
Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

SOUNDSTUDIO4D - A VR INTERFACE FOR GESTURAL COMPOSITION OF SPATIAL
SOUNDSCAPES

James Sheridan1, Gaurav Sood1, Thomas Jacob1,2, Henry Gardner1, and Stephen Barrass2

1 Departments of Computer Science and Engineering, FEIT, Australian National University,
Canberra, ACT 0200, Australia

Contact: Henry.Gardner@anu.edu.au
2ICT Centre, CSIRO, Canberra, Australia

Stephen.Barrass@csiro.au

ABSTRACT

We describe a software system which enables computer-
generated soundscapes to be synthesised, spatialised and
edited using a gestural interface. Iterative design and test-
ing of the software interface has taken place in a walk-in,
immersive, virtual-reality theatre. Sound spatialisation has
been implemented for an 8-speaker array using a Vector
Base Amplitude Planning algorithm. The software has been
written in Java, JSyn and Java3D with native method calls
to sound-cards and sensors.

1. INTRODUCTION

The use of a gestural interface to compose and spatialise
music is as old as conducting: Although the range of param-
eters which can be varied during a live, orchestral perfor-
mance is small (compared with what can be played with on
a computer) the meter, expressivity and relative dynamics
of the music is critically dependent on the body-language
and baton of a master conductor.

Since the Theramin, there has also been a long history
of building gestural interfaces for the real-time composition
of electronic and computer music in the context of its per-
formance. But the off-line composition of computer mu-
sic is still traditionally associated with interfaces which are
a long step away from free-flowing gestures. This is par-
ticularly the case with three-dimensional (3D) spatialised
music where the state of the art is driven by the 2D desk-
top metaphor of the personal computer. For example, sys-
tems such as InMotion [1] allow the careful spatialisation
of sound tracks but only by adjusting projections of the 3D
paths and only by decoupling the time dimension from the
path itself.

Virtual reality (VR) systems hold the promise of be-
ing able to link full-body gestural input with 3D computer
sound generation (as well as 3D computer graphics). This
was the motivation behind the development of a prototype
3D spatialising system [2] for an immersive VR theatre at

the Australian National University. This prototype system
was limited in that 3D audio was not really available, there
was no sound synthesis and there was no systematic consid-
eration of the nature of the interface. All of these consider-
ations have led to the development of the software system
which is described in this paper.

After an overview of the software system architecture,
in Section 2, we describe the three main subsystems: the
sound spatialiser (Section 3), the sound synthesiser (Sec-
tion 4), and the sound driver (Section 5). We discuss the in-
terface, the software architecture and implementation, and
the design process including the results of a human com-
puter interface (HCI) study of one part of the software. The
project has solved many technical problems and has resulted
in a software system which is ready to use in an experimen-
tal setting. Its status is summarised in Section 6.

2. SYSTEM ARCHITECTURE

A schematic view of the architecture of our SoundStudio4D
system is shown in Fig. 1. The software contains three ma-
jor modules: PathDrawer4D handles the sound spatialisa-
tion, GroovyTubes provides a prototype interface for sound
synthesis and BeeHive drives an 8-speaker array using Vec-
tor Base Amplitude Panning. The top level of the software
is written in JavaTM and uses classes from the standard
Java3DTM package to create and manipulate a scene-graph
made up of graphical and audio nodes which represents the
composition. It also uses the standard JSynTM package to
modify the quality of sounds. Using packages from the
standard Java platform eliminates the need to learn new lan-
guages or become familiar with new protocols to drive ei-
ther the audio interface or the VR theatre itself. Thus, the
system allows a user to program these devices using only
minor extensions to those needed to create other Java3D
sound applications. This should mean that SoundStudio4D
is easy to learn as well as being a robust and maintainable
programming environment.

