
A PROBABILISTIC APPROACH TO THE
SEMANTIC INTERPRETATION OF BUILDING FACADES

Fernando Alegre, Frank Dellaert
College of Computing, Georgia Institute of Technology,Atlanta, Georgia 30332, USA

fernando.alegre@cc.gatech.edu,frank.dellaert@cc.gatech.edu

KEY WORDS: Segmentation, Model, Interpretation, Classification, Reconstruction, Pattern, Methodology

ABSTRACT:

Semantically-enhanced 3D model reconstruction in urban environments is useful in a variety of applications, such as extract-
ing metric and semantic information about buildings, visualizing the data in a way that outlines important aspects, or urban
planning.
We present a probabilistic image-based approach to the semantic interpretation of building facades. We are motivated by
the 4D Atlanta project at Georgia Tech, which aims to create a system that takes a collection of historical imagery of a city
and infers a 3D model parameterized by time. Here it is necessary to recover, from historical imagery, metric and semantic
information about buildings that might no longer exist or have undergone extensive change. Current approaches to automated
3D model reconstruction typically recover only geometry, and a systematic approach that allows hierarchical classification of
structural elements is still largely missing.
We extract metric and semantic information from images of facades, allowing us to decode the structural elements in them
and their inter-relationships, thus providing access to highly structured descriptions of buildings. Our method is based on
constructing a Bayesian generative model from stochastic context-free grammars that encode knowledge about facades. This
model combines low-level segmentation and high-level hierarchical labelling so that the levels reinforce each other and produce
a detailed hierarchical partition of the depicted facade into structural blocks. Markov chain Monte Carlo sampling is used to
approximate the posterior over partitions given an image.
We show results on a variety of real images of building facades. While we have currently tested only limited models of facades,
we believe that our framework can be applied to much more general models, and are currently working towards that goal.

1 INTRODUCTION

Buildings and many other man-made objects differ from nat-
ural objects in the high incidence of symmetric and regular
shapes. These shapes are commonly organized in logical hier-
archies that are the result of the natural tendency of humans to
use divide and conquer methods for dealing with complex de-
signs. The symmetry and hierarchical structure of buildings
is obvious to any observer in most cases. It is then natural
to make use of them when trying to automatically reverse-
engineer a design based on the actual building, especially
since the desired outcome is usually not an accurate recovery
of the original design, but a plausible organization that can be
used as a source of new designs, as a way to store knowledge
about a building, or as a basis for reasoning about it.

This paper demonstrates a proof of concept of how the regu-
larity and hierarchy of objects such as buildings can be ad-
vantageously exploited in order to automatically infer fine-
detailed models and rich semantic interpretations of them that
go beyond what is currently possible in less structured envi-
ronments. As such, many simplifying assumptions have been
done, and instead of presenting a full-blown framework, a few
aspects of the process have been chosen to illustrate it. Nev-
ertheless, we believe that there is a clear line along which the
ideas presented here can further be developed, and that is the
aim of our future work.

We have initially restricted our models to building facades,

and chose to model them by means of stochastic context-free
grammars. Context-free grammars are well established and
understood in many practical and theoretical branches of com-
puter science. Furthermore, stochastic extensions have been
successfully applied for a decade now in at least two unrelated
areas. This class of grammars provides a sound and princi-
pled framework for both learning and meta-learning, in which
not only parameters for models but also rules governing wide
classes of them can be inferred. While this paper does not
deal with inference of the grammars but considers them as a
fixed input, our work may eventually extend to automatically
learning them from datasets.

We will present a method to infer a hierarchical representation
of the facade depicted in a rectified input image. In this paper,
we make the simplifying assumption that no structural ele-
ments in the facade are totally occluded in the image. While
partial occlusions are inevitable, we assume them to cover
portions of the image small enough for the output not to be
affected. Under these assumptions, the problem can be trans-
formed into that of inferring a hierarchical partition of the im-
age. Therefore, we wish to find a semantically meaningful
segmentation of the input image into regions, and then repeat
the process so that each region is segmented into subregions,
and so on.

We assume all regions to be composed of rectangular blocks
of constant color. Even though this assumption seems to be
too restrictive, it is suitable for many facades found in modern

1

office buildings. Obvious generalizations include considering
more types of regions and a more elaborate color, illumina-
tion and texture model. Nevertheless, many of the ideas pre-
sented would equally apply to the more complex models, and
the methodology discussed does not depend on the particular
type of regions considered, except when explicitely pointed
out.

A generative model based on stochastic, context-free, attribute
grammars is used as a concise way to describe the set T of hi-
erarchical partitions of the image. The use of grammars allows
us to break the space of all possible partitions into subsets cor-
responding to the parse trees for each grammar. Moreover,
terms of a grammar are naturally interpreted as labels for the
corresponding regions and given semantic meaning in terms
of the object they represent.

Given an input consisting of an image and a grammar, our
goal is then to infer a good hierarchical partition of the input
image from among all partitions that can be generated by the
given grammar. Thus, our methodology can be applied semi-
automatically. A human operator looks at the input image and
selects a suitable grammar to use as input for the inference
process, which can then be performed without further human
intervention. The role of a grammar is two-fold: to encode
the knowledge about the model and to select the degree of
granularity desired.

