAPTER 2 

 LITERATURE REVIEW 

 

 

2.1. GENERAL 

A typical URM building under earthquake excitation is shown in Figure 2.1. To 

simplify the problem, earthquake excitation is assumed parallel to one pair of masonry 

walls. These walls are called the in-plane walls. The masonry walls perpendicular to the 

seismic excitation direction are called the out-of-plane walls. The in-plane walls and out-

of-plane walls, together with the flexible floor and roof diaphragms, comprise a typical 

URM building. Many research projects have been conducted on the properties of the 

three basic components and the overall URM building. Section 2.3 gives a brief 

introduction on the properties of masonry materials. Sections 2.4 to 2.6 discuss research 

for the three basic components of a URM building. Section 2.7 emphasizes previous 

research on entire URM buildings.  
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Figure 2.1. Typical URM building under earthquake excitation (Modified from Figure 2 
of Bruneau 1994a) 

 

 

2.2. MASONRY MATERIAL 

A close-up view of a typical masonry pier is shown in Figure 2.2. Masonry is a 

composite construction material consisting of masonry units and mortars built following 

certain pattern. The mechanical properties of masonry vary considerably due to variable 

material properties of units and mortars. For example, mortar is typically composed of 

cement, lime, sand and enough water to produce a plastic, workable mixture. Several 

different types of mortars have been widely used in the construction, as shown in Table 

2.1 (ASTM 1958).  
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Figure 2.2 . Typical masonry pier 
 

 

Table 2.1. Mortar compositions by volumes 
Type Ratio (cement: lime: sand) Compressive strength (psi) 

M 1:0:3 2500 
S 0.5-1 :0.25-0.5: 4.5 1800 
N 1: 0.5-1.25: 6 750 
O 1: 2: 9 350 
K* 0.5: 2: 7.5 75 

 * No longer used for construction after 1960’s 

 

 

Brick, concrete masonry units, clay tile, and stone have all been used for the 

masonry units in previous practice. Brick masonry is the focus of this research, because it 

makes up majority of the existing URM buildings. The strengths of brick masonry unit 

vary significantly, as shown in Table 2.2 (ASTM 1992). 

 

 

 

Mortar 

Brick 
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Table 2.2. Masonry unit strengths 
Minimum compressive strength (brick flatwise), gross 

area (psi) 
Designation 

Average of 5 brick Individual 
Grade SW 3000 2500 
Grade MW 2500 2200 
Grade NW 1500 1250 

 

 

The mechanical properties of masonry as a composite material are functions 

primarily of the mechanical properties of the individual masonry units, mortars, and the 

bond characteristics between units and mortar. Strictly speaking, URM construction 

results in an anisotropic material. However, for a simplified design approach, the elastic 

properties of URM materials are usually considered as isotropic. These elastic, isotropic 

properties are taken as those determined from tests on masonry prisms perpendicular to 

the bed joints. The elastic modulus of masonry is controlled by the combined elastic 

modulus of masonry units and mortar (Hamid et al. 1987). Previous research indicates a 

large scatter in the measured elastic modulus of masonry, with the reported values 

ranging from 500 ksi to 2000 ksi (Sinha 1978, Magenes and Calvi 1992, Calvi et al. 

1996).  Two reasons explain the large scatter. First, the material properties of masonry 

units and mortar vary significantly by themselves. Second, different workmanship factors 

may contribute to the variation as well. The European code (EC6 1995) gives the 

following formulae for calculating Young’s modulus E and shear modulus G of masonry 

material for a design purpose (Tomazevic 1999): 

        E1(fm) = 1000 fm ,  G=0.4 E                                                 (2.1) 

where fm is the characteristic compressive strength of masonry. Some other researchers 

recognized that masonry is actually a nonlinear material and thus its elastic modulus 
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varies with different stress level (Naraine and Sinha 1989, AlShebani and Sinha 1999). 

These models will be discussed in more detail in Chapter 4.  

The nonlinear properties of masonry, such as ultimate strength and ductility, are 

also direction-depended. Specifically, several critical strength values, such as the 

compressive strength perpendicular to the bed joints, the tensile strength perpendicular to 

the bed joints, and the shear strength of the bed joints, are generally utilized to describe 

the nonlinear properties of masonry. Extensive research has been conducted on this topic. 

Detailed description of the research can be found in Chapter 3. A new model, which can 

illustrate the relationship of these critical strength values, will also be presented in 

Chapter 3. 

 

2.3. URM IN-PLANE WALLS 

A typical perforated in-plane wall is composed of piers between window and door 

openings, and spandrels above and below the openings (Figure 2.3). Most of previous 

research on the in-plane behavior of URM wall was concentrated on the piers, because 

the final collapse of a URM structure is most often due to pier failure (Calvi et al. 1995). 

The pier works like a column restrained by the spandrels at the top, and the ground or 

another spandrel at the bottom. The boundary conditions for the pier are usually modeled 

as either fixed-fixed or fixed-free, depending on the relative stiffness between the piers 

and the spandrels.  
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Figure 2.3. A typical perforated in-plane wall 

 

 

2.3.1. In-plane URM Piers 

Many experiments have been conducted to investigate the in-plane properties of 

URM piers (Abrams and Shah 1992, Anthoine et al. 1995, Epperson and Abrams 1989, 

Magenes and Calvi 1992, Manzouri et al. 1995). In-plane component tests of masonry 

piers are typically performed under a given constant axial load, and with the application 

of a monotonic or cyclic lateral force or displacement in a quasi-static fashion. FEMA 

307 (ATC 1999) lists the results of some recent tests on URM piers. These tests provided 

data on damage progression, ultimate strength, and drift response of the piers under 

investigation. This resource is a good reference for detailed descriptions of the load-

displacement response of URM piers under in-plane forces, and for the development of 
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the FEMA strength equations. Some of these experimental data will be discussed in detail 

in Chapter 4. 

These experiments described in FEMA 307 have shown that URM piers can have 

considerable deformability and ductility if certain failure mechanisms prevail. Axial 

stress, aspect ratio, boundary conditions, and relative strength between mortar joints and 

units determine the failure mechanisms of masonry piers. FEMA 273 (ATC 1997) gives 

four typical crack patterns and failure modes for the URM piers as shown in Figure 2.4.  

 

 

(a) Rocking (d) Toe crushing (b) Sliding (c) Diagonal tension 
 

Figure 2.4.  Different crack patterns for the URM piers 
 

 

• A large flexural moment can cause wide flexural cracks at the top or the bottom 

of the pier.  After that the pier may undergo rigid body rotation (rocking) about 

one corner of the pier (Figure 2.4a).  

• When the shear force in a pier is larger than the bed joints shear strength, sliding 

cracks develop in the bed joints, and the wall undergoes relative sliding 

movement along the bed joints (Figure 2.4b). 
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• When the principal tensile stress due to external forces exceeds the tensile 

strength of masonry, diagonal tension cracks develop in the pier (Figure 2.4c). 

The cracks are stepped cracks propagating along the mortar bed joints and head 

joints in the case of strong unit-weak mortar masonry. These cracks are straight 

cracks and go through the units if the strength of the unit is similar to that of the 

mortar. 

• When the principal compressive stress due to external forces exceeds the 

compressive strength of masonry, compressive failure develops in the pier. Since 

the toe of a pier is usually the zone with high concentrated compressive stress, the 

compressive failure always develops at the toe area (Figure 2.4d). Therefore this 

failure mode is also labeled as “toe crushing”.  

Rocking and sliding exhibit large deformation capacities. The stepped diagonal 

tensile cracks propagating along the bed joints and head joints also display large 

deformation capacity, since the units slide between each other and lead to large energy 

dissipation. Conversely, the diagonal cracks going through the units make the masonry 

pier unstable and consequently lead to rapid strength deterioration, which represents a 

very brittle failure mode. Toe crushing is another brittle failure mode, because the 

crushing zone rapidly loses its strength.  FEMA 273, 306, and 356 (ATC 1997, 1999, 

2000) give equations to calculate the strength of URM piers corresponding to different 

failure modes. It needs to be pointed out, however, that these failure modes are not 

mutually exclusive. The failure of an in-plane masonry pier is often a combination of 

these modes. Based on the above considerations, FEMA 306 (ATC 1999) gives 7 
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different failure modes to describe possible single or combined failure modes of URM 

piers under different loading conditions. These failure modes are: 

• URM2A: Wall-pier rocking 

• URM2B: Bed-joint sliding 

• URM2K: Preemptive diagonal tension 

• URM2L:  Preemptive toe crushing 

• URM1H:  Flexural cracking/Toe crushing 

• URM1F:  Flexural cracking/Toe crushing/ Bed joint sliding 

• URM2G:  Flexural cracking/diagonal tension 

Detailed descriptions of these failure modes can be found in FEMA 306 (ATC 

1999). 

The elastic stiffness of masonry piers can be calculated based on classical elastic 

theory considering flexural and shear deformation as follows (FEMA 274, ATC 1997): 
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where t is the thickness of pier; h is the height of pier; L is the length of pier, and α is a 

coefficient determining the position of the inflection point along the height of pier (α is 

equal to 0.83 in the case of fixed-fixed wall, and 3.33 in the case of a cantilever wall).  

Based on the test data collected by FEMA 307 (ATC 1999), the deformation 

capacity corresponding to each failure mechanism can be estimated as in Table 2.3. 
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Table 2.3. Ultimate drift of URM pier corresponding to different failure modes 
Failure mode Ultimate drift (%) References 
Rocking 0.6% to 1.3% Anthoine (1995), 

Magenes & Calvi 
(1995), Costley & 
Abrams (1996) 

Bed-joint sliding 0.6% to 2.4% Magenes & Calvi 
(1995), Abrams & Shah 
(1992) 

Rocking/Toe Crushing 0.8% Abrams & Shah (1992) 
Flexural Cracking/Toe 
Crushing/Bed-joint 
Sliding 

0.8% to 1.3% Manzouri et al (1995) 

Flexural 
Cracking/Diagonal 
tension 

0.5% to 0.8% Anthoine (1995), 
Magenes & Calvi 
(1992), Magenes & 
Calvi (1995) 

Flexural Cracking/Toe 
crushing 

0.2% to 0.4% Abrams & Shah (1992), 
Epperson and Abrams 
(1989) 

 

 

The table clearly shows that the type of failure mode determines the deformation 

capacity of URM piers. For example, if rocking or sliding occurs before the URM pier 

fails in diagonal tension or toe crushing, the ultimate drift capacity is rather large, around 

1% to 2%. In contrast, if the pier fails in diagonal tension or toe crushing without rocking 

or sliding preceding them, the ultimate drift capacity of pier is rather small, around 0.5%.  

FEMA 306 (ATC 1999) utilizes a series of empirical formulae to identify the 

mixed failure modes of a URM pier. However, the rationale behind these formulae is not 

provided. A method based on the mechanical mechanism of a URM pier will be 

presented in Chapter 4 to describe its mixed failure mode.    
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2.3.2. URM Spandrels 

Not much research has been conducted on the behavior of URM spandrels. The 

behavior of a spandrel is very different from that of a pier. One of the primary reasons is 

that the loading conditions of a spandrel are different from that of a pier. For example, the 

axial force in a spandrel is very small compared with that of a pier. To simplify the 

design, some researchers have assumed that the spandrel is always elastic and free of 

damage (Boussabah 1992). On the other hand, field studies and experimental research 

show that cracks can develop in the spandrel (Figure 2.5).  These cracks will influence 

the behavior of the URM piers, and that of overall URM structure.  

 

 

 

Figure 2.5. Crack observed in the spandrel of Wall B (Magenes et al. 1995) 
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FEMA 306 (ATC 1999) distinguishes between two different failure modes of 

spandrels, which are spandrel joint sliding (URM3D) and spandrel unit cracking 

(URM3I). Formulae are provided in the report to calculate the strength of spandrel 

corresponding to different failure mechanisms. However, no reference, or justification, or 

supporting experimental data is provided for the formulas. Further detailed discussions on 

the possible failure mechanisms of spandrel will be given in Chapter 11. 

 

2.4. URM OUT-OF-PLANE WALL 

The out-of-plane wall works like a thin plate supported on the edges adjacent to 

the in-plane walls, the connections with the roof and floor systems, and the ground acting 

as the boundary elements. During an earthquake, the out-of-plane wall vibrates under the 

seismic force induced by its own mass and the forces transferred from roof, floor and in-

plane walls. The vibration and the associated bending deformation may lead to the 

cracking and out-of-plane collapse of the wall. Many experiments, including both 

dynamic and static tests, have been carried out to assess the out-of-plane behavior of 

masonry walls (ABK 1981a, out-of-plane, Prawel and Lee 1990b, Bariola et al. 1990, 

ST10 2000, Drysdale 1988, Zhang et al. 2001). These experiments verified that out-of-

plane seismic dynamic stability is one of the most important problems for out-of-plane 

walls (Boussabah 1992). When not properly connected to roof, floor and in-plane walls, 

the out-of-plane masonry wall can easily become unstable and collapse under out-of-

plane vibrations, as has been observed in the case of many old masonry buildings during 

earthquakes (Bruneau 1994b). On the other hand, if the supports of the out-of-plane wall, 

especially the connections between the wall and the floor and roof diaphragms, have 
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sufficient strength, the supports transform the out-of-plane behavior of the URM wall 

from an unrestrained cantilever beam to a series of one-story-high panels dynamically 

excited at each end of floor diaphragms. As a result the URM wall can resist more severe 

earthquakes than predicted by traditional static analysis methods (Bruneau 1994, 

Boussabah 1992).  After cracking, each portion of this properly supported wall behaves 

as a rigid-body member rocking on the wall’s through-cracks. If the gravity forces of the 

wall are sufficient to prevent overturning of these individual bodies through the entire 

earthquake, a condition of dynamic stability of the out-of-plane walls exists. Detailed 

literature review of past experimental and analytical research on URM out-of-plane wall 

can be found in the intermediate ST-11 report (Yi et al. 2002). 

Another important role an out-of-plane wall plays in a URM building is its 

influence on the response of in-plane walls. The existing of out-of-plane walls may 

increase the stiffness and the strength of in-plane walls. This effect is well known as 

“flange effects”. However, not much research has been conducted on this topic. A 

theoretical investigation on the flange effects will be given in Chapter 5. Results of 

experimental research on this topic will be presented in Chapters 8 and 9.    

 

2.5. FLEXIBLE FLOOR AND ROOF DIAPHRAGMS 

A wood diaphragm is an assemblage that typically includes three elements: 

sheathing, joists and blocks. Some experimental research has been conducted on flexible 

wood diaphragm (APA 1985, 1986, Contryman 1952, 1955, Tissell 1967, Jonhson 1956, 

ABK 1981a, Zagajeski 1984, Peralta et al. 2000). MAEC Project ST-8 report (Peralta et 

al. 2000) gives a detailed review of those tests. These experiments revealed that the wood 
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diaphragm exhibits some distinct characteristics that have significant effects on the 

behavior of a URM building.  

First, instead of acting as a hinge support to the out-of-plane wall, as is the case 

for a rigid diaphragm, the flexibility of a wood diaphragm makes its support to the out-of-

plane masonry walls a spring support.  The interaction between the flexible wood 

diaphragm and the out-of-plane walls will affect the response of the out-of-plane wall. If 

the diaphragm is not properly connected to the masonry wall, the diaphragm may pound 

the URM out-of-plane wall during an earthquake, and make the wall develop out-of-

plane cracks (Bruneau 1994b). 

Second, a wood diaphragm has large deformation capacity and high strength 

relative to its mass. The failure of a wood diaphragm itself has rarely been observed in 

previous earthquakes. Instead, several other failure mechanisms dominate the failure of a 

wood diaphragm. For example, lack of connections or weak connections unrelated to 

seismic concerns (star anchors and government anchors for example) between the 

diaphragm and the masonry walls in existing URM buildings usually play an important 

role in the nonlinear behavior of diaphragm. Moreover, when the masonry walls vibrate 

in the out-of-plane direction and tend to separate from the roof or floor diaphragm under 

seismic excitation, the diaphragm may slip off its supports and collapse if the diaphragm 

is not or inadequately connected to the masonry walls (Bruneau 1994b).  

Third, while the flexibility of a wood diaphragm produces an amplification of up 

to 3 or 4 times the input acceleration in the elastic range, the wood diaphragm may have a 

highly nonlinear hysteretic behavior when the peak ground acceleration is high. This has 
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a positive effect on reducing the diaphragms’ peak accelerations and velocities (Bruneau 

1994b).  

 Previous experimental research on flexible diaphragm mainly focused on the 

linear and nonlinear properties of flexible diaphragm itself. However, the contribution of 

flexible diaphragm to the response of the entire URM building comes from the 

interaction between flexible diaphragm and masonry walls. This interaction is governed 

by not only the stiffness of the flexible diaphragm and masonry walls, but also the 

strength and stiffness of the connections between these two components. This topic will 

be addressed in Chapter 7. 

 

2.6. EXPERIMENTAL AND ANALYTICAL RESEARCH FOR URM 

BUILDINGS  

The interactions between the three basic components: the in-plane walls, the out-

of-plane walls, and the roof and floor diaphragms, determine the behavior of a URM 

building. Under a seismic excitation, the in-plane walls are generally excited with little 

amplification because of their large stiffness and low natural period. In contrast, the out-

of-plane walls are excited with rather large amplification, due to their relative low 

stiffness and high natural period. The floor and roof diaphragms are excited through the 

connections between the walls and the diaphragms, and usually exhibit large 

amplification. However, the low mass of the diaphragms means that the acceleration of 

the floor or roof system results in relatively small forces compared to those developed in 

the walls. 
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Post-earthquake investigations and experimental research have showed that the 

typical failure modes of a URM building can be grouped into the following categories 

(Deppe 1988, Boussabah 1992, Bruneau 1994a, 1994b, 1995, Tomazevic 1999, Peralta et 

al. 2000): 

• Lack of anchorage between masonry walls and diaphragms 

• Anchor failure 

• Out-of-plane failures of masonry walls 

• In-plane failures of URM walls  

• Combined in-plane and out-of-plane failures, including cracks at the wall 

intersections  

• Diaphragm related failures 

Of the different failure modes discussed above, the potential out-of-plane failure 

of URM elements, including out-of-plane structural walls and other non-structural 

components, constitutes the most serious life-safety hazard for this type of construction. 

However, this type of failure can be prevented by properly anchoring the masonry walls 

to the floor and roof system. In this case, the in-plane failure of URM walls is the 

dominating failure mode for the URM building, which is the main research focus of this 

Ph.D. work. 

 

2.6.1. Experimental research on URM structures 

Reduced-scale dynamic tests (Clough et al. 1979, Gulkan et al. 1979, 1990, 

Tomazevic 1990, 1993, Costley and Abrams 1996), pseudo-dynamic tests (Paquette and 



 26

Bruneau, 2000 and 2003), and large-scale quasi-static tests (Magenes et al. 1995) have 

been conducted on URM structures.  

The first dynamic tests on a URM structure were conducted by Clough et al. 

(1979). Four one-story masonry houses, with both unreinforced and partially reinforced 

masonry wall panels, were tested on a shake table. The objectives of this experiment were 

to determine the maximum earthquake intensity that could be resisted by a typical URM 

house, and to evaluate the additional resistance that would be provided to the structure by 

partial reinforcement.  

In this test, the masonry units, the size of the wall components, and the roof-to-

wall connections were full-scale to represent the behavior of a real masonry building. On 

the other hand, the plan areas of the building were one-ninth those of a reasonable 

prototype due to the capacity of the shake table. To represent the realistic gravity stresses 

in the masonry pier, weights were added at the roof level. The first specimen was 

designed with a panel in the middle of each four sides, and with a corner component 

located at each corner (Figure 2.6). The other three specimens were designed with four 

perforated walls and no direct connections between adjacent wall panels (Figure 2.7). All 

four specimens were made from standard two-core hollow concrete block or two-core 

hollow clay brick and type S mortar. A typical timber truss roof system was used for all 

the four specimens. 

 

 

 

 



 27

 

 

 

 

 

Figure 2.6. Specimen House 1 in Clough’s test (Clough et al. 1979) 
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Figure 2.7. Specimen House 2 in Clough’s test (Clough et al. 1979) 
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The following phenomena were observed in these tests (Clough et al. 1979): 

• Since the stiffness of the in-plane walls were much larger than that of the out-of-

plane walls, the in-plane walls resisted the majority of the seismic forces.  

• The masonry structure was so stiff that the motions of the test structures followed 

the shake table motions very closely, with the deformation of the structure 

generally being proportional to, and in phase with the base accelerations. The 

amplification of ground motion due to the flexibility of structure was rather small. 

As a result, the peak acceleration, instead of the frequency characteristics, was a 

major factor to be considered when assessing the damage of a URM building.  

• If one in-plane wall was stiffer than the other, the two in-plane walls might 

develop different lateral displacements under lateral earthquake excitation, with a 

resulting tendency to cause rotation of the roof. If the roof had sufficient 

membrane rigidity, it would rotate as a rigid unit, and consequently induced out-

of-plane deformations in the in-plane walls, and in-plane deformations in the out-

of-plane walls. However, if the stiffness of the roof diaphragm was much smaller 

than that of the masonry walls, the masonry walls would resist this tendency and 

forced the roof to develop shear distortions to accommodate the unequal 

displacements at the top of the in-plane walls.  

Based on the prototypes of old urban masonry residential houses in the 

earthquake-prone areas of central Europe and Mediterranean, four 1:4 scale simplified 

two-story URM models were constructed and tested in a one-degree vibration shake table 

by Tomazevic et al. (1993).  The URM structures were composed of stone and cement 

mortar (cement: lime: sand in the proportion of 0.5:4:12). The structural configurations of 
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the masonry walls in all the four models were identical: the in-plane walls oriented in the 

direction of the shake table motion were solid loading-bearing walls, while the out-of-

plane walls were perforated walls with window and door openings (Figure 2.8). The 

diaphragms were different for the four models (Figure 2.9). Model A had wooden floors 

made of freely supported wood joists without steel ties. The diaphragms of Model C were 

identical to those of Model A, except that the masonry walls were tied with steel ties at 

the floor and roof levels. The diaphragms of Model D were similar to those of Model C, 

except that a brick vault replaced the wooden roof. The diaphragms in Model B consisted 

of RC slabs with bond-beams along the walls. 

 

 

 

(a) Out-of-plane wall                   (b) In-plane wall                                       
Figure 2.8.  Layout and dimensions of the tested models (units in cm) (Tomazevic et al. 

1993) 
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Figure 2.9.  Floor and Roof systems of the tested models (units in cm) (Tomazevic et al. 
1993) 

 

 

The behavior of Model A was as follows. At the beginning of the test, rocking 

was observed along the cracks at the joints between the walls and the foundation slab. 

With increasing ground motion, more and more horizontal and diagonal cracks developed 

in the first floor walls. After that, the walls in the second story disintegrated, and all the 

upper corner walls separated. Vertical cracks and horizontal cracks were also observed in 

the second-story out-of-plane walls. Masonry units began to fall off. Meanwhile, the 

cracks in the first floor continued to propagate. The test was stopped when one of the 

corner walls at the second floor collapsed. 
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The behavior of Models B, C, and D were similar. All of them collapsed because 

of the severe damage developed in the walls in the first story, whereas no significant 

damages to the second story walls were observed. At the beginning of the test, the models 

were observed rocking and vibrating along the crack at the joints between the walls and 

the foundation slab. Then horizontal cracks developed all around the models just below 

the floor diaphragm. With increasing ground motion, the damage accumulated in the first 

floor walls, while the second story walls vibrated like a monolithic box placed on the top 

of the first floor walls with little damage. Finally, severe diagonal cracks developed in the 

first-story in-plane walls. Also, vertical cracks developed at the corners of the first-story 

in-plane walls because of the sliding and rocking of the upper second-story box. 

The lateral deformation shapes were also obtained in this experiment. Figure 2.10 

shows the distribution of the displacements at three locations along the roof. The 

displacements of the in-plane walls and the out-of-plane walls were almost the same in 

the elastic range for the different diaphragms, possibly due to the large thickness of the 

masonry walls.  However, with increasing ground motion, the differences between the 

lateral displacements of the in-plane walls and that of the out-of-plane wall increased. As 

observed in the experiment, there was out-of-plane failure in Model A, but not in Model 

B, C, and D. It indicates a rigid diaphragm or simply tying the masonry walls at the floor 

and roof levels can prevent the out-of-plane damage of masonry walls. 
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Figure 2.10. Distribution of displacements along the top floor (Tomazevic 1993) 
(Locations: 2, 4 the in-plane walls, 3 center of the out-of-plane wall) 

 

 

The other important conclusions also obtained from this test are (Tomazevic 

1993): 

• The structural characteristics of the floor and roof diaphragms and the tying of 

structural walls represented decisive parameters to the seismic resistance of 

masonry walls.  

• For a URM structure without ties to prevent the separation of the walls, the out-

of-plane walls cracked easily. As a result, the out-of–plane walls might collapse 

before severe damage developed in other parts of the structure. In addition, the 

failure of out-of-plane walls was easy to develop in the upper story.  

• If the failure of the out-of-plane walls were prevented by a strong floor system, 

the damage would concentrate on the first story in-plane walls. When the upper 

structure rocked and slid on the top of the first floor, the corner of the first floor 

failed early in the tests.  

Intensity of shaking table motion

         House a                House b                    House c                     House d 
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More recently, two reduced-scale URM buildings were constructed and tested at 

the University of Illinois by Costley and Abrams (1996). The box-type structures had two 

perforated shear/bearing in plane walls (window wall and door wall), and two solid out-

of-plane walls (Figures 2.11 and 2.12). For both test structures S1 and S2, the two out-of-

plane walls and the window wall were continuous, forming a C-shape, while the door 

wall was separated by a full-height gap with the width of one mortar joint. A steel 

diaphragm with attached additional weights was used to represent the flexible wood 

diaphragm. The diaphragm was simply supported on the in-plane walls through special 

details so that it could transfer the shear forces as well as the vertical forces. The floor 

system was also tied to the out-of-plane walls by rods and nuts. Only the first building S1 

is discussed here, since the second building was rebuilt from the first one and exhibited 

similar behavior. 

 

 

  

 

Figure 2.11. Window wall and out-of-plane wall of the tested structure S1 (Costley and 
Abrams 1996) 
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(a) Door wall       (b) Window wall 

Figure 2.12. Configuration of perforated in-plane walls   (Costley and Abrams 1996) 
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The first cracks observed in this building were the debonding cracks between two 

out-of-plane walls and the concrete foundation. With increasing base acceleration, more 

and more cracks developed in both the in-plane walls and the out-of-plane walls. In the 

door wall, the outside piers rocked, and the central pier slid. In the window wall, some 

cracks were observed initiating from the corner of the window opening, and propagating 

as diagonal cracks into the piers. The entire top portion of this test structure appeared to 

be fixed in space as the first-story walls moved back and forth below with the base 

excitation. 

As expected for a flexible diaphragm system, little coupling was observed 

between the parallel shear walls. Individual walls vibrated independently of each other 

with no torsion induced by the diaphragm. In some cases, the deflection of the door wall 

was two times larger than that of the window wall. The acceleration ratios for the model 

structure were also interesting. Prior to cracking, both the ratio between the wall 

acceleration and the base acceleration and the ratio between the diaphragm acceleration 

and the wall acceleration were appreciable, on the order of 1.2-1.7 and 1.7-2.5, 

respectively. After substantial cracks developed in the walls, both of the two ratios 

decreased to almost 1:1, which means little amplitude existed.  

The test also showed that the equivalent roof level seismic force was almost the 

same as that at the floor level. For the structure in elastic range, the phenomenon could be 

explained by the fact that the masonry walls might be very stiff. After cracks developed 

in the structure, these results might also be expected since the upper portion (including 

both diaphragms) of the structure remained intact and moved as a rigid body on the top of 

the first floor. 
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Compared to the reduced-scale dynamic experiments, full-scale tests of URM 

structures are seldom conducted due to the cost and test capacity demands. Recently, a 

research program was conducted at the University of Ottawa to investigate the flexible-

floor-rigid wall interaction in old URM buildings (Paquette and Bruneau, 2002). A test of 

a single-story full-scale URM building was conducted. This building was composed of 

two symmetric perforated in-plane walls and two solid out-of-plane walls, which were 

constructed from solid bricks and Type O mortar (Figure 2.13). The two out-of-plane 

walls and the east in-plane wall were continuous, forming a C-shape, while the west in-

plane wall was separated from the out-of-plane walls by a gap. This was used to 

investigate the effect of out-of-plane walls on the in-plane walls. The flexible diaphragm 

of this building was constructed with wood joists and covered with diagonal boards with 

a straight board overlay. The diaphragm was also anchored to the wall with through-wall 

bolts in accordance with UCBC (ICBO, 1997). The building was tested in a pseudo-

dynamic fashion by using one actuator to apply pseudo-dynamic force at the center of the 

diaphragm. One interesting finding in this test is that during the initial low intensity 

seismic motion, different stiffness for the east and west walls were observed. However, 

after the cracks fully developed in the building, the hysteretic curves for these two shear 

walls during a higher intensity seismic motion became very similar. This suggests that the 

effect of continuous or discontinuous corners becomes less significant during high 

intensity seismic motion. 
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Figure 2.13. Tested single-story URM building (Paquette and Bruneau 2002) 
 

 

Another full-scale test of URM structure was conducted by Magenes et al. (1995) 

in Italy. The specimen tested in their experiment was a replica of the reduced-scale 

dynamic specimen tested by Costley and Abrams (1996). The geometry of the large-scale 

static (LS) test structure was almost identical to that of the reduced-scale dynamic (RD) 

specimen. The floor and roof systems of the LS specimen were the same as those used in 

the RD specimen, consisting of 11 isolated steel beams directly embedded into the 

masonry walls. However, different materials were used in the two tests. Clay brick and 

Type O mortar were used for the RD model, while clay brick and lime mortar were used 

for the LS structure. Furthermore, the gravity stresses in the first floor piers of the LS 

structure were 60 to 70 psi, which were larger than the gravity stresses of 33 to 48 psi in 

the first floor piers of the RD model. 
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The lateral loads were applied to the in-plane walls of the LS specimen under 

displacement control. The roof drifts of the two in-plane walls were controlled and were 

set equal to each other. The displacement at the floor level of each wall was controlled 

such that the applied force at the floor level was equal to that at the roof level. The equal 

roof and floor forces loading scheme was based on the test results of the RD test.  

Some interesting results can be obtained by comparing the different failure modes 

observed for the two test specimens. The final crack pattern for the RD specimen S1 is 

shown in Figure 2.14. The out-of-plane walls cracked prior to the in-plane walls.  Cracks 

in the out-of-plane walls were mainly horizontal, which means that the out-of-plane walls 

worked more like the flange of the in-plane walls. All the cracks in the in-plane walls 

concentrated on the first floor. Flexural horizontal cracks developed at the bottom and top 

of each pier. Some cracks also developed in the portion below the window opening in the 

window wall. On the other hand, no diagonal cracks were observed in the piers, and no 

cracks were observed in the spandrel. The final crack pattern for the LS specimen is 

shown in Figure 2.15. The crack pattern of the out-of-plane walls was similar to that of 

the RD specimen. However, the crack pattern of the in-plane walls was different from 

that of RD specimen. Initially, cracking was limited to the spandrels between the 

openings in both the two in-plane walls. As cracks developed in the spandrels, the 

coupling between masonry piers decreased.  Eventually, the cracks in the spandrels 

ceased to propagate further, and more and more cracks were observed in the piers. At the 

maximum drift level, the failures of all the first floor piers in the door wall were 

dominated by shear. On the other hand, although the central first-story pier of the window 

wall failed in shear cracks, its two exterior first-story piers rocked.   
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Both the RD test and the LS test showed that the damage of the first floor was 

much severe than that of the second floor, and that the damage of the in-plane walls was 

much severe than that of the out-of-plane walls. The two in-plane walls worked as two 

separate walls, because the flexible floor and roof diaphragms could not provide much 

coupling between the parallel masonry walls. However, significant differences existed 

between the two specimens, which can be summarized as follows: 

• The damage of the LS specimen was much extensive and severe than that of the 

RD specimen. 

• The failures of the first floor piers of the LS specimen were dominated by 

diagonal cracks, which were not observed in the RD specimen. 

• The spandrel of LS specimen, especially the area right above the first-story 

opening, showed extensive damage, which was not observed in the RD specimen. 

• The out-of-plane walls in the LS specimen worked more like the flanges of in-

plane walls, since the external force was transmitted to them through in-plane 

walls. This was different from the RD specimen, where the out-of-plane walls had 

to resist their own inertia force. 

Significant differences for the lateral drifts between the RD specimen and the LS 

specimen were also observed. Although the story drifts associated with the initiation of 

cracking for both the RD specimen and the LS specimen were approximately 0.1%, the 

drifts associated with the nonlinear behavior were different for the two specimens. The 

maximum lateral force of the LS structure was initially achieved at a drift of 

approximately 0.2%, and the static test was terminated when significant damage 

developed at a maximum drift of approximately 0.4%. As a comparison, the RD structure 
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reached its maximum lateral strength at a first floor drift of approximately 0.5%, and the 

test was terminated with a maximum first floor drift of approximately 1.0%. 

The different behaviors observed for the RD test and the LS test are probably due 

to the following reasons: 

• The different materials and gravity stresses used in the two structures may lead to 

different failure modes in the pier. 

• The concentrated lateral forces applied in the LS test will cause different force 

distributions in the masonry walls compared with that induced by the relatively 

uniform lateral inertia forces in the RD test, and consequently lead to different 

failure modes. 

• The LS test allows more time for the cracks to propagate. As a result, the damage 

of the LS specimen is more severe than that of the RD specimen. 

Another important phenomenon observed in the LS test but not in the RD test is 

the different directions of diagonal cracks in the first floor piers of the door wall (see 

Figure 2.5). The diagonal cracks in the central pier propagate in two opposite directions 

and exhibited an X configuration. Conversely, the diagonal cracks in the two exterior 

piers propagated only in one direction, parallel to the large compressive force induced by 

the external overturning moment. This indicates that the overturning moment has 

significant influence on the nonlinear behavior of URM walls. More detailed discussion 

on the effects of external overturning moment will be found in Chapters 8 and 9.  
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(a) In-plane wall 

 

(b) out-of-plane wall 

Figure 2.14. Final crack pattern in the dynamical tested specimen (Costley and Abrams 
1996) 
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Figure 2.15. Final crack pattern in static tested specimen (Magenes et al. 1995) 

 

 

   Wall B            Wall A 

   Wall D          Wall C 
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2.6.2.  Analytical research on URM structures 

Associated with the experimental research described above and elsewhere, 

extensive analytical research has also been conducted to predict the nonlinear response of 

URM structures. The analysis of URM structure can be divided into two categories: 1) 

analyses based on detailed nonlinear FE models, and 2) analyses based on simplified 

models. 

Commonly used nonlinear FE models for URM structures can be further 

subdivided into discrete crack models and smeared crack models. The difference between 

these two types of models is the methodology to treat the opening and closing of the 

cracks in masonry. Further discussion of the two types of models can be found in Chapter 

11. 

The detailed nonlinear FE analysis methods are usually not suitable for the 

analysis of an entire URM structure, simply because they are too time-consuming. As an 

alternative, simplified methods were also widely used in previous research. The 

simplified methods can be further categorized into the simplified methods to model a 

perforated URM in-plane wall and the simplified methods to model an entire URM 

building. Further discussion on the two types of models can be found in Chapter 12.  

 

2.7. SUMMARY  

A general picture of the research on URM structure has been given in this chapter. 

Specifically, previous experimental research on the performance of entire URM 

structures was reviewed in detail. Previous research reveals that URM structure is a very 

unique structure type with its specific structural characteristics. Detailed investigation on 
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the nonlinear behavior of URM buildings should be conducted at three different levels - 

the material level, the component level, and the structure level, which will be discussed in 

the subsequent chapters. 
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CHAPTER 3 

MECHANICAL KEY MODEL FOR THE FAILURE CRITERIA OF MASONRY 

 

 

3.1. INTRODUCTION 

Masonry, a composite material made up of masonry units and mortar, exhibits 

distinct directional properties because of the influence of mortar joints. In the case of 

strong unit-weak mortar masonry, this phenomenon is more significant because the 

mortar joints act as planes of weakness. For example, depending on the orientation of the 

joints to the applied stresses, cracks can occur in the joints alone, or in some form of 

combined mechanism involving both the mortar and the masonry unit. Therefore, the 

material properties of masonry under in-plane loads, such as the failure modes and the 

ultimate strength, are determined by not only the principal stresses 1σ  and 2σ , but also 

their respective orientations to the bed joint, θ  and θ +90 (Page et al. 1982).  

The most complete set of experimental data for masonry subjected to proportional 

biaxial loading were provided by Page (1981, 1983). These tests verified that both the 

orientation of the principal stresses with regard to the bed joints and the principal stress 

ratio influence the failure mode and strength. The biaxial strengths obtained in these tests 

on half-scale solid clay units are shown in Figure 3.1. The different modes of failure are 

illustrated in Figure 3.2.  
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Figure 3.1. Biaxial strength of solid clay unit masonry (Page 1981, 1983) 
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Figure 3.2. Modes of failure of solid clay unit masonry under biaxial loading 
(Dhanasekar et al. 1985a) 

 

 

The observed failure modes for the in-plane masonry are as follows. When 

masonry was loaded in uniaxial tension, failure occurred by cracking and sliding of the 

head and bed joints. When masonry was loaded in uniaxial compression, the failure mode 

was more sensitive to the orientation of the bed joints with respect to the applied load. 

For uniaxial compression parallel to the bed joint, failure occurred by splitting in the 

vertical head joints due to lateral spreading of the panel. For uniaxial compression 
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perpendicular to the bed joint, failure involved a combined mechanism with vertical 

cracks in both head joints and bricks. When the uniaxial compressive force was applied at 

an angle to the bed joints, the failure modes included possible splitting cracks in both the 

masonry joints and the bricks, and stair-step cracks in both the bed joints and the head 

joints. 

When masonry was loaded in a tension-compression biaxial loading condition, 

failure occurred either by cracking and sliding of the joints alone or in a combined 

mechanism involving both units and joints. In contrast, in a biaxial compression loading 

condition failure typically occurred by splitting of the specimen at mid-thickness, in a 

plane parallel to its free surface, regardless of the orientation of the principal stresses.  

Meanwhile, the maximum compressive strength increased by 1.2 – 1.6 as compared with 

uniaxial compression.  

Summarizing the above test data and others from the experiments conducted by 

other researchers (Johnson and Thompson (1969), Ganz and Thurlimann (1982), 

Samarasinghe (1980), Samarasinghe and Hendry (1982), Ganz (1985,1989), Hamid and 

Drysdale (1981), Tassios and Vachliotis (1989)), it was found that three fundamental 

failure modes exist for masonry, which are: (1) sliding of the mortar joints, (2) cracking 

of the bricks and splitting of the joints, and (3) splitting in the middle plane (Andreaus 

and Ceradini 1992).  

Several failure criteria have been proposed to explain the failure mechanisms of 

masonry under biaxial in-plane loading (Sinha and Hendry (1969), Yokel and Fattal 

(1976), Hegemeir et al. (1978), Hamid and Drysdale (1980, 1981), Mann and Muller 

(1982), Samarasinghe and Hendry (1982), Ganz and Thurlimann (1982,1984), Drysdale 
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and Hamid (1984), Dhanasekar et al. (1985a, 1985b), Ganz (1985, 1989), Dialer (1991), 

Andreaus (1996)).  Among them, Andreaus (1996) gave the most comprehensive failure 

criteria.  In his model, a modified Mohr-Coulomb frictional law was used to illustrate the 

shear strength corresponding to the sliding of the mortar joint; a maximum tensile strain 

criterion was used to account for the splitting of bricks or joints; and a maximum 

compressive stress criterion was used for the splitting in the middle plane. These criteria 

have been embedded into a FE analysis program to analyze the nonlinear behavior of 

masonry (Andreaus 1996). 

Although many different comprehensive failure criteria have been proposed for 

analyzing the nonlinear behavior of masonry and they have indeed provided much 

valuable insight into the properties of masonry, these approaches have always some 

constrains in general due to the following reasons. First, all the failure criteria utilized in 

previous research were originally proposed for continuous and homogeneous material. 

They require that the damage be uniform across the volume of material being considered. 

This however is not the case for URM assemblies. Instead of having relative uniform 

damage, URM assemblies usually exhibit concentrated damage in the form of several 

large cracks. As a result, several distinctive failure modes observed for masonry in the 

field and in the experiments, such as rocking and sliding, cannot be captured by a 

nonlinear FE analysis employing these uniform failure criteria. Second, the failure 

criteria used for masonry are usually not coded in commercial nonlinear FE analysis 

packages. Therefore, in order to use these failure criteria, specific FE codes need to be 

written, which makes the evaluation of the different criteria proposed quite difficult. 

Third, as for other nonlinear FE analyses, this method requires detailed knowledge of 
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nonlinear FE analysis, and thus is quite impractical for structural design and analysis by 

the majority of structural engineers.   

Based on this consideration, FEMA prestandards use a different approach to 

illustrate the nonlinear in-plane behavior of masonry (ATC 1999). Instead of focusing on 

the failure of local masonry materials, FEMA prestandards took each individual masonry 

element, such as pier and spandrel, as the analysis subject. Several possible failure 

modes, which are based on the field observation, are given for each individual masonry 

element (ATC 1997a, 1997b, 2000). The corresponding force-displacement curve is also 

given for each failure mode (ATC 1999a, 1999b). Therefore, it is quite easy to utilize 

these failure criteria at the component level to analyze the nonlinear behavior of a 

masonry wall. 

Associated with these failure modes, FEMA prestandards adopt several 

representative material properties for masonry. These representative material properties 

are as follows (ATC 1997a, 1997b, 1999a, 1999b, 2000): 

• The bed joint tensile strength: ft 

• The diagonal tensile strength: ft
d 

• The compressive strength: fm 

• The initial bed joint shear strength: oτ  

• The shear friction coefficient for the cracked bed joint: µ1 

• The elastic modulus: E 

Some of these material properties are easy to understand and identify. For 

example, the bed joint tensile strength, the compressive strength, and the elastic modulus 

have been characterized through previous research. On the other hand, although extensive 
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research has been conducted on masonry bed joint shear strength, this value is still 

unclear. In addition, no clear definition has been given for the diagonal tensile strength in 

the FEMA reports or elsewhere in the literature. 

The component-level approach adopted by FEMA prestandards is an appropriate 

method for analyzing the nonlinear behavior of URM structures from the practice point 

of view. However, in order to use this approach the critical strength parameters discussed 

above need to be clarified. In this chapter, the tensile and shear properties of the interface 

between masonry unit and mortar will be first reexamined, as these properties are 

believed to be the controlling parameters required to understand the behavior of the entire 

masonry assembly. A mechanical key model will be proposed to illustrate the possible 

failure modes of the unit-mortar interface. The model will be calibrated using the results 

of previous tests and those conducted by the author. This model is then expanded to 

describe the failure modes and maximum strengths of the entire masonry assembly. 

Finally, as an application, the critical strength parameters adopted by FEMA and a typical 

material test method (the diagonal compression test) will be reexamined.   

 

3.2. SHEAR BEHAVIOR OF MASONRY BED JOINTS 

Previous experiments have shown that the failure of strong unit-weak mortar 

masonry is dominated by splitting or sliding of masonry joints for most loading cases 

expect large compressive stresses. Therefore, the tensile and shear properties of the 

masonry joints are the dominating characteristics for masonry. In the case of strong unit-

weak mortar masonry, the tensile strength of masonry joints has usually been found to be 

very small, ranging in value from 0 – 60 psi.  
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The shear strength of masonry bed joints has been widely investigated (Atkinson 

et al. 1989). The test methods employed to characterize it include a prismatic masonry 

specimen that contains a bed joint at an angle to the applied compressive load (Figure 

3.3a), a diagonal compressive specimen (Figure 3.3b), a racking test (Figure 3.3c), a 4-

brick direct shear test (Figure 3.3d), and a 3-brick direct shear test (Figure 3.3e). The 

advantages and disadvantages of each test method were discussed in Atkinson et al. 

(1989). Based on previous experimental investigation and FE analysis, the 4-brick direct 

shear test seems to be one of the most promising test methods for measuring the shear 

strength of masonry bed joint, because: (1) it gives a relative uniformed distributed shear 

stress and lateral compressive stress on the bed joints, and (2) it is quite easy to build and 

to test. 
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Figure 3.3. Masonry shear test configurations (Atkinson et al. 1989) 
 

 

These previous investigations revealed that the failure of a bed joint is a function 

of applied shear force and normal force. The complete failure criterion for a masonry bed 

joint in terms of shear stress (τ ) and normal stress ( nσ ) is conceptually illustrated by 

Page et al. (1982) as shown in Figure 3.4. Region 1 corresponds to a large shear stress to 

compressive normal stress ratio, where the failure of the bed joint is dominated by shear 

sliding of the bed joint. Region 2 corresponds to a small shear stress to compressive 

(a) (b) 

(c) 

(d) 

(e) 
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normal stress ratio, where the failure of the specimen is dominated by the compressive 

failure of the entire specimen.  

 

 

 

Figure 3.4. Typical failure criterion (in terms of nστ − ) (Page et al. 1982) 
 

 

Previous research also showed that the shear strengths of bed joints vary 

significantly with different masonry units and mortar materials. On the other hand, there 

is a relative linear relationship between the shear strength of a bed joint and the applied 

compressive normal stress. Most researchers attributed the increase in bed joint shear 

strength with an increased compression normal force to a frictional resistance at the 

brick-mortar interface. As a result, a Mohr-Coulomb frictional law has been widely used 

to illustrate the shear capacity of masonry bed joint:  

µσττ += 0  (psi)       (3.1) 

Normal Stress nσ  

Region 1 Region 2 

Compression Tension 

Sh
ea

r S
tre

ss
 τ

 



 56

where 0τ  is the shear bond strength, σ  is the compressive normal stress, and µ  is the 

internal frictional coefficient at the brick-mortar interface. 

An extensive survey of the existing test data on the bed joint shear strength has 

been given by Atkinson et al. (1989). The test data from Atkinson and some other test 

data collected in the current research, is listed in Table 3.1 in terms of Eq. 3.1 Some tests 

measured the frictional coefficient for a cracked bed joint surface, which is also listed in 

the table under the column 1µ  is. 

 

 

Table 3.1. Masonry bed joint shear strength 
Source Masonry 

Unit 
Mortar 0τ  (Psi) µ  1µ  

Benjamin et al. 
(1958) 

brick Three different 
mortars 

150 0.73 - 

Pieper (In Mayes and 
Clough 1975)  

Brick 1:2:8 29 0.84 - 

Nuss et al. (1978) Brick 1:2:9 160 0.77 - 
Nuss et al. (1978) Brick 1:0.5:4.5 686 0.75 - 
Nuss et al. (1978) Brick 1:0.25:3 705 0.76 - 
Drysdale et al. (1979) Brick 1:0.5:4 83 0.9 - 
Hamid et al. (1980)1 brick 1:0.25:2.81 103 0.97 1.12 
Hamid et al. (1980)1 brick 1:0.5:4.0 110 0.86 1.18 
Hamid et al. (1980)1 brick 1:1.25:6.75 103 0.91 1.11 
Hamid et al. (1979) Concrete 

block 
S 76 1.07 - 

Hegemier et al. 
(1978) 

Concrete 
block 

S 36  0.89 - 

Kariotis et al. (1985) Old Brick Sand –lime 48 1.15 - 
Pook et al. (1986) Concrete 

block 
S 110 0.7 - 

Stockl and Hofmann 
(1986) 

Brick 1:0.68:15 138 0.7 - 

Stockl and Hofmann 
(1986) 

Brick 1:0.0:9.7 210 0.56 - 

Atkinson et al. (1989) Old Brick 1:2:9 25 0.67 0.69 
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Table 3.1 (cont’d). 
Source Masonry 

Unit 
Mortar 0τ  (Psi) µ  1µ  

Atkinson et al. (1989) New 
Brick 

1:1.5:4.5 118 0.75 0.75 

Riddington et al. 
(1990)2 

Brick 1 masonry 
cement : 3.5 
sand by weight 

157 1.13 - 

Note: 

1. The original paper didn’t give the maximum shear strength in terms of Eq. (3.1). 

0τ  and µ  were calculated by the author based on the test data given in the original 

paper. Also, the test data revealed nonlinear relationship between the shear strength 

and the normal stress, especially when the normal stress is quite high (1000 psi). It 

was probably due to the prior mortar failure because of the large lateral 

compressive stress, as pointed out in the original paper. Therefore, only the test 

data with a normal stress less than 500 psi were used to calculate the shear strength.   

2. Two sets of tests were conducted in this research. One with a precompression 

normal stress up to 300 psi, another one with a precompression normal stress up to 

1015 psi. Only the first set of test data was used for the same reason discussed 

above. Furthermore, only the test results obtained from Test Scheme A and B were 

used, because these two test set ups led to uniform normal stress in the bed joint. 

Detailed description of the test set up can be referred to the original paper 

(Riddington et al. 1990). 

 

 

This table shows that the initial shear bond strength 0τ  varied substantially, due to 

the wide range of masonry units and mortars tested. On the other hand, the internal 

frictional coefficient ( µ ) has much less scatter, with the majority of the reported data 

falling in the range 0.7 to 1.0. Atkinson et al. (1989) proposed a value of 0.7 as the lower 

bound estimate for the bed joint friction coefficient.  
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Much of the existing test data does not distinguish between the bed joint friction 

coefficient before and after cracking. Only the experiments conducted by Hamid et al. 

(1979) and Atkinson et al. (1989) measured the bed joint friction coefficient after 

cracking. This limited test data shows quite large scatter.  

Reviewing the previous experimental data, several questions remain to be 

answered insofar as the bed joint shear strength of masonry: 

• Although the linear Mohr-Coulomb frictional law fits well with the existing test 

data for the initial bed joint shear strength, this formula is basically an empirical 

criterion. Originally, the Mohr-Coulomb frictional law was used to illustrate the 

nonlinear behavior of particulate materials such as soil. It is not necessarily a 

straightforward extrapolation to simply extend this criterion to the interface 

strength between brick and mortar. Furthermore, no attempt has been reported to 

correlate the bed joint shear strength with the bed joint tensile strength, although 

intuitively there should be some relationship between these two strength values. 

• The shear resistance of a cracked bed joint is determined by its shear friction 

coefficient (µ1 ),  while the shear resistant for an intact surface is related to the 

internal frictional coefficient (µ ).  A common assumption is that the two values 

are the same. However, no rationales have been provided. 

An alternative hypothesis to the Mohr-Coulomb criterion has been proposed by 

Smith et al. (1971) to explain the shear failure of the masonry bed joint. This theory 

suggests that the shear failure of masonry bed joint is actually due to the tensile failure of 

mortar. However, later research has shown that this hypothesis gives poor predictions for 
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the masonry bed joint shear strength with different precompression normal stress (Hamid 

et al. 1982). 

Previous experimental research showed that the shear failure usually does not 

occur in the masonry unit or in the mortar. Instead, the shear crack develops at the 

interface between masonry unit and mortar. An example for this type of shear crack is 

shown in Figure 3.5. This interface crack explains why the hypothesis given by Smith et 

al. (1971) cannot capture the shear behavior of masonry, since Stafford’s theory only 

applies to a crack inside the mortar joint. On the other hand, this interface crack reveals 

that a mechanical model for the shear strength of masonry could be established related to 

the strength of the interface between masonry unit and mortar. 

 

 

 

 

 

 

 

 

 

Figure 3.5. Shear crack at the interface between masonry units and mortar 

 

 

 Interface cracks 
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3.3. PROPOSED MECHANICAL KEY MODEL FOR INTERFACE SHEAR 

STRENGTH AND TENSILE STRENGTH  

Microscopy techniques can give a different perspective into the strength of the 

interface between masonry unit and mortar from a micro-structural point of view. Several 

microscopy studies have been carried out on the masonry unit-mortar interface 

(Lawrence et al. 1987, Abell et al. 1998, Lange et al. 1999). One important finding in the 

previous research is that mechanical interlock instead of chemical adhesion is the 

principal force bonding mortar to masonry units (Lange et al. 1999). A typical micro-

image of the interface between masonry unit and mortar is shown in Figure 3.6. The 

mortar goes into the existing voids at the surface of masonry units. This volume of mortar 

then works as a mechanical key to connect masonry units with mortar. Previous research 

has also shown that if the surface of masonry unit is so smooth and solid that the 

mechanical keys cannot develop at the surface, the bond strength between the masonry 

units and the mortar is very small (Kampf 1963). 

 

 

 

Figure 3.6. Typical mortar and clay unit interface (Lange et al. 1999) 
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Based on these considerations, a mechanical key model is proposed herein. A 

conceptual illustration of this model is shown in Figure 3.7. The following assumptions 

are employed: 

• The mechanical keys are formed by the mortar going into the voids on the surface 

of the masonry units. 

• There are two different kinds of mechanical keys at the interface between 

masonry unit and mortar. The first one is a wedge key (Figure 3.7a), and another 

one is a channel key (Figure 3.7b). The two different types of mechanical keys 

reflect the different idealized shapes of voids on the surface of masonry unit. 

• There is no bond strength between masonry unit and mortar. Therefore, the 

interface strength is controlled only by the strength of the mechanical keys. 

• The ratio of the total interface area of the wedge keys to the gross area of the 

interface is defined as rw, and the ratio of the total interface area of the channel 

keys to the gross area of the interface is defined as rc. It is assumed that rw is equal 

to rc. 

• The fracture of the mechanical keys can be illustrated by maximum tensile stress 

criterion. That is, when the maximum tensile stress in a mechanical key reaches 

its maximum tensile strength of this key (ft
m), the mechanical key breaks. 
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                        (a) Wedge key                                                            (b) Channel key 

Figure 3.7. Mechanical key model 
 

 

Based on this model, the interface strengths such as the pure tensile strength, the 

pure shear strength, and the shear strength associated with normal stress can be 

investigated.  

For example, when the interface is loaded by a pure tensile force normal to the 

interface, the tensile force is resisted by the mechanical keys. However, since the bond 

strength between masonry unit and mortar is assumed as zero, the wedge mechanical key 

cannot take any force. Therefore, the external tensile force is resisted only by the channel 

keys, and thus the tensile stress ( n
mf ) induced in the channel keys can be calculated by: 

Ar
Pf
c

n
m =       (3.2) 

where P is the tensile normal force applied on the interface, A is the gross area of the 

interface. When the calculated tensile stress is equal to the maximum tensile strength of 

the mechanical key, the mechanical key breaks in tension. The equivalent tensile strength 

for the interface can then be calculated as: 

A-A A-A

Mortar 

Brick 

Mechanical 
keys 
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m
tct frf ⋅=         (3.3) 

When the interface is loaded with pure shear force, the effective shear stress s
mτ in 

each mechanical key can be calculated as: 

( )Arr
V

cw

s
m +

=τ       (3.4) 

where V is the total lateral shear force applied on the interface. The Mohr’s circle 

approach shows that for a pure shear loading case, the principal tensile stress in the 

mechanical key has the same value as the shear stress. Therefore, the initial shear bond 

strength for the masonry interface without prescompression force can be calculated as: 

( ) m
tcw frr

A
V

+==0τ      (3.5) 

Comparing Eq. (3.3) and Eq. (3.5), and recalling that rw is equal to rc, it can be 

concluded that the initial shear bond strength ( 0τ ) is roughly twice of the bed joint tensile 

strength. Page (1981) used triplet test and couple tests to measure the initial shear bond 

strength and the tensile bond strength of masonry bed joints. Based on his test data, Page 

(1981) pointed out that for brickwork, the typical ratio of shear to tensile bond strength 

was around 2.31. It is close to the value predicted by the mechanical key model. 

When a precompressive normal force P is applied to the interface, the 

compressive stress introduced in each mechanical key is: 

( )Arr
Pf
cw

n
m +

=       (3.6) 

Note that the elastic modulus of the mortar is usually smaller than that of masonry 

unit. Thus the masonry unit actually provides confinement to the mechanical key. As a 

result, the external compressive normal force introduces not only a normal compressive 
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stress n
mf  but also a lateral compressive stress l

mf  in the mechanical keys. As a 

simplification, the value of the lateral compressive stress l
mf  is assumed equal to the 

compressive normal stress: n
mf . This assumption is correct when the stiffness of the 

masonry unit is much larger than that of mortar and the mortar completely fills in the 

voids. 

Considering the lateral confining stress, the maximum principal tensile stress in a 

mechanical key under lateral shear force V and normal compressive force P can be 

calculated based on Mohr’s circle as: 

( ) s
m

l
m

n
m

l
m

n
m fffff τ+

−
+

−−
=

42

2
max      

            = s
m

n
mf τ+−          (3.7) 

The interface reaches its maximum shear strength when fmax is equal to fm
t. 

Substituting Equations (3.4) and (3.6) into (3.7) gives: 

( ) PAfrrV m
tcw ++=       (3.8) 

Rewriting Eq. (3.8) in term of stress, and substituting Eq. (3.5) gives: 

σττ ⋅+= 0.10        (3.9) 

Eq. (3.9) gives the same formula as the linear Mohr-Coulomb frictional law. 

However, this method is based on a rational explanation for the interface failure. Note 

that the equivalent internal friction coefficient obtained by this method is 1.0, which is 

consistence with previous test results. It should also be pointed out that Eq. (3.9) is 

obtained by assuming that the confining compressive stress l
mf  is equal to the normal 

compressive stress n
mf . In many real cases, since the voids in the brick cannot be fully 
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filled by the mortar, and the stiffness of masonry unit is not infinitely larger than that of 

the mortar, the value of l
mf  should be less than n

mf . Therefore, Eq. (3.9) gives an upper-

bound estimate for the initial bed joint shear strength. 

In the case that both tensile normal force and lateral shear force are applied on a 

masonry unit-mortar interface. The tensile normal force will cause a tensile stress in the 

channel keys, which can be calculated by Eq. (3.3). Meanwhile, the shear stress induced 

in the channel keys by the lateral shear force can be calculated by Eq. (3.4). Again, based 

on Mohr’s circle, the principal tensile stress in the channel key can be calculated as: 

 22

2

22

2
1

442 ccc
m rA

V
rA

P
Ar
P

++=σ      (3.10) 

By equating Eq. (3.10) to the maximum tensile strength of the mechanical key, 

and introducing both the maximum pure tensile strength ft and the maximum pure shear 

strength 0τ  given by Eq. (3.3) and Eq. (3.5), respectively, the failure criterion for the 

masonry bed joint under tensile normal stress and lateral shear stress can be written as: 

1
2

0
=+









tf
σ

τ
τ        (3.11) 

 

3.4. EXPERIMENTAL VERIFICATION 

A 4-brick direct shear test was employed to investigate the bed joint shear 

properties before and after cracking and to verify the proposed mechanical key model. A 

picture of the test set up is shown in Figure 3.8. It is a simplified configuration of the test 

set up used by Hamid et al. (1979). The compressive force is applied by a jack at the top 

of the center top brick, which introduces shear forces at the two vertically placed bed 
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joints, and causes shear-sliding cracks in the bed joints. At the same time, instead of 

using jack, a special plate-rod system composed of four steel rods and two steel plates is 

employed to apply lateral compressive force to the specimen. Two strain gages were used 

for each steel rod to monitor the tensile force in the rod. The plate-rod system is also used 

to monitor the displacement of the specimen normal to the bed joint during the sliding of 

the bed joint.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8. 4-brick direction shear test set up 
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The tested specimen is composed of solid clay bricks and Type K’ mortar with a 

Portland cement to lime to sand ratio of 0.5:2:9. This masonry assembly is assumed to be 

a representative of the strong unit-weak mortar masonry material observed in existing 

URM buildings. A total of 21 specimens were tested. The applied lateral compressive 

stress to these specimens ranged from zero to 100 psi. The observed failure modes were 

always shear-sliding cracks along the bed joint interface between brick and mortar. The 

measured maximum initial shear strength corresponding to different lateral compressive 

stresses is shown in Figure 3.9. It can be seen that the measured initial shear bond 

strength was around 60 psi, and the measured equivalent internal shear friction 

coefficient was around 1.1. These test results verified that Eq. (3.9), as proposed by the 

mechanical key model, gives good results.    
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Figure 3.9. Measured initial shear strength with different lateral confining stresses 
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After shear cracks fully developed, the specimens were reassembled and tested 

again with various lateral confining stresses. These tests were repeated several times to 

investigate the effects of the number of deformation cycles on the shear friction 

coefficient of the cracked bed joint surfaces. It was found that the shear friction 

coefficient for the tested cracked bed joint surfaces were not sensitive to the lateral 

confining stress values (ranging from 0 to 100 psi) or to the deformation cycle number 

(ranging from 1 to 4). The shear friction coefficient had a measured value close to 1.0. 

Therefore, for the specific masonry tested, the shear friction coefficient for the cracked 

bed joint surface is close to the equivalent internal shear friction coefficient. 

Another interesting phenomenon observed during the tests is the variation of the 

lateral compressive confining force, which is an indication of the lateral movement of the 

specimen. One typical lateral force-vertical force relationship corresponding to the 

beginning of shear sliding cracks on the bed joints is shown in Figure 3.10. The lateral 

confining force remained relatively constant until the point that shear-sliding crack 

began. With the initiation of the shear-sliding crack, the measured lateral confining force 

showed a large increase. This indicated a sudden lateral tension movement of the 

interface, apparently due to the break down and separation of the mechanical keys at the 

interface, as shown in Figure 3.11. After that, the vertical force dropped off quickly due 

to the loss of the specimen stiffness (Region II). With increasing shear-sliding 

deformation, the lateral confining force gradually increased again (Region III), which 

was due to the dilatancy movement of the sliding surface. This type of movement has 

been commonly observed in the relative movement of rock joints (Goodman 1980).  
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Figure 3.10. Changing of lateral compressive force with the initiation of shear sliding 
cracks on the bed joints 

 

 

Figure 3.11. Break down and separation of the mechanical key 
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3.5. FAILURE ENVOPOLE FOR STRONG UNIT-WEAK MORTAR MASONRY 

ASSEMBLY BASED ON THE MECHANICAL KEY MODEL 

By combining Eq. (3.9) and Eq. (3.11), the complete failure criterion for the 

splitting/sliding failure of a masonry bed joint can be built as shown in Figure 3.12. Note 

that when the compressive normal stress becomes large, the failure mode of masonry 

gradually translates to a compressive failure of the masonry. Therefore, another failure 

criterion is also plotted in Figure 3.8 as the cut-off for Eq. (3.9). As discussed before, 

extensive experimental research has been conducted for the compressive failure of 

masonry and several failure criteria have been proposed (Page et al. 1982, Andreaus 

1996). The failure of masonry in the compressive region can be divided into two 

categories, compression-tension stress state and compression-compression stress state. 

When masonry is in a compression-tension stress state, the compressive strength of 

masonry decreases rapidly with increasing lateral tensile stress (Page 1981, 1983). 

Usually, a linear equation has been used to illustrate the compressive failure of masonry 

under compression-tension biaxial stress state: 

121 =+
mt ff

σσ        (3.12) 

where 1σ  and 2σ are the principal tensile stress and the principal compressive stress for 

the in-plane loaded masonry, respectively. ft and fm are the masonry tensile strength and 

compressive strength, respectively. Note that the values of ft and fm are dependent on the 

angle between the loading direction and the bed joint (Page 1981), although some 

researchers did not consider this fact for the sake of simplicity (Syrmakezis C.A. et al. 

1995, Bull J.W. 2001).  A simple treatment is proposed herein to consider this issue. 
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Assuming the uniaxial compressive strengths for the masonry are ⊥
mf  and ||

mf  

corresponding to the direction of the compressive force perpendicular and parallel to the 

bed joints, respectively, the uniaxial compressive strength for masonry corresponding to 

the direction of the compressive force at an angle φ  to the bed joint can be simply 

calculated as: 

( ) ( )
π
φφ 2|||| ⋅−+= ⊥

mmmm ffff      (3.13) 

Similarly, assuming that the uniaxial tensile strengths for the masonry are ⊥
tf  and 

||
tf  corresponding to the direction of the tensile force perpendicular and parallel to the 

bed joints, respectively, the uniaxial tensile strength for masonry corresponding to the 

direction of the tensile force at an angle θ  to the bed joint can be calculated as: 

( ) ( )
π
φφ 2|||| ⋅−+= ⊥

tttt ffff      (3.14) 

Substituting Eqs. (3.13) and (3.14) into Eq. (3.12), the maximum compressive 

strength of masonry at compression-tension stress state corresponding to the principal 

compressive stress at an angle of  θ  to the bed joint can be calculated as: 

( )
1

2)(2 ||||

2

||

1 =
⋅−+

+
−+ ⊥⊥⊥

π
φ

σ

π
φ

σ

mmmttt ffffff
   (3.15) 
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Figure 3.12. Failure criteria for masonry bed joints 

 

 It should be pointed out that ⊥
tf  and ⊥

mf  are the well-known masonry bed joint 

tensile strength and masonry compressive strength, respectively, and can be obtained 

from standard material tests. On the other hand, tests have seldom been conducted to 

measure the value of ||
mf . Therefore, not much information is available for this value. 

However, Page’s tests (Page 1981) showed that it is roughly 0.7 of ⊥
mf  for brick 

masonry.  

The value of ||
tf  is determined by the initial shear bond strength of the bed joint if 

the strength of the head joint is ignored (See Figure 3.13). Therefore, The value of ||
tf   

can be calculated by: 

0
|| 5.0 κτ=tf        (3.16) 
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where κ is the length to height ratio of masonry unit, which is around 3.2 for common 

size brick unit. Considering these values Eq. (3.15) can be simplified to: 

( )
1

6.07.0
26.1

2

0

1 =






 +

+
−+ ⊥⊥⊥

π
φ

σ

π
φτ

σ

mtt fff
    (3.17) 

When masonry is in a compression-compression stress state, as discussed before, 

the failure of masonry is not so sensitive to the directions of the principal stresses. 

Therefore, a simple equation proposed by Naraine (1991) can be used: 

( ) 11 212 =+−+ CIICCJ     (3.18) 

where J2, I1, I2 are principle stress invariants defined as: 
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and C is a constant defining the shape of the failure envelope. When C is equal to 1.0, Eq. 

(3.18) reduces to the Von Mises yield criterion. When C is equal to 1.6, Eq. (3.18) fits 

well with the existing experimental data (Naraine 1991). 

Based on the above discussion, the failure criterion for Region II in Figure 3.12 

can be determined by Eqs. (3.17) and (3.18). This failure criterion, together Eqs (3.9) and 

(3.11), forms a complete failure envelope for a masonry bed joint under in-plane stress 

state. Given that for strong unit-weak mortar URM assembly, its behavior is controlled 

by the properties of bed joints, it is reasonable to expand the proposed mechanical key 

model to illustrate the behavior of masonry at large scale. Note that when using Eqs. (17) 

and (18) to determine the compressive failure envelope, the values of 1σ , 2σ , and θ  can 

be determined by the normal stress and shear stress applied on the bed joint based on 

Mohr’s circle. 
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Figure 3.13. Failure mode of masonry with the tensile stress parallel to the bed joint 
 

 

3.6. REEVALUATION OF FEMA 356 STRENGTH PARAMETERS BASED ON 

THE MECHANICAL KEY MODEL 

As an application of the mechanical key model, the validity of the strength 

parameters adopted by FEMA 356 can be assessed. As discussed before, three controlling 

strength parameters are needed in the mechanical key model. They are:  

• The bed joint tensile strength: ft 

• The compressive strength of masonry perpendicular to the bed joint: fm 

• The initial bed joint shear bond strength: 0τ  

These three parameters are also adopted in FEMA 356. In addition, another 

strength parameter, the diagonal tensile strength (ft
d), is utilized in FEMA 356 as well. At 

present, several standard material tests are available to determine the values of the first 

three strength parameters. For example, ASTM E72 method and couple test can be used 

to determine the ultimate and design flexural tensile strengths for masonry. Prism test is 
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usually utilized to determine the compressive strength of masonry (ASTM E447). 

Racking load test, diagonal compression test, and 4-brick direct shear test are usually 

used to measure the shear strength of masonry (ASTM E72, ASTM E519). On the other 

hand, no test method has been specified to measure the diagonal tension strength.   

Both FEMA 356 and the mechanical key model point out that masonry shear 

strength is dependent on both the initial bed joint shear bond strength and the shear 

friction coefficients. The mechanical model further points out that the value of the initial 

bed joint bond shear strength is roughly double of the bed joint tensile strength. 

One significant difference between FEMA prestandards and the mechanical key 

model is that FEMA 356 does not distinguish between the equivalent internal shear 

friction coefficient for an uncracked bed joint and the shear friction coefficient for a 

cracked bed joint. Conversely, the mechanical key model points out that these two values 

are associated with different mechanical phenomena. The internal shear friction 

coefficient is an equivalent value that incorporates the effect of the confining 

compressive stress on the mechanical key induced by the lateral stress. For a perfect 

strong unit-weak mortar masonry, µ is equal to 1.0. Considering the possibility that many 

voids are not completely filled, a reduced value, say 0.8-0.9, should probably be used. In 

contrast, the shear friction coefficient for a cracked joint corresponds to the true sliding 

friction between brick and mortar. Its value depends on the configuration of the interface 

between the masonry unit and the mortar, which can also be determined by 4-brick direct 

shear test or triplet test.  

Another significant difference between FEMA prestandards and the mechanical 

key model is that FEMA 356 uses the diagonal tensile strength (ft
d) to determine the 
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possible diagonal cracking in a masonry panel. However, whether this diagonal cracking 

is due to splitting and/or sliding of masonry joints or the compressive failure of masonry 

is not clearly specified. Nevertheless, ASTM equates the diagonal tension strength with 

the shear stress (ASTM E519), and FEMA 356 uses the initial bed joint shear strength for 

the diagonal tensile strength (ATC 2000). 

In contrast, the mechanical key model reveals the true working mechanism for a 

diagonal cracking in a masonry panel. This model points out that both the sliding and 

splitting of the masonry joints are attributable to the tensile failure of the interface 

between the masonry unit and mortar. Therefore, when the calculated combination of the 

normal stress and the shear stress on the bed joints satisfies Eq. (3.9) or Eq. (3.11), a 

diagonal cracking will occur in the masonry. This crack is associated with sliding and 

splitting of both the bed joints and the head joints. On the other hand, when the 

compressive stress in masonry is quite large, and the calculated combination of the 

normal stresses satisfies Eqs. (3.17) or (3.18), another type of diagonal cracking will 

occur. This type of diagonal cracking involves cracks in both masonry units and mortar. 

Both types of diagonal cracking were observed in previous tests and field investigations. 

One example is the specimen E3 tested by Epperson et al. (1992), as shown in Figure 

3.14. Note that the diagonal cracks developed at both the top right corner and the left 

bottom corner of this pier when the pier was pushed from right to left. The external 

moments caused a larger compressive stress at the left bottom corner than at the top right 

corner. As a result, sliding/splitting-type diagonal tensional cracks developed at the top 

right corner, while compression-type diagonal cracks developed at the bottom left corner. 

In a nutshell, the mechanical key model considers that a diagonal cracking in masonry 
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assembly is either due to the sliding and splitting of the masonry joints, or due to the 

large compressive stress in the masonry. Both cases can be analyzed by employing the 

mechanical key model. Therefore, no specific diagonal tensile strength is needed to 

illustrate the possible diagonal cracking in masonry. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14. Two different types of diagonal cracking (Epperson et al. 1992) 
 

 

3.7. THE ASSESSMENT OF THE DIAGONAL COMPRESSION TEST BASED 

ON THE MECHANICAL KEY MODEL 

The second example for the application of the mechanical key model is the 

assessment of a typical masonry material test method: the diagonal compression 

specimen. ASTM 519 specifies that a diagonal compressive test can be used to determine 
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the shear strength of masonry. And the shear strength of the test specimen can be 

calculated by the following equation: 

A
PSs

707.0
=        (3.20) 

where P is the applied concentrated diagonal load, and A is the cross section area of the 

specimen.  

However, previous research has shown that the concentrated diagonal load used in 

this test creates a complex state of stress in the specimen. For example, both normal and 

shear stresses are introduced on the bed joints. The additional normal compressive stress 

might improve the shear strength of the specimen. Therefore, it is quite interesting to use 

the mechanical key model to examine the values of strength obtained from a diagonal 

compressive test. In order to do this, a FE analysis was conducted as the first step. This 

analysis was used to obtain the critical stress parameters in the specimen such that the 

proposed mechanical key model can be used to predict the maximum strength.  

 The diagonal compression specimen analyzed is shown in Figure 3.15.  It is a 

one-wythe wall composed of 9 courses with 3 bricks in each row. For the analysis, the 

height (h) is taken as 23.25 in, the length (L) is taken as 24.75in, and the thickness (t) is 

taken as 3.375 in. A two-dimensional square linear quadrilateral element was used to 

mesh the masonry panel, with a mesh size of 0.22 inches. Such a small mesh size is 

needed to give a good estimation for the stress distribution in the masonry joints, since 

the thickness of the masonry joints is around 0.375 in. The effect of the different elastic 

moduli for the masonry units and mortar is considered in this analysis. The elastic moduli 

used for the brick and mortar are 1704 ksi and 40 ksi, respectively. These are specified as 

typical values by Sahlin (1971). A steel angle section was included on the top left and the 
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bottom right of the specimen to simulate the loading steel shoes used in the test. A typical 

elastic modulus of 29000 ksi was used for the steel shoes. The Poisson ratio for masonry 

was assumed to be 0.25.  Fixed boundary conditions were assumed at the face of the 

bottom steel shoe, and a uniform pressure was applied at the top steel shoe.  

 

 

 

 

 

 

 

 

 

 

Figure 3.15. A diagonal compression specimen 

 

 

Assuming a 1 kip compressive force is applied on the top left steel shoe, the 

normal stress perpendicular to the bed joints (S22), the normal stress parallel  to the bed 

joints (S11), and the shear stress in the bed joints (S12), are shown in Figures 3.16 to 

3.18. The figures show that the normal stress perpendicular to the bed joints and the shear 

stress in the bed joints are relative uniform at the mid of the panel. These values are –8 

psi and 13 psi, respectively. On the other hand, the normal stress parallel  to the bed joints 
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(S11), is quite different between the mortar joints and the masonry units, due to their 

different elastic modulus. An average value of -8 psi is calculated over the two different 

components. Note that the minus sign for the normal stress means a compressive stress. 

 

 

 

Figure 3.16. Distribution of the bed joint shear stress  in the masonry panel 

 

 

 

Figure 3.17. Distribution of the bed joints normal stress in the masonry panel 
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Figure 3.18. Distribution of the normal stress parallel to the bed joints 

 

 

 When a compressive force of P Kips is applied on the top left steel shoe, based on 

Eq. (3.9) the splitting/sliding type diagonal cracking failure will occur if the follow 

equation is satisfied: 

( )µτ 813/0 −=P       (3.21) 

On the other hand, the values and the directions of the princpal stresses at the mid 

area of the specimen can be calcualted based on the stress values S11, S22, and S12 given 

by the FE analysis. Substituting these values into Eq. (3.17) gives the governing equation 

for the compressive-tensional type diagonal cracking failure for the specimen analyzed 

here. The equation is as the follows: 

17.24
5.08.0

5

0

=+
+ ⊥⊥

mt f
P

f
P

τ
      (3.22) 

 The failure modes and the corresponding maximum strength for a diagonal 

compression specimen can be determined from the three equations (3.21) and (3.22). 
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Based on the mechanical key model, ⊥
tf  is roughly half of 0τ . For a typical strong unit-

weak mortar masonry, one can asume that ⊥
mf  is 10 times 0τ . In this case, Eq. (3.21) can 

be simplified as: 

0138.0 τ=P        (3.23) 

Eqs. (3.22) and (3.23) give similar P values. If µ is equal to 1.0, the compression-

tension type diagonal cracking dominates the failure of the specimen. On the other hand, 

if µ is equal to 0.7, the sliding/splitting type diagonal cracking dominates the failure of 

the specimen. This indciates that the maximum strength obtained by the diagonal 

compressive test does not necessarily correspond to one specific cirtical strength value. 

 

3.8. CONCLUSIONS 

A mechanical key model is proposed in this section to illustrate the tensile and 

shear strength of the interface between masonry unit and mortar. This model reveals that 

both the tension failure and the shear failure of the interface can be attributed to the 

tensile failure of the mechanical key. By combining the model with a biaxial masonry 

failure criterion, the model can be used to illustrate the complete failure envelope of a 

masonry bed joint. This envelope is reflected as Eqs. (3.9), (3.11), and (3.17) or (3.18). 

For a strong unit-weak mortar masonry, the masonry bed joints control the properties of 

masonry. In this case, the mechanical key model can be expanded to explain the failure 

mechanism for the entire masonry assembly.  

Several direct conclusions from the mechanical key model are: 
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• A distinction needs to be made between the initial equivalent internal shear 

friction coefficient for the uncracked bed joint and the shear friction factor for the 

cracked bed joints, since they are associated with different mechanical behavior.  

• The upper-bound estimate for the initial equivalent internal shear friction 

coefficient is about 1.0, while the lower-bound estimate for the initial equivalent 

internal shear friction coefficient is about 0.7. 

• The initial bed joint shear bond strength is roughly double that of the initial bed 

joint tensile strength. 

Both the previous experimental data and the tests conducted as part of this project 

show the robustness and accuracy of the proposed model. 

The strength parameters adopted by FEMA 356 and a typical masonry material 

test method (the diagonal compression test) were reviewed based on the proposed model. 

It was found that: 

• Diagonal cracking in a masonry assembly is either due to the sliding and splitting 

of masonry joints, or due to the large compressive stress in the masonry. The two 

modes of failure can be analyzed employing the mechanical key model. No 

diagonal tensile strength is needed to assess the possible diagonal cracking in 

masonry. 

• The strength measured from the diagonal compression test does not necessarily 

correspond to one specific critical strength value, and thus is difficult to illustrate.  
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CHAPTER 4 

EFFECTIVE PIER MODEL FOR THE NONLINEAR IN-PLANE ANALYSIS 

OF INDIVIDUAL URM PIERS 

 

 

4.1. INTRODUCTION 

Due to the poor seismic performance of unreinforced masonry (URM) structures, 

the use of URM construction has been discouraged in seismic regions in the United States 

for many decades.  However, numerous URM structures remain in service in those areas, 

especially in the regions that have only recently been recognized as having significant 

seismic risk.  In order to assess the threat to life safety presented by these structures, 

effective analytical tools are required.  To that end, numerous investigations aimed at 

understanding the nonlinear behavior of URM structures have been conducted.  

The nonlinear in-plane behavior of individual URM piers has been investigated in 

many experimental studies (Abrams and Shah 1992, Anthoine et al. 1995, Epperson and 

Abrams 1989, Magenes and Calvi 1992, Manzouri et al. 1995 for example). Typically, 

tests impose lateral displacements to a single URM pier with idealized boundary 

conditions (i.e. cantilever or fixed-fixed) and a constant vertical stress. Experimental 

results have identified several in-plane failure mechanisms for a URM pier, such as 

rocking, sliding, toe crushing, and diagonal tension.  These past studies provide a sound 

basis for the understanding of the in-plane behavior of individual URM piers. 

