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SUMMARY

3D laser scanning is one of the most accurate approaches that can capture the geometry

of free-form shapes on a construction site. The point cloud data from laser scanning can

be utilized for site inspection and reverse engineering of building models. One subtask of

these applications is building elements retrieval. However, conventional methods require a

large database of 3D CAD and BIM models which are not suitable for the case of historical

buildings without as-planned 3D models as well as temporary structures that lack corre-

sponding data in the pre-built model. Thus, this paper proposes a semi-automated method

to efficiently retrieve duplicate elements without these constraints. First, the geometrical

information of each point (XYZ coordinates) was processed with a pre-trained deep learn-

ing feature extractor that can generate a 50-dimentional feature vector of each point. Next,

the point cloud is grouped into segments using K-means clustering and region-growing

algorithms, then built the user-selected interface. The last, an exemplar is provided as in-

put to the retrieval algorithm to determine positive matches among the candidate elements.

The results show the proposed method gets the average rates above 90% of precision and

recall scores of each point cloud dataset. The proposed method can distinguish the correct

building elements form the similarly-shaped candidates and complex building elements. In

terms of the applicability, the study shows the proposed method has a certain tolerance of

error with different selected instances or boundaries of the selected exemplar and voxel grid

resolution. On the other hand, the actual computation time is reasonably fast and efficient.

viii



CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

A number of technological advancements have emerged to improve the workflow and ef-

ficiency of measurement, building design, land or property assessment, and many other

construction operations [1, 2]. Among these advancements, 3D laser scanning stands out

as a non-contact, non-destructive technology that can measure millimeter (mm)-level de-

tails and capture the geometry of free-form shapes on a construction site in the form of 3D

point clouds. While 3D point clouds can also be generated by alternative methods such as

photogrammetry [3, 4, 5], 3D laser scanning has been shown to be able to more quickly and

accurately generate high-resolution point clouds [6]. 3D point cloud data plays an imper-

ative role for various construction processes such as site quality inspection [7, 8], reverse

engineering of building models [9], progress tracking, inventory management, building

performance analysis, and building renovation[1].

While the needs of capturing 3D point cloud data for existing buildings and civil infras-

tructures keep increasing with the techniques of point cloud data acquisition becoming

more mature, the process of interpreting the huge quantity of point cloud data remains

time-consuming and labor-intensive when applied to building renovation [10], construc-

tion progress tracking[11] and preservation of historical buildings [12]. One important

subtask of the above practices is building element retrieval which is the task of identifying

the exact numbers and precise locations of specific building elements consisting of struc-

tural components, MEP (mechanical, electrical, and plumbing) elements, and temporary

structures, then converting them into as-built building models. Besides this, object retrieval
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allows construction management and relevant stakeholders to perform asset management,

progress estimation, and clash detection. Thus, an efficient and precise object retrieval

method is necessary to annotate the point cloud’s information automatically as the manual

detection of these elements is time-demanding and error-prone. Several automated meth-

ods have been applied to object recognition based on 3D point cloud data. In some previous

research, a model-based approach is used which focuses on registering the scanned point

cloud data with CAD models using registration as a proxy step for recognition (e.g. with

the Iterative Closest Point algorithm [13, 14]). Other methods perform data-driven Scan-to-

BIM by inferring the geometry of different building elements using machine learning tech-

niques[15]. However, these conventional methods require a large database of 3D CAD and

BIM models which are not suitable for the case of historical buildings without as-planned

3D models as well as temporary structures that lack corresponding data or inaccurate as-

built drawings in BIM. Moreover, such methods may not work very well when there is

a significant disparity between the quality, resolution, and completeness of scanned point

clouds compared to the designed models. These methods are also not easily extended to

building environments having variability in point cloud density, surface roughness, curva-

ture, and clutter within a complex scene [16]. Therefore, further research is necessary to

improve the accuracy and efficiency of converting the scanned data into BIM from scratch

considering the wide variety in point clouds that may be acquired from different types of

infrastructure.

This paper proposes a semi-automated approach to perform exemplar-based building el-

ement retrieval from 3D point clouds. The proposed approach is aimed at handling chal-

lenging cases such as historical buildings or temporary structures where it is difficult to

find exactly matching pre-built 3D models and where model-based retrieval methods do

not work well. First, a pre-trained deep neural network is used to extract representative

feature vectors for each point in the scanned point cloud. Second, an exemplar building
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element is selected from the user interface to serve as the query object. Candidate matches

are scored based on three methods of direct voxel grid matching [17], normal vector match-

ing, and feature vector matching to measure the similarity of neighboring instances at the

same floor level to that of the exemplar. Finally, a match refinement process is used to

group together neighboring detections and eliminate false positives. The proposed method

can detect multiple object instances at once in the same point cloud without the need for

class-specific training data which reduces the pre-processing overhead of labeling training

data while simultaneously maintaining a high precision and recall rate of building element

retrieval. In this research, five laser-scanned point clouds captured from three different

buildings are used to study the performance of the proposed method. The first point cloud

is from a university building which contains columns, doors, windows and other different

basic construction elements, the second point cloud is from a historical building that includ-

ing different type windows and chimney, whereas the third to fifth point clouds are from a

building construction site at different stages of construction including beams, slabs, door

openings and other as-built building elements. Therefore, by analyzing the retrieval results

with the above building elements, we can study a comprehensive and accurate performance

assessment based on this proposed method.

1.2 Background

The building element retrieval process aims to find all instances of a query object from a

point cloud dataset which can be from object categories such as walls, slabs, doors, etc.

Based on previous research, there are four main approaches for building element retrieval

from point cloud data, which are geometry-based, rule-based, model-based, and feature-

based methods.
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1.2.1 Geometry-based object retrieval

Geometry-based object retrieval method refers to plane-fitting and shape-fitting algorithms

to recognize construction objects of similar geometry characteristics that consist of pla-

nar patches [18, 19, 20], cylindrical structures [21, 22], curvature of pipelines [23] and

volumetric representation of building elements [24, 25]. This geometry-based approach is

usually performed in the following steps: (1) generate a geometric description of the target

object in terms of a parametric plane or curve equation, (2) retrieve the target object in

the point cloud by comparing the geometric parameters, (3) examine whether the retrieved

objects match the query object. However, this method is not feasible when the target object

cannot be described as a simple geometrical shape. Moreover, this approach can also lead

to ambiguity in object retrieval as different building element categories may have similar

geometrical shape.