ICAD04 G. Sood et al:1



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

ASIO

PortAudio

PathDrawer4D

Java3D

TIWI
JSyn

GroovyTubes BeeHive

SoundStudio4D

Input Controllers Hammerfall card

VBAP

Figure 1:Overview of the software architecture for Sound-
Studio4D

2.1. The Wedge VR theatre

The Wedge is a PC-based, VR theatre which was originally
developed at the Australian National University in 1998 [3]
as a low-cost alternative to the CAVE [4]. It consists of
two back-projected screens arranged at 90 degrees to each
other to form a panoramic, body-sized, immersive, space
around the participants. Participants see 3D stereo-graphics
through LCD shutter glasses that have cross-polarizing fil-
ters synchronised with the frame updates for each eye. Be-
cause participants are also able to see themselves, each other
and the physical environment, the theatre enables collabo-
ration even though only one participant will see the geomet-
rically correct 3D image projections.

The viewpoint of the main user is head-tracked by a
LogitechTM ultrasonic tracking unit which also tracks the
spatial position and orientation of a six degree of freedom
(DOF) mouse. The main input devices are the mouse (4
buttons as well as its 6DOF position and rotation coordi-
nates) and a small keyboard extender. Most importantly
for our application, the Wedge has an array of eight speak-
ers, positioned on a (45-degree) rotated cuboid, for produc-
ing sounds that can move around the user. The graphical
environment of the Wedge together with its input devices
can be programmed using classes from the Tracked Interac-
tive Wedge Interface (TIWI) [5] which creates a customised
Java3D “ConfiguredUniverse”. Details of the audio system
are covered in Section 5.

3. SOUND SPATIALISATION: “PATHDRAWER4D”

Suppose that a composer makes a bold, sweeping gesture
whilst standing inside a VR theatre running the PathDrawer4D
module of our software. How is this gesture to be inter-
preted? Presumably the gesture will affect the spatial dis-
placement of part of the soundscape in some way. In a “cre-
ation” phase, the gesture could correspond to the drawing
of a path which will become a sound trajectory. In an “edit-
ing” phase the gesture might correspond to grabbing part

of the soundscape and displacing it relative to others in the
scene. How might the gesture correspond with time (the
fourth of our dimensions)? There could be a real-time edit-
ing facility which would be something similar to a conduc-
tor manipulating a performance. There might be a need to
specify time separately with reference to a time-bar or rela-
tive to some other parts of the soundscape. How does a user
change modes or know what mode the software is presently
in?

The sorts of considerations in the previous paragraph
show that it is possible to make some headway in the de-
sign of a gestural interface for sound spatialisation using the
analogies of drawing and conducting. Even so, the range of
possibilities is much greater than the interaction taxonomies
which have been developed for basic VR techniques of travel,
selection and manipulation [6].

3.1. Visual representation of paths in four dimensions

In most current audio applications the time dimension has
the focus, with all other things (such as spatialisation or au-
dio effects) relative to this. Even in displays which have
a prominent graphical window showing the sound path, it
is the time dimension (often displayed in a smaller, bottom
window) that is used to explicitly schedule all of the sounds.

Displaying multiple windows in a virtual world is not
desirable as it takes away from the immersive nature of the
environment. For this reason the space and time dimensions
will sometimes need be displayed together. So a path needs
to represent not just a series of coordinates (the path geom-
etry) but also the time dimension.

There are many ways to represent the both dimensions
at once: Markers could be placed every fixed amount of
time. Numeric labels could be used to display the time at
particular places on a path. Colour could be used to repre-
sent the time dimension. Each of these has their disadvan-
tages: Both markers and numbers can lead to visual clutter.
Colours do not provide enough detail to synchronise sounds
in a soundscape. When input to an iterative design process,
these considerations led us to adopt a numbered view of the
time dimensions for editing (to increase resolution) but a
coloured view for drawing (to ease visual congestion).