There is a considerable amount of ambiguity in this methodol-
ogy, because there is no one-to-one correspondence between
input grammars and output partitions. Furthermore, different
parse trees of a single grammar may produce equally accept-
able partitions. In the context of stochastic grammars, there is
an easy solution to this problem by assuming that the output to
the problem is not just a single partition but a probability dis-
tribution over all possible partitions. If the input grammar is
reasonable, we expect this probability distribution to be con-
centrated around a small number of peaks.

The grammars we use were designed so that they naturally
mirror the process by which a human would construct a hi-
erarchical partition of an image, but making explicit the as-
sumptions that humans use implicitely. This resulted in the
grammars to be associated with a mini-language in which a
partition is represented as a series of operators acting on sets
of blocks. We will dedicate the rest of sections 2 and 3 to de-
scribe them, first at the symbolic level, and then at the proba-
bilistic level.

Hierarchical structure, symmetry and repetition also arise in
other man-made creations such as language, either natural or
computer-oriented. It is common to encode the organization
of language is by the use of grammars. In particular, context-
free and regular grammars are critically important in many
fields of computer science, both at the theoretical and at the
practical level, since they are close to the optimum trade-off
point between expressiveness and tractability.

While context-free grammars are too simple to encode the
complexity of natural languages, generalizations of them in
which the generative process is no longer deterministic have
been used for many years. Such grammars are usually known
as stochastic grammars. After [Stolcke, 1994] introduced
a method for automatically learning stochastic context-free
grammars from corpora of natural language texts, the num-
ber of papers using similar approaches has bloomed. In a

parallel development, this approach has also been success-
fully applied to biology for decoding of some RNA molecules
([Sakakibara et al., 1994].)

Grammar-based approaches to modeling have also
been tried in the field of architecture. George Stiny
([Stiny and Gips, 1972]) introduced the notion of shape
grammars, which are a generalization of string grammars in
which production rules take the form of tranformations of sets
of two or three-dimensional shapes. They have been used with
varying degrees of success by the architectural community,
and a system inspired on them has been recently introduced
by [Wonka, 2003] into the field of computer graphics for
generation of realistic models of buildings. However, shape
grammars are often context-dependent, and thus generative
models based on them are difficult to automate efficiently,
since the generation step needs a pattern-recognition sub-step
that identifies combinations of shapes (produced by possibly
different rules) that can be fed as a left term of a shape rule.

In the computer vision community, a different approach for
generative modeling of buildings not based on grammars was
introduced by [Dick et al., 2002]. In this approach, a build-
ing is seen as a non-hierarchical composition of a lego-kit of
parametrizable parts that are added or removed from a can-
didate model, which is then fed into a Markov chain Monte
Carlo sampler that accepts it or rejects it according to a scor-
ing function. This process completely sidesteps the complex-
ity of non-context-free shape grammars, but its flat model is
not adequate for meta-learning, i. e., learning not the model
given a realization of it, but learning a relatively small set of
rules to be used in model generation given a corpus of images
representing a certain class of buildings. It is also arguable
that the lack of hierarchy in this approach makes it difficult
for humans to interpret and manipulate the output of the infer-
ence.

On the other hand, [Pinar Duygulu and Forsyth, 2002]
showed how a flat model that associates words to image
regions, and that can be learned via an expectation-
maximization method, will automatically produce meaningful
annotations of images for human consumption. However,
this approach is better justified for natural scenes, for which
hierarchical descriptions would be very complex, due to the
high levels of complexity and irregularity that they usually
exhibit.

It was also important to avoid dependence of our high-level
model on the performance of a low-level vision system that
could distort the assessment of our approach. Thus, we chose
not to depend on black-box feature detectors. Instead, we ex-
tended our generative model down to the pixel intensity level.
This methodology was somehow inspired by [Tu et al., 2003],
although the particular techniques we used are different.

The simplifications and assumptions we made reduced the
low-level problem to that of segmenting an image into disjoint
blocks. Our segmentation method is not far from the classical
split-and-merge algorithm ([Horowitz and Pavlidis, 1976].)
However, in our case the set of possible split trees is restricted
by the choice of input grammar because they must be valid
parse trees for the grammar. Moreover, in our method a merge
step is not performed explicitely, but as part of the construc-
tion of a new split proposal to be fed to a Markov chain Monte
Carlo sampler. This clean separation into a high-level and a
low-level part will eventually allow us to couple our high-level

TYPE FORM

Subdivide l 7→ op r1 r2 . . . rN

Copy l 7→ r

Table 1: Types of productions

grammar-based sampler with any low-level split-and-merge
strategy, not only image-based but also feature-based, as long
as the corresponding trees are consistent with the grammar.
While we implemented a single image-based strategy based
on intensity variance, alternative strategies may be considered
in the future.

2 GRAMMARS AND IMAGE GENERA-
TION

Our terminology for grammars and parse trees follows
roughly the setting described in [Aho et al., 1988]. The gram-
mar G = (ν0, S, P) consists of a finite set of symbols S such
that S = L ∪ N , with terminals L and non-terminals N , a
finite set of context-free productions P and a designation of
an initial non-terminal ν0 ∈ N.

