GEORGIA INSTITUTE OF TECHNOLOGY OFFICE OF CONTRACT ADMINISTRATION SPONSORED PROJECT INITIATION

Date: October 19, 1978

7/31/82

Project Title:	Gaseous 1	Polymer	Solutions	
	C	neen	card	

Co-Project Nos. : E-27-671/G-41-673

Co-Project Directors: Dr. John L. Lundberg/Dr. Donald C. O'Shea

Sponsor: National Science Foundation

 Agreement Period:
 From
 9/1/78
 Until
 2/29/80

 (Grant Period -- includes
 flexibility period)

 Type Agreement:
 Grant No. DMR78-17929

 Amount:
 TE
 PHYSICS

Amount.	A CONTRACTOR OF THE OWNER OWNE	11110100	1011LLO
NSF	\$37,381 (E-27-671)	\$ 8,884 (G-41-673)	\$46,265
GIT	5,878 (E-27-319)	5,877 (G-41-317)	11,755
TOTALS	\$43,259	\$14,761	\$58,020
Reports Required:	Progress Report (subr	nit w/request for cont	inued support); Final
States of The St	Project Report	· · · · · · · · · · · · · · · · · · ·	

Sponsor Contact Person (s):

Technical Matters

(Program Officer) Dr. Norbert M. Bikales Program Director Polymers Program Metallurgy and Materials Section Division of Materials Research National Science ! Foundation) Washington, D. C. 20550 (202) 632-7406

Contractual Matters

(thru OCA) (Grants Manager) Ms. Mary Frances O'Connell Grants Specialist - Area 4 MPE/BBS/SE Branch Division of Grants and Contracts National Science Foundation Washington, D. C. 20550 (202) 632-2858

Defense Priority Rating: n/a

Assigned to:	Textile Engineering/	Physics (School/Laborato	ry)
COPIES TO:			
Project Director (2)		Library, Technical Reports Section	
Division Chief (EES) School/Laboratory Di	rector (2)	EES Information Office EES Reports & Procedures	an agains Éric
Deen/Director-EES Accounting Office		Project File (OCA) (2)	
Procurement Office		Project Code (GTRI) Other	
Security Coordinator (Reports Coordinator (and the second second

GEORGIA INSTITUTE OF TECHNOLOGY

SPONSORED PROJECT TERMINATION SHEET

UNDORLD	INOLUI	I FIGHTINGIT	OIL DILLLI
the second se	the second s		

Date June 15, 1983

Project Title: Gaseous Polymer Solutions

Project No: E-27-671

Project Director: Dr. J. L. Lundberg

Sponsor: National Science Foundation

Effective Termination Date: 7/31/82

Clearance of Accounting Charges: 10/31/82

Grant/Contract Closeout Actions Remaining:

Final Invoice and Closing Documents

Final Fixed Report (FCTR)

Final Report of Inventions

Govt. Property Inventory & Related Certificate

Classified Material Certificate

Other ____

X

X

X

Assigned to:

Textile Eng./Physics

(School/Laboratory)

COPIES TO:

Administrative Coordinator Research Property Management Accounting Procurement/EES Supply Services Research Security Services Reports Coordinator (OCA) Legal Services (OCA) Library EES Public Relations (2) Computer Input Project File Other

NOTICE OF RESEARCH PROJECT

SCIENCE INFORMATION EXCHANGE

SMITHSONIAN INSTITUTION NATIONAL SCIENCE FOUNDATION

SIE PROJECT NO.

NSF AWARD NO.