In addition to the experimental research, several analytical studies aimed at 

quantifying the nonlinear in-plane response of URM piers have been conducted, 
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including those by McDowell et al. (1956), Abrams (1992), and Tomazevic (1999) to 

name a few. McDowell et al. (1956) proposed an arching action theory to explain the 

lateral strength of masonry walls constrained between rigid supports.  Later, a similar but 

simpler model was used by other researchers to describe the rocking behavior of a URM 

pier (Abrams 1992, Tomazevic 1999).  FEMA 356 (ATC 2000) provided design 

equations for the calculation of the strength of a URM pier corresponding to each of the 

four typical failure modes.  However, experimental results have shown that the actual 

failure mode of a URM pier was typically a combination of several different primary 

failure modes. For example, specimen W1 in Manazouri’s test (Manazouri et al. 1995) 

was observed to fail due to a combination of toe crushing and bed-joint sliding. As a 

result, eight failure modes, which consisted of the four typical failure modes and 

combinations thereof, were proposed in FEMA 306 (ATC 1999) to describe the damage 

of URM piers under different loading conditions.   

The majority of analytical research to date has been based on observed 

experimental results rather than on fundamental mechanistic theories and constitutive 

models.  Currently, there is no simple but comprehensive methodology available to 

describe the progression of damage in a URM pier and its corresponding nonlinear lateral 

force–deformation curve under varying loading and end support conditions.  The lack of 

an appropriate analytical model for the nonlinear behavior of an individual URM pier 

hinders the understanding of the nonlinear mechanism of URM walls with multiple piers 

and openings, and ultimately of entire URM buildings.    

Based on the above considerations, an effective pier macro-model is proposed 

here to describe the nonlinear behavior of an individual URM pier subjected to external 
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forces.  Specifically, the model is intended to be used to predict the crack pattern, failure 

mechanisms, maximum strength, and lateral force–displacement curve of a single URM 

pier. 

 

4.2. EXTERNAL FORCES  

Before the nonlinear mechanisms of a URM pier can be addressed, the externally 

applied forces need to be defined.  Figure 4.1 illustrates the externally applied forces 

considered by the effective pier model.  

 

 

 

 

 

 

 

 

Figure 4.1. External forces applied on a pier 

 

 

where, V is the applied shear force; Pt is the axial force applied at the top of the pier; Pb is 

the axial force applied at the bottom of the pier; Mt is the moment applied at the top of 

the pier; Mb is the moment applied at the bottom of the pier; and W is the self weight of 

the pier. 
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The equilibrium equations give: 

WPP tb +=        (4.1) 

bt MMhV +=⋅     (4.2) 

where, h is the height of the pier. If the height (h) and the weight (W) of a pier are 

known, Eqs. (4.1) and (4.2) indicate that three independent external forces exist for a 

pier. 

 

4.3. INTERNAL STRESS DISTRIBUTION 

The assumed distribution of internal stresses in a URM pier is shown in Figure 

4.2, where, L is the length of the pier; Let and Leb are the lengths of the uncracked 

sections at the top and the bottom of the pier; ctσ  and cbσ  are the maximum vertical 

compressive stresses at the top and the bottom of the pier; tτ  and bτ  are the shear 

stresses at the top and the bottom of the pier; avgσ and dτ  are the average vertical 

compressive stress and shear stress at the inflection point level, respectively; and ft is the 

tensile strength of masonry perpendicular to the bed joint.  
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Figure 4.2. Distribution of the internal stresses in a URM pier with flexural cracks 

 

 

The following assumptions are made in relation to the internal stress distribution: 

• The external forces applied at the top of the pier cause cracking of some portion 

of the top section if the calculated maximum tensile stress is larger than masonry 

bed joint tensile strength, ft. The effective section at the top of the pier is defined 

as the uncracked portion of the pier. Similar assumptions are used at the bottom. 

• The effective pier is defined by linearly connecting the top and bottom effective 

sections to the original pier boundaries at the points with a cracking moment of 

Mcr (Figure 4.2). If the inflection point is located outside the boundaries of the 
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pier, the effective pier is simply defined by linearly connecting the top and bottom 

effective sections.  

• The axial stress normal to the bed joint, nσ , varies linearly across the effective 

section.  

• The shear stress is uniformly distributed over each effective section. 

The length of the effective section and the stress distribution at both the top and 

the bottom of a URM pier can be calculated based on the equilibrium equations and the 

above assumptions. For example, the externally applied forces at the top section of the 

pier are the moment M, the axial force P, and the shear force V. Based on the assumption 

of linear stress distribution in this section, the effective length Le will be less than the 

length of the pier, provided that the following inequality is satisfied (i.e. the tension 

strength, ft , is less than the maximum tensile stress):   

06
2 ≥−− tf

Lt
P

tL
M       (4.3) 

where, t is the thickness of the pier. In this case, applying equilibrium in the y-direction 

yields: 

( ) tLfP etn −= max2
1 σ            (4.4) 

where, maxnσ is the maximum compressive stress in this section. Furthermore, moment 

equilibrium gives: 

2

6
1

32 et
e tLfLLPM +






 −=               (4.5) 

From Eq. (4.5), the effective length can be calculated as: 
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( )
tf

MPLtfPP
L

t

t
e

632 −−−
=     (4.6) 

The maximum compressive stress and the average shear stress at this section can 

then be calculated as: 

t
e

n f
tL

P
+=

2
maxσ       (4.7) 

tL
V

e

=τ        (4.8) 

Conversely, if the inequality (4.3) is not satisfied, the effective length Le will be 

equal to the length of the pier. In this case, the maximum compressive stress and the 

average shear stress at this section can be calculated as: 

Lt
P

tL
M

n += 2max
6σ                   (4.9) 

  
Lt
V

=τ                   (4.10) 

Similarly, the length of the effective section and the stress distribution at the 

bottom of a URM pier can also be calculated based on Eqs. (4.3) through (4.10). By 

equaling inequality (4.3) to zero, the cracking moment Mcr shown in Figure. 4.2 can be 

calculated. After that, the length of the effective section along the height of the pier can 

be determined, and the axial stress and shear stress at any level can be calculated 

following the same procedure.    

 

4.4. URM PIER FAILURE MODES 

Based on past experimental research, the four main failure modes of a URM pier 

are rocking, sliding, diagonal tension, and toe crushing.  In order to properly model the 
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behavior of a URM pier, each of these failure modes must be addressed.  The following 

section describes how the effective pier model considers each failure mode. 

 

4.4.1. Rocking 

A rocking failure is characterized by large flexural cracks at the bottom and the 

top of the pier.  As the displacement increases the pier deforms as a rigid body rotating 

about the compressive toe.  When force reversals occur, the flexural cracks close and the 

pier behaves as an uncracked pier until the flexural cracks open in the other direction.  As 

a result, rocking can be considered as a “working” condition rather than a failure mode.     

Therefore, no material failure criterion needs to be employed as the effective pier model 

inherently describes this type of mechanistic behavior.  

 

4.4.2. Bed-joint Sliding 

 A bed-joint sliding failure is identified by the formation of horizontal cracks on 

the bed-joint interface between masonry units and mortar, and a relative displacement 

between the masonry units above and below the bed joint.  The pier deforms by sliding 

along the bed-joint with resistance offered by friction alone.  Similar to rocking, a pier 

that displays bed-joint sliding will typically experience large deformations without 

significant vertical or lateral strength deterioration. However, due to the frictional 

resistance a large amount of energy is dissipated.  As a result, bed-joint sliding is better 

defined as a “plastic working mechanism” as opposed to an ultimate strength failure 

mode.   
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In order to address bed-joint sliding, the mechanical key model proposed in 

Chapter 3 is employed. The mechanical key model gives the same equation as the 

Coulomb friction model (Chapter 3, Eq. 3.9).  Previous experiments have shown that this 

linear equation given by the mechanical key model or the Coulomb friction model 

effectively describes the behaviors of bed-joint sliding (Meli 1973, Hegemier et al., 1978, 

Hamid et al.1980, Atkinson et al.1989).  Based on the mechanical key model, bed joint 

sliding occurs when the following inequality is satisfied:  

uττ ≥        (4.11) 

where, τ is the average shear stress on the bed joint, which can be calculated by Eq. (4.8) 

or (4.10); and uτ is the maximum shear strength of the bed joint, which is given by: 

avgu µσττ += 0      (4.12) 

where, 0τ is the initial shear bond strength of the bed-joint; µ  is the internal shear 

friction coefficient. Previous experiments have shown that µ varies between 0.7 and 1.0 

(Hegemier et al. 1978, Hamid 1980, Atkinson 1989). Atkinson (1989) proposed a value 

of 0.7 as the lower bound estimate. The mechanical key model reveals that 1.0 is the 

upper bound estimate. avgσ is the average vertical compressive stress on the bed joint, 

which can be calculated by: 

tL
P
e

avg =σ        (4.13) 

After sliding occurs, the residual shear strength is supplied by friction alone, and 

can be written as: 

avgu σµτ 0=        (4.14) 
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where 0µ is the true shear friction coefficient on the cracked bed joints. 

 

4.4.3. Toe Crushing 

Unlike rocking and sliding, a toe crushing failure leads to the loss of strength and 

stiffness in a pier.  Toe crushing is defined as a compressive failure of masonry occurring 

at the toe of the pier.  This failure occurs when the maximum compressive stress exceeds 

the maximum compressive strength of masonry: 

mn f⋅≥ βσ max        (4.15) 

where, maxnσ  is the maximum compressive stress calculated by Eq. (4.7) or (4.9); fm is 

the compressive strength of masonry; and β  is a factor that accounts for the erroneous 

assumption of a linear stress distribution along the length of the pier (i.e., β  should be 

larger than 1). To be consistent with the equivalent stress block analogy as outlined in 

MSJC 530-02, β  should be taken as 1.28. MSJC (ACI 530-02) specified that for the 

design purpose, “masonry stress of 0.8 fm shall be assumed uniformly distributed over an 

equivalent compressive zone”. The length of this compressive zone is 0.8 of the real 

length of the section in compression. This is equivalent to a linear distribution of 

compressive stress over the real compressive length with the maximum compressive 

stress at the edge of the section equal to 1.28 fm.  

In order to consider toe crushing, the portion of masonry where the vertical 

compressive stress is larger than mf⋅β  is assumed to retain no strength.  Based on the 

assumptions outlined previously, the length of the failed portion of the pier (Lcrush) can be 

written as: 
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    (4.16) 

Figure 4.3 illustrates the assumed internal stress distribution in a pier after toe 

crushing has occurred.  From the figure it is apparent that when the toe crushing area 

propagates, the effective area of the pier decreases.  Strictly speaking this is incorrect, as 

the compressive strength of masonry does not immediately drop to zero after the strength 

has been exceeded.  However, this assumption greatly simplifies the problem and results 

in conservative strength estimates.  If this simple loss model is unacceptable for a specific 

application, a Todeschini stress distribution (Todeschini et al. 1964), which accounts for 

the nonlinear stress strain behavior of masonry, can be employed.     

It should be pointed out that if toe crushing occurs, the equation for calculating 

the effective length of the pier should be modified from Eq. (4.6) to: 

( )( )
tf

MLLPtfPP
L

t

crusht
e

6232 −−−−
=     (4.6b) 

Several iterations may be needed to obtain the correct Le and Lcrush values from 

Eq. (4.7), (4.16) and (4.6b).  

If the effective length obtained by Eq. (4.6b) is less than L-Lcrush, the maximum 

compressive stress and the average shear stress at this section can still be calculated from 

Eqs. (4.7) and (4.8), respectively. Otherwise, they have to be calculated as: 

( )
( )

( ) tLL
LLP

tLL
M

crush

crush

crush
22max

26
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+
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−
=σ             (4.9b) 

  ( ) tLL
V

crush ⋅−
=τ                 (4.10b) 
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Figure 4.3. Effective pier after toe crushing and flexural cracking 

 

  

 

4.4.4. Diagonal Cracking 

Diagonal tension cracks usually develop at the mid-height of a URM pier and 

propagate diagonally. Previous experimental research showed that there are two different 

types of diagonal cracks: 1) stair-step cracking going along bed joints and head joints; 

and 2) diagonal cracks going through both masonry units and mortar joints. The 

mechanical key model reveals that different mechanisms exist for the two types of 

diagonal cracks. The first type of diagonal crack is due to the sliding and splitting of 

masonry joints, which can be expressed by Eq. (4.12). The second type of diagonal crack 
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is due to the biaxial failure of masonry as a whole. If masonry is in a principal 

compression – principal tension stress state, the corresponding failure criterion can be 

expressed as (Chapter 3 Eq. 3.17):  

( )
1

6.07.0
26.1

2

0

1 =






 +

+
−+

π
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σ

π
θτ

σ

mtt fff
    (4.17) 

where 1σ is the principle tensile stress, 2σ is the principle compressive stress, and θ  is 

the angle between the direction of 2σ and the bed joint. If masonry is in compression – 

compression state, i.e., both 1σ and 2σ are compression, Naraine’s equation (Naraine  

1991) can be used: 

( ) 11 212 =+−+ CIICCJ     (4.18) 

where J2, I1, I2 are principle stress invariants defined as: 
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and C is a constant defining the shape of the failure envelop. When C is equal to 1.0, Eq. 

(4.18) reduces to the Von Mises yield criterion. When C is equal to 1.6, Eq. (4.18) fits 

with the existing experimental data (Naraine 1991). 

The actual diagonal tension failure mode is determined by Eqs. (4.12), (4.17) and 

(4.18). To utilize these equations to calculate the diagonal cracking strength of masonry, 

the representative stress state at the mid-height of a UMR pier, which include the average 

vertical compressive stress avgσ , the average lateral confining stress lateralσ , and the 

average shear stress τ , have to be calculated. For simplicity, the diagonal tension 

strength is assumed to be unaffected by the externally applied moment. Therefore, the 
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three stress values can be calculated at the inflection point. For example, avgσ can be 

calculated by Eq. (4.13) with Le equal to L, and τ can be calculated as the follows: 

Lt
Vζτ =        (4.19) 

where ζ is a shear stress factor that accounts for the erroneous assumption of a constant 

shear stress distribution. For slender piers (L/h <0.5), the horizontal shear stress 

distribution is a parabola, which implies ζ  is equal to 1.5.  For stout piers (L/h > 2), the 

horizontal shear stress distribution approaches a constant value, which implies ζ  is equal 

to 1.0.   

 Similarly, the average lateral confining stress lateralσ , which is induced by the 

lateral force applied on a URM pier, can be calculated as the follows:  

ht
V

lateral
χσ =       (4.20) 

where χ is a factor that accounts for the effects of the aspect ratio. If L/h > 1, the lateral 

confining stress is assumed uniformed distributed along the height of the pier, χ  is equal 

to 1.0. When L/h <0.5, there is no lateral confining force in the mid-height of the pier, 

because is away from the boundary. In this case, χ  is equal to zero. 

The first type of diagonal crack (stair-step sliding and splitting of mortar joints) is 

very similar to bed joint sliding. Therefore, the response of masonry pier after this type of 

diagonal cracking is similar to that after bed joint sliding. The pier can still maintain a 

large amount of lateral resistance and vertical resistance. In contrast, the propagation of 

the second type of diagonal tension cracks causes a rapid deterioration of strength. To 

consider its effect, a smeared crack technique is employed, due to the difficulty to 



 98

consider the effect of discrete diagonal cracks on overall pier behavior. It is assumed that 

even after the second type of diagonal cracks develop inside the mid-height portion of the 

pier, the effective area of the pier remains continuous. However, the effective tangent 

modulus of elasticity of masonry will become negative because of the rapid and unstable 

propagation of the diagonal tension cracks. One possible stress-strain relationship of 

masonry before and after the development of diagonal tension cracks is shown in Figure 

4.4. It can be seen that the post-cracking behavior of the masonry is quite different for 

two different types of diagonal cracks. Also notice that since no test data are available for 

the softening behavior of URM piers after the second type diagonal cracking, the tangent 

modulus of URM piers with diagonal tension crack is set equal to –0.1E, where E is the 

initial elastic modulus of masonry.  

 

 

 

 

 

 

 

 

 

Figure 4.4. Stress-strain relationship of masonry before and after diagonal tension cracks 
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4.5. DEFORMATION OF URM PIERS  

The effective pier model can also be used to obtain the deformation behavior of a 

URM pier under lateral force.  As shown in Figure 4.5a, a URM pier may experience a 

loss of section due to either tensile or compressive failure, which must be considered 

when calculating displacements.  The remaining pier will typically be inclined at some 

angle, that is, the central axis of the pier is not vertical.  The angle θ  between the central 

axis of the pier and the vertical line can be calculated by: 
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a) Inclined effective area of the pier             (b) Three-section effective pier     (c) Two-section effective pier 

Figure 4.5. Effective pier at an angle to the vertical line 
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Since the central axis of the pier is not vertical after cracking, a portion of the 

lateral force will be resisted through axial deformation not flexural and shear 

deformation.  Therefore, the lateral force that causes shear and flexural deformation is 

( )θtanPV − .  When calculating the shear and flexural deformation, the inclined effective 

pier as shown in Figure 4.5(a) can be further simplified as a three-section vertical 

effective pier, as shown in Figure 4.5(b). This simplified effective pier consists of a top 

portion with a length of Let and a height equal to half the distance from the top to the 

point with a moment of Mcr, a bottom portion with a length of Leb and a height equal to 

half the distance from the bottom to the point with a moment of Mcr, and a mid portion 

with a length of L. In the case that the inflection point is out of the pier, the three-section 

vertical effective pier is transmitted into a two-section pier, as shown in Figure 4.5(c).   

Assuming the lateral deformation of the pier induced by its axial deformation can 

be ignored, the lateral deformation of the pier is then determined by its flexural 

deformation and shear deformation, which can be calculated by: 

( )
K

PV θtan−
=∆       (4.22) 

where, ∆  is the lateral deformation of the pier; and K is the lateral stiffness of the pier, 

which is dependant on the dimensions, boundary conditions, and elastic modulus of the 

pier. For an initial elastic URM pier, K can be calculated as: 
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where, γ is a coefficient that describes the boundary conditions of the pier (γ is equal to 

0.83 for fixed–fixed end conditions, and 3.33 for cantilever end conditions); E is the 
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elastic modulus of masonry; and G is the shear modulus of masonry, which is taken as 

0.4E. After the URM pier experiences a loss of section, the lateral stiffness of the 

effective URM pier (Figure 4.5a) can be calculated based on the three-section or two-

section models as shown in Figures 4.5b and 4.5c.  

 

4.6. ELASTIC MODULUS OF MASONRY 

Past research has shown that masonry displays significant nonlinear stress-strain 

behavior even at very low stress levels (Naraine and Sinha 1989, AlShebani and Sinha 

1999). In order to consider this behavior, the following stress-strain relationship proposed 

by Naraine and Sinha (1989) is used in this research: 
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where mε is the axial strain corresponding to the maximum compressive stress. It 

depends on the type of masonry units and mortar used for the construction of masonry. 

When no other information is available, the design values of 0.0035 for clay masonry and 

0.0025 for concrete masonry provided by MSJC 530-02 can be used. σ  and ε  are the 

compressive stress and strain of masonry, respectively. Based on Eq. (4.24), the secant 

elastic modulus of masonry can be calculated as: 

 







−==

mm

mfE
ε
ε

εε
σ 1exp      (4.25) 

 

4.7. COMPARISON WITH FEMA 356 

Currently, FEMA 356 (a revision of FEMA 273) represents a state-of-the-art in 

URM seismic design guidelines.  Four separate equations for calculating the maximum 
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in-plane strength of a URM pier corresponding to the four primary failure modes are 

presented in that document. In addition, equations for calculating the strength of a URM 

pier corresponding to some combinations of these failure modes are also given.  For 

simplicity, only the four primary failure modes of URM piers are used for comparisons 

between FEMA 356 and the effective pier model.   

 

4.7.1. Rocking Capacity 

To compare rocking strengths, a URM pier with only flexural horizontal cracks at 

the top and/or the bottom of the pier is assumed.  As a result, Eqs (4.3) through (4.10) can 

be used to calculate the internal stress distribution of the pier. In order to aid in the 

comparison, the following relationship (given by FEMA 356) between the moments at 

the top and bottom of the pier is adopted:   

( ) bt MM 12 −= α       (4.26)  

where α  is a factor reflecting the boundary conditions of a URM wall. For a fixed-free 

cantilever wall,α  is taken as 0.5 and Mt is equal to zero; for a fixed-fixed pier, α  is equal 

to 1.0 and Mt is equal to Mb. 

Substituting Eq. (4.26) into Eq. (4.2) gives: 

              bM
h

V α2
=      (4.27) 

Since there are flexural horizontal cracks developing at the top and/or bottom of 

the pier, the effective length at the top and/or bottom of the pier should be less than the 

length of the pier. Therefore, the moment at the bottom: Mb can be calculated by Eq. 

(4.5). For simplicity, the tensile strength of the bed joint is neglected. Substituting Eq. 

(4.5) into Eq. (4.27) gives the lateral strength of the pier in terms of vertical forces as: 
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( )
h
LGP

L
LV t

b
r +






 −= α

3
21     (4.28) 

Based on FEMA 356, the following expression gives the rocking strength of a 

URM pier:   

( )
h
lGPV t

FEMA
r += α9.0    (4.29) 

Comparing Eq. (4.28) and (4.29) it is apparent that they are identical when Lb is 

equal to 0.15L.  That is, FEMA 356 defines rocking as a failure mode when the 

horizontal flexural cracks extend through 85% of the pier’s length.  In contrast, the 

effective pier model points out that the rocking strength of a URM pier increases with the 

crack propagation. As an ultimate example, when the URM pier is fully cracked and lb is 

equal to zero, the rocking strength predicted by Eq. (4.28) is 1.11 times the FEMA 

predicted value.   

 

4.7.2. Bed-Joint Sliding Capacity 

The critical shear sliding section is at either the bottom or the top of the pier 

depending on the values of Leb and Let, because the effective length is the smallest at 

those locations. For comparison purposes, it is assumed that Leb < Let < L, as a result, the 

critical shear sliding section is at the bottom of the pier. Assuming ft=0, the effective 

length at the bottom section can be calculated from Eq. (4.5) as: 
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b
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The average vertical stress in the effective length of bed joint is: 
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tL
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t
avg ⋅

+
=σ       (4.31) 

Substituting Eqs. (4.30), (4.31) and (4.8) into (4.11), and considering (4.12), the 

shear force at which bed-joint sliding will commence can be written as: 

( )WPt
WP

MLV t
t

b
bjs ++








+

−= µτ 02
3    (4.32) 

Eq. (4.32) indicates that the bed-joint sliding strength of a URM pier depends on 

not only the vertical forces, the friction coefficients, and the initial shear strength, but 

also the moment applied to the pier.  Specifically, the lengths of the horizontal flexural 

cracks, which are caused by the moment, affect the bed-joint shear strength.  

As a comparison, if the safety factor is not considered, the sliding strength given 

by FEMA 356 is: 

( )WPLtV t
FEMA

bjs ++= µτ 075.0    (4.33) 

Comparing Eq. (4.32) and Eq. (4.33) shows that the two equations are similar. 

However, the equation given by FEMA 356 does not consider the effect of moment.  

That is, the reduction in the effective length of the pier due to the presence of horizontal 

flexural cracks is not considered in FEMA 356.  

In order to more clearly illustrate the difference between the effective pier model 

and the FEMA equation, the ratio of Vbjs/Vbjs
FEMA is plotted vs. the vertical force 

eccentricity at the base, ( )( )WPLM tb + , in Figure 4.6.  The influence of the ratio k 

between the cracked bed joint shear resistance and the initial shear resistance, 

( ) 0τµ LtWPt + , is also shown in this figure. This figure shows that when the vertical 

force eccentricity is equal to 0.25, which corresponds to an effective length of 0.75L at 
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the base of the pier based on Eq. (4.5), the effective pier and the FEMA equation give the 

same prediction for the shear strength of the URM pier. On the other hand, when the 

external moment applied to the base of the pier increases, the effective pier model 

predicts that the shear strength of the pier decreases, because the uncracked effective 

length at the base of the pier becomes smaller.  Figure 4.6 also shows that with increasing 

vertical force (Pt+W), the difference between the effective pier model and the FEMA 

equation becomes smaller, since the effect of the external moments becomes relatively 

smaller. 

 

 

 

Figure 4.6. Predicted base shear strength by the effective pier model vs. FEMA 356 
equation 
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4.7.3. Toe-Crushing Capacity 

According to Inequality (4.15), toe crushing occurs when the compressive stress 

at the toe of the pier exceeds the compressive strength of masonry. The maximum 

compressive stress in a pier is determined by the greater values of the maximum 

compressive stresses at the top and the bottom of the pier: ctσ and cbσ . Again for 

comparison purposes it is assumed that Leb < Let < L and ft=0; therefore, according to Eq. 

(4.7), ctσ < cbσ . As a result, a toe crushing failure mode is controlled by the maximum 

compressive stress at the bottom of the pier.  

Considering Eq. (4.7) and Eq. (4.30), the inequality (4.15) can be rewritten as: 

( ) m
t

b
t ftLl

WPL
M

WP β⋅







+⋅

−≥+ 63
4
1     (4.34) 

Considering again the relationship between the moment applied on the top of the 

pier and that applied on the bottom of the pier, substituting Eq. (4.27) into Eq. (4.34) 

gives the strength corresponding to toe crushing: 

( ) ( ) ( )
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As a comparison, the toe crushing strength given by FEMA 356 is: 

( ) ( ) ( )
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7.0
1α     (4.36) 

It can be seen that FEMA 356 gives a nearly identical expression for the toe-

crushing strength of a URM pier, except that the value 0.7 was given instead of β75.0 . 

This implies that FEMA 356 assumes β is equal to 0.93. Recall that the equivalent stress 
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block analogy of MSJC 530-02 points out that β  should be larger than 1, the equation 

given by FEMA 356 may underestimate the toe crushing strength of a URM pier. 

FEMA 356 considers toe-crushing failure mode as a force-control action, and the 

value of fm used in Eq. (4.36) should be the expected value divided by 1.6 (ATC 2000). 

However, as discussed before, rocking is actually a working condition of a URM pier. A 

URM pier always works with the opening or closing of flexural cracks under external 

force. Eq. (4.7) indicates that in order to obtain large compressive stress at the toe of a 

pier, generally a large flexural crack has already developed in the pier. Based on this 

consideration, it is apparent that toe crushing is actually a limit of the rocking behavior. 

As a result, the penalty factor 1.6 should not be employed to decrease the toe crushing 

strength of a URM pier.   

In order to further compare the effective pier model and the FEMA 356 equation, 

the ratio of Vtc/Vtc
FEMA is plotted vs. the compressive strength increase factor β , and the 

normalized vertical compressive stress at the base of the pier, r = ( ) mt LtfWP + in Figure 

4.7 (the penalty factor 1.6 is not used in the FEMA 356 equation). This figure shows that 

with the increasing β  value, the effective pier predicts higher toe crushing strength 

compared with the FEMA equation. On the other hand, when the vertical compressive 

stress at the base of the pier is smaller (r =0.1), the difference between the effective pier 

model and the FEMA equation is small (less than 10%). With increasing base vertical 

compressive stress, the difference between the two methods becomes more significant. 
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Figure 4.7. Predicted toe crushing strength by the effective pier model vs. FEMA 356 

equation 

 

 

4.7.4. Diagonal Tension Capacity 

Eqs. (4.12), (4.17) and (4.18) express the strength corresponding to diagonal 

tension cracks. As the modification of FEMA 356, FEMA 306 gives the diagonal tension 

strength of a URM pier as: 
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ltf
P

ltfV += 1β      (4.37) 

where, d
tf is the diagonal tensile strength. β is equal to 0.67 for L/h<0.67, L/h when 

0.67<=L/h<=1.0, and 1.0 when L/h >1. 

Comparing between Eqs. (4.12), (4.17), (4.18) and Eq. (4.37), it is apparent that 

the effective pier model and FEMA 307 give different expressions. Specifically, FEMA 

306 utilized a strength parameter: diagonal tensile strength, while the effective pier model 
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uses the compressive strength, the bed joint tensile strength, and the shear strength of 

masonry to determine the diagonal cracking strength of a URM pier. 

To explore the validity of the FEMA equation for diagonal tension, another 

failure criterion, the maximum tensile stress criterion, will be employed to calculate the 

diagonal cracking strength. Based on this criterion, diagonal tension cracks are 

considered to occur when the maximum principle tensile stress in masonry is larger than 

the tensile strength of masonry. The criterion is: 

d
tf≥1σ       (4.38) 

where, 1σ  is the maximum principle tensile stress, and d
tf is the tensile strength of 

masonry at an angle to the bed joint. Similar to the treatment for the effective pier model, 

the average vertical stress and shear stress corresponding to the inflection point level can 

be used to calculate the maximum principle tensile stress, which leads to:  

( )
22

2
2

1
avgavg σ

ζτ
σ

σ −+







=    (4.39) 

Substituting Eq. (4.39) into Eq. (4.38), and rewriting it in terms of forces, the 

diagonal tension strength of a URM pier given by the maximum tensile stress criterion is: 

( )
b

t

bd
tdt

Ltf
P

LtfV += 11
ζ

     (4.40) 

Recalling that for a slender pier (L/h < 0.5), the value of ζ
1  approaches 0.67; 

and for a stout pier (L/h > 2), the value of ζ
1  approaches 1.0. Therefore, Eq. (4.40) 

actually gives the equation of FEMA 306.  
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Material level research has shown that the diagonal failure of masonry is a 

complex failure phenomenon consisting of several different failure modes. Therefore, 

masonry strength should not be explained simply by the maximum tensile strength. 

Furthermore, as discussed in Chapter 3, the exact mechanism and value of the diagonal 

tensile strength employed by FEMA 306 is quite difficult to determine. Considering this, 

the effective pier model is a more rational approach to explain the diagonal failure 

mechanism of URM piers compared with the FEMA method.   

 

4.8. COMPARISON WITH EXPERIMENTAL RESULTS 

Based on the effective pier model presented, a nonlinear pushover program was 

developed and used to analyze several test specimens of past experiments (Abrams and 

Shah 1992, Anthoine et al. 1995, Epperson and Abrams 1989, Magenes and Calvi 1992, 

Manzouri et al. 1995, Franklin et al. 2001, Erbay et al. 2002).  In order to illustrate the 

ability of the effective pier model to predict all of the primary failure modes, a detailed 

comparison was made first with test specimens that exhibited primarily only one failure 

mode.  In addition, a specimen was chosen that exhibited multiple failure modes to assess 

the ability of the effective pier model to predict mixed modes.  

 

4.8.1. Rocking Behavior 

 The ability of the effective pier model to predict rocking and toe crushing 

behavior was examined by comparing results with URM brick specimen 1F tested by 

Franklin et al. (2001). This test pier consisted of an inverted T-section with idealized 

cantilever boundary conditions.  The specimen had a height of 59 in, width of 33 in, and 
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was tested with a constant vertical stress of 42 psi.  Initial cracking was observed in the 

bed joint at the base of the pier at 0.10% drift and 3.02 kips of lateral load. The wall 

exhibited typical rocking behavior until approximately 2% drift at which point toe 

crushing was observed. The maximum strength was 3.2 kips at 0.5% drift.  

To analyze specimen 1F, the following material properties were used. First, based 

on the material test results, the compressive strength of masonry was set to be 1140 psi. 

Second, to match the initial elastic modulus value gotten from the material tests, mε  was 

assumed as 0.005. This gives an initial elastic modulus of 620 ksi based on Eq. (4.24). 

Furthermore, since no other material properties are available, the initial bed-joint shear 

strength and the bed joints tensile strength were assumed to be 100 psi and 40 psi, 

respectively. Both the equivalent initial shear friction coefficient and the shear friction 

coefficient for the cracked bed joint were assumed to be 0.7. These values are the 

common values observed in many material tests and are proposed by Atkinson (1989) as 

the lower-bound estimate. The shear stress factor ζ was assumed to be 1.5 for the tested 

slender pier, and the compressive strength factor β  was assumed to be 1.28 to be 

consistent with the equivalent stress block analogy recommended by MSJC 530-02. 

The results obtained from the effective pier model predicted the initiation of 

rocking at a drift of 0.93% and a lateral force of 2.97 kips (Figure 4.8). The calculated 

maximum strength was 3.11 kips at the drift of 3.1%, as the pier was displaced past 3.1% 

toe crushing was predicted.  The error between the calculated and measured maximum 

strength was 2.8%. Since the test was concluded at a maximum drift of 2.0%, the 

calculated lateral force-displacement curve is plotted together with the measured lateral 
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force-displacement envelope only up to 2% (Figure 4.8).  It is apparent that the lateral 

force-displacement curve given by the analysis is close to that obtained from the test.   
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Figure 4.8. Calculated and measured lateral force – displacement curve of specimen 1F ( 
Franklin et al. 2001) 

 

 

4.8.2. Sliding Behavior 

Specimen 1S tested by Erbay et al. (2002), which exhibited a typical sliding 

failure mode, was chosen to assess the ability of the effective pier model to predict 

sliding.  The height and the length of the specimen were 77.0 in and 156.0 in, 

respectively.  The pier was tested with cantilever boundary conditions and a constant 

vertical stress of 90 psi.  Masonry properties for Specimen 1S were identical to those of 
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specimen 1F.  Flexural cracking was observed in the bed joint at the base of the pier at 

about 0.02% drift. The failure modes observed for this specimen were classified as 

sliding degrading to toe crushing at a drift of 0.3% (Figure 4.9). The maximum strength 

for the specimen was 120.6 kips. The test was concluded at 0.3% drift.  

 The shear factor ζ was assumed to be 1.0 because the aspect ratio (h/l) of this pier 

was 0.5; all other assumptions about the masonry material properties are the same as for 

Specimen 1F.  The effective pier model predicted the initiation of a flexural crack at a 

drift of 0.03 % and a lateral force of 54.4 kips. The calculated maximum strength was 

101.2 kips at the drift of 0.29%, at which point the model predicted bed-joint sliding at 

the base of the pier.  The error between the calculated and measured maximum strength 

was 16.1 %. The calculated lateral force-displacement curve is plotted together with the 

measured lateral force-displacement curve in Figure 4.9. The effective pier model 

underestimates the maximum strength of the specimen. However, it does give a fairly 

close prediction for the strength corresponding to the ultimate drift. The effective pier 

model predicted a sharp drop of the lateral strength when the pier began to slide, which 

was not observed in the test. Apparently, the assumed shear friction coefficient of 0.7 for 

the cracked surface is too low for the tested specimen. Therefore, another shear friction 

coefficient of 1.0 for the cracked surface was used for the analysis again. The result is 

also plotted in Figure 4.9, which fits better with the experimental results. The analysis 

cannot capture the toe crushing failure at the end of the test. However, the analysis shows 

that the maximum compressive stress at the toe is 1063 psi at the end of loading, which is 

rather close to the compressive strength of masonry (1140 psi). Therefore, it is fair to say 
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that a toe crushing failure is possible considering the possible variation of material 

properties.  
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Figure 4.9. Calculated and measured lateral force – displacement curve of specimen 1S 
(Erbay et al. 2002) 

 

 

4.8.3. Diagonal Tension Behavior 

Specimen MI3 tested by Magenes and Calvi (1992) was used to assess the ability 

of the effective pier model to predict diagonal tension behavior.  The height, length, and 

thickness of this specimen were 118 in, 59 in, and 15 in, respectively. The specimen was 

tested with fixed-fixed end conditions and a constant vertical stress of 180 psi. The 

reported compressive strength of the brick masonry was 1145 psi.  Specimen behavior 
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was classified as flexural cracking degrading to diagonal tension cracking with a peak 

load of 41.6 kips and a final drift of 0.5%.  

 For analysis, the compressive strength was assumed as 1145 psi, and mε  was 

assumed to be 0.01 as per FEMA 307 (ATC 1999).  Furthermore, both the initial bed-

joint shear strength and the bed joint tensile strength were all assumed to be 40.0 psi. 

Both the initial equivalent bed joint friction coefficient and the shear friction coefficient 

for the cracked bed joints were taken as 0.81. All the values are consistent with reported 

values (ATC 1999).  The compressive strength-increase factor β  was assumed to be 1.28 

and the shear factor ζ was assumed to be 1.5. 

The calculated lateral force-displacement curve is plotted together with the 

measured lateral force-displacement envelope in Figure 4.10. The effective pier model 

predicted that the initial flexural crack initiates at a drift of 0.083 % and a lateral force of 

31.0 kips. The analysis also predicted that the specimen would fail due to diagonal 

tension cracking with a maximum strength of 51.3 kips and a drift of 0.18%. The 

calculated maximum strength is 19% larger than the measured value. It should be pointed 

out that the analysis showed that the diagonal cracking is the compression type diagonal 

cracking. Therefore, the strength of the specimen dropped quickly after it reached its 

peak point.   
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Figure 4.10. Calculated and measured lateral force – displacement curve of specimen 
MI3 (Magenes and Calvi 1992) 

 

 

 

4.8.4. Mixed Modes Behavior 

Specimen W1 tested by Manzouri et al. (1995) was used to investigate the ability 

of the effective pier model to predict mixed failure modes.  The height, length, and 

thickness of this specimen were 60 in, 102 in, and 13 in, respectively. The specimen was 

tested as a cantilever column with constant vertical stress of 150 psi. The reported 

compressive strength of masonry was 2000 psi. No other material properties were 

reported. Specimen behavior was characterized as flexural cracking at 88 kips degrading 

to toe crushing and eventually bed–joint sliding at 156 kips with a final drift of 1.3%.  

 Since no other material properties were reported, the properties of masonry were 

taken as those assumed in FEMA 307.  Specifically, mε  was taken as 0.01 and the initial 

bed-joint shear strength and the bed joint tensile strength were assumed to be 85 psi and 
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40 psi, respectively. Both the initial equivalent bed joint friction coefficient and the shear 

friction coefficient for the cracked bed joints were taken as 0.7.  The compressive 

strength factor β  was assumed to be 1.2 and the shear stress factor ζ was assumed to be 

1.0 for the tested stout pier. 

The calculated lateral force-displacement curve is plotted together with the 

measured lateral force-displacement envelope in Figure 4.11. The analysis predicted the 

initiation of a flexural crack at a drift of 0.046% and a lateral force of 73.3 kips.  The 

model also predicts the specimen will display toe crushing at a drift of 0.66% and a 

lateral force of 156 kips.  As the specimen is displaced further the model predicted that 

specimen would begin to rock at a drift of 0.74% and a lateral force of 156.7 kips.  

Finally the specimen would slide along the bed joint at a drift of 0.92% and a lateral force 

of 158.4 kips, which also corresponded to the maximum strength of the specimen.  The 

effective pier model correctly captured the mixed failure modes and predicted the lateral 

force-displacement envelope of the tested specimen accurately.   
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Figure 4.11. Calculated and measured lateral force – displacement curve of specimen 
(W1, Manzouri et al. 1995) 

 

 

4.8.5. Comparison with other experimental results  

Several other URM piers investigated in past experiments were analyzed using 

the effective pier model.  Both the experimental and analytical results are given in Table 

4.1. The difference between the experimental and analytical results was also expressed by 

the ratio of analytical minus experimental results divided by the experimental results 

(termed “error”). The majority of the tests chosen for comparison were summarized in 

FEMA 307 (ATC 1999). The material properties used for the analyses were consistent 

with those given or assumed in FEMA 307 (ATC 1999). Table 4.1 shows that the 

maximum strengths predicted by the effective pier model are consistently within +/-30% 

of the experimentally determined values.  Considering the lack of reported material 

properties for many of these specimens, this error is relatively small.  Furthermore, in 
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some of the experiments, the applied axial load varied significantly from the desired 

nominal values; applied axial load greatly affects the lateral capacities (FEMA 307, ATC 

1999).   

In addition, Table 4.1 shows that the effective pier model correctly predicted the 

failure modes of 16 of the 21 test piers.  It should be pointed out that some researchers 

reported rocking failure modes while others reported flexural cracking.  As pointed out 

by the effective pier model, there is no clear distinction between rocking and flexural 

cracking.  Furthermore, researchers reported two different types of diagonal cracking.  

The first type was the traditional diagonal cracking through masonry units while the 

second type was classified as stair-stepped bed-joint sliding.  For weak mortar-strong unit 

masonry, it is very difficult to identify the cause of a stair-stepped bed-joint sliding 

failure since both the maximum principle tension stress as well as the bed-joint shear 

stress can cause this behavior.  

   

Table 4.1. Comparison between test results and the effective pier model 
Maximum Strength: kips 
(kN)  

Failure Modes  
Test 
Specimens Exp.  

Results 
EFP 
Model 

Error 
(%) 

Exp.  Results Effective pier model 

High Wall 
(Anthoine et 
al 1995) 

16.2 
(72.1) 

15.2 
(67.6) 

-6.8 Rocking Flexural cracking ending 
with toe crushing 

1F ( ST-6 )  3.38 
(15.0) 

3.1 
(13.8) 

-8.8 Rocking Flexural cracking ending 
with rocking 

2F (ST-6) 1.85 
(8.2) 

1.96 
(8.7) 

5.9 Rocking Flexural cracking ending 
with rocking 

6F (ST-6)  5.85 
(26.0) 

5.82 
(25.9) 

-0.5 Rocking Flexural cracking, then 
toe crushing, then 
rocking 
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Table 4.1. (cont’d) 
Maximum Strength: kips 
(kN)  

Failure Modes  
Test 
Specimens Exp.  

Results 
EFP 
Model 

Error 
(%) 

Exp.  Results Effective pier model 

MI4 
(Magenes 
and Calvi 
1992) 

34.4 
(153.0) 

33.8 
(150.4) 

-1.7 Stair-stepping 
bed joint sliding 

Flexural cracking, then 
diagonal tension 
cracking 

W1 (Abrams 
and Shah 
1992) 

92 
(409.2) 

80.7 
(359.0) 

-12.3 Bed joint sliding Flexural cracking, then 
toe crushing, then 
sliding 

MI2 
(Magenes 
and Calvi 
1992) 

51 
(226.9) 

46.4 
(206.4) 

-9.0 Bed joint sliding 
at top course, 
then stair-
stepped bed-joint 
sliding 

Flexural cracking, then 
diagonal tension 
cracking 

1S ( ST-6) 121.2 
(539.1) 

101.2 
(450.2) 

-16.5 Bed Joint sliding Flexural cracking, then 
sliding 

W1 
(Manzouri et 
al. 1995) 

156 
(693.9) 

156.3 
(695.3) 

0.2 Toe crushing, 
then bed joint 
sliding 

Flexural cracking, then 
toe crushing, then 
rocking, then sliding 

W2 
(Manzouri et 
al. 1995) 

68 
(302.5) 

63.4 
(282.0) 

-6.8 Toe crushing, 
diagonal 
cracking, then 
bed joint sliding 

Flexural cracking, then 
rocking 

W3 
(Manzouri et 
al. 1995) 

80 
(355.9) 

79 
(351.4) 

-1.3 Toe crushing, 
then bed joint 
sliding 

Flexural cracking, then 
sliding 

W3 (Abrams 
and Shah 
1992) 

20 
(89.0) 

14.2 
(63.2) 

-29.0 Rocking then toe 
crushing 

Flexural cracking, then 
rocking, then toe 
crushing 

Low Wall 
(Anthoine et 
al. 1995) 

18.8 
(83.6) 

18.3 
(81.4) 

-2.7 Diagonal tension Flexural cracking, then 
diagonal tension 
cracking 

MI3 
(Magenes 
and Calvi 
1992) 

41.6 
(185.1) 

47 
(209.1) 

11.0 Diagonal tension Flexural cracking, then 
diagonal tension 
cracking 

MI 1 
(Magenes 
and Clavi 
1992) 

58.2 
(258.9) 

62.1 
(276.2) 

6.7 Diagonal tension Flexural cracking, then 
diagonal tension 
cracking 
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Table 4.1. (cont’d) 
Maximum Strength: kips 
(kN)  

Failure Modes  
Test 
Specimens Exp.  

Results 
EFP 
Model 

Error 
(%) 

Exp.  Results Effective pier model 

W2 (Abrams 
and Shah 
1992) 

44 
(195.7) 

32.1 
(144.1) 

-26.4 Toe crushing Flexural cracking, then 
rocking, then toe 
crushing 

E1 
(Epperson 
and Abrams 
1989) 

120 
(533.8) 

123.4 
(548.9) 

2.8 Toe crushing Flexural cracking, then 
toe crushing, then 
rocking  

E3 
(Epperson 
and Abrams 
1989) 

164 
(729.5) 

198.4 
(882.5) 

21.0 Toe crushing flexural cracking, then 
toe crushing, then 
rocking 

E5 
(Epperson 
and Abrams 
1989) 

154 
(685.0) 

164.4 
(731.3) 

6.8 Toe crushing Flexural cracking, then 
rocking  

E6 
(Epperson 
and Abrams 
1989) 

150 
(667.2) 

154.9 
(689.0) 

3.3 Toe crushing Flexural cracking, then 
rocking 

E7 
(Epperson 
and Abrams 
1989) 

157 
(698.4) 

186.9 
(831.4) 

19.0 Toe crushing Flexural cracking, then 
rocking, then toe 
crushing 

 

 

4.9. CONCLUSIONS 

A macro-model termed the effective pier model was established to describe the 

nonlinear in-plane behavior of individual URM piers.  With some simplifications to the 

model, strength expressions were derived for URM piers corresponding to each of the 

four primary failure modes.  These strength expressions were in close agreement with 

FEMA 356.   
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On the other hand, compared with FEMA 356, the effective pier model provided 

different explanations for the four primary failure modes. The effective pier model 

showed that the rocking mechanism was actually a normal working mechanism of URM 

piers and that the toe-crushing failure mode was actually a limit for the rocking 

mechanism. Therefore, the penalty factor adopted by FEMA for the toe crushing failure 

mode should not be used, and the design toe crushing strength of a URM pier should be 

increased. 

A nonlinear pushover analysis program based on the effective pier model was 

developed and used to analyze 21 URM piers investigated in previous experiments. 

Strength, force-displacement behavior and failure modes were all in close agreement with 

observed behavior.  The effective pier model was able to accurately describe both single 

and mixed failure modes of URM piers, which cannot be modeled by current analytical 

procedures, such as the one outlined by FEMA 356.   

The effective pier model developed in this chapter can be embedded into a 

pushover analysis program and used to analyze the nonlinear behavior of perforated 

URM walls.  With minor modifications the effective pier model can account for flange 

effects, which have been shown to be substantial in certain cases (Moon et al. 2003, Yi et 

al. 2003).   
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CHAPTER 5 

FLANGE EFFECTS FOR THE NONLINEAR BEHAVIOR OF INDIVIDUAL 

URM PIERS 

 

 

5.1. INTRODUCTION 

Numerous experimental projects and analytical studies have been conducted on 

the nonlinear in-plane behavior of URM piers. An effective pier model, proposed in the 

previous chapter to illustrate the nonlinear behavior of rectangular-section URM piers, 

has been shown to give good agreement with previous experimental results. However, 

some URM piers in a URM building do not have a rectangular section, such as the piers 

at the corner of the building (Figure 5.1a) or those connected with an adjacent interior 

wall (Figure 5.1b). Obviously, these adjacent transverse walls will move together with 

the in-plane piers during dynamic excitation, and thus possibly increase both the initial 

stiffness and maximum strength of the in-plane piers.  

 

 

 

 

 

 

 

(a) URM pier at the corner              b) URM pier connected with adjacent interior wall 

Figure 5.1. Non-rectangular URM pier section 

 

In-plane pier 

Transverse wall 
 

In-plane pier 

Transverse wall 
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Although several experimental research projects have been conducted on the 

effects of transverse walls on the response of in-plane walls at the structural level 

(Tomazevic et al. 1993, Costley and Abrams 1996, Paquette and Bruneau 1999), the 

current literature review reveals that little research has been done for the effects of 

transverse walls on the response of an individual pier. This lack of research hinders the 

full understanding of the effects of the transverse walls. The effective pier model 

proposed in the previous chapter is modified in this chapter to account for the 

contribution of adjacent transverse walls to the response of in-plane walls.  

 

5.2. MODIFICATION OF THE EFFECTIVE PIER MODEL TO CONSIDER THE 

FLANGE EFFECTS 

5.2.1. Basic assumptions 

A typical URM pier with a transverse wall is shown in Figure 5.2. The height, 

length, and thickness of the in-plane pier are h, L, and t, respectively. The height and 

thickness of the transverse wall are h and tf, respectively. The length of the transverse 

wall is Lf. 
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Figure 5.2. A typical URM pier with transverse wall 
 

 

The existence of the transverse wall significantly increases the complexity of the 

response of the URM pier. In order to modify the effective pier model to illustrate the 

nonlinear behavior of this non-rectangular section URM pier, several assumptions have to 

be made: 

• Although it is recognized that the response of a non-rectangular pier is no longer 

purely in-plane, the possible torsional behavior is ignored. In general, the 

resultants of the external forces don’t necessarily go through the shear center of 

this non-rectangular section, and thus torsion will be induced. However, ignoring 

these torsional forces will not introduce a significant error since in most cases the 

pier is laterally supported by the floor system and large torsional deformations are 

prevented.  

L

h 

Lf
t 

tf 

Lateral force 

Lateral force 
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• A length of Lf is assumed for the transverse wall. However, in many cases the 

length of the transverse wall will be very long compared with the height of the in-

plane pier. For such cases, only part of the transverse wall will participate in the 

response of the in-plane pier. Therefore, an effective length of Lf has to be 

determined. It is assumed herein that the long transverse wall will crack prior to 

the failure of the in-plane pier, and the corresponding effective length (Lf) can be 

calculated based on the crack pattern in the transverse wall. The determination of 

the effective flange width Lf is discussed in Section 5.5. 

• The connection between the in-plane pier and the transverse wall is assumed 

strong enough to ensure the two walls work together as a single pier.  

• External forces are applied in the plane of the in-plane pier. 

• The assumptions used for the rectangular-section URM pier effective model, such 

as the linear vertical stress distribution in the section, still apply. 

 

5.2.2. Effective length and internal stress distribution 

The externally applied forces and the dimensions for a URM pier with a 

transverse wall are illustrated in Figure 5.3. V is the applied shear force; Pt is the axial 

force applied at the top of the URM pier; Pb is the axial force applied at the bottom of the 

pier; Mt is the moment applied at the top of the pier about the inertia center of the entire 

section; Mb is the moment applied at the bottom of the pier about the inertia center of the 

entire section; W is the self weight of the in-plane pier; and Wf is the self weight of the 

transverse wall. The distance between the center of the transverse wall and the 
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compression edge at the bottom of the pier is af; the distance between the inertia center 

and the edge of the entire section is ai; the section area of the transverse wall is Af. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3. External forces applied on a non-rectangular section URM pier 

 

 

The equilibrium equations give: 

ftb WWPP ++=        (5.1) 

bt MMhV +=⋅      (5.2) 

Similar to the effective pier model for a rectangular section URM pier, the stress 

distribution and the length of the effective section at both the top and the bottom of the 

non-rectangular section URM pier can be calculated based on the equilibrium equations 

and the linear vertical stress distribution assumption. Taking the bottom section for 

X 

Y 

V 
Mt 

W 

Pb 

V 

Mb 

h Wf 

Pt
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L 
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example, assuming that the effective length Le is less than the length of the in-plane pier 

and the transverse wall is within the effective length, the vertical force and the flexural 

moment can be calculated based on the internal vertical stress distribution as: 

( ) ( )
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where maxnσ is the maximum compressive stress in this section. Solving Eqs. (5.3) and 

(5.4) simultaneously gives Le and maxnσ . If the value of calculated Le is smaller than fa , 

the transverse wall is out of the effective length. In this case the values of Le and 

maxnσ have to be recalculated by the following equations: 

( ) tLfP etnb −= max2
1 σ      (5.3b) 

( ) 
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26
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On the other hand, if the value of calculated Le based on Eqs. (5.3) and (5.4) is 

larger than L, the entire section is uncracked. In this case, eLL = , and the maximum 

compressive stress maxnσ can be calculated as:  

( ) 
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   (5.4c) 

where tσ is the maximum vertical tensile stress at the tensile side of the section. 

After the effective length of this section is determined by the above equations, the 

average shear stress over this effective length can be simply calculated by: 

tL
V

e

=τ       (5.5) 

Note that the transverse wall is ignored for the shear stress distribution. This 

simplification is based on the fact that the thickness of the transverse wall parallel to the 

loading direction is very small compared with the in-plane panel.  

Similarly, the effective length and the stress distribution at the top of a URM pier 

can also be calculated based on Eqs. (5.3a) through (5.5). For the rest of the pier, the 

length of the effective section can be determined by linearly interpolating between the 

effective sections at the top and bottom of the pier to the original pier boundaries at the 

points with a cracking moment of Mcr. Once the effective section is determined, the axial 

stress and shear stress at any level can be calculated following the same procedure as for 

the original model.   

 

5.2.3. Failure criteria   

After the internal stress distribution in a non-rectangular section URM pier is 

obtained, the same failure criteria employed in Chapter 4 can be applied to calculate the 
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possible failure mechanism of the URM pier. However, the following issues should be 

required attention: 

• When dealing with a bed joint shear failure mode, the calculation of the average 

vertical compressive stress on the bed joint avgσ  should include the possible 

effects of the transverse walls. Therefore, 

If  fe aL ≥ ,  

fe
avg AtL

P
+

=σ      (5.6a) 

Otherwise, 

tL
P
e

avg =σ       (5.6b) 

• When toe crushing leads to a decrease of the effective length, the effective length 

of the section should be recalculated based on the reduced section and the 

equilibrium equations. For example, if a length of Lcrush is lost at the compression 

side of the bottom section due to toe crushing and the transverse wall is assumed 

to still be within the effective length, the effective length at the bottom section can 

be calculated by: 

( ) ( )







−

+
−+−= crushf

e

mt
mfetmb La

L
ff

fAtLffP
β

ββ
2
1    (5.7) 

• It is assumed that a possible diagonal tensile failure will occur only in the in-plane 

wall. Therefore, three representative stresses at the mid-height of a UMR pier, 

which include the average vertical compressive stress avgσ , the average lateral 

confining stress lateralσ , and the average shear stress τ , can be used to check the 
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diagonal tensile failure. Elastic mechanics theory shows that the shear stress in a 

transverse wall is small under lateral shear force. As a result, the calculation of the 

average shear stress and the average lateral confining stress ignores the 

contribution of the transverse wall, and is thus the same as that for the rectangular 

section pier. The calculation of the average vertical compressive stress should 

include the contribution of the transverse wall, and is: 

f
avg ALt

P
+

=σ      (5.8) 

 

5.2.4. Deformation of URM pier 

The deformation of a non-rectangular section URM pier can be calculated 

following the same procedure as that for a rectangular section URM pier. A three-section 

or two-section vertical effective pier can be used to calculate the flexural and shear 

deformations. Again, the lateral stiffness of the pier (K) is dependant on the dimensions, 

boundary conditions, elastic and shear moduli of the pier. The initial elastic stiffness can 

be calculated as: 

GA
h

EI
h

K
+

=

ζ

3
1      (5.9) 

where, ζ is a coefficient that describes the boundary conditions of the pier (ζ is equal to 

12 for fixed–fixed end conditions, and 3 for cantilever end conditions); E is the elastic 

modulus of masonry; G is the shear modulus of masonry, which is taken as 0.4E; I is the 

moment of inertia of this non-rectangular section; and A is its section area. 
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5.3. THE ULTIMATE STRENGTHS CORRESPONDING TO FOUR TYPICAL 

FAILURE MECHANISMS OF A URM PIER CONSIDERING FLANGE 

EFFECTS 

In order to investigate the effects of transverse wall on the lateral strength of a 

non-rectangular section URM pier, the maximum strengths corresponding to four primary 

failure modes of a cantilever URM pier are calculated based on the modified effective 

pier model.   

 

5.3.1. Rocking Capacity 

To simplify the problem, the bed joint tensile strength is assumed to be zero. 

Meanwhile, the transverse wall is first assumed to lie within the effective length. 

Therefore, the equilibrium equations at the base of the pier can be derived from Eqs. (5.3) 

and (5.4) as the follows: 
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Note that the lateral shear force for this URM pier can be explained in terms of 

the flexural moment at the bottom of the pier as: 

              
h

M
V b=      (5.10) 

Solving Eqs. (5.3d), (5.4d), and (5.10) simultaneously gives the lateral strength of 

the pier in terms of vertical forces as: 
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  (5.11) 

where Leb is the effective length at the bottom of the pier. 

If the area of the transverse wall is zero, the non-rectangular section pier reverts to 

a rectangular section pier, and Eq. (5.11) reduces to: 

( )
h

LWP
L

LV t
eb

23
21 +






 −=       (5.12) 

 Eq. (5.12) is the same as Eq. (4.28) given in the previous chapter for a rectangular 

section pier.  

 If the transverse wall is at the compressive toe of the pier, then 

0=fa         (5.13) 

 Noticing that the inertia center of the non-rectangular section is determined by: 

WW
LWaW

a
f

ff
i +

⋅+⋅
=

5.0
      (5.14) 

and introducing the ratio between the section area of the transverse wall to the in-plane 

panel as:  

( ) WWLtA ff == /ψ       (5.15) 

and substituting Eqs. (5.13), (5.14), and (5.15) into Eq. (5.11) yields: 

( ) ( )
h

LWWP
LL

LL
WW

WV ft
eb

eb

f 22
/

3
2 2

++










+
⋅−

+
=

ψ
   (5.16) 

 If the transverse wall is not within the effective length, the equilibrium equations 

have to follow Eqs. (5.3b) and (5.4b), which can be simplified as: 
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tLP enb max2
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Solving Eqs. (5.3e), (5.4e), and (5.10) simultaneously gives the lateral strength of 

the pier in terms of vertical forces as: 

( )
h
LWWP

L
L

L
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3
1     (5.11b) 

As an example, when the transverse wall is at the heel side of the pier,  

La f =        (5.13b) 

Considering Eqs. (5.13b) and (5.14), Eq. (5.11b) can be simplified as:   
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+⋅−=    (5.17) 

 Comparing Eqs. (5.12), (5.16), and (5.17), it can be seen that the rocking strength 

of a non-rectangular URM pier is affected by the transverse wall. Specifically, Eq. (5.17) 

shows that when the transverse wall is at the heel side of a pier, the rocking strength of 

the pier is remarkably increased.  

Eq. (5.17) also indicates that the contribution of a transverse wall to the rocking 

strength of a URM pier increases with the decreasing of effective length (Leb).  When the 

effect length at the base of the URM pier is zero, the contribution of the transverse wall 

reaches maximum, and the corresponding rocking strength of a cantilever URM pier can 

be derived from Eq. (5.11b) as: 

  rock
f

rock V
L

a
V 








+= ψ21       (5.18) 
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where rockV is the rocking strength of a cantilever URM pier without transverse wall. 

 The effects of a transverse wall on the rocking strength of a URM pier, which are 

shown by Eqs. (5.11) and (5.11b), are also illustrated in terms of the non-dimensional 

values 
L

a f  vs.

h
LP

WW
W

V

b
f 2+

 in Figures. 5.4 and 5.5. In Figure 5.4, the effective length 

at the bottom of the pier is assumed to be zero. This can be considered as the ultimate 

state of rocking. In Figure 5.5, the effect length at the bottom of the pier is assumed to be 

0.15l, which is the value adopted by FEMA 356.  
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Figure 5.4. Contribution of transverse wall to the rocking strength of a URM pier with 
zero effective length 
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Figure 5.5. Contribution of transverse wall to the rocking strength of a URM pier with the 
effective length of 0.15L 

 

 

Figure 5.4 shows that the effect of a transverse wall is dependent on its weight 

and its location with respect to the compression toe. The larger the weight of the 

transverse wall is, the more significant its effect is. On the other hand, when the 

transverse wall is at the compressive toe, it has no contribution to the rocking strength of 

the URM pier. When the transverse wall moves away from the compression toe, the 

rocking strength of the pier increases in a linear fashion. Specifically, when the transverse 

wall is at the heel end (
L

a f =1.0), the model gives the largest increase in the rocking 

strength.  
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Figure 5.5 gives similar trends for the flange effects of the transverse wall on the 

rocking strength of a URM pier as those shown in Figure 5.4. However, the increment in 

the rocking strength due to the transverse wall is slightly smaller when compared with 

Figure 5.4. This is due to the fact that the lever arm from the transverse wall to the 

rocking center is smaller in Figure 5.5.  

 

5.3.2. Bed-Joint Sliding Capacity 

As discussed in the previous chapter, there are two different types of bed joint 

sliding capacities, which are the bed joint sliding capacity for an uncracked bed joint and 

the bed joint sliding capacity for a cracked bed joint. If the bottom section of a cantilever 

URM pier has fully cracked during previous loading, the bed joint sliding strength of this 

URM pier depends only on the vertical compressive force and the shear friction. In this 

case, the bed joint sliding capacity for a URM pier with a transverse wall can be 

calculated as: 

( )ftsliding WWPV ++⋅= 1µ      (5.19) 

Eq. (5.19) shows that the additional weight due to the transverse wall increases 

the sliding capacity of a cracked URM bed joint.  

On the other hand, for an uncracked bed joint surface, the bed joint sliding 

strength is determined by not only the vertical compressive force and the initial internal 

shear friction coefficient, but also the uncracked bed joint area: 

( )fte WWPAV +++= µτ 0     (5.20) 

In order to calculate the effective area at the bottom section of a URM pier, the 

effective length eL  has to be calculated first by solving Eqs. (5.3b) and (5.4b) or Eq. 
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(5.3d) and (5.4d). After obtaining eL , the effective area at the bottom section Ae can be 

calculated as: 

If  fe aL ≥ ,  

fee AtLA +=      (5.21a) 

Otherwise, 

tLA ee =       (5.21b) 

 As an example, when the transverse wall is not within the effective length, the bed 

joint sliding capacity for a cantilever URM pier can be calculated from Eqs. (5.11b), 

(5.20), and (5.21b) as: 
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=
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0

3
1

3
τ

τµ
    (5.22) 

 Eq. (5.22) shows again the increase in shear sliding capacity of a URM pier with 

the added weight of the transverse wall. On the other hand, Eq. (5.22) also indicates that 

the shear sliding capacity increases when the transverse wall moves away from the 

compression toe (increasing ia ).  

 When the transverse wall is within the effective length, the bed joint sliding 

capacity for a cantilever URM pier can be obtained similarly from Eqs. (5.11), (5.20), 

and (5.21a). However, no closed-form solution can be obtained from these equations and 

a numerical technique has to be utilized to obtain a solution. 

It needs to be pointed out that for a URM building under seismic excitation, the 

cyclic nature of the seismic load usually leads to fully cracking of bed joint prior to any 
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sliding occurring.  In this case, the contribution of the transverse wall to the sliding 

strength of a URM pier can be rewritten from Eq. (5.19) as: 

  ( ) slidingsliding VV ψ+= 1       (5.23) 

where slidingV is the sliding strength of a cantilever URM pier without transverse wall. 

 

5.3.3. Toe-Crushing Capacity 

As discussed in the previous chapter, toe crushing occurs when the compressive 

stress at the toe of the pier reaches the compressive strength of masonry: 

mn f⋅= βσ max      (5.24) 

If the transverse wall is within the effective length, substituting Eq. (5.24) into Eq. 

(5.3d) gives the effective length at the base of the wall as: 

( ) ( ) ( )
tf

taAfPfAfAP
L

m

ffmbmfmfb
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β

βββ 22 2
   (5.25) 

Substituting Eq. (5.25) into Eq. (5.11) gives the corresponding toe-crushing 

capacity. 

On the other hand, if the transverse wall is not within the effective length, 

substituting Eq. (5.24) into Eq. (5.3e) gives the effective length at the base of the wall as: 

tf
P

L
m

b
eb ⋅
=
β

2
      (5.26) 

Substituting Eq. (5.26) into Eq. (5.11b) gives the corresponding toe-crushing 

capacity as: 
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The flange effects of a transverse wall on the toe crushing strength of a URM pier 

are illustrated in terms of the non-dimensional values 
L

a f  vs.

h
LP

WW
W

V

b
f 2+

 for different 

WW f ratios and different vertical stress ratios ( ( )( )LtfP mb βψω += 1/ , as shown in 

Figures 5.6 to 5.8. The figures show that the transverse wall generally increases the toe 

crushing strength. However, this increment is dependent on the WW f ratio, the ω  ratio, 

as well as the location of the transverse wall. When the vertical compressive stress is 

small ( 1.0=ω ), the transverse wall at the heel side of the pier increases the toe crushing 

strength significantly. In contrast, when the vertical compressive is large ( 5.0=ω ), the 

transverse wall at the toe side of the pier increases the toe crushing strength significantly. 

Figures 5.6 to 5.8 also indicate that the contribution of a transverse wall is not linearly 

dependent on the weight of the transverse wall.  
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Figure 5.6. Toe crushing strength of non-rectangular section URM pier ( 1.0=ω ) 
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Figure 5.7. Toe crushing strength of non-rectangular section URM pier ( 3.0=ω ) 
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Figure 5.8. Toe crushing strength of non-rectangular section URM pier ( 5.0=ω ) 

 

 

5.3.4. Diagonal Tension Capacity 

As discussed in Chapter 4, the diagonal tension failure mode of a URM pier is 

controlled by the following Equations:  

 (1) Stair-stepped bed joint sliding: 

avgu µσττ += 0      (5.28) 

(2)  Compression-tension principal stress state masonry failure criterion 
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(3) Compression-compression principal stress state masonry failure criterion 

( ) 11 212 =+−+ CIICCJ     (5.30) 
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where J2, I1, I2 are principal stress invariants defined as: 
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In order to use the above failure criteria, three representative stresses at the mid-

height of a UMR pier: the average vertical compressive stress avgσ , the average lateral 

confine stress lateralσ , and the average shear stress τ , have to be used.  As discussed in 

Section 5.2.3, lateralσ  and τ  are considered not affected by the existence of transverse 

wall. On the other hand, the value of avgσ  can be calculated by Eq. (5.8) to incorporate 

the effect of transverse wall. Specifically, if the vertical compressive stress applied on the 

top of the transverse wall is the same as that on the top of the in-plane section, Eq. (5.8) 

indicates that the value of avgσ  for a URM pier is not affected by the existence of the 

transverse wall. As a result, it can be concluded that the diagonal tension capacity of a 

URM pier is not affected by its transverse wall. 

 

5.3.5. Mixed failure modes 

The effects of transverse wall on the ultimate strength of a cantilever pier 

corresponding to the four typical failure modes were discussed in previous sections. The 

transverse wall does not affect the diagonal tension strength of a URM pier, but typically 

increases the rocking strength, the sliding strength, and the toe crushing strength of a 

URM pier. Therefore, considering the participation of transverse wall, the failure modes 

of a URM pier should tend to shift towards a brittle diagonal tension failure mode. The 

analysis for mixed failure modes of a URM pier with transverse wall is a complex job.  A 
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simple set of equations can not be derived to address this task. Instead, an analysis 

program based on the primary equations discussed before must be used for this purpose. 

Such a program is discussed in Chapter 12. 

 

5.4.  DETERMINATION OF THE FLANGE WIDTH 

In the above sections, the width of the transverse wall is assumed to be known, 

and the vertical stress in the transverse wall is assumed to be uniformly distributed. 

However, for a real case, the vertical stress is nonlinearly distributed in a transverse wall 

because of the phenomenon known as shear lag. Owing to the shear deformation of the 

walls, the longitudinal displacements away from the junction of the in-plane wall and the 

transverse wall will lag behind those at the junction(s). As a result, high stresses are 

concentrated at the junction, and the stresses decrease in value at locations away from the 

junction. In order to take into account the nonlinear stress distribution in the transverse 

wall, an effective flange length is needed.  

The effect of shear lag in linear elastic systems has been investigated using the 

theory of elasticity (Timoshenko and Goodier 1970). This method, however, is too 

complex to be used for estimating the effective flange width in practical engineering 

problems. Approaches employing empirical approximations have proved to be more 

successful in developing simplified equations to estimate the effective flange width. For 

example, based on experimental observations, Reisner (1964) made effective width 

calculations by assuming that the distribution of flexural normal stresses in a flange plate 

can be approximated by a second order parabolic curve. Other semi-empirical methods 

developed to deal with the shear lag problem include the harmonic analysis method 
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(Kristek et al. 1981), the folded-plate method (Kristek 1979), the finite stringer analysis 

(Evans et al. 1980), and the single Fourier series approach (Tahan et al. 1997). 

When nonlinearity in material behavior needs to be considered, the effective 

flange width can no longer be accurately calculated using elastic techniques. Many 

research studies have been conducted on the effective flange width in reinforced concrete 

T-sections beams and shear walls as well as reinforced masonry shear walls (Ehsani and 

Wight 1985, Pantazopoulou and Moehle 1990, Qi and Pantazopoulou 1991, Shahrooz 

and Pantazopoulou  1992, Hosoyama et. al. 1995, Priestley and He 1995, Pantazopoulou 

and French 2001, and Hassan and EI-Tawil 2003).  

Based on previous research, various definitions have been proposed for the 

effective flange width of shear wall for the design purposes. Some of these definitions are 

listed in Table 5.1. The notations used in the Table are shown in Figure 5.2. Table 5.1 

shows that the calculation of effective flange width is quite different for different material 

and different building codes. 

 

 

Table 5.1. Definitions for the effective flange length 
Standards Subjects Specifications 
ACI 530-02 Section 
1.9.4.2 

Reinforced 
masonry wall 

Lf be less than: 
-6tf 
-Actual flange length 

ACI 318-02 Section 
21.7.5.2 

Reinforced concrete 
wall 

Lf be less than: 
-1/2 the distance to an adjacent shear 
wall  
-25% of the total wall height 

EC6 Reinforced 
masonry wall 

Lf be less than: 
-20% of the total wall height  
-1/2 the distance to an adjacent shear 
wall  
-The distance to the end of the wall. 
- Half the storey height. 
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The above definitions are based primarily on data pertaining to the tension flange 

effective width, but they are also suggested as applicable to a flange under compression 

(ACI Committee 318, 2002).  

In contrast to many studies conducted for the flange widths of reinforced concrete 

shear walls and reinforced masonry shear walls, little research on the flange widths of 

unreinforced masonry walls has been found in the literature review. Moreover, the 

definitions proposed for reinforced concrete or masonry shear walls cannot be simply 

extended to URM walls, since the rationales employed are different for the different 

materials. For example, previous research has shown that with increasing lateral drifts, 

the effective flange width of a reinforced concrete shear wall will increase due to yielding 

of reinforcement. Obviously, this cannot be applied to brittle URM walls. 

For a URM pier, a simple approach is proposed herein to calculate the effective 

flange width. Assuming the transverse wall is at the tensile side of a URM pier, and a 

large moment will be introduced at the base of the transverse wall. As a result, tensile 

stress will be introduced at the base and the direction of the principle tensile stress will be 

450 in respect to the base. Elastic analysis shows that the maximum tensile stress 

concentrates at the conjunction between the in-plane wall and the transverse wall. 

Therefore, a tensile crack will initiate from that corner and propagate diagonally upward, 

as shown in Figure 5.9. This 450 crack propagate to the top of the pier or join with 

another crack propagating from another adjacent shear wall. It is assumed that the 

trapezoid area or the triangular area above the 450 crack will move together with the in-

plane wall. Therefore, this area is considered as the effective flange area. The 
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corresponding effective width for a rectangular tension flange can be calculated as the 

follows: 

   If hLi 2> , 2hL f =        

If hLi 2≤ , 
( )

h
LLh

L ii
f 8

4 ⋅−
=     (5.31) 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.9. Elevation showing the effective flange width for the transverse wall in tension 

 

 

If the transverse wall of a URM pier is at the compression side under external 

lateral force, the external moment will introduce additional vertical compressive stress in 

the transverse wall. The transfer of the additional compression force from the in-plane 

wall to the transverse wall roughly follows a 450 path, as shown in Figure 5.10. 
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Therefore, the equivalent width for this rectangular compression flange can be also 

calculated by Eq. (5.31). When the transverse wall is at other locations, the corresponding 

effective flange width is also defined by Eq. (5.31) for simplicity. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.10. Effective flange width for the transverse wall in compression 

 

 

5.5. OTHER POSSIBLE FAILURE MECHANISMS FOR A URM PIER WITH 

FLANGE 

A basic assumption adopted by the proposed model is that the connection between 

the in-plane pier and the transverse wall is strong enough to ensure that the two walls 

work together as a single pier. In order to have a good connection between two adjoining 
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walls, some details are specified in modern construction. These requirements, however, 

are not always satisfied in existing URM buildings. Particularly, when the transverse wall 

is on the compression side, the large outward force transferred from the in-plane wall 

may cause separation of the corner, as shown in Figure 5.11. Nevertheless, since this type 

of failure mechanism usually occurs after severe damage has developed in the wall, it is 

not considered in the current model.  

 

 

 

Figure 5.11. Unreinforced masonry corner wall separated during shaking tests 
(Tomazevic, 1999) 

 

 

Another possible failure mechanism not considered by the proposed model occurs 

when the length of the in-plane pier (L) is smaller than the width of the transverse wall 

(Lf). In this case the in-plane pier may crack prior to the damage of the transverse wall. 
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Therefore, the response of this URM pier is controlled by the out-of-plane behavior of the 

transverse wall, which is not the research focus of the proposed analytical model. 

 

5.6. CONCLUSIONS 

Previous research indicates that flange effects due to the participation of 

transverse walls have significantly influence on the response of a URM pier. The 

effective pier model proposed for a rectangular section URM pier in Chapter 4 is 

modified to consider the flange effects. Based on this modified effective pier model, the 

maximum strengths of a URM pier corresponding to the four fundamental failure modes 

are assessed. It is found that flange effects significantly increase the rocking strength, the 

shear sliding strength, and the toe crushing strength of a URM pier. In contrast, it has no 

noteworthy effects on the diagonal tension strength of a URM pier. Furthermore, the 

analysis also reveals that the location of the transverse wall has remarkable influence on 

the response of a URM pier. 

The contribution of flange effects largely depends on the effective width of the 

flange. A simple method based on a reasonable crack pattern in a URM pier is proposed 

in this chapter to calculate the effective flange width. It can be applied for both tension-

flange piers and compression-flange piers. 

The modified effective pier model can be embedded into a pushover analysis 

program and used to analyze the nonlinear behavior of perforated URM walls; this is 

discussed in Chapter 12. However, the reliability of the proposed model needs to be 

validated through future experimental research. The parameters for such proposed 
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experimental research should include the effective width and the locations of the 

transverse wall, and the vertical stress value applied on the URM pier. 
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CHAPTER 6 

 DESIGN OF THE ST-11 BUILDING 

 

 

6.1.  INTRODUCTION 

A quasi-static test of a full-scale two-story URM building was conducted at 

Georgia Tech as the main experimental part of this research. This test was sponsored by 

the National Science Foundation (NSF) through the Mid-America Earthquake Center 

(MAEC) Project ST-11. This chapter introduces the design and construction of this URM 

building, and is organized as follows: First, the objectives of this experimental research 

are briefly reviewed. Second, the extensive material tests performed in order to select 

appropriate materials for the construction of the full-scale test structure are described. 

Next, the design of the test structure is presented, including the design of the masonry 

walls, the timber roof and floor system, and the foundation. After that, the construction of 

the building and the proposed rehabilitation techniques are summarized. Finally, the 

loading sequence for testing the building is presented. Test results are discussed in 

Chapters 7 through 9.  

 

6.2.  OBJECTIVES 

The goal of the ST-11 project was to examine the structural characteristics of 

existing unreinforced masonry buildings and to explore the effectiveness of several 

rehabilitation techniques. The categorized research objectives are listed in Table 6.1. 
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Table 6.1.  Objectives for Project ST-11 
 Objectives 

    
   

   
   

   
  E

xi
st

in
g 

U
R

M
 

  

 
(1) Verify the validity of extrapolating from individual component 

behavior to the overall response in a URM building system 
(2) Experimentally identify the critical components in order to 

develop a systematic method for evaluation and rehabilitation of 
URM structures 

(3)  Experimentally validate current code provisions (FEMA 356) 
as well as advanced analysis tools for URM structures 

(4) Compare the full-scale quasi-static test with the half-scale 
dynamic test (MAEC project ST-22) 

    
   

R
eh

ab
ili

ta
te

d 
U

R
M

 
  

 
(5) Examine the relative effectiveness of different rehabilitation 

approaches 
(6) Assess the effectiveness of selective rehabilitation of individual 

components on overall system performance. 
(7) Experimentally validate standard code, as well as advanced 

analysis tools for rehabilitated URM structures 
(8) Compare the full-scale quasi-static test with half-scale dynamic 

test 

    
 O

th
er

s  
    

(9) Aid in the improvement of code provisions and the 
development of rehabilitation guidelines 

 

 

The research presented herein is focused on existing URM, which covers 

Objectives 1, 2, 3, and 9 listed in Table 6.1. Objective 1 is to verify the extrapolation of 

individual component behavior to the overall response of the building system. This 

objective is based on the parallel research conducted under other MAEC projects that 

investigated the behavior of individual components, such as project ST-6 (URM wall 

piers, Franklin et al. 2001, Erbay et al. 2001) and project ST-8 (Flexible wood 

diaphragms, Peralta, et al. 2000). Detailed description of these projects can be found in 

Appendix A. Specifically, the ST-11 test was used to investigate the following two 

issues: 
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• Determination of the contribution of each masonry pier to the strength of the 

entire perforated wall;  

• Assessment of the contribution of the flexible wood roof and floor diaphragm to 

the overall response of the building system. 

Objective 2 is to experimentally identify critical components in order to develop a 

systematic method to evaluate existing URM structures and to apply rehabilitation 

approaches. Figure 6.1 shows typical components of a URM building. The following 

critical components or behavior were investigated in the ST-11 test: 

• The diaphragm-to-wall connections,  

• The out-of-plane behavior of URM walls, 

• The torsional behavior of a URM building with unsymmetrical layout, 

• The progressive damage of piers in a perforated URM wall, 

• The behavior of secondary elements, 

• The behavior of different lintels. 

Objective 3 is to experimentally validate available code provisions (FEMA 356, 

ATC 1999), as well as advanced analysis tools for evaluating the seismic resistance of 

unreinforced masonry structures. The ST-11 test structure represents a realistic 

configuration for URM structures in Mid-America, and thus constitutes a good test for 

FEMA 356 provisions as well as for advanced analysis tools.  The test results will help to 

improve the standard codes and rehabilitation guidelines for existing URM structure, 

which is Objective 9 of this research. 

The other objectives of the ST-11 test project, such as the comparison of the full-

scale quasi-static test with half-scale dynamic test (Objectives 4 and 8) and the 
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rehabilitation of the test structure (Objectives 5, 6, and 7), are out of the scope of the 

research presented herein; it can be found elsewhere (Moon 2004). 

 

 

Figure 6.1. 3D exploded view of the test structure 
 

 

6.3. MATERIAL PROPERTIES  

6.3.1. Bricks 

The bricks used for construction were donated by the Southern Brick Institute and 

supplied by a local company (CHEROKEE Brick and Tile).  Two different types of 

bricks, including both solid bricks and cored bricks, were employed (Figure 6.2). 

