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SUMMARY

Structure-from-Motion (SFM) is a very important technique in our daily life. It esti-

mates 3D information from a collection of 2D images, including the camera parameters

and the sparse correspondences. But this is not the end. To help SFM process to build an

almost complete connection between 2D images and 3D worlds, Multi-view Stereo (MVS)

and view synthesis are two indispensable techniques. These two techniques often take the

output results of SFM pipelines as input data. MVS process aims at building dense cor-

respondences of the foreground objects, while view synthesis focuses on generate photo-

realistic images from novel viewpoints. These technologies have been widely used in our

daily lives, such as reconstructing traffic conditions for automated vehicles, adding virtual

but reasonable assumptions to the real world by augment reality (AR) or build virtual 3D

spaces for human users via virtual reality (VR).

Current SFM pipelines integrated with MVS module often applies traditional MVS

methods. These algorithms cannot be well parallelized and can be slow when the data size

and the resolution increase. For view synthesis, however, there are seldom SFM pipelines

integrating it. Therefore, this thesis focuses on how to integrate MVS and view synthesis

efficiently into SFM pipelines, especially for the latest deep learning approaches. We first

do a thorough survey in both domains, compare the advantages and disadvantages of the

latest studies, and select the best fit approach for our distributed SFM pipeline, Georgia

Tech Structure from Motion (GTSFM) [1]. We implement the deep multi-view optimizer

with PatchmatchNet [2] and integrate it into the working graph of GTSFM. We also design

an algorithm to boost a novel deep view synthesis algorithm, Instant-NGP [3], by forcing

the reconstruction region on the overlapping Field-of-Views. This also enables us to extract

high-quality dense polygon meshes of foreground object directly from the reconstructed

depth field. Experiments run on DTU [4] and Skydio Crane Mast datasets suggest our MVS

approach is more efficient than some popular SFM pipelines with MVS implemented.

xiii



CHAPTER 1

INTRODUCTION AND MOTIVATION

1.1 Background

Computer vision algorithms can build tight connections between 2D images and 3D ob-

jects. The process of estimating the locations of 3D points from multiple images is com-

monly known as structure from motion [5], or SFM in short [6]. This converse process to

build connections from 2D to 3D space [7] brings great convenience when the 3D models

are complicated or dynamic. SFM process estimates fundamental parameters for a scene,

including camera poses, object point coordinates and so on, which is an important step for

building stereo vision. Further processes like multi-view stereo (or in short MVS) and view

synthesis can be performed based on SFM results. With the estimated camera parameters

from SFM process, MVS reconstructs a complete 3D object model from a collection of

images taken from known camera viewpoints [8], while view synthesis can create images

of the estimated scene as it would appear from novel viewpoints [9].

There are still many challenges for these processes, though. One of the most common

problems is how to keep high computational efficiency while the resolution of images and

the size of dataset increases. The popularization of photo-sharing applications and high-

quality mobile image acquisition devices presents both an opportunity and an challenge

[10]. Parallelization is a common approach. With the emerging and development cloud

computing [11], scientists have been starting to apply distributed computing strategy to

improve the scalability of existing computer vision systems [12, 10], and have made great

progress. Another method is to apply pre-trained neural networks to perform faster and bet-

ter in complex tasks. For example, object recognition [13, 14, 15] and image segmentation

[16, 17, 18].
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However, state-of-the-art SFM systems, from OpenMVS [19], Theia [20] to OpenSfM

[21], OpenMVS [22] to COLMAP [23], Meshroom [24], very little of them has applied

with either distributed system or pre-trained deep learning methods into their SFM pipelines.

That is where Georgia Tech Structure-from-Motion (GTSFM) [1] was born. GTSFM is an

end-to-end global SFM pipeline designed to natively support parallel computation using

Dask.

In this work, we demonstrate how deep learning approaches can be integrated into

GTSFM for MVS and view synthesis tasks. For each task, we will show a detailed survey

and comparison on existing advanced deep learning approaches, how we integrate the se-

lected method into GTSFM, and a number of advantages that our implementations bring to

GTSFM compared with other state-of-art approaches.

1.2 Unsolved Problems in SFM pipeline

1.2.1 Challenges in MVS: Dense Correspondences Reconstruction

Multi-view stereo (MVS) algorithms [25, 26, 8] has been a popular topic of research for

decades. In the SFM process, 3D points on objects estimated are filtered among tracks of

matched features detected by descriptors. MVS, however, requests to produce complete

3D surfaces [7], of which the output result is usually a 3D volumetric descriptions (e.g.

density field) or the reconstructed surfaces (e.g. a dense polygon mesh) for the target 3D

object. Smooth surfaces can be obtained from a dense point cloud with normals [27, 28,

29], and a dense point cloud can be simply obtained by fusing reconstructed depth maps

from multiple views. Therefore, how to efficiently make use of SFM results to assist MVS

algorithms to compute optimized dense depth maps can be a meaningful topic.

Among state-of-art SFM pipelines with MVS process, Meshroom [24] applies Semi-

Global Matching (SGM) method [30, 31], which is based on pixel-wise matching of mutual

information and estimating a global and smooth depth map. COLMAP [23] and OpenMVS

[19] both apply algorithms combining ideas from both PatchMatch algorithm [32] and

2



plane sweeping stereo [33, 25, 34]. These matching-based can output great optimized

depth maps from all calibrated cameras in SFM, and can be parallelized in view level

because each depth map is reconstructed independently. However, all these algorithms

cannot be parallelized in pixel-wise computation. The efficiency of SGM method will be

influenced by the number of image pixels and depth/disparity hypotheses. Zheng’s EM-

based PatchMatch [35] used by COLMAP can be further parallelized between image rows,

but such complexity will still suffer from the increasing image resolution and the increasing

size of dataset.

Recently, remarkable progress has been made in the domain of deep-learning based

MVS [36, 37, 38, 39, 2]. Pixel-wise computation can be parallelized and reconstruction

performances are improved. But until now, there are few SFM pipelines integrating these

latest approaches to obtain dense correspondences. Also, how to leverage SFM results to

help provide MVS algorithms with better speed and quality still remains unexplored.

1.2.2 Challenges in View Synthesis: Neural Geometry and Radiance Field Reconstruction

Traditional view synthesis algorithms rely on a dense sampling of views to build photo-

realistic novel views by interpolating light fields [40, 41, 42]. For novel view synthesis

with sparser view sampling, geometry and texture representations of the target object are

estimated by observed images. Gradient-based mesh optimization by differentiable raster-

izers [43, 44] or pathtracers [45, 46] can be solutions but the implementations are often

difficult and complicated. Their performances are also largely influenced by the quality of

initialized template meshes, which is unavailable for unconstrained real-world scenes [47].

With the success in studies on neural graphics representations, the emerging of neu-

ral presentations for surface [48] using signed distance field (SDF) and for volume using

density field [47] are proposed and neural rendering by reconstructing radiance field [47]

makes it possible to implement gradient-based view synthesis by deep neural networks.

Since 2020, Neural Radiance Field (NeRF) related studies [47, 49, 50, 3] have been mak-

3



ing deep-learning based view synthesis algorithms much faster. These novel techniques

have not been integrated to SFM pipelines because of long scene-dependent training time

and high computational capabilities requested.

1.3 Thesis Contributions

Table 1.1: Thesis contributions towards integrating MVS and View Synthesis approach

Process Surveyed Approaches Selected Approach
MVS MVSNet [36] , R-MVSNet [37] PatchmatchNet [2]

Point-MVSNet [39], Fast-MVSNet [38]
CasMVSNet [51], PatchmatchNet [2]

View Synthesis NeRF [47], MVSNeRF [49] Instant-NGP [3]
Instant-NGP [3], Plenoxel [50]

My thesis work mainly focuses on surveying latest studies on MVS and view synthesis,

selecting the best-fit approach and integrating it into GTSFM. In this thesis, I demonstrate

a thorough review on many of the latest techniques (See in Table Table 1.1) that dominates

multiple benchmarks [4, 52, 53, 54] and choose the approach to integrate by comparing

their advantages and disadvantages with the demand of GTSFM. I will also present some

improvements I made to enable the selected approach to have even better performance user

GTSFM with experiment statistics. In detail:

For MVS process, I decide to integrate PatchmatchNet because of its fast execution

speed, great performance on most benchmarks, and its potential to be further parallelized.

To make it fit with GTSFM pipeline, I implement the depth-range estimation and view

selection modules for PatchmatchNet from SFM results computed by GTSFM. To make

PatchmatchNet a complete MVS process, I apply post-processing techniques including

normal estimation, redundant point removal, and surface reconstruction to the dense corre-

spondences output by PatchmatchNet.

For view synthesis, I select Instant-NGP for its high efficiency without complex neural

network architectures. To make better use of SFM results to accelerate Instant-NGP, I im-
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plement an overlapping Field-of-View (FOV) estimation module from the calibrated cam-

eras to limit the inference and rendering space for Instant-NGP. This module also makes it

possible to extract neat dense point clouds for target foreground objects from the predicted

density field by Instant-NGP.

1.4 Conclusion

In conclusion, latest deep learning methods have beaten the traditional MVS (Patchmatch-

Net) and view synthesis (Instant-NGP) algorithms in both efficiency and performance. We

select best-fit deep-learning based MVS and view synthesis approaches for modern SFM

pipelines and integrate them into our distributed GTSFM pipeline. Finally, we make im-

provements on both algorithms to make them even faster and more robust.
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CHAPTER 2

DEEP MULTI-VIEW STEREO FOR GTSFM

In this chapter, we integrate a deep-learning based Multi-view Stereo (MVS) approach

into our Structure-from-Motion (SFM) pipeline, Georgia Tech Structure From Motion

(GTSFM). Before integration, we focus on comparing different latest deep-learning MVS

methods with great performances on most popular benchmarks and analyze which one fit

best with our distributed SFM pipeline. We evaluate all methods using scenes from DTU

dataset[4]. We also make COLMAP [23]’s MVS results as a baseline in the experiments.