PROJECT SUMMARY

	FOR N	SF USE ONLY		
DIRECTORATE/DIVISION	PROGRAM OR SECTION	PROPOSAL NO.	F.Y.	
NAME OF INSTITUTION LINCLU	DE BRANCH/CAMPUS AND SCHOO			
Georgia Instit	tute of Technology			
ADDRESS (INCLUDE DEPARTM	ENT)			
	ile Engineering			
225 North Aver	nue, NW			
Atlanta, Georg	jia 30332			
PRINCIPAL INVESTIGATOR(S)				
	erg, Donald C. O'Shea			
	,			
TITLE OF PROJECT				
Gaseous Polyme	er Solutions			
TECHNICAL ABSTRACT (LIMIT	TO 22 PICA OR 18 ELITE TYPEWR			
TECHNICAL ABSTRACT (LIMIT	TO 22 FICA ON 18 ELITE ITFEWA	TTEN LINES		
Colubilition mon	award for 22 polymon	and exetome show that	t common inductrial	
	sured for 23 polymer -		ioxide, ethane, propane	
			ng and forming polymers.	
	lubility measurements w			
lower concentrat	ions of polymers in gas	es. Solubilities of a	polymers likely to be	
	n gases will be measure			
	ycol), and polybutadien			
these polymers an	nd others in carbon dio	xide will be measured	d. Angular dependence of	
irradiance of ela	astically scattered lig	ht will be measured o	on solutions of	
			s functions of pressure,	
temperature, and	concentration at relat	ively low pressures ((p<~ 135 atm). Results	
will be interperi	ted in terms of polymer	solution theories ar	id the theory of	
			ering (Brillouin spectra)	
	polyisobutylene in buta und, moduli of elastici			
			will be measured by the	
			r the critical region of	
	dissolved in butane, th			

Proposal Folder
 Division of Grants & Contracts
 Principal Investigator
 Program Suspense
 Science Information Exchange
 Off. of Govt. & Pub. Progs.

2

1) Solubility studies

Dr. Sabz Ali, postdoctoral fellow, has measured the solubilities of polymers in gases for 18 gas - polymer systems by observing pressures and temperatures of critical opalescence. Mass of gas present at phase separation is calculated from observed pressure assuming the compressibility of the gas in solution is the same as in the pure gas at the same pressure and temperature, the known mass of polymer in the pressure vessel is dissolved, and the partial pressure of the polymer is negligible. Solubilities (in weight fractions of polymers), pressure and temperature ranges, and densities of solutions estimated in this and earlier work are as follows:

Polymer or Polymer of		4 C	P _C atm	dc g/cc	Wt fract polymer	Pressure atm	Temp C	Density g/cc	P/P) T/T ^C)
Nylon-6 Butene-1	C0 ₂ C0 ₂	31 31	73 73		.138165	402-511 294-913	233-241 131-150	.4959 .5391	$3.3_1-4.1_5$ 2.90-9.42
PIB (loMW) PIB (hiMW) Propylene Styrene PVC	$\begin{array}{c} \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2\\ \text{CO}_2 \end{array}$	31 31 31 31 31 31	73 73 73 73 73 73	.47 .47 .47	.056069 .049057 .067381 .015061 .036212	425-439 603-615 453-954 666-688 810-898	120-178 121-177 163-208 100-144 88-113	.5972 .7082 .6087 .7991 .91-1.02	$3.9_{3}-4.6_{5}$ $5.5_{9}-6.5_{2}$ $4.3_{3}-8.2_{7}$ $6.7_{6}-7.6_{7}$ $8.7_{5}-10.3_{1}$
PIB (loMW) PIB (hiMW) Styrene Propylene PMMA	Ethane Ethane Ethane Ethane Ethane	32 32 32 32 32 32	49 49 49 49 49	.21 .21 .21 .21 .21 .21	.082597 .109154 .070411 .040405 .050348	55-163 260-275 187-382 307-415 400-418	100-200 100-200 100-201 160-200 160-188	.2636 .2647 .2745	${}^{0.85}_{3.47-4.66}_{4.17-4.65}_{4.17-6.15}_{5.55-6.09}_{-6.09}$
PVC Ethylene Ethylene	Propane Propane Propane	97 97 97	42 42 42	.22	.075321 .077250 .056296	55-129 409-431 409-432	100-141 100-181 100-181	.3051 .4455 .4458	${}^{1.3}_{7.9^{\circ}-10.1^{\circ}_{0.10}}_{7.9^{\circ}_{4}-10.1^{\circ}_{3}}$
PVC PMMA PIB (loMW) PIB (hiMW) Styrene Butene-l Propylene Propylene	Butane Butane Butane Butane Butane Butane Butane Butane	152 152 152 152 152 152 152 152 152	38 38 38 38 38 38 38 38 38 38	.23 .23 .23 .23 .23 .23 .23	.099 .059198 .202314 .167318 .130294 .051199 .05022 .036217	46 51-85 65-109 60-118 88-123 108-138 119-157 115-203	155 155-200 155-200 155-200 155-201 171-198 166-190 155-189	.3660 .4058 .4046 .4453	1.2 $1.36-2.04$ $1.83-2.68$ $1.58-2.80$ $2.33-2.92$ $2.61-3.52$ $3.07-3.85$ $3.05-4.88$