There are also many sorts of desirable sound-path ge-
ometries. For example: Straight paths with a constant-velocity
sound; Straight paths with a variable-velocity sound; Curved
paths with a constant-velocity sound; Curved paths with a
variable-velocity sound. Other qualities of the sound such
as its volume and pitch could vary along the path. Our con-
sideration of these requirements led us to develop a taxon-
omy of interaction for the PathDrawer4D application which
is described in the following sub-section. We decided to
allow users to specify curved and straight and piecewise-
curved and piecewise-straight paths. Switching between
different path styles turned out to be an important part of our

ICAD04 G. Sood et al:2



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Figure 2:Overlayed paths from the HCI path-tracing exper-
iment for a master path made up of straight line segments.
Results for two tools are shown.

taxonomy and was the subject of an HCI study described
below. Figures 2 and 3 show a number of overlayed paths
drawn by participants in the HCI study. Although these are
congested, they give an idea of the types of paths which can
be drawn using the software.

An additional consideration was the mapping between
the visualisation and the acoustic playback space. Two cases
need to be considered: the first is one where a soundscape
is designed in the Wedge theatre space for playback in that
space. The second is where the playback space is to be in
an auditorium which is different from the Wedge space. In
the first case, a naive first preference is to have a one-to-
one mapping: holding out your arm and clicking a button
would position a sound or sound path exactly at the position
of the button click. This mapping has some major practi-
cal disadvantages: It makes it difficult to position distant
sound paths and it is difficult to design paths which sweep
behind the user’s head position. For this reason, we decided
to build a system whose dominant view was that of an avatar
displaced from the user’s position (as seen in Fig. 4). This
displacement is adjustable and it can be alternated with an
“avatar’s” view with the avatar coinciding with the position
of the lead participant.

3.2. Taxonomy

The following steps were selected as the root levels of the
taxonomy of interaction for PathDrawer4D:

Feedback: This was the set of interface elements that could
be provided at all times (such as the current task, the
reliability of the tracker signal or the playback time).

Select Task: Since there was more than one task that could
be done in any sequence, users need to specify what

Figure 3: Overlayed paths from the HCI path-tracing ex-
periment for a master path made up of straight and curved
segments. Results for two tools are shown.

it was they want to do - to, for example, load a path
from a menu or click on a path to start editing it.

Create Path: The main function of the interface was to al-
low the spatialisation data to be specified.

Specify Time Dimension: Whilst the time dimension could
be specified during the creation of the path, it could
also be done by itself and was given its own “level”
within the taxonomy.

Edit Path: After a path has been drawn or loaded it can be
edited by moving or deleting points to fix mistakes or
adjusting its sound.

Edit Time Dimension: It is necessary to vary timing infor-
mation independently of the spatial coordinates of a
path.

Sound Placement: It was desirable to have multiple sounds
on the one path. The ability to change the sound on a
path was also desirable to save redrawing the path if
the user wanted to try a different sound.

To test the completeness of the taxonomy two commer-
cial, desktop interfaces for sound spatialisation were fitted
to it. A cognitive walkthrough of the SoundScene proof of
concept prototype [2] was also performed to identify prob-
lems in the software. Many issues and problems were iden-
tified during this phase such as the difficult nature of se-
lecting path points, inappropriate colour schemes, lack of
functionality and so on. Our draft taxonomy was used to
find solutions to these problems.

ICAD04 G. Sood et al:3



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Figure 4:The PathDrawer4D application in action.

3.3. HCI studies

The aims of this testing were: to compare two different
paths through the taxonomy tree which provided different
ways to do the same task; to test whether people with lit-
tle or no VE experience could adequately perform the tasks
needed for 4D sound spatialisation; and to gain insight into
general usability issues in the Wedge.

A number of standard HCI techniques were used for the
testing. A usability study used a between-subjects design
on two alternative tools and a within-subjects design on a
number of candidate paths. Subjects were asked to trace out
a number of master-paths using one of two drawing tools.
The “segment tool” used two different 6DOF mouse buttons
to control each of its two modes (for straight and curved
segments) with a consistent mapping of the button clicks
for each mode. The “combined tool” used only one mouse
button for both modes with the modes being detected by the
way in which the mouse was used (clicking versus clicking
and holding). Overlayed results for two paths are shown in
Figs. 2 and 3.