We show that PatchmatchNet [2] has the best performance in reconstruction quality, speed,

and scalability. Then we modulate PatchmatchNet to fit best with GTSFM’s work graph

and design a set of subsequential processes including normal estimation and redundant

point removal specially for the modulated PatchmatchNet. We also develop a set of metrics

to evaluate the MVS results for GTSFM.

2.1 Introduction

MVS is an important module for a complete SFM pipeline. It builds complete models of

foreground objects in the scene as a dense volume or a polygon mesh, which often plays

the role to combine and present the final SFM results to user’s interface at the last stage of

the whole SFM pipeline. Many popular SFM pipelines have implemented MVS module.

For example, COLMAP [23] and OpenMVS [19] use Patch-based stereo algorithms [35,

55] to compute dense point cloud for surface reconstruction algorithms like Poisson [27]

and Delaunay [56].

Since the sucess of MVSNet [36] in 2018, more and more efficient deep-learning based

MVS approaches emerge and lead most of the MVS benchmarks [4, 52, 53]. We are in-

terested in how these deep-learning based methods extends ideas from traditional MVS

6



algorithms and how they are different with each other in implementation and performance.

As a distributed SFM pipeline built for large datasets, time efficiency, scalability and ro-

bustness of the integrated MVS methods are key factors for GTSFM to consider.

In this way, we make a thorough survey of existing deep-learning based MVS methods

and integrate the most suitable method into GTSFM in order to produce a complete object

reconstruction. Our contributions include:

• We show by complexity analysis and experiments that PatchmatchNet [2] performs

the best among tested deep-learning MVS approaches and is suitable to be integrated

into SFM pipelines.

• We integrate PatchmatchNet into GTSFM as a MVS module. We also parallelize

its inference loop and implement extra operations to build polygon meshes from

the output dense point cloud, including normal estimation, redundancy removal, and

surface reconstruction.

• We show by experiments that GTSFM performs more efficiently than existing SFM

pipelines in MVS process.

2.2 Related Work

In this section, we briefly introduce approaches in traditional and deep-learning based

MVS, dense point cloud compression and simplification, and surface reconstruction.

Traditional Multi-view Stereo (MVS). Traditional MVS approaches without deep

learning often requires to do image rectification first and then query the best disparity by

comparing the left and right views. For example, block matching [57] algorithm shifts

a window along epipolar lines on the right-view image to find disparities with maximum

window similarity. To accelerate the exhaustive searching, local search algorithms are pro-

posed. PatchMatch stereo [58] extends the PatchMatch algorithm [32], which assumes that

there will be at least one randomly initialized disparity that is close to the accurate dispar-
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ity and pixels in the same patch are likely to be located on the same surface. With these

hypotheses, PatchMatch stereo can propagate these ”correct” disparities to their neighbor

pixels (spatially), pixels in the matched patch in other views (among different views), and

pixels in the preceding and consecutive frames (temporally). Other approaches that do not

require image rectification often warp images from the source views to the reference views

by homography matrices, aggregate errors between corresponding pixels for each depth

hypothesis, and query the best depth with best photoconsistency [7] according to the com-

puted cost volume for each pixel. Plane sweeping [33, 59, 60] performs such query in a

list of discrete depths. Shen [55] and Zheng [35] both combine the advantages of plane

sweeping and PatchMatch to design high-efficiency PatchMatch stereo algorithms without

image rectification.

Deep-Learning based MVS (DL-MVS). The concept of MVSNet is first proposed by

Yao et al. [36] in 2018. MVSNet applies the differentiable homography on warping multi-

scale features to calculate the cost volume and uses a 3D-CNN to regularize the encoded

cost volume to be the depth probability volume. Since Yao’s MVSNet [36] proves to have

great performance on both accuracy and completeness, a series of related research works

have been starting and made great progress. Recurrent MVSNet [37], Point MVSNet [39],

Fast MVSNet [38], CasMVSNet [51] are some of the most famous models based on the

concept of MVSNet. These latest DL-MVS methods are influenced heavily by the plane

sweeping algorithm mentioned. PatchmatchNet [2], however, follows and improves a set of

PatchMatch stereo algorithms [58, 55, 35] to cut down the size of cost volume and breaks

the shape constraint of a patch. In addition to fast parallel computing in neural layers, deep

learning methods also benefit from image feature pyramid [61] so that the photoconsistency

computation will not only be based on the pixel colors but also the extracted multi-scale

features, which help improve the robustness.

Point-Cloud Compression and Simplification. There have been lots of works on

compressing/simplifying the dense point cloud. In many of them, a tree-like structure will
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be used to encode the spatial structure of the origin dense point cloud [62, 63]. Another

idea is to downsample the original point cloud to obtain a subset or averaged point cloud

with smaller quantities of points. Uniform voxel sampling is a basic and widely used down-

sampling technique, which returns the average coordinates of all points in every voxel grid.

The voxel size is a customized parameter provided by the users. Popular libraries like

Open3D [64] and Point Cloud Library (PCL) [65] all have integrated the uniform voxel

downsampling. Furthest Point Sampling (FPS) is another popular downsampling algo-

rithm that selects the furthest point from the current central every step. It is much slower

so researchers have been working hard to make a fast approximation of it [66, 67, 68].

With the development of neural networks and the improvement of computation power of

generally-used hardware, deep learning models like [69, 70] can provide great performance

on cleaning and simplifying the point clouds.

Surface Reconstruction. Three of the most widely used techniques to estimate nor-

mals and reconstruct surfaces are the marching cubes (MC) algorithm [29], the ball pivot-

ing algorithm (BPA) [28] and the Poisson surface reconstruction method [27]. MC builds

polygonal meshes by decide how a surface intersects its logical cube created from eight

neighboring pixels. BPA is a surface reconstruction method that is related to alpha shapes.

Suppose there is a 3D ball with a given radius dropped on the point cloud. If it hits any 3

points and it does not fall through those 3 points, a triangle will be created. Then, the algo-

rithm starts pivoting from the edges of the existing triangles, and every time it hits 3 points

where the ball does not fall through we create another triangle. Poisson surface reconstruc-

tion can be preferable because it produces smooth results. Recently, deep learning methods

like Multi-View Stereo Distance Field (MVSDF) [48] are proposed. MVSDF optimizes the

implicit surface representation (encoded as a neural network) by reconstructing the signed

distance field (SDF) and the surface light field, which corresponds to the reconstruction of

surfaces and texture / materials separately.
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2.3 Survey on DL-MVS approaches

In this section, we will first briefly go over two popular non-DL MVS approaches: plane

sweeping and PatchMatch stereo. Then we will focus on comparing DL-MVS approaches

based on these two approaches by both time and space complexity analysis and experiment

performances.

2.3.1 Plane Sweeping Stereo

The projective transformation maps 3D world point wX̃ = [X, Y, Z, 1]T into screen co-

ordinates sX̃ = [x, y, 1, 1/z]T , where z is the depth to the image plane. In two view

triangulation, 1/z is related with disparity d [71]:

d = BF
1

z
(2.1)

where B is the baseline and F is the focal length.

The 4× 4 invertible projection matrix P̃ us defined as:

P̃ =

K 0

0T 1


R t

0T 1

 (2.2)

where K is the 3 × 3 camera calibration matrix (intrinsic), and (R, t) is camera extrinsic.

Then for a pixel of homogeneous coordinates sx̃ = [u, v, 1]T , if the depth hypothesis is z,

its corresponding screen coordinates is sX̃ = [u, v, 1, 1/z]T , its world coordinates wX̃ can

be calculated by:

wX̃ = P̃−1 sX̃ (2.3)

For a scene with k cameras, the projection matrix of camera i (ci) is denoted as P̃i.

Assume c0 is the reference view and the other (k − 1) cameras are source views. To

estimate the depth z for sX̃, plane sweep algorithm first generate a list of depth hypotheses

D = {z1, z2, ..., zn}. Under each depth hypothesis zj , the corresponding screen coordinates
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sX̃j0 = [x, y, 1, 1/zj]
T is assumed to be on the fronto-parallel plane at depth zj , and can be

re-projected to source view ci by:

sX̃ji = P̃jP̃
−1
0

sX̃j0 (2.4)

where both sX̃ji and sX̃j0 are homogeneous screen coordinates and can be transferred to

corresponding pixel coordinate (u, v).

Then we can estimate the depth of sX̃0 by querying the depth hypotheses list:

ẑ(sX̃0) = argminzj∈D

k∑
i=1

ρ(I0(
sX̃j0)− Ii(

sX̃ji)) (2.5)

where Ii(
sX̃ji) stands for the color of pixel sX̃ji in image captured by camera ci. ρ stands

for a customized error aggregation function. If we unfold the Ii(sX̃ji), we can find pixels of

all warped images can be stacked into a volume I(x, y, i, j) indexed by pixel (x, y), depth

hypothesis zj and camera ci. The error volume calculated by ρ is called cost volume C.