Foundation 

Wall A 

Wall 2 

Roof diaphragm 

Stud wall 
Wall 1 

Wall B 
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Nominal dimensions of both types of bricks were 7.75 in length, 3.5 in width, and 2.25 in 

thickness. The cored bricks contained a longitudinal hole through the center, with a 

nominal diameter of 0.875 in.    

Measured compressive strengths for the solid brick and the core brick were 6030 

psi and 5285 psi, respectively. These were determined according to ASTM C67. In an 

attempt to minimize the influence of this strength difference, the solid bricks were used 

for the lower 54 courses of the test structure and the cored bricks were used for the 

remainder of the structure. The analyses predicted that most of the damage would 

concentrate on the first floor and thus the solid bricks were used in that area. Solid bricks 

were employed for all header courses.       

 

 

 

 

Figure 6.2.  Two different types of bricks 
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6.3.2. Masonry mortar 

The choice of an appropriate masonry mortar was the main task of the material 

characterization work. A survey of existing buildings in Mid-America by the Southern 

Brick Institute revealed that strong unit-weak mortar masonry was widely used in 

construction prior to 1950. Analyses conducted at Clemson University of mortar samples 

taken from existing structures in Mid-America showed a very low amount of Portland 

cement (Clemson University, 2000).  This suggested that masonry with low-strength 

mortar is common in existing URM structures in Mid-America. 

 The grades of masonry mortar used prior to 1950 are listed in Table 6.2. To 

represent strong unit-weak mortar masonry, a weak mortar such as pre-1950 Type O or 

Type K mortar needed to be simulated in the lab.  

 

 

Table 6.2. Different grade of masonry mortar used prior to 1950 (ASTM 1958) 
Type Ratio  

(cement: lime: sand) 
Compressive Strength (psi) 

M 1:0:3 2500 
S 0.5-1 :0.25-0.5: 4.5 1800 
N 1: 0.5-1.25: 6 750 
O 1: 2: 9 350 
K 0.5 : 2 : 7.5 75 

 

 

Based on a series of material tests, a mortar mix in the ratio of 0.5: 2: 9 (Portland 

cement: lime: sand) was chosen to represent the weak mortar. The compressive strength 

of this type of mortar was 41 psi, which is close to the value for Type K mortar given in 

Table 6.2. Since the designed mortar mixture is close to that specified for Type K mortar, 
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this mortar is designated as a Type K’ mortar. Detailed descriptions of this series of 

material tests can be found in Appendix B. 

 

6.3.3. Material properties of masonry 

Masonry prism specimens and 4-brick direct shear specimens were constructed 

simultaneously with the construction of building. Several critical material parameters, 

including the compressive strength, the initial bed joint shear strength, the equivalent 

internal shear coefficient, and the shear-sliding coefficient for the cracked bed joint, were 

measured by prism tests and 4-bricks direct shear tests. The results are listed in Table 6.3. 

It should be pointed out that the compressive strength is different for solid brick and 

hollow brick, while the other strength parameters are the same for the two different types 

of bricks. 

 

Table 6.3.  Material properties of the test structure 
Strength parameters Number of tests Mean COV R2 

Compressive strength (solid brick) 3 1458 psi 0.25 - 
Compressive strength (hollow brick) 3 593 psi 0.09 - 
Initial bed joint shear bondage 
strength 21 60 psi 

- 0.75 

Equivalent internal shear coefficient 21 1.1 - 0.75 
Shear sliding coefficient for cracked 
bed joint 21 1.0 

- 0.75 

 

 

 The elastic modulus of masonry also was measured by prism test. The test setup is 

shown in Figure 6.3. Four LVDTs were used to account for effects of possible eccentric 

loading. The specimens were loaded up to a maximum compressive stress of about 500 
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psi. A total of 16 specimens were tested. The measured mean value of elastic modulus 

was 1168 ksi.  

 

 

 

Figure 6.3. Test setup for the measurement of elastic modulus of masonry (5 brick 
specimen) 

 

 

6.4. DESIGN OF THE TEST STRUCTURE 

6.4.1. Overall design 

The ST-11 test structure was a two-story URM bearing wall structure with timber 

floor and roof diaphragms. It was intended to represent a typical existing URM building 

in Mid-America. The URM building was constructed to fully utilize the L-shaped strong 

wall in the Structural Engineering Laboratory at Georgia Tech. The dimensions of the 

building were 24ft by 24ft. in plan with story heights of 12 ft. for the first story and 10 ft. 

for the second story (Figure 6.4). In order to facilitate the use of the same floor system 

Specimen 

Load Cell 

LVDTs 
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investigated in MAEC project ST-8 (Peralta et al. 2000), a stud wall was constructed 

through the center of the structure to support the joists.  The test structure was 

constructed on top of a set of reinforced concrete slab foundations, which were post-

tensioned to the strong-floor. The design of each component of this building is discussed 

in the following sections. 

 

 

 

Figure 6.4. Overview of the test structure with the L strong walls 

 

 

6.4.2. Masonry walls  

The plan view of the test structure is shown in Figure 6.5. The elevation views of 

each of the walls are shown in Figure 6.6 through Figure 6.8. The building was composed 

of four URM masonry walls, which are named Walls A, B, 1 and 2, respectively. For the 
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purpose of explanation, the piers and spandrels in each wall are named as X-Y, where X 

is the name of the wall and Y is the number of the pier or spandrel in this wall. For 

example, Pier 1-6 means Pier 6 in Wall 1 (Figure 6.6). The masonry walls were 

constructed in standard American bond with a header course every sixth course (Figure 

6.9).  

 

 

B

30
0i

n

2

295.75in
288in

28
8i

n

1 2
in

A

41
.2

5

7.75in48
.7

5

12
in

48.75

1

21
0

7.75in

48
.7

5
41

.2
5

41.25 40.5 34.75 40.5 41.25 48.75

24
13

7.
25

48
.7

5

Wall A

Wall B

W
al

l 2

W
al

l 1

Strong wall

North

West

Figure 6.5.  Plan view of the ST-11 test structure 
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Figure 6.6.  Elevation view of Wall 1 
(Number in the parenthesis indicates the number of masonry units) 
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Figure 6.7.  Elevation view of Wall 2  
(Number in the parenthesis indicates the number of masonry units) 
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Figure 6.8.  Elevation view of Walls A and B 
(Number in the parenthesis indicates the number of masonry units) 
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Walls A and B were composed of three wythes of masonry giving a nominal 

thickness of 12 in., while Walls 1 and 2 were composed of two wythes of masonry giving 

a nominal thickness of 8 in. The latter (8 in.) is the minimum thickness for masonry 

bearing walls more than one story high (Masonry Standards Joint Committee, 2002), and 

12 in. is a typical thickness for low rising masonry building walls. The use of two and 

three-wythe walls for the test structure also ensured that the stability of masonry wall was 

not an issue.  

The opening ratios for each wall are listed in Table 6.4.  This table shows that the 

opening ratios of Walls 1 and 2 are quite different. Wall 2 contained a large door opening 

(indicative of the front of a firehouse), and was designed to represent a strong spandrel-

weak pier type perforated wall.  Wall 1 had relatively small openings, and was designed 

to represent a strong pier-weak spandrel type perforated wall. Furthermore, many 

structures in Mid-America contain parallel walls with large differences in stiffness.  As a 

result, the behavior of URM structures with flexible diaphragms subject to torsion is of 

interest. Walls 1 and 2 allowed this type of behavior to be investigated. Walls A and B 

had moderate opening ratios, which were observed in many existing URM buildings. In 

addition, Walls A and B were identical except that four vertical holes were left in Wall A 

to allow a post-tensioning retrofit to be investigated. Since the two walls are identical, 

direct comparisons can be made on the relative effectiveness of different retrofit 

techniques. Walls A and B supported the floor system.   
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Table 6.4. Opening ratios of each wall 
No. of 
wall 

Story Rough area 
(in2) 

Opening area 
(in2) 

Opening ratio 

Second 40924 5600 13.7% A/B 
First 43771 7106 16.2% 
Second 41513 7336 17.7% 2 
First 44400 16940 38.2% 
Second 41513 3875 9.3% 1 
First 44400 3444 7.8% 

 

 

The pier sizes and h/L ratios are listed in Table 6.5.  The aspect ratios of piers in 

the test structure ranged from 0.4 to 4.0. This range of pier aspect ratios was selected in 

order to allow both the “shear” and “flexural” piers such as those tested in MAEC project 

ST-6 to be investigated.  Two types of wall piers were investigated in Project ST-6: (1) 

cantilever flexural members with a h/L ratio of 1.77 and a vertical stress ranging from 25 

psi to 75 psi; and (2) cantilever shear members with a h/L ratio of 0.5 and a vertical stress 

of 65 psi or higher (Erbay et al. 2001, Franklin et. al. 2001).  For design, the piers in the 

first floor were assumed to act as “fixed-fixed” columns or walls.  Following this 

assumption, the piers with h/L ratios between 3.0 and 4.0 in the first floor were 

equivalent to the flexure piers tested in ST-6.  Similarly, piers with h/L ratios of 1.0 

employed in the first floor were representative of the shear piers tested in ST-6.  Thus, the 

behavior of both types of individual piers tested with idealized boundary conditions in 

project ST-6 could be investigated in the context of an entire, realistic structure as part of 

the ST-11 building.  
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Table 6.5. Pier sizes and aspect ratios 
Pier Length 

(in) 
Height
(in) 

H/L Pier Length 
(in) 

Height 
(in) 

H/L 

A/B-2 48.375 47.25 1.0 1-4 48.375 47.25 1.0 
A/B-3 40.25 47.25 1.2 1-6 48.375 84 1.7 
A/B-4 40.25 47.25 1.2 1-7 210.625 84 0.4 
A/B-5 48.375 47.25 1.0 2-2 48.375 47.25 1.0 
A/B-7 48.375 84 1.7 2-3 24 47.25 2.0 
A/B-8 40.25 47.25 1.2 2-4 24 47.25 2.0 
A/B-9 40.25 47.25 1.2 2-5 48.375 47.25 1.0 
A/B-10 48.375 47.25 1.0 2-7 48.375 94.5 2.0 
1-2 48.375 47.25 1.0 2-8 24 94.5 4.0 
1-3 121.25 47.25 0.4 2-9 48.375 94.5 2.0 

 

 

The four masonry walls were connected with each other at the corners. The 

corners were built following normal standards (Structural Clay Products Institute, 1949) 

to ensure adequate connection strengths (Figure 6.10). This also allowed flange effects to 

be investigated. In particular, Wall 1 was designed so that the area of the flange for Wall 

B (Pier 1-6) was much larger than that for Wall A (Pier 1-7, Figure 6.6). Thus, the effects 

of different size flanges were investigated. 

 

 

Figure 6.10. Common bond used to ensure adequate connection strengths (Stoddard 
1946) 
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Walls A and B employed URM arch lintels (Figure 6.11), while Walls 1 and 2 

employed steel lintels (Figure 6.12). Both of the two lintels are representative of typical 

lintels used for exiting URM structures (Stoddard 1946).  

Another interesting feature for the designed structure is that no additional weight 

was added on the roof and the floor to simulate the live load. Thus a lower bound for the 

strength of the building was obtained, as the axial compression stress on the walls was 

minimized. However, the pre-set post-tensioning ducts in Wall A allowed the effects of 

potential additional vertical load on the behavior of the building to be investigated. 

 

 

 

36.5 - 40 inches

5.0 in

Figure 6.11.  Detail of arch lintels 
 

 

 



 170

Inverted T steel lintel
opening

8 in.
TYP.cut from W21 section

Figure 6.12.  Detail of steel lintels 
 

 

6.4.3. Timber roof and floor diaphragm 

Surveys of pre-1950 URM buildings in Mid-America indicated that timber 

diaphragm and steel diaphragm were widely used for floor and roof systems (MAEC SE-

1, see Appendix A). Timber roof and floor diaphragms were chosen for use in the ST-11 

test structure since it could be considered to model a lower bound of strength and 

stiffness for existing diaphragms. In order to utilize the test results obtained from other 

parallel MAE center projects, diaphragms similar to the “MAE-2” diaphragm tested in 

MAEC ST-8 (Peralta et al. 2000) were used for the ST-11 test specimen. 

The configuration of the roof diaphragm is shown in Figure 6.13. The framing of 

the diaphragm was composed of 2x10 joists spanning 12 ft. and spaced 16 in. on center. 

The joists were laterally supported by full depth blocking spaced at approximately 4 ft. 

on center, and simply supported on Walls A and B as well as on the stud wall built 



 171

through the center of the building. The joists rested directly on the inner wythe of Walls 

A and B in masonry “pockets”. The joists did not have a diagonal “fire-cut” end. The 

joists and blocks were nailed together with 16d common nails. In order to anchor the roof 

diaphragm to the masonry walls, 5/8” threaded rods were used as shear ties, and Simpson 

Strong-TieTM system with 5/8” thread rods were used as tension ties (Figure 6.14). The 

number and locations of these ties were varied for different loading cases (see Chapter 7). 

Straight sheathing was provided by using 1x6 square edge boards, staggered 

symmetrically with respect to the diaphragm mid-span. Three 8d common nails were 

used at the supported end and two at interior joist support locations for each sheathing 

board.   

The floor diaphragm is identical to the roof diaphragm except that 3/8” Plywood 

instead of 1x6 square edge boards was used for the sheathing. The sheathing was nailed 

to the joists by 8d common nails.   
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Figure 6.13.  ST-11 roof/floor diaphragm 

172

 



 173

 

 

 

 

 

 

 

 

 

Figure 6.14.  Simpson connections (taken from www.strongtie.com) 

 

 

6.4.4. Timber Stud Wall 

The floor system tested in MAEC ST-8 (Peralta et al. 2000) contained 2x10 joists 

spaced at 16 in on center.  This type of floor system is only capable of spanning 12 ft. 

However, the distance between bearing walls of the ST-11 test structure was 24 ft.  As a 

result, a timber stud wall was provided in the center of the structure to reduce the 

required span to 12 ft. and to allow the 2x10 joists, as used in ST-8, to be employed.  

Both the first and the second floor stud walls were constructed of 2x6 studs spaced at 16 

in. on center with 2 by 6 blocking supplied at 4 ft. on center (Figure 6.15).  Since these 

walls were only intended as vertical load carrying members, they contain no sheathing.  

The stud wall in the first floor was fixed to the strong-floor at the base, and nailed to the 
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floor joists at the top. The stud wall in the second floor was nailed to the floor joists at the 

bottom and to the roof joists at the top. 

 

 

 

Figure 6.15.  Photo of the stud wall together with the foundation 

 

 

6.4.5. Reinforced Concrete Foundation Slabs 

A reinforced concrete foundation composed of six individual RC slabs was used 

to transfer the base shear of the structure to the strong floor and to anchor the post-

tensioning tendons used for retrofit. The thickness of these RC slabs was 20 in. The 

design of these RC slabs can be found in Appendix C. 
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6.5. CONSTRUCTION 

Prior to the construction of the ST-11 test structure,   the reinforced concrete 

foundation slabs were first cast and post-tensioned to the strong-floor with high strength 

Dywidag bars. Then the timber stud walls and joist floor systems were built on the 

ground and ready to be moved into place with the overhead cranes. The formwork for the 

arch lintels was also constructed and the inverted steel T section used for the lintels in 

Walls 1 and 2 were cut to the proper lengths. The ST-11 test structure was constructed by 

experienced masons. The masons were permitted to adjust the amount of water used in 

the mortar until the desired consistency was achieved. The masonry walls were built 

using the standard American running bond pattern, with a header course every sixth 

course. This bond pattern continued through the piers and floor levels to the top course.  

For the three-wythe walls, the outside two wythes were tied at the same course as the 

two-wythe walls, while the inside two wythes were tied at the next course (Figure 6.9).  

Four holes were left at the corners of the structure at the floor and roof levels to allow the 

post-tensioning tendons used to attach the actuators to the structure.  To facilitate the 

loading of the roof diaphragm, step-back openings were left in the center of Wall A and 

Wall 1 at the roof level (Figure 6.16). These openings were filled prior to the in-plane 

wall tests.   

Construction of the walls was temporarily halted at the floor and roof levels to 

allow the floor systems to be placed by the overhead crane (Figure 6.17).  Once the floor 

systems were aligned properly on Walls A and B, the pockets were built around the end 

of the joists to ensure proper fit.  After the floor systems were assembled, sheathing was 

nailed to the top of the joists. At the same time, construction of the masonry wall 
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continued in order to keep the construction schedule. The construction of the entire 

building took approximately 1 month. Three masonry prism specimens and three 4-brick 

direct shear specimens were constructed per day (about 100 ft2 of surface area) 

throughout the construction of building.  

 

 

 

 

 

 
Opening 

Figure 6.16. Opening left at the top of Wall 1 
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Figure 6.17.  Assembly of the floor systems 
 

 

6.6. REHABILITATION OF THE TEST STRUCTURE 

 Several different rehabilitation methods were designed and applied to the test 

structure. These rehabilitation methods included: 

• the Saint-Gobain cementitious mortar–glass fiber reinforcement mesh system for 

Wall 2, 

• the Clarke-Schwebel Tech Fab prefabricated glass fiber for Wall 1, 

• the A&P glass fiber system for Wall B, 

• the Hughes Brothers NSM Rods system for Wall B, and  

• a post-tension system for Wall A.  

Detailed descriptions of these rehabilitation systems can be found elsewhere 

(Moon 2004). 
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6.7. LOADING SEQUENCE 

In order to fully investigate the structural performance of the test structure, a 

series of different loading steps were performed (Yi et al. 2002): 

STEP 1: Low-level cyclic displacements were applied to (a) half and (b) the entire 

roof diaphragm to investigate its elastic properties and those of the masonry out-of-plane 

walls. The roof diaphragm was first loaded parallel to Walls A and B, then loaded 

parallel to Walls 1 and 2. The objectives of this series of tests included the determination 

of diaphragm stiffness, out-of-plane wall stiffness, and insight into the connection 

between the out-of-plane wall and the diaphragm. Detailed description of the test set up 

and the test results can be found in Chapter 7.   

STEP 2:  Lateral cyclic displacements were applied simultaneously to Walls 1 and 

2 until fully developed failure mechanisms for these two walls were observed. The 

objectives for this test step included: 

• Measure the in-plane elastic stiffness of Walls 1 and 2. 

• Investigate the torsion behavior and the coupling behavior of the test structure that 

is characterized by containing weak in-plane walls and strong out-of-plane walls, 

and two in plane walls with very different stiffness. 

• Investigate the nonlinear properties of Walls 1 and 2, including the maximum 

strengths, the deformation capacities, the crack patterns and the failure modes, the 

flange effect due to the out-of-plane walls, and the interaction between the piers 

and the spandrels, etc. 

Detailed description of the test set up and the test results can be found in Chapter 

8.   
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STEP 3:  Lateral cyclic displacements were applied simultaneously to Walls A 

and B until fully developed failure mechanisms for these two walls were observed. The 

objectives for this test step were to: 

• Measure the in-plane elastic stiffness of Walls A and B. 

• Investigate the coupling behavior of the test structure with two identical strong in-

plane walls and two weak out-of-plane walls. 

• Investigate the nonlinear properties Walls A and B, similar to these for Walls 1 

and 2. 

Detailed descriptions of the test set up and the test results can be found in Chapter 

9.   

Each test step discussed above was accompanied with a retrofit of the test 

structure and a series of retests after the tests for the URM building were finished. 

Detailed descriptions of these retrofits and corresponding tests can be found elsewhere 

(Moon 2004). 

 

6.8. SUMMARY 

The design of the test structure is described in this Chapter. It includes the design 

objectives, characterizations of the masonry materials, design of the masonry walls, 

design of the flexible roof and floor diaphragms, design of the stud walls, and design of 

the RC foundation. The construction and the loading sequence for the test structure are 

also briefly discussed. Detailed descriptions of test set up and test results are given in the 

following three chapters.  
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 CHAPTER 7  

TESTS OF ROOF DIAPHRAGM AND OUT-OF-PLANE WALLS 

 

 

7.1. INTRODUCTION 

Horizontal roof and floor diaphragms in a building distribute lateral seismic 

forces or wind forces to the building’s vertical resist components (moment frames or 

shear walls). The distribution of the lateral forces through the horizontal diaphragms is 

dependent on the in-plane stiffness of the diaphragms. In the case of a rigid diaphragm 

such as a reinforced concrete slab, the in-plane stiffness of the diaphragm is so large that 

the distribution among several vertical components is affected only by the lateral stiffness 

and the locations of these vertical components. In contrast, a timber roof or floor 

diaphragm in a URM building, which is composed of sheathing, joists and blocks (Figure 

7.1), characterizes large flexibility. It usually exhibits significant bending and shear 

deformations under lateral forces. As a result, the distribution of lateral forces in a URM 

building is dependent on the interaction between the flexible diaphragms and the masonry 

walls. 

The nonlinear properties of flexible timber roof or floor diaphragm itself have 

been investigated in several previous experimental research projects (APA 1985, 1986, 

Contryman 1952, 1955, Tissell 1967, Jonhson 1956, ABK 1981a, Zagajeski 1984, Peralta 

et al. 2000). For example, in the 1950s, a series of tests were conducted at the Forest 

Products Laboratory at Oregon State University to determine the strength and stiffness of 

timber diaphragms at various deformation levels. Parameters such as plywood thickness, 
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lumber sheathing humidity, nailing pattern, type of boundary members, bridging, 

blocking, connections, openings and width-to-length ratios were varied in this study 

(Johnson 1956). In the early 1980s, quasi-static tests and dynamic in-plane shaking tests 

for timber diaphragms were conducted by the ABK group (ABK 1981). These tests 

revealed the highly nonlinear and hysteretic stiffness characteristics of timber 

diaphragms.  Recently, a MAEC Project ST-8 (Peralta et al. 2000) tested three full-scale 

timber diaphragm specimens, which were representatives of the timber diaphragms built 

in pre-1950's URM buildings. The goal of that research was to investigate the behavior of 

existing and rehabilitated timber diaphragms in URM buildings under lateral in-plane 

loads. Based on these experimental results, several design equations and analysis models 

have been proposed for the design and analysis purpose (Peralta et al. 2000, Kim et al. 

2002). 

 

  

 

Figure 7.1. Typical diaphragm components  
  

 

Joists Sheathing 

Blocks 



 182

In contrast to the many experimental tests conducted to ascertain the nonlinear 

properties of flexible diaphragms, not many experimental tests have been carried out to 

investigate the role a flexible diaphragm plays in the response of an entire building. 

Fonseca (1997) tested two reinforced concrete tilt-up structures with plywood 

diaphragms to investigate the strength and deformation capacity of this type of structure. 

Paquette and Bruneau (2000, 2004) conducted a pseudo-dynamic testing on a full-scale 

one-story URM specimen with a timber roof diaphragm, aiming at investigating the 

flexible floor-rigid wall interaction in old URM buildings. Results from these 

experiments, together with some other observations from the field (Bruneau 1994) 

confirmed that the interaction between flexible timber diaphragms and masonry walls has 

a significant influence on the behavior of a URM building. More conclusions on the 

interaction between flexible diaphragm and masonry walls obtained from previous 

experimental investigation can be found in Section 2.5. 

Based on the above context, it is clear that an experimental investigation of the 

interaction between flexible roof or floor diaphragm and masonry walls is very important 

for understanding the response of an entire URM building with flexible roof and floor 

diaphragms. The first part of ST-11 experiment was meant to address this issue by testing 

the timber roof diaphragm of the ST-11 building. Several parameters that may affect the 

interaction between flexible roof and floor diaphragm and masonry walls were 

investigated in these tests. These parameters include the relative stiffness of masonry 

walls and timber roof diaphragm, the connection behavior between masonry walls and 

timber roof diaphragms, and the overall working mechanisms. A picture of the tested roof 

diaphragm is shown in Figure 7.2. 
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Figure 7.2. The tested roof diaphragm 

 

 

In order to investigate the interaction between the roof diaphragm and the 

masonry walls, a lateral load was applied at the center of the roof diaphragm. 

Deformations of both the diaphragm and the masonry walls were measured during the 

test. The loading sequence of this test consisted of the following three steps: 

• Testing of half of the diaphragm parallel to the joists. 

• Testing of the entire diaphragm parallel to the joists. 

• Testing of the entire diaphragm perpendicular to the joists. 

The test setup and the test results for the above three test series are presented in 

the following sections. Conclusions are given at the end. 

 

7.2. TEST ON ONE-HALF OF THE DIAPHRAGM PARALLEL TO THE JOISTS 

Roof sheathing was first nailed to the 12-ft long joists simply supported on Wall 

A and the stud wall. These joists were not connected with the joists next to Wall B. As a 

result, not connections existed between this one-half roof diaphragm and Wall B. This 

one-half roof diaphragm was then tested parallel to the joists. This test aimed at 
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determining the elastic stiffness of a rectangular roof diaphragm with a span to length 

ratio of 2.0, and at comparing the obtained results with the test results of specimen MAE2 

obtained from MAEC project ST-8 (Peralta et al. 2000). 

 

7.2.1. Test Setup 

The test setup is schematically shown in Figure 7.3. The diaphragm was simply 

supported on Wall A and the stud wall. It was also laterally supported on Walls 1 and 2 

by shear connections made from 5/8” diameter threaded rods. The configuration of the 

roof diaphragm can be found in Section 6.4.3. 

 

 

 
Figure 7.3. Test setup for the one-half diaphragm test 

 

 

Notes: 
LVDT 7 is at the floor level, the other LVDTs 
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Two 4 ft long 2x10 timbers were used to reinforce the central joist (Figure 7.4a), 

and two other 4 ft long 2x10 timbers are nailed to the sheathing right above the central 

joist ( Figure 7.4b). Thus a strong loading line was formed along the test diaphragm. Four 

Simpson tension ties were used to connect these 2x10 timbers pieces to the steel angle 

attached to a loading actuator through an opening at the middle of the top of Wall A. In 

some test runs a steel angle with a length of 8 ft was bolted to the diaphragm at the end of 

the top 2x10 timbers. This additional angle was used to alter the force distribution in the 

diaphragm, and to check the effect of different force distribution on the behavior of the 

diaphragm.  

 

 

 

 

 

 

 

 

(a) Top view      (b) Bottom view 

Figure 7.4. Setup of the loading system for the one-half diaphragm test 

 

 

The diaphragm was loaded with displacement control. The typical loading history 

is given in Figure 7.5. Each test run is a complete load cycle with a maximum 
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displacement of 0.2 in. This loading history was applied to all the test series discussed 

later, although the initial loading direction was different in some test runs. 
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Figure 7.5. Loading history for the one-half diaphragm test 

 

 

Several LVDTs were used to monitor the response of the structure during the test 

(Figure 7.3). Specifically, LVDTs 4, 5 and 6 were used to measure the lateral 

displacement of the diaphragm. LVDTs 1, 2, 3 and 7 were used to monitor the possible 

out-of-plane deformation of Wall A. LVDTs 8 and 9 were used to measure the lateral 

displacement of the in-plane Walls 1 and 2. 
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7.2.2. Test runs  

Four test runs were conducted to investigate the response of this half diaphragm 

(Table 7.1). Two series of parameters, different loading patterns and different initial 

loading directions, were examined in these test runs. 

 

 
Table 7.1. Lists of test runs, loading direction parallel to the joists 

ID Description 
Run 8 Half diaphragm, steel angle1, pull direction2, no connections4 

Run 9 Half diaphragm, steel angle, push direction3, no connections 
Run 10 Half diaphragm, point load, pull direction, no connections 
Run 11 Half diaphragm, point load, push direction, no connections 

1: Steel angle was used at the end of the 2x10 woods to distribute the force. 

2: Pull direction: the roof was pulled toward Wall A. 

3: Push direction: the roof was pushed away from Wall A. 

4: No tension connections were provided between Wall A and the roof diaphragm. 

 

 

7.2.3. Test results 

A typical force-lateral displacement curve for the half diaphragm is shown in 

Figure 7.6 (Run 8). The maximum lateral displacement at the center of the roof was about 

0.15 in., which means that about 25% of the control displacement imposed by the loading 

actuator was lost due to the flexibility of the loading system. The observed roof stiffness 

in the negative direction (the sign of the force is negative when the roof is pulled toward 

the north) is much higher than that in the positive direction (the sign of the force is 

positive when the roof is pushed toward the south).  This can be explained by the 

different interaction behavior between the roof diaphragm and Wall A as follows.  
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Figure 7.6. Typical force-displacement curve of the half roof diaphragm 
 

 

Since the lateral stiffness of the stud wall was negligible, the lateral supports to 

the diaphragm were provided by the shear connections and Wall A. When the roof 

diaphragm started to be pulled toward Wall A (force is negative), the external force was 

not large enough to overcome the bond forces and the friction forces between the end of 

the joists and the masonry wall. As a result, the out-of-plane Wall A deformed together 

with the diaphragm, which increased the observed stiffness of the diaphragm and caused 

a large initial stiffness section (stage 1) in Figure 7.6. With increasing external lateral 

force, the bond between the end of the joists and the masonry wall was gradually broken 

and the friction forces were progressively overcome. Sliding occurred between the joists 

(Run 8)
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and the masonry wall, leading to a decrease of the observed stiffness of the roof 

diaphragm (stage 2). However, when the ends of the joists touched the masonry wall after 

sliding, Wall A gradually picked up more force, and consequently the observed stiffness 

of the roof diaphragm increased (stage 3).  

It should be noted that a typical shear connection between the timber diaphragm 

and the masonry in-plane wall being tested displayed rather large flexibility compared 

with Wall A. As a result, the lateral forces transferred from the diaphragm to the shear 

connection were small. Furthermore, although the lateral deflection of the diaphragm 

exhibited a large value at the mid-span, only a small displacement was observed at each 

end of the diaphragm. This caused even less force being transferred to the shear 

connections. Consequently, it is reasonable to assume that all the external lateral forces 

were transferred from the diaphragm to the out-of-plane walls, while no forces went 

directly into the in-plane Wall A. One interesting result of this assumption is that the 

lateral shear stiffness of the diaphragm does not play important role in the response of the 

diaphragm when loaded parallel to the joists. This assumption applies to not only the half 

diaphragm, but also the entire diaphragm, especially for the case that the pockets housing 

the ends of the joists are grouted, which is discussed later.   

When the roof diaphragm was pushed away from Wall A, the interaction between 

the roof and the masonry wall was different from that in the previous case. With 

increasing lateral displacement and gradual sliding between the joists and the out-of-

plane wall, less and less external forces were transferred from the diaphragm to the out-

of-plane Wall A, while more and more forces were transferred to the in-plane Walls 1 

and 2 through the shear connections. This can be seen from the softening behavior of the 
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diaphragm (stage 4) in Figure 7.6, and also the stiffening stage of the total external force-

displacement curve (stage 1) for the out-of-plane Wall A as shown in Figure 7.7. 

Although Figure 7.7 indicates that Wall A still took some forces at the end of push 

loading, the force was small. Therefore, the upper-bound estimation for the lateral 

stiffness of the half roof diaphragm can be obtained by assuming all the incremental 

external forces were transferred directly to the in-plane wall, and calculating the 

tangential stiffness at the end of the push loading. The calculated lateral stiffness of the 

half roof diaphragm in each test series are listed in Table 7.2. Note that the calculated 

stiffness includes both the flexural deformation and the shear deformation of the 

diaphragm.  

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7.  Total external force-displacement curve for the out-of-plane Wall A 
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Table 7.2. Tangential stiffness of the half roof diaphragm at the end of pushing loading 
(by mid-span displacement) 

Test Run Stiffness (kips/in) (by 0.05 inch increment) 

Run 8 9 
Run 9 10 
Run 10 6 
Run 11 6 

 

 

Table 7.2 shows that the steel angle increased the stiffness of the diaphragm 

because it better distributed the force into the diaphragm (Runs 8 and 9). The measured 

stiffness of the diaphragm (10 kips/in.) is smaller than the value obtained in ST-8 test 

(20.6 kips/in). This is reasonable given that ST-8 applied two point loads instead of one 

point load. 

It should also be pointed that the readings of LVDTs 8 and 9 were very small, 

which indicated that the deformation of the in-plane walls was negligible. This 

phenomenon was observed in all the other test runs that will be discussed later.  

 

7.3. INTERACTION MECHANISMS BETWEEN DIAPGRAGM AND MASONRY 

WALLS PARALLEL TO THE JOISTS 

After the test for the one-half diaphragm was completed, the remaining half 

diaphragm was built with an identical configuration to the first part. Again, shear 

connections made from 5/8” diameter threaded rods were used to connect the roof 

diaphragm with in-plane Walls 1 and 2. The entire diaphragm was tested again in the 

direction parallel to the joists. 
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7.3.1. Test setup  

The test setup is shown in Figure 7.8. Similar to the half diaphragm test, 2x10 

timber sections were used to strengthen the central joist and were nailed to the sheathing. 

A 100-kip actuator was connected to these 2x10 timbers sections with Simpson tension 

ties. This resulted in a point load to the diaphragm, which is referred as the “point load” 

case in the following discussion. In some test runs, a timber diamond frame made from 

2x10 sections was bolted to the center of the diaphragm. It was used to produce a relative 

uniform displacement at the center quarter of the diaphragm. This is referred as the 

“uniform load” case in the following discussions. In some other cases, Joist anchors made 

from Simpson tension ties were used to connect the roof diaphragm with the out-of-plane 

Walls A and B. No shear connections were provided between the roof diaphragm and the 

masonry in-plane Walls 1 and 2. 

 

 

 

 

          

Figure 7.8. Test set up for the entire roof diaphragm test parallel to the joists 

timbers 
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The instrumentation set up for the test is shown in Figure 7.9. LVDTs 4, 5, 6, 16, 

17 were used to measure the lateral displacement of the diaphragm. LVDTs 1, 2, 3 and 7 

were used to measure the out-of-plane deformations of Wall A. LVDTs 10, 11, 12 and 13 

were used to measure the out-of-plane deformations of Wall B. LVDTs 8 and 9 were 

used to measure the lateral displacement of in-plane walls 1 and 2. LVDTs 14 and 15 

were used to measure the relative sliding between the center joist and the masonry walls. 

The diaphragm was loaded with displacement control. The typical loading history 

is shown in Figure 7.5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Notes: LVDTs 7 and 13 are at the floor level, the other LVDTs are at the roof level. 

Figure 7.9. Instrumentation set up for the roof diaphragm test parallel to the joists 
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7.3.2. Test runs 

Six test runs, each run a full displacement cycle with a maximum actuator 

displacement of 0.2 in, were conducted on the full diaphragm in the direction parallel to 

the joists. The controlling features for each test run are listed in Table 7.3. Note that 

several small-displacement test runs were conducted prior to the main test runs to tune 

the test system, and thus the reported runs start with Run 17. Among these test runs, Runs 

17 to 20 were intended to investigate the interaction between the diaphragm and the 

masonry walls with different loading patterns and with or without tension connections 

between the diaphragm and out-of-plane walls. The contribution of the touching between 

the 1x6 sheathing and the out-of-plane walls to the interaction between the diaphragm 

and the masonry walls also is of interest in this test. Therefore, a 3-in. width gap was left 

between the 1x6 sheathing of the diaphragm and Wall B in Runs 21b and 22. When 

analyzing the test results, the results from the previous test runs 8 to 11 are also utilized. 

 

 

Table 7.3.  Lists of Test Runs Parallel to Joists 
ID Description 
Run 17 Full diaphragm, uniform displacement, pull direction*, with tension 

connections** 

Run 18 Full diaphragm, point load, pull direction, with tension connections 
Run 19b Full diaphragm, point load, pull direction, no tension connections 
Run 20 Full diaphragm, uniform displacement, pull direction, no tension 

connections 
Run 21b Full diaphragm, uniform displacement, pull direction, no tension 

connections, with gap adjacent to Wall B 
Run 22 Full diaphragm, point load, pull direction, no tension connections, 

with gap adjacent to Wall B 
* Pull direction: the roof is pulled toward Wall A. 
** Locations of the tension connections between the roof diaphragm and Walls A and B 
refer to Figure 7.9. 
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7.3.3. Working mechanism for the diaphragm-wall system parallel to the joists 

Interesting behavior for the diaphragm-wall system parallel to the joists was 

observed during this test step. Due to the same reasons discussed for the one-half 

diaphragm test (see Section 7.2.3), the shear connections between the diaphragm and the 

in-plane walls transferred only small percentage of lateral forces. Most of the lateral 

forces were transferred from the diaphragm to the out-of-plane walls. As a result, for 

analysis purpose the diaphragm-wall system can be simplified to the model shown in 

Figure 7.10.  The diaphragm is only connected to the out-of-plane walls, while the out-of-

plane walls are supported by both the ground and the in-plane walls. Md , Mo and Mi are 

the lumped mass of the diaphragm, the out-of-plane wall, and the in-plane wall, 

respectively. Ka is the axial stiffness of the diaphragm. Kdo represents the stiffness of the 

connection between the joists and the out-of-plane walls.  Kog is the stiffness of the out-

of-plane wall due to the support of the ground; Koi is the stiffness of the out-of-plane wall 

due to the support of the in-plane wall; and Ki is the stiffness of the in-plane wall. Under 

an earthquake excitation, the in-plane wall is excited by its own mass and the forces 

transferred from the out-of-plane walls. Since the stiffness of the in-plane walls are much 

larger than those of the diaphragm and of the out-of-plane walls, the in-plane walls can be 

considered as an infinitely stiff part of this structure, and the conceptual model in Figure 

7.10 can be further simplified to that shown in Figure 7.11, in which the stiffness of the 

out-of-plane wall Ko is the sum of Kog and Koi.    
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Figure 7.10. Conceptual model for the structure in the direction parallel to the joists 
 

 

 

 

 

 

 

 

Figure 7.11. Simplified conceptual model for the structure in the direction parallel to the 
joists 

 

 

The observed typical displacements of the roof diaphragm and the masonry walls 

under cyclic loading are shown in Figure 7.12. L5 is the measured lateral displacement at 

the mid-point of the roof diaphragm, while L11 is the measured lateral displacement at 

the middle of the top of Wall B. The signs for both the two displacements are positive 

when moving away from the strong wall (Southward). L15 is the measured relative 

displacement between Wall B and the diaphragm. Its sign is positive when the relative 
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displacement is separation. Figure 7.12 shows that when the diaphragm was pushed 

toward the south (both the force and L5 are positive), the out-of-plane wall B was also 

pushed toward the south (L11 is positive). However, there was a closing movement 

between Wall B and the diaphragm, and thus L15 was negative. The displacements were 

the opposite when the diaphragm was loaded toward the north. This type of movement is 

represented by the conceptual model shown in Figure 7.11. The values of these 

displacements are dependent on the value of the external forces, Ka, Kod, and Ko.  

Detailed discussion for these stiffness values is given in the following sections. 
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Figure. 7.12. Typical displacements of roof diaphragm and the masonry walls when 
loaded parallel to the joists 
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7.3.4. Elastic response of the out-of-plane Walls A & B 

The out-of-plane elastic stiffness of Walls A and B can be obtained from Test 

Runs 8 through 11 and 17 through 22 as follows: 

• Since Wall A and Wall B are identical three-wythe walls, the out-of-plane 

stiffness of the two walls is assumed to be the same. 

• In the test runs 8 to 11 for the half diaphragm, the out-of-plane stiffness of Wall A 

can be obtained from the loading portion of the load-displacement curve when the 

diaphragm is pulled against Wall A (negative direction). The secant stiffness 

corresponding to a 2 kips force increment at the end of the “pull” portion of the 

loading as shown in Figure 7.13 is used as the representing elastic stiffness of the 

wall. It can be calculated as: 

2DFKA ∆∆=      (7.1) 

where KA is the out-of-plane stiffness of Wall A. F∆ is the force increment 

measured by the load cell in the actuator. 2D∆  is the incremental deformation at 

the middle of the top of Wall A measured by LVDT 2. 

• In the test runs 17 to 22, i.e. the full diaphragm tests, the lateral force is resisted 

by both Wall A and Wall B no matter which direction the actuator is acting. As a 

result, the out-of-plane stiffness of Wall A and Wall B can be calculated as: 

FDKDK BA ∆=∆⋅+∆⋅ 112      (7.2) 

where KA, F∆ and 2D∆  are the same as in Eq. (7.1). KB is the out-of-plane 

stiffness of Wall B. 11D∆  is the displacement increment measured in LVDT 11. 

Since KA is assumed equal to KB, Eq, (7.2) can be rewritten as: 

( )112 DDFKA ∆+∆∆=      (7.3) 
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To assess the variability of this stiffness, the secant stiffness was calculated for 

the following three portions of each test run: a) maximum positive load, b) maximum 

negative load, and c) zero load (Figure 7.14). As for the previous calculations, this was a 

secant stiffness corresponding to an external force increment of approximately 2 kips. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.13. Loading phase for calculating the secant stiffness of the out-of-plane Wall A 
(Run 8) 
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Figure 7.14. Loading phases for calculating the secant stiffness of the out-of-plane Wall 

A (Run 18) 
 

 

The measured stiffness of the out-of-plane walls A and B are listed in Table 7.4. 

This table shows that the stiffness of the out-of-plane wall was not significantly affected 

by the loading pattern (uniform or point load cases) in the full diaphragm tests. The rather 

long distance between the loading point and the out-of-plane wall (12ft) might help to 

even out the forces transferred from the diaphragm to the out-of-plane wall, no matter 

what type of load was applied at the center of the diaphragm (Figure 7.15). In contrast, 

since there was a quite short distance between the loading point and the out-of-plane 

masonry wall in the half diaphragm test, the steel angle noticeably increased the observed 

stiffness of the out-of-plane wall. 
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Table 7.4. Out-of-plane elastic stiffness of Walls A and B 

Test 
Run 

Load 
Case 

Loading 
Phases 

Conne
ctions 

Diaphragm Stiffness 
(kips/in) 

Mean of 
Stiffness 
(kips/in) 

8 Steel 
Angle 

To Wall A No Half 89.0 89.0 

9 Steel 
Angle 

To Wall A No Half 94.3 94.3 

10 Point To Wall A No Half 76.9 76.9 
11 Point To Wall A No Half 74.0 74.0 

To Wall A 71.5 
To Wall B 68.5 

17 Unifor
m 

Zero 

Yes Full 

68.2 

69.4 

To Wall A 70.3 
To Wall B 68.7 

18 Point 

Zero 

Yes Full 

65.7 

68.2 

To Wall A 78.3 
To Wall B 71.9 

19b Point 

Zero 

No Full 

71.7 

74.0 

To Wall A 79.3 
To Wall B 72.2 

20 Unifor
m 

Zero 

No Full 

70.0 

73.8 

To Wall A 80.0 
To Wall B 76.2 

21b Unifor
m, 
Gap  Zero 

No Full 

78.6 

78.3 

To Wall A 76.1 
To Wall B 74.2 

22 Point, 
Gap 

zero 

No Full 

75.5 

75.3 
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Figure 7.15. Long distance between the loading point and the masonry wall helps to 
uniformly distribute the force on the boundary 

 

 

Nevertheless, except for Runs 8 and 9, all the other test runs provided rather 

consistent values for stiffness, ranging from 68.2 to 78.3 kips/in for the out-of-plane 

stiffness of Walls A and B. If the lateral force transferred from the roof diaphragm to the 

out-of-plane walls A and B is assumed close to a uniform force distribution, an elastic FE 

analysis showed that the corresponding elastic modulus of the masonry was around 900 

to 1100 ksi (see Section 10.2.3).  

The horizontal deformation profiles for Walls A and B at the roof level are shown 

in Figure 7.16.  Both of them exhibit a typical flexural deformation profile.  The lateral 

deformation profiles for Walls A and B along the vertical centerline of the wall are 

shown in Figure 7.17.  Both of them also exhibit a typical flexural deformation profile. 
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Figure 7.16. Deformation profiles of the out-of-plane walls at the roof level 

(a) Deformation Profile of Wall A (Horizontal, roof level) 

(b) Deformation Profile of Wall B (Horizontal, roof level) 
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Figure 7.17. Deformation profile of the out-of-plane walls along the vertical centerline 

(a) Deformation Profile of Wall A (Vertical, center) 

(b) Deformation Profile of Wall B (Vertical, center) 
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7.3.5. Elastic axial stiffness of the diaphragm parallel to the joists 

The axial deformation of the diaphragm can be obtained by calculating the 

relative displacements measured by the LVDTs as: 

Ddab = DL15 +DL11–DL14-DL2      (7.4) 

where DL15 ,DL14 ,  DL11 and DL2 are readings obtained from LVDTs L15, L14, L11 and 

L2, respectively (Figure 7.9).  

The axial stiffness of the roof diaphragm parallel to the joists can be calculated as: 

dab

wallb

dab

wallb
a D

LK
D
F

K
11⋅

==      (7.5) 

where Fwallb is the lateral force applied to the out-of-plane wall B introduced by the 

diaphragm. Kwallb is the out-of-plane stiffness of Wall B, which is assumed as 73 kips/in 

from Table 7.4.  

The secant stiffness obtained from connecting the maximum positive and the 

maximum negative displacement points was used as the representative axial stiffness of 

the roof diaphragm. The resulting values of the axial stiffness are listed in Table 7.5. This 

table shows that the axial elastic stiffness of the tested diaphragm was about 200 kips/in, 

which is about two to three times the out-of-plane stiffness’ of Walls A and B. The 

presence of tension ties between the roof diaphragm and the masonry walls did not have a 

significant influence on the axial stiffness of the roof diaphragm. On the other hand, the 

gap between the 1x6 sheathing of the roof and the masonry Wall B significantly reduced 

the observed axial stiffness of the roof diaphragm. 
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Table 7.5. Axial stiffness of the diaphragm 
Test 
run 

Load case Tension tie connections Stiffness 
(kips/in)) 

17 Uniform Yes 182.1 
18 Point Yes 192.3 

19b Point No 224.0 

20 Uniform No 203.1 

21b Uniform, Gap No 102.6 

22 Point, Gap No 110.1 

 

 

7.3.6. Sliding behavior between the joists and the out-of-plane walls 

Figure 7.18a shows the relative sliding between the joists and the masonry out-of-

plane walls, which were obtained from LVDTs L14 and L15. There was a large amount 

of sliding between the joists and the masonry walls during the test runs with an 

ungrouted-pocket connection detail (Figure 7.18b). Compared to the no tension tie case 

(Run 20), the tension ties between the diaphragm and the wall (Run 17) helped to reduce 

the sliding between the joists and the walls. It should be noted that the sliding behavior is 

very sensitive to the construction details and external forces. If the pocket is grouted and 

the lateral force is not large enough to break the grout, sliding should not occur. 

Furthermore, if the ends of the joists touch the masonry wall, the sliding will stop.   
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(a) Force-sliding displacement curves 

 
(b) Joist-masonry wall connection details 

Figure 7.18. Sliding between the joists and the out-of-plane wall (Run 17 with tension 
ties and Run 18 without tension ties) 
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7.4. INTERACTION MECHANISMS BETWEEN DIAPGRAGM AND MASONRY 

WALLS PERPENDICULAR TO THE JOISTS 

After being tested in the direction parallel to the joists, the diaphragm was loaded 

again in the direction perpendicular to the joists. 

7.4.1. Test setup  

The test setup is shown in Figure 7.19. As before, shear connections made from 

5/8” diameter threaded rods were used to connect the roof diaphragm with in-plane Walls 

A and B. In some test cases Simpson tension ties were used to connect the roof 

diaphragm with the out-of-plane Walls 1 and 2. An opening was left at the middle of the 

top and parapet of Wall 1 to allow the actuator to be connected. The actuator was 

attached to two 2x10 timber sections nailed to the top of the diaphragm and the stud wall 

underneath the diaphragm through tension ties. In addition, in order to strengthen this 

connection, blocking was inserted between the diaphragm and the stud wall, nailed to the 

joists, and bolted to the stud walls through steel angles (Figure 7.19b). This provided a 

point load to the diaphragm. In some test runs a timber diamond frame made from 2x10 

timber sections was bolted to the center of the diaphragm. As before, this configuration 

was used to produce a relatively uniform displacement at the center quarter of the 

diaphragm. 
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(a) Top view (looking east)    (b) Bottom view (looking north) 

Figure 7.19. Set up of the loading system for the diaphragm test perpendicular to the 
joists 

 

 

The instrumentation set up for the test is shown in Figure 7.20.  LVDTs 4, 5, 6, 

16, 17 were used to measure the lateral displacement of the diaphragm. LVDTs 1, 2, 3 

and 7 were used to measure the out-of-plane deformation of Wall 1. LVDTs 10, 11, 12 

and 13 were used to measure the out-of-plane deformation of Wall 2. LVDTs 8 and 9 

were used to measure the lateral displacements of in-plane walls A and B. LVDTs 14 and 

15 were used to measure the relative movement between the masonry out-of-plane wall 

and the joist next to it. 
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Notes: LVDTs 7 and 13 are at the floor level, the other LVDTs are at the roof level. 

Figure 7.20.  Instrumentations set up for the roof diaphragm test perpendicular to the 
joists 

 

The diaphragm was loaded with displacement control. The typical loading history 

is shown in Figure 7.3.  

 

7.4.2. Test runs 

Ten test runs 23b through 32, as listed in Table 7.6, were conducted to investigate 

the behavior of the roof diaphragm perpendicular to the joists. In Runs 23b and 24, a 6 in. 

gap was cut through the sheathing and blocks to separate the roof diaphragm from Wall 2 
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(see Figure 7.20). As a result, these two test runs can be used to determine the lateral 

shear stiffness of the roof diaphragm. After that, the gap was filled in, and thus the 

interaction between the diaphragm and the masonry walls could be investigated.  Runs 25 

to 28 were used to investigate the interaction between the roof diaphragm and the 

masonry walls with different loading patterns (point and uniform) and with or without 

tension tie connections between the diaphragm and the out-of-plane walls. Runs 29 to 32 

were used to investigate the effect of pocket grouting of the connections between the 

joists and Walls A and B. It should be pointed out that an initial damage occurred to the 

out-of-plane Wall 2 between Run 27 and Run 28 because of a malfunction of the TestStar 

loading system. This issue is discussed in detail later. 

 

 

Table 7.6.     Lists of test runs perpendicular to the joists 
ID Description 

Run 23b Gap between Wall 2 and the roof diaphragm, uniform displacement 
(Diamond) 

Run 24 Gap between Wall 2 and the roof diaphragm, point displacement 
Run 25 No gap between Wall 2 and the roof diaphragm, point displacement, 

no tension ties 
Run 26 No gap between Wall 2 and the roof diaphragm, point displacement, 

With tension ties between the roof diaphragm and Walls 1 and 2 
Run 27 No gap between Wall 2 and the roof diaphragm, uniform 

displacement, With tension ties between the roof diaphragm and 
Walls 1 and 2 

Run 28* No gap between Wall 2 and the roof diaphragm, uniform 
displacement, no tension ties 

Run 29* No gap, pockets grouted, no tension ties, uniform displacement 
Run 30*  No gap, pockets grouted, with  tension ties, uniform displacement 
Run 31b* No gap, pockets grouted, with  tension ties, point displacement 
Run 32* No gap, pockets grouted, no  tension ties, point displacement 

* After the initial damage occurred to the out-of-plane wall 2 
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7.4.3. Behavior of the diaphragm-wall system perpendicular to the joists 

The interaction mechanism between the diaphragm and the masonry walls in the 

direction perpendicular to the joists was different from that parallel to the joists. In the 

direction perpendicular to the joists, the diaphragm developed lateral flexural and shear 

deformation because it worked as a beam with its ends simply supported on the in-plane 

walls (Walls A and B). At the same time, the deformed diaphragm pushed or pulled the 

out-of-plane walls (Walls 1 and 2) and forced the out-of-plane walls to deform. As a 

result, part of the external lateral forces was directly transferred from the diaphragm to 

the in-plane walls, while the other part was transferred to the out-of-plane walls. The 

force transferred to the out-of-plane walls was then further transferred to the ground or to 

the in-plane walls because of the flexural deformation of the out-of-plane walls.  The 

above mechanism is explained conceptually by the model shown in Figure 7.21. Note 

that a slip element is used again to account for the imperfect connection between the 

diaphragm and the out-of-plane walls. 

A conceptual model as shown in Figure 7.22 can be used to illustrate the 

interaction mechanism between the diaphragm and the masonry walls discussed above. In 

this model, Mi, Mo, and Md are the lumped masses of the in-plane wall, out-of-plane wall, 

and floor or roof diaphragm, respectively. Ki is the stiffness of the in-plane wall, which 

can be simply assumed as infinite. Ko is the stiffness of the out-of-plane wall, Ka is the 

axial stiffness of the roof diaphragm perpendicular to the joists, Kdi is the lateral stiffness 

of the roof diaphragm, and Kdo stands for the effective stiffness of the slip element. This 

model indicates that the values of Ko, Ka, Kdi, and Kdo determine the response of this 

diaphragm-masonry wall system. 
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Figure 7.21. Interaction between the roof and the masonry walls in the direction 
perpendicular to the joists 

 

 

 

 

 

 

 

 

Figure 7.22. Conceptual model for the structure perpendicular to the joists 

 

 

7.4.4. Elastic lateral stiffness of the diaphragm perpendicular to the joists 

The lateral stiffness of the diaphragm perpendicular to the joists was obtained by 

measuring the lateral displacement of the diaphragm in Test runs 23b and 24 when the 

diaphragm was pushed away from Wall 1. The secant behavior of the diaphragm at the 
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end of loading was used again to calculate the stiffness and the deformation profiles. The 

stiffness obtained in the two test runs are listed in Table 7.7. The profiles of the lateral 

deformation of the diaphragm are shown in Figure 7.23. It is apparent that the “diamond” 

loading frame notably changed the deformation profile of the diaphragm, while it only 

slightly increased the lateral stiffness of the diaphragm. 

 

 

Table 7.7. Lateral stiffness of the entire diaphragm perpendicular to the joists 
Test Run Load Case Diaphragm Stiffness (kips/in) 
23b Uniform Full 5.70 
24 Point Full 5.04 
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Figure 7.23. Lateral deformation profile of the diaphragm perpendicular to the joists 
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7.4.5. Elastic response of the out-of-plane Walls 1 and 2 

Since the lateral stiffness of the diaphragm had been obtained in the test runs 23b 

and 24, the force directly transferred to the in-plane walls could be estimated as: 

diadiain KdF ⋅=      (7.6) 

where Fin is the force transferred to the in-plane wall; ddia is the lateral displacement of 

the roof diaphragm measured at its center point; and Kdia is the lateral stiffness of the roof 

diaphragm, which is assumed as 5.7 kips/in based on Table 7.7. 

After Fin is calculated, the force transferred from the diaphragm to the out-of-

plane walls can be calculated by simply subtracting Fin from the total external force. As a 

result, the stiffness of the out-of-plane walls can be calculated. 

In the test runs 23b, 24, 25, 28, 29, and 32, there were no tension ties connecting 

between the diaphragm and the masonry out-of-plane walls. As a result, there is only one 

out-of-plane wall resisting the lateral force, and thus the stiffness of the masonry wall in 

the push (compression) can be calculated by: 

out

diadia
o d

KdF
K

⋅−
=      (7.7) 

where Ko is the out-of-plane stiffness of the masonry wall under consideration; F is the 

total external force, and dout is the lateral deformation of the out-of-plane wall measured 

at the mid point at the roof level. 

On the other hand, in the test runs 26, 27, 30, and 31b, there were tension ties 

connecting between the diaphragm and the masonry out-of-plane walls. As a result, both 

the two out-of-plane walls (Walls 1 and 2) worked together to resist the lateral forces. 

The equilibrium equation is given by: 
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 diadiaoutoouto KddKdKF ⋅+⋅+⋅= 2,2,1,1,   (7.8) 

where Ko,i is the out-of-plane stiffness of Wall i, and dout,i is the measured out-of-plane 

deformation of Wall i.  

The out-of-plane stiffness of Walls 1 and 2 calculated from Test runs 23b, 24, 25, 

28, 29, and 32 are listed in Table 7.8. This table shows that the measured stiffness for 

Wall 1 in all the test runs produced consistent results, with the mean value of 31.4 

kips/in. Different loading patterns and the grouting of the pockets did not have significant 

effects on the out of-plane stiffness of the masonry wall. The out-of-plane stiffness of 

Wall 2 before initial damage was 24.0 kips/in. This value dropped to around 11.3 kips/in 

after the initial damage. This initial damage of Wall 2 occurred because of a malfunction 

of the TestStar controller system. The actuator overextended and pushed the diaphragm 

against Wall 2 by accident. However, since the limit detector for the displacement of the 

actuator was always set at 0.2 inches as a protective measure, no serious damage occurred 

to Wall 2. No visible cracks were observed after this damage. The decrease in the initial 

stiffness is believed due to some micro cracks developed in the walls. 

 

 

Table 7.8. Out-of-plane elastic stiffness of Walls 1 & 2 
Test 
Run 

Load Case Stiffness of Wall 1 
(kips/in) 

Stiffness of Wall 
2 (kips/in) 

23b Uniform, Gap 27.2 - 
24 Point, Gap 29.4 - 
25 Point 30.0 24.0 
28* Uniform 33.8 12.5 
29* Uniform, Pockets grouted 37.2 12.6 
32* Point, Pockets grouted 30.5 8.8 
Mean  31.4 24.0/11.3 

* After the initial damage occurred to out-of-plane wall 2 
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Based on Table 7.8, it can be concluded that the out-of-plane stiffness of Wall 1 

was about 31.4 kips/in, and the out-of-plane stiffness of Wall 2 was 24.0 kips/in before 

initial damage and 11.3 kips/in after initial damage. Using these values as well as the 

lateral stiffness of the roof diaphragm of 5.7 Kips/in obtained from previous tests (Table 

7.7), the force distributions in the test runs 26, 27, 30, and 31b are calculated by 

employing Eq. (7.8) and the measured lateral displacements of the roof diaphragm and 

the walls. These predicted results are compared with the test results as shown in Table 

7.9.  

 

 

Table 7.9. Experimental and predicted force distributions between the diaphragm and the 
masonry walls 

Test 
Run 

Load Case Loading 
Direction 

Test Force 
Increment 
(kips) 

Calculated force 
increment based 
on Eq. (7.8) 
(kips) 

Error (%) 

To Wall 1 2.0 1.79 10.2 
To Wall 2 2.02 2.07 -2.5 

26 Point 

Zero 2.08 1.75 15.8 
To Wall 1 1.98 1.68 15.1 
To Wall 2 2.12 1.77 16.4 

27 Uniform 

Zero 1.98 1.82 8.0 
To Wall 1 1.99 1.92 3.3 
To Wall 2 2.16 1.45 33.0 

30 Uniform, 
pocket 
grouted Zero 1.99 1.95 1.9 

To Wall 1 2.0 1.97 1.1 
To Wall 2 2.01 1.80 10.2 

31b Point, 
pocket 
grouted Zero 2.02 1.82 9.8 

 

 

Table 7.9 shows reasonable correlation between the test results and the predicted 

results. It indicates that the predicted stiffness values for the masonry walls and the roof 
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diaphragm are rational. It should be pointed out the distribution of the interaction forces 

between the diaphragm and the out-of-plane wall in the direction perpendicular to the 

joists is different from that parallel to the joists. As illustrated in Figure 7.24, since the 

diaphragm works like a beam simply-supported on the in-plane walls in the direction 

perpendiucalr to the joists, the interaction forces between the diaphragm and the out-of-

plane walls are large near the mid span of the wall. Based on elastic FE analysis, the 

corresponding elastic modulus of masonry was again calculated to be about 900 to 1100 

ksi.  

The lateral deformation profiles of the out-of-plane masonry Walls A and B at the 

roof level and along the vertical centerline were similar to those of Walls 1 and 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.24. Interaction forces between the roof and the out-of-plane wall in the direction 
perpendicular to the joists 

 

Diaphragm 

Out-of-plane wall     Interaction forces 
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7.4.6. Relative movement between the outside joists and the out-of-plane wall 

LVDTs L14 and L15 were mounted on the roof joists and measured the relative 

out-of-plane movements between the masonry out-of-plane wall and the joist next to it 

(Figure 7.25a). A typical relative movement is shown in Figure 7.25b. This figure shows 

that there is a large amount of relative movement between the joist and the masonry wall, 

which is due to the gap that forms between the joist and the wall. This gap is unavoidable 

due to construction tolerances. The figure also shows that the relative movement tends to 

stop when the roof diaphragm is pushed against the wall (positive force L15, and 

negative force for L14), and that the tension ties between the wall and the diaphragm help 

to reduce the relative movement.  

 

 

 

(a) Details between masonry wall and exterior joist 

Masonry wall 

Joist 

Sheathing

Gap 

LVDT 
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(b) Force-displacement curves 

Figure 7.25. Relative movement between the joist and the masonry wall 

 

 

7.4.7. Elastic axial stiffness of entire diaphragm  

The same method for calculating the axial deformation of the diaphragm parallel 

to the joists was tried to calculate the axial deformation of the diaphragm perpendicular to 

the joists. However, due to the large axial stiffness of the roof diaphragm, no reasonable 

values were obtained from these measurements. 

 

7.5. CONCLUSIONS 

The roof diaphragm of the ST-11 building was tested to investigate the interaction 

between flexible diaphragm and masonry walls. The test reveals that the stiffness of the 
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three basic components of a URM building (the in-plane walls, the out-of-plane walls, 

and the flexible diaphragms) together with the properties of the connections between the 

diaphragm and masonry walls, determine the response of this diaphragm-wall system. 

The interaction mechanisms between the roof diaphragm and the masonry walls were 

different in different directions (parallel to the joists and perpendicular to the joists). 

When the diaphragm was loaded parallel to the joists, the diaphragm was simply 

supported on the out-of-plane walls. Therefore, the lateral force was exclusively 

transferred from the diaphragm to the out-of-plane walls, and the lateral stiffness of the 

diaphragm did not play an important role in its response. In contrast, when the diaphragm 

was loaded perpendicular to the joists, the diaphragm was simply supported on the in-

plane walls. As a result, not only the out-of-plane walls but also the in-plane walls 

resisted the lateral force. Two conceptual models can be used to illustrate the interaction 

mechanics in the two directions respectively, as shown in Figure 7.11 for the direction 

parallel to the joists, and Figure 7.22 for the direction perpendicular to the joists.   

For the test structure, some critical structural characteristics were also determined: 

• The out-of-plane stiffness of Walls A and B were about 73 kips/in. The out-of-

plane stiffness of Wall 1 was around 31.4 kips/in. The out-of-plane stiffness of 

Wall 2 was around 24 kips/in before initial damage and 11.3 kips/in after initial 

damage. The corresponding elastic modulus of masonry was between 900 and 

1100 ksi. 

• The lateral stiffness of the half diaphragm when loaded parallel to the joists 

ranged from 6 to 10 kips/in. The axial stiffness of the entire diaphragm parallel to 

the joists ranged from 180 to 220 kips/in. The lateral stiffness of the full 



 222

diaphragm perpendicular to the joists was around 5.7 kips/in. It is apparent that 

the lateral stiffness of the diaphragm was smaller than that of the masonry out-of-

plane wall, while the axial stiffness of the diaphragm was larger than that of the 

masonry out-of-plane wall.  

• The stiffness of masonry in-plane wall was much larger than the stiffness of either 

the diaphragm or the masonry out-of-plane wall. As a simple assumption, the 

stiffness of the in-plane wall can be assumed as infinite. 

• Due to the rather flexible connection details, there were large relative movements 

between the roof diaphragm and the masonry out-of-plane walls under lateral 

forces. This happened both when the diaphragm was loaded parallel to the joists 

and perpendicular to the joists. However, this phenomenon was observed at 

relatively small force and displacement levels (displacements less than 0.2 in). It 

can be assumed that the relative movement will decrease when the lateral 

displacement increases, and can be ignored at large displacement levels.  

The test also revealed that connection details between masonry walls and 

diaphragm influence the response of the wall-diaphragm system. In particular, the test 

showed that: 

• Tension rods tied the diaphragm and the masonry out-of-plane walls together, and 

helped to distribute the lateral forces from the diaphragm to both out-of-plane 

walls.   

• Different loading patterns investigated in this test changed the deformation profile 

of the diaphragm, but they did not change the deformation values and profiles of 

the masonry out-of-plane wall significantly. 
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• Pocket grouting did not significantly affect the behavior of the diaphragm when 

loaded perpendicular to the joists. 

• Shear connections between the joists and the masonry in-plane walls seemed to 

play a secondary role in the interaction behavior between the diaphragm and the 

masonry walls. 

Finally, it is emphasized that the investigation was conducted at a relatively small 

force and displacement levels (displacements less than 0.2 in). Therefore, all the results 

obtained in this test should be considered as properties of the test structure in the elastic 

range. The interaction behavior of a flexible diaphragm-masonry wall system at large 

force and displacement levels should be investigated in future tests. 
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CHAPTER 8  

IN PLANE WALL TESTS PARALLEL TO WALLS 1 AND 2 

 

 

8.1. INTRODUCTION 

The properties of URM materials and URM components have been investigated 

and reported in Chapters 3 to 5. The goal of these studies was to help understanding the 

properties of an entire URM building and thus to improve the performance of this type of 

structure. However, the behavior of a URM building cannot be assumed as simply the 

addition of the properties of its components and materials. In order to assess the seismic 

hazard of existing URM buildings, the URM building itself needs to be investigated as a 

unit. Several experimental research projects have been conducted on URM structures 

under quasi-static, pseudo dynamic or real-time dynamic testing regimes (Clough et al. 

1979, Tomazevic 1990, 1993, Magenes et al. 1995, Costley and Abrams 1996, Paquette 

and Bruneau 2000). A detailed literate review of the past experiment research can be 

found in Section 2.6.       

In spite of all these past research efforts, some important characteristics of URM 

building systems, such as the interaction between the in-plane walls and the out-of-plane 

walls, the influence of a flexible floor or roof diaphragm on the performance of the 

masonry walls, and the failure mechanisms of perforated masonry walls, are still unclear. 

To clarify some of these characteristics, the second phase of the ST-11 project test 

investigated the nonlinear properties of the test structure by laterally loading it parallel to 

Walls 1 and 2.  
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This series of tests are reported in this chapter. First, the test setup and the test 

sequence are introduced in Section 8.2. Then the observed nonlinear properties of the test 

structure, such as the crack propagation sequence, the damage accumulation, and the 

governing kinematic mechanisms, are presented in Section 8.3. Following that, some 

important structure behavior, such as the flange effects and the global overturning 

movements, are discussed in Sections 8.4 to 8.9. The conclusions obtained from this 

series of tests will be given in Section 8.10.    

 

8.2. TEST SETUP 

Following the roof diaphragm test, the ST-11 building was tested under external 

quasi-static lateral forces parallel to Walls 1 and 2. The configuration of the test structure 

was described in Chapter 6.  The test set up for this test series is as follows. 

 

8.2.1. External forces and loading scheme 

In-plane lateral forces were applied to Walls 1 and 2 at the roof level and the 

second floor level. Two 220-kip hydraulic actuators were used at the roof level, and two 

100-kip hydraulic actuators were used at the second floor level. In order to attach the 

actuators to the masonry walls, holes were drilled in the masonry wall at appropriated 

locations, and four 0.5 in. diameter Dywidag rods were placed through the holes and used 

to connect 0.5 in. thick steel plates on each side of the wall. A total force of 80 kips was 

applied to the rods to post-tension the steel plates horizontally to the wall. The actuators 

were then connected by bolts to the steel plate through pre-drilled holes in the steel plate. 

The other end of the actuators was pin-connected to the strong wall (Figure 8.1).  
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Figure 8.1. Connection details for connecting the actuators to the masonry walls, 

view looking east 

 

 

The test was conducted in displacement control. A modified stiffness control 

scheme was employed to approximate the seismic forces on the structure. An outline of 

this control scheme is shown in Figure 8.2. Based on the results of the preliminary 

analysis and past experimental research, it can be assumed that the first vibration mode 

controls the response of low-rise URM buildings.  However, it is important to notice that 

external forces cause damage accumulation in a building throughout loading history.  

This damage is typically not uniform distributed and thus leads to the change of the first 

vibration mode.  Therefore, in order to apply realistic loads to the structure, this evolution 

of the first mode must be addressed.  To accomplish this, the employed loading sequence 

for each of the walls began by imposing a displacement profile given by an elastic 

analysis.  The structure was cyclically displaced in this profile to obtain the current 

desired maximum roof displacement (u1i).  Based on these displacements and the applied 
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forces F1i and F2i, the stiffness matrix of an equivalent two-degree-of-freedom structure 

were back-calculated.  Next, by assuming a mass matrix for the wall based on tributary 

area, the updated first mode shape, φI, were calculated.  The subsequent cycles of 

displacements were then imposed based on the updated first mode shape. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.2. Modified stiffness displacement control scheme 
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No additional dead weight was applied to the building to simulate live load. This 

gave a worst-case scenario for the test structure as the beneficial effects of compressive 

stresses on the walls were minimized. 

 

8.2.2. Testing procedure 

For each target displacement, the building was first loaded following the loading 

history shown in Figure 8.3. After that, in most cases the building was loaded again with 

slight changes in the control displacements to achieve a better simulation of the targeted 

displacements and displacement profile. As a result, a series of tests comprised of 15 test 

cycles with different displacement levels were applied to the test structure. The maximum 

lateral displacement values measured at the roof level and the second floor level of Walls 

1 and 2 corresponding to each test cycle are listed in Table 8.1. The reported test runs 

begin with 2g since several small-displacement test runs were conducted prior to the 

main test runs to tune the test system. Cycles 2g to 8a, 10 and 10a loaded the building 

with increasing lateral displacements, aiming at examining the gradual damage 

progression and the corresponding force-lateral displacement relationships of the test 

building.  Cycle 9 held Wall 2 and loaded Wall 1, and was aimed at investigating the 

coupling behavior between Walls 1 and 2. 
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Figure 8.3. Loading history 

 

 

Table 8.1. Measured maximum displacement values in each test cycle 
Maximum displacements at the 
push direction (toward south) (in.) 

Maximum displacements at the pull 
direction (toward north) (in.) 

Cycle 

Wall 1 
roof 

Wall 1 
second 
floor 

Wall 2 
roof 

Wall 2 
second 
floor 

Wall 1 
roof 

Wall 1 
second 
floor 

Wall 2 
roof 

Wall 2 
second 
floor 

2g 0.0077 0.004 0.017 0.012 -0.009 -0.005 -0.015 -0.010 
3a 0.0186 0.011 0.046 0.033 -0.014 -0.008 -0.025 -0.019 
3b 0.0192 0.011 0.045 0.033 -0.014 -0.008 -0.031 -0.024 
4 0.0181 0.010 0.017 0.012 -0.018 -0.010 -0.021 -0.016 
5 0.034 0.020 0.024 0.018 -0.024 -0.012 -0.031 -0.025 
5a 0.0279 0.017 0.023 0.017 -0.030 -0.018 -0.035 -0.023 
6 0.0421 0.024 0.064 0.059 -0.075 -0.046 -0.076 -0.062 
6a 0.0453 0.027 0.063 0.056 -0.074 -0.060 -0.077 -0.046 
7 0.0869 0.052 0.094 0.081 -0.118 -0.073 -0.097 -0.081 
7a 0.102 0.061 0.096 0.085 -0.115 -0.071 -0.098 -0.083 
8 0.135 0.081 0.144 0.119 -0.166 -0.104 -0.145 -0.128 
8a 0.157 0.094 0.153 0.129 -0.161 -0.099 -0.145 -0.123 
9 0.0486 0.033 0.011 0.006 -0.096 -0.057 -0.004 0
10 0.228 0.137 0.238 0.185 -0.262 -0.213 -0.247 -0.201 
10a 0.242 0.168 0.257 0.202 -0.263 -0.222 -0.252 -0.198 
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8.2.3. Instrumentations 

81 channels of instrumentations, including 29 LVDTs, 20 potentiometers, and 31 

strain gages, were used to monitor both the global and local responses of the test structure 

(Figure 8.4). LVDTS have more accurate resolution (infinite) than potentiometers (0.05 

in.). Therefore, LVTDS were used for important measurements, while potentiometers 

were used for less important locations or for redundancy.  Specifically, LVDTs GW1R 

and GW12 were used to measure the lateral in-plane displacements of Wall 1 at the roof 

level and the second floor level, respectively (G means global behavior, W1 means Wall 

1, R means roof, and 2 stands for the second floor). LVDTs GW2R and GW22 were 

employed to measure the lateral in-plane displacements of Wall 2 at the roof level and the 

second floor level, respectively. In addition, the global lateral in-plane displacements of 

Walls 1 and 2 were also monitored by Potentiometers GW12P, GW1RP, GW22P, and 

GW2RP (P stands for potentiometers), which duplicated the readings of the LVDTs to 

ensure the robustness of the data. 

The lateral out-of-plane roof displacements of Wall A and Wall B were measured 

by LVDTs GOWAR and GOWBR, respectively. LVDT GOWB2 was used to measure 

the lateral out-of-plane displacement of Wall B at the second floor level. The global 

overturning movements of Wall 1 and Wall 2 were measured by Potentiometers GV1LP, 

GV1RP, GV2LP, and GV2RP. The possible sliding of Wall 1 was monitored by 

Potentiometer P1-6S. The forces applied to the building were measured by the load cells 

embedded in the actuators. 

A typical LVDT setup shown in Figure 8.5 was used to measure the local 

response of each first story pier in Walls 1 and 2. In Figure 8.5, two vertical LVDTs and 
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two diagonal LVDTs are used. * represents the ID of the pier. VL and VR stand for the 

vertical LVDTs mounted at the left side and the right side of the pier, respectively; and 

XL, XR represent the diagonal LVDTs mounted at the left side and the right side of the 

pier, respectively.  

The deformations of each pier were measured as follows. Assuming the bottom 

boundary (the foundation) of each first floor pier is rigid and fixed, the deformations of 

each pier can be determined by the movement of its upper boundary, which includes a 

vertical displacement (Uv), a rotation ( θU ), and a lateral displacement (UL).  Values for 

Uv and θU  can be calculated as: 
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where Di is the reading of LVDT i.  

Three estimates can be given for the lateral movement UL:  
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Figure 8.4. Instrumentations of the in-plane tests parallel to Walls 1 and 2 
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Figure 8.4. (cont’d) 
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All the three Eqs. (8.3a), (8.3b), and (8.3c) assume that the axial deformation of a 

URM pier is small compared with its lateral shear deformation. In the case of elastic 

range behavior, the three estimates give similar results. On the other hand, if large 

flexural cracks develop at the top and bottom of the pier, Eq. (8.3c) gives a more 

reasonable estimate for the shear deformation of the pier, since it subtracts the 

deformation induced by the flexural cracks.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5 Instrumentations of Pier 
 

 

Being slightly different from a typical pier, only vertical LVDTs were used for the 

slender pier 2-8 in Wall 2, because the shear deformation of this pier was assumed to be 

negligible. In the case of the large pier 1-6 in Wall 1, two more vertical LVDTs were 

placed at the third-points of the pier to measure the vertical deformation profile of this 

pier. 

Possible shear deformation of the first floor spandrel in Wall 1 was monitored by 

two diagonal LVDTs (P1-5XL and P1-5XR). Shear deformation of the first floor 
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spandrel in Wall 2, and flexural deformation of all the piers in the second floor, were 

measured by potentiometers. In addition to the LVDTs and potentiometers, polyester 

backing foil strain gages with 1.2 in. gage length were also used at the bottom of each 

pier to measure the flexural deformation at the base of the pier (Figure 8.4). 

 

8.3. CRACK PROPAGATION, DAMAGE ACCUMULATION AND KINEMATIC 

MECHANISMS OF THE TEST STRUCTURE  

The in-plane tests clearly demonstrated the nonlinear properties of the test 

structure. This section gives a summary of the response of the test building through the 

entire test sequence.  

Both experimental and analytical investigations have revealed little coupling 

behavior between masonry walls for flexible diaphragm cases (See Section 8.5 and 

10.2.5). Therefore, the response of the test building is discussed separately for Walls 1 

and 2. Since Wall 2 exhibited a relatively simple component-dominated response, its 

behavior is presented first in Section 8.3.1. Following that, the relatively complex global-

dominated response of Wall 1 is discussed in Section 8.3.2. 

 

8.3.1. Wall 2 

The observed responses of Wall 2 clearly exhibited an evolution from elastic 

response (Cycle 2g with a maximum roof displacement of 0.017 in), to minor damage 

state (Cycles 3a through 5a, with a maximum roof displacement of 0.035 in), to a 

significant accumulation of damage in the structure (Cycles 6 through 8a, with a 

maximum roof displacement of 0.153 in), and finally to a matured failure mechanism 
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(Cycles 10 and 10a, with a maximum roof displacement of 0.257 in). As a result, the 

response of Wall 2 is discussed in the four different states. 

 

8.3.1.1. Elastic response (Cycle 2g) 

The response of Wall 2 in Cycle 2g was essentially elastic. No visual cracks or 

other damage were observed. The readings of the instrumentation in the first floor piers 

indicated that the response of the wall was a combination of global overturning behavior 

and local flexural and shear behavior. When the building was loaded in the push direction 

(southward, positive roof displacement), the upper boundary of Pier 2-7 displaced up, 

while the upper boundary of Pier 2-9 exhibited negligible vertical displacement (Figure 

8.6). The uplift movement of Pier 2-7 was due to the additional axial tensile force 

induced by the overall overturning moment. On the other hand, the strain gages on 

opposite sides of Pier 2-7 and Pier 2-9 captured different signs of strains. When the 

building was loaded in the push direction, the strain gage on the left side of Pier 2-7 (S2-

7L) measured tensile strain while the strain gage on the right side of this pier (S2-7R) 

measured compressive strain (Figure 8.7).  The different signs of strains on the two sides 

of the pier indicated a local flexural deformation. 
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Figure 8.6. Axial displacements of Pier 2-7 and Pier 2-9 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7. Strains at the base of Pier 2-7 
 

 

The maximum lateral displacements for Pier 2-7 and Pier 2-9 were 0.0087 in. and 

0.0126 in., respectively, in the push direction (southward); and they were –0.0073 in. and 

–0.0072 in., respectively, in the pull direction (northward). Note that the maximum lateral 

displacements at Wall 2, second floor level, were 0.012 in. the push direction and –0.01 
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in. the pull direction. Apparently most of the Wall 2 first story lateral deformation was 

concentrated in the piers.  

Pier 2-8 was the small pier next to Pier 2-7. As a result of its small size, it had 

little contribution to the lateral resistance of Wall 2. The deformation of Wall 2 second 

floor was smaller than the resolution of employed potentiometers (0.05 in), and thus no 

valuable values were captured.  

 

8.3.1.2. Minor damage (Cycles 3a to 5a) 

The maximum lateral displacements imposed on the building in test cycles 3a –5b 

were not monotonically increasing with the cycle numbers. The maximum lateral push 

(southward) displacements for Wall 2 were obtained in Cycle 3a and Cycle 3b (0.046 in. 

at the roof and 0.033 in. at the second floor). The maximum lateral pull displacements 

(northward) for Wall 2 were obtained in Cycle 5a and Cycle 5b (-0.033 in. at the roof and 

-0.025 in. at the second floor).   