During these tests a “think aloud” method was used to
try to understand the users’ conceptual model. Previous re-
search into multimodal interaction has found that users of-
ten express commands by combining voice and hand ges-
tures when dealing with spatial tasks [7]. For this reason

the use of “thinking aloud” was assumed to have minimal
impact upon user performance.

Apart from these studies, other HCI methods were used
for things like questionnaire design, test execution and so
on.

Usability testing employed 10 participants for each of
two tools for tracing 7 paths. Results showed some slight
preference (statistically significant on some paths but sen-
sitive to outliers) for the “combined tool” which we inter-
pret as possibly meaning that the cognitive load of switch-
ing between buttons on our controller is higher than using
a mixture of clicking and click-dragging with one button.
The most important results of the testing were the discov-
ery of systematic usability issues with the theatre and with
one of the tools. Several of these problems have since been
rectified, but, although the virtual environment still looks
promising for sound-scene sculpturing, it should be said that
immersive theatres of the Wedge/CAVE type do not appear
to be suitable for “precision” drawing applications.

4. SOUND SYNTHESIS: “GROOVYTUBES”

The next development for SoundStudio4D was to introduce
special effects that can be applied to sounds as they move
along sound paths. Typical effects include echo, flanging,
reverberations and wah-wahs. These effects usually vary

ICAD04 G. Sood et al:4



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

sound characteristics such as the rate, filter bandwidth and
pitch to create the special effect. JSyn is a Java sound syn-
thesis and signal processing toolkit that can be used to create
sound effects in real time. We integrated JSyn into Sound-
Studio4D in the Wedge by implementing a real-time switch-
ing mechanism to change the effect as sounds moved into a
particular region of a sound-path.

The design of special effects on sound paths requires
the development of an interface for specifying multiple ef-
fect parameters in space and time. This is a more difficult
problem than the sound spatialisation interface because of
the lack of clear metaphors: presumably gesturing in an up-
wards direction would have some effect on sound quality
(louder or higher?) depending on the mode of operation.
But the exact form of interaction, and the nature of the vi-
sual feedback, is by no means clear.

Rather than developing a systematic taxonomy, our ap-
proach to this part of the interface has been to choose one
promising candidate and to subject it to a process of iterative
design. Our candidate is the “Groovy Tube”, which consists
of three parts: the effect algorithm and its parameters; the
interaction with the effect parameters; and a visualisation of
the effect parameters[8].

Special-effects algorithms may alter single or multiple
parameters depending on the effect. We were interested in
developing an interface for designing complex sounds and,
therefore, wanted to modify more than one parameter at the
same time. Our initial experiments with JSyn showed we
could modify 3 parameters of a filter algorithm at interactive
rates in the Wedge. Our prototype used the following three
parameters:

1. High pass filter cut-off frequency

2. Filter resonance (Q)

3. Playback rate of the sample

The movements of the tracked 6DOF mouse are recorded
in a data structure for replay and further editing. We experi-
mented with two different approaches for storage and play-
back of the effects parameters. The first approach was to
store samples in the EnvelopePlayer object within the JSyn
API. This structure requires samples to be stored as alter-
nate values of time and parameter and we found accessing
and writing to such an object is inherently complicated for
multi-parameter effects. This led us to try an alternative ap-
proach where envelope data is stored in a two dimensional
array with effect values stored at the corresponding time in-
dex for the path. During playback, the system accesses the
data and sets the values of the sound attributes directly. The
complexity of searching and rewriting the parameter value
at a certain point in time is minimised.

The visualisation of the effect parameters as they change
along the sound-path provides a way to get an overview and

to edit the effect. We have designed and compared three
possible visualisations of the parameters along a sound-path:
spheres, fins and cubic prisms.

Of these three, the cubic prisms visualisation addresses
the problems of high polygon count and visibility from dif-
ferent directions raised by the other visualisations. A cubic
prism is a 3D cubic structure that maps the parameter val-
ues at each point to the width of the prism. The prism is
constructed from a triangular strip array. The geometry is
built from points along the path. The first step is to calcu-
late the tangent to the path at each sample point. The next
step is to calculate orthonormal vectors perpendicular to the
tangent. The representation of three filter envelopes is pos-
sible on the same sound path but leads to overlapping. We
are able to differentiate between the overlapping envelopes
using separate colours for each envelope. The array of ef-
fect values at each sample point is mapped to the points at
the next sample to create the Triangle Strip Array.