Common to all studies of solubilities reported to date is the visual observation of phase separation (1,2,3). In high pressure vessels used in these studies, not all of the interior volumes can be seen through the windows. Therefore, the assumption that polymer in the pressure vessel is dissolved completely cannot be verified by direct, visual observation. Repeatability of measurements and consistency of solubility estimates are used to substantiate this assumption. In our light scattering studies, we can see the whole volume in the pressure cell; hence, we can verify that all polymer is dissolved (for gas polymer systems at pressures up to about 135 atm, the bursting limit of windows on this cell). At present we are checking solubility measurements comparing measurements in the light scattering and solubility measurement pressure cells.

Solubilities of polymers in gases appear to be sufficient that gaseous solutions can be useful for the transport and fabrication of polymers. The polymers are soluble at temperatures close to or above their softening or melting temperatures. Extrusion of polymers usually is carried out at temperatures substantially above softening or melting points of polymers in order to lower viscosities into workable ranges. Gaseous solutions of polymers should be attractive as transport and facrication media because these can be manipulated at temperatures substantially lower (as much as 100 centigrade degrees). For example, the solubilities of polyvinylchloride in propane and carbon dioxide at temperatures as low as 100^oC appear to be sufficient that these solutions may be useful for fabricating polyvinyl-chloride. Pressures at which polymers dessolve in gases may be expected to be higher the higher the melting or softening temperature of the polymer and the lower the critical temperature of the gas. Therefore, approximate

comparison of solubility behaviors may be made by comparing the reduced pressures divided by the reduced temperatures of the gases for ranges of solubility. By this criterion nylon-6 is easily dissolved in CO₂ as are polyisobutylene in ethane and n-butane and polyvinylchloride in propane and n-butane while polyethylene is less readily soluble in propane and n-butane.

2) Elastic light scattering

Gaseous polymer solutions such as polyisolbutylene in n-butane scatter light with the intensity expected from our experience with pure gas - liquid systems and critical miscibility in two component liquid systems. Mr. Kenneth Ko, predoctoral fellow in the School of Textile Engineering, has observed near critical opalescence, turbulence, and diffraction caused by density gradients for solutions of polyisobutylene in n-butane.

Light scattering apparatus, thermostatted scattering cell, and temperature and pressure measuring and data recording systems have been built and calibrated. Present efforts are directed toward preventing precipitation of polymer on the windows of the light cell. Such precipitated polymer interferes with measurements of irradiance of scattered light.

Inelastic light scattering

Mr. Eric Kuster, predoctoral fellow in the School of Physics, has constructed a Brillouin spectrophotometer with thermostatted pressure cell and pressure system to produce gaseous polymer solutions and observe Brillouin spectra. Polyisobutylene has been dissolved in butane in the spectrophotometer cell. This requires some stirring, by rolling ball bearings within the cell as it is rocked. Attempts to dissolve the less readily soluble polymers such as polystyrene, polypropylene and polyethylene in carbon dioxide were not successful.

Plans for the Third Year of the Study

1) Solubility studies (S. Ali and J.L. Lundberg)

ä

Solubilities of some polymer - gas systems which may exist at lower pressures will be examined. Possible systems are polydimethylsiloxane, polybutadiene, and polyethylene glycol in propane and butane. Solubilities on systems measured in the past will be checked to determine that all polymer placed in the pressure cell is dissolved.

2) Elastic light scattering (K. Ko and J.L. Lundberg)

Angular dependence of the irradiance of scattered light will be measured at various pressures, temperatures, and concentrations for polyisobutylene in n-butane and other gas - polymer systems at pressures up to about 135 atm. Results will be interpreted using Einstein's equations for light scattering from mixtures (4) and theories of polymer solutions (5,6) and Debye's equation for scattering from inhomogenious media (7).

3) Inelastic light scattering (E. Kuster and D.C. O'Shea)

The Brillouin spectra of solutions of polyisobutylene in n-butane will be measured at various pressures, temperatures and concentrations approaching immiscibility. Measurements will be made on other, readily soluble polymer in gas systems. Sound velocities, moduli of elasticity, and viscosities at ultrasonic frequencies will be calculated.

4) Viscosities (S. Ali and J.L. Lundberg)

Viscosities of a few of these gaseous polymer solutions will be measured using the falling cylinder technique. Apparatus has been assembled and tested and will be refined. Techniques to prevent the cylinder from sticking in polymer to the wall of the pressure vessel before dissolution must be perfected.