In Cycle 3a, no damage or visual cracks were observed. However, the strain gage 

readings at the base of Pier 2-7 and Pier 2-9 indicated that possible flexural cracks were 

developing around the base of the piers. As shown in Figure 8.8 for Pier 2-7, at the 

beginning of the loading, the strains on the tensile side of this pier increased with 

increasing lateral roof displacement. This corresponded to an unloading of the initial 

compressive stress in the pier. However, when the measured tensile strains reached some 

limit values, the reading basically remained constant even though the lateral displacement 

of the building was still increasing. This indicated that some micro cracks were 

developing in the areas around the strain gages, which prevented masonry from taking 

more tensile stress. As expected from these trends, in Cycle 3b, the first flexural crack 
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was observed at the left toe of Pier 2-9 when the building was loaded in the push 

direction (Figure 8.9). This crack was due to the large tensile stress introduced by the 

local flexural moment.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 8.8. The constant tensile strain at the base of Pier 2-7 in Test cycle 3a indicated 

possible flexural cracks 
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Figure 8.9. Crack pattern of Wall 2 at the end of Cycle 5b (looking eastward) 

 

In Cycle 5a, when the building was loaded in the pull direction, new flexural 

cracks were observed in the other two first story piers: Pier 2-7 and Pier 2-8 (Figure 8.9). 

All the new cracks occurred at the right base of the piers, again due to the large tensile 

stresses introduced by the local flexural moments. No cracks were observed in the second 

floor wall. No more new cracks were observed in Cycle 5b. 

Although several cracks were observed in this series of cycles, the damage to the 

wall was still minor, and its response was essentially elastic. This can be seen from the 

base shear–lateral roof displacement curves for Wall 2 as shown in Figure 8.10.  
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Figure 8.10. The base shear-lateral roof displacement curves for Wall 2 during Cycles 2g 
to 5b 

 

 

Along with increasing lateral displacements, the behavior of Wall 2 was gradually 

changing. The three first story piers in Wall 2 worked more and more as three parallel 

rocking piers, while the effect of the global overturning moment gradually damped out. 

This trend can be clearly seen from the vertical displacements of the upper boundary of 

Pier 2-7 during Test Cycles 2g, 3a, and 5a, as shown in Figure 8.11. 
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Figure 8.11 Vertical displacements of Pier 2-7 upper boundary 

 

 

This figure shows that the vertical displacement of Pier 2-7 is dependent on both 

the value and the direction of the lateral displacement of Wall 2. When the building was 

loaded in the push direction (positive Wall 2 displacement, southward), the global 

overturning movement introduced a tensile vertical force in the pier and caused its upper 

boundary to displace upward. Meanwhile, the local pier flexural behavior also caused the 

upper boundary of Pier 2-7 to displace upward (Figure 8.12). These two factors added up 

and caused large upward displacements in the upper boundary of Pier 2-7. On the other 

hand, when the building was loaded in the pull direction (negative Wall 2 roof 

displacement), the global overturning movement caused the upper boundary of Pier 2-7 

to displace downward, while the local flexural deformation of Pier 2-7 still caused its 
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upper boundary to displace upward. As a result, when the lateral pull displacement of 

Wall 2 was small, the vertical tensile deformation of Pier 2-7 induced by the global 

overturning movement was larger than the vertical compressive deformation induced by 

the local rocking, and thus the upper boundary of Pier 2-7 displaced downwards. 

However, when the roof lateral displacement reached around –0.01 in. (Figure 8.11), 

substantial flexural cracks were observed in Pier 2-7, and its rocking behavior caused 

large vertical uplift of its upper boundary. Therefore, the upper boundary of Pier 2-7 

stopped displacing downwards and instead began to displace upwards with increasing 

roof lateral displacement.  

The uplift of Pier 2-7 was around 0.002 in. for a Wall 2 lateral roof displacement 

of 0.035 in. in the push direction. This was almost double the uplift of Pier 2-7 of around 

0.001 in. corresponding to a Wall 2 lateral roof displacement of -0.035 in. in the pull 

direction. This indicated that the effect of global overturning movement was still sizable 

in these cycles, although it was gradually damping out with increasing lateral 

displacements. 
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Figure 8.12.  Upward displacement of the upper boundary of a pier due to rocking of 
individual pier 

 

 

The ratios between the maximum lateral displacements of Pier 2-7, Pier 2-9 and 

the corresponding Wall 2 second floor lateral displacements are listed in Tables 8.2 and 

8.3. Taking into account the possible errors of the measurements at such a small 

displacement level, it can be concluded that most of the Wall 2 first floor lateral 

deformation was concentrated in the piers. 

 

 

Table 8.2.  Lateral displacement ratios of Piers 2-7 and 2-9 in the push direction (Cycles 
3a to 5a) 

 Lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral displacements in 
the push direction 

Pier 2-7 Pier 2-9 

0.012 in. 73% 100% 
0.018 in. 61% 98% 
0.033 in. 65% 100% 

 

 

 

δ 
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Table 8.3. Lateral displacement ratios of Piers 2-7 and 2-9 in the pull direction (Cycles 3a 
to 5a) 

Maximum lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral displacements in 
the pull direction 

Pier 2-7 Pier 2-9 

-0.01 in. 73% 72% 
-0.019 in. 71% 62% 
-0.025 in. 90% 73% 

 

 

8.3.1.3.Accumulation of damage (Cycles 6 to 8a) 

Cracks began to develop and propagate quickly in Wall 2 during this series of test 

cycles (Figure 8.13).  In Cycle 6, when the building was loaded in the push direction, a 

flexural crack with a length of around 8 in. initiated at the base of the corner between 

Wall A and Wall 2. When the building was loaded in the pull direction, flexural cracks 

developed at the right bottom corners of Pier 2-7 and Pier 2-8, and at the left top corner 

of Pier 2-8.  

Meanwhile, a horizontal crack developed at the corner between Wall 2 and Wall 

B in the bed joint right above the first head course.  This crack propagated to the left and 

down as a stair-step crack at an angle of approximately 450 for about 12 in. It propagated 

further to the ground in Cycle 6a when the building was loaded in the pull direction. At 

the same time, this crack also propagated into the out-of-plane wall B, opening the entire 

section of the flange pier B-7, and spreading horizontally into Pier 2-9 for about 8 in. 

In Cycle 7, when the building was loaded in the push direction, a stair-step crack 

initiated at the right top corner of Pier 2-2 due to the tensile stress concentration.  When 

the building was loaded in the pull direction, a crack opened at the left top corner of Pier 

2-9 next to the end of the first floor steel lintel. This crack did not propagate further in the 

horizontal bed joint. Instead, it propagated at an angle of 450 to the left and up for about 
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34 in. This direction was perpendicular to the direction of the maximum tensile stress at 

the corner of opening.  

This diagonal type of crack pattern was commonly observed in the following test 

cycles. It led to different effective aspect ratios of a pier when the pier was loaded in 

different directions.  Taking Pier 2-9, as shown in Figure 8.14(a), for example, the 

rocking of this pier to the left (pull direction, northward) was different from that to the 

right (push direction, southward). When the pier rocked to the right, its aspect ratio was 

H/L (Figure 8.14(b)). When the pier rocked to the left, its aspect ratio was (H+a)/L 

(Figure 8.14(c)). The different effective aspect ratios of a pier in push and pull directions 

lead to different behavior of this pier in the two loading directions. More detailed 

discussion on this topic can be found in Section 9.5. 

Even though Cycle 7a was only a repeat of Cycle 7, several new cracks were 

observed. When the building was loaded in the push direction, the existing crack at the 

base of Pier A-10 propagated into Pier 2-7. Meanwhile, a stair-step crack initiated at the 

right top corner of Pier 2-7, and propagated at an angle of approximately 450 to the left 

and up for about 17 in. When the building was loaded in the pull direction, no more new 

cracks were observed. 

In Cycle 8, when the building was loaded in the push direction, the existing 

diagonal crack at the right top corner of Pier 2-7 propagated farther for another 12 in. At 

the same time, another flexural crack developed in the bed joint one course above the 

existing crack at the base of Pier A-10. When the building was loaded in the pull 

direction, no more cracks developed.  
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Figure 8.13. Crack pattern of Wall 2 and adjacent Wall A (left) and Wall B (right) at the end of Cycle 8a. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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Figure 8.14. Rocking of Pier 2-9 in different directions 

 

 

In Cycle 8a, when the building was loaded in the push direction, the existing 

crack at the base of Pier A-10 propagated a little more. Meanwhile, a flexural crack was 
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also observed between the top of Pier 2-8 and the bottom of the steel lintel. When the 

building was loaded in the pull direction, the existing diagonal crack at the left top corner 

of Pier 2-9 propagated farther for another 11 in.  

All the cracks developed during this series of test cycles were apparently due to 

the large tensile stresses introduced by the flexural deformations of the piers. The cracks 

were concentrated around the top and the bottom of the first floor piers. This indicated 

that a working mechanism with the rocking of the first story piers was developing in the 

wall. Moreover, the flexural cracks that developed in Pier A-10 and Pier B-7 revealed a 

clear participation of the out-of-plane walls, which is discussed in Section 8.5.  

The damage of the building can also be seen from the base shear-lateral roof 

displacement curves for Wall 2 in these test cycles (Figure 8.15). The response of Wall 2 

became significantly nonlinear during Test cycles 6 to 8a. Specifically, when the lateral 

roof displacement reached 0.064 in. in the push direction, Wall 2 achieved its maximum 

lateral strength of 27.0 kips. This strength basically remained constant even when the 

lateral roof displacement increased from 0.064 in. to 0.144 in. in the following cycles.  

Similar behavior occurred in the pull direction. When the lateral roof 

displacement reached -0.053 in., Wall 2 achieved its maximum lateral strength of around 

24.4 kips. This strength remained constant when the lateral roof displacement increased 

from -0.053 in. in Cycle 6 to -0.145 in. in Cycle 8. Moreover, when the wall unloaded 

from its maximum lateral displacement, the rate of stiffness change increased as the 

lateral displacement approached zero. This force-displacement response indicated that a 

typical rocking response was developing in this wall.  
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Figure 8.15. The base shear-lateral roof displacement curves for Wall 2 up to Cycles 8b 

 

 

As indicated by the crack pattern, Wall 2 behavior was dominated by the 

individual rocking of the first story piers. This component-dominated behavior of Wall 2 

was verified from the measured responses of the first floor piers. For example, the 

vertical movements of the upper boundary of Pier 2-7 in Cycle 5a, 6, 7, and 8 are shown 

in Figure 8.16.  Regardless of which direction the building was loaded, the upper 

boundary of Pier 2-7 always displaced upwards due to the rocking of this pier. Note that 

these upward displacements were almost the same corresponding to a Wall 2 roof lateral 

displacement of 0.15 in. regardless of the loading direction.  This indicated that the effect 

of overturning moment on the behavior of Pier 2-7 is negligible for such a displacement 

level.  
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Figure 8.16. Vertical displacements of Pier 2-7 upper boundary 
 

 

The evolution of the behavior of Wall 2 during this series of tests can also be seen 

from the lateral deformation components of each first story pier. Taking Pier 2-7 for 

example, its lateral displacement curves for Cycles 5a and 8 are shown in Figure 8.17. 

Note that the lateral displacement of a pier is composed of its rocking displacement, 

which was induced by the opening of the flexural cracks, and the shear and flexural 

displacement, which was accumulated inside the pier. Figure 8.17 shows that the 

behavior of this pier was quite different in these two test cycles. In Cycle 5a, the cracking 

of the pier was minor, and thus most of the lateral displacement of the pier was due to its 

shear and flexural deformation. Conversely, in Cycle 8, there were substantial crack 

propagations at the top and the bottom of Pier 2-7. As a result, a large portion of the 

lateral displacement of this pier was due to its rocking behavior.  
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(a) Cycle 5a  
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(b) Cycle 8 
Figure 8.17. Lateral displacemens of Pier 2-7 
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Another interesting phenomenon observed in this series of tests is that the 

response of Pier 2-8 was basically following the responses of Pier 2-7 and Pier 2-9.  The 

upper boundary of Pier 2-8 always displaced upwards when the building was laterally 

displaced (Figure 8.18).  
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Figure 8.18. Vertical movement of Pier 2-8 

 

 

Being similar to the previous cycles, the ratios between the maximum lateral 

displacements of Pier 2-7, Pier 2-9 and the corresponding Wall 2 second floor lateral 

displacements in this series of cycles indicated that most of the Wall 2 first floor lateral 

deformation was concentrated in the piers (Tables 8.4 and 8.5). 
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Table 8.4.  Lateral displacement ratios of Piers 2-7 and 2-9 in the push direction (Cycles 
6 to 8a) 

Maximum lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral displacements in 
the push direction 

Pier 2-7 Pier 2-9 

0.059 in. 70% 99% 
0.081 in. 68% 100% 
0.119 in. 67% 100% 

 

 

Table 8.5.  Lateral displacement ratios of Piers 2-7 and 2-9 in the pull direction (Cycles 6 
to 8a) 

Maximum lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral displacements in 
the pull direction 

Pier 2-7 Pier 2-9 

-0.062 in. 77% 68% 
-0.081 in. 79% 68% 
-0.128 in. 79% 68% 

 

 

 

8.3.1.4. Fully developed kinematic mechanism (Cycles 10 and 10a) 

 In Cycle 10, when the building was loaded in the push direction (southward), the 

existing diagonal crack at the right top corner of Pier 2-7 propagated farther for another 

23 in., and moved into the out-of-plane Wall A. When the building was loaded in the pull 

direction (northward), a diagonal crack initiated at the upper left corner of Pier 2-5 and 

propagated to the upper right for about 45 in. This indicated that the second floor piers in 

Wall 2 began to rock.  

In Cycle 10a, when the building was loaded in the push direction, a new crack 

developed at the left toe of Pier 2-9, three courses above the ground. This crack 

propagated to the right for about 16 in. and joined the existing cracks. When the building 
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was loaded in the pull direction, a horizontal flexural crack initiated at the upper left 

corner of Pier 2-7 and propagated to the right for about 24 in. (Figure 8.19). 

With all these cracks formed, a kinematic mechanism was fully developed for 

Wall 2. The three first floor piers rocked when the building was laterally displaced 

(Figure 8.20). Specifically, since the size of Pier 2-8 was much smaller than those of 

Piers 2-7 and 2-9, Pier 2-8 gradually separated from the steel lintel when the wall was 

laterally loaded.  

Although there was some evidence of rocking of the second floor piers, the 

damage to the second floor wall was minor compared with that to the first floor piers. 

The entire second floor masonry wall basically worked as a rigid box moving back and 

forth and displacing upwards on the top of the first floor piers. Moreover, the rocking of 

the first floor piers forced the flanges (Wall A and Wall B) to move together with the in-

plane walls, and caused Walls A and B to crack. The flange effects due to the movement 

of Walls A and B provided a large contribution to the lateral resistances of the in-plane 

walls, as is discussed in more detail in Section 8.5. 

Figure 8.21 shows the base shear-lateral roof displacement curves for Wall 2 

during the entire set of test cycles. The lateral resistance of this wall exhibited little 

degradation with increasing lateral displacements. In addition, the energy dissipation of 

the wall was rather small. All these are consistent with the visual observation that the 

behavior of Wall 2 was governed by rocking. 
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Figure 8.19. Crack pattern of Wall 2 and adjacent Wall A (left) and Wall B (right) at the end of Cycle 10a. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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Figure 8.20. Rocking of the first floor piers in Wall 2 and upward movement of the 
second story wall 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.21. The base shear-lateral roof displacement curves for Wall 2 during the entire 
load cycles 
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The responses of the first floor piers in the last two test cycles were basically the 

same as in the previous cycles. The uplifts of the first floor piers corresponding to the 

maximum roof lateral displacements are listed in Table 8.6. The table shows that the 

uplifts of the first floor piers were close to each other, indicating an in-phase rocking of 

these piers. On the other hand, when the building was loaded in the push direction, the 

uplift of Pier 2-7 was still slightly larger than that of Pier 2-9, and vice versa when the 

building was loaded in the pull direction. This revealed that the global overturning 

movement still had an influence, albeit a small one, on the behavior of the piers. 

 

 

Table 8.6. Uplift of the first floor piers during the tests 
Uplifts of the piers (in.) Roof lateral 

displacement (in.) Pier 2-7 Pier 2-8 Pier 2-9 
0.238 (10a) 0.045 0.033 0.039 
0.257 (10b) 0.044 0.034 0.041 
-0.247 (10a) 0.049 0.046 0.054 
-0.252 (10b) 0.045 0.043 0.052 

 

 

The displacement components of the first story piers were also similar with those 

in Cycles 8 and 8a. Figure 8.22 shows the lateral displacement response of Pier 2-7 in 

Cycle 10. The lateral displacements of the first story piers were dominated by their 

rocking behavior. 
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Figure 8.22. Lateral displacements of Pier 2-7 

 

 

The ratios between the maximum lateral displacements of Pier 2-7, Pier 2-9 and 

the corresponding Wall 2 second floor lateral displacements are listed in Tables 8.7 and 

8.8. Again, the tables show that most of the Wall 2 first floor lateral deformation was 

concentrated in the piers. This behavior was consistent with the readings of the diagonal 

potentiometers mounted in the spandrel 2-6, which could not pick up much deformation 

of the spandrel.   
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Table 8.7.  Lateral displacement ratios of Piers 2-7 and 2-9 in the push direction (Cycles 
10 to 10a) 

Maximum lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral displacements in 
the push direction 

Pier 2-7 Pier 2-9 

0.185 in.  68% 100% 
0.202 in.  69% 100% 

 

 

Table 8.8.  Lateral displacement ratios of Piers 2-7 and 2-9 in the pull direction (Cycles 
10 to 10a) 

Maximum lateral displacement ratios for the piers Maximum Wall 2 second 
floor lateral 
displacements in the pull 
direction 

Pier 2-7 Pier 2-9 

-0.201 in. 77% 65% 
-0.198 in. 77% 68% 

 

 

8.3.2. Wall 1 

Being similar to Wall 2, the observed responses of Wall 2 exhibited an elastic or 

minor damage state in Cycles 2g to 5a (maximum roof displacement of 0.03 in.), a 

significant accumulation of damage in the structure (Cycles 6 through 8a, with a 

maximum roof displacement of 0.166 in), and a matured failure mechanism (Cycles 10 

and 10a, with a maximum roof displacement of 0.263 in). As a result, the response of 

Wall 1 is discussed in the three different states. 

 

8.3.2.1. Elastic response and minor damage (Cycles 2g to 5a) 

The response of Wall 1 during Cycles 2g to 5a was essentially elastic. No visual 

cracks or other damage was observed in these test cycles. The base shear–lateral roof 
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displacement curves for Wall 1, shown in Figure 8.23, confirms the essentially linear 

elastic behavior observed. 

The peak average vertical strains for Pier 1-6 and Pier 1-7 in Cycles 2g, 3a, and 5a 

are shown in Figures. 8.24 and 8.25 for the push direction (southward) and pull direction 

(northward), respectively. These figures show that the responses of Pier 1-6 and Pier 1-7 

were basically the same in this series of test cycles. When the wall was loaded in the push 

direction, a compressive strain was introduced on the left side of the pier, while tensile 

strain was introduced on the right side of the pier, and vice versa in the pull direction. 

Note that the vertical strain distributions were similar for Pier 1-6 and Pier 1-7, which 

indicated that both walls participated in resisting the external lateral forces. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.23. Base shear-lateral roof displacement of Wall 1 up to Cycle 5b 
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The peak vertical strain distributions at the base of the piers were picked up by the 

strain gages and are shown in Figures 8.26 and 8.27, corresponding to loaded in the push 

direction and pull direction, respectively. Typically, they exhibit similar trend as the 

average vertical strain distributions measured by the LVDTs.  However, Figure 8.27 

shows that when the wall was loaded in the pull direction in Cycle 5a, the strain gage on 

the left side of Pier 1-6 did not pick up any tensile strain. This indicated that a flexural 

crack was probably developing around that area, although no visual cracks had been 

observed. Similar behavior was observed in the strain gage on the right side of Pier 1-6 

when the wall was loaded in the push direction, as shown in Figure 8.26.   

 

 

 

 

 

 

 

 

 

 

Figure 8.24. The average vertical strains in Pier 1-6 and Pier 1-7 when the wall was 
loaded in the push direction 

X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR, 4:P1-7VL, 5:P1-7VR 
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Figure 8.25. The average vertical strains in Pier 1-6 and Pier 1-7 when the wall was 
loaded in the pull direction 

X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR, 4:P1-7VL, 5:P1-7VR 

 

 

 

 

 

 

 

 

 

 

Figure 8.26. The base vertical strains in Pier 1-6 and Pier 1-7 when the wall was loaded 
in the push direction 

X axis: 0: S1-6L, 1: S1-6VLC, 2: S1-6VRC, 3:S1-6R, 4:S1-7L, 5:S1-7R 
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Figure 8.27. The base vertical strains in Pier 1-6 and Pier 1-7 when the wall was loaded 
in the pull direction 

X axis: 0: S1-6L, 1: S1-6VLC, 2: S1-6VRC, 3:S1-6R, 4:S1-7L, 5:S1-7R 

 

 

The vertical movement of the upper boundary of Pier 1-6 also reveals a possible 

damage at the end of this series of test cycles. As shown in Figure 8.28, during Cycles 2g 

and 3a, the upper boundary of Pier 1-6 displaced upwards when the wall was loaded in 

the pull direction (negative roof displacement), and displaced downwards when the wall 

was loaded in the push direction (positive roof displacement). This was due to the tensile 

or compressive vertical forces introduced by the global overturning moment.  
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Figure 8.28. Vertical movements of Pier 1-6 in Cycles 2g, 3a, and 5a 

 

 

In Cycle 5a, however, when the wall was loaded in the push direction, the upper 

boundary of Pier 1-6 first went down, and then lifted up. Referring to Figure 8.26, this 

phenomenon can be attributed to the large tensile deformation developed on the right side 

of the pier.  This indicates that a flexural crack was probably developing at the right heel 

of Pier 1-6, and this pier was starting to rock about its left toe. In contrast, Pier 1-7 

exhibited essentially elastic behavior, and the upper boundary of Pier 1-7 moved up and 

down due to the global overturning moment effects (Figure 8.29). 
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Figure 8.29. Vertical movements of Pier 1-7 in Cycles 2g, 3a, and 5a 

 

 

8.3.2.2. Accumulation of damage – rocking of the wall (Cycles 6 to 8a) 

Substantial damage developed in Wall 1 during test Cycles 6 to 8b. The crack 

patterns in Wall 1 after Cycle 8b are shown in Figure 8.30. The detailed description of the 

crack propagation is as follows.  
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Figure 8.30. Crack pattern of Wall 1 and adjacent Wall B (left) and Wall A (right) at the end of Cycle 8a. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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During Cycle 6, when the building was loaded in the push direction (southward), 

flexural cracks developed at the base corner between Wall A and Wall 1. On the other 

hand, when the building was loaded in the pull direction (northward), global overturning 

moment caused large tensile stresses at the corner between Wall 1 and Wall B. As a 

result, a horizontal crack initiated at the corner between Wall 1 and Wall B in the bed 

joint right above the first header course. This crack propagated horizontally into Wall 1 

for about 12 in., then propagated as a stair-step crack at an angle of approximately 450 

toward the ground until it reached the RC foundation. After that, it continued to 

propagate along the bed joint between the first course brick and the RC foundation to the 

right for about 48 in. 

Meanwhile, since the flange effects introduced a large amount of tensile stresses 

in Wall B, this crack also propagated into Wall B. It spread into Wall B for about 36 in. 

and stopped. However, another crack developed in the bed joint two courses above the 

first crack and spread horizontally to the left until reaching the left side of Pier B-9. 

Meanwhile, several horizontal cracks propagated over the entire section of Pier B-8 and 

Pier B-9 at the bed joint right above the sill. These cracks continued to propagate in the 

following cycles. As a result, when the building was loaded in the pull direction 

(northward), the whole portion of Wall B above these cracks was essentially lifted up due 

to the large flange effects (Figure 8.31). 
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Figure 8.31. Lifting up of Wall B due to the flange effects 

 

 

During Cycle 7, when the building was loaded in the push direction, two cracks 

developed at the top of Pier 1-7. One was a stair-step crack, and the other was a 

horizontal crack at the corner between Wall 1 and Wall A, two courses above the eighth 

header course. The latter crack was right below where the steel plate connected to the 

Wall 1 second floor actuator, which was probably induced by the large stress 

concentration around the loading point.  

Also during Cycle 7, a flexural crack initiated in the bed joint at the right base of 

Pier 1-6 two courses above the first header course. This crack propagated into Pier 1-6 for 

about 40 in. It was apparently due to the large tensile stress induced by the rocking of 

Pier 1-6.  

When the building was loaded in the pull direction, the exiting horizontal cracks 

in Pier B-11 opened and propagated farther. Meanwhile, a large stair-step crack initiated 

at the right upper corner of Pier 1-6 next to the end of the first story steel lintel. This 
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crack propagated at an angle of 450 up and to the left for about 57 in., then gradually 

flatted down and grew for another 70 in. The flattening down of this crack was due to the 

lateral confining forces in the spandrel, introduced by the prestressing forces used to fix 

the Wall 1 second floor actuator. This large crack and the existing crack above Pier 1-7 

basically separated Wall 1 into two piers and a large spandrel; and the two piers rocked 

about their individual right toes (Figure 8.32). 

 

 

 

 

 

 

 

 

Figure 8.32. Rocking of Wall 1 as two piers when the wall was loaded in the pull 
direction 

 

 

Even though Cycle 7a was only a repeat of Cycle 7, several new cracks were 

observed. When the building was loaded in the push direction (southward), the existing 

flexural crack at the right base of Pier 1-6 propagated farther at an angle of approximately 

450 down and to the left until it reached the foundation. Then it continued to propagate to 

the left until it reached the existing crack at the left base of Pier 1-6. These new cracks 

fully cracked the base of Pier 1-6.  
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Also during Cycle 7a, the existing cracks at the top of Pier 1-7 continued to 

propagate diagonally and coalesce. These cracks tended to separate the large upper left 

portion of Wall 1 from Pier 1-7. As a result, when the building was loaded in the push 

direction, Pier 1-7 tended to be left behind while the remaining portion of Wall 1 rocked 

as a big pier about the left toe of Pier 1-6, as shown in Figure 8.33. When the building 

was loaded in the pull direction, no more new cracks were observed. 

 

 

 

 

 

 

 

 

Figure 8.33 Rocking of Wall 1 when loaded in the push direction (southward) 
 

 

During Cycle 8, when the building was loaded in the push direction, the existing 

diagonal crack on the top of Pier 1-7 propagated into Wall A, going up at an angle of 

approximate 450 toward the window opening at the second floor of Wall A. This crack 

stopped approximately 4 courses below the window. At the same time, a diagonal crack 

initiated at the left upper corner of Pier A-3 and went upwards and to the right for about 

23 in.  
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In Cycle 8a, the crack below Wall A second story window propagated until it 

reached the window, and thus the cracks below and above the window were connected 

into a large crack. This crack separated Wall 1 from Wall A when the building was 

loaded in the push direction. As a result, the majority of Wall 1 except Pier 1-7 rocked 

together with the triangular portion of Wall A, about the left toe of Pier 1-6, as shown in 

Figure 8.34. 

  

 

 

 

 

 

 

 

Figure 8.34. Wall 1 was separated from Wall A when it was pushed to the left 
(southward) 

 

 

Along with the crack propagation described above, the base shear–lateral roof 

displacement curves for Wall 1 exhibited significant nonlinear behavior, as shown in 

Figure 8.35.  Wall 1 reached its maximum strength of 59.7 kips when the lateral roof 

displacement was 0.042 in. in the push direction; and its maximum strength of -54.9 kips 

when the lateral roof displacement was -0.034 in. in the pull direction.  

The small energy dissipation areas of the force-displacement curves indicate that 

rocking dominated the response of Wall 1. However, being different from Wall 2, Wall 1 
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exhibited quite significant strength degradation with increasing lateral roof displacement. 

In the push direction, its lateral strength decreased from 59.7 kips corresponding to a roof 

displacement of 0.042 in. to 48.2 kips corresponding to a roof displacement of 0.157 in. 

In the pull direction, its lateral strength decreased from -54.9 kips corresponding to a roof 

displacement of -0.034 in. to –51.8 kips corresponding to a roof displacement of -0.166 

in.  

These strength degradations can be attributed to the gradually loss of the flange 

effects. For example, when the building was loaded in the push direction, the crack 

propagation in Wall A caused a smaller portion of Wall A to work together with Wall 1, 

which consequently decreased the lateral strength of Wall 1. More detailed explanations 

of the changing of flange effects are given in Section 8.5. Its influence on the lateral 

strength of the test structure is discussed in Section 10.5. 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.35. Base shear-lateral roof displacement of Wall 1 up to Cycle 8a 
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The evolution of the behavior of Wall 1 can also be seen from the displacement 

readings in Wall 1. To simplify the explanation, the behavior of Wall 1 in the pull 

direction is discussed first.  

During Cycle 6, before the large crack developed at the left bottom of Pier 1-6, 

the behavior of Wall 1 was similar to that in the previous cycles. However, when the 

lateral roof displacement of Wall 1 reached –0.034 in. and its base shear force was –54.9 

kips, a large crack separated the left side of Wall 1 from the foundation. As a result, 

significant force redistribution occurred. The vertical deformations of the upper 

boundaries of Pier 1-6 and Pier 1-7 right before cracking (the base shear of Wall 1 

equaled -54.9 kips) and after cracking (the base shear of Wall 1 equaled -55.2 kips) are 

shown in Figure 8.36. The vertical deformations of the upper boundaries corresponding 

to the maximum push base shear forces are also shown in the figures as a comparison. 

The figure shows that when the flexural crack in Pier 1-6 occurred, the upper boundary of 

Pier 1-6 suddenly displaced up. Meanwhile, the upper boundary of Pier 1-7 moved down. 

This phenomenon can be explained as follows. Pier 1-6 and Pier 1-7 worked as a single 

beam section. The flexural crack in Pier 1-6 reduced the effective area and the moment 

inertia of the beam section. Since the external lateral force was essentially constant, both 

the compressive forces in Pier 1-7 and the tensile force in Pier 1-6 had to increase to 

resist the constant global overturning moment. As a consequence, the upper boundary of 

Pier 1-6 went up and the upper boundary of Pier 1-7 went down.  
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(a) Pier 1-6 
X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR 

 

 

 

 

 

 

 

 

 

(b) Pier 1-7 
X axis: 0:P1-7VL, 1:P1-7VR 

 

Figure 8.36. Vertical displacements of the upper boundaries of Pier 1-6 and Pier 1-7 
before and after cracking 
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The behavior of Wall 1 in the pull direction changed again when the crack at the 

right top of the Pier 1-6 occurred. The reading of the base strain gages and the vertical 

LVDTs are plotted corresponding to the maximum lateral roof pull displacements for 

Cycles 5b, 6, 7 and 8 in Figures 8.37 and 8.38. The strain gage readings show that with 

increasing lateral roof pull displacement, a larger compressive stress was introduced at 

the right toe of Pier 1-6, and the flexural crack at the left base of the pier continued to 

open. 

 Meanwhile, the vertical LVDTs readings show that the entire upper boundary of 

Pier 1-6, including the right side of Pier 1-6, was lifting up. This indicated that the crack 

at the right top of Pier 1-6 was opening as well. The opening of the cracks at the right top 

and the left base of Pier 1-6, as well as the increasing large compressive stress at the right 

toe of Pier 1-6, indicated that Pier 1-6 was rocking about its right toe. 

 

 

 

 

 

 

 

 

 

 
Figure 8.37. Vertical strain at the base of Pier 1-6 in Cycles 5b, 6, 7, and 8 when the 

building was loaded in the pull direction 
X axis: 0: S1-6L, 1: S1-6VLC, 2: S1-6VRC, 3:S1-6R 
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Figure 8.38. Vertical displacements of the upper boundaries of Pier 1-6 in Cycles 5b, 6, 7, 
and 8 when the building was loaded in the pull direction 
X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR 

 

 

The behavior of Pier 1-7 was different from that of Pier 1-6. The readings from 

the vertical LVDTs and the strain gages mounted in Pier 1-7 corresponding to the 

maximum lateral roof pull displacements in Cycles 5b, 6, 7, and 8, are plotted in Figures 

8.39 and 8.40. Figure 8.39 shows that with increasing lateral roof displacement in the pull 

direction, the compressive stress at the right toe of Pier 1-7 increased, and the flexural 

crack at the left base of Pier 1-7 opened. This indicated that Pier 1-7 was rocking about 

its right toe.  

However, at the same time, Figure 8.40 shows that the left side upper boundary of 

Pier 1-7 was pushed down, while the right side upper boundary of Pier 1-7 basically did 

not move vertically. This phenomenon is not a typical rocking behavior, and can be 

explained as the follows. As shown in Figure 8.41, when Wall 1 was loaded in the pull 
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direction, a large compressive force was applied on the top of Pier 1-7 due to the global 

overturning moment. This force was applied to Pier 1-7 at some angle. The horizontal 

component of this force (a shear force) caused this pier to rock about its right toe. As a 

result, a flexural crack developed at its left base.  On the other hand, the vertical 

component of this force pushed the entire pier down. Since this inclined compressive 

force was close to the left side of the pier, the left side of the pier was pushed down more 

than its right side. In short, when Pier 1-7 was rocking about its right toe, a large amount 

of diagonal compressive force was also resisted by Pier 1-7. This compressive force may 

lead to a diagonal crack in this pier in the later tests.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.39. Vertical strain at the base of Pier 1-7 in Cycles 5b, 6, 7, and 8 when the 
building was loaded in the pull direction 

X axis: 0:S1-7L, 1:S1-7R 
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Figure 8.40. Vertical displacements of the upper boundaries of Pier 1-7 in Cycles 5b, 6, 7, 
and 8 when the building was loaded in the pull direction 

X axis: 0:P1-7VL, 1:P1-7VR 

 

 

 

 

 

 

 

 

 

Figure 8.41. Inclined compressive force transferred in Pier 1-7 when the building was 
loaded in the pull direction 
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The behavior of Wall 1 was different in the push direction. The readings from the 

vertical LVDTs and the strain gages mounted in Pier 1-6 corresponding to the maximum 

lateral roof push displacements in Cycles 5b, 6,7, and 8, are shown in Figures 8.42 and 

8.43, respectively. The figures show that with increasing lateral roof displacement in the 

push direction, the flexural crack initiated from the right base of Pier 1-6 propagated 

towards the left toe of the pier. Meanwhile, the right side of Pier 1-6 was lifted up, while 

the left side of Pier 1-6 exhibited small compressive deformation. These observations 

indicated that Pier 1-6 was rocking about its left toe.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.42. Vertical displacements of the upper boundaries of Pier 1-6 in Cycles 5b, 6, 7, 
and 8 when the building was loaded in the push direction 
X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR 
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Figure 8.43. Vertical strains at the base of Pier 1-6 in Cycles 5b, 6, 7, and 8 when the 
building was loaded in the push direction 

X axis: 0: S1-6L, 1: S1-6VLC, 2: S1-6VRC, 3:S1-6R 
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Figure 8.44. Lateral displacements of Pier 1-6 in Cycle 5b 

 

-0.20

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

0.20

-0.15 -0.1 -0.05 0 0.05 0.1

Lateral displacement of Pier 1-6 upper boundary (in) 

W
al

l 1
 r

oo
f l

at
er

al
 d

isp
la

ce
m

en
t (

in
)

Lateral Displacement(rocking)
Lateral Displacement(shear+flexural)
Lateral displacement(total)

 

Figure 8.45. Lateral displacements of Pier 1-6 in Cycle 8 
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The observed behavior of Pier 1-7, (i.e., that this pier was being “left behind”  

when Wall 1 was loaded in the push direction), can also be seen from the measured 

lateral displacements of Pier 1-7 in Cycle 5b and Cycle 8. When the maximum Wall 1 

second floor lateral displacement in the push direction increased from 0.017 in. in Cycle 

5 to 0.081 in. in Cycle 8, the lateral displacement of Pier 1-7 only increased from 0.01 in. 

in Cycle 5 to 0.02 in. in Cycle 8. The readings of the vertical LVDTs and the strain gages 

of Pier 1-7 are plotted corresponding to the maximum lateral roof push displacements for 

Cycles 5b, 6, 7, and 8 in Figures 8.46 and 8.47, respectively. The figures show that 

although Pier 1-7 tended to be separated from the other portions of Wall 1 when the wall 

was loaded in the push direction, this isolation was not complete. As a result, some lateral 

forces were still transferred to Pier 1-7, and forced this pier to rock about its left toe. This 

rocking movement also caused the left side of Pier 1-7 to displace downwards, the right 

side of Pier 1-7 to displace upwards, and a large compressive stress to concentrate at the 

left toe. 
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Figure 8.46. Vertical strain at the base of Pier 1-7 in Cycles 5b, 6, 7, and 8 when the 
building was loaded in the push direction 

X axis: 0:S1-7L, 1:S1-7R 

 

 

 

 

 

 

 

 

 

 

Figure 8.47. Vertical displacements at the base of Pier 1-7 in Cycles 5b, 6, 7, and 8 when 
the building was loaded in the push direction  

X axis: 0: P1-7VL, 1:P1-7VR 
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8.3.2.3. Fully developed kinematic mechanism – sliding + rocking (Cycles 10 

and 10a) 

In Cycles 10 and 10a, the behavior of Wall 1 experienced another drastic change. 

In Cycle 10, when the building was loaded in the push direction (southward), Pier 1-6 

rocked about its left toe. Meanwhile, more cracks developed in the area above the door 

opening and below the existing diagonal cracks in Wall 1 (Figure 8.48). This was 

probably due to the large tensile stress induced in this area when the main body of Wall 1 

above Pier 1-7 was lifted by the external push forces.  

When the building was loaded in the pull direction (northward), at first Wall 1 

worked the same as that in the previous cycles, i.e., Pier 1-6 and Pier 1-7 rocked about 

their respective right toes. With increasing lateral displacements, more and more shear 

forces were introduced in Pier 1-6 and Pier 1-7. Meanwhile, the global overturning 

moment caused the vertical compressive force in Pier 1-6 to decrease. This decreasing 

vertical compressive force in Pier 1-6 led to the decreasing of its shear sliding strength. 

As a result, when the lateral roof displacement of Wall 1 reached -0.21 in., the base shear 

force in Pier 1-6 overcame its initial bed joint shear strength, and the pier suddenly began 

to slide. Sliding took place along a newly formed crack that initiated from the existing 

cracks at the left toe of Pier 1-6, stepped down to the foundation, and propagated all the 

way to the right toe of Pier 1-6 ( Figure 8.48).  

The loss of the initial  bed joint shear bond strength along with the propagation of 

the bed joint shear crack caused the lateral strength of Wall 1 drop from -51.6 kips to -

45.7 kips. The movement of the wall right before and after the formation of the crack is 

illustrated in Figure 8.49. 
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Figure 8.48. Crack pattern of Wall 1 and adjacent Wall B (left) and Wall A (right) at the end of Cycle 10a. The crack number 
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Figure 8.49. Switching failure modes of Pier 1-6 from rocking to sliding when the wall 
was loaded in the pull direction (northward) in Cycle 10 

 

 

The change of behavior in wall 1 can also be seen from the base shear-lateral roof 

displacement curves for Wall 1, shown in Figure 8.50.  When Wall 1 was loaded in the 

push direction in Cycle 10, the wall still behaved as a typical rocking component, since 

the unloading branch exhibited very small energy dissipation area. However, when Wall 

1 was loaded in the pull direction, the drop of the total base shear from -51.6 kips to -45.7 

kips corresponded to the beginning of sliding of Pier 1-6.  

Afterwards, the unloading branch of Wall 1 exhibited a large energy dissipation 

area, which is a typical characteristic of sliding behavior. In the next cycle (Cycle 10a), 

the force-displacement curve of Wall 1 in the push direction also exhibited larger energy 

dissipation area as compared with the previous cycles. This indicated that the behavior of 

Wall 1 was a mixture of rocking and sliding in both the pull and push directions after the 

sliding crack was formed.  
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Figure 8.50. Base shear –lateral roof displacement of Wall 1 up to Cycle 10a 
 

 

The shifting of Pier 1-6 behavior from pure rocking behavior to rocking and 

sliding mixed behavior was confirmed from the reading of the sliding potentiometer P1-

6S, as shown in Figure 8.51. Meanwhile, due to the deformation compatibility 

requirements, the upper boundary of Pier 1-6 displaced down and rotated 

counterclockwise when Wall 1 was loaded in the pull direction. This can be seen from the 

readings of vertical LVDTs mounted in Pier 1-6 right before and after this rapid 

movement, shown in Figure 8.52.  After Pier 1-6 displaced down, more area at the right 

toe of Pier 1-6 was in contact. Therefore, the compressive strain measured at the right toe 

of Pier 1-6 decreased from -163 µstrain to -58 µstrain, as shown in Figure 8.53.  The 

shifting of the kinematic mechanism of Wall 1 from rocking to sliding occurred during a 

very short period, and a loud sound was heard.  
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Figure 8.51. Sliding of Pier 1-6 captured by Potentiometer P1-6S when Wall 1 was 
loaded in the pull direction in Cycle 10 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.52. Vertical displacements of the upper boundaries of Pier 1-6 before and after 
sliding 

X axis: 0: P1-6VL, 1: P1-6VLC, 2: P1-6VRC, 3:P1-6VR 
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Figure 8.53. Vertical strains at the base of Pier 1-6 before and after sliding 
X axis: 0: S1-6L, 1: S1-6VLC, 2: S1-6VRC, 3:S1-6R 

 

 

With the settling down and sliding of Pier 1-6, the upper boundary of Pier 1-7 also 

displaced downwards and rotated counterclockwise (Figure. 8.54). As a result, more area 

at the right toe of Pier 1-7 was in contact, and the compressive strain measured at the 

right toe of Pier 1-7 decreased from -55 µstrain to -23 µstrain, as shown in Figure 8.55.  

Note that the reading of the compressive vertical deformation by the right diagonal 

LVDT P1-7XR increased from –0.00807 in. to –0.01486 in., and the reading of the 

tensile deformation by the left diagonal LVDT P1-7XL increased from 0.04954 in. to 

0.0703 in. The rapidly increased shear deformation of Pier 1-7 indicated that more shear 

force was redistributed from Pier 1-6 to Pier 1-7. 
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Figure 8.54. Vertical displacements of the upper boundaries of Pier 1-7 before and after 
sliding of Pier 1-6 
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Figure 8.55. Vertical strains at the base of Pier 1-7 before and after sliding of Pier 1-6 
 

South 

South 



 292

After Pier 1-6 settled down, the lateral roof displacement of Wall 1 continued to 

increase from -0.228 in. to -0.260 in. During this period, Pier 1-6 kept on sliding to the 

right (Figure 8.51). At the same time, the upper boundary of Pier 1-6 lifted up and rotated 

clockwise. This revealed that Pier 1-6 was rocking as well as sliding. The behavior of 

Pier 1-7 was still governed by rocking and diagonal compression. 

After the drastic shift in behavior in Cycle 10, the behavior of Wall 1 stabilized in 

Cycle 10a. When the building was loaded in the push direction, Pier 1-6 rocked about its 

left toe and slid along the bed joint. The sliding behavior was captured by the sliding 

potentiometer P1-6S, as shown in Figure 8.56. The rocking behavior of Pier 1-6 was 

captured by the four vertical LVDTs. The three vertical LVDTs at the right side of Pier 1-

6 indicated large tensile deformations (maximum reading of P1-6VR was 0.12 in.) while 

the left one indicated a compressive deformation. The upper boundary of Pier 1-6 went 

up and rotated counterclockwise, which verified the rocking behavior of Pier 1-6. In 

contrast, the LVDTs in Pier 1-7 measured very little vertical movement (less than 0.005 

in.) and rotation. This indicated that Pier 1-7 was separated from the majority of the wall 

and was not participating in the overall behavior of Wall 1.  

When the building was loaded in the pull direction in Cycle 10a, Pier 1-6 rocked 

about its right toe, and slid along the bed joint. This mixed behavior was again captured 

by the vertical LVDTs in Pier 1-6 and the sliding potentiometer P1-6S. The response of 

Pier 1-7 was similar to that in Cycle 8 and 8a, dominated by rocking as well as diagonal 

compression.  
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Figure 8.56. Sliding of Pier 1-6 in Cycle 10 and Cycle 10a 

 

 

8.4. COUPLING BETWEEN WALLS 1 AND 2 

In the previous section, the damage and behavior of the test building were 

explained in terms of Wall 1 and Wall 2, respectively. However, as a box structure, the 

response of this building may exhibit significant global behavior, due to the coupling 

behavior between the two parallel in-plane walls, the flange effects, and the global 

overturning behavior. The coupling effect observed during the test is discussed in this 

section. Other global effects are discussed in the next sections. 

The coupling behavior between the two in-plane walls (Walls 1 and 2) can be 

described by: 
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where U1, U2 are the lateral roof displacements of Walls 1 and 2, respectively. P1 and P2 

are the base shear forces for Walls 1 and 2, respectively. K11 and K22 are the in-plane 

lateral stiffness of Walls 1 and 2, respectively. K12 and K21 are the coupling stiffness 

between the two walls. This stiffness results from the stiffness of the floor and roof 

diaphragms, and the stiffness of the out-of-plane walls.  

Two important constraints exist for the stiffness matrix discussed above. First, the 

values of K11 and K22 should be positive, while the values of K21 and K12 should be 

negative and equal to each other.  Second, in normal cases the absolute value of K12 

should be less than that of K11 and K22. 

In order to investigate the coupling between Walls 1 and 2, a test cycle (Cycle 9) 

was employed. In this cycle, Wall 2 was held at the zero displacement position, while 

Wall 1 was displaced laterally. Therefore, the displacement values and the base shear 

values needed for Eq. (8.4) could be measured in the test.  The results are listed in Table 

8.9.  

 

 

Table 8.9. Displacements and base shears of the test building in Cycle 9 
Begin End Increments Walls 
Force 
(kips) 

Roof 
Disp. (ins) 

Force 
(kips) 

Roof Disp. 
(ins) 

Force 
(kips) 

Roof 
Disp. (ins) 

Wall 1 0 0 33.06 0.04408 33.06 0.04408 
Wall 2 0 0 -0.825 -0.0041 -0.825 -0.0041 

 

 

The stiffness matrix in Eq. (8.4) can then be estimated based on the displacement 

and force values provided in Table 8.8. Substituting these values into Eq. (8.4) gives: 
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 06.33120041.01104408.0 =⋅−⋅ KK     (8.5) 

825.0220041.01204408.0 −=⋅−⋅ KK     (8.6) 

In Eq. (8.6), since the value of K12 is negative, ignoring the second item 

(0.0041K22) on the left side of the equation should give a upper bound estimate of K12, 

which is: 

K12=-0.825/0.04408= -18.7 kips/in     (8.7) 

Substituting the value of K12 into Eq. (8.5), a lower bound estimate of the 

stiffness of K11 can be calculated as 748 kips/in. On the other hand, if we assume K12 is 

equal to zero, from Eq. (8.5) the upper bound estimate for K11 is 750 kips/in. Therefore, 

the value of K11 can be estimated to be 749 kips/in. 

The value of K22 cannot be calculated from Cycle 9, because the displacements 

applied on Wall 2 was so small that it may result in a large error in any calculation. 

However, the stiffness of K22 can be estimated from the previous cycle 8a. The force and 

displacement values of Walls 1 and 2 at the initial point and the point with the same Wall 

1 base shear forces as those in Cycle 9 are listed in Table 8.10. 

 

Table 8.10. Displacements and base shears of the test building in Cycle 8a 
Begin End Increments Walls 
Force 
(kips) 

Roof 
Disp. (ins) 

Force 
(kips) 

Roof 
Disp. (ins) 

Force 
(kips) 

Roof 
Disp. 
(ins) 

Wall 1 0 0 33.96 0.0585 33.96 0.0585 
Wall 2 0 0 18.69 0.0795 18.69 0.0795 
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Substituting the force and displacement values in Table 8.10 into Eq.(8.4), and 

assuming that the value of K12 is equal to –18.7 kips/in based on Eq. (8.7), the values of 

K11 and K22 can be calculated as 605 kips/in and 249 kips/in, respectively. 

It can be concluded that the upper bound value of K12 is only 2.5% of K11, and 

7.5% of K22. This verifies the assessment from the elastic 3D FE analysis that the 

coupling behavior between Walls 1 and 2 is small to negligible. Therefore, it is 

reasonable to discuss the behavior of Walls 1 and 2 separately, as in Section 8.3.   

 

8.5.  FLANGE EFFECTS 

Flange effects were one of the most notable events observed during the tests. 

They can be explained in respect to elastic response and nonlinear response ranges 

separately. 

The flange effects during an elastic response can be conceptually investigated by 

using thin wall structure theory. In the case of a tube structure such as the ST-11 building, 

the out-of-plane Walls A and B worked as flanges, while the in-plane walls 1 and 2 

worked as webs. All the walls worked together as a box section to resist the external 

shear force and the overturning moment. 

The internal shear flow in the box section of the structure is conceptually 

illustrated in Figure 8.57. Most of the external shear force is resisted by in-plane walls or 

webs (Walls 1 and 2), while the flanges provided by Wall A and Wall B do not contribute 

much to the shear resistance of the building. 
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Figure 8.57. Shear flow in the tested structure 

 

 

On the other hand, the vertical stress distribution in a solid box or tube structure 

due to the external overturning moment is shown in Figure 8.58.  Both the in-plane and 

the out-of-plane walls participate in resisting the external overturning moment. In the 

case of a perforated tube structure, the shear force in the tube causes local flexural 

moment in each pier, which leads to a teeth-like vertical stress distribution in Walls 1 and 

2. Meanwhile, the shear lag in the flanges prevents the flanges (Walls A and B) from 

fully functioning. Therefore, the vertical stress distribution at the base of ST-11 building 

before cracking would be similar to what is shown in Figure 8.59. 
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Figure 8.58. Vertical stress distribution in a solid tube structure 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.59. Vertical stress distribution in a perforated tube structure 
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The vertical strain distribution at the base of the test building, obtained from the 

18 strain gages mounted at the base of the first floor piers, is plotted vs. the maximum 

roof displacements in Figure 8.60 for Cycle 2g, in which no visible cracks were observed 

in the walls. The measured stress distribution shown in Figure 8.60 was similar to that 

shown in Figure 8.59. In addition, Figure 8.60 shows that a large vertical tensile stress 

was introduced in Wall A when the building was loaded in the push direction and in Wall 

B when the building was loaded in the pull direction.  This indicated that a large portion 

of Wall A and Wall B participated in resisting the flexural moment induced by the global 

overturning movement or the pier rocking. 

After substantial cracks developed in the walls, the flange effects were dependent 

on the crack patterns. The vertical strain distribution at the base of the test building is 

plotted vs. the maximum roof displacements in Figure. 8.61 for Cycle 10. In this cycle, 

many flexural cracks had developed in the walls. Therefore, the strain gages could not 

pick up much tensile stress. However, significant opening of the flexural cracks observed 

in the test revealed the large flange effects due to the presence of Walls A and B. For 

example, in Cycles 6 to 8a, when the building was loaded in the pull direction, the entire 

Wall B was observed being lifted above the existing horizontal cracks in the first floor 

piers. This indicated that the entire Wall B was working as the flange for in plane Walls 1 

and 2. Another example is in Cycles 8 to 10a, when the building was loaded in the push 

direction, the triangular portion of masonry wall at the second floor of Wall A adjacent to 

Wall 1 was lifted with the displacement of Wall 1. Therefore, this portion of masonry 

wall was working as the tension flange for Wall 1.    
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The flange effects introduced by Walls A and B increased the weight that Walls 1 

and 2 had to carry when they rocked or slid. Therefore, this effect significantly increased 

the lateral strength of the test building. This topic is discussed in more detail in Section 

9.4.  Furthermore, the strain gage readings show that the compressive stress developed at 

the side of a pier without a flange was much larger than that at the side of a pier with 

additional flange (for example, the compressive stress developed at the right toe of Pier 

2-7 when the building was loaded in the push direction was 5 times that developed at the 

left toe of Pier 2-7 when the building was loaded in the pull direction in Cycle 10a). This 

indicated that the flange also evened out the maximum compressive stress in the piers, 

and thus delayed the brittle toe crushing failure mode of the piers, as discussed previously 

in Section 5.3.3.  
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(a) Loaded in the push direction with Wall 2 lateral roof displacement of 0.017 in. 

 

(b) Loaded in the pull direction with Wall 2 lateral roof displacement of -0.014 in. 
Figure 8.60.  Vertical strain distribution at the base of the tested building (Cycle 2g) 
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(a) Loaded in the push direction with Wall 2 lateral roof displacement of 0.239 in. 

 

 

(b) Loaded in the pull direction with Wall 2 lateral roof displacement of -0.252in.  
Figure 8.61.  Vertical strain distribution at the base of the tested building (Cycle 10) 
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8.6.  GLOBAL OVERTURNING MOVEMENT 

The effects of global overturning movement were different for Wall 1 and Wall 2. 

In the case of Wall 1, in Cycle 7, the global overturning movement began to be detected 

by the two vertical potentiometers: GV1LP and GV1RP. When the building was loaded 

in the push direction, the right side of Wall 1 was lifted a large amount (0.15 in.) while 

the left side of Wall 1 did not displace vertically. When the building was loaded in the 

pull direction, the left side of Wall 1 was lifted up a large amount (0.06 in.) while the 

right side of Wall 1 had only small uplift (Figure 8.62). This clearly indicated the global 

overturning movement (rocking) of Wall 1, which can be further illustrated as follows. 

As shown in Figure 8.63(a), when Wall 1 was loaded in the push direction, the entire wall 

was rocking about its left toe. Therefore, its right side went up while its left side did not 

move much vertically. When Wall 1 was loaded in the pull direction, Pier 1-6 and Pier 1-

7 rocked about their individual right toes. However, the aspect ratio of Pier 1-6 was much 

lower than that of Pier 1-7 (Figure 8.63(b)). As a result, when Pier 1-6 and 1-7 had the 

same lateral displacement, the top boundary of Pier 1-6 displaced up a large amount as 

compared to the top boundary of Pier 1-7. 

The global overturning movements for Wall 1 were basically the same in Cycles 

7a to 8a as for previous cycles.  However, when the behavior of Pier 1-6 changed from 

rocking to sliding when the wall was loaded in the pull direction in Cycle 10, the uplift at 

the left side of Wall1 decreased by about 30% (0.04 in). This indicated that the global 

rocking deformation of Wall 1 decreased when sliding occurred. After that, although the 

uplift at the left side of wall 1 was still observed, it was smaller than the previous cycles, 

which indicated that Pier 1-6 was rocking and sliding.  
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Figure 8.62.  Vertical movements of Wall 1 

 

 

 

 

 

 

 

(a) Loaded to the left    (b) Loaded to the right 
Figure 8.63. Rocking behavior of Wall 1 in Cycle 7 
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between the vertical movement and the rood lateral displacement is also listed in 

parentheses in the table. This table shows that before sliding occurred, with increasing 

lateral displacement, the uplift of Wall 1 at the tensile side was increasing. For example, 

the uplift at the right side of Wall 1 in the push direction increased from 46% of the roof 

lateral displacement in Cycle 7 to 82% of the roof lateral displacement in Cycle 10. This 

indicates that the flexural crack at the base of the wall was becoming larger and larger, 

causing the lateral deformation of the wall to be dominated more and more by its rocking 

behavior.  

In Cycle 10a, Pier 1-6 rocked and slid, and thus the uplift at both sides of the wall 

decreased. However, the decrease at the left side was much larger than that at the right 

side, indicating that the sliding of Wall 1 was more significant in the pull than in the push 

direction. 

 

 

Table 8.11. Uplift of Wall 1 during the tests 
Global overturning movement  

 
Cycle 

L∆  , 
positive, 
southward, 
(in.) 

V∆ , 
left side, 
south, 
(in.) 
 

V∆ , 
right side, 
north, 
(in.) 
 

L∆  , 
negative, 
southwar
d, 
(in.) 

V∆ , 
left side, 
south, 
(in.) 
 

V∆ , 
right 
side, 
north, 
(in.) 

7 0.0869 0 0.04  (46%) -0.118 0.06 (51%) 0 
7a 0.102 0 0.045 (44%) -0.115 0.05 (44%) 0 

8 0.135 0 0.07  (52%) -0.166 0.11 (66%) 0 
8a 0.157 0 0.087 (55%) -0.161 0.106 (66%) 0 
10 0.228 0 0.186 (82%) -0.262* 0.107 (41%) 0 
10a 0.242* 0 0.15  (62%) -0.263* 0.06 (23%) 0 

* Sliding Occurred 
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Compared to Wall 1, the different configuration of Wall 2 led to its different 

global behavior. Vertical movement was not detected until Cycle 8. In this cycle, 

Regardless of the loading direction, both sides of the top of Wall 2 were lifted, as shown 

in Figure 8.64. This indicates that the entire first floor spandrel and the second floor Wall 

2 worked together as the upper boundary of the parallel piers in the first floor. They were 

lifted due to the local rocking of the first-story piers.  

 

 

 

 

 

 

 

 

 

 

 

Figure 8.64. Vertical movements of Wall 1 (Cycle 8) 
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The ratio between the vertical movement and the rood lateral displacement is also listed 

in parentheses in the table. It can be seen that the uplift of Wall 2 was much smaller when 

compared with that of Wall 1. The reason is that the uplift of Wall 2 was controlled by 

the aspect ratios of its first floor piers, which were smaller than the aspect ratio of the 

entire Wall 1. 

 

Table 8.12. Uplift of Wall 2 during Test cycles 8 to 10a 
Global overturning movement   

 
Cycle 

L∆  , 
positive, 
southward, 
(in.) 

V∆ , 
left side, 
south, 
(in.) 

V∆ , 
right side, 
north, 
(in.) 

L∆  , 
negative, 
southward, 
(in.) 

V∆ , 
left side, 
south, 
(in.) 

V∆ , 
right 
side, 
north, 
(in.) 

8 0.144 0.015 
(10%) 

0.02 
(14%) 

-0.145 0.017 
(12%) 

0.032 
(22%) 

8a 0.153 0.007 
(5%) 

0.02 
(13%) 

-0.145 0.006 
(4%) 

0.016 
(11%) 

10 0.238 0.051 
(21%) 

0.035 
(15%) 

-0.247 0.04 
(16%) 

0.065 
(26%) 

10a 0.257 0.042 
(16%) 

0.031 
(12%) 

-0.252 0.027 
(11%) 

0.04 
(16%) 

 

 

8.7.  EFFECTIVE SECANT ELASTIC MODULUS, NATURAL PERIOD, AND 

VIBRATION MODES 

One way to monitor the damage of the test building is to measure the evolution of 

its typical structural characteristics, such as the effective secant stiffness, the natural 

period, and the corresponding vibration modes. The changing of these values with 

increasing lateral displacements traces the damage of the building. 

The secant stiffness of the test structure and the corresponding effective masonry 

elastic modulus were measured as follows. First, the lateral forces applied on the building 
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were measured from the actuators in each test cycle. These lateral forces were then 

applied to a 3D elastic FE model to calculate the lateral displacements of the test 

building. Comparing the measured actual roof displacements of the building to the 

calculated elastic values, the effective secant elastic moduli of masonry were obtained. 

Following this approach, the effective secant elastic moduli of the structure were 

calculated for each test cycle, and are listed in Table 8.13. This table shows that the 

secant elastic moduli of the test structure decreased with increasing lateral displacements. 

 

 

Table 8.13.  Elastic modulus of masonry (ksi) 
Cycles Wall 2  (+) Wall 2 (-) Wall 1 (+) Wall 1 (-) 
2g 1000 1000 1000 1000 
3b 689 845 885 1000 
5a 804 800 678 700 
6a 460 391 477 298 
7a 320 293 186 201 
8a 235 205 115 127 
10a 134 125 76 77 

 

 

On the other hand, considering the two walls as a two-degree-of-freedom system 

with lumped mass at the roof and at the second floor levels, the measured lateral 

displacements and lateral forces were used to calculate the first natural period and the 

corresponding vibration mode of these walls. The calculated results are listed in Table 

8.14.  The table shows that the natural periods of both Wall 1 and Wall 2 increased with 

increasing lateral roof displacements because of the accumulation of damage in the walls. 

Note that the natural period of Wall 1 jumped from 0.09 seconds in Cycle 8a to 0.15 

seconds in Cycle 10a, which was due to the sudden shifting from rocking to sliding.  
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The change of the natural period is consistent with the change of the mode shape 

of the tested masonry walls. The mode shape of Wall 2 corresponding to the first natural 

period gradually increased from 0.8 to 0.9 with increasing lateral displacements. This was 

consistent with the fact that most of the damage was focused in the first floor piers and 

the response of Wall 2 was dominated by its individual components. In contrast, the 

mode shape of Wall 1 was around 0.6 – 0.7 before sliding occurred. This indicated that 

the response of Wall 1 was dominated by the global rocking. However, after the sliding 

developed at the base of Pier 1-6, the vibration mode of Wall 1 dramatically increased to 

0.8 - 0.9, which was consistent with the sliding behavior of the wall.    

 

Table 8.14. Natural periods and vibration modes of Wall 1 and Wall 2 
 Wall 1 Wall 2 
 Natural 

Period 
(seconds) 

Vibration 
mode (second 
floor/roof) 

Natural 
Period 
(seconds) 

Vibration 
mode 
(second 
floor/roof) 

+ 0.028 0.63 0.054 0.81  
2g - 0.032 0.65 0.057 0.83 

+ 0.032 0.58 0.064 0.83  
3b - 0.034 0.66 0.063 0.85 

+ 0.036 0.56 0.061 0.83  
5a - 0.040 0.70 0.063 0.78 

+ 0.046 0.57 0.080 0.88  
6a - 0.058 0.69 0.094 0.87 

+ 0.069 0.55 0.095 0.9  
7a - 0.079 0.70 0.109 0.89 

+ 0.089 0.53 0.115 0.92  
8a - 0.092 0.71 0.128 0.92 

+ 0.154 0.80 0.164 0.86  
10a - 0.147 0.93 0.167 0.88 
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8.8. DISCUSSIONS 

Besides the issues discussed in the above sections, three more issues need to be 

pointed out: 

1) It is well known that a typical damage process for a reinforced masonry 

structure is characterized by many small cracks in the masonry walls. In contrast, the 

damage of this test URM structure was dominated by several large cracks. In addition, 

the locations of these cracks determined the nonlinear behavior of the entire URM 

structure. 

2) When Wall 1 was loaded in the pull direction in Cycle 6, large cracks suddenly 

developed in the tension flange of Wall 1 (i.e., in Wall B). However, the total base shear 

for Wall 1 suffered only a small reduction (from –54.9 kips to –54.3 kips). This indicated 

that the bed joint tensile strength of masonry had negligible effect on the behavior of the 

test building. On the other hand, it also revealed that the tension flange area defined by 

the cracks was close to the flange area utilized by the in-plane wall before the crack 

developed. 

3) Chapters 3 to 6 pointed out that four typical failure modes exist for a masonry 

wall: rocking, sliding, toe-crushing and diagonal tension. Note that the latter two failure 

modes were not significant in the tested structure. This can be attributed to the small 

gravity, vertical stresses applied to the structure and the relatively small lateral 

displacements imposed in the tests. 
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8.9. CONCLUSIONS 

Quasi-static cyclic lateral displacements were applied on Walls 1 and 2 to 

investigate the behavior of the test building. The main conclusions obtained from this 

series of tests are as follows: 

• For the test structure, the initial elastic modulus of masonry was around 1000 ksi. 

As a result, the test structure exhibited very stiff response before substantial 

cracking occurred. However, this stiffness rapidly decreased with increasing 

deformation and damage accumulation. The maximum lateral strengths of the test 

structure were 87 kips in the push direction (60 kips on Wall 1 and 27 kips on 

Wall 2), and 79 kips in the pull direction (55 kips on Wall 1 and 24 kips on Wall 

2). The roof drifts corresponding to the maximum lateral strength were about 

0.02%.  

• The coupling stiffness between Wall 1 and Wall 2 was very small. Test cycle 9 

revealed that this coupling stiffness was only 2.5% of the in-plane stiffness of 

Wall 1, and 7.5% of the in-plane stiffness of Wall 2. Therefore, it is reasonable to 

discuss the behavior of Wall 1 and Wall 2 separately. 

• The test structure exhibited significant global response. One of the global 

responses was the flange effects introduced by the out-of-plane walls. Both the 

vertical strain distribution at the base of the building when the building behaved 

elastically, and the crack patterns of the test building after substantial cracking 

developed indicated the considerable flange effect provided by Walls A and B. 

More detailed discussion of the flange effects is given in Chapter 9. 
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• Another global behavior was the overturning movement of the test building. The 

overturning movement had a twofold effect on the behavior of the building. First, 

it introduced additional vertical compressive forces in the piers at the compressive 

side, and additional vertical tensile forces in the piers at the tensile side. 

Therefore, the URM piers behaved differently depending on whether it was at the 

compressive side or the tensile side of the building. This phenomenon was evident 

in the behavior of Pier 2-7 and Pier 2-9. Second, the overturning movement might 

lead to global rocking of the entire wall and, thus, affect the behavior of in-plane 

wall. This phenomenon was significant in Wall 1. 

• The different configurations of Walls 1 and Wall 2 led to significantly different 

behavior between these two walls. Wall 2 had slender piers in the first floor, and 

damage of this wall was concentrated on the first floor piers. As a result, Wall 2 

exhibited a component-dominated rocking mechanism. The ultimate working 

mechanism for Wall 2 under lateral displacements was that the three first-floor 

piers 2-7, 2-8, and 2-9 rocked, while the entire second floor walls and the first 

floor spandrel behaved as a monolithic portion moving laterally and vertically on 

the top of the first-story piers. Wall 2 also behaved quite symmetrically when the 

wall was loaded in different directions. Wall 1 was a solid wall with a door 

opening in the first floor. In contrast to the behavior of Wall 2, the behavior of 

Wall 1 was dominated by its global overturning movement, and exhibited a quite 

complex change throughout the load history. When the lateral displacements of 

Wall 1 were small (roof displacement was less than 0.15 in.), the behavior of this 

wall was characterized by global rocking. When Wall 1 was loaded in the push 
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direction, the majority of Wall 1 was lifted above Pier 1-7 and rocked about the 

left toe of Pier 1-6, while Pier 1-7 was basically left behind. When the wall was 

loaded in the pull direction, cracks isolated Pier 1-7 from Pier 1-7. As a result, 

each pier rocked about its right toe.  On the other hand, the behavior of Wall 1 

changed from rocking to sliding plus rocking when the lateral displacements of 

Wall 1 reached 0.25 in. When the wall was loaded in the push direction, Pier 1-6 

slid and rocked along its bed joint, while Pier 1-7 was left behind. When the wall 

was loaded in the pull direction, Pier 1-6 slid and rocked along its bed joint, while 

a large amount of force was transferred to Pier 1-7. As a result, Pier 1-7 rocked 

about its right toe, and had the potential to develop diagonal cracking with 

increasing lateral displacement.  

There were some other interesting phenomena observed in the test. For example, 

it was observed that the flexural cracks induced by the rocking of a pier generally did not 

propagate in the horizontal bed joint. Instead, these cracks propagated perpendicular to 

the direction of the maximum tensile stress at the corner of opening. This led to different 

effective aspect ratios of the pier when the pier was loaded in different directions and, 

consequently, altered the response of the pier.  More discussions on the nonlinear 

properties of the test structure are given in Chapter 9.  
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CHAPTER 9 

IN PLANE WALL TESTS PARALLEL TO WALLS A AND B 

 

 

9.1. INTRODUCTION 

This chapter presents the results of tests in which the ST-11 building was loaded 

parallel to Walls A and B. As a result of the prior in-plane loading tests of Walls 1 and 2, 

substantial cracks developed not only in Walls 1 and 2 but also in Walls A and B. 

Therefore, the tests parallel to Walls A and B should be considered as the tests for an 

existing URM building that already suffered some damage. 

In this chapter, the test setup and the test sequence for Walls A and B is presented 

in Section 9.2. Then the nonlinear behavior of the test structure, including crack 

propagation, damage accumulation, and the global kinematic mechanisms, is presented in 

Section 9.3. Following that, some special issues such as the mixed modes of failure for 

Walls A and B, the determination of the flange effects, and the determination of the 

effective pier length in a perforated wall, are discussed in Sections 9.4 to 9.9. The 

conclusions obtained from the test are given in Section 9.10.    

 

9.2. TEST SETUP 

9.2.1. External forces and loading scheme 

In-plane lateral forces were applied to Walls A and B at the roof level and the 

second floor level. The setup of the loading system and the design of the loading scheme 



 315

were the same as that used for the previous test series parallel to Walls 1 and 2, and a 

complete description can be found in Section 8.2.1.  

   

9.2.2. Testing procedure 

For most target displacements, two complete loading cycles were conducted for 

the test structure as was done in the previous tests on Walls 1 and 2. The test series on 

Walls A and B consisted of 13 test cycles. The measured maximum lateral displacement 

values at the roof and the second floor levels of Walls A and B for each of the test series 

are listed in Table 9.1. The maximum lateral roof displacement applied on the test 

structure was about 0.5 in. 

 

 

Table 9.1. Displacement values of each test cycle 
Maximum displacements in the push 
direction (positive, westward, in.) 

Maximum displacements in the pull 
direction (negative, eastward, in.) 

Cycle 

Wall 
B roof 

Wall B 
second 
floor 

Wall A 
roof 

Wall A 
second 
floor 

Wall B 
roof 

Wall B 
second 
floor 

Wall 
A roof 

Wall A 
second 
floor 

20c 0.008 0.005 0.0083 0.005 -0.010 -0.006 -0.007 -0.004 
21a 0.029 0.023 0.03 0.02 -0.030 -0.022 -0.03 -0.024 
21b 0.029 0.023 0.03 0.022 -0.031 -0.023 -0.031 -0.023 
22a 0.069 0.057 0.076 0.058 -0.072 -0.057 -0.071 -0.056 
22b 0.069 0.058 0.077 0.060 -0.071 -0.056 -0.070 -0.054 
23a 0.096 0.081 0.093 0.073 -0.096 -0.077 -0.105 -0.077 
23b 0.094 0.081 0.096 0.077 -0.101 -0.079 -0.109 -0.079 
24a 0.137 0.117 0.138 0.111 -0.153 -0.123 -0.159 -0.116 
24b 0.147 0.125 0.145 0.117 -0.148 -0.119 -0.157 -0.115 
25a 0.232 0.189 0.221 0.186 -0.273 -0.225 -0.278 -0.206 
25b 0.226 0.195 0.190 0.163 -0.286 -0.237 -0.313 -0.237 
26a 0.460 0.414 0.400 0.319 -0.521 -0.416 -0.604 -0.438 
26b 0.488 0.436 0.423 0.369 -0.517 -0.442 -0.566 -0.422 
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9.2.3. Instrumentations 

Ninety-six channels of instrumentations, including 30 LVDTs, 16 potentiometers, 

and 44 strain gages, were used to monitor both the global response and the local response 

of the test structure (Figure 9.1). LVDTs GWAR and GWA2 were used to measure the 

lateral in-plane displacements of Wall A at the roof level and at the second floor level, 

respectively. LVDTs GWBR and GWB2 were employed to measure the lateral in-plane 

displacements of Wall B at the roof level and at the second floor level, respectively. In 

addition, the global lateral in-plane displacements of Walls A and B were also monitored 

by potentiometers P-GWAR, P-GWA2, P-GWBR, and P-GWB2. The lateral out-of-plane 

roof displacements of Walls 1 and 2 were measured by LVDTs GOW1R and GOW2R, 

respectively. The global overturning movements of Walls A and B were measured by 

potentiometers P-GVAL, P-GVAR, P-GVBL, and P-GVBR. Possible sliding of the 

masonry walls were monitored by several dial-gages placed at some particular locations. 

The forces applied on the building were measured by the load cells embedded in the 

actuators.



 317

 

Wall 1Wall 2 Wall BWall A 
S2-7L S2-7R S2-9L S2-9R

SB-7C

SB-7R

SB-10L SB-10C

S1-6L S1-6VLC
S1-6VRC

S1-6R

S1-7L
S1-7RSA-10C

SA-10L
SA-7R

SA-7C

S2-2L S2-5R
(S1-2L)

S1-4R

GOW2R

GWB2

GWBR

GOW1R

GWA2

GWAR

PB-7VL

PB-7VR
PB-7XR

PB-7XL

PB-10XL
PB-10VL

PB-10VR
PB-10XR

PA-10XL
PA-10VL

PA-10VR
PA-10XR

PA-7XR
PA-7VR

PA-7VL
PA-7XL

PB-8VL

PB-8VR

PB-9VL
PB-9VR

PA-8XL
PA-8XR

PA-9XL
PA-9XR

SB-8LB

SB-8LT

SB-8R
SB-9L

SB-9R
SA-8L

SA-8R

SA-9L SA-9RT

SA-9RB

(SA-5R)
SA-5L

SA-4R

SA-4L

SA-3R

SA-3L
SB-2R

SB-5L

SB-5RS2-2R S1-2R
S1-3L

S1-3R

S1-4L

52.5 105 52.5

Wall A Wall 2 Wall B Wall 1

(a) Strain gages

(b) LVDTs

 

 

Figure 9.1. Instrumentation of the in-plane wall tests parallel to Walls A and B 
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Figure 9.1. (cont’d)
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In a similar manner as for the tests for Walls 1 and 2, the local response of the 

exterior first story piers in Walls A and B were measured by 2 vertical LVDTs and 2 

diagonal LVDTs. However, given the different wall penetrations, two vertical LVDTs 

were used for the interior first story piers in Wall B, and two diagonal LVDTs were used 

for the interior first story piers in Wall A. Since the first floor spandrels in Walls A and B 

were quite deep, it was assumed that damage was unlikely to occur to these spandrels; 

and, thus, they were not instrumented. The flexural deformation of all the piers in the 

second floor was measured by potentiometers. In addition to the LVDTs and 

potentiometers, strain gages were used at the bottom of each pier to measure the vertical 

strains at the base of the pier. 

 

9.3. CRACK PROPAGATION, DAMAGE ACCUMULATION AND KINEMATIC 

MECHANISMS   

This section gives a summary of the response of the test structure throughout the 

test sequence. The crack propagation, damage accumulation, and the kinematic 

mechanisms are described at different damage levels, which include the response before 

the onset of further damage, the accumulation of damage in the walls, and the fully 

developed kinemtiac mechanisms. Similar to the previous tests parallel to Walls 1 and 2, 

little coupling was observed between the two parallel in-plane Walls A and B. As a 

result, the response of Walls B and A are discussed separately in Section 9.4.1 and 

Section 9.4.2.   
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9.3.1.  Wall B 

9.3.1.1. Response of Wall B before further damage (Cycles 20c through 21b) 

The response of Wall B in Cycles 20c through 21b was essentially elastic. No 

cracks or other visual damage were observed. The base shear–lateral roof displacement 

curves for Wall B are shown in Figure 9.2, which exhibit linear elastic behavior. 
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Figure 9.2. Lateral roof displacement-base shear curve for Wall B (Cycles 20c to 21b) 
 

 

Some cracks already existed in Wall B due to previous tests on Walls 1 and 2. 

Majority of the existing cracks in Wall B were in the first story piers (Figure 9.3). Fully 

developed horizontal cracks existed in the bed joints at both the top and 6 courses above 

the bottom of Pier B-7. These cracks propagated into and almost fully cracked Pier 2-9.  

As a result, the effective portion of Pier B-7 was well defined as the portion between the 

top crack and the bottom crack. Similarly, fully developed horizontal cracks existed at 
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both the top and the bottom of Piers B-8 and B-9, and thus these two piers were also well 

defined. The existing cracks in Pier B-10 were more substantial.  A diagonal crack 

existed inside Pier B-10, extending from the three-fourth height at the left side of this pier 

to the right toe of Wall B. Cracks also existed in the area of the wide pier B-11 below 

Piers B-9 and B-10.  

These existing cracks drove the response of Wall B. If the applied lateral 

displacements for Wall B were not large enough to overcome the compressive stresses on 

the crack surfaces induced by the gravity load, the wall bascially worked as an uncracked 

wall. Otherwise, it was very likely that Piers B-7, B-8, and B-9 would rock. Following 

the geometry defined by these existing cracks.  
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Figure 9.3. Existing cracks in Wall B before test (looking north) 
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In Cycles 20c to 21b, the effects of the global overturning movement were 

significant, as demonstrated by the vertical dispalcements of the upper boundaries of all 

the four first floor piers of Wall B, as shown in Figure 9.4 and Figure 9.5.  In the two 

figures, the vertical movement of each pier is calculated by averaging the readings of the 

two vertical LVDTs in the pier. For example, the average of the readings of LVDTs PB-

8VL and PB-8VR gives the vertical movement of the upper boundary of Pier B-8. 
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Figure 9.4. The vertical movements of the upper boundaries of the four first story piers in 
Wall B when loaded in the push direction to maximum deflection 

X axis: 0 : Pier B-7, 1: Pier B-8, 2: Pier B-9, 3: Pier B-10 
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Figure 9.5. The vertical movements of the upper boundaries of the four first story piers in 
Wall B when loaded in the pull direction to maximum deflection 

X axis: 0 : Pier B-7, 1: Pier B-8, 2: Pier B-9, 3: Pier B-10 
 

 

Figure 9.4 shows that when Wall B was loaded in the push direction (westward), 

compressive deformations were intoduced in Piers B-7 and B-8, while tensile 

deformations were introduced in Piers B-9 and B-10. The deformation values at the 

exterior piers were larger than those in the interior piers, and increased with increasing 

lateral displacements. The phenomena clearly shows the effect of the global overturning 

moment. Figure 9.5 shows similar effects when Wall B was loaded in the pull direction 

(eastward). A small difference is that in the latter case all the three left piers (B-7, B-8, 

and B-9) were in tension while only Pier B-10 was in compression. This was probably 

due to the fact that the left three piers were fully cracked in the previous test, and thus the 

center of moment of inertia of the entire wall section was shifted to the right. In addition, 

the existence of a large pier (Pier 1-6) provided a large flange at the right side of Wall B, 

West
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which also helped to shift the inertia center to the right. Figure 9.4 and Figure 9.5 also 

indicate that the entire first floor spandrel of Wall B rotated counterclockwise when the 

wall was loaded in the push direction, and rotated clockwise when the wall was loaded in 

the pull direction. This behavior was again due to the global overturning moment effects. 