We can also use homography to better interpret the plane sweeping stereo. The homog-

raphy H̃i1i2 to map 2D pixel coordinates from view i1 to view i2 is a 3×3 matrix. Annotate

the depth hypothesis as zj for the reference view, the homogeneous pixel coordinates on

reference camera c0 as x̃j0, and the corresponding pixel coordinates on the source camera

ci as x̃ji. From Equation 2.2 and Equation 2.4, we get

x̃ji ∼ P̃jP̃
−1
0

sX̃j0

=

Ki 0

0T 1


Ri ti

0T 1


R−1

0 −R−1
0 t0

0T 1


K−1

0 0

0T 1


 x̃j0

1/zj


=

KiRiR0
−1K0

−1x̃j0 − 1
zj
KiRi(R0

−1t0 −Ri
−1ti)

1/zj


(2.6)

where ∼ indicates equality up to scale.
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As the distance between sX̃j0 to the reference image plane is zj , the vector from camera

c0’s center to sX̃j0 is zjK0
−1x̃j0. Assume the plane fp where sX̃j0 is located has the normal

n, because fp is a fronto-parallel plane to c0, the image plane is parallel to fp. So the

projection of zjK0
−1x̃j0 on n, which represents the distance from c0’s center to plane fp,

is also equal to zj .

zj = zjK0
−1x̃j0 · n

1 = nTK0
−1x̃j0

(2.7)

Combine Equation 2.6 and Equation 2.7,

x̃ji ∼

KiRiR0
−1K0

−1x̃j0 − djKiRi(R0
−1t0 −Ri

−1ti)n
TK0

−1x̃j0

1/zj


=

KiRi(I − 1
zj
(R0

−1t0 −Ri
−1ti)n

T )R0
−1K0

−1x̃j0

1/zj


(2.8)

Therefore, the homography of pixel coordinates from c0 to ci with depth hypothesis zj is:

H̃0i(zj) = KiRi(I −
1

zj
(R0

−1t0 −Ri
−1ti)n

T )R0
−1K0

−1 (2.9)

2.3.2 DL-MVS by Plane Sweeping

Since MVSNet [36] started a new era for deep learning MVS approaches, plane sweeping

has been one of the most popular support theorem that lie behind the success of DL-MVS.

In this section, we will take MVSNet as an example to show how plane sweeping stereo

contributes to modern deep learning MVS architectures.

As Figure 2.1 show, there are four steps in the architecture of MVSNet: feature extrac-

tion, differentiable homography, Cost volume regularization, and depth map refinement.

We can consider the first three steps as an extension to the original plane sweeping stereo.
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Figure 2.1: Architecture of MVSNet [36]. For each inference, multi-scale features are
extracted from input images through 2D feature extraction network. Features of source
images will be warped to the reference image by differentiable homography to build cost
volume. Finally, the cost volume will be regularized to probability volume and generate
depth map for the reference image. The depth map is refined with the reference image.

1. Feature extraction: Deep convolution neural networks (Deep CNNs) are well-known

for its multi-scale feature extraction capability. Compared with only using color dis-

similarity to calculate the cost volume, using multi-scale features extracted and en-

coded by trained CNNs can be more informative and robust. Besides, as the extracted

features are downsized, it significantly boosts the reconstruction both in efficiency

and quality.

2. Differentiable homography: This step is very similar to the warping process of the

plane sweeping stereo (Equation 2.9). The only difference is to make the homog-

raphy differentiable, where bilinear interpolation on extracted feature maps is used

when warping from source images to the reference views.

3. Cost Volume Regularization: Instead of directly find the disparity with the minimum

dissimilarity, a multi-scale 3D CNN is used to aggregate neighboring information

[36] from the cost volume. The 3D CNN then decodes the depth propability volume

to produce the initial depth map.
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4. Depth Map Refinement: To deal with over-smoothing caused by cost volume regu-

larization, a depth residual network is applied to remind the depth map of the input

image colors.

Similar to MVSNet, many other DL-MVS approaches also compute the cost volume

in the same way based on plane sweeping stereo. They also bring novel designs to make

this basic architecture more powerful. R-MVSNet [37] uses recurrent neural network units

(RNN units) to avoid caching the large cost volume. For the same purpose, Fast-MVSNet

[38] first computes sparse cost volume and then uses propagation on the output sparse depth

map to obtain dense depth map. Point-MVSNet [39] and CasMVSNet [51] both adopt the

coarse-to-fine concept.

2.3.3 PatchMatch Stereo

PatchMatch [32] is originally proposed as a randomized correspondence algorithm for

structural image editing. A patch is a region of pixels on the image. The algorithm first

assigns each patch a random correspondence. Then for each patch, check if its neighbors’

correspondences are better matches. If so, propagate the best fit correspondence to the

current patch. Similar to many local search algorithm, PatchMatch also add each patch

random perturbations to enable random search for improvements in concentric neighbor-

hoods [32]. In this section, we will introduce how PatchMatch algorithm is imported in

traditional MVS approaches.

PatchMatch Stereo with Rectified Image Pairs

Traditional MVS algorithms for rectified images like block-matching [57] search exhaus-

tively for the best disparity. To make it faster, PatchMatch algorithm is imported to replace

exhaustive searching with random local searching. PatchMatch stereo [58] is such a fast

MVS algorithm. Instead of building the cost volume, PatchMatch stereo queries the best

disparity by propagation. PatchMatch Stereo first assigns each pixel on each frame a ran-
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dom disparity d and a random normal n. Together with baseline B and focal length F , we

can calculate the plane fp where sX̃ = [x, y, 1, 1/z]T located.

Figure 2.2: Different steps of the PatchMatch stereo [58]: (a) Three types of propagation.
(b) Results at the end of propagation. (c) Results after post-processing.

The PatchMatch Stereo algorithm holds the assumption that world points of all pixels

within one patch lie on the same plane as the point at the center of the patch does. For each

iteration, the algorithm will traverse all patches in certain orders. Assume p is the center

pixel of the current patch and its current plane is fp. The propagation follows (Figure 2.2):

1. Spatial propagation: Assign p to its neighbor q’s current plane fq if it decreases the

cost of the patch.

2. View propagation: As for p’s matched point in other views p′, assign p to p’s current

plane fp′ if it decreases the cost of the patch.

3. Temporal propagation: As for p’s same-location point on its preceding/consecutive

image p′’, assign p to p’s current plane fp′ if it decreases the cost of the patch.

Different from plane sweeping, the cost here is calculated by a spatial aggregation:

m(p, f) =
∑
q∈Wp

w(p, q) · ρ(q, q − dqf ) (2.10)

where Wp is denotes a 2D square window centered on pixel p (will be 3D if considering
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temporal stereo). w(p, q) is a weight function can be customized for certain kind of pur-

poses. dqf shows the disparity of q in the image pair if it is on plane f . Hence q − dqf

denotes the corresponding point of q in the other image. ρ is the error function to calculate

dissimilarity.

The propagation works under the assumption that after random initialization there will

be at least one pixel of the region, of which the plane is close to the correct one [58]. In

this way, the random initialization builds a pool of disparity hypotheses to take the place of

the discrete disparity list used in plane sweeping. After propagation, Plane refinement and

post-processing will be applied to optimize the disparity map.

PatchMatch Stereo without Rectification

Because image rectification algorithms relies on the accuracy of matched feature point

and can only be calculated between two images at a time, MVS methods that require pre-

rectifying and then matching can be inefficient when the dataset is large. Therefore, there

are many improved PatchMatch MVS algorithms [55, 35] that combines the advantages of

PatchMatch algorithm and the plane sweeping algorithm. To remove pre-rectifying, these

methods warp source images to the reference image using Equation 2.9 to query depth

hypotheses instead of disparities.

Compared with simple plane sweeping stereo, PatchMatch Stereo algorithms without

rectification have the following advantages:

1. Use randomized depth map as random depth pool instead of creating a list of depth

hypotheses for each pixel. Avoid caching a large cost volume.

2. Patch-based error functions (often Normalized Cross Correlation, NCC) can be more

robust on noise, images under different illuminance, and so on.

3. Improved PatchMatch Stereo algorithm such as Zheng’s General Expectation Maxi-

mization (GEM) algorithm can be further parallelized along rows/columns.
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2.3.4 DL-MVS by PatchMatch Stereo

PatchMatch Stereo without rectification are widely used in the existing SFM pipelines, such

as COLMAP [23] and OpenMVS [19], there is seldom DL-MVS approach implemented

based on it. PatchmatchNet [2] is the most popular and successful one of such methods. In

this section we will focus on introducing PatchmatchNet.

Traditional PatchMatch stereo workflow (See subsection 2.3.3) often includes random

initialization, propagation, evaluation, and refinement & post-processing. There will be a

small number of iterations covering propagation and evaluation until the depth map con-

verges. PatchmatchNet follows these steps and extends the original algorithm to 1) run

faster, 2) support multiple source views, 3) break the patch shape limitation, and 4) fit with

the deep neural network framework (See Figure 2.3):

1. Initialization: In PatchMatch stereo, each pixel is assigned a single random depth

hypothesis. Patchmatchnet uniformly samples the complete disparity space to assign

each pixel a list of initial hypotheses to further guarantee that close guessed hypothe-

ses will be propagated.

2. Adaptive Propagation: Origin PatchMatch stereo adopts a scanning-order (from top-

left pixel to bottom-right pixel) propagation, which is time-consuming. To make use

of the parallel characteristic of neural network, PatchmatchNet uses a deformable

convolutional network (DCN) [72] to learn to adaptively select proper pixels’ depth

as candidate hypotheses for the current pixel. This adjustment not only significantly

accelerates the propagation step, but also breaks the shape constraint of a patch,

which is usually a fixed square.

3. Adaptive Evaluation: Like other DL-MVS, PatchmatchNet adopts the concept of dif-

ferentiable homography to warp the source image feature into reference view. This

invention addresses the constraint that PatchMatch stereo can only work on a pair

of images. Instead of directly calculate the cost volume, PatchmetchNet is inspired
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by group-wise correlation [73] to group the features and use the inner product of

grouped feature vectors to calculate a similarity volume for the selected depth hy-

pothesis. Extend to the pixel-wise weight w(p, q) in the original PatchMatch stereo,

PatchmatchNet uses a pixel-wise view weight [23, 74] network to evaluate similar-

ity confidence of each source view, and aggregates each view’s similarity volume by

applying weighted sum.