1.2.2 Rule-based object retrieval

Rule-based object retrieval uses prior knowledge about object characteristics including size,

position, orientation, and topology [26] to be utilized in object retrieval. Rule-based meth-

ods are usually human-defined and based on a small number of object characteristics. For

example, based on dimensions, relative position, principle direction or normal vector [27],

and topological relationships of each element, this method can recover the indoor envi-

ronment within the rules of the connectivity and containment relations between interior

spaces [28]. It is also possible to build damage indicators to identify the extent of damage

to each building object by considering multiple hard-coded descriptors [29, 30]. This ap-

proach is suitable for cases where the constraints can be defined based on hard-coded prior

knowledge. However, it is challenging to extend this approach to classify complex build-

ing environments as it is difficult to define robust and distinct rules for complex-geometry

elements.
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1.2.3 Model-based object retrieval

The model-based object retrieval method can automatically retrieve building elements from

point cloud data based on a reference 3D CAD/BIM model [7, 31, 32]. It is commonly used

for geometry quality inspection [7, 33, 34], and progress tracking during the construction

phase [35, 36]. This approach consists of two main procedures. First, registration and

integration of the 3D model with point cloud data using the Iterative Closest Point (ICP)

algorithm. This concept involves performing global registration [13, 14], then followed by

the local registration to refine the position estimation [35]. Second, each point is matched

with that of the building element in the reference BIM model based on the geometric and

semantic features of the points. Thus, it can be utilized in reverse engineering to automate

the creation of building information models for existing buildings. For example, a set of

university campus buildings and a healthcare training facility have been modeled into a

semantically-rich BIMs with adequate geometry for energy simulation and integration of

data for building operation and facility management by using 3D CAD drawings [37]. This

method can achieve high accuracy in the retrieval process as long as the point cloud data

do not have huge discrepancies from the reference model datasets. However, this approach

has certain requirements in terms of the reference 3D CAD/BIM model and the scanned

point cloud quality [11]. In addition, fully-automated registration of resultant models to

the point cloud data is computationally challenging due to the large size of point clouds

acquired from the buildings. On the other hand, semi-automated registration approaches

have been proposed [38], but they still have the limitation of demanding a close match

between the scanned data and 3D models. Another solution is to perform a large-scale

search on the web to get an indicative 3D model [39]. However, this only achieves a rough

approximation since there may not be exact matches available.

5



1.2.4 Feature-based object retrieval

Feature-based object retrieval methods use machine learning algorithms to train 3D fea-

ture descriptors that can classify the point cloud data into object categories. Feature-based

methods are usually data-driven and based on a large number of object characteristics.

Generally, local descriptors are used to store features at the point level, while global de-

scriptors are used to store features at the object level [40]. These features, which incor-

porated statistics about distance, area, and angle [41], can be defined under the machine

learning framework that can compute robust features that uniquely describe each building

element. There are two strategies in this feature-based method. One of them is point-level

classification, which extracts the local features of each point, then classifies them individ-

ually into an object category. For example, by calculating geometric and color features of

each point, a two-class support vector machine (SVM) classifier can recognize the rebar

from the point cloud data of a reinforced precast concrete element [42]. The other strategy

is segment-level classification which first requires subdividing the point cloud into mean-

ingful segments corresponding to different building components. Then, these segments

are classified into different object classes. This strategy can handle complex geometries

such as construction equipment [43] and build a multi-view incremental point classifica-

tion to improve the accuracy by decreasing the effect caused by noise and occlusion from

the scanned point cloud data [44]. Furthermore, deep learning techniques can reduce the

need to manually design feature descriptors and has more robust classification rules [15,

45]. This method can retrieve the geometrical structure of objects that is robust to noise

and small variations between similar objects and can be generalized to unknown objects.

However, it requires more effort to acquire a large database of building element models to

train the machine learning algorithm.

In situations where the test environment consists of different classes of objects from the

training data, directly applying a network trained on classification may not work well. In-
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stead, the strategy of metric learning is used, where a neural network is tasked to learn

useful semantic representations of data that can distinguish between similar objects and

dissimilar objects [46, 47, 48]. This strategy is often used in image retrieval applications

such as face recognition [47] or retrieval of similar images from a database [46]. These

methods are still mostly applied in the image domain and have not yet been sufficiently

explored in the point cloud domain.

The proposed approach in this study is to directly use point cloud data to create a query

object and retrieve matching instances in the point cloud based on the idea of metric learn-

ing. Compared to geometry-based methods, the proposed method in this paper can classify

building elements with complex geometrical shape characteristics. Moreover, this method

does not require pre-built CAD/BIM models since it is based on user exemplar selection

from the laser-scanned point cloud itself, which reduces the preprocessing time and data

demands compared to model-based methods. Last but not least, this method can extend to

complex building environments and generalize better to unknown objects, including tem-

porary structures and equipment, when compared to rule-based approaches.
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CHAPTER 2

TECHNICAL APPROACH

This research proposes a building element retrieval method[49] where a user-selected ex-

emplar is manually selected firstly, then serves as the query object from which similar ob-

ject instances can be automatically retrieved through feature comparison from the original

point cloud data. Therefore this proposed methodology is semi-automated since it needs

us to select a sample manually. The approach consists of the following five main steps:

(i) point-level feature computation after downsampling the input point cloud data, (ii) point

cloud segmentation with the computation with features (50 dimensional) of each point, (iii)

exemplar selection with the built user interface (especially lasso selection), (iv) candidate

element matching , and (v) match refinement with the retrieval visualization. Each step will

be explained in detail in the following subsections. Figure 2.1 shows the workflow of this

proposed building element retrieval method.

2.1 Point-level Feature Computation

The point cloud data is first processed to convert the raw point cloud, which only has

XYZ-geometry and RGB-color information, into a more semantically rich representation.