The instrumentation also revealed local rocking of the first story piers. For 

example, the readings of the strain gages at the base of Pier B-9 in Cycle 21b are shown 

in Figure 9.6. The figure shows that the left base of Pier B-9 was in compression and the 

right base was in tension when Wall B was loaded in the push direction, and vice versa 

when Wall B was loaded in the pull direction. This indicates that Pier B-9 was in bending 

or was rocking during this cycle. 
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Figure 9.6. Reading of strain gages of Pier B-9 in Cycle 21b 
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This mixed behavior of Wall B, with both global overturning and local rocking, 

also can be deduced from the lateral displacements of the two exterior piers, Pier B-7 and 

Pier B-10. As discussed before, a typical lateral displacement of a pier is composed of 

rocking displacement and shear/flexural displacement. The ratio between the two 

displacement components was affected by the global overturning moment and was 

different when the wall was loaded in different directions. Taking Pier B-10 for example, 

as shown in Figure 9.7, when Wall B was loaded in the pull direction (negative 

displacement), Pier B-10 was in the compression side. As a result, its rocking 

deformation was quite small; and, thus, the majority of the lateral deformation of this pier 

was due to its shear and flexural deformation. In the contrast, when Wall B was loaded in 

the push direction (positive displacement), the entire pier B-10 tended to be lifted. As a 

result, this pier did not resist much external lateral shear force, and its shear and flexural 

deformations were rather small. The lateral displacement of the pier was thus controlled 

by rocking. 
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Figure 9.7. Lateral displacements of Pier B-10 (Cycle 21b) 

 

The lateral displacements of Pier B-7 and Pier B-10, together with their 

controlling components, are listed in Tables 9.2 and 9.3. The tables show that Pier B-7 

and Pier B-10 mirrored each other’s behavior due to the effects of the global overturning 

moments. In addition, the tables show that the first story lateral deformation of Wall B 

was concentrated on these piers. 

 

 

Table 9.2.  Lateral displacement of Piers B-7 and B-10 in the push direction 
Maximum lateral displacements for the piers (in.) Maximum Wall B 

second floor lateral 
displacements in the 

push direction 

Pier B-7 Pier B-10 

0.005 in. 0.0045, shear + flexural 0.003, rocking 
0.023 in. 0.018, shear + flexural 0.015, rocking 
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Table 9.3.  Lateral displacement ratios of Piers B-7 and B-10 in the pull direction 
Maximum lateral displacement ratios for the piers Maximum Wall B 

second floor lateral 
displacements in the pull 

direction 

Pier B-7 Pier B-10 

-0.006 in. -0.005, rocking -0.004, shear + flexural 
-0.023 in. -0.02, rocking -0.012, shear + flexural 

 

 

9.3.1.2. Accumulation of damage in Wall B (Cycles 22a through 25b) 

During Cycles 22a through 25b, the existing cracks at the top and bottom of the 

first floor piers opened or closed due to rocking of the individual piers. Besides this, new 

crack propagation and damage were observed in Wall B and its adjacent out-of-plane 

walls (Walls 1 and 2) (Figure 9.8).  

When the wall was loaded in the push direction (westward) in Cycle 22a, a crack 

initiated at the left top corner of Pier B-10, and extended upward and to the right for 

about 15 in. This crack propagated farther with each cyclic excursion (Cycles 22b, 23a, 

and 24a), until it reached the out-of-plane Wall 1.  This crack was apparently due to the 

effects of overturning moment, since the push moment tended to lift the right side of Wall 

B, and leave Pier B-10 behind.   

When the wall was loaded in the pull direction (eastward), there were no new 

cracks observed in Cycles 22a and 22b. However, in Cycle 23a, the existing crack at the 

top of Pier 2-9 opened because of the overturning moment effects. This crack propagated 

farther to the left side of Pier 2-9, and fully cracked the top of this pier. Meanwhile, a 

crack initiated at the middle of the windowsill between Pier B-9 and Pier B-10, 

propagated at an angle of approximately 300 downward and to the right for about 70 in. 

This crack propagated farther to the foundation in Cycle 25a.  
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Besides the crack propagation in the in-plane walls, overturning moment also 

caused substantial cracks in the out-of-plane Wall 2. In Cycle 25b, a horizontal crack was 

observed at the mid-height of the Wall 2 first floor spandrel. This crack propagated to the 

left and right, and joined the existing cracks on both sides of the wall. As a result, the 

entire second floor of Wall 2 was lifted as the flange for Walls A and B. 

During this series of test cycles, the propagation of cracks was confined mainly to 

the first floor. However, in Cycle 25a, when Wall B was loaded in the push direction, 

cracks developed at the top left corner of Piers B-4 and B-5, and at the right bottom of 

Pier B-3 and Pier B-4, due to the local rocking behavior of these piers (Figure 9.8). 
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Figure 9.8. Crack pattern of Wall B and adjacent Wall 2 (left) and Wall 1 (right) at the end of Cycle 25b. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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The lateral displacement–base shear force curves for Wall B up to Cycle 25b are 

shown in Figure 9.9. The response of Wall B exhibited significant nonlinear behavior. 

Wall B attained its maximum lateral strength of 43.0 Kips in the push direction at a roof 

displacement of 0.222 in., and its maximum lateral strength of -36.9 Kips in the pull 

direction at a roof displacement of –0.273 in. One interesting phenomenon is that 

although a large crack was developing in Wall 2 when the building was loaded in the pull 

direction, the load displacement curve for Wall B was smooth. This indicates that the bed 

joint tensile strength of masonry was small. 
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Figure 9.9 Lateral displacement- base shear force curves for Wall B up to Cycle 25b 
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The behavior of Wall B can be understood from the vertical movements of the 

upper boundaries of its four first story piers. Figure 9.10 shows the measured vertical 

movements of these upper boundaries in Cycles 22a through 25a corresponding to the 

maximum lateral push displacements.  The first floor spandrel of Wall B worked pretty 

much like a rigidity body, exhibiting vertical displacement and rotation with increasing 

lateral displacement. To look more clearly into this issue, the displacement of this 

spandrel is illustrated by the vertical displacements on the left side of Wall B and its 

rotation angles, as listed in Table 9.4.    
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Figure 9.10. Vertical movements of Wall B first floor spandrel when loaded in the push 
direction to maximum deflection (Cycles 22a – 25a) 

X axis: 0 : Pier B-7, 1: Pier B-8, 2: Pier B-9, 3: Pier B-10 
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Table 9.4. Rigid movements of Wall B first floor spandrel when loaded in the push 
direction (Cycles 22a to 25a) 

Movement of Wall B first floor spandrel Maximum Wall B 
second floor lateral 
displacements in the 

push direction 

Vertical movement (in., +: 
going up) 

Rotation (degree, +: 
counterclockwise) 

0.057 (22a) -0.005 0.0054 
0.081 (23a) -0.003 0.0066 
0.117 (24a) 0.003 0.0089 
0.189 (25a) 0.029 0.0127 

 

 

 Table 9.4 shows that with increasing lateral (positive) push displacement, the 

counterclockwise rotation of the Wall B spandrel became larger, reflecting the influence 

of the global overturning movements. On the other hand, the left side of Wall B first went 

down, then displaced up with increasing lateral displacement. This indicated that the local 

rocking of the first story piers was becoming a predominant contributor to the response of 

Wall B. 

The measured maximum vertical movements of the Wall B first floor spandrel in 

the pull direction  (eastward) in Cycles 22a to 25a are shown in Figure 9.11. Similar to 

the behavior in the push direction, the first floor spandrel exhibited a mixed behavoir of 

global overturning movement and local rocking. Note that the upward movment of Pier 

B-7 started to slow down relative the the other piers after Test Cycle 23a. This indicated 

that Pier B-7 was left behind when Wall B first floor spandrel was loaded in the pull 

direction. If the first floor spandrel was assumed rigid and if its movements could be 

calculated based on the movements of the three right side piers, its vertical movements on 

the right side and the rotation angles of this spandrel are as shown in Table 9.5. This table 

verifies the mixed behavior of Wall B in the pull direction.   



 333

-0.020

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0 1 2 3
Location of Piers

V
er

tic
al

 m
ov

em
en

ts
 o

f t
he

 p
ie

rs
 

(in
ch

es
)

22a
23a
24a
25a

 

Figure 9.11. Vertical movements of Wall B first floor spandrel when loaded in the pull 
direction to maximum deflection (Cycles 22a – 25a) 

X axis: 0 : Pier B-7, 1: Pier B-8, 2: Pier B-9, 3: Pier B-10 
 

 

Table 9.5. Rigid movements of Wall B first floor spandrel when loaded in the pull 
direction (Cycles 22a to 25a) 

Movement of Wall B first floor spandrel Maximum Wall B 
second floor lateral 

displacements in the pull 
direction 

Vertical movement (in., +: 
going up) 

Rotation (degree, +: 
counterclockwise) 

-0.057 (22a) -0.0019 -0.01 
-0.077 (23a) 0.0035 -0.0153 
-0.123 (24a) 0.0089 -0.0246 
-0.225 (25a) 0.019 -0.0405 

 

 

9.3.1.3. Fully developed kinematic mechanism (Cycles 26a and 26b) 

 In these two cycles, substantial cracks developed in Wall B and the adjacent out-

of-plane walls (Figure 9.12). As a result, a kinematic mechanism for Wall B was fully 

developed. When the building was loaded in the push direction (westward), because of 

West
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the flange effects, the uplift of the right side of Wall B introduced large tensile stress in 

the adjacent Wall 1, and that tension stress cracked the bottom of Wall 1 adjacent to Wall 

B. Consequently, the entire left (south) portion of Wall 1 was lifted from its base. The 

lateral push force for Wall B also caused Pier B-7 to rock about its left (west) toe. As a 

result, a 450 crack propagated from the existing cracks at the bottom of Pier B-7, and 

spread to its left toe. 

When the building was loaded in the pull direction (eastward), the uplift on the 

left side of Wall B caused two diagonal cracks to initiate above the arch lintel of the door 

opening. These cracks propagated upward and to the left toward the bottom of the Wall 2 

second floor fixture steel plate, turned about the corner into Wall 2, and propagated 

farther at an angle of approximately 450 upward and to the left until it reached the top of 

Wall 2. As a result, the portion of Wall B above these cracks was lifted due to the 

overturning movement. Meanwhile, the triangular portion of Wall 2 above the crack was 

also lifted as the flange of Wall B. 

During this cycle, flexural cracks were also observed at the top and bottom of the 

second story piers in Wall B, due to the rocking behavior of these piers. Another 

interesting phenomenon was that the first floor spandrel of Wall B seemed to slide on the 

top of Pier B-8 and B-9 during this cycle.   
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Figure 9.12. Crack pattern of Wall B and adjacent Wall 2 (left) and Wall 1 (right) at the end of Cycle 26b. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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With all these cracks formed, a kinematic mechanism for Wall B was fully 

developed. When Wall B was loaded in the push direction, the movement of Wall B is 

shown in Figure 9.13. Although the bottom horizontal crack in Pier B-7 was above its 

first header course, the 450 crack at the left toe of this pier indicated that Pier B-7 rocked 

about its left toe. Pier B-10 separated from the majority of Wall B through the diagonal 

crack at its top, while the Wall B first floor spandrel and the entire Wall B second story 

moved upward and rotated counterclockwise under lateral push forces. The two interior 

piers (Piers B-8 and B-9) also rocked about their left toes.  

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13. Kinematic mechanism of Wall B when loaded in the push direction 
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Two issues need to be pointed out for this kinematic mechanism. First, although 

there were signs of rocking for the second floor piers, the damage to the second floor wall 

was minor compared with that to the first floor piers. Therefore, the entire second floor 

masonry wall was still assumed rigid in this kinematic mechanism. Second, the rocking 

of the in-plane Wall B forced the flanges (Walls 1 and 2) to move as well, and caused 

these walls to crack. The flange effects due to the movement of Walls 1 and 2 made a 

large contribution to the lateral resistance of the in-plane wall, as discussed in more detail 

in Section 9.4. 

When Wall B was loaded in the pull direction, the kinematic mechanism of Wall 

B is shown in Figure 9.14. Similar to the push direction, the pier on the tension side (Pier 

B-7) separated from the majority of the wall through the diagonal crack at its top. The 

two interior piers rocked about their right toes. The Wall B first floor spandrel and the 

entire Wall B second story wall moved together as a rigid body upward and rotated 

clockwise. On the other hand, being slightly different from the push direction case, the 

pier on the compressive side (Pier B-10) did not rock with its own size. Instead, a 450 

crack developed at the left bottom of this pier, and that crack separated Pier B-10 from 

the lower Wall Section B-11. As a result, Pier B-10 rocked about the right toe of Wall B 

as a pier with the same aspect ratio as that of Pier B-7. The deformation mechanism of 

Wall B in the pull direction basically mirrors that in the push direction. More detailed 

discussion on the effective aspect ratio of the URM piers in this perforated wall is given 

in Section 9.6. 
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Figure 9.14. Kinematic mechanism of Wall B when loaded in the pull direction 

 

 

The vertical displacements of the Wall B first floor spandrel in Test Cycle 26a,  

corresponding to the maximum lateral push and pull displacements are shown in Figure 

9.15 (a) and Figure 9.15(b), respectively.  The vertical displacements in the previous test 

cycles are also shown in the figures as a comparsion. These figures show that the 

movement of the spandrel in Test Cycle 26a was bascially the same as those in the 

previous cycles. Its movement exhibited a mixture of global overturning movement and 

local rocking. Again, Figure 9.15(b) indicates that Pier B-7 was left behind when Wall B 

was loaded in the pull direction. 
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                (a) Push direction  

 

 

 

 

 

 

 

 

 

 

(b) Pull direction 

Figure 9.15. Vertical movements of the Wall B first floor spandrel (up to Cycle 26a) 
X axis: 0 : Pier B-7, 1: Pier B-8, 2: Pier B-9, 3: Pier B-10 
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The lateral displacement–shear force curve for Wall B in all these test cycles is 

shown in Figure 9.16. When Wall B lateral roof displacement was larger than 0.25 in. 

(0.09% drift), the lateral strength of Wall B decreased slowly with increasing lateral 

displacements. On the other hand, the unloading curve exhibited a large energy 

dissipation capacity. This was consistent with the observed sliding behavior of the first 

floor spandrel on the top of Pier B-8 and B-9. In Test Cycle 26b, although no new cracks 

were observed in Wall B, a large strength degradation was observed. The strength 

degradation in the push direction was 5.2 Kips between Cycles 26a and 26b at a roof 

displacement level of 0.47 in., and 1.9 Kips between Cycles 26a and 26b in the pull 

direction at a roof displacement level of -0.52 in. Since the mature kinematic mechanism 

for the tested wall was obsereved, the tests for the URM building stopped in Cycle 26b. 
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Figure 9.16. Lateral displacement – shear force curves for Wall B in all the test 
cycles 
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9.3.2. Wall A 

Wall A was identical to Wall B. However, the initial cracks in Wall A were 

different from those in Wall B. Furthermore, the flange effect for Wall A was also 

different from that for Wall B due to the unsymmertic configuration of the out-of-plane 

Wall 1. As a result, the response of Wall A was different from Wall B. The observed 

nonlinear properties of Wall A are presented in the following scections, and the response 

is described at three different levels: the response before the onset of further damage, the 

accumlation of damage in the walls, and the fully developed kinematic mechanisms. 

 

9.3.2.1. Response of Wall A before further damage (Cycle 20c through 21b) 

The existing cracks in Wall A were different from those in Wall B (Figure 9.17). 

Horizontal cracks through the entire section existed at both the top and the bottom of the 

two exterior piers (Piers A-7 and A-10), and these cracks propagated into Walls 1 and 2. 

As a result, the two exterior piers were well defined as the portion between the top and 

the bottom cracks. Meanwhile, although horizontal cracks cracked the entire top sections 

of Piers A-8 and A-9, no cracks existed at the bottom of these two piers. As will be seen 

next sections, these cracks will drive the response of Wall A.  

Besides the cracks described above, cracks also existed at the base of Section A-

11. However, this crack will not affect the behavior of the wall unless Wall A slides 

along the foundation,. Similarly, there were two diagonal cracks in Wall A on the second 

floor Wall. These cracks will probably not influence the behavior of Wall A either, as the 

nonlinear response of Wall A will be determined primarily by the damage of its first story 

piers. 
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Figure 9.17. Initial cracks in Wall A and adjacent Wall 1 (left) and Wall 2 (right). Number IDs of each pier are given in the 
rectangles. 
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As for Wall B, the response of Wall A in Cycles 20c to 21b was essentially 

elastic. No visual cracks or other damages were observed. The base shear-lateral roof 

displacement curves for Wall A for these cycles are shown in Figure 9.18. 
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Figure 9.18. Lateral roof displacement-base shear of Wall A (Cycles 20c to 21b) 

 

As was the case for Wall B, the behavior of Wall A in this series of test cycles 

was governed by a mixture of global overturning movement and local rocking. The 

measured maximum vertical movements of Wall A first floor spandrel and the vertical 

strains at the base of the piers exhibited similar behavior as those of Wall B.   

 

9.3.2.2. Accumulation of damage in Wall A (Cycles 22a through 25b) 

Substantial damage developed in Wall A during Test Cycles 22a through 25b. 

The crack pattern in Wall A after Cycle 25b is shown in Figure 9.19. The detailed crack 

propagation is as follows.  



 344

 

 

Figure 9.19. Crack pattern of Wall A and adjacent Wall 1 (left) and Wall 2 (right) at the end of Cycle 25b. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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During Cycle 22a, when Wall A was loaded in the push direction (westward), a 

crack initiated at the top of the arch lintel of the window opening between Pier A-7 and 

Pier A-8. This crack propagated at about 450 upward and to the left, reached the corner 

between Wall 1 and Wall A, and joined an existing crack in that area. As a result, the 

portion of Wall A above this crack was lifted by the push forces, while Pier A-7 tended to 

be left behind. Simultaneously, flexural cracks developed at the left bases of Piers A-8 

and A-9 due to local rocking. The existing cracks at the top right of these two piers and at 

the top right and the left bottom of Pier A-10 were observed opening due to the rocking 

behavior. 

In Cycle 23a, when Wall A was loaded in the push direction, the existing cracks 

on the top right of the arch lintel above the window opening between Piers A-7 and A-8 

propagated into the vertical head joint of the arch lintel; the crack completely isolated the 

right half of this arch lintel from the other portions of Wall A. Meanwhile, the up-lift of 

the left side of Wall A introduced a large vertical tensile stress in the right portion of 

Wall 1, and lifted this portion. Thus a crack initiated in the bed joint, three courses above 

the steel lintel of the door opening in Wall 1. This crack propagated at an angle of 

approximately 150 upward and to the left, and it joined the existing cracks in Wall A.  

In Cycle 24a, when Wall A was loaded in the push direction, a crack developed at 

the left toe of Pier A-10 two courses above the foundation, due to the large tensile stress 

induced by the local rocking of this pier.  

In Cycle 25a, when the building was loaded in the push direction, the existing 

crack at the left bottom of Pier A-9 propagated downward and to the left for about 12 in. 

Meanwhile, the flange effects caused a flexural crack to initiate at the left bottom of Pier 
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1-4, propagate along the bed joint to the right for about 8 in., then spread farther down 

and to the right for about 30 in.  

When the building was loaded in the pull direction (eastward), another set of 

cracks developed in the wall. In Cycle 25a, a crack initiated at the middle of the 

windowsill between Pier A-7 and Pier A-8, propagated at an angle of approximately 300 

downward and to the left for about 45 in.  In Cycle 25b, this crack propagated farther to 

the left and towards the bottom until it reached the foundation. This inclined crack was 

due to the rocking of Pier A-7 about its left toe. Meanwhile, a diagonal crack initiated 

from the existing horizontal cracks on the top of Pier 2-7, propagated at an angle of about 

450 upward and to the right until it reached the mid-height of the Spandrel 2-6. At this 

point it continued to propagate to the right, and joined another horizontal crack that had 

propagated from the right side of Wall 2. These cracks formed a large crack, and they 

separated the entire out-of-plane wall (Wall 2). As a result, the entire second floor of 

Wall 2 lifted up as the flange of Walls A and B. 

Along with the crack propagation, the base shear-lateral roof displacement curve 

for Wall A exhibited significant nonlinear behavior, as shown in Figure 9.20. Wall A 

attained a maximum lateral strength of 35.7 kips in the push direction (roof displacement 

of 0.214 inches) and -40.8 kips in the pull direction (roof displacement of -0.278 inches). 

The small energy dissipation area for this force-displacement curve indicates that rocking 

dominated the response of Wall A.  This is similar to the behavior of Wall B. On the 

other hand, in Cycle 25b, the unloading branch from the pull loading peak exhibited a 

relatively large energy dissipation area. This indicated that a sliding was probably 



 347

occurring in this wall, although this behavior could not be visually confirmed during this 

test cycle. 
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Figure 9.20. Base shear vs. lateral roof displacement for Wall A up to Cycle 25b 

 

 

The behavior of Wall A (global overturning movement and local rocking) can be 

seen from the vertical movements of its first floor spandrel, as shown in Figure 9.21 and 

Figure 9.22. In the two figures, the vertical movement of each pier is calculated by 

averaging the readings of the two diagonal LVDTs in the pier. For example, the average 

of the readings of LVDTs PA-8XL and PA-8XR gives the vertical movement of the 

upper boundary of Pier A-8. 

Figure 9.21 and Figure 9.22 show that the behavior of Wall A was similar to that 

of Wall B. Note that when Wall A was loaded in the push direction, the measured upward 

movement at the left side of Wall A was quite small compared with the movement at the 
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mid of the wall. This was attributed to the fact that Pier A-7 was separated from the other 

portion of Wall A and was being left behind through the digaonal crack on the top of the 

pier. Pier A-10 exhibited similar behavior when Wall A was loaded in the pull direction. 

The vertical movements of Wall A spandrel shown in Figures 9.21 and 9.22 can 

also be illustrated by the vertical movements at the compressive side of Wall A and the 

rotation angles of this spandrel. These are shown in Table 9.6 and Table 9.7 for the push 

and pull directions of loading, respectively. The calculations exclude the piers that were 

being left-behind; thus only the movements of the three piers in the compressive side of 

the wall were used to calculate the movement of the spandrel. The tables show that with 

increasing lateral displacement, the first floor spandrel of Wall A began to displace more 

vertically. This indicated increasing rocking of the first story piers. 

Meanwhile, the rotation of the first floor spandrel of Wall A also increased. This 

reflected the global overturning movements. Compared with the previous cycles, it is 

obvious that although the global overturning moment was still governing the response of 

Wall A, the influence of local rocking of the first story piers was becoming more and 

more significant. Furthermore, the comparison of the two tables shows that the rotation of 

the first floor spandrel of Wall A corresponding to the pull direction was more significant 

than that in the push direction. This can be ascribed to the different kinematic 

mechanisms in the two directions. 
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Figure 9.21. Vertical displacement of the first floor spandrel for Wall A when loaded in 
the push direction to maximum deflection (Cycles 22a to 25a) 

X axis: 0 : Pier A-7, 1: Pier A-8, 2: Pier A-9, 3: Pier A-10 
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Figure 9.22. Vertical displacement of the first floor spandrel for Wall A when loaded in 
the pull direction to maximum deflection (Cycles 22a to 25a) 

X axis: 0 : Pier A-7, 1: Pier A-8, 2: Pier A-9, 3: Pier A-10 

West

West 



 350

Table 9.6. Rigid movements of First floor spandrel of Wall A when loaded in the push 
direction (Cycles 22a to 25a) 

Movement of Wall A first floor spandrel Maximum Wall A 
second floor lateral 
displacements in the 

push direction 

Vertical movement (in., +: 
going up) 

Rotation (degree, +: 
clockwise) 

0.058 (22a) 0.0009 0.0069 
0.073 (23a) 0.0019 0.0084 
0.111 (24a) 0.006 0.0141 
0.186 (25a) 0.0159 0.0271 

 

 

Table  9.7. Rigid movements of First floor spandrel of Wall A when loaded in the pull 
direction (Cycles 22a to 25a) 

Movement of Wall A first floor spandrel Maximum Wall A 
second floor lateral 

displacements in the pull 
direction 

Vertical movement (in., +: 
going up) 

Rotation (degree, +: 
clockwise) 

-0.056 (22a) -0.0024 0.0117 
-0.077 (23a) 0.00043 0.0144 
-0.116 (24a) 0.0037 0.0227 
-0.206 (25a) 0.0136 0.0397 

 

 

9.3.2.3. Fully developed kinematic mechanism (Cycles 26a and 26b) 

In Cycles 26a and 26b, substantial cracks formed in Wall A and the adjacent out-

of-plane walls (Figure 9.23).  

During Cycle 26a, when the building was loaded in the push direction (westward), 

the uplift at the left side of Wall A introduced large tensile stresses in the adjacent Wall 1 

due to the flange effects. As a result, the existing crack next to the Wall A second floor 

fixture steel plate propagated into Wall 1. It continued to propagate at an angle of 

approximately 300 upward and to the left until it reached the sill level at the second floor. 
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This crack caused the triangular portion above this crack in Wall 1 to be lifted by the 

movement of Wall A, and work as the flange of Wall A.   

When the building was loaded in the pull direction (eastward), a diagonal crack 

developed above Pier A-10 because of the overturning movement. However, this crack 

did not propagate into Wall 2. During this cycle, flexural cracks were also observed at the 

top and the bottom of the second floor piers in Walls A and B, due to the rocking 

behavior of these piers.  

In Cycle 26b, when the building was loaded in the push direction, a diagonal 

crack propagated down from the existing flexural crack at the left base of Pier A-9 at an 

angle of about 450 downward and to the right, and fully cracked this pier.  As a result, 

Pier A-9 rocked about the right toe of A-11. Meanwhile, because of the flange effect, the 

large tensile stress in Wall 1 caused a diagonal crack to initiate at the top right corner of 

Pier 1-3, and propagate at the angle of 450 upward and to the left for about 30 in. 

Another interesting phenomenon was that in Cycle 26b, when Wall A was loaded 

in the pull direction, the existing cracks on the top of Pier A-10 propagated into the arch 

lintel of the door opening. This completely isolated the left one-quarter of this arch lintel 

from the majority of Wall A; this portion of arch lintel almost collapsed. After this test 

cycle, a temporary support was provided to prevent a complete collapse (Figure 9.24).  
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Figure 9.23. Crack pattern of Wall A and adjacent Wall 1 (left) and Wall 2 (right) at the end of Cycle 26b. The crack number 
corresponds to the test run number. Number IDs of each pier are given in the rectangles. 
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Figure 9.24. Temporary support for the arch lintel, Pier A-10 on the left (view from 
inside the building toward north) 

 

 

With all these formed cracks, a kinematic mechanism for Wall A was fully 

developed. When Wall A was loaded in the push direction (westward), the deformation 

mechanism for Wall A is shown in Figure 9.25. Most of the damage concentrated on the 

first story piers. The first story spandrel and the entire second floor wall moved together 

as a rigid body. This rigid body rotated in the clockwise direction due to the global 

overturning moment, and moved upward due to the rocking of the first floor piers. The 

left pier (Pier A-7) was separated from the majority of the wall by the diagonal crack on 

the top of this pier. The other three piers at the right side of the wall (Piers A-8, A-9, and 

A-10) rocked about their right toes. Pier A-9 rocked about the right toe of Section A-11, 
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indicating that the effective height for Pier A-9 was 84 inches. Detailed explanation for 

this behavior is given in Section 9.7.  

 

 

 

 

 

 

 

 

 

 

Figure 9.25. Kinematic mechanism of Wall A when loaded in the push direction. 

 

When the building was loaded in the pull direction (eastward), the kinematic 

mechanism of Wall A is shown in Figure 9.26.  Similar to the push direction (westward), 

most of the damage concentrated on the first story piers. The first floor spandrel of Wall 

A and the entire second floor wall moved together as a rigid body. They rotated in the 

counterclockwise direction due to the global overturning moment, and moved upward 

due to the rocking of the first story piers. The right pier (Pier A-10) was separated from 

the majority of the wall by a diagonal crack on the top of the pier. The three left piers 

(Piers A-7, A-8, and A-9) rocked about their left toes. Note that the kinematic mechanism 

of Wall A in the pull direction is actually identical to that of Wall B in the push direction 

(Figure. 9.13). 
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Figure 9.26. Kinematic mechanism of Wall A when loaded in the pull direction. 

 

Although there were some signs of rocking for the second floor piers, the damage 

to the second floor wall was minor compared with that to the first floor piers. Therefore, 

the entire second floor masonry wall was still assumed rigid in this kinematic mechanism. 

The participation of flanges observed in the response of Wall A is discussed in more 

detail in Section 9.5. 

The vertical movements of the first floor spandrel of Wall A in Test Cycle 26a  

corresponding to the maximum lateral push and pull displacements are shown in Figures 

9.27 (a) and 9.27(b), respectively.  The vertical movements in the previous cycles are also 

shown in the figures for comparsion. These figures show that the movement of the 

spandrel in Test Cycle 26a was the same as those in the previous cycles. Its movement 

exhibited a mixture of global overturning movement and local rocking. Again, Figure 

9.27 (a) indicates that Pier A-7 was left behind when Wall A was loaded in the push 
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direction. Figure 9.27(b) indicates that Pier A-10 was left behind when Wall A was 

loaded in the pull direction. 

 

 

 

 

 

 

 

 

 

(a) Push direction   

 

 

 

 

 

 

 

 

 

(b) Pull direction 

Figure 9.27. Vertical movements of the first floor spandrel of Wall A (up to Cycle 26a) 
X axis: 0 : Pier A-7, 1: Pier A-8, 2: Pier A-9, 3: Pier A-10 
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The lateral displacement-shear force curve for all the test cycles is shown in 

Figure 9.28. It can be seen when the Wall A lateral roof displacement was larger than 

0.21 in. (0.075% drift) in the push direction and 0.28 in. ( 0.1% drift) in the pull direction, 

the lateral strength of Wall A decreased slowly with increasing lateral displacements. 

Meanwhile, the unloading branch of Wall A exhibited a small energy dissiptation area. 

All these observation indciate that the response of Wall A was dominated by rocking. 
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Figure 9.28. Base shear-lateral roof displacement of Wall A in all the test cycles 

 

 

9.4. FLANGE EFFECTS 

Significant flange effects due to the participation of out-of-plane walls were 

observed in the previous tests parallel to Walls 1 and 2. These flange effects were also 
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observed in the tests parallel to Walls A and B. However, as opposed to the tests parallel 

to Walls 1 and 2, there were existing cracks in the masonry walls prior to the tests parallel 

to Walls A and B. As a result, the flange effects observed in the latter case should be 

considered as that for a cracked structure. Due to the extensive crack propagation at the 

base of the masonry walls, the strain gages mounted at the base of the first story piers 

gave little valuable information on the behavior of the flanges. Nevertheless, the 

contribution of the flange effects to the kinematic mechanisms and the ultimate strength 

of Walls A and B can still be understood from the crack propagation in the out-of-plane 

walls. 

The flange effects observed in the tests of Walls A and B and those in the 

previous test series parallel to Walls 1 and 2 (Section 8.5) can be well explained by the 

concepts “Pier flange” and “Spandrel flange” as follows. 

Figure 9.29 shows a pier and a spandrel on the tensile side of a weak pier-strong 

spandrel masonry wall. The pier and the spandrel are lifted up due to the external 

overturning moment. Meanwhile, the pier rocks about its right toe. As a result, cracks 

develop between the pier and the ground, and between the pier and the spandrel. These 

cracks propagate into the out-of-plane wall, and divide it into the “pier flange”, the 

portion between the ground and Crack A, and the “spandrel flange”, the portion above 

Crack A.  

Figure 9.30 shows another case of a flange - a pier and a spandrel at the 

compressive side of a weak pier-strong spandrel wall. The pier rocks about its left toe and 

lifts up the spandrel. As a result, cracks develop at both the top and the bottom of the pier 
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and the flange. These cracks also divide the out-of-plane wall into two different parts (the 

pier flange and the spandrel flange). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.29. Pier flange and spandrel flange in the tensile side of a pier 

 

 

Note that the flange effects in an individual pier have been discussed in Chapter 5. 

The conclusions obtained there can be applied for the pier flange discussed herein.  When 

the pier flange is on the tensile side of a wall, the weight center of the flange is located 

away from the toe of the pier (Figure 9.29). Thus the pier flange will increase the rocking 

strength of the pier. In contrast, when the pier flange is at the compressive side of the 

wall, the weight center of the flange is very close to the toe of the pier (Figure 9.30). As a 

result, it has negligible contribution to the rocking strength of the pier.  
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In both cases, however, the weight of the spandrel flange is always supported by 

the pier through the heel of the pier (Figures 9.29 and 9.30). Therefore, the additional 

vertical compressive force transferred from the spandrel flange to the pier is always away 

from the toe of the pier and thus increases the rocking strength of this pier.  

Another significant difference between the pier flange and the spandrel flange 

occurs when the spandrel on the tensile side of wall is lifted and separated from the 

underneath pier due to external overturning moment effects. In this case, the pier, 

together with its pier flange, is left behind and has no contribution to the lateral resistance 

of the entire wall. In contrast, the spandrel flange still contributes to the lateral resistance 

of the wall. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.30. Pier flange and spandrel flange on the compressive side of a pier 
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In the case of a strong pier-weak spandrel wall, the spandrel contributes little to 

the ultimate strength of the wall. In this case, only the pier flange needs to be considered. 

Another issue is the definition of the effective area of a flange. For a case where 

only a pier flange exists for a pier, the effective flange area has been discussed in Section 

5.4 and is illustrated again in Figure 9.36.  Rocking causes a crack at the bottom of the 

pier and the flange. Due to the weight of the flange and/or the forces transferred from 

other portions of the building, shear stresses exist in the flange. Those shear stresses 

cause a principal tensile stress about 450 to the vertical edge of the in-plane wall. Since 

URM is a very brittle material, a crack forms perpendicular to this tensile stress. The 

exact location of the crack, however, is variable, depending on the distribution of external 

forces and on the masonry properties. As a simple case, the shadow area shown in Figure 

9.31 is the maximum possible effective flange area for this pier. It is formed by a 450 

crack initiating at the bottom of the pier, and propagating to up and left until it reaches 

the top of the wall.      

 

 

 

 

 

 

 

 

Figure 9.31. Effective area of a pier flange 
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In the case of a strong spandrel-weak pier wall, the definition of effective flange 

area is more complex. Taking a pier at the tensile side of a wall for example (Figure 

9.32), two cracks are possible to form in the flange. One is the crack initiating from the 

bottom of the pier (Point C) and propagating at 450 to the top of the wall (Point D); 

another is the crack propagating from Point A at the top of the in-plane pier to Point B at 

the top of the flange. As a result, the triangular area above the line AB is the spandrel 

flange, and the area between Line AB and Line CD is the effective area for the pier 

flange. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.32. Effective area for the pier flange and the spandrel flange in the 
tensile side of a pier 
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The determination for the spandrel flange and the pier flange is affected by the 

distribution of external forces and the crack pattern in the in-plane wall. Figure 9.32 is 

most likely suitable for a wall with uniformly distributed external forces and the specific 

in-plane crack pattern shown in the figure. If the flexural crack at the top of the pier is not 

horizontal, instead going upward and to the left at 450 as usually observed in the tests, the 

area of the spandrel flange will decrease, and the area of the pier flange will increase.       

The above discussions are based on a first story exterior pier at the tensile side of 

a wall. However, the concept also applies to the exterior pier at the higher floors. On the 

other hand, when the pier is at the compressive side of a wall, the definition for the 

effective area of the flanges is a little different. As shown in Figure 9.33, the spandrel is 

lifted due to the rocking of the underneath pier, and thus the effective area for the 

spandrel flange is defined the same as in the previous case. However, since the pier 

flange is at the compressive side, no tensile stress is introduced in the flange. In this case, 

the effective area for the pier flange can be simply determined by the 450 line going from 

the top of the pier to the bottom of the flange, which reflects the flow of the compressive 

stress in the flange. 
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Figure 9.33. Effective area for the pier flange and the spandrel flange in the compressive 

side of a pier 
 

 

 The last issue that needs to be identified is that the method outlined herein is 

essentially applicable to a solid out-of-plane wall with large length. When the distance 

between two parallel in-plane walls is not long enough (see Figure. 5.8), a trapezoid area 

instead of a triangular one has to be used for the flange of each in-plane wall. On the 

other hand, when there is a large opening in the out-of-plane wall adjacent to an in-plane 

pier (Figure. 9.34), the pier flange for this pier is confined inside the local area, since the 

opening tends to isolate the pier-flange from the other portions of the out-of-plane wall. 
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Figure 9.34. Effective flange area for an in-plane pier with adjacent opening in the out-of-
plane wall 

 

 

As an example, the crack patterns in the out-of-plane walls (Walls 1 and 2) 

observed in this series of tests (shown in Figures 9.12 and 9.23) verifies the above 

discussion for the particular structure tested in this research project. 
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direction (westward), the inclined crack at the top and right of Wall 1 indicates that the 
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flange for Pier A-7.  At the other side of Wall 1 adjacent to Wall B, the crack defining the 
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from its base, as shown in Figure 9.12. This crack indicated that much more flange was 
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contributing to the lateral resistance of Wall B than of Wall A in this test cycle. This 

explains the difference in peak lateral shear strength of Wall B in the push direction (39.6 

kips) versus that of Wall A (33.0 kips) in this cycle.  

When the building was loaded in the pull direction (eastward), as discussed in 

Section 9.4, a large crack developed at the mid-height of the first spandrel of Wall 2 in 

Cycle 25b, and separated the entire out-of-plane Wall 2. As a result, the entire second 

floor of Wall 2 was lifted as the spandrel flange for Walls A and B. In Cycle 26a, another 

crack propagated from the second floor fixture steel plate in Wall B, and propagated 

farther at an angle of approximately 450 upward and to the left until it reached the top of 

Wall 2 (Figure 9.12). As a result, the small triangular portion of Wall 2 above these 

cracks was lifted as the spandrel flange for Wall B. At this stage there were no new 

cracks in the flange area of Wall 2 next to Wall A. Therefore, the spandrel flange area for 

Wall A was larger than that for Wall B. This explains the difference in peak lateral shear 

strength of Wall A in the pull direction (37.7 kips) versus that of Wall B (33.0 kips) in 

this cycle. 

 

9.5.  MIXED BEHAVIOR: GLOBAL OVERTURNING AND LOCAL ROCKING 

The vertical movements of Walls 1 and 2 have been discussed in Chapter 8. It is 

interesting to compare the vertical movements of Walls A and B to those of Walls 1 and 

2, as shown in Figure 9.35. When Wall 2 was laterally loaded, the top of both the left side 

and the right side of Wall 2 were lifted (Figure 9.35a), because Wall 2 was dominated by 

the local rocking of its first story piers. In contrast, when Wall 1 was laterally loaded, the 

tensile side of the wall was lifted, while the compressive side of the wall had only small 
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amount of vertical uplift (Figure 9.35b). This is due to the fact that Wall 1 was sliding 

and rocking globally. The vertical movements of Walls A and B are similar, but are 

different from those of Walls 1 and 2. When Walls A and B were laterally loaded, the top 

of the wall at the tensile side was lifted a good amount, and that at the left side was lifted 

up as well, but with a smaller value (Figure 9.35c,d). This phenomenon indicated that the 

working mechanisms for Walls A and B were a mixture of global overturning movement 

and local rocking. The differences in behavior of these four walls are a product of their 

different configurations. Wall 2 has large openings and slender piers in the first floor. 

Thus it is easy for this wall to develop component-dominated behavior. In contrast, the 

small openings in Wall 1 make it easy to develop global-dominated behavior (global 

overturning and sliding). In the case of Walls A and B, their opening ratios are 

somewhere between Walls 1 and 2. As a result, their response is a mixed response of 

global movement and local rocking. 
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(c) Wall A    (d) Wall B 

Figure 9.35. Vertical movements of the masonry walls 

 

 

9.6. EFFECTIVE PIERS IN A PERFORATED WALL 

The effective pier model discussed in Chapters 4 and 5 implies that the response 

of a URM pier in a perforated wall with weak pier-strong spandrel can be explained by an 

inclined effective pier defined in the pier. The tests for the ST-11 building parallel to 
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Walls 1 and 2 indicated that the inclined effective pier for a door pier is different for 

different loading directions, which can be illustrated as follows. 

For an exterior door pier at the right side of the wall, when the wall is loaded from 

left to right, horizontal cracks develop at the top right and the bottom left of the pier 

(Figure 9.36). As a result, the aspect ratio for the effective pier is H/L. On the other hand, 

when the wall is loaded from right to left, a 450 diagonal crack develops from the top left 

corner of this pier and propagates up and to the right (Figure 9.37). As a result, the aspect 

ratio for the effective pier is (H+L)/L. 

 

    

 

 

 

 

 

 

 

 

 

Figure 9.36. Effective pier of a door pier when loaded from left to right 
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Figure 9.37. Effective pier of a door pier when loaded from right to left 

 

 

Note that when the exterior door pier is at the left side of the wall, the behavior of 

the pier is a mirror image to that discussed above. In the case of an interior door pier, it is 

unlikely for a 450 crack to develop on the top of the pier. Therefore, the aspect ratio for 

an interior door pier is always H/L. 

The tests parallel to Walls A and B gave some information for the determination 

for an effective pier in a window pier. There are three different types of window piers, 

which are the exterior window pier (Figure 9.38a), the interior window pier (Figure 

9.38b), and the interior window/door pier (Figure 9.38c). The definition of effective pier 

for those piers can be obtained from the test. 
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(a)Exterior window pier (b) Interior window pier (c) Interior window/door pier 

Figure 9.38. Different configurations of window piers 

 

 

Piers B-9 and A-9 in the test structure are the interior window piers. The tests 

showed that for an interior window pier rocking caused horizontal cracks to develop at 

both the top and the bottom of the pier. Therefore, the aspect ratio for this type of pier is 

always H/L (Figure 9.39).  
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Figure 9.39. Effective pier of an interior window 
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Piers A-9 and B-8 in the test structure are the interior window/door piers. The 

tests revealed a quite interesting phenomenon for this type of pier. Taking Pier B-8 as an 

example, when the pier was laterally loaded so that the side of the pier next to the door 

opening was in compression, a 450 crack initiated from the bottom window corner, and 

propagated to the toe next to the door opening (Figure 9.40).  Meanwhile, similar to the 

interior door pier case, a horizontal crack developed at the top of the pier. As a result, the 

effective pier of this pier went from the top of the pier to the ground, and the aspect ratio 

of the pier was (H+a)/L. On the other hand, when the pier was laterally loaded so that the 

side of the pier next to the door opening was in tension, the pier worked just like an 

interior window pier, with horizontal cracks developing at both the top and the bottom of 

the pier. The aspect ratio of the corresponding effective pier was H/L.  

 

 

 

 

 

 

 

 

 

 

Figure 9.40. Effective pier of a door pier when loaded from right to left 
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Piers A-7 and B-10 in the test structure are the exterior window piers. The tests 

showed that their behavior was a combination of exterior door pier and interior 

window/door pier.  Taking Pier B-10 for example. when Wall B was pushed from the 

right to the left, it worked as an exterior door pier, and a 450 crack initiated at the top left 

corner of Pier B-10, and propagated upward and to the left (Figure 9.41). Meanwhile, as 

in an interior window pier, a horizontal crack developed at the right base of the Pier. 

Therefore, the aspect ratio for the effective pier was (H+L)/L. On the other hand, when 

Wall B was loaded from the left to the right, as an interior window/door pier, a 450 crack 

initiated at the bottom left corner of this pier, and propagated downward and to the right 

(Figure 9.42). At the same time, a horizontal crack developed at the right top of the Pier. 

Therefore, the aspect ratio for the corresponding effective pier was (H+a)/L. 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.41. Effective pier of an exterior door pier when loaded from right to left 
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Figure 9.42. Effective pier of an exterior door pier when loaded from left to right 

 

 

9.7.  COMPARISON BETWEEN THE BEHAVIOR OF WALLS A AND B 

Walls A and B were identical to each other. The tests showed that their kinematic 

mechanisms were similar. Moreover, the ultimate crack patterns for the two walls were 

also similar in spite of different initial cracks. Although flexural cracks were observed in 

the second floor wall for both walls, the damage for the walls was concentrated in the 

first story. Both walls exhibited a mixed working mechanism of global overturning and 

local rocking. When the walls were laterally loaded, the spandrels at the tensile side were 

lifted above the exterior piers. The latter were left behind and did not resist much lateral 

shear force. The interior piers rocked, and the exterior piers at the compressive side 

resisted large vertical compressive and lateral shear forces.  
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On the other hand, the behavior of the two walls did show some differences. The 

base shear-lateral roof displacement curves for Walls A and B are compared in Figure 

9.43. Wall B reached a maximum lateral strength of 43.0 kips at a displacement of 0.232 

in. in the push direction, and 36.9 kips at a displacement of 0.273 in. in the pull direction. 

In comparison, Wall A reached its maximum lateral strength of 35.70 kips at a 

displacement of 0.214 in. in the push direction, and 40.8 kips at a displacement of 0.278 

in. in the pull direction. As discussed in Section 9.4, the difference sizes in the pier 

flanges and spandrel flanges between Wall A and Wall B explains the difference in their 

maximums strengths.    

The hysteretic behavior of Wall B exhibited a larger energy dissipation area than 

that of Wall A. These differences were due to the different flange effects induced by the 

out-of-plane walls and to the mature level of developed working mechanisms. The larger 

energy dissipation area of Wall B was also probably due to the relative sliding observed 

between Wall B first floor spandrel and the tops of Pier B-8 and Pier B-9. Similar 

behavior was not observed in Wall A. Note that when Wall B was loaded in the push 

direction, the diagonal crack on the top of Pier B-10, the horizontal cracks on the top of 

Pier B-8 and B-9, and the diagonal plus horizontal cracks at the bottom of Pier B-7 

formed a complete sliding path (Figure 9.12). This allowed the portion of Wall B above 

and below these cracks to slide. Similarly, when Wall B was loaded in the pull direction, 

the diagonal crack on the top of Pier B-7, the horizontal cracks on the top of Pier B-8 and 

B-9, and the diagonal cracks at the mid-height of Pier B-10 developed a complete sliding 

path again, which allowed Wall B to slide. In contrast, no continuous sliding path formed 

in Wall A.  
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Figure 9.43. Comparison of Wall A and Wall B 

 

 

It is interesting to compare the response of the test structure parallel to Walls A 

and B and that parallel to Walls 1 and 2. The maximum lateral strength of the test 

structure parallel to Walls 1 and 2 was 87 kips in the push direction and 79 kips in the 

pull direction, which is close to the maximum strength of the test structure parallel to 

Walls A and B (79 kips in the push direction and 78 kips in the pull direction). This is 

probably due to the box configuration of the test structure and the contribution of the 

flange effects. On the other hand, the roof drift corresponding to the peak strength was 

0.02% in the direction parallel to Walls 1 and 2 (see Chapter 8), which was much smaller 

than that in the direction parallel to Walls A and B, 0.07%. The difference was due to the 

initial damage existing in the structure prior to the tests parallel to Walls A and B. 
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9.8.  EFFECTIVE SECANT ELASTIC MODULUS, NATURAL PERIOD, AND 

VIBRATION MODES         

Following similar procedure as used for the tests parallel to Walls 1 and 2, the 

effective secant elastic moduli of the tested structure were calculated for each test cycle 

(Table 9.8). Comparing the values for Walls A and B for secant stiffness to those 

measured in the previous tests parallel to Walls 1 and 2 (Table 8.13), it is clear that there 

was initial damage to the building prior to the tests parallel to Walls A and B. With 

increasing lateral roof displacement, the secant modulus decreased from about 500 ksi in 

Cycle 20c to about 30 ksi in Cycle 26b. 

 

 

Table 9.8.  Elastic modulus of the test structure parallel to Walls A and B (ksi) 
Cycles Wall A  (+) Wall A (-) Wall B (+) Wall B (-) 
20c 481 728 563 530 
21b 316 322 344 483 
22b 170 207 226 204 
23b 140 143 175 150 
24b 105 102 136 103 
25b 79 51 93 52 
26b 32 28 28 23 

 

 

Again, considering each in plane wall (Walls A or B) as a two-degree-of-freedom 

system with lumped masses at the roof and the second floor levels, the measured lateral 

displacements and lateral forces are used to calculate its first natural period and the 

corresponding vibration mode. The calculated results for Walls A and B are listed in 

Table 9.9.  The table shows that the natural periods of both Walls A and B increased from 

0.06 seconds to about 0.27 seconds with increasing lateral roof displacements. As a 



 378

general trend, the ratio between the second floor displacement and the roof displacement 

of the vibration mode of Walls A and B increased, because the damage of the walls was 

concentrated on the first story wall. However, as an exception, the mode shape of Wall A 

corresponding to the pull direction loading was always about 0.75, probably due to the 

fact that the global rocking was more prominent in this wall. 

 

 

Table 9.9. Natural periods and vibration modes of Walls A and B 
 Wall A Wall B 
 Natural 

Period 
(seconds) 

Vibration 
mode (second 

floor/roof) 

Natural 
Period 

(seconds) 

Vibration 
mode (second 

floor/roof) 
+ 0.06 0.77 0.06 0.85  

20c - 0.06 0.77 0.06 0.76 
+ 0.075 0.77 0.072 0.83  

21b - 0.08 0.79 0.08 0.83 
+ 0.107 0.83 0.093 0.88  

22b - 0.1 0.78 0.111 0.86 
+ 0.115 0.86 0.105 0.89  

23b - 0.114 0.76 0.127 0.86 
+ 0.153 0.88 0.133 0.92  

24b - 0.131 0.71 0.145 0.85 
+ 0.19 0.81 0.193 0.9  

25b - 0.168 0.72 0.183 0.82 
+ 0.256 0.89 0.270 0.85  

26b - 0.266 0.75 0.296 0.91 
 

 

9.9.  DISCUSSIONS 

Besides the issues discussed in the above sections, there were some other 

interesting phenomena that were observed in the test and needed to be pointed out: 
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9.9.1. Arch lintel 

 Arch lintels are one of the common types of lintels used in the existing URM 

buildings. The tests parallel to Walls A and B revealed a potential hazard of this type of 

lintel. Under external forces, a crack developed at the top of the arch lintel (Crack A in 

Figure 9.44). Since the header joints are usually weaker than the bed joints, Crack A 

easily propagates into the header joints, such as Cracks B and C as shown in Figure 9.44.  

With cyclic loading, the cracks in the arch lintel become larger and larger. As a result, 

some portion of the arch lintel might lose its stability and fall down. An example of this 

type of failure is the damaged arch lintel of the door opening in Wall A, as shown in 

Figure 9.45.  

 

 

 

 

 

 

 

 

Figure 9.44. Typical cracks in an arch lintel  
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Figure 9.45. Picture of the damaged arch lintel in Wall A (over Wall A first-story door 
opening) 

 

 

9.9.2.  Continuous opening of cracks during the cyclic loading 

 Previous tests for individual pier indicated that although rocking or sliding might 

occur in a pier, the residual opening of the cracks or the relative sliding in the pier closed 

or diminished after a complete test cycle. However, this was not true for the cracks in a 

perforated wall. Large residual crack openings were observed in both the tests parallel to 

Walls 1 and 2 and in those parallel to Walls A and B. This phenomenon is due to 

different kinematic mechanisms of the walls in different loading directions. Taking Wall 

A for example, when the wall was loaded in the push direction, the diagonal crack on the 

top of A-7 opened due to rocking and sliding (see Figure 9.25). When the wall was 

loaded in the pull direction, the crack opening on the top of Pier A-7 did not close. 

Instead, the rocking and sliding deformation of Wall A caused another diagonal crack, 

which was at the bottom of Pier A-7, to open (see Figure 9.26).  The different kinematic 

mechanisms in different loading directions caused crack widths in a URM building to 
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grow during cyclic loading. During a seismic event, such growing cracks might 

eventually cause a masonry wall to lose its stability and collapse. 

 

9.9.3. Toe crushing and diagonal tension cracks 

FEMA 356 points out the four typical failure modes of a URM pier: rocking, 

sliding, toe crushing, and diagonal tension (ATC 2000). For the test structure, the 

observed failure modes for the piers were rocking and sliding. The other two failure 

modes, toe crushing and diagonal tension cracks, were not observed. This was due to the 

small gravity stresses applied to the structure and the relatively small lateral 

displacements imposed in the tests. 

 

 

9.10.  CONCLUSIONS 

Quasi-static cyclic lateral displacements were applied on Walls A and B to 

investigate the behavior of the test building in the direction parallel to Walls A and B. 

Some of the main conclusions obtained in the previous tests parallel to Walls 1 and 2 

were verified. For example, little coupling between two parallel in-plane walls was 

evident,; and the mixed behavior of global overturning and local rocking were observed 

again. On the other hand, some new phenomena and conclusions were obtained from this 

series of tests. They are as follows: 

• The initial effective modulus of masonry parallel to Walls A and B was about 500 

ksi. This value was smaller than the initial elastic modulus of 1000 ksi for the 

tests parallel to Walls 1 and Wall 2. This reduction in E was due to the initial 
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damage that occurred to the masonry walls prior to the tests parallel to Walls A 

and B. The effective modulus gradually reduced with increasing lateral 

displacements to a value of 30 ksi in Cycle 26b. This loss was a clear indication 

of the damage accumulation in the walls during the tests. The maximum lateral 

strengths of the test structure were 79 kips in the push direction (36 kips on Wall 

A and 43 kips on Wall B), and 77 kips in the pull direction (40 kips on Wall A 

and 37 kips on Wall B). The roof drifts corresponding to the maximum lateral 

strength were about 0.07%. Compared with the maximum lateral strength (87 kips 

in the push direction and 79 kips in the pull direction) and the corresponding roof 

drift (0.02%) obtained in the direction parallel to Walls 1 and 2, the maximum 

strength values were similar.  The similar strengths were probably due to the box 

configuration of the test structure and the contribution of the flange effects. The 

response of Walls A and B was softer than that of Walls 1 and 2, again due to the 

initial damage existing in the walls.  

• The response of Walls A and B were similar to each other. Both of them exhibited 

a mixed kinematic mechanism consisting of a combination of global overturning 

and local rocking. When the walls were laterally loaded, the spandrels at the 

tensile side were lifted up above the exterior piers; those exterior piers were left 

behind and did not resist much lateral shear force. The interior piers rocked, and 

the exterior piers at the compressive side resisted large vertical compressive and 

lateral shear forces. The wall behavior fell somewhere between the rocking-

dominated response of Wall 2 and the global movement–dominated response of 
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Wall 1. This was due to the fact that the first-story opening ratios of Walls A and 

B were between those of Walls 1 and 2. 

• On the other hand, the behavior of Walls A and B did show some differences. In 

the push direction, the maximum strength of Wall B was a little larger than that of 

Wall A. In the pull direction, the maximum strength of Wall A was a little larger 

than that of Wall B. This difference was due to the different size of flanges 

engaged by Walls A and B. Furthermore, the force-displacement curves of Wall B 

exhibited larger energy dissipation area compared with Wall A. This was 

probably due to some sliding response observed in Wall B that was not seen in 

Wall A. 

• The flange effects were further investigated in the tests parallel to Walls A and B. 

Based on the phenomena observed in this series of tests as well as in the previous 

tests parallel to Walls 1 and 2, it was concluded that the flange effects due to the 

contribution of the out-of-plane walls could be distinguished between a pier-

flange effect and a spandrel-flange effect. The determination of the pier flange 

and the spandrel flange is different between a strong pier-weak spandrel wall and 

a weak pier-strong spandrel wall. The two different types of flanges have different 

effects on the response of a pier depending on whether the flange is on the tensile 

side or the compressive side of the wall. The method to determine the area of 

those two flanges is discussed in this chapter. 

• Another interesting finding in this series of tests was the method to determine the 

effective piers in a perforated wall. Depending on the location of a pier and the 

direction of external forces, cracks with different propagation directions may 
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develop in a URM pier. This cracking, in turn, determines the size and location of 

the effective pier. Based on the tests parallel to Walls 1 and 2, a method was given 

to define the effective pier when a door pier is present. Based on the tests parallel 

to Walls A and B, a similar method can be used to define the effective pier in a 

window pier.  

• Other important conclusions include that the commonly used arch lintels are 

prone to damage and that crack widths in a URM building tend to grow during 

cyclic loading. 
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CHAPTER 10 

PRELIMINARY ANALYSES OF ST-11 BUILDING 

 

 

10.1. INTRODUCTION  

In preparation for the experimental test described in the previous chapters, 

extensive analytical studies were conducted.  This chapter describes the initial analyses 

conducted for the experimental design and as the test was being carried out.  Chapters 11 

and 12 describe the more advanced ones that were carried out after the test.  

The preliminary analyses were composed of two parts. In the first part, elastic 

analyses were employed to predict the elastic properties of this test building. This part of 

analyses includes both a 3D finite element (FE) elastic model and a simplified dynamic 

conceptual model.  The 3D FE elastic model was employed to obtain estimates of elastic 

properties such as stiffness and to provide insight into three-dimensional effects such as 

coupling between parallel walls and flange effects in the elastic range.  The simplified 

dynamic conceptual model was developed to analyze the dynamic parameters of the test 

structure, such as natural frequencies and vibration mode shapes. The response of the test 

structure to seismic vibrations was also examined with this simple model.   

Based on the elastic properties from the above analyses and the results from 

previous experimental research, the second part of the preliminary analyses utilized 

simple analytical tools to predict the inelastic properties of this test building. Among 

those properties are the ultimate strength and the failure modes. This part of analyses 

started with a performance evaluation based on the pre-standard FEMA 356 (ATC 2000). 
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Two procedures provided by FEMA 356, the linear static procedure (LSP) and the 

nonlinear static procedure (NSP), were utilized to evaluate the performance of the test 

structure in several different seismicity zones. These approaches were assumed to give 

lower bound prediction as to how the test structure would behave in a real earthquake. 

Following that, a rigid body analysis, which was based on the observed kinematic 

mechanism of the test building, was then utilized to analyze the ultimate strength of the 

test structure. The analyses results were used as a guide prior to testing the ST-11 test 

structure, and were compared with the experiment results. The assumptions behind these 

analyses and their results are presented in this chapter. 

 

10.2. THREE DIMENSIONAL ELASTIC FINITE ELEMENT ANALYSIS 

 As mentioned previously, a three-dimensional FE elastic analysis was utilized to 

provide insight into the test structure’s performance in the elastic range.  Specifically, the 

objectives of this portion of the analysis were to obtain estimates of the following 

quantities: 

• Gravity stresses in each pier 

• Out-of-plane elastic stiffness 

• In-plane elastic stiffness 

• Coupling behavior 

• Flange effects 

• Locations of highly stressed zones in the masonry walls under lateral forces 

The FE model developed included both the perforated masonry walls and the 

wood floor and roof diaphragms of the ST-11 test structure.  Since the stud wall in the 
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test structure only supported vertical loads and provided negligible lateral stiffness, its 

strength was ignored in the FE model. After comparing the accuracy and the 

computational efforts for several different element types and sizes, a 4-node doubly 

curved, reduced integration shell element (S4R) with a mesh size of 4 inches were used to 

model the masonry wall and the wood diaphragm (Yi et al. 2002). In the analysis, the 

density of masonry was taken as 0.06944 lb/in3, the elastic modulus was taken as 1000 

ksi, and the Poisson’s ratio was taken as 0.25.  

The model was built using the commercial FE analysis program ABAQUS. The 

3D model of the ST-11 building is shown in Figure 10.1. The model consisted of 27,344 

nodes, 26,909 elements, and 164,064 degrees of freedom. 

 

 

 

Figure 10.1.  Three-dimensional model of the ST-11 building 
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10.2.1. Diaphragm elastic stiffness 

Due to the configuration of the sheathing and joists, the determination of the 

elastic stiffness of the wood roof and floor diaphragm used in the ST-11 building is not 

straightforward.  Theoretically, this type of diaphragm displays orthotropic behavior 

since the joists and sheathing run in perpendicular directions. However, in order to keep 

the model simple, an isotropic material was employed for the diaphragm. The elastic 

modulus of the isotropic material was selected to provide an elastic stiffness consistent 

with the results of past experimental research. 

MAEC project ST-8 (Peralta et al. 2000) tested several different wood diaphragm 

systems. One of their test diaphragms, the MAE-2 diaphragm, had a similar configuration 

to the diaphragms used in the ST-11 building. It should be mentioned that the size of the 

MAEC-2 diaphragm tested in the ST-8 project (i.e. 24 ft. x 12ft.) was approximately half 

the size of the diaphragms employed in the ST-11 test structure (i.e. 24 ft. x 24 ft.).  

Results from the ST-8 testing program showed that the lateral secant stiffness of this 

diaphragm gradually degraded from 20.6 kips/in to 4.0 kips/in with increasing lateral 

displacement.  Since the diaphragms of the ST-11 structure were twice the size of the 

diaphragms tested in ST-8, the experimentally measured stiffness was altered to calibrate 

the model.  Based on analysis results obtained through ST-8, the lateral stiffness for the 

ST-11 roof and floor diaphragms was assumed to be 7.0 kips/in.  

In the ST-11 ABAQUS 3D model, S4R shell elements (discussed previously) 

were used to model the diaphragm. The thickness of the shell element was assumed to be 

1 inch.  Through trial and error it was determined that an elastic modulus of 2.8 ksi along 
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with a Poisson’s ratio of 0.25 provided a lateral diaphragm stiffness of approximately 7.0 

kips/in. As a result, these values were used in the analysis.  

 

10.2.2. Gravity stresses 

 Estimates of the vertical stress in each pier due to gravity loads were obtained 

using the 3D elastic FE analysis.  The calculated gravity stresses in each pier are listed in 

Table 10.1. The designation of each pier was given in Figures 6.7 through 6.9.  

 

 

Table 10.1. Gravity stresses in the piers 
Pier Gravity stress (psi) Pier Gravity stress (psi) 
A-2 8 B-2 8 
A-3 9 B-3 9 
A-4 9 B-4 9 
A-5 7 B-5 6 
A-7 23 B-7 28 
A-8 25 B-8 23 
A-9 26 B-9 25 
A-10 22 B-10 19 
1-2 8 2-2 7 
1-3 8 2-3 12 
1-4 7 2-4 9 
1-6 20 2-5 8 
1-7 23 2-7 26 

  2-8 37 
  2-9 30 

 

 

This table shows that the vertical stresses due to gravity loads in each pier are 

rather low, with a maximum value of 37 psi. These relatively low vertical stresses are 

expected, as the gravity load is caused only by the structure’s self-weight (i.e. there is no 

added weight to simulate the building contents). 



 390

10.2.3. Elastic out-of-plane wall stiffness  

 An estimate of the elastic out-of-plane stiffness of each wall of the ST-11 test 

structure was obtained by utilizing the 3D FE model.  The out-of-plane stiffness was 

defined as: 

)(5.0 21 uuu
VK

center
o +−
=      (10.1) 

where, V is the total out-of-plane force, centeru is the out-of-plane displacement of the 

masonry wall at the center point of the roof level, and 1u , 2u  are the displacements of 

each in-plane wall at the roof level, respectively (see Figure 10.2). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.2.  Out-of-plane loading of the masonry wall 
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To simulate possible external force pattern on a URM building, three different 

loading cases were employed to obtain estimates of the out-of-plane wall stiffness: 1) 

uniform lateral pressure (Figure 10.2a); 2) uniform linear force applied along the entire 

roof level (Figure 10.2b); and 3) uniform linear force applied along the center half of the 

roof level (Figure 10.2c).  In addition, to gain insight into the contribution of the roof and 

floor diaphragms to the out-of-plane stiffness of the masonry walls, the out-of-plane 

deformations of the masonry walls were calculated both with and without roof/floor 

diaphragm connections. The results are listed in Table 10.2.  

 

 

Table 10.2. Out-of-plane stiffness of the masonry walls (kips/in) 
Out-of-plane stiffness 
(kips/in) 

Without 
roof/floor 

diaphragms 

With roof/floor 
diaphragms 

Contributions 
of roof/floor 
diaphragms 

Uniform pressure - 190.5 - 
Full roof force 75.8 81.2 5.4 

Wall 
A 

Half roof force 51.5 55.0 3.5 
Uniform pressure - 130.0 - 
Full roof force 44.7 49.6 4.9 

Wall 
1 

Half roof force 28.5 31.5 3.0 
Uniform pressure - 104.4 - 
Full roof force 39.1 43.8 4.7 

Wall2 

Half roof force 25.0 27.9 2.9 
 

 

The table shows that the estimated out-of-plane stiffness for Walls A and B are 

larger than those for Walls 1 and 2.  This is expected since Walls A and B are three-

wythes in thickness, while Walls 1 and 2 are two-wythe in thickness.  Furthermore, the 

out-of-plane stiffness of Wall 1 is larger than that of Wall 2.  This is due to the relatively 

small wall openings ratio of Wall 1 as compared to that of Wall 2. 
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The table also shows that the out-of-plane stiffness of the walls is dependent on 

the distribution of the external force. Uniformly applied pressure leads to a higher 

stiffness estimate than an applied linear force does.  Furthermore, the presence of the 

floor and roof diaphragms increases the out-of-plane stiffness of the masonry walls. 

However, this increase is minor because the stiffness of the diaphragms is small 

compared with that of the masonry walls.  In the case of the ST-11 building, the 

calculated out-of-plane stiffness of the masonry walls are between 4 to 30 times of the 

stiffness of the diaphragms depending on the type of external forces and the 

configurations of the walls, which is consistent with the behavior observed in the roof test 

(see Chapter 7). 

 

10.2.4. Elastic in-plane wall stiffness and coupling behavior 

The 3D elastic FE model was used to obtain estimates of the in-plane wall 

stiffness as well as the coupling effect.  Coupling effects refer to the coupling supplied 

between in-plane walls by either the diaphragm or the out-of-plane walls.  This coupling 

is important because it can cause torsional action in an unsymmetric structure during 

seismic excitation, and lead to severe damage.    

In order to investigate the in-plane stiffness and coupling effects of the walls in 

the ST-11 test structure, four loading cases were employed.  The loading cases were: (1) 

equal lateral force applied at both the roof and floor levels of the two parallel in-plane 

walls (Figure 10.3a); (2) equal lateral force applied at the roof level of the two parallel in-

plane walls (Figure 10.3b); (3) equal lateral force applied at both the roof and floor level 

of one in-plane wall, with the displacement of the other in-plane wall constrained (Figure 
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10.3c); and (4) lateral force applied at the roof level of one in-plane wall, with the 

displacement of the other in-plane constrained (Figure 10.3d). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.3.  Different loading cases for calculation of the in-plane stiffness of 
masonry walls 
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where, u1 and u2 are the in-plane lateral roof displacements of the in-plane walls; V1 and 

V2 are the lateral in-plane forces applied on the walls, k11 and k22 are the in-plane 

stiffness of the masonry walls, and k12 is the coupling stiffness.  The calculated results are 

listed in Table 10.3. 

 

 

Table 10.3. Calculated in-plane stiffness of the masonry walls (kips/in) 
 Equal forces at the roof 

and the floor 
Forces applied at 

the roof 
In-plane stiffness of 
Wall A 

2031 1507 

In-plane stiffness of 
Wall B 

2048 1523 

Walls A, 
B 

Coupling stiffness  45 46 
In-plane stiffness of 
Wall 1  

2506 1817 

In-plane stiffness of 
Wall 2 

731 588 

Walls 1, 
2 

Coupling stiffness  2.5 6 
 

 

Table 10.3 shows that Wall 1 displays the highest stiffness while Wall 2 displays 

the lowest stiffness.  This is expected due to the large differences in the wall openings 

ratios for these two walls.  Comparing Table 10.2 and Table 10.3, it can be seen that the 

in-plane stiffness of the masonry walls is much higher than their out-of-plane stiffness. 

The ratios range from 13.4 for Wall 2 to 50.5 for Wall 1.  Table 10.3 also shows that the 

coupling stiffness is negligible compared to the in-plane stiffness, which is consistent 

with the behavior of the masonry walls observed in the tests (see Chapter 8).  As a result, 

the coupling behavior between two in-plane walls was ignored in further analysis. 



 395

10.2.5.  Flange effects  

In order to facilitate the use of a two-dimensional analysis of in-plane masonry 

walls, the effect of the out-of-plane wall on the in-plane behavior (i.e. the so-called flange 

effect) must be assessed.  The in-plane stiffness of the walls determined through the 3D 

analysis in the previous section include this flange effect.  For comparison the elastic 

stiffness of each masonry wall was calculated again as a plane-stress problem without 

considering the contribution of the out-of-plane walls. The same shell element and the 

same element size were used in the analysis. The calculated in-plane stiffness of the four 

walls obtained from both analysis methods are shown in Table 10.4. 

 

 

Table 10.4. In-plane stiffness of the masonry walls with and without flange effects 
(kips/in) 

 
 

3D 
analysis 

2D analysis Ratios between 3D 
analysis and 2D 

analysis 
Equal forces on both 
the roof and the floor

2031 1515 1.34 Wall A 

Forces applied on 
the roof 

1507 1100 1.37 

Equal forces on both 
the roof and the floor

2048 1515 1.35 Wall B 

Forces applied on 
the roof 

1523 1100 1.39 

Equal forces on both 
the roof and the floor

2506 1606 1.56 Wall 1  

Forces applied on 
the roof 

1817 1157 1.57 

Equal forces on both 
the roof and the floor

731 464 1.58 Wall 2 

Forces applied on 
the roof 

588 379 1.55 
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The analysis results show that the flange effect can considerably increase the 

elastic in-plane stiffness of the masonry walls. The increase for the test structure ranges 

from 34% to 58%.  

 

10.2.6. Locations of Highly Stressed Zones  

 While the 3D FE elastic analysis cannot model damage, such an analysis can 

provide information on locations of highly stressed zones in which cracks can be 

expected to initiate. For such a purpose, equal forces were applied at both the roof and 

floor levels of each in-plane wall as this is fairly indicative of seismic loading (Calvi et 

al. 1996). The maximum calculated Von Mises stresses for each of the walls of the ST-11 

test structure is shown in Figures 10.4 through 10.6.  These figures show that for the 

selected loading case, the highly stressed zones for each of the walls are located in the 

first floor piers.  This is expected as these piers are subjected to the largest shear force. 
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Figure 10.4.  Maximum Von Mises stresses in the Wall 1 under in-plane loading (looking 
west) 

 

 

  

 

Figure 10.5.  Maximum Von Mises stresses in the Wall 2 under in-plane loading (looking 
east) 
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Figure 10.6.  Maximum Von Mises stresses in Walls A and B under in-plane loading 
(looking south) 

 

 

10.3. DYNAMIC ANALYSIS BASED ON A CONCEPTURAL MODEL 

Due to the large number of elements required for the elastic FE model, the 

investigation of the test structure’s dynamic properties based on the previous 3D model is 

nearly impossible.  As a result, a simplified conceptual model was developed.  

Essentially, the dynamic performance of the test structure as a whole is dominated by the 

interaction between the in-plane walls, the out-of-plane walls, and the flexible 

diaphragms.  Considering this, a conceptual model containing three lumped masses and 

four elastic springs can be used to represent the basic components of an URM building 

(i.e. in-plane wall, out-of-plane wall and floor/roof diaphragm) (Yi et al. 2001). The 

model is shown in Figure 10.7, which is similar to the model used in Chapter 7 to 

illustrate the working mechanism of the diaphragm-masonry wall system (see Figure 

7.22). However, in order to simplify the analysis, the connection between the out-of-
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plane wall and the diaphragm was assumed rigid. The nomenclature for each component 

can is given in Section 7.5.3.    

 

 

 

 

 

 

 

 

Figure 10.7.  Conceptual model of an URM structure 

 

 

10.3.1. Natural periods and vibration mode shapes of the test structure 

The first analysis was conducted assuming that Walls A and B were in-plane and 

Walls 1 and 2 were out-of-plane.  Based on the results of the 3D elastic FE analysis and 

past experiment data, the properties listed in Table 10.5 were used in the analysis of the 

ST-11 test structure. 
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Table 10.5. Structural properties used in analysis with Walls A and B in-plane 
Stiffness of in-plane wall: Ki  (kips/in) 4079(1) 

Stiffness of out-of-plane wall: Ko (kips/in) 234(2) 

 

Axial stiffness of the floor/roof diaphragm: 
Kdo (kips/in) 

1740(3) 

 

Shear stiffness of the floor/roof diaphragm:  
Kdi (kips/in) 

14(4) 

 

Weight of the in-plane wall: Wi (kips) 116(5) 

 

Weight of the out-of-plane wall: Wo (kips) 69(6) 

 

Weight of the diaphragm: Wd (kips) 
 

45(7) 

 

Note: 
1. The stiffness of the in-plane wall was taken as combined in-plane stiffness of Walls A and B 

assuming equal forces were applied at the roof level and the floor level. 
2. The stiffness of the out-of-plane wall was taken as the combined out-of-plane stiffness of 

Walls 1 and 2 assuming a uniformly applied lateral pressure. 
3. The axial stiffness of the floor/roof diaphragm was based on the axial stiffness of the 

sheathing. 
4. The shear stiffness of the diaphragm was the combined shear stiffness of the floor and roof 

diaphragms, which were both assumed to be 7 kips/in based on the test results of ST-8. 
5. The weight of the in-plane wall was taken as the total weight of Walls A and B. 
6. The weight of the out-of-plane wall was taken as the total weights Walls 1 and 2. 
7. The weight of the diaphragm was taken as the total weight of the floor and roof diaphragms, 

including 15psf of dead load and 50psf of live load. 
 

 

 

To assess the possible effects of the inherent variability of the mechanical 

properties of masonry, two additional sets of stiffness values were used in a sensitivity 

analysis. One set of the stiffness values represented a lower bound on stiffness (i.e. a 

flexible structure) while the other represented an upper bound on stiffness (i.e. a stiff 

structure). The stiffness values used in each case are listed in Table 10.6. 
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Table 10.6.  Elastic stiffness used for sensitivity analysis (Walls A and B in-plane) 
 AB-Flexible AB-Basic AB-Stiff 

Ki  (kips/in) 1360 4079 8158 
Ko  (kips/in) 78 234 468 
Kdi (kips/in) 14 14 140 
Kdo  (kips/in) 580 1740 3480 

 

 

The stiffness and mass matrices of the conceptual model are shown in Eqs. (10.3) 

and (10.4), respectively. The natural periods of the structure obtained through the 

solution of the Eigenvalue problem are shown in Table 10.7. The vibration mode shapes 

of each structure were scaled so that the largest displacement is equal to one and 

presented in graphical form in Figure 10.8 (note: the y-axis represents each component of 

the structure with 0 = ground, 1 = in-plane wall, 2 = diaphragm, and 3 = out-of-plane 

wall, and the x-axis represents displacement in each mode). 
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Table 10.7.  Natural periods of the conceptual model (Walls A and B in-plane) 
Natural period (s) AB-Flexible AB-Basic AB-Stiff 

Mode 1 0.356 0.218 0.1385 
Mode 2 0.093 0.054 0.0378 
Mode 3 0.068 0.039 0.0277 
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Figure 10.8. Vibration modes for the test structure (Walls A and B in-plane) 
(Y axis, 0: ground; 1: in-plane wall; 2: diaphragm; 3: out-of-plane wall) 

 

 

The second analysis conducted assumed that Walls 1 and 2 were in-plane and 

Walls A and B were out-of-plane.  The properties used in this analysis are shown in 

Table 10.8 and were determined from the elastic FE analysis.  

Again, to assess the effect of the inherent variability of masonry materials, two 

additional sets of stiffness values were used for a sensitivity analysis. One set of the 

stiffness values represented a very flexible structure while the other represented a very 

stiff structure.  The stiffness values used in each case are listed in Table 10.9. 

The calculated natural periods of the structure are given in Table 10.10. The mode 

shapes corresponding to each natural period are shown in Figure 10.9. Again, the y-axis 

represents each component of the structure with 0 = ground, 1 = in-plane wall, 2 = 
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diaphragm, and 3 = out-of-plane wall, and the x-axis represents displacement in each 

mode. 

 

 

Table 10.8.  Structural properties used in analysis with Walls 1 and 2 in-plane  
Stiffness of in-plane wall Ki  (kips/in) 
 

3237(1) 

Stiffness of out-of-plane wall Ko 
(kips/in) 
 

381(2) 

Axial stiffness of the floor/roof 
diaphragm  Kdo (kips/in) 

1740(3) 

Shear stiffness of the floor/roof 
diaphragm   Kdi (kips/in) 

14(4) 

Weight of the in-plane wall Wi (kips) 
 

69(5) 

Weight of the out-of-plane wall Wo 
(kips) 
 

116(6) 

Weight of the diaphragm Wd (kips) 
 

45(7) 

Note: 
1. The stiffness of the in-plane wall was taken as combined in-plane stiffness of Walls 1 and 2 

assuming equal forces were applied at the roof level and the floor level. 
2. The stiffness of the out-of-plane wall was taken as the combined out-of-plane stiffness of Walls 

A and B assuming a uniformly applied lateral pressure. 
3. The axial stiffness of the floor/roof diaphragm was based on the axial stiffness of the sheathing. 
4. The shear stiffness of the diaphragm was the combined shear stiffness of the floor and roof 

diaphragms, which were both assumed to be 7kps/in based on the test results of ST-8. 
5. The weight of the in-plane wall was taken as the total weight of Walls 1 and 2. 
6. The weight of the out-of-plane wall was taken as the total weights Walls A and B. 
7. The weight of the diaphragm was taken as the total weight of the floor and roof diaphragms, 

including 15psf of dead load and 50psf of live load. 
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Table 10.9. Elastic stiffness used for sensitivity analysis (Walls 1 and 2 in-plane) 
 12-Flexible 12-Basic 12-Stiff 
Ki  (kips/in) 1079 3237 6474 
Ko  (kips/in) 127 381 762 
Kdi (kips/in) 14 14 140 
Kdo  (kips/in) 580 1740 3480 
 

 

 

Table 10.10 Natural periods (seconds) of the conceptual model (Walls 1 and 2 in-plane) 
 12-Flexible 12-Basic 12-Stiff 
Mode 1 0.343 0.205 0.1355 
Mode 2 0.08 0.046 0.0326 
Mode 3 0.074 0.043 0.0301 

 

 

 

 

 

 

 

 

 

 

 

Figure 10.9. Vibration modes for the test structure (Walls 1 and 2 in-plane) 
(Y axis, 0: ground; 1: in-plane wall; 2: diaphragm; 3: out-of-plane wall) 
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The calculated fundamental natural periods range from 0.14 to 0.36 seconds, 

which suggests that this URM structure is very stiff.  The second and third natural periods 

of the structure are less than 0.1 seconds, and fall into the decreasing range of the hazard 

response spectra for Mid-America (ATC 1997, Wen 2001). The low values for the 

second and third natural periods indicate that the first mode will dominate the behavior of 

the URM structure under seismic excitation. The analyses results also show that the 

possible variations in the stiffness of the structure have little effect on the overall mode 

shapes.  In the first vibration mode, the in-plane wall does not move much, while the out-

of-plane wall and the floor/roof diaphragm vibrate in phase.  Since the first mode 

dominates the response of the structure, this suggests that out-of-plane masonry walls are 

most vulnerable to seismic vibrations, as observed in previous seismic events (Bruneau 

1994b).     

 

10.3.2. Dynamic analysis based on the conceptual model 

Dynamic analyses were also conducted using the conceptual model and two 

artificial Mid-America ground motions.  The first ground motion is indicative of a rock 

site, with a peak ground acceleration of 0.26g and a predominant period of about 0.1 

seconds (Wen 2001).  The second ground motion is representative of a soil site, with a 

peak ground acceleration of 0.50g and a predominant period of about 0.15 seconds.  The 

time histories of the two earthquake motions are shown in Figures. 10.10 and 10.11, 

respectively.  
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Figure 10.10.  Artificial Mid-America ground motion  (rock site) 
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Figure 10.11.  Artificial Mid-America ground motion  (soil site) 
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The calculated maximum displacements of each component for the six different 

structures discussed before are listed in Table 10.11, where planein−∆  is the maximum 

displacement of the in-plane wall relative to the ground, planeofout −−∆  is the maximum 

displacement of the out-of-plane wall relative to the ground, and diaphragm∆  is the 

maximum displacement of the diaphragm relative to the in-plane wall.  This table shows 

that the displacements of the out-of-plane walls are much larger than those of the in-plane 

walls. This supports the early contention that the out-of-plane walls are the weak 

component of a URM structure. Furthermore, the results indicate that the displacements 

of the in-plane walls are very small.  This is expected due to the large stiffness of the in-

plane walls.   