We impose on the grammar G the additional restriction that it
be non-recursive in the following sense. Let D be a directed
graph with nodes the symbols in G. Let the edges of D be
given by this rule: an edge s1 7→ s2 is in D if and only if s1

and s2 appear in a production with s1as the left symbol. Then,
the non-recursivity condition means that D be acyclic. This
condition guarantees that the set of all possible parse trees of
G will be finite.

Such a grammar characterizes a set Σ of finite strings drawn
from symbols in S, since a string is in Σ only if it can be gen-
erated by productions in P starting at the symbol ν0. The pro-
cess of producing such a string can be encoded in a parse tree
with root ν0, internal nodes the non-terminals used, and leaves
the terminal symbols composing the string. This process, as
well as the generated strings and associated parse trees, is il-
lustrated in table 2.

Parse trees in our model are tightly connected to hierarchies of
regions and subregions of the input image, as explained below.
This fact makes manipulating parse trees better suited to our
purposes than manipulating the associated strings, since the
former translates directly into geometric transformations on
the corresponding regions. Therefore, our approach favors the
interpretation of a grammar as characterization of a certain set
T of trees representing partitions of an image.

2.1 Production rules and symbols

We consider two types of production rules, which are shown in
table 1. The copy rule is a trivial rule that just relabels a region
with a different symbol. So we will concentrate our effort
into explaining the subdivision rule. Two types of symbols,
which we call regions and operators, are used in these rules.
Operators are restricted to appear as the first right term in a
subdivision rule, and all other right and left terms are region
symbols.

Region symbols correspond to sets of identical blocks. They
represent local characteristics of the objects in the image, such

start{color=grey}

start

vsplit(1,2,1){r1 = 0.35, r2 = 0.65}

side{color=black}

center{color=grey}

start

vsplit

side

center

vsplit(1,2,1){r1 = 0.35, r2 = 0.65}

side{color=black}

hdiv(1,2){M = 9, r1 = 0.2, r2 = 0.8}

small{color=darkgrey}

big{color=lightgrey}

start

vsplit

side

center

hdiv

small

big

Table 2: Generation of an ideal image in 3 steps. The result of
applying each production is shown graphically together with
the corresponding generated string and its associated parse
tree. Curly brackets enclose attributes, as explained in sub-
section 2.2.1.

PRODUCTION DESCRIPTION

A 7→hdiv(1,2,3) B C B A block in region A is
divided along the hor-
izontal direction into 3
regions. An unspecified
number of blocks will be
created, so that the re-
gion type of each block
will be BCBBCBBCB...
Note that blocks 1 and 4
are clones, but blocks 3
and 4 are not clones.

A7→hsplit(1,2,3) B C B A block in region A is
horizontally split into 3
regions, resulting in 3
unique blocks with no
clones.

A7→vsplit(1,2,1) B C A block in region A
is vertically split into 2
regions, resulting in 3
blocks so that blocks 1
and 3 are clones of type
B, and block 2 is a single
block of type C.

Table 3: Examples of grammar productions

as shape, color, texture or appeareance. The reason why a re-
gion is in general a set of blocks and not a single block is that
it is then simpler to specify repeating elements in an image.
A typical example is windows, many of which are usually
identical in a facade. So, all identical windows can then be
represented by a single window symbol instead of a variable
number of symbols. Table 2 shows graphically the difference
between regions and blocks. The number of blocks (also re-
ferred to as clones) will sometimes be regarded as a parameter
to be estimated and sometimes be considered part of the def-
inition of an operator symbol, but will not be by itself a valid
symbol of the grammar. The downside of this is that mapping
from parse trees to image partitions is not as straightforward
as one could naively expect and must be performed by means
of an interpreter of the resulting mini-language. Furthermore,
this mapping is not invertible, because in many instances there
is more than one possible way to order the operations that pro-
duce a given partition.

Operator symbols correspond to ways of segmenting a region
into subregions. When a region is composed of more than one
clone, it is enough to specify how to subdivide one block and
then repeat the operation for all the remaining clones. There-
fore, operators are described by specifying the result of apply-
ing them to a single block.

2.1.1 Rectangular blocks

In the case of rectangular blocks, we split only along a co-
ordinate direction. Therefore, we use two main classes of
operators: vertical subdivisions and horizontal subdivisions.
Production rules for these operators have the form shown in
table 1, where l and ri are region symbols, op is an opera-
tor symbol, and the number of regions N is fixed. This rule
will split a region associated with symbol l into N subregions
along a coordinate direction, assigning the symbols r1to rN

to the subregions in a left-to-right or top-to-bottom order.

The operators, which we termed split operators, have patterns
associated with them that describe the breakup into blocks
of each region and the clone relationships among the created
blocks. Patterns consist of lists of M numbers, where M is
the total number of blocks to be created inside a single block.
Each number in the pattern is an integer between 1 and the
number of regions N that specifies the region to which the
corresponding block will belong.

The general form of a split operator for N regions is thus ei-
ther hsplit(i1, . . . , iN) or vsplit(i1, . . . , iN), depending on
whether the split is to be performed along the horizontal or the
vertical direction, respectively.

We also defined another class of operators, termed div opera-
tors, with the same form as the split operators, but where the
pattern is assumed to repeat as many times as it fits within the
parent region. Note that we do not currently require the total
number of blocks M to be a multiple of the number of re-
gions N . This means that the last repeated pattern is allowed
to be included only partially. Examples of both split and div
productions are given in table 3.