State-of-the-art research [15, 50, 51] has shown that deep neural networks have the po-

tential to compute discriminative and robust features from point cloud data. Thus, in this

research, a deep neural network is used as the feature extractor to compute for each point

a representative vector which implicitly represents the surface geometry around the point

such as surface normal, smoothness, and curvature. The advantage of using deep learning

is that the features do not have to be explicitly defined but can be directly learned from data.
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Figure 2.1: Building element retrieval pipeline
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The proposed object retrieval method aims to work in the scenario of an unknown building

point cloud where the target objects could include building elements of arbitrary shapes

as well as temporary structures and equipment. In this scenario, it is infeasible to train a

network to recognize every type of object since the number of possible objects would be

too large. Thus, the concept of one-shot learning is used to learn features in a data-driven

manner from an auxiliary dataset and apply it to the actual object retrieval task in a new

dataset given only a single example. One-shot learning relies on prior knowledge of pre-

viously learnt objects and reusing model parameters in order to be able to recognize new

sets of objects with minimal training examples. A pre-trained deep network is applied to

the unknown point cloud to compute features that can be used for object retrieval. Even

though the deep network is trained on point cloud data that is likely to contain different

objects from the point cloud data in which it is applied, the learned features can still gen-

eralize to the new environment as long as the training dataset is sufficiently diverse and

similar to objects in the new environment [52].

The auxiliary dataset of similar and dissimilar pairs is created by converting a dataset of

pre-made BIM models into synthetic point clouds. The dataset contains 7 different building

models with common building elements such as beams, columns, walls, pipes, doors, win-

dows, and railings. After conversion into point clouds, each building contains an average of

1.1 million points and around 4000 building elements. Figure 2.2 shows some examples of

the auxiliary dataset where the left column is the mesh model extracted from BIM and the

right column is the synthetic point cloud. Each point in the synthetic point cloud will have

an object ID corresponding to its parent object in the BIM model. Similar and dissimilar

pairs of points are defined by whether the points have the same object ID. For illustration

purposes, the point clouds in Figure 2.2 are color-coded by object ID. Thus points with

the same color are defined as similar whereas points with different colors are defined as

dissimilar. Figure 2.3 shows the architecture of the deep neural network used in this study
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Figure 2.2: Auxiliary dataset of synthetic point clouds generated from BIM models

to compute point-level features. There are pre-existing networks such as Pointnet [53] and

SGPN [54] for point cloud processing but these are mostly used for classification and not

retrieval. The proposed network uses similar design choices such as convolution and pool-

ing layers but adds a normalized feature embedding layer that is more suitable for metric

learning [47]. The network takes in input point cloud data as an Nx3 matrix, where N is

the number of points and outputs an Nx50 matrix which contains a 50-dimensional feature

vector for each point. A multi-resolution pooling scheme is used where neighboring points
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at three different resolutions, r1=0.2m, r2=0.4m, r3=0.6m, are pooled together to compute

the feature vector at the center point.

The network is pre-trained using the triplet loss function which has been shown to demon-

strate good performance in image retrieval [47]. The triplet loss function works by collect-

ing triples of points, each containing a similar pair and a dissimilar pair, and updates the

network such that it projects the similar pair closer together in feature space and the dissim-

ilar pair farther apart in feature space. The triplet loss margin, which controls the difference

in distance in embedding space between similar pairs and dissimilar pairs, is set to 1.0 as

prescribed in [46]. During the training process, point cloud data is passed to the deep neu-

ral network in batches of 256 points. The batches are formed by randomly extracting 5m x

5m x 5m boxes from the training point cloud scene and then randomly sampling multiple

points from each object instance in the box until 256 points are obtained. A batch of points

will thus contain some pairs of points that originate from the same object and some pairs

of points that originate from different objects. The network is then trained by computing

the triplet loss based on that batch of points and updating the corresponding feature space.

For example, features from two points on the same window become more similar whereas

features from a window point and a wall point become less similar.

2.2 Point Cloud Segmentation

After computing point-level features with the pre-trained network, the next step in pro-

cessing the point cloud data is to group neighboring points together into cohesive segments

which have object-level semantics. This process is not strictly necessary for object retrieval

in this study since the feature comparison is performed at the point level, but having a pre-

segmented point cloud makes it easier for users to select objects in the user interface and

also makes the point cloud scene easier to visualize. Clustering is carried out once in feature

space and then in geometric space. The feature vectors are first assigned to clusters in fea-
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Figure 2.3: Deep neural network architecture used to compute point-level features

ture space using K-means clustering. Then, Euclidean clustering is used to incrementally

merge neighboring points in geometric space with feature vectors that belong in the same

cluster. This process is also known as region growing. Figure 2.4 shows a visualization of

the resulting point cloud after each intermediate step. Figure 2.4(b) shows the results of

point-level feature computation, where each point is color-coded according to its semantic

feature vector. For example, wall points are mostly green, ground points are mostly red,

whereas tree points are mostly purple. Figure 2.4(c) has a wider palette of colors because

feature clustering more finely subdivides points in feature space into different groups. Fi-

nally, Figure 3.11(d) shows the results after Euclidean clustering, where neighboring points

in space are merged together into segments. In Figure 3.11(d), each individual segment in

geometric space is visualized in a different color.
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(a) Original point cloud (b) Point-level feature computation

(c) Feature clustering (d) Euclidean clustering

Figure 2.4: Building point cloud after each intermediate step

2.3 Exemplar Selection Interface

Next, the user has to select an exemplar to serve as the query object from which similar

object instances can be automatically retrieved. Several design considerations have to be

taken into account when designing a user interface for the proposed object retrieval sys-

tem. The user interface has to be simple, fast, responsive, and intuitive. To achieve this

purpose, the user interface is implemented with multiple enhancements to improve usabil-

ity. Pre-segmentation of the point cloud (Figure 2.5(a)) is carried out to make sure that

object boundaries are visually prominent (i.e. appear as different colors) to the user before

selection. Without pre-segmentation, all the points exist in a uniform color and it is difficult

for the user to visually identify an object. Automated background filtering (Figure 2.5(b))

is also implemented so that background points are not selected by accident when the user

draws a region of interest, which makes it easier to isolate a foreground object. Finally, the
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lasso selection tool is used so that objects with arbitrary geometry (e.g., curved or other

non-rectangular shapes) can be selected. Figure 2.5(c) shows an example where the user is

able to move the cursor to delineate the boundary of a non-rectangular shape. Figure 2.6

shows that the pre-segmentation process is indispensable and imperative for selecting the

suitable candidate retrieval exemplar element. Without the pre-segmentation step, the light

features in dataset #1 is too ambiguous to identify the exact light features location.