 

 

Table 10.11. Maximum displacements of the URM structure under seismic load 
Ground 
motions 

Structure 
samples 

 planein−∆  (in) planeofout −−∆  (in)  diaphragm∆  (in)

AB-flexible 0.035 0.329 0.337 
AB-basic 0.009 0.173 0.179 
AB-stiff 0.006 0.085 0.084 
12-flexible 0.021 0.345 0.347 
12-basic 0.009 0.138 0.150 

 
 
 
Rock 
site 

12-stiff 0.004 0.082 0.081 
AB-flexible 0.067 0.979 0.973 
AB-basic 0.013 0.377 0.387 
AB-stiff 0.009 0.154 0.153 
12-flexible 0.039 0.849 0.874 
12-basic 0.010 0.402 0.418 

 
 
 
Soil 
site 

12-stiff 0.008 0.127 0.125 
* Note: all the displacements relative to ground displacements. 
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The calculated maximum base shears for the in-plane walls, the out-of-plane 

walls, and the entire structure are listed in Table 10.12 for the six different structures 

analyzed.  The maximum base shears are presented in terms of percentages of the total 

structural weight.  The analyses results show that the maximum base shears for the 

structure are about 0.3 of the total structural weight in the rock site, and about 0.6 of the 

total structural weight in the soil site. Compared with the maximum ground acceleration 

of 0.26g in the case of the rock site, and 0.50g in the case of the soil site, this suggests 

that the amplification of ground acceleration to URM structures is small.   

On the other hand, the table shows that the out-of-plane walls tend to take more 

seismic base shear than the in-plane walls, which again indicates potential damage to the 

out-of-plane walls of the URM structure. 

 

 

Table 10.12. Maximum base shears of the URM structure and each component 
under seismic loads 

Ground 
motions 

Structure samples The in-plane 
wall (g) 

The out-of-
plane wall (g) 

The entire 
structure (g) 

AB-flexible 0.210 0.113 0.201 
AB-basic 0.162 0.178 0.261 
AB-stiff 0.223 0.132 0.307 
12-flexible 0.099 0.193 0.261 
12-basic 0.123 0.231 0.296 

 
 
 
Rock 
site 

12-stiff 0.114 0.275 0.376 
AB-flexible 0.401 0.336 0.606 
AB-basic 0.233 0.388 0.532 
AB-stiff 0.323 0.317 0.568 
12-flexible 0.185 0.475 0.606 
12-basic 0.143 0.674 0.760 

 
 
 
Soil 
site 

12-stiff 0.228 0.426 0.631 
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10.4. SEISMIC EVALUATION OF THE TEST STRUCTURE BASED ON 

FEMA 356 METHDOLOGY 

Pre-standard FEMA 356 (ATC 1999) provides a full set of methodologies to 

evaluate the seismic resistance of an existing building. In this standard, four earthquake 

hazard levels are defined to describe probabilistic seismic hazard. Among them, the BSE-

1 with a 10%/50 year exceedance level and the BSE-2 with a 2%/50 year exceedance 

level are widely used. For each earthquake hazard levels, four different performance 

levels, which include the operational performance level (OP), the immediate occupancy 

performance level (IO), the life safety performance level (LS), and the collapse 

prevention performance level (CP), are used to describe the performance of an existing 

building in a possible seismic event. 

Based on FEMA 356 methodology, the seismic performance of the test structure 

was evaluated for four different locations: Memphis, St. Louis, Atlanta, and San 

Francisco. Among these locations, San Francisco belongs to a high seismicity zone; 

Memphis and St. Louis belong to moderate seismicity zones; and Atlanta belongs to a 

low seismicity zone. The short-period response acceleration parameter, SS, and the long-

period response acceleration parameter, S1, for the four locations can be obtained for both 

BSE-1 and BSE-2 from the FEMA ground motion maps published by USGS, and are 

listed in Tables 10.13 and 10.14. 

 

Table 10.13.  Response acceleration parameters (g) (BSE-1) 
 Atlanta Memphis St. Louis San Francisco 
SS (g)  0.11 0.28 0.21 1.21 
S1 (g) 0.04 0.07 0.056 0.58 
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Table 10.14.  Response acceleration parameters (g) (BSE-2) 
 Atlanta Memphis St. Louis San Francisco 
SS (g)  0.26 1.3 0.6 1.81 
S1 (g) 0.11 0.4 0.19 1.0 

 

In order to evaluate the seismic resistance of an existing building, four typical 

analysis procedures are specified in FEMA 356, which include: 

• Linear static procedure (LSP),  

• Linear dynamic procedure (LDP) 

• Nonlinear static procedure (NSP) 

• Nonlinear dynamic procedure (NDP) 

FEMA 356 also gives the limitations for the use of each procedure (ATC 2000). 

Considering these limitations, both the LSP and the NSP can be used to analyze the test 

URM structure. Therefore, both the two procedures were employed to analyze the 

building. The details of these analyses can be found in Appendices D and E. The main 

conclusions obtained from the two procedures are presented in the following sections.  

 

10.4.1. LSP 

“The linear static procedure (LSP) maintains the traditional use of a linear stress-

strain relationship” (ATC 2000). However, adjustment factors are used for the demands 

and the resistances of the building under analysis to permit better consideration of the 

nonlinear characteristics of the seismic response. The general procedure for this method 

is as follows. First, based on the location, the site class, and the general structural 

characteristics of the building, as well as the seismic hazard level under consideration, the 

pseudo seismic lateral load for a given horizontal direction of the building (V), can be 
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determined (FEMA 356, Eq. (3-10)). Second, based on whether the response of the 

building is deformation-controlled or force-controlled, the deformation-controlled actions 

(demands), QUD, or the force-controlled actions (demands), QUF, for each component of 

the structure can be calculated through linear analysis (FEMA 356, Eq. (3-18) and Eq. (3-

19)). The expected strength of the component for deformation-controlled actions, QCE, 

and the lower-bound strength of the component for force-controlled actions, QCL, can be 

estimated based on material properties and simplified formulas. Finally, the performance 

of the building for a particular probabilistic seismic hazard can be checked by the 

following two acceptance criteria: 

For deformation-controlled actions, 

UDCE QmkQ ≥  (FEMA 356, Eq. (3-20))  (10-6) 

For force-controlled actions, 

UFCL QkQ ≥   (FEMA 356, Eq. (3-21)) (10-7) 

For a deformation-controlled action, the possible contribution of the nonlinear 

ductility of the building is incorporated by the use of the factor m, which depends on the 

structural type, the failure mechanism and the target performance level. The value of m is 

larger than 1. For a force-controlled action, the possible contribution of the nonlinear 

ductility of the building is incorporated by the use of a force-delivery reduction factor J 

when calculating the seismic demand QUF. The different treatment is resulted from the 

different nature of the responses.  

For the test structure, the pseudo seismic lateral load V was calculated for both 

the BSE-1 and BSE-2 ground motions for four different cities. The results are listed in 

Table 10.15.  
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Table 10.15.  Pseudo seismic lateral load V (kips) 
 Atlanta Memphis St. Louis San Francisco 
BSE-1: 10% /50 year 24.8 46.8 37.6 301.6 
BSE-2: 2% /50 year 62.2 266.5 126.6 465.7 

 

 

In order to obtain the strength of the test structure, four perforated walls (Walls A, 

B, 1, and 2) were identified as four structural components and checked for their 

performance. The elastic model for each wall is conceptually illustrated in Figure 10.12. 

The model is composed of rigid spandrels and elastic piers. 

 

 

 

Figure 10.12. Elastic model for each perforated wall 
 

 

The strength of each perforated wall is determined by the strength of the first-

story piers. The possible failure modes for each pier include rocking, sliding, toe crushing 

and diagonal tension. The first two failure modes are deformation-controlled failure 

modes, while the latter two failure modes are force-controlled failure modes. FEMA 356 
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equations (7-3) through (7-6) predict the strength of a pier corresponding to each failure 

mode. In addition, FEMA 356 assumes that the actual failure mode and the 

corresponding strength of this pier are controlled by the failure mode with lowest strength 

(ATC 2000).  

The elastic model assumes that the external lateral force applied on a perforated 

wall is distributed to each pier based on their lateral stiffness. In addition, the wall is 

assumed to reach its maximum strength when one pier reaches its maximum strength. 

Furthermore, the controlling mode for the entire wall is also determined by the failure 

mode of the weakest pier. For example, if Pier 2-7 in Wall 2 is the first pier that reaches 

its maximum strength and its failure mode is rocking, then the performance of the entire 

wall is assumed to be deformation-controlled actions. Overturning moment effects and 

flange effects are not considered in the analysis. The material properties used in the 

analysis was based on the material test results and can be found in Table 6.3. The 

calculated strength and controlling mode for each wall are shown in Table 10.16. 

 

 

Table 10.16. The maximum strengths and the corresponding failure modes for each wall 
Wall ID Maximum Base Shear (kips) Controlling component and 

failure modes 
Walls A and B QCL = 33 A-7/B-10, Toe Crushing 
Wall 1 QCE = 41 1-7, Rocking 
Wall 2 QCE = 9.6 2-7. Rocking 

 

 

 Based on the obtained demands QCE or QCL (given in Table 10.16) and resistances 

QUD or QUF (given in Table 10.15), the performance levels of each wall corresponding to 
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BSE-1 and BSE-2 can be obtained by employing Eqs. 10.6 and 10.7. These results are 

listed in Tables 10.17 and 10.18, respectively. The performance of the entire building is 

also listed in the tables. 

 

 

Table 10.17. Performance level of each wall (BSE-1: 10% /50 year) (based on 
FEMA 356 equations) 

 Atlanta Memphis St. Louis San Francisco 
Wall A/B  OP OP OP N.A.* 

Wall 1  OP OP OP LS 
Wall 2  IO IO IO N.A. 
Entire building IO IO IO N.A. 

* N.A. means that the component or building doesn’t satisfy CP  

 

 

Table 10.18. Performance level of each wall (BSE-2: 2% /50 year) (based on 
FEMA 356 equations) 

 Atlanta Memphis St. Louis San Francisco 
Wall A/B  OP N.A. N.A. N.A.* 

Wall 1  OP LS IO CP 
Wall 2  LS N.A. CP N.A. 
Entire building LS N.A. N.A. N.A. 

* N.A. means that the component or building doesn’t satisfy CP  

 

 

Tables 10.17 and 10.18 show that the test structure has different performance 

depending on the locations and seismic level. In the low seismic zone (Atlanta), the test 

structure can satisfy the IO performance for the BSE-1 Earthquake Hazard Level and the 

LS performance for the BSE-2 Earthquake Hazard Level. Therefore, the test structure 

exceeds the Basic Safety Objective (LS for BSE-1 and CP for BSE-2, ATC 2000). No 
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strengthening would be needed based on these assessments. On the other hand, In the 

moderate seismic zones, the test structure can satisfy the IO performance for the BSE-1 

Earthquake Hazard Level. However, it cannot satisfy CP performance for the BSE-2 

Earthquake Hazard Level. Therefore, the test structure cannot achieve the Basic Safety 

Objective, and thus strengthening of this building is needed. In the high seismic zone 

(San Francisco), the building is unacceptable for both BSE-1 and BSE-2, and a 

systematic retrofit is need for this building. 

 The experimental research outlined in Chapters 8 and 9 revealed that the 

maximum strength of the test building was around 40 Kips for Walls A and B, 58 kips for 

Wall 1, and 25 kips for Wall 2. The maximum strength predicted by FEMA 356 as shown 

in Table 10.16 underestimates the actual strength of the test building. This difference is 

not due to the ductility considerations. Instead, it is largely due to the fact that the current 

FEMA methods for URM structure as specified in Chapter 7 of FEMA 356 do not take 

into account some global characteristics of the test structure such as the flange effects. 

Moreover, the failure modes predicted by FEMA 356 are significantly different from 

what was observed for the test structure. This indicates that major improvements are 

needed for Chapter 7 of FEMA 356. 

 The evaluation of the test structure was conducted again based on the strength and 

the failure modes observed during the experiment. Since URM is a brittle material, it is 

assumed that the ultimate strength obtained from the test can be used as the design elastic 

strength of the test building. The relevant data are shown in Table 10.19. Note that the 

responses of all the four walls are deformation-controlled actions.   
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The performance of the test structure evaluated based on Table 10.19 is given in 

Tables 10.20 and 10.21 for BSE-1 level and BSE-2 level, respectively. In both moderate 

and low seismic zones, the test structure satisfies the OP performance for the BSE-1 

Earthquake Hazard Level and the LS performance for the BSE-2 Earthquake Hazard 

Level. No strengthening would be needed. In the high seismic case, although the test 

structure can satisfy LS for the BSE-1 Earthquake Hazard Level, it cannot satisfy CP for 

the BSE-2 Earthquake Hazard Level. Therefore, it cannot achieve the Basic Safety 

Objective, and thus strengthening is needed. 

 

 

Table 10.19. The observed maximum strengths and failure modes for each wall 
Wall ID Maximum Base Shear (Kips) Controlling Component 

and Failure Modes 
Wall A/ Wall B QCE = 40  Rocking 
Wall 1 QCE = 58 Rocking 
Wall 2 QCE = 25 Rocking 

 

 

 

Table 10.20. Performance level of each wall (BSE-1: 10% /50 year) (based on test data) 
 

 Memphis St. Louis Atlanta San Francisco 
Wall A/B  OP OP OP LS 
Wall 1  OP OP OP LS 
Wall 2  OP OP OP LS 
Entire building OP OP OP LS 
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Table 10.21. Performance level of each wall (BSE-2: 2% /50 year) (based on test data) 
 Memphis St. Louis Atlanta San Francisco 
Wall A/B  LS IO OP CP 
Wall 1  LS IO IO N.A. 
Wall 2  LS IO IO N.A. 
Entire building LS IO IO N.A. 

 

 

10.4.2. NSP 

“If the Nonlinear Static Procedure (NSP) is selected for the seismic analysis of a 

building, a mathematical model directly incorporating the nonlinear load-deformation 

characteristics of individual components of the building shall be subjected to 

monotonically increasing lateral loads representing inertia forces in an earthquake until a 

target displacement is exceeded” (ATC 2000, 3.3.3.1). The target displacement is 

intended to represent the maximum displacement that the building is likely to experience 

during the design earthquake. 

The general procedure for this method is as follows. The first step is the same as 

that for the LSP. Based on the location, the site class, and the general structural 

characteristics of the building, and the considered seismic hazard level, the seismic 

hazard Sa can be determined. However, instead of determining the pseudo seismic lateral 

load, the target displacement that the building is likely to experience during a design 

earthquake is estimated as the next step ( FEMA 356, Eq. (3-15)). Following that, this 

target displacement is then applied to the mathematical model of the building, and the 

design forces and deformations of each component are calculated. Finally, the 
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performance of the building for a particular probabilistic seismic hazard can be checked 

by the following acceptance criteria (ATC 2000): 

1) If the primary and secondary components in a URM building were 

deformation-controlled, the components shall have expected deformation capacities not 

less than the maximum deformation demands calculated at the target displacement for the 

building. 

2) For a URM building with deformation-controlled primary and secondary 

components, the base shear for the building at the target displacement, Vt, shall not be 

less than 80% of the effective yield strength of the structure, Vy. 

3) If the primary and secondary components in a URM building were force-

controlled, thee components shall have lower bound strengths not less than the maximum 

design forces.  

For the test structure, the target displacement, tδ , at the roof level was calculated 

for both the BSE-1 and the BSE-2 ground motions for four different cities. The results are 

listed in Table 10.22.  

 

 

Table 10.22. Target displacement, tδ (in) 
 Memphis St. Louis Atlanta San Francisco 
BSE-1: 10% /50 year 0.31 0.25 0.16 1.98 
BSE-2: 2% /50 year 1.75 0.83 0.41 3.06 

 

 

Since the test URM building featured a flexible diaphragm, the four walls of the 

test structure, Walls 1, 2, A and B can be checked individually for their performance. The 
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nonlinear model for a typical URM perforated wall is shown in Figure 10.13. It is similar 

to the elastic model as shown in Figure 10.12 except that nonlinear pier models are used 

instead of elastic pier ones. The target displacement, tδ , is applied at the top of the 

building. FEMA 356 specifies that at least two lateral load distributions need to be 

applied to the test structure for the NSP. As a reasonable alternative, two types of 

displacement profiles with the ratio between the second floor displacement and the roof 

floor displacement K equal to 1 or 0.5 were applied to each wall. However, it is well 

know that the nonlinear response of a low-rising URM building is controlled by its first 

story piers. In this case, the lateral displacement profile with K =1 gives the worse case 

scenario. Based on these considerations, the design lateral deformation of the critical 

components in the test structure can be calculated. These values are listed in the 

following tables: 

 

 

 

 

 

 

 

 

 

 

Figure 10.13. Nonlinear model for each perforated wall 

tδ

tkδ
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Table 10.23. Design displacement drift of each component (%) (BSE-1) 
Pier Atlanta Memphis St. Louis San 

Francisco 
A-7 0.19 0.37 0.30 2.36 
A-8 0.34 0.65 0.52 4.15 
A-9 0.34 0.65 0.52 4.15 
A-10 0.34 0.65 0.52 4.15 
1-6 0.19 0.37 0.30 2.36 
1-7 0.19 0.37 0.30 2.36 
2-7 0.17 0.33 0.27 2.11 
2-8 0.17 0.33 0.27 2.11 
2-9 0.17 0.33 0.27 2.11 

* Wall B is not listed since it is identical to Wall A. 

 

 

Table 10.24. Design displacement drift of each component (%) (BSE-2) 
Pier Atlanta Memphis St. Louis San 

Francisco 
A-7 0.49 2.09 0.99 3.65 
A-8 0.86 3.67 1.74 6.42 
A-9 0.86 3.67 1.74 6.42 
A-10 0.86 3.67 1.74 6.42 
1-6 0.49 2.09 0.99 3.65 
1-7 0.49 2.09 0.99 3.65 
2-7 0.44 1.86 0.88 3.26 
2-8 0.44 1.86 0.88 3.26 
2-9 0.44 1.86 0.88 3.26 

* Wall B is not listed since it is identical to Wall A. 

  

  

On the other hand, FEMA 356 points out that deformation-controlled piers and 

force-controlled piers exhibits different generalized force-deformation relations, as 

shown in Figure 10.14. Figure 14a is based on a small modification of Figure 7-1 in 

FEMA 356 due to the following reasons. First, FEMA 356 does not identify the value for 

point D in its Figure 7-1. For simplicity, a linear relation instead of a bilinear one is used 
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between Point C and Point E in the current model. Second; FEMA 356 gives a very small 

value for the strength corresponding to Point E. Again for simplicity, zero strength is 

assumed for Point E in the current analysis. Figure 14b is used for a force-controlled 

component. No slope is identified in FEMA for the portion after the peak point. It is 

assumed in the current model that a URM pier loses its strength as soon as its lateral 

deformation passes Point B.  

 

 

 

 

 

 

 

 

(a) deformation-control    (b) Force-control 
Figure 10.14. Generalized force-deformation relationships for a URM pier 

 

 

 The maximum strength and failure mode for each pier were calculated based on 

FEMA equations. The force-deformation parameters for all the first story piers are listed 

in Table 10.25. The acceptance criteria for each deformation-controlled pier, which are 

derived from Table 7.4 of FEM 356, are also listed in this table. 
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Table 10.25. Force-deformation parameters for the first story piers 
Wall  Pier Failure 

mode 
Vy (kips) E1 

(kips/in) 
a 

(%) 
d 

(%) 
e 

(%) 
IO 
(%) 

LS 
(%) 

CP 
(%) 

A-7 Rocking 6.81 0 0.011 0.7 1.4 0.1 0.53 0.7 
A-8 Toe 

Crushing 8.58 - 0.012 - - 
 
- 

 
- 

 
- 

A-9 Toe 
Crushing 8.91 - 0.012 - - 

 
- 

 
- 

 
- 

 
A, B 

A-10 Toe 
Crushing 11.00 - 0.011 - - 

 
- 

 
- 

 
- 

1-6 Sliding 52.57 0 0.014 0.4 0.8 0.1 0.3 0.4 1 
1-7 Rocking 4.33 0 0.011 0.7 1.4 0.1 0.53 0.7 
2-7 Rocking 4.42 0 0.013 0.8 1.6 0.1 0.6 0.8 
2-8 Rocking 1.57 0 0.026 1.6 3.2 0.1 1.2 1.6 

 
2 

2-9 Rocking 5.10 0 0.015 0.8 1.6 0.1 0.6 0.8 
 

 

 

 

 

 

 

422 
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Comparing Tables 10.23 and 10.24 with Table 10.25, the performance of each 

pier can be obtained as listed in Table 10.26 and Table 10.27 for the BSE-1 and the BSE-

2 levels, respectively. These two tables show that in comparison with the LSP, the NSP 

gives much conservative predictions on the performance of the test structure. One reason 

is that the NSP of FEMA predicts that many first floor piers of the test structure, such as 

Pier A-8, are dominated by toe crushing. This brittle failure mode exhibits a very small 

deformation capacity, and essentially causes these piers not to contribute to the seismic 

resistance of the entire building. Again, considering the good performance observed 

during the test, major improvements are needed for Chapter 7 of FEMA 356. 

 

 

Table 10.26. Performance level of each component (BSE-1) 
Wall  Pier Atlanta Memphis St. Louis San Francisco 

A-7 LS LS LS NA 
A-8 NA NA NA NA 
A-9 NA NA NA NA 

 
A, B 

A-10 NA NA NA NA 
1-6 LS LS LS NA 1 
1-7 LS LS LS NA 
2-7 LS LS LS NA 
2-8 LS LS LS NA 

 
2 

2-9 LS LS LS NA 
* Wall B is not listed since it is identical to Wall A. 
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Table 10.27. Performance level of each component (BSE-2) 
Pier Atlanta Memphis St. Louis San Francisco 
A-7 LS NA NA NA 
A-8 NA NA NA NA 
A-9 NA NA NA NA 
A-10 NA NA NA NA 
1-6 NA NA NA NA 
1-7 LS NA NA NA 
2-7 LS NA NA NA 
2-8 LS NA CP NA 
2-9 LS NA NA NA 

* Wall B is not listed since it is identical to Wall A. 

 

 

10.5. ULTIMATE STRENGTH BASED ON RIGID BODY ANALYSIS  

 Since URM is a brittle material and the response of the test structure was 

observed to be dominated by rigid body movements, a simple analysis based on 

kinematic analysis and equilibrium equations is used in this section to analyze the 

ultimate strength of the test structure. The general concepts and procedure for this method 

are as follows: 

1) The ultimate failure mechanism for a URM perforated wall is assumed to be 

composed of rocking or sliding of several rigid bodies; the other two failure 

modes: diagonal tension and toe crushing, are not considered in the analysis.  

2) The kinematic mechanism of each masonry wall can be determined based on the 

experimental observations and the kinematic analysis.  

3) The size of pier flanges and spandrel flanges for the test structure can be 

determined based on the experimental observations during the tests or from the 

rules proposed  in Chapter 9.  
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4) The ultimate strength of each wall can be determined by solving a series of 

equilibrium equations.    

 The analysis for the ultimate strength of the walls conduced following the above 

assumptions can be found in Appendix F.  In this section only the ultimate strength of 

Wall 1 in the pull direction is discussed as an example. The analyses results for all the 

other walls is given and compared to the experimental measurements. 

 

10.5.1. Ultimate strength of Wall 1 in the pull direction 

The observed rigid body movement of Wall 1 in the pull direction was slightly 

different before and after Pier 1-6 slid (see Chapter 8).  Before Pier 1-6 slid, both Pier 1-6 

and Pier 1-7 rocked about their individual right toes, while the entire second floor wall 

was lifted and pulled to the right due to the rocking of the first story piers, as illustrated in 

Figure 10.15. Assuming the left top corners of Piers 1-6 and 1-7 have the same lateral 

displacement (u), kinematic analysis shows that the vertical uplift of Pier 1-6 (v6) is 

larger than that of Pier 1-7 (v7) due to their different aspect ratios. As a result, the vertical 

displacement at the left side of Wall 1 was larger than that at the rigid side of Wall 1; this 

is consistent with the experimental observation.  
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Figure 10.15. Kinematic mechanism of Wall 1 when loaded in the north direction 
 

 

The internal force distribution for Wall 1 is shown in Figure 10.16. In this figure, 

F6 and P6 are the vertical and lateral internal forces between the spandrel and Pier 1-6, 

respectively; F7 and P7 are the vertical and lateral internal forces between the spandrel 

and Pier 1-7, respectively; W6f and W7f are the weight of the pier flanges of Pier 1-6 and 

Pier 1-7, respectively; W2 and W3 are the weight of the spandrel flanges at the left side 

and the right side of  Wall 1 spandrel, respectively; W6 and W7 are the weight of Pier 1-6 

and Pier 1-7, respectively; and W1 is the weight of the spandrel. The values of each 

weight and the corresponding calculation rules are listed in Table 10.28. 
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Figure 10.16. Internal force distribution of Wall 1 
 

 

Table 10.28. Weight calculation for the rigid body analysis for Wall 1 
Items Weight 

(kips) 
Rules 

W1 24.3 The weight of the specified area minus window opening 
W2 6.44 The weight of the triangular are as shown in Figure 9.23 

minus window opening  
W3 6.44 The weight of the triangular are as shown in Figure 9.23 

minus window opening 
W6 13.1 The weight of the specified area of Pier 1-6 
W7 3.0 The weight of the specified area of Pier 1-7 
W6f 23.2 Half the weight of Wall B minus W2 (based on the 

experimental observation) 
 

 

P2 

P1 

P7 

W2 
W3 

F7 

P6 

F6 

W1 

W6 
W7 

F7 P7 
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W7f 
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  Based on the equlibirum equations of the three rigid bodies (Figure 10.16), the 

following equations can be obtained:  

6148610562106210 PWWF f ⋅=⋅+⋅+⋅  

784724748 PWF =+  

2176 PPPP +=+  

32176 WWWFF ++=+  

166225266434821841646252 WWPWPPF ++=+++   (10-7) 

 Moreover, the lateral forces P1 and P2 are assumed to be the same: 

P1=P2      (10-8) 

Solving Eqs. (10-7) and (10-8), and considering Table 10.28, the base shear 

corresponding to the rocking failure mechanism of Wall 1 can be calculated to be 56.8 

kips, which is close to the experimental result measured in the test (55 kips). 

On the other hand, after Pier 1-6 slid, the kinematic  mechanism of Wall 1 is still 

similar to Figure 10.15. However, the uplift of v6 is smaller because of the sliding of Pier 

1-6. Moreover, the first equation in Eq. (10-7) has to be changed to  

( )6666 FWWP f ++= µ     (10-7*) 

where the shear friction µ is equal to 1.0  based on the material tests discussed in Chapter 

6. 

Solving Eqs. (10-7),  (10-7*), and (10-8), and considering Table 10.28, the base 

shear of Wall 1 corresponding to the shear failure mechanism of Pier 1-6 can be 

calculated to be 49.6 Kips, which is also close to the results measured in the test (47 

kips). 
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10.5.2. Calculated strength of each wall based on the rigid body analysis 

The ultimate strengths of Walls A, B, 1, and 2 obtained from the rigid body 

analysis are listed in Table 10.29. Generally the rigid body analysis gives very close 

prediction to the ultimate strength of the test structure. It verifies that the ultimate failure 

mechanism of the test structure was indeed governed by the rigid body movements of its 

components and that the definition role for the effective flange size is correct.  

Another important issue is that no bed joint tensile strength is utilized in the 

analysis. Therefore, the close prediction of the rigid body analysis also indicates that the 

masonry bed joint tensile strength has negligible effect on the strength of the test URM 

structure. 

 

Table 10.29. Ultimate strength of each wall (kips) 
Items Rigid body analysis Experimental 

results 
Wall 2 push and rocking 26.7 27   
Wall 2 pull and rocking 26.7 24 

Wall 1 push with minor cracks in Wall 
A 

56  60 

Wall 1 push with substantial cracks in 
Wall A, rocking 

37.5 40 

Wall 1 pull, rocking 56.8 55 
Wall 1 pull, rocking/sliding 49.6 47 

Wall B push and rocking 46.0 43 
Wall B pull and rocking 34.6 37 
Wall A pull and rocking 40.2 40 
Wall A push and rocking 33.9 36 
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10.6. DISCUSSIONS 

The preliminary analyses reveal some important characteristics of the test 

structure. These results are consistent with the experimental observations and verify some 

conclusions obtained from the experimental results.  

The first important finding from the 3D elastic FE analyses regards the relative 

stiffness of the three fundamental components of a URM building: the in-plane wall, the 

out-of-plane wall, and the diaphragm. The analysis verifies the experimental observation 

that the stiffness of the three components are significantly different. For the test structure, 

the wood roof or floor diaphragm exhibits the smallest lateral stiffness with a 

flexural/shear stiffness around 10 kips/in. The lateral stiffness of URM out-of-plane walls 

is on the order of 100 kips/in, while the lateral stiffness of URM in-plane walls is on the 

order of 1000 kips/in.  As a result, during a possible seismic event, large lateral 

displacements will be developed in the out-of-plane walls and in the flexible diaphragms 

while small displacements will be found in the in-plane walls. This finding explains the 

many out-of-plane failures reported in previous earthquakes. The dynamic analyses based 

on the conceptual model gives the same assessments. 

On the other hand, the URM in-plane wall is the most important component of a 

URM building as far as the ultimate strength and the stability of the structure is 

concerned. The reason is as follows. First, although the simple conceptual model shows 

that the out-of-plane walls tend to take more seismic forces than the in-plane walls, a 

large portion of the stiffness of the out-of-plane walls come from the lateral support of 

the in-plane walls. As a result, a portion of the seismic force resisted by the out-of-plane 

walls has to be first transferred to the in-plane walls before it goes into the ground. 
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Second, after the out-of-plane walls crack due to their large lateral deformation under 

seismic excitation, the stiffness of the out-of-plane walls will reduce, and thus the in-

plane walls will resist more seismic forces. This indicates that the URM in-plane walls 

will become the critical component of a URM building if appropriate approaches have 

been employed to ensure the deformation capacities and thus prevent the collapse of the 

out-of-plane walls. This goal has already been successfully fulfilled in many previous 

retrofit projects, which used various approaches such as tension ties to connect the out-of-

plane walls to the diaphragms and the in-plane walls. Based on this consideration, the 

experimental research that was presented in Chapters 6 through 9 and the analytical 

investigation that will be presented in Chapters 11 and 12 are mainly focused on the 

nonlinear in-plane properties of URM building. 

The simple conceptual model also reveals that the URM structure is a very stiff 

building, and, thus its first vibration mode controls the lateral. Note that the natural 

period and the vibration mode obtained from the simple conceptual model are based on 

the behavior of an entire URM structure. When only the behavior of one individual URM 

in-plane wall is of interest, the response of the in-plane wall will be much stiffer because 

its stiffness is very large. As a result, the fundamental natural period corresponding to 

each individual URM in-plane wall will be even smaller and thus the first vibration mode 

will also control its deformation profile. 

The results from the analyses presented in this chapter also exhibit significant 

discrepancies compared with the experimental measurements. This indicates that some 

improvements are needed for the analytical tools.   
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Specifically, the analyses showed that the FEMA pre-standard approach does not 

give a good prediction for URM structures. One reason is that the nonlinear analytical 

model employed by FEMA does not account for some significant global characteristics 

observed in the experimental research. In addition, as discussed in Chapter 3, the current 

FEMA method does not predict the failure mode of each URM pier accurately. For 

example, the effective pier model (Chapter 4) reveals that the rocking mechanism is 

actually a normal working mechanism of URM piers and that the toe-crushing failure 

mode is actually an “ultimate”  limit for the rocking mechanism. Therefore, a URM pier 

could be able to exhibit large deformation capacity before toe-crushing occurs. As a 

result, the penalty factor 1.6 for the toe-crushing capacity employed by FEMA (see 

Section 7.4.2.2.2 of FEMA 356) is probably not necessary, and the ultimate strength 

predictions for a URM pier should be significantly improved. All the issues indicate the 

importance of developing a more accurate model for the nonlinear analysis of a URM 

structure. 

On the other hand, some unique structural characters of a URM building observed 

in the test as well as revealed in the preliminary analyses point out a possible direction for 

the modeling of the nonlinear behavior of a URM structure. They are as follows: 

1) As discussed previously, if appropriate approaches have been employed to ensure 

the deformation capacity of out-of-plane walls in a URM building, the evaluation 

of the performance of an existing building can be focused on its nonlinear in-

plane behavior. 

2) Both the 3D elastic FE analysis and the experimental research have revealed little 

coupling between two parallel in-plane walls. Therefore, it is possible to use a 
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simple 2D model instead of a complex 3D model to analyze the nonlinear 

response of a URM building. 

3) Since a typical URM building features flexible diaphragm, torsional effects are 

not significant and thus can be ignored.  

4) The experimental research, the 3D elastic FE analysis, and the rigid body 

analysis, all reveal the significant contribution of flange effects. These effects 

need to be considered in a 2D or 3D model. 

5) Since URM is a brittle material, the damage to a URM building is governed by 

several large cracks. The rigid body analysis shows that the ultimate failure 

mechanism of a URM building is determined by the rigid body movements of 

several critical components that are defined by these large cracks. Therefore, 

appropriate modeling of the nonlinear behavior of an entire URM building can be 

fulfilled by appropriate modeling of these cracks. 

6) The effective pier model discussed in Chapter 4 and the methodology to define an 

effective pier in a perforated wall as discussed in Chapter 9 can be used to 

describe the nonlinear response of each pier. 

7) Global overturning and local rocking behavior as observed in the test also need to 

be considered in the nonlinear analysis. 

The above issues that arose from both the experimental research and the 

preliminary analysis are considered in the following, more complete nonlinear analyses 

presented in Chapters 11 and 12.  
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10.7. CONCLUSIONS 

 Preliminary analyses were conducted to predict both the elastic and the inelastic 

properties of the test structure. The elastic analyses based on both the 3D FE model and 

the simple conceptual model gave close predictions for the elastic behavior. The rigid 

body analysis gave very good prediction for the ultimate strength. On the other hand, the 

FEMA 356 pre-standard approach did not give a good prediction for seismic performance 

of the URM test structure, mainly because the analytical models and the nonlinear 

properties of URM piers employed by FEMA 356 are not very accurate. 
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 CHAPTER 11 

  NONLINEAR FINITE ELEMENT ANALYSIS OF URM STRUCTURE  

 

 

11.1. INTRODUCTION  

As pointed out in the previous chapter, in order to evaluate the nonlinear 

properties of a URM building, a realistic structural model is needed. The nonlinear FE 

method is an appropriate and frequently used tool for this purpose. However, due to the 

unique nonlinear characteristics of a URM structure, such as its brittle behavior and the 

formation and propagation of large discrete cracks, some specific techniques are needed 

in the nonlinear FE analysis of URM structures. Two types of nonlinear FE methods are 

commonly used for URM structures: the discrete-crack model and the smeared-crack 

model (Bruneau 1994b). 

The discrete crack model is a FE model in which a special interface element is 

introduced to allow the separation of adjacent elements when the tensile strength of 

masonry is exceeded at this interface. To locate the special interface elements in this FE 

model, prior knowledge of the ultimate behavior of the URM walls, including the 

location, direction, and length of possible cracks are needed. Two approaches are 

generally used to deal with this issue. The first approach assumes that damage to a URM 

wall is confined to the mortar joints and thus puts the interface elements at each brick-

mortar joint (Chiostrini, Foraboschi and Sorace 1989, Lourenco 1996, Martini 1997, 

1998).  Obviously this approach can give a very detailed description of the damage 

process for a strong unit-weak mortar masonry component, but at an enormous 
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computational cost and with the high likelihood of dealing with numerical instabilities 

problem. In addition, it is neither practical nor necessary to model all brick-mortar joints 

with interface elements if the goal is to investigate the nonlinear response of entire URM 

buildings. Therefore, an alternative approach (Chiostrini and Vignoli 1989) is to use 

interface elements in combination with conventional continuous elements.  The 

continuous elements are used to model the majority of a URM wall, while the interface 

elements are used in some specific locations to describe possible cracks at those 

locations. This approach requires significantly less computational cost, but at the price of 

less accuracy.  

Another branch of discrete modeling is the modified distinct element method 

(MDEM) used by Morales and Delgado (1992) to analyze the failure sequence of an 

adobe wall. This method was based on Merguro and Hakuno’s (1989) work and is widely 

used in soil mechanics. The MDEM is a numerical method that can follow the behavior 

of a media from continuous state to complete fracture. However, this method is very 

time-consuming and special nonlinear programs are needed. As a result, no large-scale 

URM walls or structures have been found in the current literature review to be analyzed 

by this method. Recently, a method derived from the block theory originally used for 

rock mechanics (Goodman and Shi 1985) and called Discontinuous Deformation 

Analysis (DDA) has been proposed to analyze the nonlinear deformation of a damaged 

structure. This method accounts for both the contact nonlinearity (opening and sliding) 

and the deformability of interacting domains (Shi 1993 and 1997). This method was 

employed by Bicanic et al. (2001) to analyze the nonlinear properties of masonry bridges. 
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Again, this method requires tremendous computational efforts and  special FE coding that 

is still unavailable in common commercial FE analysis packages.   

The smeared-crack model for URM structures is actually a clone of the smeared-

crack model used for reinforced concrete structure. It considers the nonlinear effects of 

the opening and closing of cracks by adjusting the material properties of an equivalent 

continuous material. It is assumed that the changing of effective elastic modulus and 

other properties of a continuous element can represent the propagation of cracks inside 

the element. This method is widely used by European researchers (Chiostrini et al. 1995, 

Gambarotta et. al. 1995, Koubaa et. al. 1995, Gavarini et. al. 1995, Lourenco 1996, 

Gambarotta and Lagomarsino 1997, Augarde 2001). The constitutive laws for the 

equivalent continuous material are either borrowed directly from RC materials, which 

may fail in representing the behavior of URM particularly due to the URM’s anisotropic 

properties, or based on previous experimental research for the nonlinear behavior of 

URM materials. Some of these research results were discussed in Chapter 3.  

There is still controversy on using the smeared-crack model for URM structures, 

even when the constitutive laws employed by the model are based on specific URM 

material tests. This is simply due to the fact that the cracks observed in a damaged URM 

structure are usually large but only occurring at a small number of discrete locations.  

This is very different from the case of reinforced concrete, where many small but 

relatively uniformly distributed cracks are present. This difference may result in 

significant errors when trying to smear large URM cracks into an entire structure.  For 

example, some particular mechanisms commonly observed in URM structures, such as 

rocking and sliding, cannot be simulated by the smeared-crack model.   
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 Based on the above considerations, a discrete crack model is used in this chapter 

to analyze the nonlinear response of the test structure. This model is not intended to 

model every possible crack at the brick-mortar interfaces. Instead, possible crack 

locations are pre-defined and the interface elements are employed in those locations. For 

the rest of the structure, the masonry is modeled by common continuous elements. This 

model is built in a commercial nonlinear FE analysis package, ABAQUS. 

 Following this framework, simple two-dimensional models are first established to 

analyze each masonry in-plane wall and to compare their output with the experimental 

results. This work is presented in Section 11.2. After that, a more complex three-

dimensional model is presented in Section 11.3 to analyze the entire URM test structure. 

Discussions on the advantages and disadvantages of each model and the conclusions 

obtained from the analyses also are given in these two sections.   

 

11.2. TWO DIMENSIONAL NONLINEAR FE MODEL 

Although the test building is a three-dimensional box structure, previous research 

has shown that there is little coupling between the two parallel in-plane walls and that 

such structures exhibit very small torsion response. As a result, it is possible to analyze 

the nonlinear response of each URM in-plane wall by employing a 2D FE model. The 

methodology for building a nonlinear model for each URM wall by employing ABAQUS 

contact element is introduced in the following section. The nonlinear 2D model for each 

masonry wall is presented after that. 
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11.2.1. Modeling of URM walls with contact elements 

A perforated masonry in-plane wall is composed of two types of members, piers 

and spandrels (see Figure 2.3).  In order to define the possible crack locations in a URM 

wall, the loading and possible failure modes of each type of member must be fully 

understood.  The failure modes of masonry piers subjected to horizontal shear forces, 

vertical axial forces, and moments are well documented.  Based on numerous past 

experiments the following four possible failure modes have been identified: rocking, 

sliding, toe crushing and diagonal tension. These failure modes were discussed in detail 

in Chapter 4.  It is important to note that these failure modes are not mutually exclusive, 

that is, the failure of in-plane masonry piers is often a combination of these modes.      

In contrast, the possible failure modes of masonry spandrels have not been well 

established.  In a perforated wall, the external forces to which a spandrel is subjected are 

different from those to a pier. The flexural moments and shear forces applied to the 

spandrel are perpendicular to the head joints instead of the bed joints (Figure 11.1).   In 

addition, the normal forces applied on the head joints of a spandrel are relatively small 

compared with those applied on the bed joints of a pier (i.e. gravity stress). This 

distinction of the direction and magnitude of forces between a pier and spandrel is 

paramount, since masonry is an anisotropic material.  As a result, the possible failure 

modes associated with a spandrel are different from those associated with a pier.  For 

example, the commonly observed pier rocking is not realistic for spandrels.  Although the 

flexural moments on a spandrel place some head-joints in tension and may lead to 

vertical flexural cracking, the propagation of large flexural cracks associated with rocking 

is not easy due to the interlocking of bricks in the vertical direction (Figure 11.2).  
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Moreover, this type of interlocking also prevents the sliding failure mechanism to be 

observed in piers.  That is, in order for a spandrel to slide vertically, the bricks that cross 

the sliding plane would have to fail in shear.  Considering the relatively high strength 

associated with the brick, the sliding failure mode is not realistic for a spandrel.  In 

addition, the relatively small amount of compressive stress in spandrels suggests that 

compressive failure of masonry in spandrels is not likely to occur.  Following these 

arguments, it can be concluded that a diagonal tension failure is the only realistic failure 

mode for a spandrel.   
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Figure 11.1.   Flexural moments and shear forces applied on a spandrel 

 

 

 

Figure 11.2.  Teeth configurations of the head joints 
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In order to properly address both rocking and sliding failures, non-conventional 

elements must be employed in the analysis.  The reason is that the rigid body motion 

associated with rocking and sliding cannot be described by conventional FE elements 

since they are based on an assumption of continuity of deformations. However, a special 

contact element provided by ABAQUS can be used to model rigid body motions.  The 

contact element defines a pair of surfaces where potential cracking and/or sliding is likely 

to occur (Figure 11.3).  Each surface is defined by a number of nodes and their associated 

areas. The relative movements of the corresponding nodes between the two surfaces 

determine the behavior of the pair of surfaces. Initially, the two surfaces are attached to 

each other. They remain attached (or in contact) until the tensile stress between the 

surfaces reaches a specified value.  Once this value is reached, the surfaces separate and 

no further normal forces are transferred (Figure 11.4).  

 

 

 

Figure 11.3. Schematic of a contact element 
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Figure 11.4.  Normal forces transmitted between the pair of surfaces 
(ABAQUS 5.8-19 manual 23.18.37-1) 

 

 

Prior to separation, the corresponding nodes can transmit shear forces as well as 

normal forces. Typically the Coulomb friction model is used to describe the shear 

properties of the contact surface.  The corresponding nodes transmit shear forces (or 

shear stresses for associated areas) up to a specified critical shear value, at which the 

surfaces slide relative to one another (Figure 11.5).  This critical shear value is defined as 

a fraction of the normal force or stress, which is given by the coefficient of friction (µ). 

After sliding occurs, the transmitted shear force remains constant, a value given by µ 

times the normal force.  Furthermore, the ABAQUS contact element does not assume an 

idealized rigid-sliding behavior.  Instead, the ABAQUS contact element allows an elastic 

slip 0δ  to occur prior to actual sliding (Figure 11.5).  This modification is necessary in 

order to ensure the convergence of the solution; however, it decreases the elastic stiffness 

of the system.    
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Figure 11.5.  Shear force-relative sliding displacement relationship for contact elements 
 

 

The shear properties described by the Coulomb friction model are different from 

the actual shear properties of masonry.  Essentially the Coulomb friction model ignores 

the initial shear strength of the bed-joint ( oτ ), and thus assumes that the bed-joint is 

completely cracked. Previous research shows that sliding typically does not develop in 

piers until after large flexural cracks appear.  This suggests that on the onset of sliding the 

initial shear strength of masonry has been eliminated and only the frictional resistance of 

the bed-joint remains.  Therefore, it appears that the Coulomb friction model can be used 

to reasonably approximate sliding behavior.  

 In order to employ the ABAQUS contact element to model rocking and sliding 

failures of URM piers.  Potential rocking and sliding surfaces must be defined.  Based on 

the results of past experimental research, the potential rocking/sliding surfaces are 

assumed to occur most likely at the top and bottom of the masonry piers. Therefore, 
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horizontal contact elements were placed at these locations, as shown in Figure 11.6 (Yi et 

al. 2003).  

 

 

 

 

 

 

 

 

 

Figure 11.6.  Modeling of a perforated wall with contact elements and stabilizing truss 
elements 

 

 

During the initial trial analyses it was discovered that the structure quickly 

became unstable due to its rigid body motion after the contact elements began to slide.  

To solve this problem, truss elements were added across each contact element to provide 

a small amount of stiffness (Figure 11.6). The stiffness of the truss elements was set to 

the smallest value that enabled the structure to remain stable in an effort to minimize the 

error in the analysis results.  

The other two potential failure modes, diagonal tension and toe crushing, were 

modeled by plane stress elements and the constitutive material properties of concrete 

contained in ABAQUS.  The concrete exhibits a parabolic stress-strain relationship and is 
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characterized by a maximum compression and tension strength.  As a result, this material 

property is capable of modeling the diagonal tension and toe crushing failure modes.  

However, the use of the concrete model assumes an isotropic material, which may cause 

errors since masonry is basically an anisotropic material.    

 

11.2.2. Non-linear FE analysis of the ST-11 test structure 

 For the analysis of the ST-11 test structure, the elastic modulus of masonry was 

assumed to be 600 ksi based on the test results of MAEC project ST-6 (Franklin, et al. 

2001). To investigate the possible effects of the variations in material properties, two 

series of analyses were carried out. The first series of analyses investigated the effects of 

different bed-joint friction coefficients on the overall behavior of the test structure by 

using 0.4, 0.6, and 0.8 for µ. In order to isolate this effect, this series of analyses were 

conducted using elastic plane stress elements and the tensile strength normal to the 

contact element was held constant at 20 psi.  The second series of analyses were designed 

to investigate the effect of the nonlinear properties of the plane stress elements.  For these 

analyses the properties of the contact element were held constant, with the normal tensile 

strength taken as 20 psi, and the bed-joint friction coefficient taken as 0.6.  Two different 

tensile strengths were used for the concrete material employed.  In one set of analyses the 

strength was set very high (1000 psi) to suppress diagonal tension failures, while the 

other set of analysis employed a more realistic tensile strength (54 psi).  In both cases the 

compressive strength of the masonry was assumed to be 1800 psi. 

To subject the walls of the ST-11 test structure to realistic gravity loads, the 

density of masonry was assumed to be 0.06944 lb/in3.  Lateral loads were applied in the 
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form of cyclic displacements in order to allow the hysteretic behavior of the walls to be 

investigated. The displacement ratio between the floor level and the roof level was kept 

constant throughout loading at 0.85. The maximum roof displacement of 1.12 in. was 

selected to give a maximum roof drift of 0.4%.   

 

11.2.2.1. Nonlinear FE analysis results for Wall 1   

The analyses show that the response of Wall 1 is dominated by sliding. The 

variations of the bed joints friction coefficient significantly affect the response of this 

wall (Figure11.7).  For a friction coefficient of 0.4, the maximum strength of Wall 1 is 

about 16 kips, and its hysteretic response is quite symmetric, which is a typical behavior 

of sliding.  When the shear coefficient is increased to 0.6, the maximum strength of Wall 

1 increases to about 24 kips. However, the wall begins to behave asymmetrically.  When 

loading from left to right (i.e. pier 1-6 is at the toe of the wall), sliding dominates the 

behavior.  In contrast, if the wall is loaded in the opposite direction, some rocking 

behavior is observed, as can be inferred from its nonlinear unloading curve. When the 

shear coefficient is increased to 0.8, the unsymmetrical behavior of the wall becomes 

more pronounced. The ultimate strength obtained for Wall 1 is 33 kips and 27 kips when 

loading Wall 1 to the right and left, respectively. 

 The unsymmetrical behavior of  Wall 1 with high bed joint shear frictions can 

also be seen from its deformation and stress contours, as shown in Fig 11.8 and Figure 

11.9, which correspond to a friction coefficient of 0.8. When pushed to the right, pier 1-7 

rocks. When pushed to the left, pier 1-6 slides. The figures also show that the damage is 

concentrated on the first floor walls. In the case that the wall is loaded to the right, there 
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are high stress concentration zones at the mid-height of Pier 1-7, and the spandrels above 

the door opening. This suggests that diagonal cracking is possible in these zones.  In the 

case where the wall is loaded to the left, there are high stress concentration zones at the 

toe of Pier 1-6. This suggests that a toe crushing failure is possible at this location. 

 The hysteretic force-displacement behavior of Wall 1 with a bed joint friction 

coefficient of 0.6 is shown in Figure 11.10 for different masonry properties. The 

calculated ultimate strengths in both directions are also listed in Table 11.1.  The figure 

and the table show that the use of concrete properties decreases the ultimate strength by a 

negligible amount.  This suggests that neither toe crushing nor diagonal tension 

dominates the behavior of Wall 1.   

 

 

 

Figure 11.7.  Force-displacement response of Wall 1 with different bed joint shear 
friction coefficients 
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(a) Loaded from left to right                              (b) Loaded from right to left 
Figure 11.8.  Deformed shapes of Wall 1 

 

 

 

 

 

 

 

 

 

 

(a) Loaded from left to right                              (b) Loaded from right to left 
Figure 11.9.  Stress contour of Wall 1 
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Figure 11.10.  Force-displacement response of Wall 1 with different material properties 
 
 

 

Table 11.1.  Calculated ultimate strength of Wall 1 
Methods 

 
Ultimate Strength when 
pushed to the right (kip) 

Ultimate Strength when 
pushed to the left (kip) 

Elastic 25.1 24.6 
Concrete material with 

high tensile strength 
24.6 22.8 

Concrete material with a 
tensile strength of 54psi 

24.6 22.8 

 

 

11.2.2.2. Nonlinear FE analysis results for Wall 2 

 The analyses reveal different influences of the bed-joint friction coefficient on the 

overall behavior of Wall 2 compared to that on Wall 1 (Figure 11.11). When the friction 

coefficient is small ( 4.0=µ ), the hysteresis loop of Wall 2 exhibits a large area and its 

response is apparently a mixture of rocking and sliding. When the friction coefficient is 
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increased from 0.4 to 0.6, the maximum strength of Wall 2 increases from 8 kips to about 

12 kips. Meanwhile, the hysteresis loops become more pinched.  This means less energy 

is being dissipated and suggests that the behavior is gradually dominated by rocking. 

When the friction coefficient is increased from 0.6 to 0.8, the maximum strength of Wall 

2 exhibits a negligible increase. This is expected since in this case the response of Wall 2 

is dominated by rocking and the thus the variation of the frictional resistance does not 

affect rocking strength.      

 The deformed shapes corresponding to the different loading directions are shown 

in Figure 11.12, which correspond to a friction coefficient of 0.6.  As expected, the first 

floor piers of Wall 2 are rocking. 

 

 

 
Figure 11.11. Force-displacement response of Wall 2 with different friction coefficients 
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(a) Loaded from left to right                              (b) Loaded from right to left 

Figure 11.12. Deformed shapes of Wall 2  
 

 

 The hysteretic force-displacement behavior of Wall 2 (with a friction coefficient 

of 0.6) is shown in Figure 11.13 for different masonry properties. The calculated ultimate 

strengths for both loading directions are listed in Table 11.2.  The figure and the table 

show that altering the properties of the masonry has a negligible effect on the ultimate 

strength of Wall 2, just as is the case for Wall 1.  This suggests that diagonal tension and 

toe crushing failures do not govern the behavior of Wall 2.   

 

Table 11.2.  Calculated ultimate strength of Wall 2 
Methods 

 
Ultimate Strength when 
pushed to the right (kip) 

Ultimate Strength when 
pushed to the left (kip) 

Elastic 12.0 14.2 
Concrete material with 
high tensile strength 

11.8 13.5 

Concrete material with a 
tensile strength of 54psi 

11.8 13.5 
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Figure 11.13. Force-displacement response of Wall 2 with different masonry properties  
 

 

11.2.2.3. Nonlinear FE analysis results for Walls A and B  

 The same material properties and analysis strategies as those employed for the 

analyses for Walls 1 and 2 were also used to analyze Walls A and B. Note that since the 

flange effects are not considered in these analyses, Wall A is identical to Wall B. The 

analyses show again that increasing the friction coefficient suppresses sliding and causes 

more rocking (Figure 11.14). When the friction coefficient is 0.4 or 0.6, the failure mode 

for Walls A and B is a mixture of rocking and sliding.  This can be seen from the direct 

dependence of the ultimate strength on the friction coefficient and the hysteresis energy 

dissipation area as shown in Figure 11.14.  The deformed shapes of Walls A and B as 

shown in Figure. 11.15, corresponding to a friction coefficient of 0.6, also suggest this 

mixed behavior. This figure shows that the door pier in the first floor rocks, while the 
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window piers slide. When the friction coefficient is increased to 0.8, the response of 

Walls A and B is dominated more by its rocking behavior, as shown in Figure 11.14. 

 

 

Figure 11.14. Force-displacement response of Walls A and B with different friction 
coefficients 

 

 

 

 

 

 

 

 

 

(a) Loaded from left to right                              (b) Loaded from right to left 

Figure 11.15. Deformed shapes of Walls A and B 
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 The calculated ultimate strengths for Walls A and B in both directions for 

different masonry properties are listed in Table 11.3.  This corresponds to a friction 

coefficient of 0.6. The table shows that the concrete properties give very similar results as 

those obtained from modeling masonry as an elastic material.  This suggests that toe 

crushing and diagonal tension are not likely the failure modes for Walls A and B. 

 

 
Table 11.3.  Calculated ultimate strengths of Walls A and B 

Methods 
 

Ultimate Strength when 
pushed to the right (kip) 

Ultimate Strength when 
pushed to the left (kip) 

Elastic 30.8 28.6 
Concrete material with 

high tensile strength 
30.6 28.3 

Concrete material with a 
tensile strength of 54psi 

30.5 28.3 

 

 

11.2.3. Discussions on the 2D non-linear FE analysis 

 The 2D non-linear FE model employed for the test structure is a simple and rough 

model. However, it still gives some valuable insight into the nonlinear working 

mechanisms of the test structure.  

 The analyses show that the variations of the bed-joint friction coefficient 

significantly affect the behavior of each wall. When the bed-joint friction coefficient is 

low ( 4.0=µ ), the behavior of each wall is controlled by sliding. With increasing bed-

joint friction coefficient, the response of each wall begins to switch towards rocking. 

Since the bed join friction coefficient for the test masonry is found to be about 1.0 (see 

Chapter 6), the 2D nonlinear FE analysis indicates that the behavior of Wall 1 is a 
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mixture of rocking and sliding, while the behavior of Walls 2, A, and B are dominated by 

rocking. This assessment is consistent with the experimental observations, as described in 

Chapters 8 and 9. In addition, the 2D analyses reveal that the damage of the test structure 

concentrates on the first story walls, which is also observed during the test. 

  The 2D nonlinear FE analyses reveal that the nonlinear properties of the masonry 

itself have no significant influences on the nonlinear response of the entire wall. Toe 

crushing and diagonal tension are not likely controlling failure modes for the test 

structure. This is consistent with the experimental observations. This conclusion also 

indicates that the nonlinear analysis for the test structure can be greatly simplified. That 

is, for a particular case of the test structure, the nonlinear FE model employed can simply 

use elastic properties for the continuous elements. 

On the other hand, the 2D FE model does not give satisfactory predictions for the 

maximum strength and the local behavior of the test structure. The predicted maximum 

strength for each Wall is significantly lower than the experimental value. It is due 

primarily to the fact that the flange effects are not considered in this 2D model.  

Moreover, the predefined possible crack pattern employed is different from the real crack 

pattern observed in the test. As a result, some predicted behavior is not consistent with 

the experimental observations. For example, the 2D model does not define a potential 

crack on the top of Pier 1-6. Therefore, when Wall 1 is loaded from left to right, the 2D 

model cannot capture the fact that Pier 1-6 as well as Pier 1-7 is rocking. This indicates 

that an appropriate predefined crack pattern is very important for the accuracy of the 

analysis results.  
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11.3. THREE DIMENSIONAL NONLINEAR FE MODEL 

The previous 2D analyses exhibited some important limitations. In order to 

predict more accurately the nonlinear response of the test structure, a three-dimensional 

nonlinear model was built. The methodology for building this nonlinear model is first 

introduced in the following section. The analyses results obtained from this model are 

presented after that. 

 

11.3.1.  Modeling of the test URM structure 

 The 3D FE model follows the same methodology as that of the 2D FE model. 

That is, ABAQUS contact elements are used to describe the nonlinear properties of each 

potential crack, while continuum element is used to describe the other portion of the 

masonry walls. In this 3D model, both the contact and the continuum elements are three-

dimensional. Specifically, a three-dimensional surface-based soft contact element with an 

isotropic shear friction is used for each potential crack, and an 8-node linear brick, 

reduced integration 3D continuum element (C3D8R) is used for the masonry wall. Small-

stiffness truss elements are also used to stabilize the entire system.  

 As revealed by the 2D FE analysis, the nonlinear properties of masonry material 

have no significant effects on the response of the test structure. Therefore, an elastic 

isotropic material with the elastic modulus of 600 ksi is used for the 3D continuum 

elements.  Based on the material tests, the bed-joint friction coefficient is assumed to be 

1.0. The predefined potential crack pattern has important effects on the accuracy of the 

model. Based on previous experimental research and theoretical investigations, the 
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following rules are followed when defining the potential crack pattern. The definition of 

the possible crack pattern in the test structure is shown in Figure 11.16. 

1) For all the first floor door piers (such as Pier A2-2, 2-7, B2-2, and B1-2), there are 

possible cracks at the bottom of the piers between the piers and the foundation. 

2) If a window pier is at the exterior of the wall (such as Piers A1-2, A-1, A2-1, B2-

1, and B1-1) or adjacent to a door opening (such as Piers A-7 and Pier B-7), there 

is a possible crack at the bottom of the pier propagating from the corner adjacent 

to the window opening to another corner at the foundation level or the floor level. 

3) If a window pier or door pier is at the exterior of the wall, there is a possible crack 

at the top of the pier propagating from the corner adjacent to the window opening 

or the door opening to another corner at the floor level. 

4) For the other interior window piers or door piers, there are possible horizontal 

cracks at both the top and the bottom of the pier (the bottom crack for an interior 

window pier next to a door-opening see Rule 2). 

5) For the roof spandrel, there are possible cracks propagating from the top interior 

corners of the window openings upwards at an angle of 450 until they reach the 

roof.   
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Figure 11.16. Definition of the possible crack pattern in the test structure 
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The ABAQUS 3D model for the test structure is shown in Figure 11.17. Note that 

the flexible roof diaphragm and floor diaphragm are not incorporated into this model. 

This simplification is based on the results from previous research which shows that the 

existing flexible diaphragms have no significant influences on the behavior of the test 

structure for the particular in-plane loading cases (see Chapter 10). Similar to the 2D FE 

model analyses, lateral loads were applied in the form of cyclic displacements in order to 

allow the hysteretic behavior of the structure to be investigated. The displacement ratio 

between the floor level and the roof level was kept constant throughout loading at 0.8. 

Maximum roof displacements of 0.25 inches and 0.5 inches were selected for the 

directions parallel to Walls 1 and 2, and to Walls A and B, respectively, as employed in 

the ST-11 building test.  The lateral displacements were first applied to the in-plane walls 

1 and 2, and then applied to the in-plane walls A and B, to follow the displacement 

history used in the experimental research. The applied lateral forces are captured by 

special truss elements employed in the model. 
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Figure 11.17. ABAQUS 3D contact model for the test structure 
 

 

11.3.2. Nonlinear FE analysis results parallel to Walls 1 and 2   

The predicted failure mechanisms of Wall 2 are shown in Figure 11.18, and are 

similar to what was observed during the test. The damage of the masonry in-plane wall 

concentrates on the first story piers. All the three first story piers rocked. In addition, the 

first-story spandrel at the tension side of the wall tended to be lifted above the exterior 

pier, which implies the importance of the overturning moments. In the out-of-plane wall 

at the compressive side of the building (for example, Wall B when loaded in the push 

direction, see Figure 11.18 (b)), the damage was minor. However,  the triangular portion 

above the exterior in-plane pier (for example, the portion B2-1 and B-1 in Wall B when 
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loaded in the push direction, see Figure 11.16 and Figure 11.18 (b) ) tended to be lifted, 

indicating the movement of the spandrel flange.  

In the out-of-plane wall at the tensile side of the building, the damage is more 

extensive. For example, when the building was loaded in the push direction, the 

triangular portion of Wall A above the exterior in-plane pier (A2-1 and A-3) was lifted 

(see Figure 11.18 (a)). In addition, the entire first-story spandrel of Wall A was also lifted 

above the first story piers. This reinforces the significance of flange effects.  

The calculated base shear-lateral roof displacement relationship for Wall 2 is 

shown in Figure 11.19. The relationship obtained from the test is also shown as a 

comparison. Specifically, Figure 11.19 (a) shows the backbone of the test data and the 

unloading curves at the last cycle, while Figure 11.19 (b) shows the base shear-lateral 

roof displacement curve corresponding to the test run 10 with a maximum roof 

displacement of 0.25 inches. 

The predicted maximum strengths of Wall 2 by the FE analysis were 33.7 kips 

and 34.7 kips in the push direction and the pull direction, respectively. They are about 

25% and 40% higher than the values obtained in the test (27 kips in the push direction 

and 24.4 kips in the pull direction). The difference is probably due to the stabilizing truss 

elements used in the model, which artificially increases the strength of the building. On 

the other hand, as shown in Figure 11.19 (b), both the analysis result and the test curve 

exhibit small energy dissipation, which indicates that rocking behavior dominates the 

response of Wall 2.    
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Figure 11.18. Failure mechanisms of Wall 2 

 

 

 

 

 

(a) Push direction, left  view (b) Push direction, right view 

(c) Pull direction, left view (d) Pull direction, right view 
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(a) Calculated vs. the entire experimental data (backbone) 

 

(b) Calculated vs. Test run 10 

Figure 11.19. 3D FE analysis vs. measured base shear-lateral roof displacement 
relationship for Wall 2 

 

 

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

Roof displacement (in)

B
as

e 
sh

ea
r 

fo
rc

e 
(k

ip
s)

Experiment

FE Analysis

-40.0

-30.0

-20.0

-10.0

0.0

10.0

20.0

30.0

40.0

-0.30 -0.20 -0.10 0.00 0.10 0.20 0.30

Roof displacement (in)

B
as

e 
sh

ea
r 

fo
rc

e 
(k

ip
s) Test Run 10

FE Analysis



 464

The predicted failure mechanism of Wall 1 in the push direction is shown in 

Figures 11.20 (a) and (b). It is similar to what was observed during the test. Pier 1-6 

(Portion B1-2 in Figure 11.16) slid and rocked to the left, while Pier 1-7 (Portion A1-2 in 

Figure 11.16) rocked. Meanwhile, the spandrel above Pier 1-6 (Portion A1-1 and A-1) 

tended to be lifted due to the overturning moment effects. As a result, Pier 1-6 was left 

behind. A crack also propagated into Wall A and lifted up its upper triangular portion A1-

1 and A-1 due to the flange effect. In contrast, the damage to Wall B is insignificant. The 

predicted failure mechanism of Wall 1 in the pull direction is shown in Figures 11.21 (c) 

and (d). This is also similar to the test observations, where, Pier 1-6 slid to the right, 

while Pier 1-7 rocked. However, in contrast to the test observation, the FE analysis shows 

significant uplift of the spandrel above Pier 1-6. As a result, Pier 1-6 tended to be left 

behind. The difference is probably due to the fact that the test did not pull the building far 

enough. Therefore, a through crack could not develop at the top of Pier 1-6, and Pier 1-6 

could still rock and slide with increasing lateral displacement. 

The calculated base shear-lateral roof displacement relationship for Wall 1 is 

compared with the test results in Figure 11.21. Specifically, Figure 11.21 (a) shows the 

backbone of the test data and the unloading curves at the last cycle, while Figure 11.21 

(b) shows the base shear-lateral roof displacement curves corresponding to the last test 

run 10a. Both the analysis result and the test curve exhibit large energy dissipation, which 

indicates that sliding behavior dominates the response of Wall 1. The predicted maximum 

strengths of Wall 1 by the FE analysis were 68.0 kips and 63.0 kips in the push direction 

and the pull direction, respectively. They are about 14% and 15% higher than the values 

obtained in the test (59.7 kips in the push direction and 54.9 kips in the pull direction). 
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The difference is again due to the utilization of stabilizing truss elements in the FE 

model.  

 

 

 

 

 

 

 

 

 

 

  

 

Figure 11.20. Failure mechanism of Wall 1 

 

 

(a) Push direction, left view (b) Push direction, right view 

(c) Pull direction, left view (d) Pull direction, right view 
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(a) Calculated vs. the entire experimental data (backbone) 

 

 (b) Calculated vs. Test run 10a 

Figure 11.21. 3D FE analysis vs. measured base shear-lateral roof displacement 
relationship for Wall 1 
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Another interesting result obtained from the FE analysis is the force distribution 

among the four masonry walls. Figures 11.22, 11.23, and 11.24 show the force 

distribution among the four walls for the base shear force parallel to Walls 1 and 2, the 

base shear force perpendicular to Walls 1 and 2, and the vertical compressive force, 

respectively. The base shear forces in the first two figures are normalized to the total base 

shear force of the building parallel to Walls 1 and 2, while the vertical force in the last 

figure is normalized to the total weight of the test structure.   

Figure 11.22 shows that at the beginning of loading, the two in-plane walls, Walls 

1 and 2, resisted most of the external lateral shear force. When the building was loaded in 

the pull direction (negative roof displacement), the ratios between the four walls 

remained relatively constant. In contrast, when the building was loaded in the push 

direction, with increasing lateral displacement the base shear resisted by the out-of-plane 

Wall B increased while the base shear resisted by another out-of-plane Wall A and the in-

plane wall 1 decreased. This can be explained by the variation of the vertical forces in the 

four walls, as shown in Figure 11.24. By the end of pull loading, the vertical force 

distribution among the four walls remained relatively constant. This indicates that the 

further propagation of cracks in the in-plane walls was not so significant and, thus, the in-

plane walls still resisted most of the lateral shear forces. In contrast, by the end of push 

loading the vertical forces in both Wall 1 and Wall 2 decreased while the vertical forces 

resisted by the compressive out-of-plane wall, Wall B, increased. This indicates that the 

crack propagation in the in-plane walls was so extensive that their effective area was 

significantly reduced. As a result, the uncracked flange of the building (the compressive 

out-of-plane Wall B) took up more and more vertical and shear force. This redistribution 
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of vertical force and shear force to the flange area with damage accumulation in the in-

plane walls also implies that the assessment of the flange distribution in an elastic 

structure as discussed in Section 8.6 cannot be simply extended to nonlinear range.  

Figure 11.23 shows that the base shear perpendicular to Walls 1 and 2 in each 

wall was quite small. This indicates that the torsion behavior of the test structure was 

small, which is consistent with the experimental observation and the elastic analysis. 

 

 

 

 

Figure 11.22. Distribution of base shear force parallel to Walls 1 and 2 among four walls 
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Figure 11.23. Distribution of base shear force perpendicular to Walls 1 and 2 among four 
walls 

 

 

 

Figure 11.24. Distribution of vertical compressive force among four walls 
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11.3.3. Nonlinear FE analysis results parallel to Walls A and B   

The predicted failure mechanism of Wall B in the push direction is shown in 

Figures 11.25 (a) and (b), which is similar to the test observation. The three left piers, 

Pier B-7, B-8, and B-9 rocked to the left. Meanwhile, the first-story spandrel above Pier 

B-10 tended to be lifted due to the overturning moment effects. As a result, Pier B-10 was 

left behind. The overturning moment effects and flange effects also introduced large 

tensile stress in the tensile flange of the building, Wall 1. As a result, Pier 1-6 was lifted 

up from the foundation and also separated from the Wall 1 first floor spandrel. Note that 

only the uplift of Pier 1-6 from the foundation was observed in the test, while no 

separation of Pier 1-6 from the spandrel was recorded (see Section 9.4.1.3). This 

difference was again probably due to the fact that the building was not displaced 

sufficiently for the complete mechanism to develop. Minor damage was observed in the 

compressive flange wall (Wall 2), except that the upper triangular portion adjacent to 

Wall B (Portion B2-1 and 2-3 in Figure 11.16) was lifted, apparently due to the 

movement of the spandrel flange.  

The predicted failure mechanism for Wall B in the pull direction is shown in 

Figures. 11.25 (c) and (d). The prediction is in agreement with the test observations, as all 

four first story piers rocked to the right. Meanwhile, the spandrel above Pier B-7 was 

lifted due to the overturning moment effects. As a result, Pier B-7 tended to be left 

behind. The overturning moment effects and flange effects also introduced large tensile 

stress in the tensile flange of the building (Wall 2). As a result, the Wall 2 first floor 

spandrel was lifted above the first story piers. The upper triangular portion adjacent to 

Wall B was also lifted. Minor damage was observed in the compressive flange wall (Wall 
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1), except that the upper triangular portion adjacent to Wall B (Portion B1-1 and 1-1 in 

Figure 11.16) was lifted due to the movement of the spandrel flange.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.25. Failure mechanism of Wall B 

 

(a) Push direction, left view (b) Push direction, right view 

(c) Pull direction, left view (d) Push direction, right view 
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The calculated base shear-lateral roof displacement relationship for Wall B and 

the corresponding experimental results are compared in Figure 11.26. Figure 11.26 (a) 

shows the backbone of the test data and the unloading curves at the last cycle, while 

Figure 11.26 (b) shows the measured base shear-lateral roof displacement relationship 

corresponding to the last test run 26a. The maximum strengths of Wall B predicted by the 

FE analysis were 50.7 kips in the push direction and 53.3 kips in the pull direction. These 

are about 18% and 44% higher than the values obtained in the test (43.0 kips in the push 

direction and 36.9 kips in the pull direction), respectively. Two reasons may explain the 

difference. First, as noted before, the utilization of stabilizing truss elements in the model 

may introduce additional strength to the building. Second, initial damage, induced by the 

previous tests parallel to Walls 1 and 2, was present in the test structure before the tests 

parallel to Walls A and B started. Therefore, the measured maximum strength of the 

building was probably lower than that of an intact building. The measured base shear-

lateral roof displacement curves exhibit quite large energy dissipation, which indicates 

that Wall B was sliding as well as rocking. This response was captured by the FE 

analyses in the pull direction, but not in the push direction.  
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(a) Calculated vs. the entire experimental data (backbone) 

 

 

(b) Calculated vs. Test run 26a 

Figure 11.26. 3D FE analysis vs. test observation of the base shear-lateral roof 
displacement relationship for Wall B 
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The predicted failure mechanism of Wall A in the push direction is shown in 

Figures 11.27 (a) and (b). It is similar to what was observed during the test. Three right 

piers, Pier A-8, A-9, and A-10 rocked to the right. Meanwhile, the spandrel above Pier A-

7 was lifted due to the overturning moment effects. As a result, Pier A-7 was left behind. 

In addition, the overturning moment effects and flange effects also caused the upper 

triangular portion of Wall 1 adjacent to Wall A (Portion A1-1 and 1-3 in Figure 11.16) to 

be lifted. Minor damage was observed in the compressive flange wall (Wall 2), except 

that the upper triangular portion adjacent to Wall A (Portion A2-1 and 2-1 in Figure 

11.16) was lifted due to the movement of the spandrel flange.  

The predicted failure mechanism of Wall A in the pull direction is shown in 

Figures. 11.27 (c) and (d). The prediction and observed test behavior are in agreement, as 

all four first story piers rocked to the left. Meanwhile, the spandrel above Pier A-10 was 

lifted due to the overturning moment effects. As a result, Pier A-10 tended to be left 

behind. The overturning moment effects and flange effects also caused the Wall 2 first 

floor spandrel to be lifted from the Wall 2 first story piers, and the upper triangular 

portions in Wall 1 and Wall 2 adjacent to Wall A to be lifted.  

Another interesting phenomenon observed in the analysis is that the door pier A-

10 and Pier B-7 rotated out-of-plane no matter the building was loaded in the push 

direction or the pull direction. It is due to the irregular shape of this pier. This 

phenomenon was also observed in the test. 
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Figure 11.27. Failure mechanisms of Wall A 

 

 

The calculated base shear-lateral roof displacement relationship for Wall B is 

compared with the test results in Figure 11.28. Figure 11.28 (a) shows the backbone of 

the test data and the unloading curves at the last cycle (Cycle 26a), while Figure 11.28 (b) 

shows the base shear-lateral roof displacement relationship corresponding to the last test 

run 26a. The maximum strengths of Wall A predicted by the FE analysis were 49.4 kips 

(a) Push direction, left view (b) Push direction, right view 

(c) Pull direction, left view (b) Pull direction, right view 
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in the push direction and 52.8 kips in the pull direction. These are about 38% and 30% 

higher than the values obtained in the test (35.7 kips in the push direction and 40.8 kips in 

the pull direction). Again, the utilization of stabilizing truss elements in the model and the 

existing initial damage in the test structure may explain the difference. The measured 

base shear-lateral roof displacement curves exhibit quite large energy dissipation, which 

indicates that Wall A was sliding as well as rocking. As for Wall B, this response was 

capture by the FE analysis in the pull direction, but not in the push direction.  

 

 

 

(a) Calculated vs. the entire experimental data (backbone) 
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(b) Calculated vs. Test run 26a 

Figure 11.28. 3D FE analysis vs. test observation of the base shear-lateral roof 
displacement relationship for Wall A 
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didn’t resist any lateral shear force. This is consistent with the variation of vertical forces 

among the four walls, as shown in Figure 11.31. With increasing lateral displacement, the 

vertical forces resisted by the tensile flange and the two in-plane walls decreased and the 

vertical force resisted by the compressive flange increased. Both the variation of the 

vertical force distribution and the variation of the base shear distribution point out the 

significant effects of the overturning moment. Similar to the results of the loading parallel 

to Walls 1 and 2, Figure 11.32 shows that the base shears perpendicular to the loading 

direction in both Walls A and B was small. Again, this is an indication that the torsional 

behavior of the test structure was small. 

 

 

 

Figure 11.29. Distribution of base shear force parallel to Walls 1 and 2 among four walls 
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Figure 11.30. Distribution of base shear force perpendicular to Walls 1 and 2 among four 
walls 

 

 

 

Figure 11.31. Distribution of vertical compressive force among four walls 
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11.3.4. Discussions of the 3D FE model   

 The 3D FE analysis for the ST-11 test structure predicted behavior in good 

agreement with that observed experimentally. The 3D FE model was proven to be an 

excellent analytical tool for the nonlinear behavior of URM structure for the following 

reasons: 

• The 3D FE model is the only analytical approach that provides insight into the 

three dimensional behavior of a URM building. For example, the flange effects 

present in all Walls, the global torsional behavior of the entire URM building, and 

the local torsion of each individual component can only be satisfactorily 

examined by this model.  

• The 3D FE model is able to accurately predict the failure mechanisms of this 

URM structure. The contact element employed provides an excellent means to 

consider the rocking and sliding of a URM structure.  

• Although the masonry material is assumed to be elastic and thus the diagonal 

tension failure mechanism and the toe crushing failure mechanism were not 

considered in the current model for the ST-11 building, these two failure 

mechanisms can be taken into account by introducing nonlinear material 

properties into the 3D continuum elements, as demonstrated by their inclusions in 

the 2D FE model.  

• The 3D FE model can be expanded to consider some other issues associated with 

a URM structure, such as the effects of rigid diaphragm and the retrofit methods. 

On the other hand, the current 3D FE model has limitation.  
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• First, the employed FE analysis cannot give an accurate prediction for the 

maximum strengths of the test structure. The predicted values are always higher 

than the test values due to the utilization of the elastic stabilizing truss element in 

the model required to provide numerical stability to the calculations. However, 

further investigation of the properties of the truss elements employed could solve 

this problem. For example, if nonlinear properties are introduced, these truss 

elements can not only be used to stabilize the numerical system but also be used 

to describe the nonlinear normal tensile strength and the initial shear strength of 

the crack surfaces.   

• Use of a 3D FE model requires great computational efforts and structural 

expertise.  For instance, it takes a significant amount of time to build the structural 

model and to run the analytical problems. Furthermore, many computational 

parameters need to be carefully chosen to stabilize the analysis procedure of such 

a complex nonlinear system. As a result, this method is only suitable for 

important projects, and it is not recommended for daily design or evaluation 

projects. 

 

11.4. CONCLUSIONS 

Both a 2D discrete-crack FE model and a 3D discrete-crack model were used to 

analyze the nonlinear properties of the test structure. The 2D discrete-crack FE model 

could predict the failure mechanism of each in-plane wall moderately well. However, it 

significantly underestimated the maximum strength of the test structure, because some 

critical three-dimensional properties, such as the flange effects, could not be considered. 
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The 3D discrete-crack FE model was built following predefined rules for the potential 

crack pattern of the URM structure, and directly considered its three dimensional global 

behavior. It provided a good prediction for the failure mechanisms of the test structure. 

However, since stabilizing truss elements were used in this model, additional strength 

was introduced into the model. The maximum strengths predicted by this 3D FE model 

were 14% to 44% larger than the measured values. Future work could be conducted to 

vary the properties of the stabilizing truss elements, and to improve the performance of 

the 3D FE model.  
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 CHAPTER 12 

  NONLINEAR PUSHOVER ANALYSIS  

 

 

12.1. INTRODUCTION  

The analytical portion of this research was conducted to better understand and 

evaluate the nonlinear seismic resistance of existing URM buildings. The analytical study 

included several different nonlinear FE models as discussed in Chapter 11, whose results 

indicate that appropriate nonlinear FE models can give good predictions of the nonlinear 

response of existing URM buildings. However, the FE method is usually very time-

consuming and requires expertise of the user. As an effective and practical alternative, 

simplified models were also widely used in previous research (Benedetti and Benzoni 

1984, Tomazevic 1987, and Tena-Colunga 1992, to name a few). These simplified 

methods can be categorized into (a) simplified methods to model an entire URM building 

and (b) simplified methods to model a perforated URM in-plane wall.   