2.2 Attributes and Semantic Rules

The grammar G is augmented with attributes associated with
each symbol. This type of grammar is usually called an at-
tribute grammar. However, we will consider a restricted type
of attribute grammar with semantic rules only for inherited at-
tributes. It will then be possible to apply the semantic rules in
a top-down single pass over the parse tree.

Attributes for region nodes fall into two categories: style at-
tributes, which describe global aspects of the generated image,
and geometric attributes, such as the pixel coordinates, shape
parameters and bounding box of the the objects depicted. The
former are inherited by just copying them onto the children
nodes. Therefore, there is no ambiguity in considering inher-
ited style attributes as attributes of a grammar itself, not asso-
ciated with any particular symbol, since their value will be the
same at every node in the corresponding parse tree. The lat-
ter are inherited through the application of the semantic rules
detailed below. On the other hand, operator nodes have only
synthesized attributes, which we mentioned before under the
name of parameters.

The semantic rules in our grammars combine the geometric
attributes of the input region with the synthesized attributes
of the operator in order to produce new region nodes with
geometric attributes corresponding to the given partitioning.
Therefore, application of the semantic rules proceeds in a
top-down fashion from the start symbol, which represents the
whole image as a single block, to the leaf level, which rep-
resents the final segmented regions, where each region is as-
sumed to be a set of identical blocks.

2.2.1 Attributes and semantic rules for rectangular
blocks

In the case of rectangular blocks, geometric attributes for each
block are given by 4 numbers corresponding to the position,

width and height of the block. The collection of these num-
bers for all clones of a given region constitute the geometric
attribute for that region.

Operators of type split are characterized by ratios {ri ≥
0}N

i=1, such that
P

i
ri = 1. Each ratio represents the pro-

portion of the total area a that will be assigned to each region,
independently of the number of blocks. This means that we
first assign an area rj×a to region j and then further subdivide
this region into a number ν of identical blocks so that the area
assigned to a single block will be rj×a/ν. The value N is not
a parameter, but a fixed constant in each production. There-
fore, split operators are drawn from an infinite family. Note,
however, that in any given grammar, only a finite number of
variations will be present. The semantic rule for a horizontal
split operator hsplit(i1, . . . , iM) is applied as follows. Let the
geometric attributes of an input block be (x, y, w, h), where
(x, y) are the coordinates of the top-left corner of the block,
and (w, h) are the width and height of the block. Let τ (k) be
the region type of block k. We then consider the number of
clones for each symbol j, which is given by

νj =
M

X

k=1

δj,τ(k), j = 1, . . . , N

Then, the width and height of block k are wk = (w ×
rk)/ντ(k) and hk = h, respectively. The other geometric
attributes of blocks are then generated by the following recur-
sion:

(x1, y1) = (x, y)
(xk+1, yk+1) = (xk + wk, yk).

A similar semantic rule is defined for vertical splits.

Finally, operators of type div have two parameters: the total
number M of sub-blocks into which a block is to be divided,
and the ratios {1 ≥ ri ≥ 0}N

i=1. The semantic rule for these
operators is applied indirectly by first transforming the oper-
ator into split(i1, i2, . . . , iN , i1, i2, . . .) so that the total num-
ber of indices is M. We can then apply the previous semantic
rule to the input blocks.

In summary, a partition of an image is characterized by a
string produced by our grammar plus the parameters of the
operators appearing in the string and the style attributes. If the
coordinate system for the image is chosen so that the image is
1 unit wide and 1 unit high, then a partition can be generated
in a top-down way in two passes: the first pass generates a
parse tree by applying production rules at each non-terminal
node, and the second pass applies semantic rules to generate
all the geometric attributes. These two passes can either be
sequentially executed or alternatively applied to each node in
the parse tree as it is built.

3 BAYESIAN FORMULATION AND IN-
FERENCE

3.1 Priors and likelihood

We will now put a probabilistic machinery on top of the previ-
ously defined symbolic grammar by assigning prior distribu-
tions to the style attributes, the parameters and the production

rules, but not to the geometric attributes of the start symbol,
which we always parametrize as the unit square. Note, how-
ever, that the geometric attributes of the other nodes will ac-
quire a probability distribution induced by the application of
the semantic rules.

Prior probabilities for the style attributes and the parameters
are easily defined by just considering them random variables
instead of constants. For example, in the case of rectangu-
lar blocks, the parameter M in the div operators may be pro-
vided with either a unit mass at a given value, a discrete uni-
form distribution in a given range or a Poisson distribution
with a given variance (more meaningful than the mean in this
case.) Similarly, it seems natural to consider priors for the
ratio parameters in div and split operators to be given by a
Dirichlet distribution with means (r̂1, r̂2, . . . , r̂N) and vari-
ances σ2

i = r̂i(1−r̂i)
1+û

, i = 1, . . . , N so that
PN

i=1 r̂i = 1
and

P (r1, . . . , rN |r̂1, . . . , r̂N , û) =
1

Z

N
Y

i=1

rr̂iû−1
i ,

where Z is the normalization constant:

Z =

QN

i=1 Γ(r̂iû)

Γ(û)
.