4. Adaptive Cost Spacial Aggregation: PatchmatchNet transforms the weighted-sum

(by source views) similarity volume to a cost volume by a 3D-CNN. Then similar to

Equation 2.10, it spatially aggregates the cost but makes two changes: 1) adaptively

select Wp by learned network so that Wp will not simply be a 2D square window, 2)

compute the weight w(p, q) by feature and depth similarity.

Besides, PatchmatchNet also applied coarse-to-fine concept to improve depth map quality.

Figure 2.3: Left: Overall architecture of Patchmatch Net. Right: Detailed structure of
learned Patchmatch: In the first iteration, depth hypotheses in Initialization are used. In the
following iterations, depth hypotheses are obtained from Adaptive Propagation by learned
offsets. Local Perturbation adds randomness to the hypotheses to help with the local search.
The learned pixel-wise view weight is estimated in the first iteration of Patchmatch [2].

2.3.5 Complexity Analysis

The time and space complexity analyses are performed under the following assumptions:

• All frameworks run with same number of images with the same resolution.

• All neural networks are fully parallelized by the same device.
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For all DL-MVS we tested, multi-scale feature extraction is a common step. Usu-

ally the feature extraction will have three stages, downsampling the original resolution.

From Table 2.1 we can learn that in terms of the number of convolutional layers, MVSNet,

R-MVSNet, and Fast-MVSNet will be faster than the others. CasMVSNet and Patch-

matchNet apply the feature pyramid [61] so there will be extra convolutional layers for

upsampling. For the number of output feature channels, Point-MVSNet and Patchmatch-

Net request more features. For the edge scales, all models use a 3-stage multi-scale feature,

and MVSNet and R-MVSNet require the larger resolutions.

Table 2.1: DL-MVS Complexity Analysis: Feature Extraction

Approaches #(Conv layers) #(Features) Edge scale
MVSNet 8 [8, 16, 32] [1, 1/2, 1/4]

R-MVSNet 8 [8, 16, 32] [1, 1/2, 1/4]
Point-MVSNet 11 [16, 32, 64] [1/2, 1/4, 1/8]
Fast-MVSNet 8 [8, 16, 32] [1/2, 1/4, 1/8]
CasMVSNet 13 [8, 16, 32] [1, 1/4, 1/16]

PatchmatchNet 16 [16, 32, 64] [1/2, 1/4, 1/8]

Cost volume (similarity volume for PatchmatchNet) is another key module that all in-

cluded methods have. MVSNet, Point-MVSNet and Fast-MVSNet use the cost volume in

the traditional plane sweeping way. To deal with MVSNet’s memory inefficiency, Point-

MVSNet builds a low-resolution cost volume and then uses point flow module to predict

and interpolate the depth map. Fast-MVSNet builds a sparse cost volume and then prop-

agates sparse depth maps to dense depth maps. R-MVSNet uses RNN to compute a cost

map for one hypothesis a time, which significantly improves the memory efficiency but

also brings with a lot of time consumption. CasMVSNet and PatchmatchNet both use a

cascading structure, in which there are several stages. In each stage, features generated

by the feature pyramid at the corresponding scale and coarse depth map from the previ-

ous stage will be used to build a cost volume and predict for a new depth map with larger

resolution. Because stages with larger resolutions serve as refinement to previous stages,

there will be fewer hypotheses and features required. In this way, the trade-off between
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time and space complexity can be well addressed. PatchmatchNet also benefits from fewer

feature channels by group-wise correction. Table 2.2 shows more details about the largest

cost volume (in volume size) in each methods.

Table 2.2: DL-MVS Complexity Analysis: Largest Cost Volume

Approaches Edge scale #(Hypotheses) #(Features) Volume Size
MVSNet 1/4 256 32 512×H ×W

R-MVSNet 1/4 1 32 2×H ×W
Point-MVSNet 1/8 96 64 96×H ×W
Fast-MVSNet 1/4 (sparse) 96 32 48×H ×W
CasMVSNet 1 8 8 64×H ×W

PatchmatchNet 1/2 16 4 16×H ×W

In additional to this two stages, we also list modules for each architecture that could be

the bottleneck for either time or space complexity (Table 2.3). One of the structures that

most of these methods have is 3D-CNN, which is used to transform the cost volume to the

depth probability volume. The time and space complexity of 3D-CNN can be influenced

by the input resolution, kernel size, and the architecture. For example, MVSNet uses a

four-scale 3D-CNN with 3 × 3 × 3 kernels and a large-resolution cost volume, which can

cost more time and memory than PatchmatchNet, which uses a simple sequential 3D-CNN

with 1× 1× 1 kernels and a much smaller cost volume.

Table 2.3: DL-MVS Complexity Analysis: Other Modules

Approaches Module name Major concerns
MVSNet Multi-scale 3D-CNN time & space

R-MVSNet RNN time
Point-MVSNet Flow Iterations time
Fast-MVSNet - -
CasMVSNet Cascade Iterations time

PatchmatchNet Propagation Iterations time

In conclusion, by analyzing time and space complexity into consideration, we select

Fast-MVSNet, CasMVSNet and PatchmatchNet to be candidates for GTSFM. Next we

will presents data from real experiments to take performance into consideration.
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2.3.6 Performance Analysis via Experiments

For MVS algorithms, DTU dataset [4], tanks and temples dataset [52], and ETH3D dataset

[53] are three popular datasets for benchmark. DTU dataset is even more widely used in

DL-MVS studies. To evaluate quality of the reconstruction results, there are three acknowl-

edged metrics [75, 52] for ETH3D dataset [53]:

• Accuracy (%): The fraction of the reconstruction which is closer to the ground truth

than the evaluation threshold distance.

• Completeness (%): The fraction of the ground truth which is closer to the reconstruc-

tion than the evaluation threshold distance.

• F1 score (%): The harmonic mean of accuracy and completeness, used to rank meth-

ods based on both metrics.

To make the experiments fair, we evaluate all these DL-MVS approaches together with

COLMAP [23]’s MVS [35] on 5 different sample scans from DTU test dataset. All the

experiments ran on a personal laptop with Ubuntu 20.04.1, Intel(R) Core(TM) i7-8750H

CPU (16GB RAM), and Nvidia GeForce GTX 1070 Mobile GPU (8GB RAM). The run-

Table 2.4: DL-MVS Performance Analysis: DTU dataset

Approaches Acc.(%) ↑ Comp.(%) ↑ F1 score(%) ↑ Run-time(s) ↓ GPU Mem.(MB) ↓
COLMAP-MVS 80.67 59.42 68.44 6.475 1520

MVSNet 47.41 57.73 52.07 1.126 8081
R-MVSNet 31.39 32.02 31.70 5.450 7577

Fast-MVSNet 22.06 48.59 30.33 3.051 7876
CasMVSNet 75.51 66.37 70.64 1.576 7289

PatchmatchNet 79.15 65.68 71.79 1.066 6093

time here is the inference time in seconds per image loop. To make the comparison fair,

we make all MVS methods use the same SFM results generated by COLMAP. COLMAP,

R-MVSNet, CasMVSNet, and PatchmatchNet can run full resolution (1600× 1200), while

Fast-MVSNet can only run in (1024×768) and MVSNet in (768×576). This result proves

the complexity analysis above.
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The experiment results show DL-MVS approaches run faster and result in better quality

than the state-of-art non DL-MVS approach implemented by COLMAP. The run-time and

GPU memory results also match with the complexity analyses. Among all included DL-

MVS approaches, PatchmatchNet have the both relatively high running speed and recon-

struction quality. Therefore, we decided to integrate PatchmatchNet into our SFM pipeline,

GTSFM.

2.4 Approach: Dense Multi-view Optimizer for GTSFM

In this section, we will in detail introduce how we design and implement our dense multi-

view optimizer framework for GTSFM.

2.4.1 System Overview

Figure 2.4: Dense Multi-view Optimizer for GTSFM

Multi-view Stereo (MVS) computes a complete object model (both geometry and tex-

ture) from a collection of images from multiple calibrated cameras. Since SFM pipelines

have already calibrated valid cameras and built sparse correspondences in filtered tracks,

modulated MVS algorithms in SFM pipelines need to perform the following tasks:

1. Depth range estimation: Estimate depth (or disparity [71]) ranges for each view by
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analysing the tracks and the sparse correspondences.

2. View pair selection: For each view, evaluate all other views to get N − 1 candidate

views that are proper to make image pairs with the current view.

3. MVS NN: Establish dense correspondences by calculating and optimizing the depth

maps for each view with deep neural networks.

4. Depth Map Filtering: Filter the output depth maps by geometry threshold and pho-

toconsistency threshold to get valid masks.

5. Normal estimation: Estimate normals for each pixel from depth maps.

6. Fuse: Filter the depth map to get a mask for reasonable pixels and project the corre-

sponding points for these filtered pixels to the world frame. Fuse all 3D points from

valid views in the world frame to build a dense point cloud.

7. Voxel downsampling: Clean up the dense point cloud and remove redundancy.

8. Poisson: Surface reconstruction from point coordinates and normals.

9. PLY writer: Write both fused dense point cloud and mesh into output files.

Figure 2.4 shows how these tasks get input and output data and collaborate with each other,

working as a dense multi-view optimizer module in GTSFM architecture ??. Here the blue

boxes denote processes and the gray boxes denote the input / output variables.

This framework is specially designed for DL-MVS approaches, where the MVS NN

module can be replaced with inference neural network F of any other DL-MVS approach

that obeys the following formula:

D̂ = F(I,Φ,M) (2.11)

where input I is the image vector and Φ is the camera parameter vector. M is a |I|×(N−1)

matrix, the i-th row of which represents the (N − 1) selected source views when camera
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ci is the reference view. The output D̂ is the predicted depth maps for each view. With this

framework, new DL-MVS approaches with better performance can be easily integrated into

GTSFM and can perform complete MVS tasks without further parameter tuning.

We divide the work graph of the deep multi-view optimizer into three consecutive parts:

pre-processing, inference, and post-processing. In the following three subsections, we will

introduce how we implement each part in detail.