The simplified methods that address an entire URM building were built on a 

series of major simplifying assumptions. For example, Benedetti and Benzoni (1984) 

used a non-linear 2D macro model to analyze URM structures for which the response 

mechanism was assumed to be dominated by shear deformations. The building analyzed 

was regarded as consisting of a number of substructures. Each substructure was described 

by means of equivalent homogeneous materials whose properties were derived from 

experiments. The out-of-plane walls were considered as additional vertical load capacity 

components which could resist the overturning moments, but their lateral shear 

resistances were ignored. Tomazevic (1987) suggested that a story mechanism model was 
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most suitable to define the behavior of masonry buildings with rigid diaphragms and 

subjected to seismic loading. In his model, the masonry walls were assumed to be fixed at 

both the top and the bottom, and the masonry walls with composite cross-sections (such 

as L, T, and H shaped walls) were considered to be separated along the vertical edge. As 

a result, a masonry building was modeled as a multiply-degree-of-freedom non-linear 

shear system, with masses concentrated at the floor levels. Story hysteresis envelopes for 

each story wall were based on the sum of the idealized hysteresis envelopes of the 

participating walls in the story under consideration. Note that the variation of vertical 

stress in each pier due to overturning moment was not considered. 

A discrete, linear elastic, multi-degree-of-freedom dynamic model was developed 

by Tena-Colunga (1992) for the dynamic analysis of URM structures with flexible 

diaphragms. The URM structure was assumed to remain elastic during an earthquake. 

Masses were lumped at the intersection of the centroidal axes of the walls and the 

diaphragms, and also at the center of each diaphragm. Flexible diaphragms were 

represented by elastic shear springs, whose stiffness could be roughly estimated by the in-

plane shear and bending stiffness of the floor systems. The in-plane walls were 

represented by an equivalent condensed beam element with lateral degrees of freedom, 

whose lateral stiffness was determined by 2D FE analyses. Two generalized springs, one 

for rotation (rocking) and the other one for direct lateral displacement, represented the 

foundation flexibility.  

A 3D nonlinear model for URM building with flexible roof and floor diaphragms 

was recently proposed by Kim and White (see MAEC project ST-5).  Their model used 

shear spring elements to simulate in-plane response of masonry walls, and used special 
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plane elements to simulate shear response of flexible diaphragms. The masses of the out-

of-plane walls were lumped at the central axis of the wall, while the stiffness of the out-

of-plane walls was considered combined with the stiffness of the floor and roof 

diaphragms. Moreover, the masonry walls were assumed separated at the corners.  The 

nonlinear shear force-lateral displacement hysteretic curve was provided for each URM 

pier based on its corresponding failure modes. The shear force-lateral displacement of an 

entire perforated in-plane wall could be obtained by analyzing this wall based on the 

response of each pier. The nonlinear shear force-deformation curves for the floor and roof 

diaphragms were also provided by this model. This model can be used to analyze the 

nonlinear response of a low-rise URM building under seismic excitation. 

Previous experimental research revealed that if the URM out-of-plane walls are 

appropriately tied to the floor and roof diaphragms and the in-plane walls, the critical 

component of a URM building is the in-plane walls. As a result, a large amount of works 

have also been devoted to the simplified modeling of individual URM perforated walls. 

The simplified models for a URM perforated in-plane wall can be categorized 

based on assumptions on the relationship between piers and spandrels. A type of 

simplified analysis model called the “walls models” (Bruneau, M. 1994) or the “solid 

spandrel-cracked piers model” (Boussabah, L. 1992) has been applied to strong spandrel-

weak pier walls (Figure 12.1). In this type of model, the spandrels were assumed intact 

and rigid, while the piers could subject to damage. The lateral shear force was distributed 

to the parallel piers based on relative stiffness, but the overturning moment was usually 

ignored. The entire perforated wall failed when several or all piers reached their strength 

capacities.  
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Another simplified analysis model called the “piers-only model” (Bruneau, M. 

1994) or the “solid pier-cracked spandrel model” (Boussabah, L. 1992) has also been 

developed (Figure 12.2). It was used for a strong pier-weak spandrel wall. This model 

assumed that the spandrel beams in a perforated wall would crack under very low lateral 

loads, and thus the continuous piers would work as a cantilever wall fixed at the bottom. 

This model was originally used for reinforced concrete shear walls and proved to be 

excessively conservative in case of URM walls (Bruneau, M. 1994(b)). 

 

 

 

 

 

 

 

Figure 12.1. Solid spandrel-cracked pier perforated URM wall model 

 

 

 

 

 

 

 

Figure 12.2.  Solid pier-cracked spandrel perforated URM wall model 
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Based on these simplified analysis models, nonlinear pushover analyses have 

been used to investigate the nonlinear behavior of perforated URM walls. In these 

models, the nonlinear load-deformation characteristics of individual components were 

generally directly modeled and embedded into the simplified analysis models. The wall 

was then subjected to monotonically increasing lateral forces or displacements until 

either a target displacement was exceeded or the building collapsed (FEMA 356, ATC 

2000). One example for this approach was the pushover analysis conducted by Costly and 

Abrams (1996) for their dynamic test specimens. A solid spandrels-cracked piers model 

was used in their analysis. In this model, the vertical compressive stress in each pier due 

to gravity load was considered, but the effect of overturning moments was neglected. The 

piers were assumed to have perfect elastic-plastic behavior. When an element yielded, the 

tangential stiffness of this element was assumed to be zero and the incremental loading 

continued with the reduced structure. Another example is the simple lumped parameter 

model developed by Park (2002) for the fragility analysis of URM walls (Figure 12.3). 

Again, a solid spandrel-cracked pier model was used. The piers were assumed fixed at 

both the top and the bottom. However, the elastic stiffness of each pier was modified 

accounting for the flexibility of spandrels by either an effective height method or an 

effective stiffness method (Park 2002). A nonlinear load-deformation hysteresis 

relationship was also provided for each pier to describe its failure modes and nonlinear 

behavior. 
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Figure 12.3.  Park’s simple lumped parameter model (2002) 

 

 

Those current, available simplified methods for a URM building or a URM 

perforated in-plane wall generally do not give satisfactory predictions. This is due to the 

fact that many critical aspects of a URM building behavior, such as the flange effects, the 

overturning effects, and the typical failure mechanisms of URM pier, are not well 

addressed in these current models. Considering these limitations, another pushover 

approach was developed and is presented in this chapter. First, methods to consider the 

interaction between the piers and the spandrels, the overturning moment effects, and the 

flange effects are discussed. In addition, the issue of how to simulate the lateral seismic 

force is addressed. Second, the proposed solutions to these issues are embedded into a 

new nonlinear pushover program. In this program, two different methods, including the 

effective pier model outlined in Chapter 4 and another simplified approach, are used to 

consider the possible failure mechanisms of a URM pier. The proposed nonlinear 

pushover programs are then used to analyze the test structure discussed in Chapters 6 

through 9. 
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12.2. MODELING OF IN-PLANE WALL AND PIER-SPANDREL 

INTERACTION 

Modeling of a perforated URM wall starts with the description of the interaction 

between piers and spandrels. Both the piers and the spandrels form part of a loading path 

transferring the lateral shear forces of the masonry wall to the ground. However, the piers 

should be more critical than the spandrels, because of their weakened sections due to the 

presence of door and window openings. Post-earthquake assessments as well as 

experimental investigations have revealed that once out-of-plane failure is prevented, the 

final collapse of a URM building is associated with the failure of piers in a critical story 

(usually the first story). From this point of view, a solid spandrel-cracked pier model is 

more reasonable than solid pier-cracked spandrel model (Figure 12.4 (a)). 

On the other hand, the flexibilities of the spandrels may affect the boundary 

conditions and thus the elastic stiffness of the piers. A simple model for illustrating the 

interaction between spandrels and piers is shown in Figure 12.4 (b). The spandrels 

connected with the pier are modeled as beams simply supported at their inflection points, 

which are assumed to be located at the mid-span of the spandrels. The effect of the 

boundary conditions of both the piers above and below the pier under consideration is 

taken into account. The pier above the one under consideration is replaced by the 

assumed base shear force (V) and base moment (M) it transfers to the pier being 

considered. The geometry properties of each element are also shown in Figure 12.4 (b).    
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Figure 12.4. Concepts of elastic spandrel-nonlinear pier model  
 

 

Elastic structural analysis of this model reveals that the height of the inflection 
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In Eq. 12.1, Hp  is the height of the pier; Ip  is the moment of inertia of the pier; 

Ap is the area of the pier; Ls is the length of half the spandrel; Itop  and Ibot  are the 

combined moments of inertia of the spandrels above and below the pier, respectively; 

Atop and Abot are the combined areas of the spandrels above and below the pier, 

respectively. The rather complex form of Eq. 12.1 indicates that it is quite difficult to 

accurately consider the interaction between piers and spandrels in a pushover analysis. 

The progressive damage and associated nonlinear behavior of both piers and spandrels 

with increasing lateral displacement add to this difficulty. On the other hand, previous 

research shows that with increasing lateral displacement, the damage to a perforated wall 

generally concentrates on the piers while the spandrels remain essentially intact. As a 

result, the ratio between the stiffness of the piers and these of the spandrels decreases, 

and the boundary conditions for the piers become closer to fixed-fixed conditions. As a 

simplification, a fixed-fixed boundary conditions is assumed for each pier in this 

proposed pushover analysis. 

The overturning moment and the damage of piers alter the behavior of each pier. 

When only one pier in a certain story remains functional because of the damage of the 

other piers, the boundary conditions of the remaining pier are changed into that of a 

cantilever. 

Another important issue when describing the response of a pier is the 

determination of its effective height. The effective height of a pier is dependent on crack 

propagation, and the effective height can be different from the physical height of a URM 

pier. This variation of the effective height significantly affects the behavior of a URM 
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pier. Therefore, it is considered in this pushover analysis. A method otlined in Section 9.6 

is used to determine the effective height of a pier. 

 

12.3. OVERTURNING EFFECTS  

 As revealed in the experimental portion of this research, the overturning moments 

have a twofold effect on the response of a perforated URM wall. First, these moments 

introduce additional vertical stress in each pier. Second, these moments also lead to 

additional global lateral displacements of the wall (see Chapter 8). These two issues will 

be considered in the pushover analysis. 

 

12.3.1. Additional vertical stresses due to overturning moments 

 Due to the dependence of masonry strength on vertical stress, the effects of 

overturning moment must be considered in cases where sizable changes in the vertical 

stress distribution of a URM wall are expected.  These cases include structures where the 

height of the building is similar to its length. This is the case for numerous low-rise URM 

structures, as represented by the ST-11 test structure.   

 To illustrate how the overturning moments affect a perforated wall, consider four 

different types of perforated walls as shown in Figure 12.5. Figure 12.5(a) shows an 

idealized strong spandrel-weak pier structure. The spandrels are rigid and their rotations 

can be ignored. As a result, the piers work as fixed-fixed columns with their inflection 

points at the mid-height. For this case, half of the overturning moment is resisted by the 

internal moment at each end of the piers, while the other half is resisted by the vertical 

tensile force or compressive force introduced in each pier. Figure 12.5(b) illustrates 
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another idealized perforated wall, a strong pier-weak spandrel structure. The spandrel is 

so weak that it can hardly constrain the rotation of the piers. Consequently, the piers work 

as cantilever columns with the inflection points at the top of the columns and in line with 

the external lateral forces.   This causes the entire overturning moment to be resisted 

exclusively by the internal moments in the piers, and produces no additional vertical 

forces in the piers.  Figure 12.5(c) shows a third type of idealized perforated wall, which 

is a mixed structure, with both strong spandrels-weak piers and strong piers-weak 

spandrels. In this situation, the overturning moments will causes changes in the vertical 

forces in the fixed-fixed piers, and no variation in the vertical forces in the cantilever 

piers. As opposed to the idealized boundary conditions shown in Figures 12.5(a) to (c), a 

real perforated wall is shown in 12.5(d). The height of the inflection point of each pier 

may be different depending on the relative stiffness values between the spandrels and the 

piers. This leads to a more complicated distribution of vertical force and moment among 

the piers. 

 After the height of the inflection point of each pier is determined based on the 

method discussed in the previous section, the distribution of vertical forces among 

parallel piers can be calculated. Considering a typical perforated wall with n parallel piers 

as shown in Figure 12.6, the wall is subjected to a lateral force V acting at a distance h 

above the base.  The shear force in each pier is assumed to be equal to kiV, where ki is a 

factor dependent on the secant stiffness of the pier.  Therefore, the portion of the 

overturning moment that is resisted through the change in vertical stresses of the piers 

can be calculated by subtracting the base moment of each pier from the total overturning 

moment as: 
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Figure 12.5. Effect of overturning moments on different structure configurations 
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 Figure 12.6. Internal forces in an idealized perforated wall 
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where h is the height of the wall and ρj is the inflection height ratio of each pier.  

Following the assumptions of beam theory (Gere & Timoshenko 1990) and assuming a 

linear-elastic material model for masonry, the curvature at the base of the wall can be 

calculated as: 

∑
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where, Ai is the area of the ith pier and di is the distance from the centriod of the ith pier 

to the neutral axis of the wall.  The vertical force in the ith pier induced by the 

overturning moment is then given by: 
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 Considering Eqs. (12.2) and (12.4), Fi can be written as: 
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Figure 12.7(a) illustrates the resulting vertical stress distributions obtained.  This 

distribution is calculated based on the assumed elastic properties of piers and spandrels.  

However, the damage to the piers can be considered by using the secant stiffness to 

determine ki and by limiting the maximum net tension of a pier to the tensile strength of 

masonry.  Once this strength is exceeded the pier is assumed to have cracked across its 

entire length.  As a result, the vertical tensile stress in the pier is assumed to be zero and 

the only resistance offered by the pier to overturning moment is the initial gravity stress.  

Figure 12.7(b) illustrates the vertical stress distribution throughout the wall after the 

tensile strength of a pier has been exceeded.  
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                         (a) All piers are in compression                                 (b) One exterior pier is ignored 

Figure 12.7. Distribution of vertical stress under gravity load and lateral force
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12.3.2. Lateral displacement of perforated wall due to overturning moments 

 When calculating the elastic lateral stiffness and the location of the inflection 

point for each URM pier, the rotation of the elastic spandrel is ignored. This assumption 

is based on the fact that the rotation of the elastic spandrel is dependent on the axial 

deformation of each URM pier, which is typically a negligible value. This value, 

however, may become relevant when a perforated wall is laterally displaced so much that 

one or several piers are lifted from their bases. In this case, the rotation of the elastic 

spandrel may become substantial and may lead to additional global lateral displacements 

of the perforated wall. 

 Taking the perforated wall shown in Figure 12.6 for example, if the spandrel 

rotation is neglected, the lateral roof displacement of this perforated wall is exclusively 

dependent on the lateral deformation of the piers, pier∆ , and can be calculated by: 

pierwall ∆=∆       (12.6) 

On the other hand, if the spandrel rotation is considered, the lateral roof 

displacement of this perforated wall has to be calculated as: 

 additionpierwall ∆+∆=∆      (12.7) 

where the additional lateral displacement due to the rotation of the spandrel, addition∆ , 

can be estimated as follows. 

 1) The vertical axial deformation of Pier i can be calculated by: 

 
i

i
i EA

hF
Y =       (12.8) 

where Fi is its additional vertical force as calculated by Eq. (12.5). 

  2) The rotation of the spandrel is then calculated by: 
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where Y1 and Yn are the vertical displacements of the exterior piers at the tensile side and 

the compressive side of the wall, respectively. L is the distance between the two piers. 

 3) Therefore, the additional roof lateral displacement of the perforated URM wall 

can be calculated as: 

haddition ⋅⋅Γ=∆ θ     (12.10) 

where Γ  is a factor dependent on the lateral deformation shape of the wall, which is 

smaller than or equal to 1. For an elastic cantilever column with the external lateral force 

on the top of the wall, Γ  is equal to 2/3 based on beam theory. For the ultimate state of a 

URM wall, previous experimental research revealed that the wall rotated as a rigid body 

around its compression toe. In this case, Γ  is equal to 1. 

The above method is applied for a single story perforated wall. For a multi-story 

perforated wall, previous research reveals that the damage to the wall concentrates on the 

first floor piers. As a result, it can be assumed that the sizable axial deformation will be 

concentrated on the first floor piers, and thus all the spandrels have the same rotation.  

 

12.4. FLANGE EFFECTS  

Flange effects significantly increase both the stiffness and the strength of URM 

in-plane walls, and need to be considered in the two-dimensional nonlinear pushover 

analysis. In order to do this, the effective dimensions of the pier flange and the spandrel 

flange should be determined following the rules outlined in Section 9.5. The contribution 

of the spandrel flange to the response of the perforated wall can be simply considered by 
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accounting for the additional vertical forces induced by the spandrels to each URM pier. 

The contribution of the pier flange to the response of  the perforated wall is a little more 

complex and is discussed in the following section. 

 

12.5. NONLINEAR PROPERTIES OF URM PIERS 

The nonlinear properties of a URM perforated wall are dependent on the 

nonlinear properties of URM piers. Two models, including the effective pier model and 

the simplified model, are used in the proposed pushover analyses. 

 

12.5.1. Effective pier model 

The nonlinear behavior of a URM pier has been illustrated by a comprehensive 

mechanical model, the effective pier model, as described in detail in Chapter 4. This 

model was embedded into the pushover analysis frame to analyze the nonlinear response 

of a URM perforated wall under external lateral forces. The contribution of the pier 

flange to the stiffness and strength of a URM pier is also considered in the analysis 

following the method outlined in Chapter 5.  

 

12.5.2. Simplified URM pier model 

 Besides the effective pier model, another simplified URM pier model is also 

employed in the pushover analysis. This simplified model is aimed at making the NSP 

analysis simpler and easier. The principles behind this simplified model are as follows. 

The effective pier model presented in Chapter 4 reveals that the failure 

mechanism of a URM pier is proabably a mixed mode of rocking, sliding, toe crushing, 
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and diagonal tension. Therefore, attributing the damage of a URM pier to one of the four  

fundamental failure modes identified in FEMA 356 is an oversimplification. On the other 

hand, FEMA 306 identifies eight possible failure modes for each URM pier. Each mode 

is one or the combination of the four fundamental failure modes. However, the FEMA 

306 identification of failure mode is quite arbitrary and rather difficult to use. A simple 

and rational method to describe the nonlinear behavior of a URM pier is needed and can 

be obtained from the analytical results of the effective pier model. 

The effective model reveals that the rocking mechanism is actually a normal 

working mechanism for a URM pier, since it represents the propagation of flexural cracks 

in the pier. The lateral resistance of a pier remains relatively constant when rocking 

occurs. Therefore, the shear force-lateral drift of a URM pier can be assumed to be as 

shown in Figure 12.8. The pier deforms with its initial elastic stiffness until it reaches its 

rocking strength Vr. After that the lateral strength of the pier remains constant with 

increasing lateral drift.  

When calculating rocking strength of each pier (Vr), the contribution of its flange 

needs to be considered. By following the procedure outlined in Section 5.4.1, but 

assuming the pier is fixed-fixed and the self-weight of the pier is neglected, the rocking 

strength can be calculated as: 

( )
H
LtLLtV ffnr += σ9.0      (12.11) 

where L, H, and t are the length, height, and thickness of the in-plane pier, respectively; 

Lf and tf are the length and the thickness of the flange, respectively; and nσ  is the 

average vertical compressive stress applied on the top of the pier, including half of the 

self weight of the pier. 
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Figure 12.8. Lateral force-drift relationship for rocking 

 

 

The effective model reveals that the sliding mechanism is more like a plastic 

working mechanism, since the shear resistance of a pier after sliding is controlled by its 

normal compressive force and the shear friction coefficient, and does not decrease with 

increasing lalteral displacement. However, the shear force needed to debond the shear 

surface (Vbjs) is usually larger than the Mohr-Coulomb shear force (Vs2). Therefore, the 

shear force-lateral drift of a URM pier corresponding to sliding can be described as 

shown in Figure 12.9. This figure shows that for a sliding mechanism, the pier first 

deforms with its initial elastic stiffness until it reaches its initial sliding strength Vbjs. 

Then the lateral shear strength of the pier drops rapidly to its remaining sliding strength 

Vs2. After that the lateral strength of the pier remains constant with increasing lateral 

drift. 
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Figure 12.9. Lateral force-drift relationship for sliding 

 

 

The remaining sliding shear strength of a pier (Vs2) can be calculated following 

Eq. (5.19) to take into account the contribution of flange effects. It can be rewritten as: 

( )ffns tLLtV += σµ12      (12.12) 

where 1µ  is the Mohr-Coulomb shear friction coefficient.  

Similarly, the initial sliding strength Vbjs can be calculated following Eq. (5.20), 

which can be rewritten as: 

( ) 0τσµ effnbjs AtLLtV ++=      (12.13) 

where µ  is the effective shear friction coefficient for an intact surface, and Ae is the area 

of the intact surface. Ae is dependent on external force, and changes with increasing 

lateral displacement. However, for simplicity, the following Ae is used herein. Before the 

pier rocks, the intact area is assumed to be 0.75 of the initial area, as implied by FEMA 

356 Eq. (7-1). After the pier rocks, since the uncracked area is very small, Ae is assumed 

to be zero; thus, Vbjs is equal to Vs2. 
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FEMA 356 considered the diagonal tension failure mode as a force-controlled 

mode, because the diagonal tension failure mode shows very brittle behavior. However, 

previous research has shown that the behavior of a diagonal tension failure mode is 

dependent on the material properties of URM. For a strong unit-weak mortar material, the 

URM can still slide along the bed joints after a diagonal crack occurs. Therefore, in the 

current nonlinear analysis, it is assumed that for a strong unit-weak mortar masonry, the 

diagonal tension failure mode is still a displacement-controlled mode. The corresponding 

lateral shear force-lateral drift curve is shown in Figure 12.10.  For this particular failure 

mechanism, the pier first deforms with its initial elastic stiffness until it reaches its initial 

diagonal tension strength Vdt. Then the lateral shear strength of the pier drops rapidly to 

its remaining diagonal tension strength, which is the same as the remaining sliding 

strength (Vs2). After that the lateral strength of the pier remains constant with the 

increasing lateral drift. 

 

 

 

 

 

 

Figure 12.10. Lateral force-drift relationship for diagonal tension 
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simplicity, the maximum tensile strength criteria adopted by FEMA 356 as shown in Eq. 

( 4.37) is still used here, as rewritten in Eq. (12.14). The diagonal tension strength of 

masonry used in the equation, ft
d, should be obtained from the calibration of appropriate 

material tests. 

( )
d
t

nd
t

FEMA
dia

f
LtfV

σ
β += 1      (12.14) 

where β  is equal to 0.67 for L/h<0.67, L/h when 0.67<=L/h<=1.0, and 1.0 when L/h >1. 

Both the effective pier model and FEMA 356 consider that toe crushing of a 

URM pier is due to the excessive compressive stress developed at the toe of a pier, which 

will lead to the rapid decreasing of the lateral strength of a URM pier. Therefore, it is a 

force-controlled failure mode. In the current simplified method, the shear force-drift 

relationship corresponding to the toe crushing mode is not given. Instead, toe crushing 

strength is treated as a force-limit, and needs to be check in each step of the analysis. At 

each analysis step, the maximum compressive stress at the toe of a pier is calculated 

based on the known internal forces. This maximum compressive stress is then compared 

with the compressive strength of masonry. If the compressive strength of masonry is 

reached, the pier is assumed to develop a toe-crushing failure, and the lateral strength of 

the pier drops to zero, which indicates the pier collapses rapidly. 

Another failure mechanism for piers observed in the test but not identified by 

FEMA 356 is the “left behind” phenomenon repeatedly described in the chapters dealing 

with the behavior of the test structure.  This mechanism is due to the uplift of the 

spandrel. For this failure mechanism, the lateral shear strength of the pier can be simply 

assumed to be zero.  
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A summary of the possible working states of a URM pier discussed above is 

given in Table 12.1. The identification tag for each of these mechanisms used in the 

program is also listed in the table. The following rules are followed when describing the 

evolution of the failure mechanisms of a URM pier: 

• A pier starts with an elastic state (0). The first failure mechanism could be: 

rocking (1), initial sliding (10), initial diagonal cracking (100),  toe crushing 

(1000), or left behind (-1). The latter, “left behind” (-1), occurs only if the vertical 

stress on the pier reduces to zero, 

• If toe crushing (1000) occurs, the pier rapidly collapses (2000). 

• If the initial sliding (10) occurs, the next state of the pier must be remaining 

sliding (20). 

• If the initial diagonal tension (100) occurs, the next state of the pier must be 

remaining diagonal cracking (200). 

• When the pier is in the other failure modes, it can be switched to another failure 

mode with lower lateral strength. 

 

 

Table 12.1. Working states and the corresponding identification tag of a URM 
pier 

Working state of a URM pier ID used in the program 
No damage or only flexural cracking 0 
Left behind -1 
Rocking 1 
Preemptive sliding 10 
Mature sliding 20 
Preemptive diagonal cracking 100 
Mature diagonal cracking* 200 
Toe crushing 1000 
Collapse 2000 
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* for a strong unit-weak mortar masonry, the remaining diagonal cracking has the 
same lateral shear resistance as the remaining sliding. 

 

12.6. EXTERNAL LATERAL SEISMIC EXCITATIONS   

 Two different types of external loads have been used in previous nonlinear 

pushover analyses: force-controlled analysis and displacement-controlled analysis. In the 

first case, predetermined increasing external forces are applied on the structure as 

compared with predetermined increasing roof and floor displacements in the second case. 

Since force-controlled analysis cannot capture the behavior of a structure after its peak 

point, displacement-controlled analysis is used in the current analysis.  

 No special lateral displacement pattern is defined in FEMA 356. However, two 

vertical distributions of lateral load are recommended by FEMA 356 for force-controlled 

pushover analysis: one is a uniform pattern while the other is modal pattern (ATC 1999). 

Both patterns assume that the ratios between forces applied at each floor and/or roof 

remain constant during loading. This, however, is contrast with the structure behavior 

observed in the experiments. For example, Paulson conducted a dynamic shaking table 

test of a one-quarter-scale three-story reinforced masonry building (Paulson 1990). The 

measured lateral force distributions are shown in Figure 12.11. The specimen gradually 

changed from an elastic state (Run 1) into a nonlinear range (Runs 2 through 4) with 

increasing intensity ground motions.  It is apparent that the lateral force distributions can 

be represented with an inverted triangular shape in elastic range (run 1). However, with 

progressively increasing damage in the building, the force distributions became more and 

more irregular (Paulson 1990). Similar variation of lateral force distributions were also 

observed in Costley et al’s dynamic test of two two-story URM buildings (Costley and 
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Abrams 1996), although in the second experiment, the lateral force distributions were 

closer to a uniform shape present in the elastic range.  

These experimental results indicate that a pushover analysis conducted using 

predetermined displacement profiles may lead to a failure sequence and failure strength 

different from those in a real earthquake, since the lateral displacement pattern will affect 

the distribution of shear forces and overturning moments among the stories.  

 

 

Figure 12.11. Lateral force distributions for all runs in Paulson (1990)’s test 

 

 

 On the other hand, it is rather impractical to use the real lateral displacement 

pattern in a pushover analysis. First, the real lateral displacement pattern will be different 

for different ground motions. Second, many factors, including the mass distribution, the 

stiffness distribution, the damage state of each component will affect the variation of the 

lateral displacement pattern during each earthquake. This would be rather hard to 

simulate in the analysis. Fortunately, previous research reveals that for a special type of 
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structure with rather low natural period, such as low-rise URM building, the first 

vibration mode should dominate its lateral displacement under seismic excitation (Yi et 

al., 2002). Therefore, the first vibration mode 1φ  can be used as the lateral displacement 

pattern applied in the displacement-controlled pushover analysis. When damage 

accumulates unevenly in the building, the stiffness matrix of the building will change. 

This will lead to changes in its first vibration mode, and as a result the changes of the 

applied lateral displacement pattern. The scheme for obtaining the updated first vibration 

mode in this pushover analyses is the same as what is used in the ST-11 in-plane wall 

tests. More detailed information on the procedure can be found in Section 8.3.1. 

 

12.7. NONLINEAR PUSHOVER ANALYSIS OF THE TEST STRUCTURE 

 The pushover analyses methods discussed above were applied to the test structure. 

The results are as follows. 

 

12.7.1. Wall 2 

 The material properties used in the analysis were based on experimental 

measurements from material tests. The masonry compressive strength was assumed to be 

1458 psi; the initial bed joint shear strength was assumed to be 60psi; and both the initial 

equivalent shear friction factor and the shear friction factor for a cracked surface were 

assumed to be 1.0. In addition, the bed joint tensile strength was assumed to be 40 psi, 

and the initial elastic modulus was assumed to be 1000 ksi.  

 The program was first used to analyze the nonlinear response of Wall 2 in the test 

structure. The base shear-lateral displacement relationships of Wall 2 obtained from both 
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the effective pier model and the simplified pier model are shown in Figure 12.12. The 

base shear-lateral displacement envelope of Wall 2 measured in the test is also shown in 

the figure for comparison. Figure 12.12 shows that both analytical models gave a fair 

prediction of the nonlinear response of the test wall. The effective pier model predicted 

that the maximum strengths of the test wall corresponding to a roof lateral displacement 

of 0.25 inches are 27.7 kips and 27.5 kips in the push direction and pull direction, 

respectively. They are close to the measured values (28.8 kips in the push direction and 

25.0 kips in the pull direction). On the other hand, the simplified model gave more 

conservative predictions. This model predicted that the maximum strengths of the test 

wall are 23.4 kips and 23.2 kips in the push direction and pull direction, respectively.  

 The simplified model predicted that all the three first story piers rock when the 

wall was laterally displaced (see Figure 12.13, Damage ID equal to 1 stands for rocking). 

In contrast, the effective pier model predicted that only Pier 2-8 rocks during the test, 

since the flanges of Pier 2-7 and Pier 2-9 delay the propagation of cracks in the two piers. 

However, the analysis did show that the effective lengths of the two piers decrease with 

increasing lateral roof displacements. The propagation of horizontal cracks in the piers 

was consistent with the experimental observation. 

 Both the effective pier model and the simplified model gave similar predictions 

for both the variation in vertical stress and the distribution of shear force among the three 

first story piers. The values predicted by the effective pier model are shown in Figures 

12.14 and 12.15.  Figure 12.14 shows that at the beginning of lateral loading, there was a 

rapid change in the vertical stresses in the first story piers. The vertical compressive 

stress of the pier at the compressive side of the wall increased while that of the pier at the 
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tensile side of the wall decreased. In addition, the stress variations in the two exterior 

piers, Pier 2-7 and Pier 2-9, were much more significant that that in the interior pier, Pier 

2-8. The vertical stress variation in the piers clearly states the influence of overturning 

moments.  

On the other hand, the analysis also showed that the rate of the variation of 

vertical stress in the piers decreased with increasing lateral displacement. By the end of 

loading, the vertical stress variation was actually negligible. This was due to the fact that 

all the three first story piers tended to rock and the behavior of the entire wall was 

dominated by the local behavior of these piers. 

 The base shear force distribution among the three first story piers as shown in 

Figure 12.15 also exhibited the typical behavior of a rocking mechanism and the 

influence of overturning moments. With increasing lateral displacement, the base shear in 

each pier increased but the rate of increase decreased noticeably. This is a typical 

response of pier rocking, as discussed in Chapter 4.  

Figure 12.15 also shows that the pier in the compressive side of wall took more 

base shear than the pier in the tensile side of the wall. This was because the pier in the 

compressive side was subjected to larger vertical compressive forces (see Figure 12.14) 

due to overturning moment and thus its rocking strength increases.  

 Although the vertical stress and base shear for each pier could not be explicitly 

measured during the test, the experimental observations of both the vertical and the shear 

deformations of each pier were in good agreement with the analytical predictions given 

by the pushover analyses. Detailed description of the experimental observations can be 

found in Chapter 8.   
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Figure 12.12. Base shear-lateral displacement relationships of Wall 2 
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Figure 12.13. Failure mechanisms of Wall 2 
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Figure 12.14. Calculated vertical stress variations in Wall 2 first story piers 

 

 

Figure 12.15. Calculated base shear distribution among Wall 2 first story piers 
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12.7.2.  Wall 1 

 The same material properties as those used for the analysis of Wall 2 were also 

employed for the pushover analyses of Wall 1. The base shear-lateral displacement 

relationships of Wall 1 predicted by the pushover analyses are shown in Figure 12.16, 

along with the measured envelop from the test. Figures 12.17 and 12.18 show the failure 

mechanisms predicted by the effective pier model and the simplified model, respectively.  

 Both the effective pier model and the simplified model successfully predicted the 

behavior of the test wall. When Wall 1 was loaded in the push direction (Pier 1-6 was in 

compression and the displacements are positive in Figures 12.16 to 12.18), both models 

predicted that the test wall was quickly lifted above Pier 1-7, and Pier 1-6 started to slide 

(see Figures 12.17 and 12.18; a Damage ID of -1 means the pier is left behind, 10 means 

horizontal bed joints sliding and 20 means diagonal sliding). As a result, the test wall 

rapidly reached its maximum strength, and then dropped down to a stable remaining 

sliding strength. The effective pier model predicted a maximum strength of 68 kips and a 

remaining sliding strength of 63 kips, while the simplified model predicted a maximum 

strength of 70 kips and a remaining sliding strength of 63 kips. Both the predicted values 

were slightly larger than the experimental observations, which were 61 kips for the 

maximum strength and 51 kips for the residual sliding strength. The differences could be 

attributed to the uncertainties in assessing the effective flange sizes and the bed joint 

shear friction coefficients to be used in the analysis. It could also be attributed to the 

cyclic loading employed in the tests, since the cyclic loading cracked the masonry bed 

joint much more rapidly when compared to a monotonic loading.  
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The formation of an ultimate failure mechanism observed in the test was slower 

than the analytical prediction suggested. This was probably due to the micro-crack 

propagation and associated stress redistribution in the test structure which was not 

addressed in the current model. In addition, the predicted initial lateral stiffness based on 

an assumed elastic modulus of 1000 ksi for masonry was much larger than the 

experimental measurements. The difference could be explained again by the propagation 

of micro-cracks at low stress levels.  

 When Wall 1 was loaded in the pull direction (Pier 1-7 was in compression and 

the displacements are negative in Figures 12.16 to 12.18), both models predicted that Pier 

1-6 slid (see Figures 12.17 and 12.18). At the same time, the simplified model predicted 

that the small pier 1-7 rocked, while the effective pier model did not. The reason is that 

the effective pier model recognized that the existing of flange delays the propagation of 

cracks in the pier. In addition, the effective pier model predicted a maximum strength of 

62 kips, while the simplified model predicted a maximum strength of 41 kips. The former 

was closer to the test value of 55 kips, while the latter gave a more conservative value.  

 The behavior of Wall 1 was also clearly illustrated by the vertical stress variation 

and the base shear distribution among the two first floor piers, as shown in Figures. 12.19 

and 12.20. When the wall was loaded in the push direction, the wall was rapidly lifted 

above pier 1-7 due to the overturning moment effect. As a result, both the vertical stress 

and the base shear of Pier 1-7 reduced to zero, and the remains of Wall 1, including Pier 

1-6 and the second story wall, worked as a single pier with a constant vertical force, 

sliding and rocking. When the wall was loaded in the pull direction, again due to the 

overturning moment, a large additional vertical compressive stress was introduced into 
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Pier 1-7. In the meantime, the vertical compressive stress in Pier 1-6 decreased (see 

Figure 12.19). As a result of the vertical stress variation, the smaller Pier 1-7 resisted 

more lateral shear force than the larger Pier 1-6 (see Figure 12.20).  On the other hand, 

after the large Pier 1-6 started to slide, the variation of vertical stresses and base shear 

between the two piers became smaller.   

 In conclusion, the analytical predictions on the nonlinear response of Wall 1 were 

in good agreement with the experimental observations. Detailed description of the 

experimental observations can be found in Chapter 8.   

 

 

Figure 12.16. Base shear-lateral displacement relationships of Wall 1 
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Figure 12.17. Failure mechanism of Wall 1 predicted by the effective pier model 
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Figure 12.18. Failure mechanism of Wall 1 predicted by the simplified model 
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Figure 12.19. Calculated vertical stress variations in Wall 1 first story piers (by the 
effective pier model)  
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Figure 12.20. Calculated base shear distribution among Wall 1 first story piers (by the 
effective pier model) 
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12.7.3. Walls A and B 

The configurations of Walls A and B were identical. However, the unsymmetrical 

openings and existing cracks in Walls 1 and 2 caused different effective flange sizes to 

Walls A and B. In order to take this effect into account, different flange lengths were 

used for the exterior piers of Walls A and B in the analyses. The entire length of Pier 1-7 

was considered as the effective flange length of Pier A-7 in both loading directions, since 

the door opening in Wall 1 isolated the possible flange for Pier A-7. On the other hand, in 

the case of Pier B-10, when Wall B was loaded in the push direction, the large Pier 1-6 

tended to move together with Pier B-10. As a result, an effective flange of 99 inches was 

used for Pier B-10 according to the rules outlined in Chapter 11.  When Wall B was 

loaded in the pull direction, the flange of Pier B-10 was in compression; therefore, a 

flange length of 48 inches was used for Pier B-10.  

 The same material properties as those used for the analysis of Walls 1 and 2 were 

employed to analyze the nonlinear responses of Walls A and B. The predicted base shear-

lateral displacement relationships of Walls A and B are shown in Figures 12.21 and 

12.22, respectively. The measured base shear-lateral displacement envelopes from the 

tests are also shown for comparison. The effective pier model predicted that the 

maximum strengths of Wall A were 35 kips and 42 kips in the push and pull direction, 

respectively, and the maximum strengths of Wall B were 40 kips and 36 kips in the push 

and pull direction, respectively. The values are close to the experimental observations, 

which were 36 kips and 41 kips for Wall A in the push and pull direction, respectively, 

and 43 kips and 37 kips for Wall B in the push and pull direction, respectively. On the 

other hand, the simplified method gave more conservative predictions. This method 
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predicted that the maximum strengths of Wall A were 33 kips and 35 kips in the push and 

pull direction, respectively, and the maximum strengths of Wall B were 33 kips and 31 

kips in the push and pull direction, respectively. 

 The predicted failure mechanisms of Walls A and B from the pushover analyses 

are listed in Table 12.2 together with the experimental observations. This table shows that 

the failure mechanisms of both walls are controlled by rocking, which are consistent with 

the experimental observations.  

 

 

 

 

Figure 12.21. Base shear-lateral displacement relationships of Wall A 
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Figure 12.22. Base shear-lateral displacement relationships of Wall B 

 

 

Table 12.2. Failure mechanisms of Walls A and B 
  Effective pier 

model 
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observation 
Push Pier A-7 rocks first, 

followed by the 
rocking of A-8 and 
A-9.  

Pier A-7 rocks first, 
followed by the rocking 
of A-8, A-9, and A-10. 
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Wall 
A 

Pull Pier A-8 rocks first, 
followed by the 
rocking of A-7 and 
A-9. 

Pier A-8 rocks first, 
followed by the rocking 
of A-7, A-9, and A-10. 
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sliding of Pier B-
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Pier B-10 rocks first, 
followed by the rocking 
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All four first story 
piers rocked, Pier 
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Wall 
B 

Pull Pier B-8 rocks first, 
followed by the 
rocking of B-7 and 
B-9. 

Pier B-8 rocks first, 
followed by the rocking 
of B-7, B-9, and B-10. 

All four first story 
piers rocked. 
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 Experimentally, when Walls A and B were loaded in the push direction, the piers 

at the tensile side of the wall, Pier A-7 and Pier B-10, tended to be left behind due to the 

rotation of the spandrels. This phenomenon was not explicitly predicted by the pushover 

analyses.  However, referring to the calculated vertical stress variations in the Walls A 

and B first story piers, as shown in Figures 12.23 and 12.24, it can be seen that the 

vertical stresses in Piers A-7 and B-10 were close to zero at the end of push loading. This 

indicates that the two piers were close to being left behind. Figure 12.24 shows a small 

jump in vertical stress in the four first story piers of Wall B when the lateral roof 

displacement was about 0.045 inches. This jump was due to the switching from rocking 

to sliding for Pier B-10.   

 The base shear distribution among the first floor piers in Wall A and Wall B are 

shown in Figures. 12.25 and 12.26, respectively. The two figures reveal similar trends as 

those in Wall 1 and Wall 2. That is, with increasing lateral displacement, a larger percent 

of lateral shear force was resisted by the piers at the compressive side of the wall due to 

overturning moment effects. 
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Figure 12.23. Vertical stress variations in Wall A first story piers (by the effective pier 
model) 
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Figure 12.24. Vertical stress variations in Wall B first story piers (by the effective pier 
model) 
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Figure 12.25. Base shear distribution among Wall A first story piers (by the effective pier 
model) 
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Figure 12.26. Base shear distribution among Wall B first story piers (by the effective pier 
model) 
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12.8.  CONCLUSIONS    

 The pushover analysis methods described in this chapter take into account several 

important issues in the nonlinear analysis for a URM building; the issues include the 

flange effects, the overturning moments and the effective lateral seismic force. A 

comprehensive method, the effective pier method, and a simplified method were used in 

the pushover analysis program to consider the possible failure mechanisms for perforated 

URM walls. The predicted nonlinear response of the test structure from the pushover 

analyses were in good agreement with the experimental observations. 
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CHAPTER 13 

 RECOMMEDATIONS FOR THE URM SECTION OF FEMA 356  

 

 

13.1. INTRODUCTION  

The FEMA 356 Pre-standard (ATC 2000) provides a full set of methodologies to 

evaluate and improve the seismic resistance of existing buildings. In this document, the 

rehabilitation objectives, the general analysis methods and the design procedures are first 

outlined in Chapters 1 through 3. After that, detailed descriptions for this methodology 

are given for each structure type, including steel, reinforced concrete, and masonry 

structures. Specifically, Chapter 7 is devoted to masonry structures. In this chapter, the 

analysis procedure is organized into the follow sections: 

• 7.3 Material properties and condition assessment. 

• 7.4 Engineering properties of masonry walls. 

• 7.5 Engineering properties of masonry infills 

• 7.6 Anchorage to masonry walls 

• 7.7 Masonry foundation elements 

Section 7.3 is used to describe the masonry material properties, while the other 

sections are used to describe the behavior of each typical masonry component. The 

research reported previously in Chapters 2 to 12 of this dissertation concentrated on the 

in-plane behavior of structural URM walls. Based on this research, some 

recommendations can be given to improve FEMA 356 Sections 7.3 and 7.4. In addition, 

although FEMA 356 Chapters 2 and 3 point out that several critical issues need to be 

considered when analyzing a building, those issues are not discussed in detail for each 
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specific structure type. Examples of those issues include overturning and interconnection. 

The research reported in this thesis reveals several unique global structural characteristics 

preeminent in the nonlinear response of a URM building. These aspects of structural 

behavior need to be considered in modeling a three-dimensional URM building, and will 

be emphasized in a proposed new section in FEMA 356 Chapter 7 to be discussed later in 

this chapter.    

The recommendations for modifications to the current FEMA 356 are grouped in 

several different topics. For each topic, the current FEMA section is first cited, and the 

proposed modification is given after that. The rationale for the modifications is also 

stated.    

 

13.2. MATERIAL PROPERTIES AND CONDITION ASSESSMENT (FEMA 356 

SECTION  7.3) 

 

13.2.1. Masonry bed joint tensile strength 

FEMA 7.3.2.1 General 

[2. Masonry tensile strength.] 

2. Masonry bed joint tensile strength 

 

FEMA 7.3.2.5 Masonry Flexural Tensile Strength 

Expected flexural tensile strength, fte, [for out of plane bending] shall 

be measured using one of the following three methods: 

 

Rationale 
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 Previous research on masonry material properties has revealed that the tensile 

strength of masonry is dependent on the loading direction with respect to the masonry 

bed joints (see Chapter 3). The masonry tensile strength cited by FEMA refers to the 

tensile strength of masonry in the direction perpendicular to the bed joint. In addition, this 

tensile strength affects not only the out-of-plane bending strength of masonry, but also its 

in-plane properties.  

 

13.2.2. Masonry shear strength 

FEMA 7.3.2.6 Masonry Shear Strength 

 The entire section should be changed as the follows: 

For URM components, expected masonry shear strength, vme, shall be 

measured for both uncracked and cracked sections. The corresponding 

expected shear strength shall be determined in accordance with Equations (7-

1a) and (7-1b), respectively: 

For uncracked section:   
n

CE
me A

Pv µτ += 0    (FEMA 7-1a)

For cracked section:    
n

CE
me A

Pv 1µ=    (FEMA 7-1b)

where: 

PCE = Expected gravity compressive force applied to a wall or pier 

component considering load combinations given in Equations (FEMA 

3-18) and (FEMA 3-19). 

An = Area of net mortared/grouted section of a wall or pier. 
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0τ  = Masonry bed joint initial shear bond strength. 

µ  = Masonry bed joint internal frictional resistance. 

1µ  = Shear friction coefficient for cracked masonry bed joint. 

 The material parameters, 0τ , µ , and 1µ , should be determined using 

an approved 4-brick direct shear test or in-plane shear test. If no test data are 

available, a value of 1.0 can be assumed for both µ and 1µ . Values for the 

masonry bed joint initial shear bond strength, 0τ , shall not exceed 100 psi for 

the determination of vme in Equation (7-1a). 

The shear tests identified here shall not be used to estimate shear 

strength of reinforced masonry components. The expected shear strength of 

reinforced masonry components shall be determined in accordance with 

FEMA 356 Section 7.4.4.2. 

 

Rationale 

 The mechanical key model has pointed out that the masonry bed joint shear 

strengths are different between an uncracked surface and a cracked surface. The 

corresponding strengths can be illustrated by Eqs. (FEMA 7-1a) and (FEMA 7-1b), 

respectively. More detailed discussion on this concept can be found in Sections 3.2 

through 3.4 in Chapter 3 of this thesis.  

 For the purpose of comparison, the current FEMA equation (7-1) for masonry 

shear strength (ATC 2000) can be rewritten as: 
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5.1

75.075.0 0 







+

= n

CE

me
A
P

v
τ

    (FEMA 7-1) 

 The above equation gives similar expression as the proposed equation (FEMA 7-

1a). It indicates that the current FEMA 356 equation does not distinguish between an 

uncracked surface and a cracked surface. In addition, the current FEMA equation (7-1) is 

based on an in-place shear test. Therefore, the contribution of the collar joint to the 

estimated shear resistance measured by this test must be reduced by the second factor of 

0.75. The first factor 0.75 and the factor 1.5 in the current FEMA equation (7-1) are used 

to convert it to an average stress (ATC 1997). However, the reason for using these two 

values is not given. When a 4-brick direct shear test is used to determine the material 

properties, no modification factors are needed. 

 

13.2.3.  Diagonal Compression Test 

FEMA C7.3.3.3.3 Diagonal compression test 

 The entire section should be eliminated. 

Rationale 

 The previous research has shown that both the execution of a diagonal 

compression test and the extrapolation of its test result are difficult. As a result, this 

material test method is not recommended for masonry structures. More detailed 

discussion on this topic can be found in Section 3.7 in Chapter 3.  
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13.3.    ENGINEERING PROPERTIES OF MASONRY WALLS (FEMA 356 

SECTION 7.4) 

13.3.1. Deformation-controlled actions and force-controlled actions 

FEMA 2.4.4.3 Deformation- and Force-Controlled Actions 

FEMA 2.4.4.4 Expected and Lower-Bound Strength 

FEMA 7.4 Engineering Properties of Masonry Walls 

 These sections should be revised. 

Rationale 

 A fundamental philosophy adopted by the current FEMA 356 is to identify the 

behavior of an existing structural component as ductile behavior (deformation-controlled 

behavior) or brittle behavior (force-controlled behavior). In order to evaluate the 

corresponding strengths, the expected material strength (the statistical mean value) 

should be used for deformation-controlled behavior, while the lower-bound strength (the 

statistical mean value minus one standard deviation) should be used for the force-

controlled behavior (see FEMA 356 2.4.4.3 and 2.4.4.4). As an application of this 

philosophy, in the current FEMA 356 Chapter 7 for masonry structures, four different 

possible failure mechanisms (rocking, sliding, diagonal tension, and toe crushing) are 

identified for an URM pier. The first two failure mechanisms are considered as 

deformation-controlled behavior and the corresponding strengths are calculated by using 

mean material values, while the latter two failure mechanisms are considered as force-

controlled behavior and the corresponding strengths are calculated by using lower-bound 

material values. For example, in order to calculate the toe crushing strength of a URM 

pier, “ the lower bound masonry compressive strength, fm
’, shall be taken as the expected 
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strength, fme, determined in accordance with Section 7.3.2.3, divided by 1.6 “ (See FEMA 

356 Section 7.4.2.2.2). 

 This philosophy is suitable for designing a new building, since it will ensure the 

response of a designed new building to be ductile (deformation-controlled actions) by 

artificially decreasing the usable strength of its possible force-controlled actions. 

However, when this method is used to analyze an existing building, the response of the 

analyzed structure seems to be always controlled by the force-controlled actions. This 

result, again, is because the strengths for the force-controlled actions are artificially 

penalized. One example for this result can be found in Section 10.5. As a result, this 

method should not be used to analyze the response of an existing building, since it will 

not only greatly underestimate the maximum strength of an existing building, but also 

misjudge the controlling failure mechanisms of this building. This in turn will lead to 

possible inappropriate rehabilitation techniques, because in many cases the appropriate 

rehabilitation techniques are dependent on the dominating failure mechanisms of an 

existing structure.   

 As an alternative, it is proposed herein that for analysis purposes, mean material 

values should always be used, as this will lead to the best predictions for the failure 

mechanisms and the maximum strengths of the analyzed structure. Following that, the 

response of the entire structure can be considered as deformation-controlled behavior or 

force-controlled behavior, and the corresponding strengths and other performance 

parameters can be modified by using safety factors for the purpose of performance 

checking. 
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13.3.2.  Elastic Stiffness and story shear distribution  

FEMA 7.4.2.1 Stiffness 

 The following two paragraphs should be changed as shown below. 

For linear procedures, the stiffness of a URM wall or pier resisting 

lateral forces parallel to its plane shall be considered to be linear and 

proportional with the geometrical properties of the uncracked section 

excluding veneer wythes but including flange effects. 

For linear procedures, story shears in perforated shear walls shall be 

distributed to piers in proportion to the relative lateral uncracked stiffness of 

each pier. For nonlinear procedures story shears in perforated shear walls 

shall be distributed to piers in proportion to the relative secant stiffness of 

each pier. 

 

Rationale 

 Both the experimental investigation (see Chapters 8 and 9) and the theoretical 

research (see Chapter 5) reveal the significant effects of flanges on the stiffness as well as 

the strength of a URM pier. As a result, the flange effects should be considered in the 

analysis. 

 The method for dealing with the distribution of story shears in a perforated shear 

wall is different between Linear Static Procedure (LSP) and Nonlinear Static Procedure 

(NSP). In the case of LSP, the shear force is distributed to piers in proportion to the 

elastic stiffness of each pier. In the case of NSP, the shear force is distributed to piers in 

proportion to the secant stiffness of each pier, which is dependent on their nonlinear 
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responses. More detailed discussion on the story shear distribution in a NSP can be found 

in Section 12.2 in Chapter 12.   

 

13.3.3.  Strengths and nonlinear properties (FEMA 7.4.2.2) 

FEMA 7.4.2.2  Strength 

 The entire section should be changed as follows. 

7.4.2.2 Strength and Nonlinear Properties 

7.4.2.2.1 Effective pier model of unreinforced masonry walls and piers 

Expected lateral strength, QCE, and deformation capacities of existing 

URM walls or pier components shall be determined by the effective pier 

model. Flange effects should be considered in the model. 

 

7.4.2.2.2 Simplified methods for unreinforced masonry walls and piers 

 As an alternative method, for linear procedures, the expected lateral 

strength, QCE, of existing URM walls or pier components shall be the lowest 

of the lateral strengths based on expected bed-joint sliding shear strength, 

rocking strength, diagonal tension strength, and toe crushing strength, 

calculated in accordance with Equations (7-3), (7-4), (7-5) and (7-6), 

respectively: 

( )ffmebjs tLLtvV +=      (FEMA 7-3)

( )
H
LtLLtV ffnr += ασ9.0      (FEMA 7-4)
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1
85.08.05.0

2

0

1 =+
+ mt ff

σ
τ

σ      (FEMA 7-5)

mf⋅= ξσ max
2      (FEMA 7-6)

where: 

H = Height of the pier 

L = Length of wall or pier 

Lf = Length of flange 

t = Thickness of wall or pier 

tf = Thickness of flange 

vme = Expected bed-joint sliding shear strength in accordance with Section 

7.3.2.6 

Vbjs = Expected shear strength of wall or pier based on bed-joint sliding shear 

strength 

Vr = Strength of wall or pier based on rocking 

α = Factor equal to 0.5 for fixed-free cantilever wall, or equal to 1.0 for fixed-

fixed pier 

nσ  = Average vertical stress in the wall or pier 

1σ  = Principle tensile stress at the mid panel of the wall or pier 

2σ  = Principle compressive stress at the mid panel of the wall or pier 

max
2σ  = Maximum compressive stress at the toe of the wall or pier 

ξ = Local compressive strength increase factor 

 In the above equations, the stress values 1σ , 2σ , and max
2σ should 
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be calculated based on plane-stress assumptions and external forces applied 

on the wall or pier. 

For nonlinear procedures, component force deformation responses 

shall be represented by appropriate nonlinear force-deformation relations. 

Force-deformation relations shall be based on the maximum strengths 

calculated by Eqs. (FEMA 7-3) to (FEMA 7-6) and appropriate treatment of 

stiffness degradtion and failure mechanisms evolution.   

 

Rationale 

 The effective pier model discussed in Chapter 4 is able to describe not only the 

maximum strength but also the nonlinear deformation capacity of individual URM 

components. In addition, it provides a rational explanation for the working mechanisms 

and the interactions of the four fundamental failure modes. Therefore, it is a reasonable 

method to calculate the nonlinear response of individual URM piers utilizing nonlinear 

procedures. More discussion on the effective pier model can be found in Chapter 4 and 

Chapter 5. 

 On the other hand, in order to ease the job of structural engineers, a simplified 

method is proposed based on the effective pier model. In this method, force-deformation 

relations are given respectively for rocking, sliding, and diagonal cracking failure modes 

for each individual URM pier. Toe crushing is treated as a force limit for the response of 

the pier. A simple rule is given for possible failure mechanisms evolution. More detailed 

information on this simplified method can be found in Section 12.9.1.   
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13.4. PROPOSED MATHEMATICAL MODEL FOR A THREE DIMENSIONAL 

URM BUILDING  

FEMA 7.0  Masonry 

 The following section is proposed to be added to Chapter 7 of FEMA 356. 

7.9 Mathematical modeling of three-dimensional URM building 

A three-dimensional URM building with flexible diaphragms should 

be modeled by a nonlinear three-dimensional FE model or two separate two-

dimensional models parallel to each principal axis of the building. 

Horizontal torsion needs not to be considered in URM buildings with 

flexible diaphragms. 

The definition of the effective dimensions of each URM pier in a 

perforated wall should be dependent on the possible crack pattern of the pier. 

The pier flange for each pier and the spandrel flange for each story 

should be considered in the model. 

Two different outcomes of the overturning moment caused by seismic 

forces should be considered in the model. The first one is the additional 

vertical force induced in each pier; and the second one is the induced global 

lateral displacement of the building. 

 

Rationale 

 Although FEMA 356 Chapters 2 and 3 have pointed out that some global 

characteristics of a structure, such as horizontal torsion, overturning, and interconnection 

between two elements, should be considered in the mathematical modeling of this 



 538

structure, no detailed guidelines are given for URM structures. On the other hand, both 

the experimental investigation of a two-story URM structure and the corresponding 

analytical examinations reported in the previous chapters have revealed some unique 

features of typical URM buildings. These findings are proposed to be added to FEMA 

pre-standard to enhance the mathematical modeling of URM structures.  

 Both the experimental research (see Chapters 8 and 9) and the elastic analysis (see 

Chapter 10) have revealed negligible coupling between the two parallel in-plane walls. In 

addition, the torsion behavior of a URM building is minor. Therefore, a regular 3D URM 

building can be simply modeled by 2D model. 

  In modeling each perforated masonry in-plane wall, several issues have to be 

considered. First, the adjacent out-of-plane wall has a significant influence on the initial 

stiffness and the maximum strength of a URM pier. As a result, the flange effects have to 

be considered in the model. Detailed analytical investigation of the flange effects can be 

found in Chapter 5. The experimental investigation can be found in Chapters 8 and 9. In 

order to consider the flange effects, the effective area of each flange should be 

determined; some basic rules can be found in Section 9.5. The calculation of the stiffness 

and maximum strength of a URM pier considering flange effects can be found in Chapter 

5 and Section 12.9.1.  

The second issue is the determination of the effective dimensions for each pier. The 

tests of the two-story URM building revealed that specific diagonal cracks might develop 

at the top or bottom of a URM pier, which alter the behavior of this pier significantly. 

The rules for determining the effective piers in a perforated wall can be found in Section 

9.7. The third issue is the effect of the overturning moment, which was a dominating 
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phenomenon observed in the tests (see Chapters 8 and 9). The combined effects of 

overturning moment, i.e., the additional vertical force in the pier and the additional global 

lateral displacements to the building, should be considered following the approaches 

described in Section 12.4.      

 

13.5. OTHER ISSUES 

This research was centered on an experimental and analytical investigation of a 

box-type, two-story URM building. As a result, not enough information is available to 

make recommendations for the acceptance criteria of the performance of URM buildings 

at large. However, current FEMA 356 gives acceptance criteria only in terms of two 

failure mechanisms: bed-joint sliding and rocking (see FEMA 356 Section 7.4.2.3). 

Based on the proposed new FEMA provisions, these existing acceptance criteria are not 

sufficient for checking the performance of a structure. Thus, more research is needed in 

this area. 

In addition, FEMA 356 gives several typical drift values in Table C1-3 to illustrate 

the overall structural response associated with various structural performance levels. 

Specifically, for unreinforced masonry walls, the values of 0.3%, 0.6%, and 1% were 

used for Immediate Occupancy, Life Safety, and Collapse Prevention performance level, 

respectively. Again, sufficient information is not available to make recommendations for 

drift values for a URM wall. However, comparing the values given in FEMA Table C1-3 

to the response of the two-story URM building tested, it seems that FEMA Table C1-3 

gives a much higher estimation. As an alternate, the values of 0.01%, 0.15%, and 0.3% 

should be used for Immediate Occupancy, Life Safety, and Collapse Prevention 
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performance level, respectively. They correspond to the elastic response limit, the 

forming of full mechanism, and the point at which large strength degradation occurred in 

the test.  

 

13.6. SUMMARY 

Several recommendations have been proposed for the URM section of FEMA 356 

based on the knowledge obtained from the research reported in Chapters 2 to 12. The 

recommendations will enhance the estimation of the seismic resistance of existing URM 

buildings. Future research needs for the FEMA URM section are also pointed out in this 

chapter. 
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CHAPTER 14 

CONCLUSIONS AND FUTURE RESEARCH 

 

 

This research was aimed at investigating the seismic resistance of existing URM 

structures at three different levels: the material level, the individual structural component 

level and the global structural level. The conclusions are grouped into the following 

topics:  

• URM materials 

• URM components 

• Structural characteristics of URM buildings 

• Modeling of URM buildings 

• Proposed modifications to FEMA provisions 

Some recommendations for future research also are proposed. 

 

14.1. URM MATERIALS 

Numerous investigations have been conducted on masonry material properties 

from both the experimental and analytical standpoints. In spite of this, some fundamental 

behavior of URM materials, such as the failure mechanisms at the interface between 

masonry units and mortar, still remain unclear. A mechanical key model was proposed in 

this research to illustrate the tensile and shear strengths of the interface between masonry 

units and mortar. This model revealed that both the tensile failure and the shear failure of 

the interface between masonry units and mortar can be attributed to the tensile failure of 



 542

mechanical keys at the interface. When combined with a biaxial masonry failure 

criterion, this model can be used to illustrate the complete failure envelope of a masonry 

bed joint. In addition, the following conclusions also were drawn from this model: 

• A distinction needs to be made between the initial equivalent internal shear 

friction coefficient for the uncracked bed joints and the shear friction factor for 

the cracked bed joints, since the two parameters are associated with different 

mechanical mechanisms.  

• The upper-boundary estimate for the initial equivalent internal shear friction 

coefficient is 1.0. 

• The initial bed joint shear bond strength is roughly twice the initial bed joint 

tensile strength. 

For a strong unit-weak mortar masonry, the behavior of the masonry bed joints 

controls the response of the entire URM assemblage. In this case the mechanical key 

model was extended to explain the failure mechanism for the entire URM assemblage, 

and the following conclusions could be drawn: 

• Diagonal cracking is either due to the sliding and splitting of masonry joints, or 

due to the compressive failure of the URM assemblage. This mode of failure 

cannot be characterized by a simple diagonal tensile strength. 

• The diagonal compression test is not recommended for measuring the material 

properties of masonry.  
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14.2. URM STRUCTURAL COMPONENTS 

URM piers are the most important structural components in a URM building. A 

macro model, termed the effective pier model, was developed in this research to describe 

the nonlinear in-plane behavior of individual URM piers. This model can describe the 

failure mechanisms, the maximum strength, and the deformation capacity of a URM pier. 

A nonlinear pushover analysis program was developed based on the effective pier model 

and used to analyze URM piers investigated in previous experiments. Strength, force-

displacement behavior, and failure modes were all in close agreement with observed 

behavior.  In addition, with some simplifications to the model, strength expressions were 

derived for URM piers corresponding to each of the four primary failure modes.  These 

strength expressions were in close agreement with FEMA 356.  

On the other hand, compared with FEMA 356, the effective pier model provides 

more reasonable explanations for the nonlinear behavior of individual URM piers. The 

effective pier model is able to accurately describe both single and mixed failure modes of 

URM piers, which cannot be modeled by current analytical procedures such as the one 

outlined by FEMA 356.  Moreover, the effective pier model shows that the rocking 

mechanism is actually a normal working mechanism for URM piers and that the toe-

crushing failure mode is a limit for the rocking mechanism.  

Adjacent, transverse walls may significantly increase both the initial stiffness and 

the maximum lateral strength of a URM pier. In order to consider this contribution, the 

effective pier model was modified to account for non-rectangular cross section URM 

pier. Based on this modified effective pier model, the maximum strengths of a URM pier 

corresponding to each of the four primary failure mechanisms were investigated. The 
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analyses showed that flange effects significantly increase the rocking strength and the 

shear sliding strength of a URM pier. In contrast, a non-rectangular cross section has no 

significant effects on the diagonal tension strength of a URM pier. Furthermore, the 

analyses also revealed that the location of the transverse wall has a remarkable influence 

on the response of a URM pier. 

 

14.3. STRUCTURAL CHARACTERISTICS OF URM BUILDING 

A two-story URM bearing wall structure with timber floor and roof diaphragms 

was tested in quasi-static fashion to investigate the seismic resistance of a typical, 

existing URM building in the Mid-America region. The main conclusions obtained from 

this test are as follows:  

 

14.3.1. Interactions between masonry walls and flexible roof and floor 

diaphragms 

• The stiffness of the basic components of a URM building (the in-plane walls, the 

out-of-plane walls, the flexible diaphragms, and the connections between the 

diaphragms and masonry walls) determine the response of this diaphragm-wall 

system. The tests revealed that the interaction mechanisms between the timber 

diaphragm and the masonry walls are different in the directions parallel and 

perpendicular to the floor joists.  

• The lateral flexural and shear stiffness of the roof diaphragm is smaller than that 

of the masonry out-of-plane wall, while the axial stiffness of the roof diaphragm 

is larger than that of the masonry out-of-plane wall.  
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• The stiffness of the masonry in-plane wall is much larger than the stiffness of the 

roof diaphragm and of the masonry out-of-plane wall. 

• At low levels of lateral force, there are large relative movements between the roof 

diaphragm and the masonry out-of-plane walls due to the flexible connection 

details typically employed.  

• Tension ties connect the diaphragm with the masonry out-of-plane walls, and they 

help to distribute the lateral forces from the diaphragm to the out-of-plane walls.   

 

14.3.2. Nonlinear properties of URM buildings 

14.3.2.1 Failure mechanisms, maximum strength, and ductility 

• The test structure exhibited very stiff response before substantial cracking 

occurred. When the building was loaded parallel to Walls 1 and 2, the maximum 

lateral strengths of the test structure were 87 kips in the south direction (60 kips 

on Wall 1 and 27 kips on Wall 2), and 79 kips in the north direction (55 kips on 

Wall 1 and 24 kips on Wall 2). The lateral drift at the roof level corresponding to 

the maximum lateral strengths was about 0.02%. When the building was loaded 

parallel to Walls A and B, the maximum lateral strengths of the test structure were 

79 kips in the west direction (36 kips on Wall A and 43 kips on Wall B), and 77 

kips in the east direction (40 kips on Wall A and 37 kips on Wall B). The lateral 

drift at the roof level corresponding to the maximum lateral strength was about 

0.07%. After the test building reached its maximum lateral strengths, several large 

cracks rapidly developed and the secant stiffness decreased quickly.  
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• The damage to the masonry walls was characterized by several large, discrete 

cracks due to the brittle behavior of the URM material. 

• The failure mechanism for each masonry wall depended on the configuration of 

the masonry wall. Wall 2 was a perforated wall with large openings and slender 

piers in the first story. It exhibited a component-dominated rocking mechanism, 

with all three first floor piers rocking and the entire second floor wall moving 

laterally and vertically as a monolithic portion on top of the first story piers. In 

contrast, Wall 1 was a fairly solid wall with only a small door opening in the first 

floor. The behavior of Wall 1 was significantly affected by a global overturning 

moment, and the behavior changed significantly throughout the loading. The 

opening ratios of Walls A and B were between those of Walls 1 and 2. Both Walls 

A and B exhibited a mixed response of global overturning and local rocking. 

When the walls were laterally loaded, the spandrels on the tensile side were lifted 

above the exterior piers. These piers were “left behind” and did not resist much 

lateral shear force. The interior piers rocked, and the exterior piers on the 

compressive side resisted large vertical compressive and lateral shear forces. 

14.3.2.2 Coupling 

• The coupling stiffness between two parallel masonry shear walls was small and 

can be ignored for all practical purposes. 
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14.3.2.3 Torsion 

• The torsional response of the test structure that featured flexible roof and floor 

diaphragms was small and did not contribute significantly to the observed 

performance. 

14.3.2.4 Flange effects 

• The compression and tension flange effects due to the contribution of the out-of-

plane walls exhibited significant influence on the behavior of the in-plane walls. 

As a result, although Walls A and B had identical configuration, their behavior 

was different due to the different sizes of flanges activated by those two walls.  

• The flange effects should be distinguished between a pier flange and a spandrel 

flange. The two different types of flanges have different effects on the response of 

a pier depending on whether the flange is on the tensile or compressive side of the 

pier. Based on the experimental observations, a set of rules was given for the 

determination of the sizes of the pier flange and the spandrel flange.  

14.3.2.5 Overturning moment 

• The overturning movement induced by the lateral forces had significant effects on 

the response of the test structure. The effects were twofold. First, the overturning 

moment introduced additional vertical stresses in the piers and altered their 

response. Second, the overturning movement caused additional lateral 

displacements to the building and global rocking of the entire wall.  
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14.3.2.6 Effective piers 

• The flexural cracks induced by the rocking of a pier generally did not propagate 

into the horizontal bed joint. Instead, these cracks propagated perpendicular to the 

direction of the maximum tensile stresses at the corner of openings. This led to 

different effective aspect ratios of the pier when the pier was loaded in different 

directions, and consequently altered the response of the pier.  Based on the 

experimental observation, a method was determined to define effective pier 

dimensions in a perforated wall.  

14.3.2.7 Details  

• Compared to steel lintels, masonry arch lintels appeared to be more prone to 

damage and collapse.  

• Pocket grouting did not significantly affect the behavior of the diaphragm in the 

direction perpendicular to the joists.  

 

14.4. MODELING OF URM BUILDINGS 

Along with the experimental investigation, several analytical models were 

employed to predict the responses of the test structure. The main conclusions from the 

analytical studies are as follows: 

14.4.1. Elastic analysis 

• A three-dimensional elastic finite element model gave good predictions for the 

elastic properties of the test structure, including the relative stiffness of the three 

basic components of a URM building: diaphragm, out-of-plane walls, and in-
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plane walls. However, this approach could not describe the nonlinear behavior of 

a URM building. 

• The elastic dynamic conceptual model revealed that the URM structure was a 

very stiff building; and, thus, its first vibration mode controlled the lateral 

deformation of the test structure. 

14.4.2. Rigid body analysis 

• The rigid body analysis gave good predictions for the ultimate strengths of the test 

structure. This analysis also verified the significant flange effects observed in the 

experimental research. However, this method could not consider either the toe 

crushing or the diagonal tension failure modes. As a result, the ultimate strengths 

estimated by this method should be considered as an upper-bound value. 

14.4.3. Nonlinear FE analysis 

• Since the damage to a URM building is characterized by several large cracks, 

appropriate FE modeling of the nonlinear behavior of a URM building can be 

accomplished by the appropriate modeling of these cracks. 

• A 2D discrete-crack FE model gave a reasonable prediction for the failure 

mechanisms of the URM in-plane walls. However, it significantly underestimated 

the maximum strengths of the test structure, because some critical three-

dimensional properties of the test structure, such as the flange effects, could not 

be considered in this model.  

• A 3D discrete-crack FE model, built following predefined rules of the potential 

crack pattern for the structure, provided a good prediction for the failure 

mechanisms of the test structure. However, since stabilizing truss elements were 
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used in this model to resolve numerical convergence problems, the maximum 

strengths predicted by this FE model were 14% to 44% larger than the measured 

values.  

14.4.4.  2D nonlinear pushover analysis 

• If the roof and floor diaphragms in a URM building are flexible, the coupling 

between two parallel in-plane walls and the torsion of the entire building can be 

neglected. In this case, if out-of-plane damage to masonry walls can be prevented 

or ignored, the nonlinear behavior of an existing building can be analyzed 

reasonably well by using a two-dimensional nonlinear pushover model. 

• The effects of flanges and overturning moments on the response of a URM 

building have to be considered in a pushover analysis. 

• The nonlinear response of URM piers in a perforated wall should be considered 

by the effective pier model or a similar simplified method. 

 

14.5. FEMA 356 PROVISIONS 

The FEMA 356 pre-standard provides a full set of methodologies to evaluate the 

performance of existing buildings. However, this method does not give good prediction 

for URM structures because some critical issues were not considered in the current 

FEMA 356 document. Several recommendations are proposed to improve FEMA 356: 

• It is recommended that mean material values be used for both displacement-

controlled actions and force-controlled actions when analyzing the behavior of an 

existing building. 
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• An improved calculation method for the bed joint shear strength is proposed. It 

recognizes the difference between the behavior of an uncracked surface and a 

cracked bed joint surface. 

• The effective pier model and a simplified method are proposed to describe the 

nonlinear properties of URM piers. 

• It is recommended that a section is added to FEMA 356, Chapter 7, to provide 

guidelines for the mathematical modeling of a three-dimensional URM building. 

Specifically, flange effects and overturning moment effects should be considered. 

 

14.6. ADDITIONAL RESEARCH NEEDS 

Although this research added to the understanding of the seismic behavior of 

URM buildings, additional research is needed. This is particularly true in the following 

areas: 

• Experimental investigations of the nonlinear behavior of URM piers with flanges: 

although an analytical solution for the flange effects of a URM pier has been 

developed, little experimental investigation is available to verify the proposed 

theory. Therefore, a series of tests to study the flange effects on the response of a 

URM pier, considering different flange sizes, locations, and different vertical 

stresses, need to be conducted. 

• Experimental and analytical investigations on the nonlinear behavior of URM 

spandrels: in the current research, the URM spandrel was assumed to be elastic 

since a typical spandrel in a URM building is deep and strong. However, spandrel 

damage has been observed in previous seismic events. Having different force and 

deformation boundary conditions compared with a URM pier, a URM spandrel 
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might exhibit working mechanisms and nonlinear behavior different from a URM 

pier. Research is needed on the nonlinear response of URM spandrels in general.   

• Quasi-static testing of a URM building with different controlling failure 

mechanisms: the failure of the test structure in the current research was controlled 

by rocking and sliding. The other two failure mechanisms for URM piers, i.e., 

diagonal tension and toe crushing, were not significant phenomena in this test. 

These two failure modes can be investigated by testing a building or a perforated 

wall with higher gravity stress and different pier aspect ratios. In addition, the 

spandrel in the current test structure was strong and thus no damage was 

observed. A URM perforated wall with weaker spandrel should also be the topic 

of a future experimental research project. 

• Dynamic testing of URM buildings: due to the limits of quasi-static testing, the 

effects of different characteristics of seismic excitation on the nonlinear response 

of a URM building could not be fully investigated in this research. This problem 

can be solved by dynamic testing of a URM building. A shaking table test of a 

reduced scale URM building with similar configurations to the full-scale test 

structure reported herein has been conducted in CERL. A comparison between the 

responses of the two structures could provide an insight into the effects of the 

seismic excitations. 

• Investigation of the properties of stabilizing trusses on the response of nonlinear 

three-dimensional FE model: it has been found in the current research that the 

stiffness of a stabilizing truss has a sizable influence on the response of nonlinear 
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three-dimensional FE model. More research is needed on this effect along with 

the potential of applying it for modeling FRP retrofits in a URM building. 

• Macro model for URM perforated wall: the two-dimensional push-over model 

employed in this research gave good predictions of the response of the test 

structure. However, this model assumes an elastic spandrel, which limits its 

applicability to other wall configurations, as in the case where the spandrels are 

weak and vulnerable to damage. A macro panel model that is similar to the 

effective pier model for the pier but which also considers the nonlinear behavior 

of spandrels is a good candidate for analyzing the nonlinear response of 

perforated URM walls with weak spandrels. 

• Dynamic analysis of URM structures under seismic excitation: the analyses 

conducted in the current research were aimed at simulating the nonlinear response 

of a URM building under quasi-static lateral forces. A dynamic analysis model 

can be used to analyze the “true” response of a URM building under seismic 

excitation. Such an analytical model can be built by modifying the nonlinear 

pushover model employed in the current research. Another candidate is the 

modification of the rigid-body-analysis model.   
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APPENDIX A.   

QUAD CHARTS FOR RELATED MAEC PORJECTS 
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APPENDIX B 

 DETERMINATION OF TYPE K’ MORTAR 

 

 

 A first series of tests were conducted using a Type N mortar according to ASTM 

E519-00 (ASTM 2000) with the exception that the specimens tested were 2 ft by 2 ft as 

opposed to the specified 4 ft by 4 ft.  This modification was made as a result of the 

difficulties inherent in testing a large 4 ft by 4 ft masonry panel.  This mix consisted of a 

one to three ratio of bagged Type N masonry cement to sand.  A total of 16 specimens 

were tested including 8 constructed of solid bricks and 8 constructed of cored brick.  

Table B.1 shows a summary of the results of this series of tests.   

 

 

Table B.1.  Summary of diagonal compression test results (Type N) 
Type of Brick Specimen 

Number 
Mean Shear 
Strength (psi) 

Standard 
Deviation 

Coefficient of 
Variation 

Solid 8 123 63 0.51 
Cored 7 88 30 0.35 

 

 

The tests resulted in the failures in the mortar. No cracking of the bricks was 

observed.  While a good deal of scatter was expected, the large coefficient of variation 

associated with this series of tests is troublesome.  Furthermore, the Type N mortar cubes 

tested gave a compressive strength of only 360 psi, which is far below the expected 750 

psi compressive strength for a typical Type N mortar.  It was concluded that the 
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exceptionally high coefficient of variation along with the poor mortar compressive 

strength was most likely due to the use of a commercial bagged masonry cement.   

 As a result, a second series of tests employed a Type O mortar, which was 

comprised of a Portland cement to lime to sand ratio of 1:2:9.  A total of 10 specimens 

were tested including 5 constructed of cored brick and 5 constructed of solid brick.  The 

results of this series of tests are shown in Table B.2.       

 

 

Table B.2.  Summary of diagonal compression test results (Type O) 
Type of Brick Specimen 

Number 
Mean Shear 
Strength (psi) 

Standard 
Deviation 

Coefficient of 
Variation 

Solid 5 284 41 0.14 
Cored 6 154 36 0.23 

 

 

The coefficient of variation is much lower for this Type O mortar, and the shear 

strength increased.  More important than the apparent increase in shear strength is the fact 

that this Type O mortar caused cracks to go through the bricks in some cases (Figure 

B.1).  Based on field studies it seems that this failure mode is not consistent with existing 

URM structures in Mid-America.  That is, if the ST-11 test structure were constructed 

with this Type O mortar a “strong brick-weak mortar” behavior would not be guaranteed.  

In addition, the compressive strength of the Type O mortar cubes was found to be 517 

psi, which is considerably higher than the expected 350 psi compressive strength for a 

typical Type O mortar.    

 

 



 575

 

Figure B.1.  Photograph of shear failure through brick 
 

 

 As a result, a third series of tests were conducted aimed at obtaining a mortar mix 

that would cause a “strong brick-weak mortar” behavior.  To accomplish this, the amount 

of Portland cement was varied while keeping the amount of sand and lime constant.  The 

three mortars mixes that were tested were in ratios of 0.25: 2: 9, 0.5: 2: 9 and 1: 2: 9 

(Portland cement: lime: sand).  In all nine specimens were tested, three of each type of 

mortar (one solid and two cored).  To speed up the test schedule, the direct shear test 

discussed in Chapter 3 was used instead of the diagonal compression test.  Table B.3 

gives a summary of the results. 

The 0.25: 2: 9 mortar was first eliminated from consideration because of the 

difficult in handling the specimens (it was easy to fail the test specimens during 

installation) and exceptionally large scatter in the data (i.e. coefficient of variation of 

0.77). The Type O mortar was also eliminated because it was still too strong as shown by 

the previous diagonal compression test. In the end, the 0.5: 2: 9 mortar was chosen for 

construction because it gave a reasonable bed joint shear strength. In addition, the 
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compressive strength of this mortar cubes was found to be 41 psi, which is close to the 

value for Type K mortar used before 1950. Since this mortar mixture is close to that 

specified for Type K mortar (Portland cement: lime: sand ratio of 0.25: 2: 7.5), this 

mortar is designated as a Type K’ mortar. 

 

 

Table B.3.  Summary of direct shear tests 
Type of 
Brick 

Mortar (Portland 
cement:lime:sand) 

Specimen 
Number 

Shear 
Strength (psi) 

Standard 
Deviation 

Cored 0.25:2:9 3 22 17 
Solid 0.25:2:9 1 22 - 
Cored 0.5:2:9 3 53 16.5 
Solid 0.5:2:9 1 60 - 
Cored 1:2:9 (Type O) 3 87 12 
Solid 1:2:9 (Type O) 1 118 - 
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APPENDIX C 

 DESIGN OF FOUNDATION SLABS 

 

 

The reinforced concrete (RC) foundation blocks for the ST-11 building were 

designed to transfer the base shear from the structure to the strong floor and to anchor the 

post-tensioning tendons used for retrofit. 