Additionally, each production is given a prior probability of
being triggered. Let S =

˘

s1, . . . , s|S|

¯

be the set of all style
attributes of grammar G. The prior probability P (S) is given
by P (S) =

Q|S|
i=1 P (si). LetP (l 7→ r|S) be the probability

of a production with left term l and right term r = r1r2 . . . rn

and let R be the set of all productions in our grammar. Then,
π is characterized by the following properties:

1. P (l 7→ r|S) = 0 if l 7→ r /∈ R

2.
P

{r:l7→r∈R} P (l 7→ r|S) = 1

This probability over the grammar naturally induces a prob-
ability over the parse trees constructed by applying the pro-
ductions. The probability P (T, S) of a parse tree T will be
then:

P (T, S) = P (S)P (T |S) = P (S)
n

Y

k=1

P (πk|S)

where π1...πn are all the rules that were used to generate the
parse tree. Note that some rules might have been applied mul-
tiple times.

Finally, given a parse tree T for a grammar G, we can com-
pute the probabilities induced by the semantic rules on the
geometric attributes. We will first transform the tree T into
an equivalent representation known as a syntax tree. Syntax
trees are commonly used in interpreters as a concise, proce-
dural representation of a computation, and they make sense in
any context in which leaves in a parse tree can be classified
as either operators or operands. Note that this is a semantic
property rather than a syntactic property, since the existence
of such a classification depends exclusively on the semantic
rules. Syntax trees differ from parse trees in that operator
nodes are moved up one level so that they become parents of

Figure 1: Bayesian network representing the model in this
paper

their previous siblings, so that they share a node with the non-
terminal that generated them. If necessary, the nonterminal
symbol may be added as a synthesized attribute of the opera-
tor node.

In our case, it is easy to see that the requirements that sub-
division operators do not create overlapping blocks and that
the sub-blocks fully cover the parent block mean that the sub-
blocks are conditionally independent given the parent. In
other words, syntax trees of G form Bayes networks with pos-
sibly varying nodes and edges (cf figure 1.)

We will connect these Bayes networks to the input image by
adding the pixels as evidence nodes with probabilities given
by a likelihood function. Thus, we need to enhance our gen-
erative model with a function φ that maps partitions, as given
by the parse tree T with parameters θT , into image intensi-
ties. Under our assumption that terminal blocks have uni-
form color, a reasonable model for φ can be defined by adding
graphical attributes to the parameters.

In the previous context, graphical attributes can be thought
of as synthesized attributes of terminal symbols that represent
color, texture or appeareance. In the case of rectangular blocks
of uniform color, they will just be 3 numbers corresponding to
the mean RGB intensity value of the block.

Let {Ri} be the set of terminal regions of a given parse tree T.
We can then use the geometric attributes of Ri to construct a
function ι(x) that returns the index of the region that contains
the image point x. Let γi be the graphical attribute of region
Ri. Then, we can define a function

φx(T, θT , γT) = γι(x) + εx,

where εx are independent identically distributed random vari-
ables with zero mean and σ2 variance. This function maps
parse trees enhanced with graphical attributes (which we will

refer to as partitions) into images. Its induced probability dis-
tribution depends on the prior probability of the graphical at-
tributes as well as on the noise ε. For simplicity, we assumed
the noise to be Gaussian, despite of being aware that this might
not be the best choice for dealing with variables with bounded
range such as intensities. This choice will be revisited in the
future.

The joint posterior distribution P (T, θT , γT |I) given an im-
age is thus proportional to the product of the likelihood and
the priors on each tree and on the attributes on each tree:

P (I|T, θT , γT)P (γT |θT , T)P (θT |T)P (T), (1)

where the graphical attributes are represented by γT and all
the other attributes are in θT .The likelihood in (1) factors over
different regions:

P (I|T, θT , γT) =
Y

i

P (IRi
|T, θT , γi)

In the case of Gaussian noise, the last term is:

P (IRi
|T, θT , γi) ∝

Y

x∈Ri

exp(−
‖Ix − γi‖

2

2σ2
), (2)

where Ix is the actual image intensity. Since we will sample
the posterior, it is convenient to integrate out the graphical
attributes to arrive to a marginal over the parameters

P (T, θT |I) ∝ P (I|T, θT)P (θT |T)P (T) (3)

P (I|T, θT) =

Z

γT

P (γT |T, θT)P (I|T, θT , γT).

Since the graphical attributes of a region are conditionally in-
dependent of other regions given the parameters of the tree,
this formula can be further factored into region terms

Y

i

P (γi|T, θT)P (IRi
|T, θT , γi).

If we assume a uniform prior on the graphical attributes inde-
pendent of the other attributes and then use formula (2) then
the integral can be explicitely computed, giving rise to a cor-
rected Gaussian in the remaining parameters

P (I|T, θT) =
Y

i

p

2πσ2/Ni exp−
1

2σ2

X

x∈Ri

(Ix − γ̂i)
2

where Ni is the number of pixels in region Ri, and γ̂i is the
sample intensity mean of region Ri. Finally, by observing
that the inner sum is a function of the sample intensity vari-
ance (σ̂i)

2, we arrive to the final expression, which in sam-
pling contexts such as ours described below, is known as Rao-
Blackwellization of the color intensity:

P (I|T, θT) =
Y

i

p

2πσ2/Ni exp−
1

2σ2
Ni(σ̂i)

2 (4)

3.2 Approximate posterior via MCMC sampling

We are interested in computing the posterior distribution given
by 4. Due to the complexity of the distribution, it is not fea-
sible to compute it exactly. Instead, we will use a sampling
method that approximates it. Inference is thus performed by
running a reversible jump Markov chain Monte Carlo sampler
that follows the framework explained in [Green, 2003]. Using
that terminology, each state consists of a model indicator T
and a parameter vector θT . The model indicator runs over all
possible parse trees compatible with our grammar, and the pa-
rameter vector is the collection of all the parameters in all the
nodes of a given tree. We will also refer to a state (T, θT) as
a partition whenever we want to emphasize an image point of
view rather than a grammar point of view. Both initialization
and construction of new proposals are driven by the data. In
fact, the same process is used in both cases, except for minor
differences.