2.4.2 Pre-processing

The pre-processing part consists of depth range estimation and view pair selection. It is an

important step to parse SFM results from the output of bundle adjustment module.

Since all tested DL-MVS methods uses plane sweeping to propose and evaluate depth

hypotheses, a reasonable depth range for each view should be estimated for initializing

coarse hypotheses. A good depth range should let the foreground object(s) completely

lie between the nearest (minimum depth) and the farthest (maximum depth) planes, so

measurements in the tracks can be great support evidences to estimate it. For track tj

with measurement mk on image captured by camera ci, we calculate its depth dki from

the camera by transforming track tj’s sparse correspondence point sj into ci’s frame and

collect it as a support depth for ci. After traversing all tracks, for each view, we compute

the 1st percentile of all its support depths as the minimum depth, and the 99th percentile as

the maximum depth to filter out background and outliers.

As plane sweeping enables handling multiple source views by Equation 2.9, for DL-

MVS approaches, we need to find a set of source views for each valid view as the reference

view, which is called view selection [36]. The evaluation method was inspired by the

function proposed by Furukawa1 et al. [76]. The function is designed to measure the

expected reconstruction accuracy of a 3D point P from a set of images I , and depends

on the camera baselines and pixel sampling rates. The view selection algorithm used by

most DL-MVS approaches included focus on the first factor, camera baselines. In two view
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triangulation, for world point p with depth z for the reference camera, there is a relationship

baseline b, ϵz is the depth error, ϵd is the matching error in pixels, and f is the focal length

in pixels [77]:

ϵz =
z2

bf
· ϵd (2.12)

Hence, with a narrower baseline, the same matching errors will cause much larger depth

errors. It is also mentioned in [76] that views with close baselines will yield a noisy re-

construction. Meanwhile, if the baseline is too large but the depth is small, even a large

matching error will result in a small depth error. Therefore, a Gaussian function that favors

a certain baseline angle θ0 is applied [76, 78]:

g(θP ) = exp(−(θP − θ0)
2

2σ2
θP

) (2.13)

where θP is the baseline angle between two viewing rays emanating from the world point

P in a common track towards the two camera centers [76]. We use the settings in MVSNet

where θ0 = 5◦, σθ is 1 when θ < θ0 and is 10 otherwise. Then for every two view pair

(Ii, Ij), the score will be calculated by aggregating all points in shared tracks.

S(Ii, Ij) =
∑
P

g(θP ) (2.14)

After calculating the score matrix for all views, for each view as the reference view, select

top (N − 1) views with highest scores to be source views.

2.4.3 Inference with PatchmatchNet

Different from other parts, this part should be implemented according to different DL-MVS

methods, including how to pack batched data (I,Φ,M) and how to infer with the neural

network. In this part, we apply the same way as original PatchmatchNet [2] program does.
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2.4.4 Post-processing

For DL-MVS methods fit with Equation 2.11, the output results will be a depth map for

each view as the reference view. The post-processing part starts from fusing 3D world

points from these depth maps and ends by writing the refined dense point cloud and recon-

structed polygonal mesh into output files.

Depth Map Filtering

After inferring DL-MVS methods, the output results will be predicted depth maps for each

valid view. To evaluate the predicted depth maps to get masks for valid depths, there are

often two kinds of thresholds for DL-MVS methods: geometry threshold and photoconsis-

tency threshold.

The geometry threshold τgeo focuses on evaluating re-projection errors. For depth map

for camera ci1 , the predicted depth for pixel x̃i1 is ẑi1 . Its re-projection error towards camera

ci2 can be computed by:

ϵrproj(x̃i1 , i1, i2) = ||Ki1(Ri1R
T
i2
(ẑi2K

−1
i2

x̃i2 − ti2) + ti1)− x̃i1||2 (2.15)

where x̃i2 is the projected screen point in view i2 and ẑi2 is the bilinear interpolated depth

for x̃i2 from the predicted depth map of view i2.

x̃i2 ∼ Ki2(Ri2R
T
i1
(ẑi1K

−1
i1

x̃i1 − ti1) + ti2) (2.16)

The geometry mask Mgeo on depth map i1 for pixel x̃i1 is true if τgeo > ϵrproj(x̃i1 , i1, i2)

for more than ⌊N−1
2

⌋ source views.

The photoconsistency threshold τphoto, the photoconsistency mask Mphoto on depth

map i1 for pixel x̃i1 is true if average cost C̄(x̃i1 , ẑi1) < τphoto.

The final mask Mfinal is the joint mask considering both geometry and photoconsis-
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tency thresholds, which is an element-wise AND operation between two masks

Mfinal(u, v) = Mgeo(u, v)Mphoto(u, v) (2.17)

Normal Estimation

Unlike some of the MVS algorithms that also optimize the normal map for each dense point

[58, 55, 35], recent DL-MVS methods often do not estimate the normal maps. Therefore,

we implement a simple normal estimation module for our deep multi-view optimizer.

Most DL-MVS methods rely on Equation 2.9 to warp the source image features, so

similar to traditional plane sweeping stereo algorithms, the corresponding virtual planes for

each depth hypothesis are all parallel with the reference image plane. Hence, the normal of

pixel x̃i in view i is:

nx̃i
= Ri

T [0, 0, 1]T (2.18)

which is equal to the direction of camera ci’s optical axis zi. However, this simple normal

assignment could not smoothly interpolate slanted surfaces. To make use of valid neighbor

depths and produce a smoother normal map, we design and implement a improved normal

estimation algorithm. Suppose there is a 3 × 3 patch Z in depth map D̂i centered at pixel

x̃ = [u, v, 1]T , pixel x̃′ = [u + du, v + dv, 1]T is a neighbor of x̃ with offset (du, dv). The

predicted depths for x̃ and x̃′ are D̂i(u, v) and D̂i(u+ du, v+ dv), respectively. Assume x̃

and x̃′ are on the same slanted surface, of which the normal can be calculated by:

nx̃,x̃′ = vx̃x̃′ × (vx̃x̃′ × zi) (2.19)

where vx̃x̃′ = K−1
i [D̂i(u+ du, v+ dv)x̃′ − D̂i(u, v)x̃] is the vector from x̃ to x̃′ in camera

ci’s frame.

Considering the edge-fattening problem [79], we assign a weight wx̃x̃′ to nx̃,x̃′ which is

27



similar to [58]:

wx̃x̃′ = exp(−||Ii(x̃)− Ii(x̃
′)||1

γ
) (2.20)

where Ii(x̃) stands for RGB color of pixel x̃ in image Ii, γ is a user-customized parameter

that is set to 10 in default.

Then the interpolated normal for point at pixel x̃ is:

nx̃i
∼

∑
x̃′∈Z Mfinal(u+ du, v + dv)w′

x̃x̃nx̃,x̃′∑
x̃′∈Z Mfinal(u+ du, v + dv)w′

x̃x̃

(2.21)

Fuse

In this steps, pixels with valid joint mask will be transformed back to coordinates in world

frame using Equation 2.3, together with corresponding RGB colors and normals.

Redundant Point Removal

For most dense point clouds fused by depth maps from multiple views, redundant points

are common when more than one cameras can see the exactly same world point. These

redundancies cause the result fused dense point cloud to be unnecessarily large in size.

To address the issue, we propose two approaches. one is to solve a bipartite graph mini-

mum vertex cover problem which is complete but slow. The other is based on voxel grid

downsampling, which is not guaranteed to be optimal but is very fast.

Before introducing the algorithms proposed, w need to figure in which case two points

appear redundant in the dense point cloud. One intuitive and feasible method is filter out

reconstructed points that have too small distances between each other. However, to set up

the distance threshold ϵrr, we need to first estimate the scale of the reconstructed object.

We apply to use semi-axes lengths of the minimum volume ellipsoid [80] of the out-

put dense point cloud. Suppose there are n points in the dense point cloud X, to fit the
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minimum volume ellipsoid, we need first compute the corvariance matrix Σ:

Σ̂ =
1

n− 1

n∑
i=1

(Xi − X̄)T (Xi − X̄) (2.22)

where X is of shape (n, 3), Xi is the i-th point of shape (1, 3). X̄ is the average coordinates:

X̄ =
1

n

n∑
i=1

Xi

. The corvariance matrix is a 3 × 3 semi-positive definite matrix. Similar to Principal

Component Analysis (PCA) [81], we calculate the eigenvalues v = [a2, b2, c2]T of Σ̂. Each

eigenvalue represents a squared semi-axis length. With the scale of the dense point cloud

computed, we set the distance threshold to be:

ϵrr = k ·min{a, b, c} (2.23)

where k is set to 0.02 in default in our implementation.

1. Bipartite Graph Minimum Vertex Cover

1) Problem Description: For each image pair (i1, i2), Si1 and Si2 are set of world points

fused from depth map D̂i1 and D̂i2 , respectively. Create a new graph G = (V,E) with

vertex set as V = Si1∪Si2 . For vertex vi1 ∈ Si1 and vi2 ∈ Si2 , there is an edge (vi1 , vi2) ∈ E

if the Euclidean distance between vi1 and vi2 is smaller than threshold ϵrr. Therefore, the

maximum set of vertex remain after redundant point removal will be V − V C(G), where

V C(G) is the minimum vertex cover of graph G.

2) Algorithm: Since all edges in G are between Si1 and Si2 , G is a bipartite graph.

Hopcroft Karp algorithm [82] is an efficient approach to solve bipartite graph minimum

vertex cover problem in O(|E|
√
|V |) time in the worst case, O(|E| log(|V |)) in random

sparse graph in high probabilities.

2. Voxel Downsampling
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From another point of view, if we set the minimal voxel size as ϵrr and simply perform

the voxel grid downsampling across the dense point cloud volume, there will be three cases

for a single voxel:

1) If there is no point in the voxel, the voxel will remain empty after downsampling.