The design of this foundation is shown in Figures C.1 and C.2.  This foundation 

was composed of six individual RC slabs in order to allow them to be easily moved by 

the overhead cranes in the laboratory.  The dimensions and weight of each RC slab are 

listed in Table C.1.  The thickness of the foundation slabs is 20 in., which ensures 

sufficient development length for the post-tensioning anchor bolts to be used for retrofit.  

The slabs were cast with groups of four holes spaced at 4 ft on center in order to allow 

the foundation to be post-tensioned to the strong floor, which contains the same pattern of 

tie downs.  

 

 

Table C.1 Dimensions and weights of the RC slabs 
Slab Dimension  

(in x in x in) 
Volume (in3) Weight (lb) 

1 222 x 66 x 20 293040 25438 ( 11.4 ton) 
2 222 x 66 x 20 293040 25438 ( 11.4 ton) 

A-1 177 x 66 x 20 233640 20282 ( 9.06 ton) 
A-2 177 x 66 x 20 233640 20282 ( 9.06 ton) 
B-1 177 x 66 x 20 233640 20282 ( 9.06 ton) 
B-2 177 x 66 x 20 233640 20282 ( 9.06 ton) 

Total  1520640 132001 ( 59.1 ton) 
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The RC slabs were designed in accordance with the minimum reinforcement 

requirement of ACI318-95 (ACI, 1995).  The governing loading case was due to the self-

weight of the concrete when the crane was lifting the slab.  

 

 

Figure C.1. Plan view of foundation layout (dimensions are in inches) 
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Figure C.2.  Reinforcement details of the foundation slabs (dimensions are in inches) 
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APPENDIX D 

LINEAR STATIC DESIGN PROCEDURE FOR THE TEST STRUCTURE 

 

 
D.1 Introduction   

A Linear Static Procedure (LSP) is permitted for buildings without irregularities 

in plan and elevations. The test building satisfies the requirements for the use of LSP as 

listed in FEMA 356 2.4.1 (ATC 2000). As a result, a LSP with the following assumptions 

was used to analyze the test structure:  

• All the piers are considered as primary elements in the structure. 

• The test building can be analyzed using a 2D model since it has a flexible 

diaphragm (FEMA 356 3.2.2.1). Although FEMA 356 requires that the three 

dimensional features of components and elements shall be considered when 

calculating stiffness and strength properties, no detailed provisions are given in 

FEMA 356. Therefore, the flange effects were not considered in the analysis. 

• Torsion need not be considered in buildings with flexible diaphragms. 

• Since the structure was very stiff, P-∆ effects were not considered. 

• Overturning effects were not considered. 

Based on FEMA 356 provisions, two different earthquake hazard levels were 

considered in the analyses: 

• BSE-1: 10% /50 year 

• BES-2: 2% /50 year 

 

 



 581

D.2. Seismic hazard and pseudo seismic lateral load  

The seismic hazard and the corresponding seismic lateral loads for the test 

structure were determined as follows. 

 

D.2.1 Model characteristics 

The following characteristics were assumed in the analyses of the test structure:  

• Site class: B 

• 5% effective viscous damping, BS=B1=1.0 

• C2: 1.0 (FEMA 356 3.2.10.1) 

• C3: 1.0 (FEMA 356 3.2.10.1) 

• Cm: 1.0 (FEMA 356 3.2.10.1) 

• Self weight W: 201 kips 

 

D.2.2 Period estimation 

Two methods were used to estimate the natural period of the test structure. 

1) Method 1-Analytical 

An eigenvalue (dynamic) analysis for the building was conducted based on a 

simple conceptual model (see Chapter 10). The fundamental natural period obtained for 

the test building was 0.22 seconds parallel to Walls A and B, and 0.21 seconds parallel to 

Walls 1 and 2. 

2) Method 2-Approximate 

FEMA 356 Eq. (3-9) is based on the deformation and the associated vibration 

period of a flexible diaphragm structure. If the lateral stiffness of diaphragm is assumed 
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to be 14 kips/in, and the weight of diaphragm is assumed to be 16 kips, the fundamental 

natural period of the test building can be calculated as: 

( ) 3.014/16078.0 5.0 =⋅=T  

A value of 0.3 seconds was chosen for the natural period of the test building, 

since it was close to the values obtained for the flexible diaphragm case of the conceptual 

model. Note that in this case, the stiffness of the masonry wall is less than elastic value. 

This is consistent with the specification of FEMA 356, which points out that instead of 

elastic stiffness, the secant stiffness corresponding to the maximum strength should be 

chosen to model the structure for LSP (FEMA 356 3.3.1.1, ATC 2000).  

 

D.2.3 Pseudo seismic lateral load (V) 

The pseudo lateral load (V) can be calculated by: 

V=C1*C2*C3*Cm*Sa*W    (FEMA 356 3-10) 

 The calculation procedure and the results obtained are listed in Tables D.1 and 

D.2 for the BSE-1 level and the BSE-2 level, respectively. 

 

Table D.1. Seismic forces for the test structure at the BSE-1 level 
 Atlanta Memphis St. Louis San Francisco 
SS (g)  0.11 0.28 0.21 1.21 
S1 (g) 0.04 0.07 0.056 0.58 
Fa 1.0 1.0 1.0 1.0 
FV 1.0 1.0 1.0 1.0 
SXS=FaSS 0.11 0.28 0.21 1.21 
SX1=FVS1 0.04 0.07 0.056 0.58 
Seismicity Zone 
(1.6.3.1) 

Low Moderate Moderate High 

Ts=(SX1BS/SXSB1) 0.364 0.25 0.27 0.48 
T0 0.0728 0.05 0.054 0.096 
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Table D.1 (cont’) 
Sa (g) 0.11 0.233 0.187 1.21 
C1 1.12 1.0 1.0 1.24 
Pseudo lateral load 
V Kips (3.10) 

24.8 46.8 37.6 301.6 

Vertical force 
distribution (P2/P1) 

1/2 1/2 1/2 1/2 

* SS and S1 for BSE-1 should be less than 2/3 of the corresponding values of BSE-2. 

 

 

Table D.2. Seismic forces for the test structure at the BSE-2 level 
 Atlanta Memphis St. Louis San Francisco 
SS (g)  0.26 1.3 0.6 1.81 
S1 (g) 0.11 0.4 0.19 1.0 
Fa 1.0 1.0 1.0 1.0 
FV 1.0 1.0 1.0 1.0 
SXS=FaSS 0.26 1.3 0.6 1.81 
SX1=FVS1 0.11 0.4 0.19 1.0 
Seismicity Zone 
(1.6.3.1) 

Low Moderate Moderate High 

Ts=(SX1BS/SXSB1) 0.423 0.31 0.32 0.553 
T0 =0.2 Ta 0.0846 0.062 0.064 0.111 
Sa (g)  (Fig. 1-1) 0.26 1.3 0.6 1.81 
C1  (3.3.1.3.1) 1.19 1.02 1.05 1.28 
Pseudo lateral load 
V Kips (3.10) 

62.2 266.5 126.6 465.7 

Vertical force 
distribution 
(P2/P1)(3.3.1.3.5) 

1/2 1/2 1/2 1/2 

 

 

D.2.4 Design earthquake actions for each component (QE) 

 Four basic components, Walls 1, 2, A and B were identified for the test structure. 

Walls A and B were identical to each other. Since the test URM building had flexible 

diaphragms, the external lateral seismic force was distributed to each wall based on their 

tributary loads (see FEMA 356 3.3.1.3.5). Therefore, the design earthquake actions (QE) 
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for each component can be calculated as shown in Tables D.3 and D.4 for the BSE-1 

level and the BSE-2 level, respectively. 

 

 

Table D.3. Design earthquake actions QE for each wall at the BSE-1 level (in kips) 
 Atlanta Memphis St. Louis San Francisco 
Wall A/B 12.4 23.4 18.8 150.8 
Wall 1 12.4 23.4 18.8 150.8 
Wall 2 12.4 23.4 18.8 150.8 

 

 

Table D.4. Design earthquake actions QE for each wall at the BSE-2 level (in kips) 
 Atlanta Memphis St. Louis San Francisco 
Wall A/B 31.1 133.3 63.3 232.9 
Wall 1 31.1 133.3 63.3 232.9 
Wall 2 31.1 133.3 63.3 232.9 

 

 

D.3. Elastic strength and controlling mode of the test structure 

 An elastic model composed of rigid spandrels and elastic piers, as shown in 

Figure D.1 modeled each wall.  

 The strength of each wall was governed by the strength of the piers. The possible 

failure modes for each pier include rocking, sliding, toe crushing and diagonal tension. 

The first two failure modes are deformation-controlled failure modes, while the latter two 

failure modes are force-controlled failure modes. Based on FEMA 356 Eqs. (7.3) to (7.6), 

the strength of the pier corresponding to each failure mode can be calculated. The actual 

strength and the failure mode of each pier were dominated by the lowest value of the four 

failure modes. On the other hand, it was assumed that the external lateral force applied on 
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the wall was distributed to each pier proportionally to the lateral stiffness of each pier. 

Therefore, the wall was assumed to reach its maximum strength when one of the piers of 

this perforated wall reaches its maximum strength. Furthermore, the controlling mode for 

the entire wall was also determined by the failure mode of that pier. 

 The analysis assumed that the ratio of the lateral forces applied on the roof and 

the second floor is 1 to 2 (see FEMA 356 3.3.1.3.5). The material properties used in the 

analysis was based on the material test results and can be found in Table 6.3. The results 

obtained for each wall are shown in Table D.5.  

 

 

Figure D.1. Analytical model for the URM wall 

 

 

Table D.5. The maximum strengths and the corresponding failure modes for each wall 
Wall ID Maximum base shear (kips) Controlling component and 

failure modes 
Walls A and B QCL = 33 A-7/B-10, Toe Crushing 
Wall 1 QCE = 41 1-7, Rocking 
Wall 2 QCE = 9.6 2-7. Rocking 
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D.4. Acceptance Criteria 

Table D.5 shows that Walls A and B are force-controlled, while Walls 1 and 2 is 

deformation-controlled. Based on Tables D.3 and D.4, and the following equations, the 

design actions for each wall can be calculated.  

For deformation-controlled actions: 

EGUD QQQ ±=    (FEMA 356 3-18) 

For force-controlled actions: 

JCCC
QQQ E

GUF
321

±=   (FEMA 356 3-19) 

Note that the action due to design gravity loads QG in the above equations can be 

assumed as zero, since gravity load does not cause lateral shear force.  The factors C1, C2, 

C3 and the force-delivery reduction factor J are determined based on the building location 

and its seismic level, as well as the target performance level. The factors employed in the 

analyses are listed in Table D.6. 

 

 

Table D.6. Factors for determining the design actions of the test structure 
 Atlanta Memphis St. Louis San Francisco 
C1 (BSE-1) 1.12 1.0 1.0 1.24 
C1 (BSE-2) 1.19 1.02 1.05 1.28 
C2 1.0 1.0 1.0 1.0 
C3 1.0 1.0 1.0 1.0 
J (OP, IO) 1.0 1.0 1.0 1.0 
J ( LS, CP) 1.0 1.5 1.5 2.0 
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Using the parameters listed in Table D.6, the design actions QUD or QUF for each 

wall can be calculated as listed in Tables D.7 and D.8 for BSE-1 level and BSE-2 level, 

respectively. 

 

Table D.7. Design actions for each wall at BSE-1 level (in kips) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B(QUF) 
(LS, CP) 

11.1 15.6 12.5 60.8 

Walls A and B(QUF) 
(OP, IO) 

11.1 23.4 18.8 121.6 

Wall 1 (QUD) 12.4 23.4 18.8 150.8 
Wall 2 (QUD) 12.4 23.4 18.8 150.8 

 

 

Table D.8. Design actions for each wall at BSE-2 level (in kips) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B(QUF) 
(LS, CP) 

26.1 87.1 40.2 91.0 

Walls A and B(QUF) 
(OP, IO) 

26.1 130.7 60.3 182.0 

Wall 1 (QUD) 31.1 133.3 63.3 232.9 
Wall 2 (QUD) 31.1 133.3 63.3 232.9 

 

 

 The acceptance criteria of each component can be checked by: 

For deformation-controlled actions: 

UDCE QmkQ ≥   (FEMA 356 3-20) 

For force-controlled actions: 

UFCL QkQ ≥     (FEMA 356 3-21) 
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Note that based on Table 2-1 of FEMA 356, the knowledge factor k is equal to 

1.0. The component demand modifier for the deformation-controlled action, m, is 

determined by the building’s performance levels and failure modes, and can be calculated 

based on Table 7-3 of FEMA 356. The results for Walls 1 and 2 are listed in Table D.9: 

 

 

Table D.9. m factor for Wall 2 
 OP IO LS CP 
Wall 1  1 2.6 5.2 6.9 
Wall 2  1 3 6 8 

  

 

 Based on Tables D.5, D.7, D.8, and D.9, the performance level of each wall can 

be estimated as follows: 

 

 

Table D.10. Performance level of each wall (BSE-1) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B OP OP OP N.A. 
Wall 1 OP OP OP LS 
Wall 2 IO IO IO N.A. 

 

 

 

Table D.11. Performance level of each wall  (BSE-2) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B OP N.A. N.A. N.A. 
Wall 1  OP LS IO CP 
Wall 2  LS N.A. CP N.A. 

 

D.5. Evaluation based on experimental observation 
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The evaluation of the test structure was conducted again based on the strength and 

failure modes observed during the experiment. Since URM is a brittle material, it is 

assumed that the ultimate strength obtained from the test can be used as the design elastic 

strength of the test building. The related data is shown in Table D.12. It is apparent that 

the responses of all the four walls are deformation-controlled actions.   

 

 

Table D.12. The observed maximum strengths and failure modes for each wall 
Wall ID Maximum Base Shear (Kips) Controlling Component 

and Failure Modes 
Walls A and B QCE = 40  Rocking 
Wall 1 QCE = 58 Rocking 
Wall 2 QCE = 25 Rocking 

 

 

Therefore, the design actions QUD for each wall can be calculated as shown in 

Tables D.13 and D.14 for the BSE-1 level and the BSE-2 level, respectively. The m 

factors for each wall are listed in Table D.15. 

 

Table D.13. Design actions for each wall at the BSE-1 level (based on test, in kips) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B(QUD) 12.4 23.4 18.8 150.8 
Wall 1 (QUD) 12.4 23.4 18.8 150.8 
Wall 2 (QUD) 12.4 23.4 18.8 150.8 
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Table D.14. Design actions for each wall at the BSE-2 level (based on test, in kips) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B(QUD) 31.3 133.3 63.3 232.9 
Wall 1 (QUD) 31.3 133.3 63.3 232.9 
Wall 2 (QUD) 31.3 133.3 63.3 232.9 

 

 

Table D.15. m factor for each wall 
 OP IO LS CP 
Wall 2  1 3 6 8 
Wall 1* 1 1.4 2.8 3.7 
Wall AB 1 2.6 5.2 6.9 

* Global rocking, use the height and the length of the entire wall to calculate the value of 
the factor m. 
 

Based on Tables D.12, D.13, D.14, and D.15, the performance level for each wall 

can be estimated as listed in Tables D.16 and D.17 for the BSE-1 level and BSE-2 level, 

respectively.  

 

 

Table D.16. Performance level of each wall (based on test, BSE-1) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B OP OP OP LS 
Wall 1  OP OP OP LS 
Wall 2  OP OP OP LS 

 

 

Table D.17. Performance level of each wall (based on test, BSE-2) 
 Atlanta Memphis St. Louis San Francisco 
Walls A and B OP LS IO CP 
Wall 1  OP LS IO N.A. 
Wall 2  IO LS IO N.A. 
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APPENDIX E 

NOLINEAR STATIC DESIGN PROCEDURE FOR THE TEST STRUCTURE 

 

 
E.1 Introduction   

The Nonlinear Static Procedure (NSP) uses simplified nonlinear techniques to 

estimate the deformation of a structure under lateral forces, including seismic loads. In 

order to use this procedure, the higher order modes of the structure should not have 

significant effects on its response (FEMA 356 2.4.1, ATC 2000). The URM building 

tested satisfies this requirement. Therefore, NSP was used to analyze the test structure. 

Similar assumptions as those used for LSP were used for NSP. Again, two different 

earthquake hazard levels, including BSE-1 and BSE-2, were considered in the analysis. 

 

E.2. Seismic hazard and target displacement 

The seismic hazard and the corresponding target displacements for the test 

structure were determined as follows. 

 

E.2.1 Model characteristics 

The following characteristics were assumed in the analyses of the test structure:  

• Site class: B 

• 5% effective viscous damping, BS=B1=1.0 

• W: 201 kips 

In addition, similar to the LSP, a fundamental period of 0.3 seconds was assumed 

for the test structure. 
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E.2.2. Target Displacements 

The target displacements for the test structure can be calculated by: 

g
T

SCCCC e
at 2

2

3210
4π

δ =    (FEMA 356 3-15) 

where C0 is given by FEMA 356 Table 3-2. For the tested two-story shear building, C0 

was assumed to be 1.5. The values of Cm, C2 and C3 were assumed to be 1.0. The same 

value as that used for LSP was used for C1 herein, since Vy was unknown. 

Based on the above equation, the target displacements for the test structure were 

calculated and are listed in Tables E.1 and E.2 for the BSE-1 and the BSE-2 levels, 

respectively. 

 

 

Table E.1. Target displacements for the test structure at the BSE-1 level 
 Atlanta Memphis St. Louis San Francisco 

SS (g)  0.11 0.28 0.21 1.21 
S1 (g) 0.04 0.07 0.056 0.58 

Fa 1.0 1.0 1.0 1.0 
FV 1.0 1.0 1.0 1.0 

SXS=FaSS 0.11 0.28 0.21 1.21 
SX1=FVS1 0.04 0.07 0.056 0.58 

Seismicity Zone 
(1.6.3.1) 

Low Moderate Moderate High 

Ts=(SX1BS/SXSB1) 0.364 0.25 0.27 0.48 
T0 0.0728 0.05 0.054 0.096 

Sa (g) 0.11 0.233 0.187 1.21 
C1 1.12 1.0 1.0 1.24 
tδ  (in) 0.16 0.31 0.25 1.98 

* SS and S1 for BSE-1 should be less than 2/3 of the corresponding values of BSE-2. 
* 1g =386 in/s2 
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Table E.2. Target displacements for the test structure at the BSE-2 level 
 Atlanta Memphis St. Louis San Francisco 

SS (g)  0.26 1.3 0.6 1.81 
S1 (g) 0.11 0.4 0.19 1.0 

Fa 1.0 1.0 1.0 1.0 
FV 1.0 1.0 1.0 1.0 

SXS=FaSS 0.26 1.3 0.6 1.81 
SX1=FVS1 0.11 0.4 0.19 1.0 

Seismicity Zone 
(1.6.3.1) 

Low Moderate Moderate High 

Ts=(SX1BS/SXSB1) 0.423 0.31 0.32 0.553 
T0 =0.2 Ta 0.0846 0.062 0.064 0.111 

Sa (g)  (Fig. 1-1) 0.26 1.3 0.6 1.81 
C1  (3.3.3.3.2) 1.19 1.02 1.05 1.28 

tδ  (in) 0.41 1.75 0.83 3.06 
 

 

 

E.3. Component design deformations  

Since the test URM building features flexible roof and floor diaphragms, the four 

walls of the test structure, Walls 1, 2, A and B can be checked individually for their 

performance. A nonlinear model for a typical URM perforated wall is shown in Figure 

E.1. It is composed of rigid spandrels and nonlinear piers. The target displacement, tδ , 

was applied at the top of the building. For the second floor lateral displacement, two 

types of displacement profiles, with the ratio (K) between the second floor displacement 

and the roof floor displacement equal to 1 or 0.5, were applied to each wall. 

 The design deformation for each pier is easy to obtain since the spandrel is 

assumed rigid and all the lateral displacement of the wall concentrates on the piers. The 

design displacements for each pier are listed in Tables E.3 through E.6 for the different K 

values and earthquake levels. 
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Figure E.1.  Nonlinear pushover model for a perforated URM wall 

 

 

Table E.3. Design displacements for each component (in.)  (BSE-1 and K=1) 
Pier Atlanta Memphis St. Louis San Francisco 
A-2 0 0 0 0 
A-3 0 0 0 0 
A-4 0 0 0 0 
A-5 0 0 0 0 
A-7 0.16 0.31 0.25 1.98 
A-8 0.16 0.31 0.25 1.98 
A-9 0.16 0.31 0.25 1.98 
A-10 0.16 0.31 0.25 1.98 
1-2 0 0 0 0 
1-3 0 0 0 0 
1-4 0 0 0 0 
1-6 0.16 0.31 0.25 1.98 
1-7 0.16 0.31 0.25 1.98 
2-2 0 0 0 0 
2-3 0 0 0 0 
2-4 0 0 0 0 
2-5 0 0 0 0 
2-7 0.16 0.31 0.25 1.98 
2-8 0.16 0.31 0.25 1.98 
2-9 0.16 0.31 0.25 1.98 

* Wall B is not listed since it is identical to Wall A. 

 

 

 

 

tδ

tkδ



 595

Table E.4. Design displacement for each component (in.) (BSE-1 and K=0.5) 
Pier Atlanta Memphis St. Louis San Francisco 
A-2 0.08 0.16 0.13 0.99 
A-3 0.08 0.16 0.13 0.99 
A-4 0.08 0.16 0.13 0.99 
A-5 0.08 0.16 0.13 0.99 
A-7 0.08 0.16 0.13 0.99 
A-8 0.08 0.16 0.13 0.99 
A-9 0.08 0.16 0.13 0.99 
A-10 0.08 0.16 0.13 0.99 
1-2 0.08 0.16 0.13 0.99 
1-3 0.08 0.16 0.13 0.99 
1-4 0.08 0.16 0.13 0.99 
1-6 0.08 0.16 0.13 0.99 
1-7 0.08 0.16 0.13 0.99 
2-2 0.08 0.16 0.13 0.99 
2-3 0.08 0.16 0.13 0.99 
2-4 0.08 0.16 0.13 0.99 
2-5 0.08 0.16 0.13 0.99 
2-7 0.08 0.16 0.13 0.99 
2-8 0.08 0.16 0.13 0.99 
2-9 0.08 0.16 0.13 0.99 

 

 

Table E.5. Design displacement for each component (in.) (BSE-2 and K=1) 
Pier Atlanta Memphis St. Louis San Francisco 
A-2 0 0 0 0 
A-3 0 0 0 0 
A-4 0 0 0 0 
A-5 0 0 0 0 
A-7 0.41 1.75 0.83 3.06 
A-8 0.41 1.75 0.83 3.06 
A-9 0.41 1.75 0.83 3.06 
A-10 0.41 1.75 0.83 3.06 
1-2 0 0 0 0 
1-3 0 0 0 0 
1-4 0 0 0 0 
1-6 0.41 1.75 0.83 3.06 
1-7 0.41 1.75 0.83 3.06 
2-2 0 0 0 0 
2-3 0 0 0 0 
2-4 0 0 0 0 
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Table E.5 (cont’) 
2-5 0 0 0 0 
2-7 0.41 1.75 0.83 3.06 
2-8 0.41 1.75 0.83 3.06 
2-9 0.41 1.75 0.83 3.06 

 

 

Table E.6. Design displacements for each component (in.) (BSE-1 and K=0.5) 
Pier Atlanta Memphis St. Louis San Francisco 
A-2 0.22 0.88 0.42 1.53 
A-3 0.22 0.88 0.42 1.53 
A-4 0.22 0.88 0.42 1.53 
A-5 0.22 0.88 0.42 1.53 
A-7 0.22 0.88 0.42 1.53 
A-8 0.22 0.88 0.42 1.53 
A-9 0.22 0.88 0.42 1.53 
A-10 0.22 0.88 0.42 1.53 
1-2 0.22 0.88 0.42 1.53 
1-3 0.22 0.88 0.42 1.53 
1-4 0.22 0.88 0.42 1.53 
1-6 0.22 0.88 0.42 1.53 
1-7 0.22 0.88 0.42 1.53 
2-2 0.22 0.88 0.42 1.53 
2-3 0.22 0.88 0.42 1.53 
2-4 0.22 0.88 0.42 1.53 
2-5 0.22 0.88 0.42 1.53 
2-7 0.22 0.88 0.42 1.53 
2-8 0.22 0.88 0.42 1.53 
2-9 0.22 0.88 0.42 1.53 

 

 

 Based on previous research, it is well known that the nonlinear response of a low-

rise URM building is controlled by its first story piers. For the first story piers, the lateral 

displacement profile with K =1 gives the worst case scenario. In this case, the design 

lateral deformations of the controlling components of the test structure are listed in terms 

of drift in Tables E.7 and E.8 for the BSE-1 and the BSE-2 levels, respectively. 
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Table E.7. Design displacement drift for each component (%) (BSE-1) 
Pier Atlanta Memphis St. Louis San Francisco 
A-7 0.19 0.37 0.30 2.36 
A-8 0.34 0.65 0.52 4.15 
A-9 0.34 0.65 0.52 4.15 
A-10 0.34 0.65 0.52 4.15 
1-6 0.19 0.37 0.30 2.36 
1-7 0.19 0.37 0.30 2.36 
2-7 0.17 0.33 0.27 2.11 
2-8 0.17 0.33 0.27 2.11 
2-9 0.17 0.33 0.27 2.11 

* Wall B is not listed since it is identical to Wall A. 

 

 
Table E.8. Design displacement drift for each component (%) (BSE-2) 
Pier Atlanta Memphis St. Louis San Francisco 
A-7 0.49 2.09 0.99 3.65 
A-8 0.86 3.67 1.74 6.42 
A-9 0.86 3.67 1.74 6.42 
A-10 0.86 3.67 1.74 6.42 
1-6 0.49 2.09 0.99 3.65 
1-7 0.49 2.09 0.99 3.65 
2-7 0.44 1.86 0.88 3.26 
2-8 0.44 1.86 0.88 3.26 
2-9 0.44 1.86 0.88 3.26 

 

 

E.4. Force-deformation relationship for each component 

 Based on FEMA 356, a deformation-controlled pier and a force-controlled pier 

exhibit different generalized force-deformation relationships. They are shown in Figure 

E.2. 
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(a) deformation-controlled pier                        (b) Force-controlled pier 
Figure E.2. Force-displacement relationship for a URM pier 

 

 

 Figure E.2 (a) is based on a small modification of Fig. 7-1 of FEMA 356 for the 

following reasons. First, FEMA 356 does not identify the value of point D in Fig. 7-1. 

Therefore, a linear relation instead of a bilinear relation is used between Point C and 

Point E herein. Second, FEMA gives a very small value for the strength corresponding to 

Point E. To make the analysis simple, a zero strength is assumed for Point E in the 

current analysis. Figure E.2 (b) is used for a force-controlled component. No slope is 

identified in FEMA 356 for the portion after the peak point. Therefore, it is assumed that 

the pier will rapidly lose its strength as soon as its lateral deformation passes Point B.  

 The maximum strength and failure mode for each pier were calculated based on 

FEMA equations. The force-deformation relationships obtained for all the first story piers 

are listed in Table E.9. 
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Table E.9.Force-deformation relationships for all the first-story piers 
 

Wall  
Pier Failure 

mode 
Vy 

(kips) 
E1 

(kips/in)
a 

(%) 
d 

(%) 
e 

(%) 
IO 
(%) 

LS 
(%) 

CP 
(%)

A-7 Rocking 6.81 0 0.011 0.7 1.4 0.1 0.53 0.7 
A-8 Toe 

Crushing 8.58 - 0.012 - - 
 
- 

 
- 

 
- 

A-9 Toe 
Crushing 8.91 - 0.012 - - 

 
- 

 
- 

 
- 

 
A 
 

B 

A-10 Toe 
Crushing 11.00 - 0.011 - - 

 
- 

 
- 

 
- 

1-6 Sliding 52.57 0 0.014 0.4 0.8 0.1 0.3 0.4 1 
1-7 Rocking 4.33 0 0.011 0.7 1.4 0.1 0.53 0.7 
2-7 Rocking 4.42 0 0.013 0.8 1.6 0.1 0.6 0.8 
2-8 Rocking 1.57 0 0.026 1.6 3.2 0.1 1.2 1.6 

 
2 

2-9 Rocking 5.10 0 0.015 0.8 1.6 0.1 0.6 0.8 
 

 

E.5. Acceptance criteria 

The acceptance criteria for the performance of the test structure gave a particular 

probabilistic seismic hazard can be checked according to the following rules: 

1) In the case of primary and secondary components with deformation-controlled 

actions, the components shall have expected deformation capacities not less than 

maximum deformation demands calculated at the target displacement. 

2) In the case of primary and secondary components with deformation-controlled 

actions, the base shear at the target displacement, Vt, shall not be less than 80% of the 

effective yield strength of the structure, Vy. 

3) In the case of primary and secondary components with force-controlled actions, 

primary and secondary components shall have lower bound strengths not less than the 

maximum design forces.  
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 The acceptance criteria obtained for each pier in the test structure are listed in 

Tables E.10 and E.11 for the BSE-1 and BSE-2 levels, respectively.  

 

 

Table E.10.  Performance of each component (BSE-1) 
Wall  Pier Atlanta Memphis St. Louis San Francisco 

A-7 LS LS LS NA 
A-8 NA NA NA NA 
A-9 NA NA NA NA 

 
A, B 

A-10 NA NA NA NA 
1-6 LS LS LS NA 1 
1-7 LS LS LS NA 
2-7 LS LS LS NA 
2-8 LS LS LS NA 

 
2 

2-9 LS LS LS NA 
* Wall B is not listed since it is identical to Wall A. 

 

 

Table E.11. Performance of each component  (BSE-2) 
Pier Atlanta Memphis St. Louis San Francisco 
A-7 LS NA NA NA 
A-8 NA NA NA NA 
A-9 NA NA NA NA 
A-10 NA NA NA NA 
1-6 NA NA NA NA 
1-7 LS NA NA NA 
2-7 LS NA NA NA 
2-8 LS NA CP NA 
2-9 LS NA NA NA 

* Wall B is not listed since it is identical to Wall A. 
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APPENDIX F 

RIGID BODY ANALYSES FOR THE TEST STRUCTURE 

 

 

F.1. Wall 2 in the push direction and the pull direction 

 The observed kinematic movement of Wall 2 when loaded from left to right (in 

the push direction) is illustrated in Figure F.1. The three first story piers rocked about 

their individual right toes, while the entire second floor wall was lifted and pushed to the 

right due to the movement of the first story piers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.1. Kinematic movement of Wall 2 when loaded in the push direction 
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Assuming the three first story piers exhibit the same lateral displacement, u, at the top of 

the piers, the vertical movements at the tops of the piers can be calculated as: 

v7=48u/142=0.338u,  v8=24u/94=0.255u, v9=48u/94=0.511u  (F.1) 

 Apparently, since v8 is less than v7 and v9, Pier 2-8 is actually separated from the 

spandrel and left behind. It has no contribution to the lateral resistance of the wall. As a 

result, the internal force distribution of Wall 2 can be assumed as shown in Figure F.2 

The following equations can be used to describe the equilibrium of the three rigid 

bodies:  

7142724748748 PWWF f ⋅=⋅+⋅+⋅     

994924948 PWF =+      

2197 PPPP +=+      

32197 WWWFF ++=+      

1102225274834821741547252 WWPWPPF ++=+++   (F.2)  

 The weight of each component, including the flange weight W2, W3, W7f, and 

W9f (the superscript indicates the flange portions), can be calculated based on the crack 

pattern observed in the test and the rules specified in Chapter 9. The results are listed in 

Table F.1. 

 

 

Table F.1.  Weight used in the right body analysis for Wall 2 (push direction) 
 W1 W2 W3 W7 W9 W7f 

Weight (kips) 25.43 7.93 14.41 3.05 2.43 5.68 
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Figure F.2. Internal force distribution in Wall 2 when loaded from left to right 

 

 

Assuming the lateral force applied on the roof is the same as that applied on the 

second floor, i.e., 

P1 = P2     (F.3) 

 Substituting Eq. (F.3) into Eq. (F.2) and assuming the values from Table F.1, the 

lateral force corresponding to the kinematic mechanism shown in Figure F.2 can be 

calculated to be 26.7 kips, which is  close to the values measured in the test (27 kips). 

When Wall 2 is loaded in the pull direction, the kinematic mechanism is basically the 
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mirror image of what is shown in Figure F.1. The flange sizes for the wall are the same as 

those listed in Table F.1. As a result, the predicted ultimate base shear for Wall 2 in the 

pull direction is 26.7 kips, which is also close to the measured results (24 kips). 

  

F.2. Wall 1 in the push direction 

The observed kinematic movement and the corresponding internal and external 

force distribution in Wall 1 when loaded in the push direction are illustrated in Figure 

F.3. The majority of Wall 1 rocks about its left toe, while Pier 1-7 is left behind.   

The moment equilibrium equation about the left toe of Pier 1-6 gives: 

 2268114823001150 PPWW +=+    (F.4) 

The external forces P1 is assumed equal to P2, i.e.,  

P1 = P2      (F.3) 

The self-weight of W1 can be calculated as 37.4 kips. There are two estimates for 

the flange weight W2 as listed in Table F.2. 

Solving Eqs. (F.3) and (F.4) and considering Table F.2, the maximum lateral 

force for the push direction is 56 kips for Cycle 6 when no substantial crack is observed, 

and is 37.5 kips corresponding to the ultimate failure mechanism as shown in Figure F.3. 

Both the values are close to the measured values obtained from the test (60 kips 

maximum and 40 kips ultimate). 
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Figure F.3. Kinematic movements and internal force distribution in Wall 1 when loaded 

in the push direction 

 

 

Table F.2. Weights used in the right body analysis for Wall 1 (push direction) 
Cycle 6 The weight of a trapezoid from the bottom of Wall 1 

before any cracks in Wall 1 is observed. 
= 20.3 kips 

> Cycle 7 Triangular weight at the second floor of Wall 1 due to the 
ultimate crack 
=7.3 kips 

 

 

 

F.3. Wall 1 in the pull direction 

The observed kinematic movement of Wall 1 in the pull direction is slightly 

different before and after Pier 1-6 slides.  Before Pier 1-6 slides, the kinematic 
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mechanism of Wall 1 is illustrated in Figure F.4. Both Pier 1-6 and Pier 1-7 rocked 

around their individual right toes, while the entire second floor wall was lifted and pulled 

to the right due to the movement of the first story piers. Since v6 is larger than v7 due to 

the different aspect ratio between Piers 1-6 and 1-7, the lift up at the left side of Wall 1 is 

larger than that at the rigid side of Wall 1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure F.4. Kinematic movement of Wall 1 before Pier 1-6 slides (pull direction) 

 

 

The internal force distribution of Wall 1 is shown in Figure F.5. The following 

equations can be used to describe the equilibrium of the three rigid bodies:  
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6148610562106210 PWWF f ⋅=⋅+⋅+⋅     

784724748 PWF =+      

2176 PPPP +=+      

32176 WWWFF ++=+      

166225266434821841646252 WWPWPPF ++=+++   (F.5)  

 The weight of each component, including the flange weight W2, W3, W7f, and 

W9f, can be calculated based on the crack pattern observed in the test and the rules 

specified in Chapter 9. The results are listed in Table F.3. 

Substituting Eq. (F.3) into Eq. (F.5) and introducing the values listed in Table F.3, 

the lateral shear corresponding to the rocking failure mechanism can be calculated to be 

56.8 kips, which is close to the measured value (55 kips). 

On the other hand, after Pier 1-6 slides, although the kinematic mechanism of 

Wall 1 is still similar to Figure F.4, the uplift of v6 is smaller because of the sliding of 

Pier 1-6. The first equation in Eq. (F.5) has to be changed to  

( )6666 FWWP f ++= µ     (F.5*) 

where the shear friction µ is assumed to be 1.0 based on the material test discussed in 

Chapter 3. 

Changing Eq. (F.5) based on Eq. (F.5*), and considering Eq. (F.3) and Table F.3, 

the lateral forces corresponding to the shear failure mechanism can be calculated to be 

49.6 kips, which is close to the values measured in the test (47 kips). 
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Figure F.5. Internal force distribution in Wall 1 before Pier 1-6 slides (pull direction) 

 

 

Table F.3. Weights used in the right body analysis for Wall 1 (pull direction) 
 W1 W2 W3 W6 W7 W6f 

Weight 
(kips) 

24.3 6.44 6.44 13.1 3.0 23.2 
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 Wall B in both the push and pull directions and Wall A in the pull direction 

exhibited similar kinematic mechanisms but with different flange weights. As a result, 

they are discussed as a group here. Taking Wall B as an example, when the wall was 

loaded in the pull direction, the ultimate kinematic mechanism is shown in Figure F.6. 

All three first story piers on the left side of the wall rock, while Pier B-10 is left behind. 

However, since v9 is smaller than v8, only Pier B-7 and B-8 support the second floor 

wall.  

The internal force distribution of Wall B is shown in Figure F.7. Based on the 

equilibrium equations of the three rigid bodies, the following equations can be obtained:  

784724748 PWF ⋅=⋅+⋅     

84885.20841 PWF =+      

2187 PPPP +=+      

32187 WWWFF ++=+      

110022483482184164882 WWWPPF +=+++   (F.6)  

 The weight of each component, including the flange weight W2, W3, W7f, and 

W9f, can be calculated based on the crack pattern observed in the test and the rules 

specified in Chapter 9. The results are listed in Table F.4. The weights for the other cases 

are also listed in this table. 

Solving Eq. (F.6), Eq. (F.3) and considering Table F.4, the base shear 

corresponding to the three cases can be calculated and listed in Table F.5. The 

experimental measurements are also listed in the table as a comparison. Again the 

analyses provide close predictions for the maximum strengths of the test. 
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Figure F.6. Kinematic movement of Wall B when loaded in the push direction 

 

 

Table F.4 Weights used in the right body analysis for Walls A and B (kips) 
 W1 W2 W3 W7 W8 

Wall B Push 42.6 14.8 9.8 3.4 1.6 
Wall B Pull 42.6 4.5 5.9 3.4 1.6 
Wall A Push 42.6 10.4 4.8 3.4 1.6 

 

 

Table F.5. Analyzed vs. measured maximum strengths for Walls A and B 
 Rigid body 

analysis 
Experimental results 

Wall B Push 46.0 43 
Wall B Pull 34.6 37 
Wall A Push 40.2 40 
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Figure F.7. Internal force distribution in Wall B when loaded in the push direction 

 

 

F.5. Wall B in the push and pull directions (sliding) 

 Relative sliding between Wall B first floor spandrel and the first floor piers is a 

possible kinematic mechanism for Wall B. In this case three first floor piers are engaged, 

as shown in Figure F.8.   
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Figure F.8 Kinematic movement of Wall B with sliding between spandrel and piers (push 
direction) 

 

 

Based on the equilibrium equations of the four rigid bodies, the following 

equations can be obtained:  

784724748 PWF ⋅=⋅+⋅  

84885.20841 PWF =+  

94895.20941 PWF =+  

( )321987 WWWPPP ++=++ µ  

21987 PPPPP +=++  

321987 WWWFFF ++=++  

1100224834821841649159882 WWWPPFF +=++++   (F.7)  
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 The weight of each component, including the flange weight W2, W3, W7f, and 

W9f, can be calculated based on the crack pattern observed in the test and the rules 

specified in Chapter 9. The results are listed in Table F.6.  

 

 

Table F.6 Weights used in the right body analysis for Wall B sliding (kips) 
 W1 W2 W3 W7 W8 W9 

Wall B Push 42.6 14.8 9.8 3.4 1.6 1.6 
 

 

Solving Eq. (F.7), Eq. (F.3) and considering Table F.6, the maximum strengths of 

Wall B calculated corresponding to the three cases are listed in Table F.7. The rigid body 

analysis points out that if the shear friction is 1.0 and the Wall B first floor spandrel slides 

on the top of the first floor piers, the ultimate strength of Wall B in the push direction is 

67 kips. Even if the shear friction factor is reduced to 0.7, the ultimate strength of Wall B 

is still 47 kips. Both the values are larger than the measured values. As a result, sliding is 

unlikely as a kinematic mechanism for Walls A and B.    

 

Table F.7. Analyzed vs. measured maximum strengths for Wall B  
 Rigid body 

analysis 
Experimental results 

Wall B Push 66.0 43 
 

 

F.6. Wall A in the push direction 

 The kinematic mechanism of Wall A in the push direction is slightly different 

from that in the pull direction. Again, all the three first story piers at the right side of the 
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wall tended to rock, while Pier A-7 was left behind. However, since there was a diagonal 

crack at the base of Pier A-9, the effective aspect ratio of Pier A-9 was the same as that of 

Pier A-10. As a result, the rigid body analysis shows that Pier A-9 separated from the 

second floor wall and only A-8 and A-10 support the displaced second floor wall.  The 

ultimate kinematic mechanism is shown in Figure. F.9.   

The internal force distribution of Wall A in the push direction is shown in Figure 

F.10. Based on the equilibrium equations of the three rigid bodies, the following 

equations can be obtained:  

108410241048 PWF ⋅=⋅+⋅     

84885.20841 PWF =+      

21810 PPPP +=+      

321810 WWWFF ++=+      

1100224834821841648159 WWWPPF +=+++   (F.8)  

 The weight of each component, including the flange weight W2 and W3, can be 

calculated based on the crack pattern observed in the test and the rules specified in 

Chapter 9. The results are listed in Table F.8.  

Solving Eqs. (F.8) and (F.3), and considering Table F.8, the base shear of Wall A 

in the push direction was calculated to be 33.9 kips.  This value is the same as the 

measured value of 33.9 kips. 
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Figure F.9.  Kinematic movement of Wall A (push direction) 

 

 

 

 

Table F.8. Weights used in the right body analysis for Wall A (push direction) (kips) 

W1 W2 W3 W10 W8 
42.6 4.84 5.3 3.4 1.6 
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Figure F.10.  Internal force distribution in Wall A (push direction) 

 

 

 

 

 

 

 

 

 

W2 

W3 

W1 

P8 

P8 

P2 

P1 

P10 
F8 

F10 

 W10 
 W8 

F8 

P10 
F10 



 617

REFERENCES 
 

 

Abell, A.B. and Lange, D.A. (1998). Fracture Mechanics Modeling Using Images of 
Fracture Surfaces. International Journal of Solids and Structure. Vol. 35, No. 31-32, 
pp. 4025-4034. 
 

ABK. (1981a). Methodology for Mitigation of Seismic Hazards in Existing 
Unreinforced Masonry Buildings: Diaphragm Testing. ABK-TR-03, Agbabian & 
Associates, S.B. Barnes & Associates, and Kariotis & Associates, EI Segundo, CA.  
 

ABK. (1981b). Methodology for Mitigation of Seismic Hazards in Existing 
Unreinforced Masonry Buildings: Wall Testing, Out-of-plane. ABK-TR-04, 
Agbabian & Associates, S.B. Barnes & Associates, and Kariotis & Associates, EI 
Segundo, CA. 
 

ABK. (1984). Methodology for Mitigation of Seismic Hazards in Existing 
Unreinforced Masonry Buildings: the Methodology. ABK-TR-08, Agbabian & 
Associates, S.B. Barnes & Associates, and Kariotis & Associates, EI Segundo, CA. 
 

Abrams, D. P. (1992). Strength and Behavior of Unreinforced Masonry Elements. 
10th World Conference on Earthquake Engineering, Madrid, Spain, pp. 3475-3480. 
 

Abrams, D.P. and Shah, N. (1992). Cyclic Load Testing of Unreinforced Masonry 
Walls. College of Engineering, University of Illinois at Urbana, Advanced 
Construction Technology Center Report #92-26-10. 
 

ACI Committee 318 (2002). Building Code Requirements for Structural Concrete 
(ACI 318-02) and Commentary (318R-02). American Concrete Institute, Farmington 
Hills, Mich.  
 

ACI Committee 530 (2002). Building Code Requirements for Masonry Structures 
(ACI 530-02) and Specification for Masonry Structures (530.1-02). American 
Concrete Institute, Farmington Hills, Mich.  
 



 618

Alshebani, Milad M. and Sinha, S.N. (1999). Stress-Strain Characteristics of Brick 
Masonry under Uniaxial Cyclic Loading. Journal of Structural Engineering, ASCE., 
Vol. 125, No.6, June 1999, pp. 600-604.  
 

Andream, U., and Ceradini, G. (1992). Failure Modes of Solid Brick Masonry under 
In-plane Loading. Masonry International, Vol. 6, No. 1, pp.4-8.  
 

Andream, U. (1996). Failure Criteria for Masonry Panels under In-plane Loading. 
Journal of Structural Engineering. ASCE., Vol. 122, No.1, Jan 1996, pp. 37-46.  
 

Anthoine, A., Magonette, G. and Magenes, G. (1995). Shear-Compression Testing 
and Analysis of Brick Masonry Walls. Proceedings of the 10th European Conference 
on Earthquake Engineering, Duma, the Netherlands. 

 

APA-the Engineered Wood Association (1985). Design/Construction Guide 
Residential and Commercial. Tacoma, Washington. 

 

APA-the Engineered Wood Association (1986). Plywood Design Specification. 
Tacoma, Washington. 
 
Applied Technology Council (ATC) (1987). Evaluating the Seismic Resistance of 
Existing Buildings. Report ATC-14, Applied Technology Council, Redwood City, 
CA. 

 

Applied Technology Council (ATC) (1989). A Hand Book for Seismic Evaluation of 
Existing Buildings. Report ATC-22, Applied Technology Council, Redwood City, 
CA. 

 

Applied Technology Council (ATC) (1997a). NEHRP Guidelines for the Seismic 
Rehabilitation of Buildings. Publication No. 273, Federal Emergency Management 
Agency, Washington, D.C. (FEMA-273). 

 

Applied Technology Council (ATC) (1997b). NEHRP Commentary on the 
Guidelines for the Seismic Rehabilitation of Buildings. Publication No.274, Federal 
Emergency Management Agency, Washington, D.C. (FEMA-274). 

 



 619

Applied Technology Council (ATC) (1999a). Evaluation of Earthqauke Damaged 
Concrete and Masonry Wall Buildings, Basic Procedures Manual. Publication 
No.306, Federal Emergency Management Agency, Washington, D.C. (FEMA-306). 

 

Applied Technology Council (ATC) (1999b). Evaluation of Earthqauke Damaged 
Concrete and Masonry Wall Buildings, Technical Resources. Publication No.307, 
Federal Emergency Management Agency, Washington, D.C. (FEMA-307). 
 

Applied Technology Council (ATC) (2000). Prestandard and Commentary for the 
Seismic Rehabilitation of Buildings. Publication No.356, Federal Emergency 
Management Agency, Washington, D.C. (FEMA-356). 
 

ASTM C270-57T (1958). Tentative Specification for Mortar for Unit Masonry. West 
Conshohocken, Pennsylvania. 
 

ASTM E447 (1997). Test Methods for Compressive Strength of Masonry Prisms. 
West Conshohocken, Pennsylvania.  
 

ASTM E111 (1997). Test Method for Young’s Modulus, Tangent Modulus, and 
Chord Modulus. West Conshohocken, Pennsylvania.  
 

ASTM C67 (1998). Standard Test Methods for Sampling and Testing Brick and 
Structural Clay Tile. West Conshohocken, Pennsylvania. 
 

ASTM E519 (2000). Method for Diagonal Tension (Shears in Masonry 
Assemblages). West Conshohocken, Pennsylvania.  
 

ASTM C1072 (2000). Standard Test Method for Measurement of Masonry Flexural 
Bond Strength. West Conshohocken, Pennsylvania. 
 

ASTM E72 (2002). Method for Conducting Strength Tests of Panels for Building 
Construction. West Conshohocken, Pennsylvania.  
 

Atkinson, R.H., Amadei, B.P., Saeb, S. and Sture, S. (1989). Response of Masonry 
Bed Joints in Direct Shear. Journal of Structural Engineering. ASCE., Vol. 115, No. 
9, pp. 2276-2296. 



 620

Augarde, C. (2001). Settlement Induced Damage to Masonry Buildings, in 
Computational Modeling of Masonry, Brickwork and Blockwork Structures. Edited 
by Bull, J.W., Saxe-Coburg Publications, UK. 
 

Bariola, J., Ginocchio, J.F., and Quiun, D. (1990). Out-of-plane Response of Brick 
Walls. Proceedings of the Fifth North American Masonry Conference, Urbana-
Champaign, III, Vol.1, pp. 429-439. 
 

Benedetti, D. and Benzoni, G.M. (1984). A Numerical Model for Seismic Analysis of 
Masonry Buildings: Experimental Correlations. Earthquake Engineering and 
Structural Dynamics, Vol.12, pp. 817-831. 
 

Benjamin, J.R. and Williams, H. (1958). The Behavior of One-Story Brick Shear 
Walls. Journal of the Structural Division, Proceedings of the ASCE, Paper 1723, ST4, 
July. 
 

Bicanic, N., Ponniah, D. and Robinson, J. (2001). Discontinuous Deformation 
Analysis of Masonry Bridges, in Computational Modeling of Masonry, Brickwork 
and Blockwork Structures. Edited By Bull, J.W., Saxe-Coburg Publications, U.K. 
 

Boussabah, L. and Bruneau, M. (1992). Review of the Seismic Performance of 
Unreinforced Masonry Wall. 10th World Conference on Earthquake Engineering, 
Madrid, Spain, pp. 4537-4540. 
 

Bruneau M. (1994a). Seismic Evaluation of Unreinforced Masonry Buildings – a 
State-of-the-Art Report. Canadian Journal of Civil Engineering. Vol. 21, pp. 512-539. 
 

Bruneau M. (1994b). State-of-the-Art Report on Seismic Performance of 
Unreinforced Masonry Buildings. Journal of Structural Engineering, ASCE., Vol. 
120, No. 1, pp. 230-251. 
 

Bruneau M. (1995). Performance of Masonry Structures during the 1994 Northridge 
(Los Angeles) Earthquake. Canadian Journal of Civil Engineering. Vol. 22, pp. 378-
402. 
 

Bull J.W. (Editor). Computational Modeling of Masonry, Brickwork and Blockwork 
Structures. Saxe-Coburg Publications, Stirling, Scotland, 2001, pp. 53-77. 



 621

 

Calvi, G.M., Magenes, Gi, Magenes, Gu and Pavese, A. (1995). Experimental and 
Numerical Investigation on a Brick Masonry Building Prototype, Report 3.0, 
Numerical Prediction of the Experiment. Gruppo Nazionale Per La Difesa Dai 
Terremoti. 
 

Calvi, G. M., Gregory, R. K. and Magenes, G. (1996). Testing of Masonry Structures 
for Seismic Assessment. Earthquake Spectra, Vol. 12, No.1, pp. 145-162. 
 

Chiostrini. S. and Vignoli, A. (1989). An Application of a Numerical Method to 
Study Masonry Panels with Various Geometry under Seismic Loads. Proceedings of 
the First International Conference on Structural Repair & Maintenance of Historical 
Buildings, Florence, Italy. 
 

Chiostrini, S., Foraboschi, P. and Sorace, S. (1989). Problems Connected with the 
Arrangement of a Non-Linear Finite Element Method to the Analysis of Masonry 
Structures. Proceedings of the First International Conference on Structural Repair & 
Maintenance of Historical Buildings, Florence, Italy, pp. 525-534. 
 

Chiostrini, S., Maestrelli, L. and Vignoli, A. (1995). Numerical Simulation of 
Destructive Tests on a Full-Scale Brick-Masonry Prototype, in Experimental and 
Numerical Investigation on a Brick Masonry Building Prototype. Report 3.0, Gruppo 
Nazionale La Difesa Dai Terremoti. 
 

Clemson University (2000). Test Results for Bricks and Mortar Samples. The 
National Brick Research Center, Clemson University, SC. 
 

Clough, R. H., Mayes R. L. and Gulkan, P. (1979). Shaking Table Study of Single-
Story Masonry Houses, Vol.3: Summary, Conclusions, and Recommendations. 
Report No. UCB/EEERC-79/25, University of California, Berkeley, CA.  
 

Costley, A.C. and Abrams, D.P. (1996). Dynamic Response of Unreinforced Masonry 
Buildings with Flexible Diaphragms. NCEER-96-0001, University of Buffalo, 
Buffalo, N.Y. 
 

Countryman, D. (1952). Lateral Tests on Plywood Sheathed Diaphragms. Laboratory 
Report 55,  Douglas Fir Plywood Association, Tacoma, Washigton. 



 622

 

Deppe, K. (1988). The Whittier Narrows, California Earthquake of October 1, 1987-
Evaluation of Strengthened and Unstrengthened Unreinforced Masonry in Los 
Angeles City. Earthquake Spectra, Vol. 4, No.1, pp. 157-180. 
 

Dialer, C. (1991). Some Remarks on the Strength and Deformation Behavior of Shear 
Stressed Masonry Panels under Static Monotonic Loading. Proceeding of the 9th 
IBMAC, Berlin, German, Vol. 1, pp. 276-283.  
 

Dhanasekar, M., Page, A. W. and Kleeman, P. W. (1985a). The Failure of Brick 
Masonry under Biaxial Stresses. Proceedings Institution of Civil Engineers, London, 
U.K., Part 2, pp. 295-313.  
 

Dhanasekar, M., Page, A. W. and Kleeman,P. W. (1985b). The Behavior of Brick 
Masonry under Biaxial Stresses with Particular Reference to Infill Frames. Seventh 
Boume, Australia, Vol. 2, pp. 815-824.  
 

Drysdale. R. G., Vanderkeyl, R.V., and Hamid, A. A. (1979). Shear Strength of Brick 
Masonry Joints. Proceeding of 5th International Brick Masonry Conference, Paper II-
13, Washington, D.C.  
 

Drysdale. R. G. and Hamid, A. A. (1984). Tensile Failure Criteria for Plain Concrete 
Masonry. Journal of Structural Engineering, ASCE., Vol.110, No.2, pp. 228-244.  
 

Drysdale, R. G. and Essawy, S. (1988). Out-of-plane Bending of Concrete Block 
Walls. Journal of Structural Engineering, ASCE., Vol. 114, No.1, pp.121-133. 
 

Ehsani, M. and Wight, J. K. (1985). Effects of Transverse Beams and Slab on Beam-
to-Column Connections. ACI Structural Journal, Vol. 82, No. 2, pp. 188-195. 
 

Epperson, G.S. and Abrams, D.P. (1989). Nondestructive Evaluation of Masonry 
Buildings. College of Engineering, University of Illinois at Urbana, Advanced 
Construction Technology Center, Report #89-26-03. 
 



 623

Epperson, G.S. and Abrams, D.P. (1992). Evaluating of Lateral Strength of Existing 
Unreinforced Brick Piers in the Laboratory.  The Masonry Society Journal, February, 
pp. 86-93. 
 

Erbay, O. and Abrams, D. P. (2002). Seismic Rehabilitation of Unreinforced Masonry 
Shear Walls. Seventh U.S. National Conference on Earthquake Engineering, July 21-
25, Boston, USA.  
 

Eurocode 6 (1995). Design of Masonry Structures, Part 1-1: General Rules for 
Buildings. Rules for Reinforced and Unreinforced Masonry, ENV. 1996-1-1: 1995, 
CEN, Brussels. 
 
Evans, H.R. and Taherian, A.R. (1980). A Design Aid for Shear Lag Calculations. 
Proceedings Institution of  Civil Engineers, Part 2, Vol. 69, pp. 403–24. 
 

FEMA (1992a).  NEHRP Handbook for the Seismic Evaluation of Existing 
Buildings. Federal Emergency Management Agency, Washington, D.C. 
 

FEMA (1992b).  NEHRP Handbook of Techniques for the Seismic Rehabilitation of 
Existing Buildings. Federal Emergency Management Agency, Washington, D.C. 
 

Franklin, S., Lynch, J. and Abrams, D. P. (2001). Performance of Rehabilitated URM 
Shear Walls: Flexural Behavior of Piers. Department of Civil Engineering, University 
of Illinois at Urbana-Champaign Urbana, Illinois.  
 

Frederick, P., Spalding, A., Lincoln, H. and Robinson, E. F. (1926). Masonry 
Structures. Press of Braunworth & Co., Inc., New York. 
 

Gambarotta, L., Lagomarsino, S. and Morbiducci, R. (1995). Two-Dimensional Finite 
Element Simulation of a Large Scale Brick Masonry Wall through a Continuum 
Damage Model, in Experimental and Numerical Investigation on a Brick Masonry 
Building Prototype. Report 3.0, Gruppo Nazionale La Difesa Dai Terremoti. 
 

Gambarotta, L. and Lagomarsino, S. (1997). Damage Models for the Seismic 
Response of Brick Masonry Shear Walls, Part I: the Mortar Joint Model and Its 
Applications. Earthquake Engineering and Structure Dynamics, Vol. 26, pp. 423-439. 
 



 624

Ganz, H. R. (1985). Mauerwerksscheiben Unter Nonnaikraft Und Schub. Bericht- Nr. 
148, Institut Filr Baustatik Und Konstruktion Etih, Zcirich, Switzerland (In German).  
 

Ganz, H. R. (1989). Failure Criteria for Masonry. Proceeding of 5th Canada Masonry 
Symposium, Vol.1, pp. 65-77.  
 

Ganz, H. R. and Thurlimann, B. (1982). Versuche Uber Die Festigkeit Von 
Zweiachsig Beanspruchtem Mauerwerk. Bericht Nr. 7502-3, Institut Fur Baustatik 
Und Konstruktion Eth, Zurich, Switzerland (In German).  
 

Ganz, H. R. and Thurlimann, B. (1984). Bruchbedingung Fur Zweiachsig 
Beanspruchtes Mauerwcrk Bericht Nr. 143, Institut Fur Baustatik Und Konstruktion 
Eth, Zurich, Switzerland (In German).  
 

Gavarini, C., Andreaus, U., Carriero, A., Asdia, P.D., Dayala, D., Ippoliti, L., 
Mollaioli, F., Valente, G. and Viskovic, A. (1995). Numerical Modeling of 
Unreinforced Masonry Building, in Experimental and Numerical Investigation on a 
Brick Masonry Building Prototype. Report 3.0, Gruppo Nazionale La Difesa Dai 
Terremoti. 
 

Gere, J.M. and Timoshenko, S. P. (1990). Mechanics of Materials. 3rd, Boston, Pws-
Kent Pub. Co. 
 

Goodman, R.E. (1980). Introduction to Rock Mechanics. John Wiley & Sons, 
Hoboken, NT. 
 

Goodman, R.E. and Shi, G. (1985). Block Theory and Its Application to Rocking 
Engineering, Prentice-Hall, Inc., Englewood Cliffs, New Jersey. 
 

Gulkan, P., Ray, H., Mayes, R. L. and Clough, R. W. (1979). Shaking Table Study of 
Single-Story Masonry Houses, Vol. 1: Test Structures 1 and 2. Report No. 
UCB/EERC-79/23, University of California, Berkeley, CA. 
 

Gulkan, P., Ray, H., Mayes, R. L. and Clough, R. W. (1979). Shaking Table Study of 
Single-Story Masonry Houses, Vol. 2: Test Structures 3 and 4. Report No. 
UCB/EEERC-79/24, University of California, Berkeley, CA. 
 



 625

Gulkan, P., Clough, R. W., Mayes, R. L. and Manos, G. C. (1990). Seismic Testing of 
Single-Story Masonry Houses. Part 1, Journal of Structural Engineering, ASCE, Vol. 
116, No. 1, pp. 235-256. 
 

Hamid, A. A., Drysdale, R. G. and Heidebrecht, A. C. (1979). Shear Strength of 
Concrete Masonry Joints. Journal of Structural Engineering, ASCE., Vol. 105, No.7, 
pp. 1227-1240.  
 
Hamid, A. A. and Drysdale, R. G. (1980). Behavior of Brick Masonry under 
Combined Shear and Compression Loading. Proceeding of the 2nd Canada Masonry 
Symposium, pp. 51-64.  
 

Hamid, A. A. and Drysdale, R. G. (1981). Proposed Failure Criteria for Concrete 
Block Masonry under Biaxial Stresses. Journal of Structural Engineering, ASCE., 
Vol. 107, No.8, pp. 1675-1687.  
 

Hamid, A. A. and Drysdale, R. G. (1982). Proposed Failure Criteria for Brick 
Masonry under Combined Stresses. Proceeding of the 2nd North American Masonry 
Conference, College Park, Md., pp. 9.2- 9.11.  
 

Hamid, A. A., Ziab, G. and Naway, O. E. (1987). Modulus of Elasticity of Concrete 
Block Masonry. The 4th North American Masonry Conference, Los Angeles, USA, 
Aug. 
 

Hassan, M. and Ei-Tawil, S. (2003). Tension Flange Effective Width in Reinforced 
Concrete Shear Walls. ACI Structural Journal, Vol. 100, No. 3, pp. 349-356. 
 

Hegemeir, G. A., Nunn, R. O., and Arya, S. K. (1978). Behavior of Concrete 
Masonry under Biaxial Stress. Proceeding of the 1st North American Masonry 
Conference, Boulder, Colo., pp.1-24.  
 

Hosoyama, H., Abe, I., Kitagawa, Y. and Okada, T. (1995). Shaking Table Tests of 
Three-Dimensional Scale Models of Reinforced Concrete High-Rise Frame 
Structures with Wall Columns. ACI Structural Journal, Vol. 92, No. 6, pp. 765-780. 
 

ICBO (1997). Uniform Code for Building Conservation. International Conference of 
Building Officials, Whittier, CA. 
 



 626

Jonhson, J. W. (1956). Lateral Tests on Full-Scale Lumber and Plywood-Sheathed 
Roof Diaphragms.  The American Society of Mechanical Engineers (ASME), Paper 
No. 56-S-16. 
 

Johnson, F.B. and Thompson, J.N. (1969). Development of Diametric Testing 
Procedures to Provide a Measure of Strength Characteristics of Masonry 
Assemblages. In Designing, Engineering and Constructing with Masonry Products, 
Gulf Publishing Co., Houston, TX. 
 

Kampf, L. (1963). Factors Effecting Bond of Mortar to Brick. Symposium on 
Masonry Testing (ASTM STP 320), pp. 127-141. 
 

Kariotis, J.C., Ewing, R. D. and Johnson, A.W. (1985). Strength Determination and 
Shear Failure Modes of Unreinforced Brick Masonry with Low Strength Mortar. 
Proceeding of the 7th International Brick Masonry Conference, Melbourne, Australia, 
Feb. 
 

Kim, S.C. and White, D.W. (2003). MDOF Response of Low-Rise Buildings. ST-5 
Project Final Report, Mid-America Earthquake Center, Georgia Institute of 
Technology, Atlanta.  
 

Koubaa, B., Nappi, A. and Papa, E. (1995). Numerical Analysis of Masonry 
Structures by Using Material Models Based on Damage Mechanics, in Experimental 
and Numerical Investigation on a Brick Masonry Building Prototype. Report 3.0, 
Gruppo Nazionale La Difesa Dai Terremoti. 
 

Kristek V. (1979). Folded Plate Approach to Analysis of Shear Wall Systems and 
Frame Structures. Proceedings Institution of Civil Engineers, Part 2, Vol. 67, pp. 
1065-1075. 
 

Kristek V., Studnicka J. and Skaloud M. (1981). Shear Lag in Wide Flanges of Steel 
Bridges. ACTA Technica CSAV, Vol. 26, pp. 464–488. 
 

Lange, D.A., Deford, H.D. and Werner, A.M. (1999). Microstructural Investigation of 
Mortar/Unit Interaction. The Masonry Society Journal, Nov., pp. 31-42. 
 



 627

Lawrence, S.J. and Cao, H.T. (1987). An Experimental Study of the Interface 
Between Brick and Mortar. The 4th North American Masonry Conference, Los 
Angeles, Aug. 
 

Lourenco, P.B. (1996). Computational Strategies for Masonry Structures. Delft 
University Press, the Netherlands. 
 

Magenes, G. and Calvi, G. M. (1992). Cyclic Behavior of Brick Masonry Walls. 
Tenth World Conference on Earthquake Engineering, Madrid, Spain, pp. 3517-3522. 
 

Magenes, G. and Calvi, G.M. (1995). Shaking Table Tests on Brick Masonry Walls. 
Proceedings of the 10th European Conference on Earthquake Engineering, Duma, the 
Netherlands. 
 

Magenes, G., Kingsley, G. R., and Calvi, G. M (1995). Seismic Testing of a Full-
Scale, Two-story Masonry Building: Test Procedure and Measured Experimental 
Response, in Experimental and Numerical Investigation on a Brick Masonry Building 
Prototype. Report 3.0, Gruppo Nazionale La Difesa Dai Terremoti. 
 

Mann, W. and Muller, H. (1982). Failure of Shear-Stressed Masonry - An Enlarged 
Theory, Tests and Application to Shear Walls. Proceedings BCS., Loading-bearing 
Brickwork, Vol.7, No. 30, pp. 223- 235. 
 

Manzouri, T., Shing, P.B., Amadei, B., Schuller, M. and Atkinson, R. (1995). Repair 
and Retrofit of Unreinforced Masonry Walls: Experimental Evaluation and Finite 
Element Analysis. Department of Civil, Environmental and Architectural 
Engineering, University Of Colorado: Boulder, Colorado, Report CU/SR-95/2 
 

Martini, K. (1997). Finite Element Studies in the Out-of-plane Failure of 
Unreinforced Masonry. Proceedings of the International Conference on Computing in 
Civil and Building Engineering, Korea, Vol.1, pp. 179-184. 
 

Martini, K. (1998). Finite Element Studies in the Two-Way Out-of-plane Failure of 
Unreinforced Masonry. 6th U.S. National Conference of Earthquake Engineering, 
Seattle, WA. 
 



 628

Mayes, R.L. and Clough, R.W. (1975). State-of-the-art in Seismic Shear Strength of 
Masonry – An Evaluation and Review. EERC 75-21, University of California, 
Berkeley, CA. 

 

McDowell, E.L. Mckee, K.E. and Sevin, E. (1956). Arching Action Theory of 
Masonry Walls. Journal of Structural Division, ASCE. ST2, Mar., pp. 915-1 – 915-
18. 

 

Meli, R. (1973). Behavior of Masonry Walls under Lateral Loads. Proceedings of the 
5th World Conference on Earthquake Engineering, Rome, Italy, pp. 853-862. 

 

Merguro, K. and M. Hakuno. (1989). Fracture Analysis of Concrete Structures by the 
Modified Distinct Element Method. Structural Engineering and Earthquake 
Engineering, Japan Society of Civil Engineers, Vol. 6, No.2, pp. 283s-284s. 

 

Moon, F., Yi, T., Leon, R. and Kahn, L. (2003). Large-Scale Tests of an Unreinforced 
Masonry Low-Rise Building. Ninth North American Masonry Conference, Clemson, 
SC. 

 

Moon, F. (2004). Seismic Strengthening of Low-Rise Unreinforced Masonry 
Buildings. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA. 

 

Morales, R. and Delgado, A. (1992). Feasibility of Construction of Two-Story Adobe 
Buildings in Peru. Proceedings of the Tenth World Conference on Earthquake 
Engineering, Madrid, Spain, Vol. 6, pp. 3545-3550. 

 

Mulligan, John A. (1931). Brick Masonry Construction. Press of Oscar A. Randel, 
Inc. 

 

Naraine, K. and Sinha, S. (1989). Behavior of Brick Masonry under Cyclic 
Compressive Loading. Journal of Construction Engineering and Management, Vol. 
115, No.2, June, pp. 1432-1445.   

 

Naraine, K. and Sinha, S. (1991). Model for Cyclic Compressive Behavior of Brick 
Masonry. ACI Structural Journal, Vol. 88, No 5, Sep-Oct, pp. 603-609. 

 



 629

Nuss, L.K., Noland, J.L. and Chinn, J. (1978). The Parameters Influencing Shear 
Strength between Clay Masonry Units and Mortar. Proceeding of the First North 
American Masonry Conference, Boulder, Colo., Aug. 

 

Page, A. W. (1980). A Biaxial Failure Criterion for Brick Masonry in the Tension-
Tension Range. International Journal of Masonry Construction, Vol. 1, pp. 245-259.  

 

Page, A. W. (1981). The Biaxial Compressive Strength of Brick Masonry. 
Proceedings Institution of Civil Engineers, Part 2, Vol. 71, pp. 893-906. 

 

Page, A. W. (1982). An Experimental Investigation of the Biaxial Strength of Brick 
Masonry. Proceedings of the Sixth International Brick Masonry Conference, Rome, 
Italy, pp. 3-15.  

 

Page, A. W. (1983). The Strength of Brick Masonry under Biaxial Compression- 
Tension. International Journal of Masonry Construction, 3(1), pp. 26-31.  

 

Page, A. W., Samarasinghe, W. and Hendry, A. W. (1982). The In-plane Failure of 
Masonry - A Review. Proceedings BCS., Load-bearing Brickwork (7), No. 30, pp. 
90-100.  

 

Pantazopoulou, S. J., and French, C. W. (2001). Slab Participation in Practical 
Earthquake Design of Reinforced Concrete Frames. ACI Structural Journal, Vol. 98, 
No. 7, July-Aug., pp. 479-489.  

 

Pantazopoulou, S. J. and Moehle, J. P. (1990). Identification of Effect of Slabs on 
Flexural Behavior of Beams. Journal of Engineering Mechanics, ASCE., Vol. 116, 
No. 1, pp. 91-104.  

 

Paquette J. and Bruneau, M. (1999). Seismic Resistance of Full Scale Single Story 
Brick Masonry Building Specimen. 8th North American Masonry Conference, June 
6-9, Austin, Texas, pp. 227-234. 

 

Paquette, J. and Bruneau, M. (2000). Pseudo-Dynamic Testing of Unreinforced 
Masonry Buildings with Flexible Diaphragm. 12th World Conference of Earthquake 
Engineering, Auckland, New Zealand. 

 



 630

Paquette J. and Bruneau M. (2003). Pseudo-Dynamic Testing of Unreinforced 
Masonry Buildings with Flexible Diaphragm. Journal of Structural Engineering, 
ASCE., Vol. 129, No. 6, pp. 708-716. 

 

Park, J., Craig, J. I. and Goodno, B. J. (2002). Simple Nonlinear In-Plane Response 
Models for Assessing Fragility of URM Walls. Seventh U.S. National Conference on 
Earthquake Engineering, Boston, Massachusetts.  

 

Paulson, T.J. and Abrams, D.P. (1990). Correlation between Static and Dynamic 
Response of Model Masonry Structures. Earthquake Spectra, Vol. 6, No 3, pp. 573-
591. 

 

Peralta, D. F., Bracci, J. M., and Hueste, M. B. D. (2000). Seismic Performance of 
Rehabilitated Floor and Roof Diaphragms. ST-8 Project Final Report, Mid-America 
Earthquake Center, Texas A&M University, College Station, TX. 

 

Pook, R.L., Stylianou, M.A. and Dawe, J.L. (1986). Experimental Investigation of the 
Influence of Compression on the Shear Strength of Masonry Joints. Proceedings of 
the 4th Canada Masonry Symposium, Fredericton, N.B., Canada, June. 

 

Prawel, S.P., and Lee, H.H. (1990a). The Performance of Upgraded Brick Masonry 
Piers Subjected to Out-of-plane Motion. Proceedings of the Fourth National 
Conference on Earthquake Engineering, Palm Springs, California, Vol. 3, pp.273-
281. 

 

Prawel, S.P. and Lee, H.H. (1990b). The Performance of Upgraded Brick Masonry 
Piers Subjected to Out-of-plane Motion. Proceedings of the Fifth North American 
Masonry Conference, Urbana-Champaign, III, Vol.1, pp. 411-427. 
 
Priestley M.J. and He, L. (1995). Seismic Response of T-Section Masonry Shear 
Walls. The Masonry Society Journal, Vol. 9, No 1, pp. 10-19. 

 

Qi, X. and Pantazopoulou, S. I. (1991). Response of RC Frames under Lateral Loads. 
Journal of Structural Engineering, ASCE., Vol. 117, No. 4, pp. 1167-1188.  

 

Reisner, E. (1964). Analysis of Shear Lag in Box Beams by Principle of Minimum 
Potential Energy. Quarterly Journal of Mechanics and Applied Mathematics, Vol. 4, 
No. 3, pp. 268-278.  



 631

 

Riddington, J.R. and Ghazali, M.Z. (1990). Hypothesis for Shear Failure in Masonry 
Joints. Proceedings Institution of Civil Engineers, U.K., Part 2, Mar., pp. 89-102. 

 

Sahlin, S. (1971). Structural Masonry. Prentice-Hall, Inc., Englewood Cliffs, New 
Jersey. 

 

Samarasinghe, W. (1980). The In-Plane Failure of Brickwork. Ph.D. thesis, the 
University of Edinburgh, U.K. 

 

Samarasinghe, W. and Hendry, A. W. (1982). The Strength of Brickwork under 
Biaxial Tensile and Compressive Stress. Proceedings BCS. Load-Bearing Brickwork 
(7); No. 30, pp. 129-139. 

 

Sinha, B.P. (1978). A Simplified Ultimate Load Analysis of Laterally Loaded 
Orthotropic Brickwork Panels of Low Tensile Strength. Structural Engineer, Part B, 
Vol. 56b, No.4, pp. 81-84. 

 

Sinha, B P., and Hendry, A. W. (1969). Racking Tests on Story-Height Shear-Wall 
Structures: with Openings, Subjected to Pre-Compression. Design Engineering & 
Construction with Masonry Products, Gulf Publishing Co., Houston, TX., pp. 192-
199.  

 

Shahrooz, B. M. and Pantazopoulou, S. J. (1992). Modeling Slab Contribution in 
Frame Connections. Journal of Structural Engineering, ASCE, Vol. 118, No. 9, pp. 
2475-2492.  

 

Shi, G. (1993). Block System Modeling by Discontinuous Deformation Analysis. 
WIT Press, Southampton UK and Boston USA. 

 

Shi, G. (1997). Numerical Manifold Method and Discontinuous Deformation 
Analysis. Tsinghua University Press, P.R. China (in Chinese). 

 

Smith, B.S. and Carter, C. (1971). Hypothesis of Shear Failure of Brickwork. ASCE., 
ST4, Vol. 97, pp. 1055-1063. 

 



 632

Smith, B.S. and Hofmann, P. (1986). Tests on the Shear-Bond Behavior in the Bed 
Joints of Masonry. Masonry International, Vol. 9, Dec., pp. 1-15. 

 
 

Stoddard, R.P. (1946). Brick Structures, How to Build Them. McGraw-Hill Book 
Company, Inc., New York. 

 

Structural Clay Products Institute (1949). Handi-Guide on Brick and Structural Tile 
Wall Assemblies. Canton, Ohio.   

 

Syrmakezis, C.A., Chronopoulos, M.P., Sophocleous, A.A. and Asteris, P.G. (1995). 
Structural Analysis Methodology for Historical Buildings. Proceedings of the Fourth 
International Conference on Structural Studies of Historical Buildings, STREMA 95, 
Vol.1, pp. 373-382. 

 

Tahan N. and Pavlovic M. (1997). Shear Lag Revisited: the Use of Single Fourier 
Series for Determining the Effective Breadth in Plated Structures. Computers and 
Structures, Vol.63, pp. 759–67. 

 

Tassios, Th. P., and Vachliotis, Ch. (1989). Failure of Masonry under Heterosemous 
Biaxial Stresses. Proceedings of International Conference on Conservation of Stone, 
Masonry-Diagnosis, Repair and Strengthening. Athens, Greece. 

 

Tena-Colunga, A. (1992). Seismic Evaluation of Unreinforced Masonry Structures 
with Flexible Diaphragms. Earthquake Spectra, Vol. 8, No. 2, pp. 305-318. 

 

Timoshenko, S. P. and Goodier, J. N. (1969). Theory of Elasticity. 3rd, McGraw-Hill 
College, New York. 

 

Tissell, J. R. (1967). 1966 Horizontal Plywood Diaphragm Tests. Laboratory Report 
106, American Plywood Association, Tacoma, Washigton. 

 

Todeschini, C.E., Bianchini, A.C. and Kesler, C.E. (1964). Behavior of Concrete 
Column Reinforced with High Strength Steels. ACI Journal, Vol. 61, No. 6, pp. 701-
716. 

 



 633

Tomazevic, M. (1987). Dynamic Modeling of Masonry Buildings: Storey Mechanism 
Model as a Simple Alternative. Earthquake Engineering and Structural Dynamic, 
Vol.15, pp.731-749. 

 

Tomazevic, M., Modena, C., Velechovsky, T. and Weiss, P. (1990). The Influence of 
Structural Layout and Reinforcement on the Seismic Behavior of Masonry Buildings: 
An Experimental Study. The Masonry Society Journal, August, pp. 26-50. 

 

Tomazevic, M., Lutman, M. and Weiss, P. (1993). The Seismic Resistance of 
Historical Urban Buildings and the Interventions in their Floor Systems: An 
Experimental Study. The Masonry Society Journal, August, pp. 77-86.  

 

Tomazevic, M. (1999). Earthquake-Resistant Design of Masonry Buildings. Imperial 
College Press, London, U.K. 

 

Yi, T., Moon, F., Leon, R. and Kahn, L. (2002). Performance Characteristics of 
Unreinforced Masonry Low-Rise Structure Before and After Rehabilitation. Seventh 
U.S. National Conference on Earthquake Engineering, Boston, Massachusetts. 

 

Yi, T., Moon, F., Leon, R. and Kahn, L. (2003). Structural Analysis of a Prototype 
Unreinforced Masonry Low-Rise Building. Ninth North American Masonry 
Conference, Clemson, SC. 

 

Yokel, F. Y. and Fattal, S. G. (1976). Failure Hypothesis for Masonry Shear Walls. 
Journal of Structural Division, ASCE, Vol. 102, No.3, pp. 515-532. 

 

Zagajeski, S., Halvorsen, G. T., Gangarao, H. V.S., Luttrell, L. D., Jewell, R. B., 
Corda, D., N. and Roberts, J. D. (1984).  Theoretical and Experimental Studies on 
Timber Diaphragms Subject to Earthquake Loads. Department of Civil Engineering, 
West Virginia University, Morgantown, West Virginia. 

 

Zhang, X., Singh S. S., Bull, D. K. and Cooke, N. (2001). Out-of-plane Performance 
of Reinforced Masonry Walls with Openings. Journal of Structural Engineering, 
ASCE., Vol.127, No 1, pp. 51-57. 

 

Wen, Y.K. and Wu, C.L. (2001). Uniform Hazard Ground Motions for Mid-America 
Cities. Earthquake Spectra, Volume 17, No. 2, pp. 359-384. 



 634

 
VITA 

 
Tianyi Yi was born in HuNan province, P.R. China in 1971. He received his 

bachelor degree and master degree in the structural engineering from Tongji University, 

P.R. China in 1993 and 1996, respectively. In 1999, he came to the United States and 

started to pursue his Ph.D. in the School of Civil and Environmental Engineering at 

Georgia Institute of Technology under the supervision of Dr. Roberto Leon. 

 

 