An example GroovyTube is shown in Fig. 5. The effects
parameters were specified interactively using the x, y and
z movements of the 6DOF mouse. The effects parameters
change the sound as it moves along the path.

Once a Groovy Tube has been specified it can be edited
using the visualisation. The effect parameter for the loca-
tion closest to the mouse pointer can be resized using the
relative movement of the mouse pointer. The magnitude of
the parameter is scaled by a multiple of the relative motion
of the mouse. Interpolation is used to create smooth transi-
tions from neighbouring points to the new value.

5. THE SOUND-CARD DRIVER: “BEEHIVE”

BeeHive is an audio system that maps sounds from the Java
scenegraph to the 8-speaker array in the Wedge. It was de-
signed primarily with the goal of allowing users to be able
to manipulate one or more sounds in real-time and to be able
to hear the results of the manipulation in 3D space. Beehive
has an advantage over other systems in that it integrates both
audio and graphical systems and allows them to be created
inside the one scenegraph.

The system uses a Java3D AudioDevice to provide an
interface for the 8-speakers in the Wedge. The AudioDevice
is a custom implementation of the Java3D AudioDevice3D
class, which extends the functionality from two channels to
eight.

The mapping from the scenegraph to the speaker array is
done using the Vector Base Amplitude Panning (VBAP) al-
gorithm. VBAP is a technique for positioning virtual sound
sources to multiple loudspeakers developed by Ville Pulkki
[9]. The number of loudspeakers can be varying and they
can be placed arbitrarily in 2D or 3D positions, ideally all
equidistant from the centre of the 2D or 3D array. VBAP
works on the principle that any virtual source in space can

ICAD04 G. Sood et al:5



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

Figure 5:Example of a prototype groovy tube.

be represented by sources from one, two or three speakers
in an array.

The underlying system for BeeHive is a C++ imple-
mentation that interfaces with the Java3D device class us-
ing the Java Native Interface (JNI). The implementation is
a PortAudio program developed on top of Steinberg’s Au-
dio Streaming Input Output (ASIO) API [10], and serves as
a mixer to allow sounds to be streamed to the sound card.
PortAudio [11] is a powerful library that can interface with
lower levels APIs such as ASIO and DirectSound. It allows
the porting of applications between different platforms, and
essentially eliminates the need to develop host-specific ap-
plications.

BeeHive provides an advantage over domestic and com-
mercial sound systems, by creating truly 3D spatial sound
as opposed to a surround “sensation”. In addition to the im-
pressions of left-right and front-back, the system also cap-
tures the up-down experience, which creates an extra degree
of immersion.

6. SUMMARY AND CONCLUSIONS

The SoundStudio4D is an immersive VR interface for com-
posing spatial soundscenes using direct spatial gestures. It
has been developed to explore the idea that an immersive di-
rect manipulation interface could have advantages over ex-
isting desktop interfaces for designing spatial sound paths.
The SoundStudio4D has three main parts:

1. the PathDrawer4D interface for drawing sound paths
in space and time

2. the GroovyTubes visualisation of special effects pa-
rameters in space and time

3. the Beehive Java3D AudioDevice that maps sounds
from a Java scenegraph to the Wedge speaker array
using the VBAP algorithm

PathDrawer4D enables the direct manipulation of spa-
tial sound using spatial gestures, and provides a visualisa-
tion that allows the composition of more complex sound
scenes than is possible with existing, 2D, desktop-based,
sound tools. However, in evaluations of two different Path-
Drawer4D tools we found evidence that, although the inter-
face is direct, it is not very precise. GroovyTubes provides a
framework for designing even more complex sound scenes
with multi-parameter special effects that vary in space and
time. This required the exploration of 3 different visuali-
sation schemes, and investigation of interaction techniques.
Beehive has the advantage over other systems that it enables
both the graphics and audio to be controlled by the same
scenegraph, which reduces programming complexity, mes-
sage passing, and synchronisation problems. The Wedge
speaker array is a (45-degree) rotated cuboid that has the
advantage that the important left-right and front-back posi-
tions are more strongly focussed by the arrangement of the
speakers.