2) If there is only one point in the voxel, the voxel will keep the original point un-

changed after downsampling.

3) If there is more than one points in the voxel, the voxel will only keep the average

coordinates after downsampling.

Although voxel downsampling cannot guarantee that there will be no two points from

different views that are closer than ϵrr, it solves the most cases, runs much faster and

considers information from all output points.

Besides these two methods, we also test other popular methods mentioned [62, 63, 64]

by experiments. To evaluate the quality of the cleaned point cloud, we adopt a Peak Signal

to Noise Ratio (PSNR) metrics proposed in [62]:

PSNR(P ,Q) = 20 log10
dB

max{RMS(P ,Q),RMS(Q,P)}
(2.24)

where P is the original point cloud, Q is the output point cloud after redundancy removal,

dB is the diagnose voxel scale 2
√
a2 + b2 + c2, and RMS(P ,Q) is the root mean square of

distances to the closest neighbor in Q of points in P .

Here are some of our experiments of redundant point removal on the dense point cloud

from the door dataset [83] reconstructed by PatchmatchNet.

Table 2.5: Performances of redundant point removal approaches on the door dataset [83]

Approaches Run-time(s) ↓ Compression Ratio (%) ↑ PSNR (dB) ↑
KD-tree + Hopcroft Karp > 480 371 63.3872

Open3D[64] Voxel Downsampling < 5 362 64.0950
PCL[65] Octree Compression + Downsampling < 5 189 63.9650

CloudCompare OctreeCleanup < 60 304 65.1750

Consider all the experiments results above, we finally decide to integrate voxel down-
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sampling implemented by Open3D into GTSFM.

2.4.5 Metrics Design

To quantify the performances of the implemented deep multi-view optimizer for GTSFM,

we design a set of metrics. Based on the different phases of the dense reconstruction de-

scribed in subsection 2.4.1, we divide the metrics into two categories: run-time metrics and

post-reconstruction metrics.

Run-time Metrics

Run-time metrics are collected and computed during deep multi-view optimizer is working.

1. Inference by PatchmatchNet:

• Number of valid views / number of PatchmatchNet loops

• Elapsed time per loop

2. Depth Map Filtering:

• Geometric mask valid ratio M̄geo

• Photoconsistency mask valid ratio M̄photo

• Average re-projection error ϵ̄rproj

3. Voxel Downsampling

• Voxel Size ϵrr

• Point cloud size before downsampling |P|

• Point cloud size after downsampling |Q|

• Compression ratio r = |P|/|Q|

• PSNR (Equation 2.24)
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Reconstruction Metrics

Reconstruction metrics focues on evaluating output dense point cloud given the ground

truth (scanned volume, etc.). We follows the Accuracy, Completeness, Overall metrics

used in analyzing DTU dataset (See subsection 2.3.6). Before compute the matrics, iterative

closest point (ICP) algorithm [84] should be run first to align the output point cloud with

the ground truth point cloud.

2.4.6 Scalability

Figure 2.5: Scalability of Dense Multi-view Optimizer for GTSFM. (a) Regular optimizer.
(b) Distributed optimizer.

With regular dense multi-view optimizer (Figure 2.5 (a)), if there are |I| valid images,

there will be |I| PatchmatchNet inferences, which will be a burden when the dataset size

is large. Hence we propose a distributed version of depth multi-view optimizer (Figure 2.5

(b)), for GTSFM to deal with extremely large datasets with a cluster of computing devices.

For example, if there are n devices, then each device only need to do K = ⌊|I|/n⌋ infer-

ences simultaneously and then fuse all predicted depth maps together. To fit with the design

of GTSFM, we also use Dask [85] to implement such parallelization.
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2.5 Experiment Results

2.5.1 A Complete MVS Results of Door dataset [83]

In this experiment, we demonstrate a complete MVS result reconstructed by the imple-

mented deep multi-view optimizer modulated in the GTSFM pipeline. We will use Lund

Door dataset [83] as an example SFM dataset. The dataset has 12 images from different

views.

Inputs. The input data will be the image set and the SFM results including calibrated

camera parameters and sparse correspondences.

Figure 2.6: 12 observed images from the Lund Door dataset [83].

Depth maps output by Inferring PatchmatchNet. Here we show some of the predicted

depth maps and its corresponding images. The right image is the fused point cloud.

Post-processing Results. In post-processing, we estimate the normal distribution, then use

Poisson [27] to reconstruct the surfaces.

Metrics HTML. All the metrics will be output to a generated HTML file with metrics from

other processes. The diagrams are implemented by PyPlot, which are interactive.
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Figure 2.7: SFM results computed for the Lund Door dataset by GTSFM. Red points denote
the camera locations and poses, and Green points show the sparse correspondences. (a)
Oblique view. (b) Top view.

Figure 2.8: MVS results of Inference. Left: Output depth maps computed by the modulated
PatchmatchNet. Right: Fused dense point cloud.

2.5.2 Experiments on Skydio Crane Mast dataset

We test the performances of latest SFM pipelines with MVS module implemented on Sky-

dio Crane Mast dataset. All the experiments ran on a personal laptop with Ubuntu 20.04.1,

Intel(R) Core(TM) i7-8750H CPU (16GB RAM), and Nvidia GeForce GTX 1070 Mobile

GPU (8GB RAM).
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Figure 2.9: MVS results of Post-processing. From left to right are the dense point cloud,
the estimated normal maps, the interpolated density map during Poisson reconstruction,
and the final polygon mesh.

Figure 2.10: MVS results of GTSFM. Left: Output depth maps computed by the modulated
PatchmatchNet. Right: Fused dense point cloud.

Figure 2.11: MVS results of the Skydio dataset. From left to right are COLMAP [23],
Meshroom [24], GTSFM (ours), and the ground truth.
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Table 2.6: Latest SFM pipelines comparison: Skydio Crane Mast dataset

Approaches SFM Run-time(s) ↓ MVS Run-time(s) ↓
COLMAP [23] 208 3298

OpenMVG [22] + OpenMVS [19] 144 -
Meshroom [24] 419 1258

GTSFM [1] 1165 194

The results in Table 2.6 show that our MVS module is the fastest one among all other

popular SFM pipelines integrated with MVS process. − means the corresponding step

failed during reconstruction.

2.6 Conclusion

Surveying and integrating DL-MVS approaches is my major work in this thesis. In this

section, we present a thorough analysis on latest deep-learning MVS methods. Most of

these novel works are based on the idea of plane sweeping and the differentiable image

warping (homography). Great progress has been made on both processing time and result

quality since MVSNet [36] was proposed.

We show by complexity analysis and experiments how PatchmatchNet [2] beats the

other approaches and how we modulate PatchmatchNet in our depth multi-view optimizer,

as the last step of our SFM pipeline. Pre-processing and post-processing methods and

algorithms are implemented to make it a complete MVS work flow.

By comparing with other popular SFM pipelines, we find that integrating Patchmatch-

Net significantly boosts the MVS step. However, there is still some problem and limitation.

Although PatchmatchNet [2] has already been small compared with other MVSNets,

for neural network approaches the memory can always be a problem. Compared with the

non-deep-learning Patchmatch methods implemented by COLMAP, our MVS module still

needs more scalability.
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CHAPTER 3

DEEP VIEW SYNTHESIS FOR GTSFM

In this chapter, we make a survey on latest deep-learning based view synthesis approaches,

especially focusing on the reconstruction of both density field (geometry) and radiance field

(lighting). We append Instant-NGP [3] as an auxiliary third-party module for GTSFM. In

additional to the view synthesis, we also boost the original instant-NGP by forcing inferring

and rendering to only focus on overlapping field of views (FOVs) area. With this help,

we can extract a density field with foreground objects only, from which we can extract

reconstructed dense point clouds and meshes of high quality.

3.1 Introduction

Compared with MVS, the goal of view synthesis is to render images of the estimated scene

as it would appear from unseen viewpoints [9]. Although there is no need for view syn-

thesis to reconstruct complete object model, like dense correspondences, view synthetic

algorithms should take both object geometric information and lighting information into

consideration. With reconstructed lighting information, the system can even generate syn-

thesized videos from customized camera motions, which provides the users with large free-

dom. In this perspective, view synthesis can be considered as a collaboration task between

computer vision and computer graphics. Therefore, the attempt to integrate latest view

synthesis approaches into SFM pipelines is meaningful.

The difficulty for view synthesis comes from that 2D images merge the geometry (ob-

ject shape, material and texture) and lighting (environment light sources, ambiance light)

information together into RGB colors on pixels. Hence, great efforts are required to de-

couple these kinds of information apart. Studies on deep learning based computer graphics

/ computer vision approaches, such as MVSNet [36], suggest that trained deep learning
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methods can efficiently analyze and express geometric primitives.

To get a better knowledge of latest deep-learning view synthesis methods, we make a

thorough survey and append the most suitable method into GTSFM. We also explore the

possibility to obtain smooth MVS results as a by-product. Our contributions include:

• We show by complexity analysis and experiments that Instant-NGP [3] performs the

best among tested deep-learning view synthesis approaches and is suitable to be work

with SFM pipelines.

• We boost the Instant-NGP by forcing the inferring and rendering region to focus on

the overlapping FOVs, which also makes it possible to extract smooth dense polygon

mesh from the reconstructed density field.

3.2 Related Work

In this chapter, we will briefly introduce traditional and deep-learning based view synthesis

methods.