2.4 Candidate Building Element Retrieval with Feature Matching

The following step in building element retrieval is to find candidate elements in the global

point cloud with positive feature matches to the selected exemplar. As a pre-processing

step, a voxel grid data structure is created to represent the point cloud scene. A voxel

grid is the three-dimensional analog of image pixels in two-dimensional space and is a

way to partition a large point cloud into evenly-spaced bins. The voxel grid representation

equalizes the resolution throughout the entire point cloud and helps account for the non-

uniform sampling of a target surface during the laser scanning process. The voxel grid is

also used as a fast lookup table to find points that are at a specific offset from a given point.

Candidates are first extracted by finding points with the same Z-coordinate as a randomly

selected seed point in the exemplar. Since most building elements are organized according

to levels of a building, one simplification step is to only retrieve candidates with the same

Z-coordinate (same floor level). The limitation of this assumption is that building elements

that are present at multiple levels (e.g. windows) cannot be retrieved with a single search.

To retrieve elements at multiple levels of a building, the user would have to select multiple

exemplars, one for each level of the building. Due to the reduced search space, it is still

more efficient for the user to select multiple exemplars (one for each level) and obtain the

results in a few seconds than to select a single exemplar for entire levels and wait a few

minutes to obtain the results. This study also uses another simplifying assumption that the

candidates are all rigid translations of the exemplar. Thus, XYZ-offsets are computed for
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(a) pre-segmentation

(b) background filtering

(c) lasso selection

Figure 2.5: Exemplar selection interface features

each other point in the exemplar relative to the seed point and applied to each candidate

point to determine matching point sets. For each matching point set, a correlation score is

computed to determine its similarity with the exemplar. The closer the similarity between
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(a) Original point cloud

(b) Pre-segmentation

Figure 2.6: Exemplar selection interface features - Light features in Dataset #1

two building elements, the higher the candidate correlation score. The candidate-finding

correlation score is calculated as shown in Equation 2.1 - 2.4. Three variations of com-
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puting the correlation score is considered in this study: (i) direct, (ii) normal, and (iii)

feature-based. If the point pik exists in the voxel grid, its feature vector is compared to the

corresponding point in the exemplar (or normal vector if the normal method is used), and

the error is added to the cumulative score. If the point pik does not exist in the voxel grid

(e.g. due to occlusion), then there is no information available for comparison with the ex-

emplar. Instead, a constant error term is added, either µf or µn. The error term µf depends

on the triplet loss margin between similar and dissimilar pairs of point features, but may

vary because the test data distribution is different from the training data distribution. In this

study, the constants are approximated by taking the mean error value of existing normal or

feature vectors across the entire test data, resulting in µf = 1.32 and µn= 0.54. The can-

didates can be visualized in a top-down view heatmap with XY coordinates in Figure 2.7.

Red points indicate areas with high correlation scores, whereas blue points indicate areas

with low correlation scores.

features=

 Cik =
∥∥f(pik)− f(pEk )∥∥2 if pki exist in voxel grid

Cik = µf , otherwise
(2.1)

normal=

 Cik =
∥∥n(pik)− n(pEk )∥∥2 if pki exist in voxel grid

Cik = µn, otherwise
(2.2)

direct=

 Cik = 0 if pki exist in voxel grid

Cik = 1, otherwise
(2.3)

Ci = −
∑
k

Cik (2.4)

where:

Ci - computed scores with respect to the exemplar element;

f - the point feature vector;

n - the point normal vector;
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pi, pE - points on the candidate element and points on the exemplar element.

Figure 2.7: Heatmap of feature correlation scores of points along the building façade

2.5 Match Refinement

The final step is to perform match refinement where matching candidates are kept whereas

non-matching candidates are filtered out. After the correlation scores are computed, a

non-maximal suppression algorithm can be used to find the peaks which are defined as a

locally-maximal value of correlation for a candidate element compared to its neighboring

elements. Then, a K-means clustering algorithm is used to group the peaks into 3 groups:

(i) strong matches, (ii) weak matches, and (iii) non-matches, as shown in Figure 2.8. Strong

matches indicate detected building elements that have high similarity to the query element.

Whereas weak matches indicate detected elements that are similar to the query element

but differ slightly in point cloud geometry due to incomplete data, occlusion and other

factors. Non-matches are the background elements that do not match the query element.

In this study, only the strong matches are used for computing the accuracy, but the weak

matches can also be optionally displayed to the user to indicate more potential matches.

Finally, 3D bounding boxes are drawn around the positive matches and displayed through

the user interface (Figure 2.9). The total number of positive matches is also shown in the

user interface.
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Figure 2.8: Match refinement with K-means clustering

Figure 2.9: Retrieval results visualization
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CHAPTER 3

RESULTS

3.1 Point Cloud Datasets

The building element retrieval performance was thoroughly evaluated on five different

laser-scanned point clouds taken from three buildings with varying size and architecture.

The point clouds were acquired using Terrestrial Laser Scanners (TLS) in E57 format.

As shown in Figure 3.1, Dataset #1 is from a modern five-story classroom building at

Georgia Institute of Technology (building1) which spans an area of 35m x 16m x 28m,

whereas Dataset #2 is from a historical building with Gothic architectural elements (build-

ing2) which covers an area of 159m x 51m x 98m. Datasets #3, #4, #5 are from a mod-

ern three-story office building (building3) under different phases of construction separated

by time intervals of one month which covers an area of 72m x 21m x 16m. After pre-

processing steps such as registration, down-sampling, and cropping, Dataset #1 contains

188637 points, Dataset #2 contains 1274517 points, whereas Datasets#3, #4, #5 contain

264837, 391995, 443465 points respectively. In this section, the performance of build-

ing element retrieval is compared using three approaches (refer Methodology section):

(i) direct voxel grid search and matching (direct), (ii) normal vector matching (normal),

and (iii) feature vector matching (features). The feature-based approach is the proposed

method, whereas the other two are baselines for comparison purposes. The following para-

graphs show the detailed results and discussions.