The sampler is constructed according to the usual Metropolis-
Hastings algorithm as follows:

1. Given a grammar G, generate a random initial partition
Π0 = (T0, θ0).

2. From a given partition Πn generate the corresponding
ideal image Ĩn = φ(Πn).

3. Use a proposal distribution Q(T ′, θ′|Tn, θn) to sample a
new tree T ′ with attributes θ′ and compute Ĩ ′ = φ(Π′),
where Π′ = (T ′, θ′).

4. Compute the acceptance ratio

r =
L(I; T ′, θ′)P (T ′, θ′)Q(Tn, θn|T

′, θ′)

L(I; Tn, θn)P (Tn, θn)Q(T ′, θ′|Tn, θn)

5. Set Πn+1 = Π′ with probability min(r, 1). Otherwise,
set Πn+1 = Πn.

6. Repeat from step 2 on, until convergence.

Data-driven construction of a proposal starts with a partial
parse tree extracted from the previous state by pruning the
tree from a certain node down to the leaves hanging from it.
For the initial state, the partial tree is the empty tree. In any
case, there initially is a single point of insertion for adding new
nodes to the partial tree. The sampler chooses one grammar
rule that can be applied to the insertion point and expands the
tree, proceeding recursively until a new full parse tree is cre-
ated. Every time a rule is expanded, the corresponding param-
eters are also chosen. Thus, there are three separate tasks in
the process of constructing a new proposal: choosing a point
of insertion, choosing which rules to apply for generating each
new node, and choosing the new parameters. Note that the last
two tasks do not occur sequentially, but alternate at each node,
so that nodes are not expanded until all parameters in existing
nodes are selected. Each of these subtasks is detailed below.

3.2.1 Selecting the insertion point

Given a current tree, a node is selected at random from among
all nodes that are parents of an operator node, and the tree is
pruned at that node. The probability p1 of selecting a node is
just the inverse of the number of selectable nodes in the cur-
rent tree. This task has the effect of merging the corresponding
blocks in the associated planar partition.

3.2.2 Selecting the grammar rule

If more than one rule can be applied at a given node, the prior
probability is used to sample one of them. Therefore, the
probability p2 of selecting a rule is just the prior probability
of the corresponding rule.

3.2.3 Selecting the parameters

We currently perform exhaustive search for the global mini-
mum of the discretized error, which is defined as the minus
logarithm of the expression in formula (4), which is inter-
preted as if the current node were a leaf node in the parse tree.
This process has probability p3 = 1. Note that this is an ap-
proximation to the true likelihood, since we do not account for
the contribution of nodes below the current node. However, it
maximizes the likelihood of a closely related problem, namely
one with the same grammar except at the current node, which
becomes a terminal node, and at all nodes below it, which do
not appear in the transformed grammar. The partial parse tree
generated so far thus can be seen as a fully expanded parse tree
of the partial grammar, and so all the previous formulation can
be applied to that problem.

Alternatively, we can also just sample a ratio from the prior.
In this case, the probability p3 is just the prior probability over
the corresponding parameters.

3.2.4 Summary

The construction of a proposal can be summarized as follows:

1. We remove all the nodes under the fork and generate a
new subtree according to the following rules:

(a) If we are at a production node, then generate the
children according to the production, but leaving
non-terminals unexpanded.

(b) If we are at an unexpanded non-terminal l then
sample a production l 7→ r from the set of appli-
cable productions and replace the unexpanded non-
terminal by a production node.

(c) If we are at a terminal node, then stop. We have
now a complete new tree T ′.The color of this node
is computed from the original image by averaging
over all pixels belonging to the associated region.

(d) When expanding an operator rule, we consider
all possible partitions up to the image resolution
level, compute the likelihood of each partition and
choose the partition with the highest likelihood.

(e) An alternative to the previous step is to just sample
a random partition.

2. The proposal probability Q(T ′|T) is just the product
p1 × p2 × p3 of all the probabilities computed in the
previous steps.