Traditional view synthesis algorithms. Traditional view synthesis approaches often

rely on sampling and interpolation techniques. A dense sampling of views is required to

interpolating light fields [40, 41, 42] and render images from novel views that look like real-

ity. When dense sampling is not available, approaches need to only use observed images to

estimate geometry representations of the target objects and environment lighting. Using a

differentiable renderer to optimize the scene by gradient-based methods with loss between

rendered images and the observed images can be a straightforward methods. This kind

of gradient-based mesh optimization approaches can be divided into two genres: differen-

tiable rasterizers [43, 44] and pathtracers [45, 46]. However, in addition to the complicated

implementation of the differentiable renderer, their performances are also significantly in-

fluenced by the quality of initialized template meshes (sometimes called the initial guess),

which is unavailable for unconstrained real-world scenes [47] in most cases. Plenoxels [50]
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makes use of the differentiable volume rendering algorithm to learn density and spherical

harmonic coefficients at each voxel by gradient descent, which manages to simplify the

gradient-based optimization algorithm without neural networks.

Deel-Learning view synthesis algorithms. Compared with traditional algorithms,

neural graphics representations (NGP) is a novel approach to use neural networks to im-

plicitly represent the object geometry. This implicit representation is often a mapping from

a spatial coordinates to the target value. For example, neural presentations for surface [48]

is signed distance field (SDF) which means the signed distance from a world point to its

closest surface. And neural presentations for volume is a density field [47]. For lighting,

neural radiance field (NeRF) [47] is proposed and fit well with the differentiable volume

rendering, which make it possible to do gradient descent when training the neural networks.

This logic is very similar to the usage of differentiable homography in DL-MVS methods

[36, 51, 39, 2]. After NeRF [47] was proposed in 2020, related studies [86, 49, 87, 88, 3]

have been making deep-learning based view synthesis algorithms much faster. These novel

techniques have not been integrated to latest SFM pipelines yet.

3.3 Survey on deep view synthesis approaches

In this section, we will go over the fundamental algorithm for most gradient-based view

synthesis methods, differentiable volume rendering. Then we will focus on comparing

three of the most popular deep view synthesis approaches to find the most suitable methods

for GTSFM.

3.3.1 Volume Rendering

If we consider the whole scene as a volume, the task to generating a photorealistic image

from a novel view can be regarded as volume rendering from the given view. One solution

is to apply a widely acknowledged traditional volume rendering algorithm [89] based on

ray tracing under Blinn’s Low Albedo approximation [90].
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Blinn’s Low Albedo approximations

Volume density scattering model was first brought into Computer Graphics by Blinn in

1982 [90]. In Blinn’s work, a volume to be rendered is considered as a space diffused with

small particles. It is necessary to create a simpler model to simulate light interacting with

particles, so Blinn proposed the Single Scattering Cloud Model. It is intuitive to have a

measurement on the density of particles in the target volume, which can be used to evaluate

the probability whether an incident ray to interact with any of a particle or simply pass

through the volume. With the Low Albedo approximation that the primary effect is from

the interaction of a ray of light with a single particle [90], we only consider the first ray-

particle interaction. If the particles are solid so that the ray can only be scattered but cannot

go through it, the scattered light can be seen only if 1) the incident light directly hits the

particle, 2) the scatter light escapes from all other particles through the scattering channel

(See Figure 3.1).

Figure 3.1: The Scattering Conditions [90]. T and T′ are the depth of the volume and the
depth of hit particle, respectively. Vin and Vout are the volumes of the light’s incident and
scattering channels. The radius of the particle and the channels is p.

Then we can calculate the attenuation of light traversing through a incident/scattering

cylinder channel of radius p and volume V by computing the statistical probability of 0

particles in the volume V . Suppose there are n particles in a unit volume, the expect

number of particles in the given volume will be nV . When n is small, it is close to the

Poisson distribution [91], and the probability of occurrences k = 0 under expect number of
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λ = nV is

P (0;V ) =
(nV )0

0!
exp(−nV ) = exp(−nV ) (3.1)

Then the brightness B of the hit particle can be calculated by:

B =
bnπp2

µ

∫ T

0

P (0;V )dT ′ (3.2)

where πp2/µ is the projected viewing area, b is the particle brightness, ndT ′ is the expected

number of particles per unit area.

Ray tracing algorithm for the low albedo case

When the previous method comes to the ray tracing algorithm proposed in [89], instead

of using the number of particles in a unit volume, a spatial distributed density function

σ(x, y, z) is imported. To calculate the expected number of particles N(V ) in volume V :

N(V ) =

∫
V

σ(x, y, z)dxdydz (3.3)

For ray r(t) = o+td starting at t1 and ending at tn, the particle brightness can be calculated

by integrating continuous tracing time intervals until finishing the whole spreading path.

B(r) =

∫ tn

t1

e
−

∫ t
t1

σ(r(u))du
σ(r(t))

bπp2

µ
dt (3.4)

3.3.2 NeRF

For a general scene volume, the particles can be different from each other. What’s worse,

because of the heterogeneous object material and the environment lighting, the color of the

particle can be view-dependent [47]. That is where a radiance field is necessary. Similar to

the density filed σ(x) where x = (x, y, z) stands for a spatial coordinates in the volume, the

radiance field c(x,d) maps a coordinates and view direction pair, (x,d), into RGB color
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vector (r, g, b). If we use the radiance field to take the place of projected particle brightness

bπp2

µ
, and change brightness B to color C, we get

C(r) =

∫ tn

t1

e
−

∫ t
t1

σ(r(u))du
σ(r(t))c(r(t),d)dt (3.5)

And this is the volume rendering formula with density and radiance field. Then to make

the continuous integral discretized, a straitified sampling approach is designed to sample ti

uniformly from:

[t1 +
i− 1

n− 1
(tn − t1), t1 +

i

n− 1
(tn − t1)]

while 1 ≤ i ≤ n − 1. Compared with sampling with even space, this sampling method

covers the complete continuous space while training. Therefore, the discretized volume

rendering formula is:

Ĉ(r) =
n−1∑
i=1

e−
∑i

j=1 σ(r(tj))δj(1− σ(r(ti))δi)c(r(ti),d) (3.6)

where δi = ti+1 − ti. According to this formula, Ĉ is differentiable to both density field

σ and radiance field c. That is to say, suppose there is a parameterized density function

σ(x, y, z) and σ is differentiable to all its parameters, then we can use gradient-based opti-

mization to fit parameters in σ to learn a density field and so does the radiance field.

Because in real cases it is almost impossible to come up with a concrete mathematical

model for either density or radiance field, using neural layers to implicitly represents these

fields can be a feasible option. That is where neural radiance field (NeRF) born. NeRF uses

two MLPs to implement σ and c, respectively. It synthesizes new images by performing the

volume rendering (Equation 3.6) along traced rays towards a spatial location x = [x, y, z]T

in direction (θ, ϕ). More details can be seen in Figure 3.2.

The idea of NeRF opened a new era for deep view synthesis approaches. Because NeRF

requires long-time training with sufficient observed images, studies to boost NeRF [49, 50,
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Figure 3.2: An overview of NeRF [47]. To synthesize images from a novel viewpoint, it
first sampling 5D coordinates (spatial coordinates and viewing direction along traced rays.
Then query the coordinates from the density field MLP to get volume density, query the
coordinates plus direction from the radiance field MLP to get a color vector. Then it uses
the obtained colors to perform differentiable volume rendering and combine results from
all traced rays into a generated image. At last, it learns the MLPs by minimizing the loss
between the ground truth images.

3], to enable sparse observed images [49], and to improve output quality [86, 88] have been

emerging and making great progress.

3.3.3 MVSNeRF

The success of MVSNet [36] proves the network architecture of MVSNet can efficiently

extract geometry information (dense correspondences) from images from multiple cali-

brated views. MVSNeRF [49] makes great use of the architecture of MVSNet to construct

a cost volume from input images and camera parameters. Then the 3D convolutional layers

further encode the cost volume to be a spatial field of geometric features. These features

will help the following MLPs to predict the density and radiance. Details can be seen in

Figure 3.3.

One differences for MVSNeRF from other NeRF approaches is MVSNeRF uses ob-

served images for both training and inference. In this way, only small number of calibrated

views (sparse sampling) are needed for inference. Another major advantage of MVSNeRF

is that it does not force to train for every single scene. Only a fine-tuning for the MLP

layers can be applied for higher quality synthesis. There are two possible reasons: 1) scene
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Figure 3.3: An overview of MVSNeRF [49]. It synthesizes new images by 1) constructing
the cost volume like MVSNet, 2) applying several 3D convolutional layers to the cost vol-
ume and get the neural encoding volume, 3) obtaining encoded features for target location
x by querying the neural encoding volume, 4) combining location, ray direction, features
and image color to query a MLP to get density and color, 5) volume rendering as NeRF.

images are used for inference, so the network does not need to remember the whole scene.

2) the similar structure used in MVSNet has been proven to be workable for unseen scenes.

3.3.4 Instant-NGP

Many NeRF related studies mention encoding spatial location x = [x, y, z]T and view di-

rection d = [cos θ cosϕ, cos θ sinϕ, sin θ]T efficiently into higher dimension before query-

ing density and color information is helpful. For example, NeRF applies an improved

scalar position encoding function used in transformers [92] to encode each scalar values in

normalized x and d:

γ(p) = (sin(20πp), cos(20πp), ..., sin(2L−1πp), cos(2L−1πp)) (3.7)

. In MVSNeRF, the feature obtained from the neural encoding volume by x can also be

regarded as an encoding of x.

Instant-NGP [3] designs a highly efficient but powerful multi-resolution hash encoding,

which enables Instant-NGP to be trained in a matter of seconds. Detailed steps can be seen
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in Figure 3.4. The spatial hash function [93] is

h(x) = (⊕d
i=1xiπi) mod T (3.8)

where ⊕ is the bit-wise XOR operation, πi are unique and large prime numbers, T is the

hash table size. The great design here is to avoid hash collision by multi-resolution com-

plement and dominating training samples.

Multi-resolution Complement: Lower resolution levels with coarse features have little

chance to collide while higher resolution levels with fine features are likely to have hash

collision. It is unlikely to have collision simultaneously at every level for a given x because

the collision happens pseudo-randomly.