3.2 Building Element Retrieval Accuracy

Tables 3.1 - 3.3 below show the precision and recall results for building element retrieval

for each of the test datasets. Each table shows a performance comparison between the “di-
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(a) Dataset #1 (b) Dataset #2 (c) Dataset #3

(d) Dataset #4 (e) Dataset #5

Figure 3.1: Point cloud datasets #1-5 acquired with terrestrial laser scanning

rect”, “normal”, and “feature” matching methods for different types of building elements.

In addition, Figures 3.2-3.5 show a visualization of the retrieval results for each of the test

datasets. The ground truth data is labeled based on the image or point cloud data detection

of each building as shown in Figure 3.7. For the building 3, the IFC model has provided

which could be utilized to validate the retrieval results and an automated Scan-vs-BIM de-

viation detection[7].

As shown in the Tables 3.1 - 3.3, the precision result of the feature-based matching ap-

proach is the best since most of the identified candidates are correct. On the other hand,

Table 3.2 shows that the recall result of the direct matching approach is better as most of

the elements necessary to be retrieved are correctly identified. In general, the feature-based

matching approach achieves the most robust building elements retrieval results as the over-

all precision and recall rates are both above 90% in all test datasets.

As shown in Figure 3.2, the feature-based matching approach is better able to distinguish

the true positive wall segments from similarly-shaped columns or wall segments compared
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to the direct matching and normal vector matching approach. The direct and normal match-

ing methods are still able to find candidates with similar shapes but are less able to correctly

distinguish between true positives and false positives. Figure 3.3 shows that the direct-

based method is hardly to distinguish the small exemplar data (light features) from the

similar geometric shape object when compared to the other two methods. This is because

the direct approach does not consider to comparison much more features of each point

besides the shape boundary. Figure 3.4 shows that the feature-based matching approach

can identify complex window elements from a historical building correctly compared to

the other two methods, which mistakenly retrieved smaller or differently-shaped windows.

This is because it can extract more discriminative and unique features among the points

through a deep network, rather than only considering the coarse geometric shape or normal

vector characteristics of each point.

Figures 3.5 and 3.6 show that the proposed method can also be used to identify unknown

objects or temporary structures for a building during the construction phase. Using the

proposed method, temporary structures, materials, and equipment can be tracked and mod-

eled in the as-built BIM model, even though there is no information in the BIM model

during the design phase for these temporary objects. Query results in Figure 3.6 show that

it is challenging to retrieve all true positive ladders from the point cloud data, because the

orientation, posture of placement and point cloud completeness for each ladder instance

is different, which makes other ladders difficult to match to the exemplar. However, the

proposed method is still able to identify several ladders correctly.

3.3 Study of variance depending on user selection

Since this proposed method is a semi-automated approach based on a selected exemplar in

the user interface, selected points for the same object could differ based on how the user

draws the object boundaries on the user interface. To measure the effect of the variability
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Table 3.1: Precision and recall comparison of dataset #1 elements

Building elements Numbers of instance
Precision

Direct Normal Features
Windows 80 75% 99% 100%

Doors 4 100% 100% 100%
Columns 6 50% 71% 83%

Light features 5 83% 100% 100%
Wall segments 40 75% 93% 100%

Overall 135 77% 93% 97%

Building elements Numbers of instance
Recall

Direct Normal Features
Windows 80 96% 90% 94%

Doors 4 75% 75% 75%
Columns 6 83% 83% 83%

Light features 5 100% 100% 100%
Wall segments 40 100% 100% 100%

Overall 135 91% 90% 90%

Table 3.2: Precision and recall comparison of dataset #2 elements

Building elements Numbers of instance
Precision

Direct Normal Features
Double windows 24 65% 71% 67%
Triple windows 4 80% 24% 100%

Chimney 6 100% 100% 100%
Roof windows 26 100% 100% 100%
Arch windows 30 90% 100% 100%

Overall 90 87% 79% 93%

Building elements Numbers of instance
Recall

Direct Normal Features
Double windows 24 100% 100% 100%
Triple windows 4 100% 100% 100%

Chimney 6 100% 83% 83%
Roof windows 26 92% 92% 88%
Arch windows 30 90% 90% 90%

Overall 90 96% 93% 92%
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Table 3.3: Precision and recall comparison of dataset #3-5 elements

Building elements Numbers of instance
Precision

Direct Normal Features

Dataset#3

Columns 32 75% 99% 100%
Beams 15 100% 100% 100%

Wall segments 5 50% 71% 83%
Door openings 26 100% 100% 100%

Slabs 10 75% 93% 100%

Dataset#4
Curtain wall openings 5 45% 71% 83%

Slabs 10 100% 100% 100%

Dataset#5
Curtain wall openings 5 63% 100% 83%

Wall segments 4 80% 80% 80%
Overall 88 77% 93% 97%

Building elements Numbers of instance
Recall

Direct Normal Features

Dataset#3

Columns 32 81% 41% 81%
Beams 15 87% 80% 87%

Wall segments 5 100% 100% 100%
Door openings 26 100% 100% 100%

Slabs 10 80% 100% 90%

Dataset#4
Curtain wall openings 5 100% 100% 100%

Slabs 10 70% 70% 70%

Dataset#5
Curtain wall openings 5 100% 80% 100%

Wall segments 4 100% 100% 100%
Overall 88 90% 84% 92%

of user-selected exemplar on the retrieval results, the student’s T-Distribution [55] is used

in this paper to compute confidence intervals with a small sample size with the Equation

3.1. The retrieval results for window objects (number=80) in Dataset #1 were repeated for

7 trials, and the variability in precision and recall are computed in Table 3.4:

τ =
tn−1,as(n)√

n
(3.1)
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(a) User selected exemplar (wall segment) (b) Ground truth

(c) Direct matching approach results (d) Normal matching approach results

(e) Feature matching approach results

Figure 3.2: Matching method comparison with dataset #1 wall segments

where:

τ - Half interval;

s(n) - Sample variance;

n - Total number of trails;
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(a) User selected exemplar (Light features) (b) Ground truth

(c) Direct matching approach results (d) Normal matching approach results

(e) Feature matching approach results

Figure 3.3: Matching method comparison with dataset #1 light features

Table 3.4: Study of variance due to user selection
Precision Recall

Sample mean 98.22% 89.64%
Sample Variance 0.00042 0.00358

Half interval 0.01505 0.4394
Overall(at 90% confidence interval) 98.22%± 1.51% 89.64%± 4.4%

tn−1,a - (pn−1 > tn−1,a = a) with n− 1 degrees of freedom.
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(a) User-selected exemplar (triple window) (b) Ground truth