References

- P. Ehrlich and J. J. Kurpen, <u>J. Polymer Sci.</u>, <u>A</u>, <u>1</u>, 3217 (1963);
 P. Ehrlich, <u>ibid</u>, <u>3</u>, 131 (1965).
- 2. T. Swelheim, J. de Swaan Arons and G.A.M. Diepen, <u>Rec. Trav. Chim.</u>, <u>84</u> 261 (1965).
- 3. R. Konigsveld, G.A.M. Diepen and H.A.G. Chermin, <u>Rec. Trav. Chim.</u>, <u>85</u>, 504 (1966).
- 4. A. Einstein, <u>Ann. Physik.</u>, <u>33</u>, 1275 (1910); translated by G. Y. Rainich and published in <u>Colloid Chemistry</u>: <u>Theoretical and Applied</u>, <u>Vol. I</u>, Jerome Alexander, Ed. (<u>Chem. Catalog Co.</u>, <u>New York</u>, 1926), p. 323.
- P. J. Flory, J. Chem. Phys., 9, 660 (1941), ibid, 10, 51 (1942);
 M. L. Huggins, J. Chem. Phys. 9, 440 (1941); J. Phys. Chem., 46, 15 (1942), Ann. N. Y. Acad. Sci., 43, 1 (1942).
- B. H. Zimm and J. L. Lundberg, J. Phys. Chem., <u>60</u>, 425 (1956), J. L. Lundberg, Pure and Appl. Chem., <u>31</u>, 261 (1972).
- 7. P. Debye, <u>Physik Z.</u>, <u>28</u>, 135 (1927); P. Debye and A. Bueche, <u>J. Appl.</u> <u>Phys.</u>, <u>20</u>, <u>518 (1949)</u>; P. Debye in <u>Scattering of Radiation by Non-</u> <u>crystalline Media</u>, V. D. Frechette, Ed. (John Wiley and Sons, New York, <u>1960</u>) p. 1.

Current and Pending Support

	AGENCY	TITLE	GRANT NO.	AMOUNT	PERIOD	ACAD.	SUMMER	LOCATION
J. L. Lundberg	NSF	Gaseous Polymer Solutions	DMR-7817929 DMR-7922660	\$94,265	09/01/78- 02/28/81	1	0	Georgia Tech
	NSF	Student Science Training Program	Proposal sub- mitted 8/22/80	40,270		0	2	Georgia Tech
D. C. O'Shea	NSF	Relative Contributions of Scattering Equation Terms	DMR-7907758	43,783	07/01/80 07/10/81	1	1	Georgia Tech
		to the Resonance Spectra of Synthetic Metallopor- phorins	DMR-8011078	50,935	07/01/81- 07/01/82	1	0	Georgia Tech