Dominating Training Samples: The gradients during training process are dominated by

samples that are important to the output synthesized images (visible locations with high

density) rather than by the collision average and aliased table entry.

Considering its fast training speed and high synthesis quality, we decide to append

Instant-NGP to our GTSFM as a third-party tool for view synthesis tasks.

Figure 3.4: An overview of Instant-NGP’s multi-resolution hash enccoding in 2D [3]. 1)
for a given coordinates x, at multiple resolution levels, find the surrounding voxels. 2)
calculate their indices by hashing their integer coordinates. 3) look up their corresponding
features from the hash tables for each resolution level. 4) linear interpolate the feature by
the corner coordinates to make it differentiable. 5) concatenate the interpolated features to
be the encoded result y.
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3.4 Approach: Boost Instant-NGP by Focusing on Overlapping FOVs

Instant-NGP can train for each scene in seconds on GPU, but there is still room for further

acceleration. For example, we find that Instant-NGP will waste a lot of time and memory

resources in optimizing the background volume. Although this kind of optimization offers

better view synthesis quality in background, learning density and color for invisible loca-

tions and background in infinite distance is unreasonable. Meanwhile, the goal of SFM

pipelines often focuses on reconstructing the foreground objects. Hence, it is meaningful

to find a way to force Instant-NGP to only pay attention to the foreground area.

The field of view (FOV) is the frustum that a camera can image. Its location and di-

rection are decided by the camera pose, while its size is decided by the focal length and

the sensor size. Cameras with overlapping FOVs image a shared world space. For SFM

datasets, the shared world space among all validate cameras is often where the foreground

object is located. We then design an approach to force Instant-NGP only to infer and ren-

der the overlapping Field-of-View region. It not only accelerates the training process of

Instant-NGP, but also enables to obtain the dense polygon mesh from the reconstructed

density field.

3.4.1 System Overview

To boost the Instant-NGP and fit it better with GTSFM, we design the following steps:

1. Overlapping FOV Estimation: Compute overlapping FOVs bounds.

2. Scene Transformation: Translate and scale the estimated scene to make the over-

lapping FOVs bounds fit into the unit cube.

3. Instant-NGP Training: Train Instant-NGP with images and transformed scene.

4. Density Field Extraction: Make a dense sampling of the learned density field. As-

sign solid points with the corresponding averaged colors at sampled locations where
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Figure 3.5: Boosted Instant-NGP. Variables in the orange dashed box are the input SFM
results computed by previous modules. Variables in the green dashed box are the final
output results of the integrated Instant-NGP.

the densities are larger than the threshold.

5. Marching Cubes: Use marching cubes algorithm [29] to generate coarse surfaces.

6. Clustering & Cleanup: Cluster the generated point cloud, filter out and remove

isolated clusters with only a small number of points.

7. Poisson: Surface reconstruction from point coordinates and normals.

8. Instant-NGP Inference: Input target viewpoints to obtain the synthesized image.

3.4.2 Fast Overlapping FOVs Estimation

To accurately detect two overlapping FOVs, because the shape of FOV (a frustum) is a

convex polyhedral, the separating axis theorem [94] can be applied. However, to enable a

fast overlapping FOVs estimation, we can use a sampling based algorithm.

Assume there n cameras, the camera parameters for camera ci is Ri, ti, and Ki. The

image resolution for each camera is (wi, hi). A unified sampled 3D cube volume V with

resolution L × L × L and grid voxel size a. V is large enough to cover the complete

scene. Therefore, the number of sampled voxels are N = (L/a)3. Then the 3D mask

Mofov(x) for sampled locations that stays in the overlapping FOVs among all n cameras
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can be calculated by:

Mofov(x) =
n⋂

i=0

(0 ≤ ux,i < wi) ∩ (0 ≤ vx,i < hi) (3.9)

where

[ux,i, vx,i, 1]
T ∼ Ki(Rix+ ti)

Then the location and bounds of the overlapping FOVs are the bounds of voxels filtered by

V [Mofov]. Then we need to transform the whole scene so that the overlapping FOVs can

be translated and scaled to fit into the unit cube (See Figure 3.6).

Figure 3.6: Scene Transformation with overlapping FOVs bounds. Green points denote
locations within the overlapping FOVs. Red points denote eight corners of the unite cube.
Blue points denote the camera locations.

Assume the nearest left bottom corner of the overlapping FOVs bounds is x0, the di-

mensions of the bounds are (ax, ay, az). Then the transformation matrix T will be

T =

 I −x0

0T 1
max{ax,ay ,az}

 (3.10)

Here the transformation will be performed on every camera poses and sparse correspon-

dences included in the SFM results.
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3.4.3 Object Mesh Cleanup

There is still possibilities to have noisy in the dense point cloud if we extract the point cloud

directly from a density threshold. One solution is to remove isolated triangles as well as

its related points from the dense mesh reconstructed by the marching cubes algorithm [29].

Then re-mesh the cleaned up dense point cloud by Poisson algorithm [27]. Given the strict

computing resources requirements by Instant-NGP, we do these experiments on a Windows

10 Desktop with a Nvidia RTX 3080Ti video card.

3.5 Experiment Results

In this experiment, we continue working on the Skydio Crane Mast dataset with 32 images.

We compare the both training time and the quality of extracted mesh to see whether our

boosted Instant-NGP meets the expectation.

Figure 3.7: Comparison of regular Instant-NGP training and boosted Instant-NGP training.
Left is the regular Instant-NGP’s results and on the right is the result that boosts the Instant-
NGP by forcing the reconstruction to stay inside the unit cube.

When we extract the foreground object’s mesh, if we use the regular Instant-NGP, we
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need to cut off all the environment (or background) volumes. We can also notice that

many occupied voxel is exactly empty in the real world. Hence, instead of cropping the

environment after training, keep the background distance out of the training and rendering

area can be a better approach. Figure 3.8 also shows that our boosted Instant-NGP has less

noise point than the other two methods.

Figure 3.8: Comparison of cleaned meshes of regular Instant-NGP training, boosted
Instant-NGP training, and the results of Meshroom.

For the execution time, the dense reconstruction time for Meshroom is about 20 minute

and the training process for regular Instant-NGP is 5 minite. Because there is no need for

boosted Instant-NGP to think about the background, the result converged very fast in about

2 minute.

3.6 Conclusion

In this chapter, we go over the latest deep-learning based view synthesis approaches. Be-

cause the invention of differentiable volume rendering, these methods can be implemented
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in neural network architectures, and can be learned by gradient optimization. Compared

with traditional view sampling algorithms, these methods are more simpler to implement

and can be translated to different scenes by re-training the network.

Given the design that view synthesis will both learn the density field (geometry) and

the radiance field (lighting), we manage to extract and optimize good polygon meshes from

trained Instant-NGP. It is meaningful because if the dense correspondences can be seen as

the by-product of view synthesis, we don’t need a separate MVS module any more.

However, there is still limits and constraints on the reviewed approaches. A very long

time is needed for training a deep view synthesis model, unless the strict requirements on

computing and storage devices are met. Another problem is the model’s scene dependence.

When it turns to another thing, the model need to be re-trained. Although MVSNeRF [49]

has already wanted to make a difference, its performances under pre-trained model are still

need to be improved.
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CHAPTER 4

CONCLUSION

In this work, we explored and discussed present limits and constraints in performing highly

efficient MVS and view synthesis tasks in SFM pipelines. We also proved that by integrat-

ing deep-learning based methods, both performances and time consumption can be im-

proved. However, there is still a lot of room for future domain studies. Here, I will present

some of my humble ideas that may have the potential to make a difference.

4.1 Future Work

4.1.1 Novel Architectures of DL-MVS and Deep View Synthesis.

Today’s DL-MVS approaches rely heavily on the traditional MVS algorithms, like plane

sweeping [25] and PatchMatch [32]. A common step is to discretize the continuous com-

putation and make it differentiable so that simple gradient-based optimization can address

complex tasks. In deep view synthesis methods, lots of works have done to improve the en-

coding efficiency. In this perspective, deep learning methods’ success sits a lot in the better

expressiveness of encoded features and the speedup from highly parallelized computations.

In the future, more and more novel and efficient approaches will be designed to break the

limitation and constraints of traditional algorithms.

4.1.2 Explicit vs. Implicit Representation

Most deep learning approaches mentioned in NeRF apply implicit neural representation,

which makes neural layers a function where we query the layer some vectors in the space,

it will tell us the corresponding vector or scalar. The advantage of using implicit represen-

tation is that it avoids the complicated structure and the concern of dimension explosion
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when the search domain is very large. But it also results in remaining in a black box that

we do not know whether the neural layers have sufficient capability to learn and interpo-

late the target fields. To make implicit representation more expressive, complicated neural

architectures are imported, which will significantly slow down the training and inferring

process.

Two very fast view synthesis approaches, Plenoxels [50] and Instant-NGP [3] are two

great examples. Plenoxel uses the explicit representation by directly learning density and

radiance variables on each voxel, while Instant-NGP uses a strong and high-efficiency hash-

ing encoding to avoid the complexity of network structure in the following implicit repre-

sentations of density and radiance fields. These two examples also make us think about the

question when to use explicit representation is better and when is not.

4.1.3 Generalized MVS Task

From our study to deep view synthesis, we find that it is possible to obtain great dense

correspondences and meshes from the reconstructed depth field. It brings me with the idea

that in the future, will there be a general computer vision task, that solves different kinds of

computer vision tasks all in oneself. Instant-NGP [3], in my opinion, is the initial template

of such generalized MVS tasks. With the same hashing encoding mechanism, Instant-

NGP can perform multiple tasks like Gigapixel Image approximation [95], SDF and NeRF

reconstruction. Developing such a generally used architecture can be very helpful and

attractive.
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