We are currently working on the integration of JSyn
with Java3D so that all programming of visual, audio and
synthesised elements can be done in one language. From
the results of the evaluation of the PathDrawer4D we have
begun thinking about alternative gestural interfaces that al-
low more expressive control with less precise specification.
The grand vision is to build an environment for composing
new kinds of soundscenes and music that are not possible
with existing interfaces.

7. REFERENCES

[1] Human Machine Interfaces Inc., “InMotion
3D Audio Producer 1.0,” 2004, http://
www.sonicspot.com/inmotion3daudio/
inmotion3daudio.html . Last accessed 29
January 2004.

ICAD04 G. Sood et al:6



Proceedings of ICAD 04-Tenth Meeting of the International Conference on Auditory Display, Sydney, Australia, July 6-9, 2004

[2] Rod Harris, “Creating sound scenes in a virtual envi-
ronment,” Tech. Rep. 1, Australian National Univer-
sity, Canberra, Australia 0200, 2001, Internal report -
available on request.

[3] H. Gardner and R. Boswell, “The wedge virtual
reality theatre,” inProceedings of the Apple Uni-
versity Consortium Conference,Townsville, Qld, Aus-
tralia, Sept. 23-26, 2001. Apple University Consor-
tium, Sept 2001, pp. 2.1–2.6, ISBN 0-947209-33-6.
http://auc.uow.edu.au/.

[4] Carolina Cruz-Neira, Daniel J. Sandin, and Thomas A.
De-Fanti, “Surround-screen projection-based virtual
reality: The design and implementation of the cave,”
in Proceedings of SIGGRAPH 93, Anaheim, Califor-
nia, USA, 1-6 August 1993. Association of Computing
Machinery, New York, August 1993, pp. 135–142.

[5] David Walsh, “The Wedge and TIWI Guide,”
2004, http://ephebe.anu.edu.au/tiwi/
tiwiguide/index.html . Last accessed 30 Jan-
uary 2004.

[6] Doug A. Bowman and Larry F. Hodges, “Formalizing
the design, evaluation and application of interaction
techniques for immersive virtual environments,”Jour-
nal of Visual Languages and Computing, vol. 10, pp.
37–53, 1999.

[7] Sharon Oviatt, “Ten myths of multimodal interac-
tion,” in Communications of the ACM, pp. 74–81.
ACM Press, 1999, Vol. 42, No. 11, November.

[8] Gaurav Sood and Stephen Barrass, “Groovy tubes:
an interface for designing sound effects in space and
time,” in New Directions in Interaction: Informa-
tion environments, media and technology, Conference
Proceedings 2003 OZCHI Conference. University of
Queensland, November 2003, pp. 246–249.

[9] Ville Pulkki, “Spatial sound generation and
perception by amplitude panning techniques,”
Tech. Rep. ISBN 951-22-5532-4, Depart-
ment of Electrical and Communications En-
gineering, Helsinki University of Technology,
P.O.Box 1000 FIN-02015 HUT FINLAND,
2001, http://lib.hut.fi/Diss/2001/
isbn9512255324/isbn9512255324.pdf .
Last accessed 30 January 2004.

[10] Steinberg Soft und Hardware GmbH, “ASIO SDK
Download,” 2004, http://www.steinberg.
net/en/support/3rdparty/asio sdk/
index.php?sid=0 . Last accessed 29 January
2004.

[11] R. Bencina and P. Burk, “PortAudio - An Open Source
Cross Platform Audio API,” 2004,http://www.
portaudio.com . Last accessed 30 January 2004.

ICAD04 G. Sood et al:7