	TICOMIA SIM AND A SI A MARK				
PLEASE READ INSTR		the second	and the second se		
1. Institution and Address		ATION INFORMA			<u></u>
- Georgia Institute of Technology	2. NSF Prog Polyme	er Program	3. M DM	NSF Award Nu IR-781792	imber 9
225 North Avenue, NW Atlanta, GA 30332	4. Award Per From 9/	riod 1/78 To 7/	31/82 \$	Cumulative Aw 145,265	ard Amount
6. Project Title					
GASEOUS POLYMER SOLUTION	S				
PART II-SUMMARY This study of "Gaseous Polymer	OF COMPLETED	PROJECT (FOR	PUBLIC USE)		
gaseous solutions of poly(dimethyls Lundberg), and Brillouin scattering D. C. O'Shea). Polypropylene, polystyrene, and appear to be reasonably soluble in above the critical temperatures of polymers and at pressures above the methacrylate) dissolves in butane g conditions. Polyethylene is readil polyisobutylene dissolve in sulfurk easily in gaseous butane. Elastic scattering of light fr 0.043 g/cm ³ , scattering angles up t critical miscibility temperatures o	by solution high and l carbon diox the gases a critical p as and to s y soluble i nexafluoride om butane s o 8°, and o	ow molecula ide, ethane nd the soft oressures of ome extent n propane a . Polydime	in butane r weight p and butan ening temp the gases in ethane in ethane end butane; thylsiloxa	(by E.J. polyisobu peratures peratures . Poly(gas unde , small a ne dissol concentr	Kuster ar tylenes peratures of the methyl r similar mounts of ves quite ations up
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of	ions) can b iquid mixtu ce theory. tting scatt lia suggests 0 µ in thes molecular f colutions ne s of PDMS-r 110 ⁰ to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica b b butane mi o C and pre The result	ed quite ggins' eq listances a to Deby cactive i ns. The d luced by al immisc ixtures a essures f cs show t	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne es of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica of and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The d luced by al immisc ixtures a essures f cs show t weight PD	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne es of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica of and pre The result ercent by w	ed quite ggins' eq listances a to Deby ractive i ns. The d luced by al immisc ixtures a essures f s show t weight PD	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1.	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby ractive i ns. The c luced by al immisc ixtures a essures f ts show t weight PD	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne es of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The duced by al immisc ixtures a essures f sshow t veight PD	accurately uation for between e's ndex concentrat fitting ibility,, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR.
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks)	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The c luced by al immisc ixtures a essures f is show t veight PD sy TO BE SEPARATE Check (/)	accurately uation for between e's ndex concentrat fitting ibility,, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t <u>FART III-TECHNICAL INFO</u> 1. ITEM (Check appropriate blocks) a. Abstracts of Theses	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The c duced by al immisc ixtures a essures f cs show t weight PD Sy TO BE SEPARATE Check (/) X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t <u>PART III-TECHNICAL INFO</u> 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The c luced by al immisc ixtures a essures f is show t veight PD sy TO BE SEPARATE Check (/)	accurately uation for between e's ndex concentrat fitting ibility,, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146 ^o C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The c duced by al immisc ixtures a essures f cs show t weight PD Sy TO BE SEPARATE Check (/) X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators d. Information on Inventions	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby active i hs. The c luced by al immisc ixtures a essures f ixtures a essures f s show t veight PD SU Check (/) X X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83 1/1/84
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators d. Information on Inventions e. Technical Description of Project and Results	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby cactive i ns. The c duced by al immisc ixtures a essures f cs show t weight PD Sy TO BE SEPARATE Check (/) X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators d. Information on Inventions	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica butane mi o C and pre The result ercent by w	ed quite ggins' eq listances a to Deby active i hs. The c luced by al immisc ixtures a essures f ixtures a essures f s show t veight PD SU Check (/) X X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83 1/1/84
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t <u>PART III-TECHNICAL INFO</u> 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators d. Information on Inventions e. Technical Description of Project and Results f. Other (specify)	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests 0 µ in thes molecular f colutions ne es of PDMS-r 110° to 195 0.05 cm. about 20 pe PROGRAM MAN ATTACHED	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica of and pre The result ercent by w AGEMENT USE PREVIOUSLY FURNISHED	ed quite ggins' eq listances a to Deby ractive i hs. The c luced by al immisc ixtures a essures f ixtures a essures f s show t veight PD SU TO BE SEPARATE Check (/) X X X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83 1/1/84 7/1/83
by Einstein's equation for scatteri the activity of solvent derived from refractive index fluctuations calcu equation for scattering from inhomo fluctuation lengths are from about fluctuation correlation lengths and data to Debye's equation for scatte are much too high. Brillouin shifts were measured density and composition at tempera 110 atm. Brillouin shifts varied f solutions did form and that for a s critical temperature is estimated t PART III-TECHNICAL INFO 1. ITEM (Check appropriate blocks) a. Abstracts of Theses b. Publication Citations c. Data on Scientific Collaborators d. Information on Inventions e. Technical Description of Project and Results	ng from a 1 m the latti lated by fi geneous med 0.65 to 0.7 ranges of ring from s on a serie tures from rom 0.01 to olution of o be 146°C.	ions) can b iquid mixtu ce theory. tting scatt lia suggests O µ in thes molecular f colutions ne s of PDMS-r 110° to 195 0.05 cm. about 20 pe	e describe re and Hug Average d ering data that refr s solution forces, dec ar critica of and pre The result ercent by w AGEMENT USE PREVIOUSLY FURNISHED	ed quite ggins' eq listances a to Deby ractive i hs. The c luced by al immisc ixtures a essures f ixtures a essures f s show t veight PD SU TO BE SEPARATE Check (/) X X X	accurately uation for between e's ndex concentrat fitting ibility, t constant rom 20 to hat gaseou MS the FURNISHED LY TO PROGR. Approx. Dat 9/1/83 1/1/84

3