(c) Direct matching approach results (d) Normal matching approach results

(e) Feature matching approach results

Figure 3.4: Matching method comparison with dataset #2 triple windows

3.4 Study of the effect of voxel grid resolution

In the pre-processing step, a voxel grid data structure is created to represent the point cloud

scene (refer Methodology section). In this study, the size of each voxel defined as the voxel

resolution is varied between 0.05m, 0.1m, 0.2m, 0.3m, and 0.5m. The Figure 3.8 - Figure

3.10 shows the visualization results of each method in dataset #2 with the double windows
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(a) User selected exemplar (steel structure frame)

(b) Ground truth

(c) Candidate matching results

(d) Query results in isolation to the rest of the point cloud

Figure 3.5: Steel structure frame retrieval results with dataset #4

instances. The total numbers of this double windows in ground truth is 24. The True Posi-

tive (TP) detected elements, False Positive (FP) detected elements and False Negative (FN)
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(a) Ladders on-site

(b) User selected exemplar

(c) Query results in isolation to the rest of the point cloud (true positive retrieval ladders are framed
by red rectangles)

Figure 3.6: Temporary structure elements retrieval results with dataset #5
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(a) Image onsite with dataset #4

(b) Image onsite with dataset #5

(c) IFC model for building 3

Figure 3.7: Ground truth data
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elements has been counted of each method corresponding to different Voxel Resolution as

shown in Table 3.5 - Table 3.7. The resulting precision and recall rates of the three candi-

date matching methods are compared in Table 3.8 below.

From Table 3.8, the precision shows a decreasing trend with voxel size whereas the re-

call shows a trend that is first decreasing then increasing with voxel size. This is because

when the size of the voxels increases, the fewer the number of the points characteristics or

features that are used to find the right candidate elements, thus increasing the number of

candidate matches but also increasing the likelihood of causing false positive matches. To

optimize the balance between precision and recall, a smaller voxel size should be used.

Table 3.5: Direct method querying results with different Voxel Resolutions
Voxel Resolution (m) TP FP FN

0.05 18 0 6
0.1 18 2 6
0.2 20 4 4
0.3 16 6 8
0.5 24 15 0

Table 3.6: Normal method querying results with different Voxel Resolutions
Voxel Resolution (m) TP FP FN

0.05 24 1 0
0.1 17 1 7
0.2 17 2 7
0.3 10 1 14
0.5 23 8 1

3.5 Study of the effect of the clustering algorithm

The effect of different choices of clustering algorithms in the match refinement step is ana-

lyzed by comparing between (i) K-means, (ii) K-means++, (iii) X-means, and (iv) spectral

clustering algorithms.
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(a) Voxel Resolution(m) = 0.05 (b) Voxel Resolution(m) = 0.1

(c) Voxel Resolution(m) = 0.2 (d) Voxel Resolution(m) = 0.3

(e) Voxel Resolution(m) = 0.5

Figure 3.8: Direct method results with different Voxel resolutions - Double windows in-
stances in Dataset #2

In practice Spectral Clustering is very useful when the structure of the individual clus-

ters is highly non-convex or more generally when a measure of the center and spread of the

cluster is not a suitable description of the complete cluster. For instance when clusters are

nested circles on the 2D plane. The performance is measured based on precision and recall
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(a) Voxel Resolution(m) = 0.05 (b) Voxel Resolution(m) = 0.1

(c) Voxel Resolution(m) = 0.2 (d) Voxel Resolution(m) = 0.3

(e) Voxel Resolution(m) = 0.5

Figure 3.9: Normal method results with different Voxel Resolution - Double windows in-
stances in Dataset #2

rates on wall, window, and column objects in Dataset #1. Results in Table 3.10 show that

using different clustering algorithms result in a slight increase or decrease of the precision

and recall by around 10%. Overall, the spectral clustering algorithm performed the best in

terms of precision whereas the K-means++ algorithm performed the best in terms of recall

rates.
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(a) Voxel Resolution(m) = 0.05 (b) Voxel Resolution(m) = 0.1

(c) Voxel Resolution(m) = 0.2 (d) Voxel Resolution(m) = 0.3

(e) Voxel Resolution(m) = 0.5

Figure 3.10: Features method results with different Voxel Resolution - Double windows
instances in Dataset #2

On the other hand, the querying result varies when we set different K values. The column

in Dataset #3 has been selected as an instance to conduct the comparison of different re-

trieval approaches. Figure 3.7 shows the ground truth image of columns in building 3, the

total number of columns in building 3 is 32. As shown in Figure 3.12 - Figure 3.14, False

Positive detected objects decrease while False Negative ones increase with larger K value
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Table 3.7: Features method querying results with different Voxel Resolutions
Voxel Resolution (m) TP FP FN

0.05 23 1 1
0.1 21 1 3
0.2 20 3 4
0.3 10 1 14
0.5 23 6 1

Table 3.8: Precision and recall comparison with different voxel resolutions

Voxel Resolution (m)
Direct Normal Features

Precision Recall Precision Recall Precision Recall
0.05 100% 75% 96% 100% 96% 96%
0.1 90% 75% 94% 71% 95% 88%
0.2 83% 83% 89% 71% 87% 83%
0.3 73% 67% 91% 42% 91% 42%
0.5 62% 100% 74% 96% 79% 96%

Average 82% 80% 89% 76% 90% 81%

of three approaches. This is because more weak matching objects are recognized as non-

matching ones that can filter more False Positives. Although the bigger K can achieve a

higher precision, the recall performance is worsened than the smaller one since true candi-

dates in weak matching ranges are unable to be detected. Table 3.9 shows that the proposed

feature-based retrieval method works well when we set K value equals to 2, and its preci-

sion and recall performance can both maintain a high score.