3. The reverse probability Q(T |T ′) is computed in the
same way, since the process described above is symmet-
ric.

(a) Original image, rectified and clipped

(b) Inferred image

start -> vsplit(1,2) top body
body -> hsplit(1,2) margin main

main -> vdiv(1,2) floor wall
floor -> hdiv(1,2) window wall

window -> hdiv(1,2) glass metal

Figure 2: A clipped facade. This figure illustrates the prob-
lems that are typically encountered in most images of facades.
Some large occlusions in the original image had to be clipped
off. The top of some trees and a lightpole are still visible at
the bottom, but they are not large enough to interfere with the
inference process. The inferred image shows the finest detail
we could get, and the inset shows the input grammar used to
achieve it. We unsuccessfully attempted to capture the bricks
on the top, but the inference failed. On the other hand, the
discrepancy in window illumination and texture did not pose
a serious problem.

start:hsplit

left

center:vsplit

right

up

middle:vsplit

down

group:vdiv

wall

floor:hdiv

wall

window

wall

Final syntax tree

start -> hsplit(1,2,3) left center right
center -> vsplit(1,2,3) up middle down

middle -> vsplit(1,2) group wall
group -> vdiv(1,2) floor wall

floor -> hdiv(1,2) window wall
down -> anything

Figure 3: Intermediate steps in a successful inference

start:hsplit

left

center:vsplit

right

up

group:vdiv

down:vsplit

floor:hdiv

wall

down1

down2

window

wall

Final syntax tree

start -> hsplit(1,2,3) left center right
center -> vsplit(1,2,3) up group down

middle -> group
group -> vdiv(1,2) floor wall

floor -> hdiv(1,2) window wall
down -> vsplit(1,2) anything anything

Figure 4: A failed inference with a grammar slightly different
from that in figure 3

Figure 5: Original input image for the inference in figures 3
and 4 and inferred model.

Figure 6: Error comparison between the grammars in figures 3
and 4. This graph shows the intra-class error of the third rules
in figures 3 and 4 as a function of the ratio between the two
regions to be split. It is worth noting the absence of any special
feature in the bad error curve at the point where the right split
should have been performed. Note also how the minimum of
the error in the good error curve is closely followed by another
sharp local minimum after the first window row, thus making
the result susceptible to small perturbations of the noise.

4 RESULTS

We chose to initially concentrate on inferring the parameters
of an input grammar customized for the input image. Even in
this simplified setting many problems were encountered, and
the inference process was more complex than anticipated.

The most important problem we faced was the existence of
large occlusions in almost any image of a facade. Figure 2
shows a typical example of the type of clipping we had to per-
form, as well as the level of detail we were able to accomplish.
We added production rules to account for the bricks at the top
of the facade, but the inference failed. On the other hand, the
mullions (metal dividers between pieces of glass) were prop-
erly inferred. The inference process took just a few seconds
with our non-optimized code.

As stated previously, in this paper we focused in images with
few or manually removed occlusions. Without occlusions
and with a grammar customized to the image, the inference
method becomes a search for error minima at each level of
the parse tree, as explained before. However, grammar cus-
tomization makes the error dependent on the particular choice
of grammar, as the examples in figures 3 and 4 show. In these
examples, the first series shows a correct inference process,
while the second series gets one row too many of windows.
Only the third production rule is essentially different in the
grammars. In the correct case, the rule groups the windows
together with the clear area below them, while the other rule
groups that area with the cluttered region at the bottom.

A graph showing the errors for the good and the bad gram-
mars together is shown in figure 6. From this graph, it is easy
to see that the good grammar found the right answer by a very
narrow margin. A small perturbation of the intensities could

(a) Original image (b) Inferred image

start:vsplit

top

group1:vsplit

group2:vdiv

floor:hdiv

wall

floor:hdiv

wall

floor:hdiv

wall

floor:hdiv

beam

windows:hdiv

beam

windows:hdiv

beam

windows:hdiv

beam

windows:hdiv

glass

metal

glass

metal

glass

metal

glass

metal

(c) Corresponding syntax tree

start -> vsplit(1,2,3) top group1 group2

group1 -> vsplit(1,2,3,4,5) floor wall floor wall floor

group2 -> vdiv(1,2) wall floor

floor -> hdiv(1,2) beam windows

windows -> hdiv(1,2) glass metal

Figure 7: A facade with some asymmetry and nested struc-
ture. This example shows one of the possible interpretations
of the structure in the facade. There are two big groups of
windows. The asymmetry in the top group had to be captured
by a specialized rule in a split operator. The main group is a
typical repetition pattern modeled by a div operator. As in the
previous example, the tiny elements separating pieces of glass
are fully captured.

change the balance between the weights of each region and in-
fer a different (wrong) outcome. In other words, the inference
process is currently not very robust. However, this problem
may be less serious in production rules with multiple choices,
because perturbations that otherwise would have confused the
inference would guide the sampler to a low probability region
of the state space, and such proposals would be rejected.

Another potential problem that may become more important
as we try more complex grammars is asymmetries and non-
standard structural elements. Figure 7 shows an example in
which we had to add an ad-hoc rule to the grammar in or-
der to account for asymmetries in the facade. Typically, the
simplicity of the rules used is well suited to our goal of gener-
alizing the grammar to model large classes of buildings with-
out human intervention. However, rules such as the second
rule in this example, which required an operator on 5 regions,
will be difficult to add to a generic system without imposing a
substantial penalty on the inference process. Therefore, non-
flat priors that give low probability weights to such rules will
need to be used in the generic grammar. Note that the more
complex the rule, the longer it takes for the optimization to be
computed.

We are in the process of collecting a dataset for running more
systematic tests. Nevertheless, an informal comparison of
our method with some common segmentation methods is pro-
vided for illustration purposes in figures 8 and 9. We ran
these tests using software distributed by the Image Recogni-
tion Laboratory at the University of Koblenz-Landau in Ger-
many.