Table 3.9: Precision and recall rates of different K Values in dataset #3 (Columns)
K values Approach TP FP FN Precision Recall

K =2
Direct 26 4 6 86.7% 81.3%

Normal 13 1 19 92.9% 40.6%
Features 26 1 6 96.3% 81.3%

K =3
Direct 20 2 12 90.9% 62.5%

Normal 13 1 19 92.9% 40.6%
Features 8 0 24 100% 25.0%

K =4
Direct 10 1 22 90.9% 31.5%

Normal 12 1 20 92.3% 37.5%
Features 6 0 26 100% 18.75%
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(a) Front (b) Back

(c) Side 1 (d) Side 2

Figure 3.11: Ground truth image of columns in dataset #3

(a) Direct approach (b) Normal approach

(c) Features approach

Figure 3.12: Retrieval result with K = 2
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(a) Direct approach (b) Normal approach

(c) Features approach

Figure 3.13: Retrieval result with K = 3

Table 3.10: Precision and recall rates of different clustering algorithms
Clustering Window Window Wall Wall Column Column
algorithm Precision Recall Precision Recall Precision Recall
K-means 95% 90% 94% 85% 83% 83%

K-means++ 95% 90% 94% 85% 100% 83%
X-means 93% 70% 78% 90% 83% 83%

Spectral clustering 100% 65% 100% 80% 83% 83%

3.6 Study of the effect of relevance feedback

The technique of relevance feedback [56, 57, 58] is used to improve the precision and re-

call rates by having multiple rounds of user input. After selecting an exemplar object and

getting the retrieval results, the user is given the option to provide feedback to the retrieval

algorithm in the form of selecting additional exemplar objects or unselecting wrongly re-

trieved objects. In the case of selecting additional exemplar objects, the correlation scores
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(a) Direct approach (b) Normal approach

(c) Features approach

Figure 3.14: Retrieval result with K = 4

are calculated again relative to the new exemplar and appended to an array of correlation

scores. Finally, match refinement is carried out with the updated correlation scores. Results

in Table 3.11 show that after each feedback round, the precision and recall rates on wall,

window, and column objects in Dataset #1 improved. This suggests that relevance feedback

is effective in improving the retrieval results, although at the cost of requiring more manual

input from the user.

From Tables 3.12 and 3.13, the feature-based method requires the highest computation

time in the initial processing steps, while the normal vector-based and direct voxel grid

search methods only require 1/25 1/10 the computation time of the feature-based method.

This is because the feature-based method involves a higher amount of computational steps

to pass an input point cloud through a deep neural network and compute high-dimensional

feature vectors. Figure 3.15 shows that there exists a linear relationship between the num-
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ber of points in the input point cloud and the computation time for the initial processing

steps, due to having to repeat the initial processing step for each point. On the other hand,

Figure 3.16 shows that there is no clear trend for each method in terms of the computa-

tion time for element retrieval. As the number of selected exemplar points increases, the

computation time of the element retrieval process increases in general but not consistently.

This is because each exemplar corresponds to a different number of candidates to match,

which will affect the computation time. For example, a window element consists of a small

number of points but may have a large number of matches, whereas a floor element consists

of a large number of points but may have fewer matches.

Table 3.11: Precision and recall rates after a different number of feedback
Feedback Window Window Wall Wall Column Column

rounds Precision Recall Precision Recall Precision Recall
0 95% 90% 94% 85% 83% 83%
1 95% 95% 94% 90% 100% 100%
2 95% 100% 94% 95% 100% 100%
3 100% 65% 100% 95% 100% 100%

3.7 Computation time analysis

In this section, the computation time is evaluated with a MacBook Profwith a 2.2 GHz

Intel Core i7 CPU and an Intel Iris Pro 1536 MB GPU. The computational steps for each

candidate finding approach are shown in Table 3.12.

From Tables 3.12 and 3.13, the feature-based method requires the highest computation

time in the initial processing steps, while the normal vector-based and direct voxel grid

search methods only require 1/25 1/10 the computation time of the feature-based method.

This is because the feature-based method involves a higher amount of computational steps

to pass an input point cloud through a deep neural network and compute high-dimensional

feature vectors. Figure 3.15 shows that there exists a linear relationship between the num-
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ber of points in the input point cloud and the computation time for the initial processing

steps, due to having to repeat the initial processing step for each point. On the other hand,

Figure 3.16 - Figure 3.18 shows that there is no clear trend for each method in terms of

the computation time for element retrieval. As the number of selected exemplar points in-

creases, the computation time of the element retrieval process increases in general but not

consistently. This is because each exemplar corresponds to a different number of candi-

dates to match, which will affect the computation time. For example, a window element

consists of a small number of points but may have a large number of matches, whereas a

floor element consists of a large number of points but may have fewer matches. Generally,

the computation time in element retrieval steps of features-based normal-based methods is

lesser than the direct approach.

Table 3.12: Computational steps involved with each candidate matching approach
Candidate Initial processing steps Element retrieval processing steps

finding Load point Computing Feature Extract same Candidates Matching
approach cloud data normal extraction dimension finding refinement

vector point sets
Direct

√
× ×

√ √ √

Normal
√ √

×
√ √ √

Features
√

×
√ √ √ √

Table 3.13: Computational time involved with each building
Laser Initial processing steps Element retrieval processing steps

scanning Load point Computing Feature Extract same Candidates Matching
datasets cloud data normal extraction dimension finding refinement

(s) vector (s) point sets (s) (s)
(s) (s)

Dataset #1 0.05 0.15 2.76 1.16 1.07 0.04
Dataset #2 8.42 10.48 182.70 8.53 3.25 0.21
Dataset #3 1.72 2.08 38.53 1.59 1.95 0.05
Dataset #4 2.59 3.32 58.47 2.52 4.44 0.03
Dataset #5 2.98 3.32 65.18 2.73 4.62 0.05
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Figure 3.15: Initial processing computation time for each building point cloud data
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Figure 3.16: Element retrieval process computation time of building 1
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Figure 3.17: Element retrieval process computation time of building 2
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Figure 3.18: Element retrieval process computation time of building 3
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CHAPTER 4

DISCUSSION

In this study, the performance of the proposed feature-based element retrieval method is

demonstrated with quantitative results using precision and recall rate metrics, as well as

qualitative results using visual comparison of query results. Overall, the proposed feature-

based approach achieved the best precision score across Dataset 1-5, suggesting that it is

able to better distinguish the correct building elements from similarly-shaped clutter when

compared to the direct or normal-based matching approaches. This is because this method

takes the characteristics of each point and their interconnections with neighboring points

into account by computing a 50-dimensional feature vector for that point using a deep neu-

ral network. It is not limited to simply directly comparing the geometric shape or normal

vectors for each point. As a result, more false-positive candidates are filtered out without

excluding additional true positive matches due to incomplete data, occlusion and other fac-

tors, so the precision and recall rates maintain a desirable value. As shown in Figures 3.5

and 3.6, the proposed method can retrieve unidentified building elements and temporary

equipment in a point cloud without having a pre-built BIM model, since it is based on the

comparison of a user-selected exemplar and the candidate elements in the point cloud con-

sisting of groups of points that have same dimension as the exemplar. Thus, the proposed

method can work for any arbitrarily-shaped object even if it is not defined in the as-planned

BIM model.

In this study, one of the goals is used to learn features in a data-driven manner from an

auxiliary dataset and apply it to the actual object retrieval task in a new dataset. This is

inspired by concepts in the image-based facial recognition literature [47]. For example in

facial recognition, it is usually the case that the test images are from persons that have never
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been seen before in the training data. In order to match images in the test dataset, the strat-

egy used is to first learn useful features that can distinguish between different faces in the

training data. Then, a pair of test images can be predicted to be similar or dissimilar based

on these underlying features. This concept can be adapted for the task of building element

retrieval. For example, the training dataset could contain multiple point cloud instances of

Window Type A and Window Type B. The goal is to learn a model of useful features to

distinguish between different types of objects from point cloud data, such that the model

can tell that two instances of Window Type C are similar and that Window Type C and

Window Type D are dissimilar in the validation data, even though they have not been seen

in the training data. In this study, the auxiliary dataset is created by converting pre-made

BIM models into synthetic point clouds which does not have noise and occlusion. The

actual point cloud data collected with a laser scanner with noise and occlusion can also

be used for this purpose. However, using this as training data is much more challenging

because the points have to be manually labeled. Nonetheless, the object retrieval results in

Tables 3.1-3.3 show that the data-driven “feature”-based method outperforms the non-data

driven “direct” or “normal”-based methods. This suggests that feature learning is effective

in improving the object retrieval performance even though it is difficult to factor in noise

and occlusion characteristics in the training process.

In the feature computation step, it is possible to train the point features to be rotation-

invariant to handle objects that exist in different orientations. However, there are several

reasons why the implementation of this study is not rotation-invariant. First, the candidate

matching step searches for candidate elements that are rigid translations of the exemplar so

it would not be able to find rotated matches even if the features are rotation-invariant. Sec-

ond, the majority of building elements considered in this study exist in the same orientation

(refer Datasets 1-5). In this case, taking different orientations into consideration would

only increase the number of false positives without significantly improving the recall rate.
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Finally, orientation is an important distinguishing feature between different objects (e.g. a

floor can be distinguished from a wall because floors are oriented in the horizontal plane

whereas walls are oriented in the vertical plane).

In terms of the applicability, the study of the variability of a user-selected exemplar on

the retrieval results shows that the results are within a reasonable range, being 1.5% in the

precision rate and 4.4% in the recall rate. This means that differently selected instances or

boundaries of the selected exemplar do not have too much impact on the building element

retrieval results. In addition, the study of the effect of voxel grid resolution shows that the

feature-based candidate matching method achieves high average precision and recall rates

across different voxel resolutions. Although the fewer number of points can be compared

and matched when the voxel grid resolution becomes coarser, the use of a feature-based

approach allows each point to be accurately matched in high-dimensional space so that the

retrieval performance can be maintained. Moreover, the accuracy of the retrieval results

remains acceptable when the voxel grid resolution is varied from 0.05m to 0.2m.

The study of computation time shows that the feature-based method requires more ini-

tial processing time since computing the 50-dimensional feature vector is time-consuming.

However, the actual computation time of element matching and obtaining retrieval results

is relatively fast, in the order of ten seconds. This property is beneficial since the initial

preprocessing steps only have to be performed a single time for each building point cloud,

whereas the element matching and retrieval steps have to be performed multiple times for

different user-selected exemplars.

The proposed method faces several limitations in its current form. First, it is a semi-

automated method which needs user input. Therefore, it requires some domain knowledge

by the user to select the correct building element exemplar with suitable boundaries through
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the user interface. To overcome this limitation, the user interface can show the point cloud

overlaid with color images of objects acquired on the same site to make it more visually

clear and intuitive for users to select objects.

In addition, this method still requires that the scanned point cloud data be mostly com-

plete to obtain optimized building retrieval results. Although it is less sensitive to noise,

occlusion, and scanning artefacts compared to other methods, it is unable to retrieve build-

ing elements that have too many missing points in the point cloud. One possible solution

is to combine point clouds across different modalities such as ground-based laser scanning

and aerial-based scanning, as well as across different stages of construction where differ-

ent building elements would be exposed and visible in the point cloud. Another possible

solution is to still consider candidate elements with weak matching scores, and apply an

additional classification step to determine whether it is a valid match.
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CHAPTER 5

CONCLUSION

In this study, a semi-automatic building element retrieval method was introduced to iden-

tify similar building elements with a user-provided exemplar from a point cloud scene. The

proposed method can distinguish the correct building elements from similarly-shaped clut-

ter even for complex building elements when compared to the direct voxel grid matching

and normal vector matching approaches. This method is advantageous in that it can detect

temporary and unidentified building elements without the pre-built model data during the

construction phase. In addition, different selected instances or boundaries of the selected

exemplar do not have too much impact on the building element retrieval results. The accu-

racy of the retrieval results remains acceptable when the voxel grid resolution is varied from

0.05m to 0.2m, and the actual computation time is reasonably efficient. Although there are

several remaining limitations of the user-selection interface and requirement of complete-

ness for the scanned point cloud data, potential solutions have been suggested including

improving point cloud visualization in the user interface and combining multiple scan data.

For future work, color information can be utilized to extract more robust features for each

point to improve building elements retrieval results. Furthermore, the proposed method

can be applied to make the process of converting scanned point clouds into as-built BIM

(scan-to-BIM) more time-efficient, especially for complex historic buildings, where this

approach can assist in determining the positions and assigning semantic information of

the building elements automatically to reduce the workload of labeling repetitive elements.

More complex building point cloud data will be used to verify the efficiency and accuracy

for future promising applications in construction progress monitoring, deviation detection,

and material inventory checking.
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