5 CONCLUSION

The preliminary results we obtained demonstrate the poten-
tial of this approach, although it is clear that more testing and
a more systematic validation on a consistent and reasonably
large dataset still need to be performed.

We have identified several sources of inaccuracy in our pro-
cess, and the list is expected to grow as more complex gram-
mars are tried. On the other hand, many improvements and
extensions to our framework are currently being planned.

At the segmentation level, it is worth exploring the perfor-
mance of replacing the current image-based system with a
corner or edge detector. We expect this would make our sam-
pler faster but less reliable. However, it is unclear whether the
degradation of accuracy will fall within acceptable limits.

In an image-based system, a different error model might make
it more robust against small perturbations. Furthermore, as
we stated above, a Gaussian is not well-suited for modeling
compact-supported quantities such as image intensities.

At the inference level, efficient methods to guide the sampler
in the presence of multiple-choice rules need to be developed.
We would like to exploit the top-down approach as much as
possible, so that the random search explores relatively low di-
mensional spaces. However, we may also need to incorporate
some bottom-up feedback or adapt some belief-propagation
techniques to our method.

We have repeatedly observed in our tests that there is a high
amount of synergy among grammars that share rules at the

(a) Original image (b) CSC

(c) Grammar-based (d) Region growing

(e) Recursive histogram (f) Split and merge

Figure 8: Comparison of our method with some common seg-
mentation algorithms. Note: CSC is an algorithm invented by
L. Priese at the University of Koblenz-Landau.

(a) Original image

(b) CSC

(c) Grammar-based

(d) Region growing

(e) Recursive histogram

Figure 9: Another comparison of our method with some seg-
mentation algorithms. See note for CSC in figure 8.

coarser levels, and formalizing this observation in terms of
multi-resolution inference may prove to be fruitful.

As for grammars, we envision using a wider variety of subdi-
vision operators and shapes, which will create some additional
problems. For example, shapes with holes are difficult to in-
corporate to our system because the split operations can cre-
ate topologically incompatible (i.e., non-homeomorphic) sub-
regions, which may complicate the grammars. Furthermore,
we need to account for occlusions. This would likely make us
consider layered models and layer-handling operators.

Finally, at the model level, the current equivalence between
image partitions and actual object parts needs to be replaced
by a more realistic model of 3-D facades and projections, with
the additional difficulty of finding the facade within a given
picture.

In conclusion, the approach we presented is a promising way
to add structured knowledge to geometric models. As stated
in [Dick et al., 2001], we also believe that advancement of the
state of the art in the fields of model reconstruction and struc-
ture from motion will be difficult unless models abandon flat
parametric estimation and base inference on tightly integrated
parametric and semantic information. The model introduced
in this paper shows a methodology to carry out such integra-
tion that lies on well-established concepts and seems to be
scalable, efficient and very expressive. We were surprised by
the performance of such a simple model and are very enthusi-
astic about its possibilities.

References

[Aho et al., 1988] Aho, A., Sethi, R., and Ullman, J. (1988).
Compilers, principles, techniques and tools. Addison-
Wesley, Reading, MA.

[Dick et al., 2002] Dick, A., Torr, P., and Cipolla, R. (2002).
A Bayesian estimation of building shape using MCMC. In
Eur. Conf. on Computer Vision (ECCV), pages 852–866.

[Dick et al., 2001] Dick, A., Torr, P., Ruffle, S., and Cipolla,
R. (2001). Combining single view recognition and multi-
ple view stereo for architectural scenes. In Intl. Conf. on
Computer Vision (ICCV).

[Green, 2003] Green, P. (2003). Trans-dimensional Markov
chain Monte Carlo. Chapter in Highly Structured Stochas-
tic Systems.

[Horowitz and Pavlidis, 1976] Horowitz, S. and Pavlidis, T.
(1976). Picture segmentation by a tree traversal algorithm.
JACM, 23(2):368–388.

[Pinar Duygulu and Forsyth, 2002] Pinar Duygulu,
Kobus Barnard, N. d. and Forsyth, D. (2002). Ob-
ject recognition as machine translation: Learning a lexicon
for a fixed image vocabulary. In ECCV, pages 97–112.

[Sakakibara et al., 1994] Sakakibara, Y., Brown, M., Under-
wood, R., Mian, I. S., and Haussler, D. (1994). Stochastic
context-free grammars for modeling RNA. In Proceedings
of the 27th Hawaii International Conference on System Sci-
ences, pages 284–283, Honolulu. IEEE Computer Society
Press.

[Stiny and Gips, 1972] Stiny, G. and Gips, J. (1972). Shape
grammars and the generative specification of painting and
sculpture. In Proceedings of IFIP Congress 71, pages
1460–1465. North-Holland.

[Stolcke, 1994] Stolcke, A. (1994). Bayesian Learning of
Probabilistic Language Models. PhD thesis, University of
California, Berkeley.

[Tu et al., 2003] Tu, Z., Chen, X., Yuille, A. L., and Zhu, S.-
C. (2003). Image parsing: Unifying segmentation, detec-
tion and recognition. In Intl. Conf. on Computer Vision
(ICCV), pages 18–25.

[Wonka, 2003] Wonka, P. (2003). Instant architecture. In
SIGGRAPH.

